ARTECH HOUSE

COMPUTER SECURITY SERIES

Security
Technolo

ROLF OPPLIGER



Security Technologies for the World
Wide Web



For quite a long time, computer security was a rather narrow field of study that was
populated mainly by theoretical computer scientists, electrical engineers, and applied
mathematicians. With the proliferation of open sys- tems in general, and of the Internet and
the World Wide Web (WWW) in particular, this situation has changed fundamentally.
Today, computer and network practitioners are equally interested in computer security,
since they require technologies and solutions that can be used to secure applications related
to electronic commerce. Against this background, the field of computer security has become
very broad and includes many topics of interest. The aim of this series is to publish state-of-
the-art, high standard technical books on topics related to computer security. Further
information about the series can be found on the WWW at the following URL:

http://WWW.esecurity.ch/serieseditor.html

Also, if you’d like to contribute to the series by writing a book about a topic related to
computer security, feel free to contact either the Commissioning Editor or the Series Editor
at Artech House.

Recent Titles in the Artech House
Computer Security Series

Rolf Oppliger, Series Editor

Computer Forensics and Privacy, Michael A. Caloyannides

Demystifying the IPsec Puzzle, Sheila Frankel

Developing Secure Distributed Systems with CORBA, Ulrich Lang and Rudolf Schreiner

Implementing Electronic Card Payment Systems, Cristian Radu

Implementing Security for ATM Networks, Thomas Tarman and Edward Witzke

Information Hiding Techniques for Steganography and Digital Watermarking,
Stefan Katzenbeisser and Fabien A. P. Petitcolas, editors

Internet and Intranet Security, Second Edition, Rolf Oppliger

Non-repudiation in Electronic Commerce, Jianying Zhou

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Security Fundamentals for E-Commerce, Vesna Hassler

Security Technologies for the World Wide Web, Second Edition, Rolf Oppliger

For a listing of recent titles in the Artech House
Computing Library, turn to the back of this book.



Security Technologies for the World
Wide Web

Second Edition

Rolf Oppliger

Ag

Artech House
Boston ® London



Library of Congress Cataloging-in-Publication Data
Oppliger, Rolf.
Security technologies for the World Wide Web/Rolf Oppliger.—2nd ed.
p. cm. — (Artech House computer security library)
Includes bibliographical references and index.
ISBN 1-58053-348-5 (alk. paper)
1. Computer security. 2. World Wide Web (Information retrieval system)—Security measures
I. Tice  II. Series.
QA76.9.A.25 067 2002
005.8—dc21 2002032665

British Library Cataloguing in Publication Data
Oppliger, Rolf
Security technologies for the World Wide Web.—2nd ed.—
(Artech House computer security library)
1. World Wide Web—Security measures
L. Title
005.8

ISBN 1-58053-348-5

Cover design by Christine Stone

© 2003 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

Many screen shots in this book are copyright 2002 Microsoft Corporation (USA) or Opera Software ASA (Nor-
way). All rights reserved. These pages may not be reprinted or copied without express written permission of Mi-
crosoft or Opera Software.

Microsoft Corporation and Opera Software ASA have not authorized, sponsored, endorsed, or approved this
publication and are not resposible for its content. Microsoft and the Microsoft corporate logos are trademarks and
trade names of Microsoft Corporation. Similarly, Opera and Opera Software logos are trademarks and trade
names of Microsoft Corporation. Similarly, Opera and Opera Software logos are trademarks and trade names of
Opera Software ASA. All other product names and logos are trademarks of their respective owners.

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 1-58053-348-5
Library of Congress Catalog Card Number: 2002032665

10987654321



To my daughter, Lara






Contents

Preface . . ... ... XV
References. . .. ... .. e XX
Acknowledgments. . .. ....... ... ... Xx111
Introduction . ........... . ... . . i 1
1.1 Internet. . . ... .. ... e 1

1.2 WWW .
1.3 Vulnerabilities, threats, and countermeasures . ............ 8
1.4 Generic security model. . . ......... ... ... ... ... .. .. .. 10
1.4.1 Security policy . ... ..... ... . ... 12
1.4.2 HOSt SECUTIEY. . . . o oo e e 13
1.4.3  NetWork SeCUTTLY. . . . .. v 13
1.4.4 Organizational Security . ... ....................... 16
1.4.5 Legal Security . .. .. .. ... i 17
References. . . ... .. e e 17
B HTTP SECUTIY . - « -+ v e v e e e e e oo el 21
2.1 HTTP. . . 21

2.2 User authentication, authorization,

and access control .. ... ... . 26

vil



viii

2.3 Basic authentication. . .. ....... ... .. . L L
2.4 Digest access authentication . . ........................
2.5 Certificate-based authentication . ......................
2.6 Server configuration. . ... ...... .. .. . L L o
2.6.1 Configuring HTTP basic authentication . . .. ............
2.6.2 Configuring HTTP digest access authentication . .. ........
2.7 Conclusions. . . ... ..
References. . . ... ...
Proxy Serversand Firewalls . . . ..................
3.1 Introduction . ....... ... ... ...
3.2 Static packet filtering . . . ... ... .. L
3.3 Dynamic packet filtering or stateful inspection. . ...........
3.4 Circuit-level gateways . ... ....... ...
3.5 Application-level gateways. ... ..... ... .. ... . . ...
3.6 Firewall configurations. . .. ........ ... . . . L L L.
3.6.1 Dual-homed firewall . ... .........................
3.6.2 Screened host firewall .. ......... ... ... . .........
3.6.3 Screened submet firewall. . ... ... ... .. .. ... .. ...
3.7 Network address translation . . . ....... ... ... ... .. ..
3.8 Configuring the browser. . .. .........................
3.9 Conclusions. . .. ...
References. . . . . ... .
Cryptographic Techniques. .. ...................
4.1 Introduction . ..... ... .. ... ...
4.2 Cryptographic hash functions. . .. .....................
4.3 Secret key cryptography. . ....... .. .. ..
43.1 DES . . .
4.3.2 Triple-DES. . . .. ...
433 IDEA . .. .
434 SAFER .. . .
4.3.5 Blowfish .. ... ...

29
34
41
42
42
45
46
48

49

49
54
57
58
64
68
69
71
72
74
76
80
83

87

87
90
92
93
93
95
95
95



4.3.6 CAST-128 ... . . 95
4.3.7 RC2, RC4, RC5, and RC6. . . .. ..................... 95
43.8 AES . . 96
4.4 Public key cryptography. . .. ... ... . 96
4.4.1 RSA . . 100
4.4.2 Diffie-Hellman . . .. .......... .. ... ... 101
443 ElGamal . . ... ... .. .. . ... 102
444 DSS .. 102
445 ECC ... 102
4.5 Digital envelopes . . ... ... . 103
4.6 Protection of cryptographickeys. ... ... ... .. ... .. .. 105
4.7 Generation of pseudorandom bit sequences. . ............ 107
4.8 Legalissues . .. ... i i 107
4.8.1 Patentclaims . ......... ... ... ... 108
4.8.2 Regulations . ........... ... 109
4.8.3 Electronic and digital signature legislation. .. ......... 110
4.9 NOTAtION . . . vttt e e e e 111
References. . . ... ... 113
Internet Security Protocols . . .. ................. 117
5.1 Introduction . ....... ... .. ...t 117
5.2 Network access layer security protocols. .. .............. 118
5.2.1 Layer 2 Forwarding Protocol . . ... ................. 121
5.2.2  Point-to-Point Tunneling Protocol . . . ... ............. 122
5.2.3 Layer 2 Tunneling Protocol . .. .................... 124
5.2.4 Virtual private networking. . . ... ........ ... ... ... 124
5.3 Internet layer security protocols . .. ................... 125
5.3.1 IP security architecture . ................ ... ... 128
5.3.2 IPsec protocols . ... ... ... ... 131
5.3.3 IKE Protocol . ....... ... . . . .. . 136
534 Implementations. . ...............uuiiiiiiin... 141
5.4 Transport layer security protocols . . . ........... ... .. .. 143
5.5 Application layer security protocols. . .. .. .............. 143

5.5.1 Security-enhanced application protocols . .. ............ 144



5.5.2  Authentication and key distribution systems. .. ......... 144

5.5.3 Layering security protocols above the

application layer. . ... ... ... .. . . . ... 145

5.6 Conclusions. . ... ...... ... e 146
References. . . . ... ... 148
SSLand TLS Protocols. . . . ........ ... ..., 153
6.1 SSL Protocol . ......... .. . . .. 153
6.1.1 HISIOTYy ... 153

6.1.2 Architecture . .. ... ... .. ... 155

6.1.3 SSL Record Protocol . ........... ... .c.uiu.ni... 159

6.1.4 SSL Handshake Protocol . . ....................... 161

6.1.5 Security analysis. . . ... ... ... ... 167

6.1.6 Implementations. .. .......... ..., 169

6.2 TLS Protocol . . ... ... ... . 171
6.3 SSL and TLS certificates . ... ........... ..., 175
6.4 Firewall traversal . . .. ... ... ... ... ... .. . .. ... 178
6.4.1 SSL/TLS tunmeling . . .. ............ ..o, 179

6.4.2 SSL/TLS proxy Servers. .. .. .. .. ..., . 181

6.5 Conclusions. . . ... ..... ... e 182
References. . ... ... . 183

Certificate Management and Public Key

Infrastructures. . . . ....... ... . . .. e 185
7.1 Introduction ............ .. ... 185
7.2 Public key certificates. . . . ........ ... ... L 187
7.2.1 PGP certificates. . . ... ....... ... 188
7.2.2 X509 certificates. . .. ... ... ... 190
7.3 IETEPKIX WG. . . ... i e e e 193
7.4 Certificate revocation. . .. ........ ... . 196
74.1 CRLS. ... o 198
74.2 OCSP . . . 199

7.4.3 Alternative schemes. . . .. .. ..... ... .. ... . 200



xI

7.5 Certificates for the WWW. . ... ... ... ... .. .. ... ... 201
7.5.1 CA certificates. ... ... ... ... ... 201
7.5.2  Server or site certificates. . .. .. ... ... ... 203
7.5.3 Personal certificates . . . .. ... ... ... 204
7.54 Software publisher certificates. . . ................... 205
7.6 Conclusions. . ... ... 207
References. . . . .. .. 210

Authentication and Authorization Infrastructures . ... 213

8.1 Introduction .. ............ ..., 213
8.2 Microsoft NET Passport . .. .. ..... ..., 216
821 OVerview . . ... ... ... 217
8.2.2 .NET Passport user acCOumts. . .. .. ... .. ... . 219
8.2.3 .NET Passport SSI Service ... .. .. ... . 222
8.2.4 Complementary Services . . . ... ... ..., 228
8.2.5 Security analysis. . ... ... ... ... 230
8.3 Kerberos-based AAIS .. ........ .. .. .. 231
8.3.1 Kerberos .. ... ... ... 231
83.2 SESAME . . ... . . 240
8.3.3 Windows 2000 . ... ... .. ... ... 240
8.4 PKI-based AAIS . . .. .. it 241
8.5 Conclusions. . ... .. ... ... 245
References. . . . .. .. 245
Electronic Payment Systems . . . ................. 249
9.1 Introduction . ........ ... ..., 249
9.2 Electronic cash systems . ............... ... ... ... 255
9.3 Electronicchecks. ...... ... ... .. ... ... ... .. ... 257
9.4 Electronic credit-card payments . ..................... 259
9.5 Micropayment SYSteIMIS. . . . v v v v v vt it et e 261
9.6 Conclusions. . ... ... ... ... 262

References. . . . ... .. . . . . 264



XiI

Client-side Security ............cuiiiinnnnn 267
10.1 Introduction . ... .. .. .. ... 267
10.2 Binary mail attachments. . .. ......... .. ... ......... 271
10.3 Helper applications and plug-ins . . . .................. 272
10.4 Scripting languages . .. .......... ... ... .. 275
10.5 Javaapplets. ... ... e 278

10.5.1 Security architecture . . .. .......... ... ... ... ... 279

10.5.2  Security policy ... ... .. 281

10.53 Codesigning . ......... ... ... 281
10.6 ActiveX controls. . .. ... ... .. 283
10.7 Security ZONES . . . .. ...ttt 288
10.8 Implications for firewalls . ....... ... .. ... ... ...... 291
10.9 Conclusions. . .. ... .. 293
References. . .. . ... 294
Server-side Security . ... ... i 297
11.1 Introduction . ..............uuiuununnnnnnn... 297
I1.2 CGL. .o 300
11.3 Server APIS . . . ... 309
11.4 FastCGIL. . . ... .. e 310
11.5 Server-sideincludes . ......... ... .. .. .. .. .. ...... 311
11.6  ASP. .. e 312
11.7 JSP . 313
11.8 Conclusions. . . .......... .. 314
References. . . ... ... 314
Privacy Protection and Anonymity Services . ....... 317
12.1 Introduction . .......... ...t 317
12.2 Early work. . ... ... . 321
123 CoOKieS . . . vt 324
12.4 Anonymous browsing. . . ... ............ ... .. .. ..., 328

12.4.1 Anonymizing HTTP proxy servers . ............... 329

1242 JAP ... .. 330



XIiI

1243 Crowds . ... ... 330
1244 Onion routing . . ... ... 333
12.4.5 Freedom metwork . .. ......... .. ... 336
12.5 Anonymous publishing. . . ....... .. ... .. .. .. ... ... 336
12.5.1 JANUS and the rewebber service . ................ 336
12.5.2 TAZ servers and the rewebber network . . ... ........ 338
12.53 Publius......... ... . . . ... 340
12.6 Voluntary privacy standards . . .. ... ................. 341
12.6.1 Privacy seals . .......... ... ... 341
12.6.2 P3P .. 342
12.7 Conclusions. . . ........ ... 343
References. . . . .. ... . 344
Intellectual Property Protection ................. 347
13.1 Introduction ... ... .. ... ...t 347
13.2 Usage control. . . ... ... 349
13.3 Digital copyright labeling . .. ....................... 351
1331 Imtroduction. ... ... ...... ..., 351
13.3.2 Categories of watermarking techniques . . ........... 352
1233 Aftacks ... ... . .. 355
13.4 Digital Millinium Copyright Act . .................... 356
13.5 Conclusions. . ... ... ... 357
References. . .. .. .. 358
Censorshiponthe WWW . .................... 359
14.1 Introduction . .. ... ... ..t 359
14.2 Content blocking . . . ......... .. .. .. .. .. . 360
14.2.1 IP address blocking. . . ........................ 361
14.2.2 URL blocking. . . .. ... .. 363
14.3 Content rating and self-determination. . ............... 365
144 Conclusions. . .. ... .. i 371

References. . . . . ... 373



Xiv

Risk Management............ ...t innnnn 375
15.1 Introduction . ... ........ ..t 375
15.2 Formal risk analysis . . .. ...... .. ... . . . . 378
15.3 Alternative approaches and technologies. .. ............ 379

15.3.1 Security Scanming. . .. ... ... .. ..., 379

15.3.2 Intrusion Detection . .. .. ... .. ...c..uuuuenorn.. 381
154 Conclusions. . ....... .. 382
References. . . . ... ... 383
Conclusions and Outlook . . ... ................ 385
Abbreviations and Acronyms. . . . .......... ... .. 389
About the Author. . . . ......... ... .. ..., 403



During the past decade, I have been heavily involved in security issues
related to TCP/IP-based networks.! The results of this work are
summarized in Authentication Systems for Secure Networks [1], Secure Messaging
with PGP and S/MIME [2], and—most importantly—the second edition of
Internet and Intranet Security [3]. The three books overview and fully discuss
the technologies that are available today and that can be used in TCP/IP-
based networks to provide access control and communication security
services. They are mainly written for computer scientists, electrical
engineers, and network practitioners with some background in computer
and communication security.

Some time ago, I was asked whether one of the books could be used to
educate World Wide Web (WWW) professionals (e.g., Webmasters and Web
server administrators) in security matters. Unfortunately, I realized that
while the books cover most technologies used to secure applications for the
WWW, they are written in a language that is inappropriate for Web
professionals. Note that these folks are generally familiar with network
operating system issues and communication protocols, but they are neither
security experts nor cryptographic specialists. They may not even be
interested in architectural details and design considerations for crypto-
graphic technologies and protocols that are widely deployed.

Having in mind the Web professional who must be educated in security
matters within a relatively short period of time, I decided to write a book
that may serve as a security primer. While writing the book, I realized that

1. TCP/IP-based networks are networks that are based on the communications protocol suite. This protocol suite,
in turn, is centered around the Transport Control Protocol (TCP) and the Internet Protocol (IP).

.44



xXvi

the result could also be used by Web users and application software
developers. The resulting book, Security Technologies for the World Wide Web,
was published in 2000. It overviewed and briefly discussed all major topics
that are relevant for Web security. Unfortunately, and due to the dynamic
nature of the field, it has become necessary to update the book and come up
with a second edition after only a relatively short period of time. There are
many new terms and buzzwords that need to be explained and put into
perspective. Consequently, Security Technologies for the World Wide Web,
Second Edition elaborates on some well-known security technologies that
have already been covered in the first edition, as well as some more recent
developments in the field.

First of all, it is important to note that the term “WWW security’”” means
different things to different people:

» For Webmasters, it means confidence that their sites won’t be hacked
and vandalized or used as a gateway to break into their local area
networks (LANs);

» For Web users, it means the ability to browse securely through the
Web, knowing that no one is looking into their communications;

» Finally, for proponents of electronic commerce applications, it means
the ability to conduct commercial and financial transactions in a safe
and secure way.

According to [4], Web security refers to “‘a set of procedures, practices,
and technologies for protecting Web servers, Web wusers, and their
surrounding organizations.” In this book, we mainly focus on the
technologies that can be used to provide security services for the WWW.
Some of these technologies are covered in detail, whereas others are only
briefly introduced and left for further study. For example, most security
problems and corresponding exploits that make press headlines are due to
bugs and flawed configurations of specific Web servers, such as Microsoft’s
Internet Information Server (IIS). Due to their transient nature, however,
bugs and configuration flaws are not addressed in this book. There are many
books mainly on computer security and hacking that address these issues.
All of these books suffer the problem that they generally obsolesce faster
than new editions can be produced. Also, an increasingly large number of
CERT? advisories, incident notes, and vulnerability notes can be used to
provide this type of information.

2.

The acronym CERT stands for Computer Emergency Response Team.



xVvil

The reader of Security Technologies for the World Wide Web, Second Edition
gets an overview of all major topics that are relevant for the WWW and its
security properties. As such, the book is intended for anyone who is
concerned about security on the Web, is in charge of security for a network,
or manages an organization that uses the WWW as a platform for providing
information. It can be used for lectures, courses, and tutorials. It can also be
used for self-study or serve as a handy reference for Web professionals.
Further information can also be found in other books on WWW security.
Among these books, I particularly recommend [4-6].> There are also some
books that focus entirely on one specific cryptographic security protocol
(i.e., the Secure Sockets Layer or Transport Layer Security protocol) that is
widely deployed on the WWW [7, 8]. These books are recommended
reading but are more narrow in scope than Security Technologies for the World
Wide Web. Finally, there is also a frequently asked questions (FAQ)
document available on the Web.*

While it is not intended that this book be read linearly from front to
back, the material has been arranged so that doing so has some merit. In
particular, Security Technologies for the World Wide Web, Second Edition has been
organized in 15 chapters, summarized as follows:

» In Chapter 1, we introduce the topic and elaborate on the Internet,
the WWW, vulnerabilities, threats, and countermeasures, as well as a
model that can be used to discuss various aspects of security.

» In Chapter 2, we elaborate on the security features of the Hypertext
Transfer Protocol (HTTP). Most importantly, we address the user
authentication and authorization schemes provided by HTTP and
some implementations thereof.

» In Chapter 3, we explain and address the implications of proxy
servers and firewalls for Web-based applications.

» In Chapter 4, we introduce cryptographic techniques that are
employed by many security technologies for the WWW. These
techniques will be used in subsequent chapters.

» In Chapter 5, we overview and briefly discuss the cryptographic
security protocols that have been proposed and partly implemented
for the Internet (and that can also be used for the WWW).

3.
4.

Among these books only [6] has been updated in a second edition so far.
http://wuw.w3.org/Security/Faq



XVIII

In Chapter 6, we focus on two transport layer security protocols,
namely the Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols. These protocols are particularly important to secure
Web-based applications.

In Chapter 7, we address the problem of how to manage certificates
and discuss the issues that surround public key infrastructures (PKIs).

In Chapter 8, we broaden the topic addressed in Chapter 7 and
discuss authentication and authorization infrastructures (AAIs).

In Chapter 9, we overview and briefly discuss some electronic
payment systems that can be used in e-commerce applications for the
Internet or WWW.

In Chapter 10, we focus on client-side security and the security
implications of executable (or active) content (e.g., Java applets and
ActiveX controls).

In Chapter 11, we address server-side security and the security
implications of some widely deployed server programming technol-
ogies (e.g., CGI and API scripts).

In Chapter 12, we address the increasingly important field of privacy
protection and anonymity services for the WWW.

In Chapter 13, we overview and discuss some technologies that can
be used for intellectual property protection.

In Chapter 14, we address the politically relevant issues that
surround censorship on the Internet or WWW.

In Chapter 15, we elaborate on risk management.

In Chapter 16, we draw conclusions and predict some future
developments in the field.

Unlike the first edition, Security Technologies for the World Wide Web, Second
Edition does not include a glossary. This is because in May 2000, an Internet
Security Glossary was published as informational RFC 2828 (or FYI 36,
respectively) [9]. This document can be used as a reference for anyone
working in the field.” However, Security Technologies for the World Wide Web,

5. There are many other glossaries available on the Internet. Examples include a glossay compiled by Networks
Associates, Inc. at http://www.pgp.com/glossary/default.asp and another glossary compiled by Rob Slade at
http://victoria.tc.ca/int-grps/books/techrev/secgloss.htm



Xix

Second Edition still includes a list of abbreviations and acronyms. References
are included at the end of each chapter. This is also true for the various RFC
documents that are relevant for WWW security.® At the end of the book, an
About the Author section is included to tell you a little bit about me. Finally,
there is an Index to help you find particular terms.

Some authors make a clear distinction between client-side security,
server-side security, and document security, and structure their books
accordingly (e.g., [4]). This book does not follow this approach but uses a
functional organization instead. More precisely, the various chapters
outlined above address zero, one, or even more than one of the above-
mentioned classes of security issues.

There has been a long tradition in the computer and network security
literature of providing various kinds of checklists. Again, Security Technologies
for the World Wide Web, Second Edition breaks with this tradition, mainly
because security is more than checking off items on checklists. The single
most important thing in security is to understand the underlying concepts
and technological approaches. If you understand them, it is a simple
exercise to formulate and implement your own checklist(s).

While time brings new technologies and outdates current technologies, I
have attempted to focus primarily on the conceptual approaches to providing
security services for the WWW. The Web is changing so rapidly that any
book is out of date by the time it hits the shelves in the bookstores (that’s
why this book had to go into a second edition after a relatively short period of
time). By the time you read this book, several of my comments will probably
have moved from the future to the present, and from the present to the past,
resulting in inevitable anachronisms.

Due to the nature of this book, it is necessary to mention company,
product, and service names. It is, however, important to note that the
presence or absence of a specific name implies neither any criticism or
endorsement, nor does it imply that the corresponding company, product, or
service is necessarily the best available. For a more comprehensive products
overview, I particularly recommend the Computer Security Products Buyer’s
Guide that’s compiled and published annually by the Computer Security
Institute (CSI) based in San Francisco, California.’

Whenever possible, I add some uniform resource locators (URLs) as
footnotes to the text. The URLs point to corresponding information pages

6. There are many RFC archives available. For example, RFC documents can be downloaded from http://
www.ietf.org/rfc.
7. http://www.gocsi.com



XX

provided on the Web. While care has been taken to ensure that the URLs are
valid, due to the dynamic nature of the Web, these URLs as well as their
contents may not remain valid forever. Similarly, I use screen shots to
illustrate some aspects related to the graphical user interfaces (GUIs). Unlike
in the first edition, I use Microsoft Internet Explorer version 5.5 and Opera
version 6.0 (instead of Netscape Navigator). Keep in mind, however, that
software vendors, including Microsoft and Opera Software, tend to update
and modify their GUIs periodically. Therefore, chances are that the GUI you
currently use looks (slightly or completely) different than the one replicated
in this book.

Finally, I would like to take the opportunity to invite you as a reader of
this book to let me know your opinion and thoughts. If you have something
to correct or add, please let me know. If I haven’t expressed myself clearly
please also let me know. I appreciate and sincerely welcome any comment or
suggestion, in order to update the book periodically. The best way to reach
me is to send an e-mail to rolf.oppliger@esecurity.ch. You can also visit
the home page® of my company eSECURITY Technologies Rolf Oppliger and
drop a message there. In addition, I have also established a home page for
this book. The page is located at URL http://WWW.esecurity.ch/Books/
WWWsec2e.html.

References
[1]  Oppliger, R., Authentication Systems for Secure Networks, Artech House, Norwood,
MA, 1996.

[2]1 Oppliger, R., Secure Messaging with PGP and S/MIME, Artech House, Norwood,
MA, 2001.

[3] Oppliger, R., Internet and Intranet Security, Second Edition, Artech House,
Norwood, MA, 2002.

[4] Stein, L. D., Web Security: A Step-by-Step Reference, Addison-Wesley, Reading,
MA, 1998.

[5] Rubin, A. D., D. Geer, and M. J. Ranum, Web Security Sourcebook, John Wiley &
Sons, Inc., New York, NY, 1997.

[6] Garfinkel, S., with E. H. Spafford, Web Security, Privacy ¢ Commerce, Second
Edition, O'Reilly & Associates, Sebastopol, CA, 2001.

[71 Thomas, S. A., SSL & TLS Essentials: Securing the Web, John Wiley & Sons, Inc.,
New York, NY, 2000.

8.

http://www.esecurity.ch



xxI

[8] Rescorla, E., SSL and TLS: Designing and Building Secure Systems, Addison-
Wesley, Reading, MA, 2000.

[9] Shirey, R., “Internet Security Glossary,” Request for Comments 2828, May
2000.






Acknowledgments

irst, I want to express my thanks to all people who contributed to and

were involved in the writing, publishing, and selling of the first edition of
this book. Among these people, I am particularly grateful for the interest and
support of Kurt Bauknecht, Dieter Hogrefe, Hansjlirg Mey, and Giinther
Pernul. Also, I want to thank all buyers of the first edition; they have made it
possible for me to update the book and to develop a second edition. Since
publication of the first edition, many security professionals, colleagues,
customers, and students have provided valuable comments, suggestions,
pointers, and further material to me. I hope that this input was taken into
proper consideration. Ruedi Rytz and my brother, Hans Oppliger, have been
particularly helpful in finding mistakes and making the book more
comprehensive and understandable. The same is true for John Yesberg,
who has thoroughly reviewed the entire manuscript and provided many
useful comments and hints. As with the first edition the staff at Artech House
was enormously helpful in producing the second edition of this book.
Among these people, Id like to thank Tim Pitts, Ruth Harris, Judi Stone, and
Jen Kelland. Above all, I want to thank my family—my wife Isabelle and our
beloved children Marc and Lara—for their encouragement, support, and
patience during the writing of the book. Once again, they have tolerated the
long writing hours into the night, the scattered papers and manuscripts, the
numerous business trips, and many other inconveniences while I completed
this edition of the book. Soon before the book went into production, our
daughter Lara was born. Consequently, it is dedicated to her.

XXIII






CHAPTER

Contents

Internet
WWw

Vulnerabilities, threats
and countermeasures

Generic security model

References

Introduction

As mentioned in the Preface, this book assumes that the
reader is familiar with the fundamentals of computer
networks and distributed systems in general, and TCP/IP
networking in particular. You may refer to [1-4] for a com-
prehensive introduction, or Chapter 2 of [5] for a corresponding
summary. Against this background, we overview the scope of
the book in this chapter. In particular, we introduce the
Internet and the World Wide Web (WWW) in Sections 1.1 and
1.2, distinguish between vulnerabilities, threats, and counter-
measures in Section 1.3, and introduce a generic security model
in Section 1.4.

1.1 Internet

The emerging use of TCP/IP networking has led to a global
system of interconnected hosts and networks that is commonly
referred to as the Internet.' The Internet was created initially to
help foster communications among government-sponsored
researchers and grew steadily to include educational institu-
tions, government agencies, and commercial organizations.
In fact, the Internet has experienced a triumphant advance
during the past decade. Today, it is the world’s largest

1. Note the definite article and the capital letter “I”’ in the term ‘the
Internet.”” More generally, the term ‘internet’ is used to refer to any TCP/IP-
based internetwork, whereas the term ‘intranet’ is used to refer to a TCP/IP-
based corporate or enterprise network.



Introduction

computer network and has been doubling in size each year. With this
phenomenal growth rate, the Internet’s size is increasing faster than any
other network ever created, including even the public-switched telephone
network (PSTN).? Early in 1998, more than 2 million Web servers and more
than 30 million computer systems were connected to the Internet [6] and
these numbers have steadily increased meanwhile. Consequently, the
Internet is may be seen as the basis and first incarnation of an information
superhighway, or national information infrastructure (NII) as, for example,
promoted by the U.S. government.’

But in spite of its exacting role, the initial, research-oriented Internet
and its TCP/IP communications protocol suite were designed for a more
benign environment than now exists. It could, perhaps, best be described as a
collegial environment, where the users trusted each other and were
interested in a free and open exchange of information. In this environment,
the people on the Internet were the people who actually built the Internet.
Later on, when the Internet became more useful and reliable, these people
were joined by others with different ethical interests and behaviors. With
fewer common goals and more people, the Internet steadily twisted away
from its original intent.

Today, the Internet environment is much less collegial and trustworthy.
It contains all the dangerous situations, nasty people, and risks that one can
find in society as a whole. Along with the well-intentioned and honest users
of the Internet, there are also people who intentionally try to break into
computer systems connected to it. Consequently, the Internet is plagued
with the kind of delinquents who enjoy the electronic equivalent of writing
on other people’s walls with spray paint, tearing off mailboxes, or hanging
around in the streets annoying the neighborhood. In this environment, the
openness of the Internet has turned out to be a double-edged sword. Since its
very beginning, but especially since its opening in the 1990s and its ongoing
commercialization, the Internet has become a popular target to attack. The
number of security breaches has in fact escalated faster than the growth of
the Internet as a whole.*

Security problems on the Internet receive public attention, and the
media carry stories of high-profile malicious attacks via the Internet against

&

Only mobile networks experience similar growth rates.

http://nii.nist.gov

There are several statistics that illustrate this point. For example, refer to the publications of the Computer
Security Institute (CSI) at http://www.gocsi.com or the reports and articles published by the CERT
Coordination Center (CERT/CC) at http://www.cert.org.



1.1

Internet 3

government, business, and academic sites. Perhaps the first and still most
significant incident was the Internet Worm, launched by Robert T. Morris,
Jr. on November 2, 1988 [7, 8]. The Internet Worm flooded thousands of
hosts connected to the Internet and woke up the Internet community
accordingly. It gained a lot of publicity and led to increased awareness of
security issues on the Internet. In fact, the computer emergency response
team (CERT’) that is operated by the Software Engineering Institute at
Carnegie Mellon University was created in the aftermath of the Internet
Worm, and other CERTs have been founded in various countries around the
world.® Today, the CERT at Carnegie Mellon University serves as the CERT
Coordination Center (CERT/CC) for the Internet community.

Since the Internet Worm incident, reports of network-based attacks,
such as password sniffing, IP spoofing, sequence number guessing, session
hijacking, flooding, and other denial-of-service (DOS) attacks, as well as
exploitations of well-known bugs and design limitations, have grown
dramatically [9-11]. In addition, the use and wide deployment of executable
content, such as provided by Java applets and ActiveX controls, has provided
new possibilities to attack hosts or entire sites.”

Many Internet breaches are publicized and attract the attention of the
Internet community, while numerous incidents go unnoticed. For example,
early in 1994, thousands of passwords were captured by sniffer programs
that had been remotely installed on compromised hosts on various
university networks connected to the Internet. At the end of the same
year, sequence number guessing attacks were successfully launched by
Kevin Mitnick against several computing centers, including Tsutomu
Shimomura’s San Diego Center for Supercomputing [12]. This story actually
shocked the world when it became The New York Times headline news on
January 23, 1995. In 1996, several forms of DOS attacks were launched,
such as e-mail bombing and TCP SYN flooding [13]. Also late in 1996,
Dan Farmer conducted a security survey of approximately 2,200 computing
systems on the Internet.® What he found was indeed surprising: almost
two-thirds of the more interesting Internet or Web sites had serious
security problems that could have been exploited by determined attackers.

http://wuw.cert.org

Many of these CERTs are member organizations of the Forum of Incident Response and Security Teams
(FIRST).

Refer to the WWW home page of DigiCrime at URL http://www.digicrime.com to convince yourself that
executable content is in fact dangerous.

http://wuw.trouble.org/survey



4 Introduction

Several Web sites of large companies and federal offices have been
vandalized, and Webjacking has become a popular activity for casual
Internet hackers.” More recently, macro viruses and distributed denial of
service (DDoS) attacks have troubled the Internet community considerably.
The trend to more and highly automated attacks is likely to continue in the
future.

In spite of the fact that unscrupulous people make press headlines with
various types of attacks, the vulnerabilities they exploit are usually well
known. For example, security experts warned against passwords transmitted
in cleartext at the very beginning of (inter)networking, and Robert T. Morris,
Jr., described sequence number guessing attacks for BSD UNIX version 4.2
when he was with AT&T Bell Laboratories in 1985 [14, 15]. Some of the
problems related to Internet security are a result of inherent vulnerabilities
in the TCP/IP protocols and services, while others are a result of host
configuration and access controls that are poorly implemented or too
complex to administer. Additionally, the role and importance of system
administration is often shortchanged in job descriptions, resulting in many
administrators’ being, at best, part-time and poorly prepared. This is further
aggravated by the tremendous growth and speed of the Internet as a whole.

Today, individuals, commercial organizations, and government agencies
depend on the Internet for communication and research, and thus have
much more to lose if their sites are compromised. In fact, virtually everyone
on the Internet is vulnerable, and the Internet’s security problems are the
center of attention, generating much fear throughout the computer and
communications industries. Concerns about security problems have already
begun to chill the overheated expectations about the Internet’s readiness for
tull commercial activity, possibly delaying or preventing it from becoming a
mass medium for the NII or the global information infrastructure (GII).
Several studies have independently shown that many individuals and
companies are abstaining from joining the Internet simply because of
security concerns. At the same time, analysts are warning companies about
the dangers of not being connected to the Internet. In this conflicting
situation, almost everyone agrees that the Internet needs more and better
security. In a workshop held by the Internet Architecture Board (IAB) in
1994, scaling and security were nominated as the two most important
problem areas for the Internet architecture as a whole [16]. This has not

9. Note, however, that the real losses caused by Webjacking activities are comparably small, since the Web pages
that are vandalized are often located outside the firewall in a so-called demilitarized zone (for easy access by
the casual Web user).



1.2 WWW 5

changed so far and is not likely to change in the future [17]. It is particularly
true for the WWW and Web-based applications.

1.2 WWW

The WWW is a virtual network that is overlaid on the Internet. It comprises
all client!® and server systems that communicate with one another using the
Hypertext Transfer Protocol (HTTP). HTTP, in turn, is a simple client/server
application protocol that is layered on top of a reliable transport service,
such as provided by the Transport Control Protocol (TCP). The protocol
defines how WWW resources'! may be requested and transmitted across
the Internet. In this book, we do not delve into the technical details of the
HTTP specifications. Instead, we refer to the many books that address HTTP
and its features. Among these books, I particularly recommend [18].

HTTP and the WWW were originally invented in the late 1980s by Tim
Berners-Lee and his colleagues at the European Laboratory for Particle
Physics (CERN'?) located in Geneva, Switzerland. It was envisioned as a way
of publishing physics papers on the Internet without requiring that physicists
go through the laborious process of downloading a file and printing it out. As
such, HTTP and the WWW have been in use since 1989. Note, however, that
the first version of HTTP, referred to as HTTP/0.9 (i.e., HTTP version 0.9), was
only a simple protocol for raw data transfer across the Internet.

HTTP was (and still is) a simple request/response protocol. This basically
means that a client sends an HTTP request message to a server, and that the
server sends back a corresponding HTTP response message. There are no
multiple-step handshakes in the beginning as with other TCP/IP application
protocols, such as Telnet or FTP. In the case of HTTP/0.9, the browser simply
established a TCP connection to the appropriate port of the origin server and
sent a request message like GET /index.html to the origin server. The origin
server, in turn, responded with the contents of the requested resource
(the file /index.html in the example above). In HTTP/0.9, there were no
request headers, no request methods other than GET, and the response had
to be a file written in a special language, namely the hypertext markup

10.

11.

12.

In WWW parlance, HTTP clients are often called browsers. In this book, we are going to use the terms HTTP
client, client, browser, and Web browser synonymously. Note, however, that most browsers provide client support for
other application protocols in addition to HTTP, such as Telnet, FTP, and Gopher.

Examples of WWW resources include text and HTML files, GIF, and JPEG image files, or any other file that
stores digitally encoded data in some specific format.

The acronym is derived from the French name of the research laboratory.



6 Introduction

language (HTML). All current servers are capable of understanding and
handling HTTP/0.9 requests, but the protocol is so simple that it is not very
useful anymore.

After the first implementations of HTTP/0.9, the protocol was enhanced
with some new features, such as request headers and additional request
methods, as well as a message format that conforms to the multipurpose
Internet mail extensions (MIME) specification originally proposed for
Internet-based electronic messaging. The resulting HTTP/1.0 (version 1.0)
specification was officially released in 1996 in RFC 1945 [19].

Compared to HTTP/0.9, HTTP/1.0 was a major step ahead. Nevertheless,
HTTP/1.0 still did not sufficiently take into consideration the effects of
hierarchical proxies, caching, the need for persistent connections, and
virtual hosting. In addition, the proliferation of incompletely implemented
applications calling themselves ““compliant to HTTP/1.0”" required a protocol
version change in order for two communicating applications to determine
each other’s capabilities. Consequently, an updated version of the HTTP
specification was drafted in 1997. After a 2 year trial period, the specification
of HTTP/1.1 (version 1.1) was officially released in RFC 2616 [20] and
submitted to the Internet standards track. The basic operation of HTTP/1.1
has remained the same as for HTTP/1.0 (and HTTP/0.9), and the protocol
ensures that browsers and servers of different versions can correctly
interoperate. More precisely, if the browser understands version 1.1, it
uses HTTP/1.1 on the request line instead of HTTP/1.0. When the server sees
this version number, it can make use of HTTP/1.1 features. If, however, an
HTTP/1.1 server sees a lower version number, it adjusts its responses to use
that protocol version instead. In addition to RFC 2616, there is an
experimental RFC 2774 that describes an HTTP extension framework [21].
This framework is not addressed in this book.

Originally developed on NeXT computers, the WWW didn’t really take
off until a team of researchers at the National Center for Supercomputer
Application (NCSA) of the University of Illinois wrote Mosaic, a browser for
the X Window system. In the early 1990s, this browser soon became the
standard against which all other browsers were compared. Marc Andreessen,
who was the head of the original Mosaic development team, went on to
cofound a start-up company called Mosaic Communications. The company
first created a new browser called Mozilla."> Afterwards, the company was
renamed Netscape Communications and the corresponding browser was
renamed Netscape Navigator. After Microsoft released its own browser,

13. Note that sometimes browsers are still called Mozilla.



1.2 WWW

called the Internet Explorer, Netscape Communications and Microsoft
started a tough competition for market share. The competition ended in
1998 when America On-line (AOL) bought Netscape Communications.
Netscape Navigator is still available and in use today, but it has lost a lot of
market share. Instead of Netscape Navigator, a new browser called Opera'*
is used and widely deployed on the Internet today. Opera has been
developed in Norway to meet the requirements of clients with limited
computing power. As such, it is the browser of choice for many users of
personal digital assistants (PDAs) and handheld computer devices. As of this
writing, it is difficult to tell whether Microsoft Internet Explorer will
increase its market share or loose it to a competitor, such as Opera.

HTTP and Web technologies are omnipresent on the Internet and an
increasingly large number of Internet services have been redesigned and
implemented so they can also be accessed from a standard off-the-shelf
browser (instead of only a dedicated client software package). For example,
most browsers implement the File Transfer Protocol (FTP)—in addition to
HTTP—and can be used to electronically download files accordingly.
Consequently, these browsers may serve as replacement tools for formerly
used FTP clients. Also, many e-mail users regularly access their message
stores using Web browsers and HTTP instead of e-mail user agents and
message store access protocols, such as POP3 or IMAP4. In fact, Web-based
messaging has become very popular in the recent past (especially among
roaming users) and many companies have installed and are operating
corresponding Web frontends to their messaging infrastructures. In the case
of Microsoft Exchange, for example, Outlook Web Access may provide this
kind of functionality.

Against this background, the term Web services has been created to
become a new buzzword in the industry, and many software vendors have
launched initiatives to promote Web services based on the extensible markup
language (XML). Examples include Microsoft’s .NET initiative and the Sun
Open Net Environment (Sun ONE).!'> In either case, the Web services markup
language (WSDL) is used to formally describe Web services in some
structured and standardized way. Implementing a Web service means
structuring data and operations inside of an XML document that complies
with the Simple Object Access Protocol (SOAP) specification. The SOAP, in
turn, is a simple and lightweight XML-based client/server protocol that

14. http://www.opera.com

15. In its latest material, Sun Microsystems uses the term services on demand to go one step further and to collectively
refer to local applications, client/server applications, Web applications, and Web services.



8 Introduction

defines a messaging framework for exchanging structured data and type
information across the Web. It can be used in combination with any
transport protocol or mechanism that is able to transport SOAP messages
(also known as SOAP envelopes). Many programming or scripting languages
can be used to implement a Web service and to construct, transmit, read,
and process corresponding SOAP messages (e.g., Java and C+). Once a Web
service has been implemented, it must be published somewehere that
allows interested parties to find it. Information about how a client would
connect to a Web service and interact with it must also be exposed
somewhere accessible to them. This connection and interaction information
is commonly referred to as binding information. Universal description discovery
and integration (UDDI) registries are the primary means to publish, discover,
and bind Web services. These registries contain the data structures and
taxonomies used to describe Web services and Web service providers. A
UDDI registry can be hosted either by private organizations or by third
parties. More recently, IBM and Microsoft have announced the Web services
inspection language (WSIL) specification to allow applications to browse Web
servers for XML Web services. As such, WSIL promises to complement UDDI
by making it easier to discover available services on Web sites not listed in
the UDDI registries. By the time this book hits the shelves of bookstores,
many new terms and acronyms will have been created and put in place. All
of these technologies are not at the core of this book. Consequently, they
are mentioned and put into perspective only where useful and appropriate.
You may refer to many other books to learn about XML or Web services in
general, and WSDL, SOAP, and UDDI in particular [22, 23]. You may also
refer to the home page of the World Wide Web Consortium!® (W3C) to get
some further information about the latest acronyms and buzzwords.

1.3 Vulnerabilities, threats, and countermeasures

In general, a vulnerability refers to a weakness that can be exploited by
somebody (e.g., an intruder) to violate a system or the information it
contains. In a computer network or distributed system, passwords
transmitted in cleartext often represent a major vulnerability. The pass-
words are exposed to eavesdropping and corresponding sniffing attacks.
Similarly, the ability of a network host to boot with a network address that
has originally been assigned to another host refers to another vulnerability

16. http://wuw.w3.org



1.3 Vulnerabilities, threats, and countermeasures 9

that can be used to spoof that particular host and to masquerade
accordingly. Unfortunately, the power of Web technology in general and
HTTP in particular also makes the WWW vulnerable to a number of serious
attacks.

A threat refers to a circumstance, condition, or event with the potential
to either violate the security of a system or to cause harm to system
resources. Computer networks and distributed systems are susceptible to a
wide variety of threats that may be mounted either by intruders!” or
legitimate users. As a matter of fact, legitimate users are more powerful
adversaries, since they possess internal information that is not usually
available to intruders.

Finally, a countermeasure is a feature or function that either reduces or
eliminates one (or several) system vulnerability(ies) or counters one (or
several) threats. For example, the use of strong authentication techniques
reduces the vulnerability of passwords transmitted in the clear and counters
the threat of password sniffing and replay attacks. Similarly, the use of
cryptographic authentication at the network layer effectively eliminates
attacks based on machines spoofing other machines’ IP addresses and
counters IP spoofing attacks.

In essence, this book is about countermeasures that can be used and
deployed to secure the WWW and applications that make use of it. Note,
however, that security in general and WWW security in particular are vague
terms that may mean various things to different people. The nature of
security is such that it cannot be proven.'® The very best we can show is
resistance against a certain set of attacks we know and with which we are
familiar. There is nothing in the world that can protect us against new types
of attack. For example, timing attacks, differential fault analysis (DFA), and
differential power analysis (DPA) are some of the latest tools in the never-
ending competition between cryptographers and cryptanalysists.

In this book, we are not going to define the term security formally
Instead, we focus on techniques and mechanisms that are available today
and that can be used to provide security services (i.e., access control and
communication security services) on the Web. The assumption is that if a
WWW application is able to provide these security services, there are at least

17. The term hacker is often used to describe computer vandals who break into computer systems. These vandals
call themselves hackers, and that is how they got the name, but in my opinion, they don’t deserve it. In this
book, we use the terms intruder and attacker instead.

18. In certain environments, specific security properties can be proven formally. This is, however, seldom
completely proven.



10

Introduction

some obstacles to overcome in order to successfully attack the application. If
the security services are well designed and properly implemented, the
resulting obstacles are far too big to be overcome by occasional intruders.
Before we delve into the technical details, we want to briefly introduce a
generic security model that explains and puts into perspective the various
aspects of security.

1.4 Generic security model

Discussing security in computer networks and distributed systems is difficult,
mainly because the term security is hard to define and even harder to
quantify. Security is a subjective feeling that is perceived differently by
different people. What somebody considers to be secure may be considered
by somebody else to be completely insecure. An example to illustrate this
point is an airplane flight: While many people consider flying to be secure,
there are also people who refuse to fly mainly for security and safety
reasons.

To convince a customer about the security and safety properties of a
particular product or service is a difficult (marketing) task. How do you, for
example, persuade a potential buyer about the security and safety properties
of a specific car? A somehow unsatisfactory solution for a car dealer is to
invite a potential buyer for a ride and to steer the car straight into the next
tree. If the buyer remains uninjured, chances are that he or she is convinced
about the security and safety properties of the car. Unfortunately, the car
itself will be damaged and the dealer will have to give the buyer another one.
The question that arises immediately is whether the security and safety
properties of this car are equal to the ones from the other car.

Marketing professionals have come up with better solutions, such as
tests conducted by independent consumer societies. The good marketing
approach is aimed at increasing the reputation of a product or service in
terms of security and safety. For example, in the car industry, Volvo has
managed to steadily achieve this kind of reputation. Many people buy a
Volvo car simply because they want to increase their security and safety
when driving on the road. Unfortunately, a similar appreciation of security
and safety properties is very immature in the information technology (IT)
industry (if it exists at all).

In general, there are many aspects involved in securing a networked or
distributed system, such as, for example, the WWW. First and foremost,
there must be a security policy that formalizes the proper and improper use
of the (networked or distributed) system, the possible threats against it, as



1.4 Generic security model 11

well as countermeasures that must be employed to protect assets from these
threats. Most importantly, the security policy is to specify the goals that
should be achieved. For example, a possible goal for a corporate intranet
would be that any access from external sites requires strong authentication
of the requesting user at a security gateway. This goal can be achieved, for
example, by using a one-time password or challenge-response system at the
firewall. If another goal were the transparent encryption of the data traffic
between internal and external sites, the use of Internet or transport layer
security protocols would be another possibility to implement the security
policy. After having specified a security policy, there are several aspects
related to host, network, organizational, and legal security that all need to be
addressed. The situation is comparable with politics and the military: politics
may declare war, but the military must conduct it. Similarly, the security
policy must specify the goals, but host and network security techniques and
mechanisms must meet these goals. For example, the hosts must run a
secure (network) operating system to protect internal resources against
outside attacks. Similarly, the hosts must communicate over links that are
considerably secure. Either the links are physically secure or they are secured
through other means, such as cryptographic algorithms and protocols.
Additionally, organizational security controls must be defined and put in
place to enforce the technical (host and network) security techniques and
mechanisms. If organizational security controls do not exist, everybody will
try to do everything, effectively circumventing any security policy. Finally,
legal security controls must ensure that if somebody misbehaves or
maliciously attacks a system within the computer network or distributed
system, he or she can be prosecuted and punished accordingly.

Following this line of argumentation, our generic security model for
computer networks and distributed systems takes into account the following
five aspects:

1. Security policy;

Host security;

2

3. Network security;

4. Organizational security;
5

Legal security.

These aspects are illustrated in Figure 1.1 and further addressed in the
remaining part of this chapter. Whereas the rest of this book focuses
exclusively on network security, the other aspects of security are equally



12 Introduction

Host security Network security
Security policy
Organizational Legal security

security

Figure 1.1 A generic security model for computer networks and distributed systems.

important and should also be considered with care. It is simply not possible to
achieve security on the Web if these aspects are not adequately addressed. In
fact, we have already mentioned in the Preface that most security breaches
are due to software bugs that are exploited or configuration failures.

1.4.1 Security policy

As mentioned before, a security policy must specify the goals that should be
achieved with regard to the security of a networked or distributed system. In
fact, if a security policy is not specified, it is useless to talk about security in
the first place. Put in other words: If one does not know what to protect and
against what types of attacks this protection should hold, every security
technology is fine and makes sense. Security often comes at some expense,
often at the expense of some functionality that people want, and some
monetary expense. A security policy should be a tool that guides a
practitioner in working out which tradeoffs are acceptable, and which
ones aren’t. Many people new to the security field jump straight into
technology and it is usually hard to convince them of the importance of
policy.

The security policy should be specified by management, without taking
into account the technical implementation and enforcement.!” In fact, the
security policy should be driven by requirements rather than technical
considerations. Typical statements found in a security policy include phrases

19. While the policy should be written by management, it will often be the case that management doesn’t
understand what is required. A security practitioner will be required to present options to management, asking
them to choose or endorse a policy.



1.4 Generic security model 13

such as ““any access from the Internet to intranet resources must be strongly
authenticated and properly authorized at the security gateway,” or ‘‘any
classified data must be properly encrypted for transmission.”

1.4.2 Host security

Host security has traditionally addressed such questions as

» How to securely authenticate users;
» How to effectively control access to system resources;
» How to securely store and process data within the system;

» How to do the audit trail.

These and similar questions have been studied within the computer
security community for quite a long time. A special field of study in this area
is the evaluation and certification of IT systems and products. For example,
the National Computer Security Center (NCSC) of the U.S. National Security
Agency (NSA) developed the Trusted Computer Security Evaluation Criteria
(TCSEC), also known as the ‘““Orange Book,” in the late 1980s [24]. In
Europe, similar developments in Germany, France, the United Kingdom,
and the Netherlands led to the Information Technology Security Evaluation
Criteria (ITSEC) [25]. Europe, the United States, and Canada worked
together and came up with common criteria.?° The efforts were later joined by
many other countries. In December 1999, ISO/IEC approved and published
the Common Criteria version 2.1 as International Standard (IS) 15408.
Note, however, that except for some government-sponsored programs, the
idea of evaluating and certifying IT systems and products has not yet really
taken off in the commercial world. This is particularly true for networked
and distributed systems. The TCSEC has been interpreted [26] and people
have drafted Common Criteria protection profiles for such systems, but
there still remain many unsolved problems.

1.4.3 Network security

Network security addresses questions such as how to efficiently control
access to computer networks and distributed systems, and how to securely
transmit data between them.

20. http://csrc.nist.gov/cc



Introduction

In network security parlance, one clearly distinguishes between a
security service and a security mechanism:

» A security service is the performance of a set of useful or helpful
functions and actions that can provide a particular quality or benefit
to the requesting entity (e.g., user or client) as may be required by a
security policy;

» A security mechanism can be used to provide one (or several) security
service(s).

For example, user authentication is a security service that can be
implemented with passwords or biometrics. Similarly, there are many
encryption algorithms that can be used to provide data confidentiality
services. In either case, one has to distinguish between specification and
implementation. In short, a specification identifies what is needed, whereas
an implementation provides it. This basically means that a security service
(security mechanism) can be specified or implemented.

For example, the security architecture for the open systems inter-
connection (OSI) reference model enumerates the following five classes of
security services [27, 28]:

1. Authentication services;
Data confidentiality services;
Data integrity services;

Access control services;

o & W Db

Non-repudiation services.

Network users and applications must be able to selectively make use of
services that conform to their security requirements. These requirements are
individual by nature, and may vary from user to user or application to
application. There are also some security services that are not enumerated in
the OSI security architecture, such as anonymity services as further
addressed in Chapter 12 of this book.

In addition to the security services mentioned above, the OSI security
architecture also enumerates a couple of security mechanisms that can
be used to implement the security services. In particular, the following
eight specific security mechanisms are enumerated in the OSI security
architecture:



1.4 Generic security model 15

—

© N o g & W D

Encipherment;

Digital signature mechanisms;

Access control mechanisms;

Data integrity mechanisms;
Authentication exchange mechanism;
Traffic padding mechanism;

Routing control mechanism;

Notarization mechanism.

Complementary to these specific security mechanisms, the OSI security
architecture also enumerates the following five pervasive security mechanisms:

1.

2
3
4,
5

Trusted functionality;
Security labels;
Event detection;
Security audit trail;

Security recovery.

The OSI security architecture is extensively covered in the literature. In
particular, Chapter 4 of [5] is dedicated entirely to the OSI security
architecture. From a more practical point of view, it is appropriate to
distinguish between access control and communication security services:

Access control services are used to logically separate (inter)networks and
to essentially control access to corporate networks which are also
called intranets in the case of TCP/IP-based networks;

Communication security services are used to protect communications
within and between these networks. According to the OSI security
architecture, communication security services include authentication,
data confidentiality and integrity, as well as nonrepudiation services.

The predominant technology to provide access control services for
corporate networks and intranets is the firewall technology as further
addressed in Part II of [5] and Chapter 3 of this book. With regard to
communication security services, many cryptographic protocols have been



16

Introduction

proposed for the various network layers of both the OSI reference model and
the Internet model. These protocols are addressed in Part III of [5] and
Chapters 5 and 6 of this book.

1.4.4 Organizational security

Any technical solution for host and network security must be backed up with
organizational security controls. In fact, organizational security is required
where technical host and network security mechanisms alone do not or only
insufficiently work. A quotation from Richard H. Baker elaborates on the
problem regarding technical versus organizational security [29]:

Security continues to be and probably will always be a people problem. If
you overlook that, you're in trouble.

According to this quotation, it is dangerous to depend on technical (host
and network) security mechanisms alone. If people are not convinced about
the need for the security mechanisms that are put in place, they will always
try to circumvent them. In one of his later books, Baker has even been more
succinct in this point [30]:

The real challenges are human, not technical. Oldtimers will recognize a
once-popular saying that the most important part of an automobile is the
nut that holds the steering wheel. That’s still true, even though a modern
steering wheel may also contain an air bag and any number of controls and
antitheft devices.

Our personal experience is in line with this quotation. In fact, human
behavior is still the most important factor with regard to security and safety.
Human behavior can be influenced by education and organizational security
controls. Education is very important. If people understand the security
controls they must rely on, they will make use of them instead of always
trying to circumvent them. Additionally, organizational security controls
must be put in place to make illegitimate procedures more difficult.
Organizational security controls include directions and instructions that
are released to define legitimate human behavior.

An analogy that may help better understand security in computer
networks and distributed systems is the existing highway system, and the
way we try to achieve safety and security on it.?! In particular, we use and

21.

Similar things could also be said for the airway system.



1.4 Generic security model 17

deploy several technical and organizational measures to achieve safe and
secure traffic:

» On the technical side, we try to build highways in a way that
minimizes the risks of careless drivers” being able to cause serious
accidents. We also require drivers to have a license and cars to have
passed a vehicle inspection test.

» On the organizational side, we have educational programs, traffic
laws, and police to enforce these laws.

Using this analogy, it is obvious that we can learn several things from the
way we handle security and safety in the real world.

1.4.5 Legal security

Finally, it is possible that host or network security techniques or mechanisms
will fail and not provide sufficient protection against more sophisticated
attacks. Similarly, it is possible that organizational security controls won’t be
able to back up technical deficiencies. In this case, it is important to have the
possibility to legally prosecute the attacker(s). Consequently, legal security is
a major topic with regard to computer networks and distributed systems.

Again, there is an analogy to better illustrate this point: We are all
familiar with the postal delivery service. We send letters in envelopes in
order to protect the confidentiality of the contents. In addition, we trust the
employees of the postal delivery service not to open the envelopes and to
respect the privacy of the mail accordingly. However, if we recognized that a
letter was opened during its delivery, we would have cause to suspect the
employee(s) of the postal delivery service of not respecting the privacy of the
mail, and a case could even be brought to court. One can reasonably expect
that similar legal security controls will be put in place in computer networks
and distributed systems, such as the Web, and that the need for
nonrepudiation services will be the major driving force for this development
to happen.

References
[11 Tanenbaum, A. S., Computer Networks, 3d ed., Englewood Cliffs, NJ: Prentice
Hall, 1998.

[2]1 Comer, D. E., and R. E. Droms, Computer Networks and Internets, 2nd ed.,
Englewood Cliffs, NJ: Prentice Hall, 1998.



18

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Introduction

Wilder, F., A Guide to the TCP/IP Protocol Suite, Second Edition, Norwood, MA:
Artech House, 1998.

Comer, D., Internetworking with TCP/IP: Vol. I. Principles, Protocols, and
Architecture, 4th ed., Englewood Cliffs, NJ: Prentice Hall, 2000.

Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech
House, 2002.

Zakon, R. H., “Hobbes’ Internet Timeline,”” Request for Comments 2235, (FYI
32), November 1997.

Spafford, E. H., The Internet Worm: Crisis and Aftermath,”” Communications of
the ACM, Vol. 32, 1989, pp. 678-688.

Rochlis, J. A., and M. W. Eichin, “With Microscope and Tweezers: The Worm
from MIT’s Perspective,” Communications of the ACM, Vol. 32, 1989, pp. 689—
703.

Denning, P. J., Computers Under Attack: Intruders, Worms, and Viruses, New York:
ACM Press/Addison-Wesley, 1990.

Neumann, P. G., Computer-Related Risks, New York: ACM Press/Addison-
Wesley, 1995.

Howard, J. D., ““An Analysis of Security Incidents on the Internet 1989-1995,”” Ph.D.
Thesis, Carnegie Mellon University, April 1997.

Shimomura, T., with J. Markoff, Takedown, New York: Hyperion, 1996.

Schuba, C. L., et al.,, “Analysis of a Denial of Service Attack on TCP,”
Proceedings of IEEE Symposium on Security and Privacy, 1997, pp. 208-223.

Morris, R. T., “A Weakness in the 4.2BSD UNIX TCP/IP Software,” Computer
Science Technical Report No. 117, Murray Hill, NJ: AT&T Bell Laboratories, 1985.

Bellovin, S. M., ““Security Problems in the TCP/IP Protocol Suite,” ACM
Computer Communication Review, Vol. 19, No. 2, 1989, pp. 32-48.

Braden, R., et al., “Report of the IAB Workshop on Security in the Internet
Architecture (February 8-10, 1994),” Request for Comments 1636, June
1994.

Bellovin, S., “Report of the IAB Security Architecture Workshop,”” Request for
Comments 2316, April 1998.

Thomas, S., HTTP Essentials: Protocols for Secure, Scaleable Web Sites, New York:
John Wiley & Sons, 2001.

Berners-Lee, T., R. Fielding, and H. Frystyk, ‘“Hypertext Transfer Protocol—
HTTP/1.0,” Request for Comments 1945, May 1996.

Fielding, R., et al.,, “Hypertext Transfer Protocol—HTTP/1.1,” Request for
Comments 2616, June 1999.



1.4 Generic security model 19

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

Nielsen, H., P. Leach, and S. Lawrence, ““An HTTP Extension Framework,”’
Request for Comments 2774, February 2000.

Oellermann, W. L., Jr., Architecting Web Services, Berkeley, CA: Apress, 2001.

Graham, S., et al., Building Web Services with Java: Making Sense of XML, SOAP,
WSDL and UDDI, Indianapolis, IN: Sams, 2001.

U.S. Department of Defense, Trusted Computer System Evaluation Criteria,
Standard DoD 5200.28-STD, Fort George G. Meade, MD, 1985.

Commission of the European Communities, Information Technology Security
Evaluation Criteria, Version 1.2, Directorate General XIII, 1991.

U.S. Department of Defense, Trusted Network Interpretation of the Trusted
Computer System Evaluation Criteria, Fort George G. Meade, MD, 1987.

ISO/IEC 7498-2, Information Processing Systems—Open Systems Intercon-
nection Reference Model—Part 2: Security Architecture, 1989.

ITU X.800, Security Architecture for Open Systems Interconnection for CCITT
Applications, 1991.

Baker, R. H., Computer Security Handbook, New York: McGraw-Hill, 1991.

Baker, R. H., Network Security: How To Plan for It and Achieve It, New York:
McGraw-Hill, 1995.






2.1
2.2

2.3
24
a5

2.6
a1

CHAPTER

Contents
HTTP

User authentication,
authorization,
and access control

Basic authentication
Digest access authentication

Certificate-based
authentication

Server configuration
Conclusions

References

HTTP Security

HTTP is the main application protocol used on the WWW. In
this chapter, we overview and briefly discuss HTTP and its
basic security features. More specifically, we introduce HTTP
and its mode of operation in Section 2.1, overview HTTP user
authentication, authorization, and access control in Section 2.2,
address HTTP basic authentication, HTTP digest access authen-
tication, and certificate-based authentication in Sections 2.3 to
2.5, discuss the proper configuration of a Web server (i.e.,
Apache Web server) in Section 2.6, and draw some conclusions
in Section 2.7.

2.1 HTTP

As mentioned in Chapter 1, HTTP is a simple request/response
protocol that is used between a client (i.e., browser) and a Web
server [1].! This basically means that the client requests
information and the server provides the requested information
using the HTTP. The information, in turn, may be represented
by Web pages that are static or dynamically created. In many
cases, the pages may be written in a specific format or language,
such as HTML or XML. In the future, XML will be the preferred

1. In practice, the term Web server is used interchangeably to refer to the
computer on which Web pages reside, and the program on the computer that
receives HTTP request messages and sends back resources in corresponding
response messages.

21



22

HTTP Security

language for the information provided on the WWW (and elsewhere). This is
particularly true for the use of XML in conjunction with complementary
technologies, such as WSDL, SOAP, and UDDI registries (we have briefly
reviewed these technologies in Chapter 1).

If the server provides static Web pages, the situation is comparably
simple and the pages can be directly retrieved from the server’s document
tree. If, however, the server must provide dynamically created Web pages,
the pages must be created by a specific program in response to an incoming
HTTP request message. Historically, the first solution was to have these
programs invoked using the Common Gateway Interface (CGI). Although
CGI makes it simple to have a Web server perform a specific operation, such
as a database lookup, it is not efficient because it requires that a separate
program is started and a corresponding process is initialized for each
incoming HTTP request message. There are some alternative technologies
that can be used instead of CGI. For example, FastCGI is an open Web
server interface that solves the performance problems inherent in CGI.?
Also, many vendors provide proprietary application programming interfaces
(APIs) for their Web servers. Examples include the Netscape Server API
(NSAPI) from Netscape and the Internet Server API (ISAPI) from Microsoft.
Last but not least, there are server-side technologies, such as ASP and JSP.
The security implications of these technologies are further addressed in
Chapter 11.

If a client wants to retrieve a resource (e.g., a static or dynamically
created Web page) from a Web server, it must establish a TCP connection to
the corresponding port (e.g., port 80 by default) of the server and send a
corresponding HTTP request message to the server. In essence, the HTTP
request message includes the following components:

» A request method that indicates the purpose of the HTTP request.
The most important request method is GET. There are, however,
other methods defined in the HTTP/1.1 specification (i.e., OPTIONS,
HEAD, POST, PUT, DELETE, TRACE, and CONNECT). You may refer
to RFC 2616 [1] for a complete and comprehensive description of
these methods.

» A reference that indicates the resource to which the method should
be applied (e.g., http://www.esecurity.ch/index.html). In theory,
such a reference may be given in one of the following forms:

2.

Further information about FastCGI is available at http://www.fastcgi.com.



2.1 HTTP 23

» A uniform resource locator (URL) [2, 3];
» A uniform resource name (URN) [4];
» A uniform resource identifier (URI) [5].

In practice, however, URLs are most widely used. Sometimes they are
called URLs and sometimes they are called URIs (e.g., in many IETF protocol
specifications).

» A string indicating the HTTP protocol version (e.g., HTTP/1.0 for
version 1.0 of the HTTP);

» A MIME-like message containing request modifiers, client informa-
tion, and possibly some body content.

Again, the exact format and syntax of HTTP messages (i.e., HTTP request
and response messages) is specified in [1]. This RFC document is
recommended reading for anybody working in the field.

As a working example, consider the situation in which a user wants to
retrieve the home page of eSECURITY Technologies Rolf Oppliger. Therefore,
the user simply enters www.esecurity.ch in the browser’s address or URL
field. The browser, in turn, does the following things on the user’s behalf:

1. It uses the Internet Domain Name System (DNS) to retrieve the IP
address of the Web server that hosts www.esecurity. ch.

2. It uses the client system’s IP stack to establish a TCP connection to
the Web server.? Since the user has not specified a port number at
first place, the browser assumes that the Web server runs at port 80.
Any other port is possible but must be specified in the URL
(separated with a colon from the rest of the resource reference).

3. It composes an HTTP request message and uses the TCP connection
to send the message to the server (it assumes the use of HTTP by
default).

It is now up to the Web server to process the HTTP request message and
to send back a corresponding HTTP response message.

3. HTTP communication usually takes place over TCP connections. The default port is TCP 80, but other ports can
be used. This does not preclude HTTP from being implemented on top of any other protocol on the Internet, or
on other networks. HTTP only presumes a reliable transport; any protocol that provides such guarantees can be
used.



24 HTTP Security

In the example given above, the browser would compose an HTTP
request message that may look as follows:

GET http://www.esecurity.ch HTTP/1.0

Host: www.esecurity.ch

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Accept: image/gif, image/jpeg, ...

Accept-Language: en

Note that this HTTP request message only includes a header part (i.e., the
body part is empty). The header part, in turn, includes a number of HTTP
headers. Each HTTP header provides specific information. For example, the
Host header specifies that the requested Web site is www.esecurity.ch and
the Proxy-Connection header specifies that the TCP connection that is
going to be established between the browser and the proxy server must be
kept alive and used to serve subsequent HTTP requests. Furthermore, the
User-Agent header specifies what browser on what platform the user
employs (i.e., Microsoft’s Internet Explorer version 5.5 on a Windows NT
version 4.0 system),* and the Accept and Accept-Language headers
specifiy the MIME types and languages accepted by the browser. In
addition, there is an increasingly large number of complementary HTTP
headers that may be used in HTTP request and response messages.

In response to the HTTP request message, the Web server could send
back an HTTP response message that consists of a status line, including the
message’s protocol version and a success or error code, followed by a MIME-
like message containing some server information, entity meta information,
and possibly some body content (separated with an empty line from the
header). For example, a typical HTTP response message may look as follows:

HTTP/1.0 200 OK

Date: Mon, 03 Dec 2001 12:10:13 GMT

Server: Apache/1.3.20 (Unix) PHP/4.0.6 FrontPage/4.0.4.3
Last-Modified: Wed, 03 May 2000 08:01:16 GMT
ETag:"81dfc1-14e-390fdccc"

Accept-Ranges: bytes

Content-Length: 334

4. The term Mozilla is still in use today. Remember that from Chapter 1 that this is what Mosaic Communications
called its first browser.



2.1 HTTP

25

Content-Type: text/html
Proxy-Connection: Keep-Alive

<HTML>
<HEAD>
<TITLE>eSECURITY Technologies Rolf Oppliger</TITLE>
</HEAD>
<FRAMESET COLS="23}%,*">
<FRAME SRC="http://www.esecurity.ch/toc.html">
<FRAME SRC="http://www.esecurity.ch/esecurity.html’’
NAME="view_frame">
</FRAMESET>
<NOFRAME>
Your browser does not support frames.
</NOFRAME>
</HTML>

The first line of the HTTP response message includes a status code. In this
case, the status code 200 means that the HTTP request message is fine (i.e.,
OK) and that it is served. The HTTP response headers that follow give
information either about the server (e.g., the Server header) or the returned
resource (e.g., the Date and Last-Modied headers). In either case, a
Content-Type header is required to inform the browser about the type of
the provided resource. In the example given above, the content type text/
html indicates a text document written in HTML. Finally, the HTTP response
message may also include the requested resource (separated with an empty
line from the header part). In this example, it is the index.html file that is
found at the root of the requested server’s document tree.

Most HTTP communication is initiated by the browser and consists of a
request to be applied to a resource on some Web server. In the simplest case,
this may be accomplished via a single TCP connection between the client and
the server. A more complicated situation occurs when one or more
intermediaries are present in the request/response chain. According to [1],
there are three common forms of intermediary:

» A proxy server (or proxy) is a forwarding agent, receiving requests for a
URL in its absolute form, rewriting all or part of the message, and
forwarding the reformatted request toward the server identified by
the URL.

» A gateway is a receiving agent, acting as a layer above some other
server(s) and, if necessary, translating the requests to the underlying
server’s protocol.



26

HTTP Security

» A tunnel acts as a relay point between two connections without
changing the messages. Tunnels are used when the communication
needs to pass through an intermediary (such as a firewall) even when
the intermediary cannot understand the content of the messages.

This distinction is important because certain HTTP communication
options may apply only to the connection with the nearest, nontunnel
neighbor, only to the end-points of the request/response chain, or to all
connections along the chain. Also, any party to the communication that is
not acting as a tunnel may employ an internal cache for serving requests.
The effect of a cache is that the request/response chain is shortened if one of
the participants along the chain has a cached response applicable to that
request. Not all responses are usefully cacheable, and some requests may
contain modifiers that place special requirements on cache behavior (as
explained later). In fact, there are a huge variety of architectures and
configurations of caches and proxies currently being experimented with or
deployed across the WWW. There are many things that need to be said about
proxy servers, gateways, and tunnels. These things will be said in Chapter 3.

2.2 User authentication, authorization, and access control

In general, organizations run Web servers to make resources publicly
available and accessible to as many users as possible. In this situation, the
Web servers are typically configured to accept requests from anonymous
users, and there is no need for user authentication, authorization, and access
control. Sometimes, however, organizations run Web servers whose
resources must not be available and accessible to anyone. For example, access
to a Web server may be restricted to the employees of an organization, or
certain resources may be accessible only to customers who have paid a sub-
scription fee or have signed a nondisclosure agreement. In these cases, proper
user authentication, authorization, and access control may be required.

Roughly speaking, the following techniques may be used to control
access to resources located on a Web server:

» Restricting access by using hidden URLs (i.e., URLs that are kept
secret);

» Restricting access to a particular group of computers based on those
computers” address information (i.e., the computers’ IP addresses or
DNS hostnames);



2.2 User authentication, authorization, and access control 27

» Restricting access to a particular group of users based on their
identity information and corresponding credentials.

Obviously, the easiest way to restrict access is by storing the resources in
hidden locations on the Web server’s document tree. This refers to the
technique of restricting access by using URLs that are kept secret and hidden.
Hidden URLs (in the digital world) are about as secure as a key underneath a
door mat (in the physical world). Nobody can access the resources unless
they know which URLs to use. But anybody who knows a hidden URL has
full access to the resource it refers to. Furthermore, the information is
transitive. You might tell a friend of yours about a specific URL, and he might
tell a friend of his or hers, and so on, until finally the URL gets posted to a
mailing list or newsgroup, or it may even end up in a link in another HTML
document. At this point, the URL may get registered by an automated
program that sweeps through all the pages on a Web server, adding
keywords from each page to a central database. If such a program follows the
HTML link, it will add the formerly hidden URL, along with identifying index
entries, to its database and make it accessible to a search engine accordingly.
Thereafter, someone searching for the resource might be able to find it
through the index service. In general, hidden URLs should only be used if its
compromise and the loss of the resource’s confidentiality does not pose any
problem. Aviel D. Rubin, Daniel Geer, and Marcus J. Ranum have put this in
other words [6]:

As everyone in the data security business is fond of saying, ‘Obscurity is not
security.” If you want to protect data, you will have to do better than
naming it /tmp/nobody_would_guess_this_URL.html; you will need to
provide a security mechanism.

Most Web servers allow their administrators to restrict access to a
particular group of computers based on those computers’ address informa-
tion (e.g., the allow and deny directives in the case of the Apache Web
server). The address information can be specified by the computers’ IP
addresses or DNS hostnames. In fact, restricting access to specific IP
addresses or a range of IP addresses is relatively simple and works well for an
organization that wishes to restrict access to people on its intranet. For
example, you might consider restricting access to an intranet Web server to
the range of IP addresses that has been assigned to your organization.
Instead of specifying computers by IP addresses, most Web servers allow
their administrators to restrict access on the basis of DNS hostnames. This
has the advantage that IP addresses can be changed without having to



28

HTTP Security

change the Web server’s configuration files, as well (as long as the DNS
hostnames remain the same). The disadvantage of restricting access based
on DNS hostnames is that the DNS itself can be attacked and misused. Either
way, it is important to note that host-based addressing is not foolproof (e.g.,
IP spoofing can be used to transmit IP packets that appear to come from a
different computer than the one actually used). In fact, the security of
restricting access based on address information is comparable to the security
of packet filtering as discussed in the next chapter.

Finally, restricting access to a particular group of users based on their
identity information and corresponding credentials is the most effective way
of controlling access to resources. For example, if the users of a Web server
are widely dispersed (eventually using dynamically assigned IP addresses), or
the administrator needs to be able to control access on an individual basis, it
is necessary to implement a user-centric authentication and authorization
scheme. In short, the process of verifying the identity of a requesting user is
called user authentication, whereas the process of granting the privileges to
access particular resources is called user authorization. In the simplest case,
each user is given a username and a password. The username identifies the
person who wishes to access the Web server, and the password
authenticates the person. To increase security, more sophisticated user
authentication schemes may be used.

Roughly speaking, setting up HTTP user authentication, authorization,
and access control takes two steps:

1. A file containing the user authentication information must be
created. Optionally, the set of users may be structured in some way
(e.g., using groups).

2. The Web server must be told what resources to protect and which
users to allow access (after proper authentication).

In the following sections, we address and briefly overview two HTTP
user authentication schemes that are implemented and widely used today:
basic authentication and digest access authentication. The authentication
schemes specified in RFC 2617 [7] complement the HTTP/1.1 specification
in RFC 2616 [1].°

5.

Note that the HTTP digest access authentication scheme has been slightly modified and that RFC 2617 [7]
supercedes RFC 2069.



2.3 Basic authentication 29

2.3 Basic authentication

As mentioned above, the HTTP basic authentication scheme implements
password-based authentication to protect and to control access to the
resources of a server. The server, in turn, may be a Web server or an HTTP
proxy server. The HTTP basic authentication scheme works similarly for both
types of servers. As of this writing, the scheme is supported by all major
browser and server software packages. On the client side, the scheme is
supported by, for example, Netscape Navigator, Microsoft’s Internet
Explorer, and Opera. On the server side, the scheme is supported by almost
all software packages, including, for example, Microsoft IIS and Apache.

If a browser requests a resource that is protected with the HTTP basic
authentication scheme, the server challenges the browser to provide some
valid authentication information (typically a username and a password).
This is equally true for Web servers and HTTP proxy servers. The browser
either remembers the authentication information from a previous HTTP
Isession, or prompts the user to type in that information. In either case, the
browser forwards the information to the server in the clear (this fact
represents the most serious weakness and vulnerability of the HTTP basic
authentication scheme).

For example, let us assume that a user wants his or her browser to
retrieve the file index.html that is located in the protected directory /Demo/
HTTPBasicAuthentication/ at www.esecurity.ch. At first sight, the
browser does not know that this file is protected with the HTTP basic
authentication scheme. So it sends out a normal-looking HTTP request
message. Remember from our previous discussions that such a message may
start with the following request line:

GET http://www.esecurity.ch/Demo/HTTPBasicAuthentication/HTTP/ 1.0

All other HTTP request headers basically remain the same. After
having received the HTTP request message, the Web server recognizes that
the requested file is located in a directory that is protected with the HTTP
basic authentication scheme. As further explained below, the server
recognizes that the file is protected because it is located in a directory that
contains a specific file (i.e., the file .htaccess in the case of an Apache Web
server). Instead of directly returning the requested file, the server generates
an HTTP response message that includes the following two characteristic
lines:

HTTP/1.0 401 Unauthorized

WWW-Authenticate: Basic realm="HTTP Basic Authentication Demo"



30

HTTP Security

The first line informs the browser that the server has not been able to
serve the request because the browser did not provide valid credentials. In
our example, the status code 401 (i.e., ““Unauthorized”’) reveals the fact that
the server is a Web server (note that it could also be an HTTP proxy server).
In the second line, the WWW-Authenticate header requests user credentials
for the realm named ‘“Basic Authentication Demo.”

If the server were an HTTP proxy server, the HTTP response message
would have the following two characteristic lines:

HTTP/1.0 407 Proxy Authentication Required

Proxy-Authenticate: Basic realm="HTTP Basic Authentication Demo"

Everything else would remain the same. In either case, the server may
also return Date, Server, and possibly some other HTTP response headers.
These headers are neither illustrated above nor discussed below (they are
not very relevant from a security point of view).

The HTTP response message is received by the browser and the user
is prompted to enter his or her password accordingly. For the server being a
Web server, Figures 2.1 and 2.2 illustrate the prompts used by Microsoft’s
Internet Explorer and Opera. If the user obeys and properly enters his or her
username and password (i.e., rolf and test in this example), the browser
resends the HTTP request message that now carries an additional

Enter Network Password [ 2] X]

'? Please type your user name and password.

Site: v esecurity.ch

Realm HTTP Basic Authentication Demo

User Name |r0lf

Password |“°W1

[ Save this password in your password list

| OK I Cancel

Figure 2.1 The Internet Explorer 5.5 ‘Enter Network Password’ prompt using the HTTP
basic authentication scheme. (© 2002 Microsoft Corporation.)



2.3 Basic authentication 31

Password required

%\ —Authentication

- Please enter username and password for this page.
Address [htip:} fwww esecurity.ch/Demo/HTTPB
Message HTTP Basic Authentication Demo
Username Irolf
Password =

OK I Cancel Help

Figure 2.2 The Opera 6.0 ‘Password required’ prompt using the HTTP basic authentication
scheme. (© 2002 Opera Software.)

Authorization header (if the server were an HTTP proxy server, the
browser would resend an HTTP request message with a Proxy-Authoriza-
tion header). In our example, the Authorization header may look as
follows:

Authorization: Basic cm9sZjp0ZXNO

The value cm9sZjp0ZXNO refers to the user’s authentication information
(i.e., the username and password separated with a colon) encoded using the
Base-64 encoding scheme.® This basically works as follows:

1. Each character of the complete authentication information (i.e.,
rolf:test) is converted to its ASCII value (according to Table 2.1).
The resulting string of hexademical values is 726F6C663A74657374
(each pair of hexademical values represents one ASCII character).
Alternatively, the string of hexademical values may also be written
as a bit string:

6. The Base-64 encoding scheme is explained, for example, in Chapter 2 of [8].



HTTP Security

Table 2.1 ASCII Characters with Hexadecimal Values

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70
+0 NUL DLE 0 @ P p
+1 SOH DC1 ! 1 A Q a q
+2 STX DC2 " 2 B R b r
+3 ETX DC3 # 3 C S C S
+4 EOT DC4 4 D T d t
+5 ENQ NAK % 5 E 18] e u
+6 ACK SYN & 6 F v f \%
+7 BEL ETB ’ 7 G w g w
+8 BS CAN ( 8 H X h X
+9 HT EM ) 9 1 Y i Yy
+A LF SUB * : J Z j Z
+B VT ESC + ; K [ k {
+C FF FS , < L \ 1 |
+D CR GS - = M 1 m }
+E SO RS . > N A n
+F SI Us / ? (0] _ o) DEL

7 2 6 F 6 C 6 6 3
0111 0010 0110 1111 0110 1100 0110 0110 0011
A 7 4 6 5 7 3 7 4
1010 0111 0100 0110 0101 0111 0011 0111 0100

2. The bit string is rearranged and split into groups of six bits each.

011100 100110 111101 101100 011001 100011
101001 110100 011001 010111 001101 110100

3. Each group of six bits is represented by a new character in the Base-
64 encoding scheme (according to Table 2.2). For example, the first
substring 011100 refers to the decimal value 28 or the hexadecimal
value 1C. Referring to Table 2.2, this value is represented by the
letter ¢ in the Base-64 encoding scheme. Similarly, the second
substring 100110 refers to the decimal value 38 or hexadecimal
value 26, and this value is represented by the letter m in the Base-64
encoding scheme. The resulting string can be constructed as follows:

011100 100110 111101 101100 011001 100011
28 38 61 44 25 35
1C 26 3D 2C 19 23
c m 9 s Z j



2.3 Basic authentication 33

Table 2.2 Characters Used in the Base-64
Encoding Scheme

0x00 0x10 0x20 0x30
+0 A Q g w
+1 B R h X
+2 C S i y
+3 D T j z
+4 E U k 0
+5 F v 1 1
+6 G w m 2
+7 H X n 3
+8 1 Y [¢) 4
+9 J Z P 5
+A K a q 6
+B L b r 7
+C M C S 8
+D N d t 9
+E O e u +
+F P f \% /

101001 110100 011001 010111 001101 110100

41 52 25 23 13 52
29 34 19 17 D 34
P 0 z X N 0

The first line represents the groups of six bits. The second and third
line represent the corresponding decimal and hexadecimal values,
whereas the fourth line represents the corresponding charcaters in
the Base-64 encoding scheme. Consequently, the resulting string is
cm9sZjp0ZXNO and this string may serve as authentication informa-
tion in the HTTP basic authentication scheme. Another example is
given in [7]. The interested reader is invited to follow the above-
mentioned steps to encode an arbitrary username and password
pair, and to verify the correctness of his or her encoding result using
a Web browser and a network monitoring tool.

In spite of the fact that the authentication information (i.e., the
username and password separated with a colon) is Base-64-encoded, there is
nothing that protects it against passive eavesdropping. In fact, anyone who
intercepts the HTTP request message that is sent from the browser to the
server can obtain the authentication information, decode the username and
password (according to the Base-64 decoding scheme), and (mis)use this
information illegitimately. To make things worse, HTTP is stateless and the
browser reauthenticates itself each time it contacts the server (not just



34

HTTP Security

the first time). In order to make that transparent to the user, browsers
usually cache the usernames and passwords and retransmit them auto-
matically each time they contact the server. This is convenient but also
causes many password transmissions that are transparent and ‘‘invisible”” to
the user (unfortunately, these retransmissions are not ‘“‘invisible”” for a
passive attacker). More worrisome, it is generally not possible to log out an
authenticated “HTTP session.” This would require the browser to forget
about the relevant user credentials. This is currently not a supported feature
in most browsers. Last but not least, the most recent versions of some
browsers provide the feature to remember a password forever, so that a user
never has to type in the password again. As illustrated in Figure 2.1, this
ability can be activated in Microsoft’s Internet Explorer by employing the
checkbox entitled ‘“Save this password in your password list.”” From a
security point of view, this feature is highly debatable. It is, however,
convenient for the user and simplifies the user experience considerably.
That’s why people use it.

In summary, the HTTP basic authentication scheme is not secure.
Although the passwords are stored on the server in encrypted form, they are
passed from the browsers to the server in the clear’ (or in Base-64-encoded
form) for every single request. As such, they are exposed to eavesdropping
and replay attacks.

2.4 Digest access authentication

Due to the fact that the HTTP basic authentication scheme must be
considered to be weak and vulnerable, the complementary and inherently
more secure HTTP digest access authentication scheme has been specified in [7]
and submitted to the Internet standards track. Note, however, that the HTTP
digest access authentication scheme still suffers from many known
limitations and weaknesses (as discussed at the end of this section), and
that it is intended as a simple replacement for the HTTP basic authentication
scheme. More secure HTTP authentication schemes can be designed using
public key certificates or authentication and key distribution systems, such
as Kerberos [9].

Unfortunately (and contrary to the HTTP basic authentication scheme),
the HTTP digest access authentication scheme is not widely deployed and

7.

This is similar to many other TCP/IP application protocols that lack strong user authentication, such as Telnet

and FTP.



2.4 Digest access authentication 35

supported by Web browsers and servers.® On the client side, for example, the
scheme is supported by the latest releases of Microsoft’s Internet Explorer
and Opera (the scheme is not supported by Netscape Navigator). On the
server side, the scheme is supported by Microsoft IIS and Apache.’

Like the HTTP basic authentication scheme, the HTTP digest access
authentication scheme implements a simple challenge-response mechanism
to verify that the user knows a secret he or she shares with the server (i.e.,
the password). Unlike the HTTP basic authentication scheme, however, the
verification is done without actually sending the secret in the clear. Instead,
the HTTP digest access authentication scheme employs a one-way hash
function (typically MD5'%) to compute (on the browser side) and verify (on
the server side) a digest value that is used to proof knowledge of the secret.

More specifically, when a browser requests a resource that is protected
using the HTTP digest access authentication scheme, the server challenges
the browser using a nonce (i.e., a randomly chosen value). The browser, in
turn, must respond with a valid digest value to authenticate itself to the
server. The digest value is computed from the following input parameters:

» The username;
» The user password (or a hash value thereof);
» The nonce;

» The HTTP access method;

» The URL of the requested resource.

Roughly speaking, the digest value is computed as follows:

h(h(Al):nonce:h(A2))

10.

The major reason for this astonishing fact is that those products typically implement the SSL and TLS protocols.
If the browser and server are communicating with HTTP on top of SSL or TLS (using HTTPS), the problem of
password sniffing automatically goes away. The encrypted channel is set up before any HTTP header passes
across the network, so the username and password are part of the encrypted SSL data stream and cannot be
sniffed accordingly.

Digest access authentication as specified in [7] is implemented by the module mod_auth_digest. There is an
older module, mod_digest, which implemented the older digest authentication scheme specified in RFC 2069.
An optional header may allow the server to specify the algorithm that must be used to create the one-way hash
value. By default the MD5 algorithm as specified in RFC 1321 [10] is used. As further explained in Chapter 4,
an MD5 hash value is 128 bits long. As such, it can be represented in 32 ASCII printable characters that each
represent a hexadecimal number.



36

HTTP Security

In this formula, /# represents the one-way hash function,'! A1 the
expression that consists of the username, the realm string, and the user
password (each component separated with a colon), and A2 the expression
that consists of the HTTP access method and the requested URL (again,
separated with a colon). There are some options that complicate the formula,
but in principle, this is the way the browser has to compute the digest value it
must encode as a response. Note that the user password is not sent in the
clear. Instead, it is used as a secret input to the one-way hash function. As
with the HTTP basic authentication scheme, the usernames and passwords
must be prearranged and distributed out-of-band.

Let us assume that a browser wants to retrieve the index.html file
located in the protected directory /Demo/HTTPDigestAccessAuthentica-
tion/ at www.esecurity.ch. Again, the browser does not know that this file
is protected using the HTTP digest access authentication scheme. So it sends
sends out a normal-looking HTTP request message. Remember from our
previous discussions that this message may start with the following request
line:

GET http://www.esecurity.ch/Demo/HTTPDigestAccessAuthentication/
HTTP/1.0

All other HTTP request headers remain the same as in the previous
example(s). After having received the HTTP request message, the Web
server recognizes that the requested file is located in a directory of the
Web server’s document tree that is protected using the HTTP digest access
authentication scheme. So it returns an HTTP response message that
includes the following two characteristic lines (among other lines and
HTTP headers):

HTTP/1.0 401 Unauthorized

WWW-Authenticate: Digest
realm="HTTP Digest Access Authentication Demo",
nonce="1011598310"

Again, if the server were an HTTP proxy server, it would return an HTTP
response message with a 407 status code and a Proxy-Authenticate header.
This case is not discussed in this book.

Contrary to the HTTP basic authentication scheme, the WWW-Authenti-
cate header includes the keyword Digest (referring to the HTTP digest

11. Refer to Section 4.2 for an introduction to one-way hash functions.



2.4 Digest access authentication 37

access authentication scheme instead of Basic referring to the HTTP basic
authentication scheme) as well as a comma-separated list of parameters. In
our example, there are only two parameters (i.e., realm and nonce) with
corresponding values:

» The realm parameter carries a string that is displyed to the user so he
or she knows which username and password to use. As illustrated in
Figure 2.3 for Opera, most browsers display this string in the prompt
in which they ask the users to type in their username and password.

» The nonce parameter carries the random value that is used by the
server to challenge the user (or the browser, repectively). The value
is uniquely generated each time a 401 response message is compiled.
The contents of the nonces are implementation dependent. An
exemplary procedure to generate nonces (using time stamps and a
secret key that is known only to the server) is given in [7]. In our
example, the nonce is 1011598310.

As further addressed in [7], there are many other parameters that can be
used in the WWW-Authenticate header. Most of them are optional. To keep

Password required

{ 3\\ —Authentication
Flease enter usemame and password for this page.
Address [ttp:# fwww.esecurity.ch/Demo/HTTPDI
Message HT TP Digest Access Authentication
Demo
Usemame Iron
Password =

| OK I Cancel Help

Figure 2.3 The Opera 6.0 ‘Password required’ prompt using the HTTP digest access
authentication scheme. (© 2002 Opera Software.)




38

HTTP Security

the discussion sufficiently simple, we do not look into the synatx and
semantics of these parameters.

In response to the HTTP response message, the browser prompts the user
to enter his or her username and password. From a graphical user interface’s
point of view, this is very similar to the way the user is prompted in the HTTP
basic authentication scheme. Figure 2.3 illustrates the prompt used by the
Opera browser. If the user entered the requested information (i.e., the
username and password), the browser would compute a response value and
return it as part of an Authorization header in a second HTTP request
message to the server. In our example, the Authorization header would
look as follows:

Authorization: Digest
username="rolf",
realm="HTTP Digest Access Authentication Demo",
uri="http://www.esecurity.ch/Demo/HTTPDigestAccessAuthen-

tication/",

algorithm=MD5,
nonce="1011598310",
response="2cbdf234349bbfbfa8460c2410acb445"

In this header, the response parameter carries the digest value that is
needed to authenticate to the server. It is a 32-bit hexademical value that
carries a one-way hash value (i.e., an MD5 hash value in this example) that
is computed as described above. Due to the fact that the WWW-Authenticate
header may include many optional parameters and that implementations
should be compatible with a previous version of the HTTP digest access
authentication scheme,'? the actual format and procedures to compute and
verify the hash values is quite complex. Consequently, we have used a
simplified formula and you may refer to [7] to get a more comprehensive
description and specification, as well as examples of HTTP request and
response messages that conform to this specification.

Upon receiving an HTTP request message with a proper WwW-Authenti-
cate header, the server must check the validity of the response value. In
particular, it must look up the Al hash value that corresponds to the
submitted username, recompute the digest value, and compare the result to
the response that was provided by the browser. If the values match, the user
is assumed to be authentic. Note, however, that the server does not need to

12. As mentioned before, this version is called “HTTP Digest Authentication”” and it is specified in RFC document



2.4 Digest access authentication 39

know the user password in the clear. It is sufficient for the server to know
the A1l hash value (i.e., the hash value of the username, the realm string,
and the user password).

In the following chapter, we address the implications of proxy
servers and firewalls for Web applications. As with the HTTP basic
authentication, the use of proxy servers must be completely transparent
in HTTP digest access authentication. That is, the proxy servers must
forward the relevant headers (i.e., the WWW-Authenticate, Authoriza-
tion, and some other headers) as they are. If a proxy server wanted to
authenticate a client before a request is forwarded to a Web server, it would
have to use appropriate Proxy-Authenticate and Proxy-Authorization
headers as specified in [1]. Consequently, Web server authentication and
HTTP proxy server authentication may coexist in the same challenge/
response messages.

There is a potential difficulty in using an HTTP authentication scheme
(i.e., HTTP basic authentication or HTTP digest access authentication)
together with caching mechanisms implemented by HTTP proxy servers.
Note that one goal of a proxy server is to cache resources that have been
downloaded once to serve requests that are issued by multiple browsers.
Consequently, if a resource has been downloaded by an authenticated
browser, the resource may end up in a proxy cache, from where it may be
redistributed to multiple (not authenticated) browsers. To protect against
this redistribution, HTTP (since version 1.1) specifies that when a proxy
server has received an HTTP request message containing an Authorization
header, and a response message from relaying that request, it must not
return that response message as a reply to any other request, unless one of
the following two cache-control directives was sent in the corresponding
original HTTP response message:

» If the original HTTP response message includes the must-revalidate
cache-control directive, the proxy server can cache the resource and
use it to serve further requests for the same resource. Each time the
resource is requested, however, the proxy server must first
reauthenticate the browser (using the HTTP request headers from
the new request to allow the origin Web server to authenticate the
browser).

» Alternatively, if the original HTTP response includes the public
cache-control directive, the proxy server can cache the resource and
use it to serve further requests for the same resource (without
browser reauthentication).



40

HTTP Security

In summary, the HTTP digest access authentication scheme solves the
most severe security problem of the HTTP basic authentication scheme,
namely, that passwords are transmitted in the clear (or in Base-64-encoded
form that is equivalent to the unencrypted form). Instead of sending the
username and password to the server, the browser uses the password to
properly compute a response for the challenge provided by the server.
As such, the password is never transmitted across the Internet. Provided
that the user has picked a good (i.e., hard to guess) password, it is
computationally infeasible for an attacker to derive the password from the
response. For further protection, the user password may not be stored in the
clear on the server side (where it could be stolen by someone with access to
the server). Instead, only the hash value of the password may be stored. This
is similar to the way that contemporary operating systems, such as UNIX or
Windows NT, store passwords. As a final precaution, the requested URL is
part of the response. Consequently, if the response is intercepted by an
eavesdropper who attempts to play it back to gain illegitimate access to
resources, he or she will be able to get access only to that single URL. More
specifically, he or she will be unable to generate new responses to gain access
to resources that are found in other branches of the document tree. Servers
can further protect themselves against replay attacks by adding a timestamp
to the nonces so that responses automatically expire after a relatively short
period of time.

The HTTP digest access authentication scheme is intended as a simple
replacement for the HTTP basic authentication scheme, and nothing more.
In spite of all of its security features, the HTTP digest access authentication
scheme still suffers from known limitations and weaknesses. For example,
both the HTTP basic authentication scheme and the HTTP digest access
authentication scheme are vulnerable to the man-in-the-middle attack
(mainly because the server does not authenticate itself to the browser before
it sends out the challenge).!”> Also, the HTTP digest access authentication
scheme is (still) a password-based system and suffers from all the problems of
such a system.

For example, digest authentication requires that the authenticating
party (usually the server) store some data derived from the username and
password in a user password file associated with a given realm. The security
implications of this are that if this file is compromised, an attacker gains
immediate access to documents on the server using this realm. On the other
hand, a brute force attack would be necessary to obtain a user’s password.

13. In a man-in-the-middle attack, an attacker spoofs a server and requests a browser to provide a user password.



2.5 Certificate-based authentication 41

This is why the realm is part of the hashed data stored in the file. It means
that if one digest authentication password file is compromised, it does not
automatically compromise others with the same username and password
(though it does expose them to brute force attack). This is somewhat similar
to the UNIX salt mechanism. There are two important security consequences
of this:

1. The user password file must be protected as if it contained
unencrypted passwords (that is why it is usually not stored in the
document tree).

2. The realm name should be unique among all realms that any single
user is likely to use. In particular, a realm name should include the
name of the host doing the authentication (contrary to the example
given previously in this chapter).

Furthermore, no provision is made in the specification of the HTTP digest
access authentication scheme for the initial arrangement between the user
and server to establish the user password. Consequently, the HTTP digest
authentication scheme does not provide a complete answer to the need for
security on the WWW. Also note that the HTTP digest access authentication
scheme is only an authentication scheme that does not provide any data
confidentiality or integrity services. This is where cryptographic security
protocols, such as the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols, come into play.

2.5 Certificate-based authentication

The SSL and TLS protocols are the security technology of choice for the
WWW and, indeed, most Web applications. As further addressed in Chapter
6, these protocols can be used to have a Web browser and a server
authenticate each other,'* establish a session key, and use this key to
transparently encrypt, decrypt, and authenticate data segments that are
exchanged between them. Consequently, this protocol can also be used to
have a Web server (or HTTP proxy server) properly authenticate its users.
This makes user authentication and authorization simple and straightfor-
ward. On the other side, however, it also requires that servers and browsers
be equipped with public key certificates. Public key certificates and

14. Server-side authentication is mandatory in SSL and TLS, whereas client-side authentication is optional.



42 HTTP Security

the establishment and use of corresponding infrastructures is further
addressed in Chapters 7 and 8.

2.6 Server configuration

Based on the HTTP basic and digest access authentication schemes
overviewed in the previous sections, Web server software packages usually
provide support for user-based and group-based authorization and access
control. For example, the Apache server allows an administrator to define
authorized users, give them passwords, and place them in groups similar to
the UNIX operating system. The syntax that is used to specify access control
rules heavily depends on the Web server software in use. You may refer to
the manual of your server software package for a description of the syntax
that must be used. In the examples that follow, we refer to the Apache Web
server software that is widely deployed today. Further information can be
found at http://httpd.apache.org/docs/howto/auth.html.

2.6.1 Configuring HTTP basic authentication

To protect the contents of an Apache Web server with the HTTP basic
authentication scheme, the following two configuration steps must be
completed:

1. A password file must be created. The file must include the names
and encrypted passwords of the legitimate and authorized users of
the server. Because the file contains sensitive information, it should
be stored outside of the document tree. To create and manage the
password file, a utility called htpasswd may be used.'” This utility
creates entries that look as follows (for username rolf and
password test):

rolf:yIvSBWSuLs2N2

Obviously, the first field includes the username (i.e., rolf) and the
second field includes the encrypted password (i.e., yIvSBWSuLs2N2).
The password is encrypted using the standard UNIX password
encryption function [i.e., crypt()]. This basically means that the
zero-string is encrypted using the password as a key, that a modified
and slowed-down version of the DES serves as encryption

15. The htpasswd utility is typically located in the bin directory of the Apache installation.



2.6 Server configuration 43

algorithm, that an additional 12-bit value (i.e., a so-called salt) is
used to seed the encryption, and that each encrypted password is
Base-64-encoded as 13 printable characters (the first two characters
representing the salt). Due to the salt mechanism, the password
encryption function is nondeterministicc meaning that two users
who have randomly chosen the same password may end up having
encrypted passwords that look completely different. For example,
8DPEnfGmhy3f., oC.DJuDdSwd4w, and N.Ecp9ZAWAPXE are all valid
and equivalent encodings of the username rolf and the encrypted
password test (i.e., they all use different salt values). Optionally, a
group file may be created to define that certain users belong
together and may be treated as a group (mainly to simplify user
management). Each group is defined by a group name and a list of
members (i.e., users). For example:

family: isabelle marc lara rolf

In this case, a group named family is defined to include the
members isabelle, marc, lara, and rolf. Note that for each of these
members an entry in the password file must exist.

2. The use of the password and group files must be configured on the
server side. There are a number of server directives that can be used
for this purpose:

» The AuthType directive is used to specify the authentication type
being used (i.e., Basic or Digest).

» The AuthName directive is used to specify the authentication realm
or name.

» The AuthUserFile directive is used to specify the location of the
password file.

» The AuthGroupFile directive is used to specify the location of the
group file, if any.

» The Require directive is used to specify the requirement(s) that
must be satisfied in order to grant admission.

The directives can be placed in a .htaccess file in the particular
directory being protected, or may go in a <Directory> section of the
server’s access configuration file (i.e., access.conf). To allow a
directory to be restricted within an .htaccess file, however, the
access. conf file must allow user authentication and authorization



44

HTTP Security

to be set up in .htaccess files. This is controlled by the AuthCong
override. More specifically, the access.conf file must include
AllowOverride AuthCong to allow user authentication and authori-
zation in .htaccess files. In the explanations that follow, we
assume the AuthCong override is included in the Web server’s access
configuration file.

Let’s have a look at the server configuration that is used to protect the
directory /Demo/HTTPBasicAuthentication at www.esecurity.ch. Protec-
tion is invoked by placing the following .htaccess file in the protected
directory:

AuthType Basic

AuthName "HTTP Basic Authentication Demo"
AuthUserFile /home/esecurity.ch/conf/passwords
AuthGroupFile /home/esecurity.ch/conf/groups
require valid-user

Obviously, the first line indicates the use of the HTTP basic authentica-
tion scheme. The second line specifies the realm string that is used in the
prompt to request the user to enter his or her password (this is illustrated in
Figures 2.1 and 2.2). The third and fourth lines specify the location of the
password and group files. Finally, the fifth line requires that any user
provides his or her valid password to get access (in this case, the group file is
not used at all). This part could be expanded to limit access to specific users or
groups or specific access methods (e.g., GET). For example:

<LIMIT GET>
require group family
</LIMIT>

limits user access to the members of the family group employing the HTTP
GET method (in this case, the group file is used). In general, a <Limit>
section is established between the <Limit> and </Limit> directives. It can
be used to establish an access control policy for the directory. The format is
<Limit X Y ...>, where each of the parameters is one of the HTTP access
methods (e.g., GET, POST, PUT, or DELETE). Browsers that try to use one of
the listed methods are restricted according to the rules listed within the
section. If no method is listed, the restrictions apply to all methods. Multiple
groups may be listed and multiple require directives may be used.

Using the htpasswd utility to create and manage a list of users in a
password file, and maintaining a list of groups in a corresponding group file,
is a relatively simple task. However, if the number of users becomes large,



2.6 Server configuration 45

the server has a lot of processing to do in finding a user’s authentication
information. In fact, the server has to open the password file, look through
it one line at a time until it finds the user that is trying to log in, and verify
the password. In the worst case, if the username supplied is not there at all,
every line in the file will need to be checked. On average, half of the file will
need to be read before the user is found. To make things worse, this
processing must be done for every request to access the protected realm
(even though the user only enters his or her password once, the server has
to reauthenticate on every request). This can be slow with a lot of users,
and adds to the Web server load. Much faster access is possible using a
database system. In the case of the Apache Web server, there are several
database modules that may be used (e.g., mod_auth_db and mod_auth_dbm).
The corresponding directives may change (e.g., AuthDBUserFile instead of
AuthUserFile in the case of using Berkeley DB files and HTTP basic
authentication) but the principle ideas remain the same. It is also possible to
have an arbitrary external program check whether the given username and
password are valid (this could be used to write an interface to check against
any other database or authentication service). Modules are also available to
check against the system password file or—more interestingly—to use a
Kerberos authentication system.

2.6.2 Configuring HTTP digest access authentication

To protect the contents of an Apache Web server with the HTTP digest access
authentication scheme, the following two configuration steps must be
completed:

1. A password file must be created. For every legitimate and
authorized user, the file must include the username, the realm
string, and the user password in possibly encrypted form. Again, the
file contains sensitive information and should be stored outside of
the document tree. To create and manage the password file, a utility
called htdigest can be used.'® It creates entries like

rolf:HTTP Digest Access Authentication Demo:672203b528e0-
c29e08df53cba3f51b66

for the username rolf, the realm string “HTTP Digest Ac-
cess Authentication Demo,” and the password test. Note that

16. Similar to the htpasswd utility, the htdigest utulity is typically located in the bin directory of the Apache
installation.



46

HTTP Security

the username and the realm string are not encrypted, and that the
password is the only value that is encrypted. Contrary to the
password encryption routine employed by the .htpasswd utility,
however, the password encryption routine employed by the
.htpasswd utility is deterministic, meaning that no salt is used,
and that the same password is always encrypted and encoded to the
same value (i.e., 672203b528e0c29e08df53cba3f51b66 in the
example above). Optionally, a group file can be created to simplity
user management. The syntax of the file is the same as the one
employed by the HTTP basic authentication scheme.

The use of the password and group files must be configured on the
server side. In addition to the directives that are available for the
HTTP basic authentication scheme (i.e., AuthType, AuthName, and
Require), the following two directives may be used to configure the
use of the HTTP digest access authentication scheme:

The AuthDigestFile directive is used to specify the location of the
password file.

The AuthDigestGroupFile directive is used to specify the location
of the group file (if any).

The placement of the directives is identical to the HTTP basic
authentication scheme.

For example, the following .htaccess file may be used to protect the
directory /Demo/HTTPBasicAuthentication at www.esecurity.ch:

AuthType Digest

AuthName "HTTP Digest Access Authentication Demo"
AuthDigestFile /home/esecurity.ch/conf/digests
AuthDigestGroupFile /home/esecurity.ch/conf/groups
require valid-user

The semantics of the directives should be clear. Again, access to the
protected directory may be restricted to specific HTTP access methods (e.g.,
GET) using the <Limit> and </Limit> directives.

2.7 Conclusions

In the early days of the WWW, it was assumed that the resources made
available by Web servers were inherently public and that there would be no



2.7 Conclusions 47

need for such things as user authentication, authorization, and access
control. Since then, however, the situation has changed fundamentally and
the WWW is also used for the distribution of protected material. Con-
sequently, there is urgent need for proper user authentication, authorization,
and access control mechanisms.

The simplest mechanism to control access to Web resources is to use
hidden URLs. Also, most Web servers can be configured to restrict access to
a particular group of computers based on those computers’ address
information (IP addresses or DNS hostnames). Most importantly, some
Web servers provide support for the HTTP user authentication and
authorization schemes that are described in this chapter: HTTP basic
authentication and HTTP digest access authentication. Unfortunately, the
HTTP digest access authentication scheme is not widely deployed. This is
because HTTP digest access authentication is always less secure than a full-
fledged cryptographic security protocol, such as SSL or TLS. Consequently,
some browsers implement SSL or TLS and leave beside HTTP digest
access authentication. As mentioend in this chapter and further addressed
in Chapter 6, SSL and TLS employ certificate-based authentication
mechanisms.

In practice, many Web servers are configured to allow access to all users
from computers located on the same network (i.e., intranet), whereas they
allow access to other users only after proper authentication and authoriza-
tion. For example, the .htaccess file of an Apache Web server could be
extended as follows:

AuthType Basic

AuthName "HTTP Basic Authentication Demo"
AuthUserFile /home/esecurity.ch/conf/passwords
AuthGroupFile /home/esecurity.ch/conf/groups
Require valid-user

Allow from esecurity.ch

Satisfy any

The extension (i.e., the allow and satisfy directives) would make sure
that either a valid user is requesting the resource (i.e., the require valid-
user directive), or a request is originating from the esecurity.ch domain
(i.e., the allow from esecurity.ch directive).!” It is also possible to deny
access for specific computers using the deny directive, and to define an order
of preference (regarding the allow and deny directives). In general, it is

17. The satisfy any directive says that either of the two conditions must hold.



48

HTTP Security

possible to express any access control condition using the allow, deny,
order, and satisfy directives.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” Request for
Comments 2616, June 1999.

Berners-Lee, T., L. Masinter, and M. McCahill, ““Uniform Resource Locators
(URL),” Request for Comments 1738, December 1994.

r

Fielding, R., ““Relative Uniform Resource Locators (URL),
Comments 1808, June 1995.

Request for

Sollins, K., and L. Masinter, ‘‘Functional Requirements for Uniform Resource
Names,” Request for Comments 1737, December 1994.

Berners-Lee, T., R. Fielding, and L. Masinter, ‘‘Uniform Resource Identifiers
(URI): Generic Syntax and Semantics,” Request for Comments 2396, August
1998.

Rubin, A. D., D. Geer, and M. J. Ranum, Web Security Sourcebook, New York:
John Wiley & Sons, Inc., 1997.

Franks, J., et al., “HTTP Authentication: Basic and Digest Access Authentica-
tion,” Request for Comments 2617, June 1999.

Oppliger, R., Secure Messaging with PGP and S/MIME, Norwood, MA: Artech
House, 2001.

Oppliger, R., Authentication Systems for Secure Networks, Norwood, MA: Artech
House, 1996.

Rivest, R. L., and S. Dusse, “The MD5 Message-Digest Algorithm,”” Request for
Comments 1321, April 1992.



31
32
33

34
3.5
3.6
31

3.8
3.9

CHAPTER

Contents

Introduction
Static packet filtering

Dynamic packet filtering
or stateful inspection

Circuit-level gateways
Hpplication-level gateways
Firewall configurations

Network address
translation

Configuring the hrowser
Conclusions

References

Proxy Servers and Firewalls

In this chapter, we address proxy servers and firewalls as well
as their implications for the WWW and Web-based applica-
tions. After a brief introduction in Section 3.1, we address the
major firewall technologies (i.e., static packet filtering, dynamic
packet filtering or ““stateful”” inspection, circuit-level gateways,
and application-level gateways or proxy servers) in Sections 3.2
to 3.5. In Section 3.6, we overview and discuss firewall
configurations that are used and widely deployed today. In
Section 3.7, we address network address translation (NAT). In
Section 3.8, we elaborate on the question of how to properly
configure a browser to make use of proxy servers. In Section
3.9, we conclude with a discussion of the firewall technology as
a whole. Note that the focus of this chapter is on how to get out
of a corporate intranet (actually traversing a firewall). This is
the usual situation one faces when dealing with firewalls. For
mobile users and teleworkers, however, the situation is inverse
and their primary focus is on how to get in a corporate intranet
(e.g., to access an internal Web server). This leads to reverse
proxies and the need for strong authentication mechanisms.
These topics are further addressed in Chapter 6. Also, you may
refer to part two of [1] for an overview and more comprehen-
sive discussion of the firewall technology.

3.1 Introduction

While Internet connectivity offers enormous benefits in terms
of increased availability and access to information, Internet

49



50

Proxy Servers and Firewalls

connectivity is not always a good thing, especially for sites with low levels of
security. In fact, the Internet suffers from glaring security problems that, if
ignored, could have disastrous impacts for unprepared sites. Inherent
problems with the TCP/IP protocols and services, the complexity of host and
site configuration, vulnerabilities introduced in the software development
process, and a variety of other factors all contribute to making unprepared
sites open for intruder activities.

Host security is generally hard to achieve and does not scale well in the
sense that as the number of hosts increases, the ability to ensure that security
is at a high level for each host usually decreases. Given the fact that secure
management of just one single system can be a demanding task, managing
many such systems could easily result in mistakes and omissions. A
contributing factor is that the role of system administration is often
undervalued and performed in a difficult situation. As a result of this
situation, some systems will be less secure than others, and these systems
will probably be the ones that ultimately break the security of either a site or
an entire corporate intranet. This book does not address host and site
security. There is an informational RFC document specifying a site security
handbook [2]. You may refer to this document for a comprehensive
overview about issues related to host and site security.

In days of old, brick walls were built between buildings in apartment
complexes so that if a fire broke out, it would not spread from one building to
another. Quite naturally, these walls were called firewalls.

Today, when a private network (i.e., an intranet) is connected to a public
network (i.e., the Internet), its users are usually enabled to communicate
with the outside world. At the same time, however, the outside world can
also interact with the private network and its computer systems. In this
situation, an intermediate system can be plugged between the private
network and the public network to establish a controlled link, and to erect a
security wall or perimeter. The aim of the intermediate system is to protect
the private network from attacks that may originate from the outside world,
and to provide a single choke point where security and audit can be imposed.
Note that all traffic in and out of the private network can be enforced to pass
through this single, narrow choke point. Also note that this point provides a
good place to collect information about system and network use and misuse.
As a single point of access, the intermediate system can record what occurs
between the private network and the outside world. In analogy to physical
firewalls, these intermediate systems are called firewall systems, or firewalls for
short. In other literature, Internet firewalls are sometimes also referred to as
secure Internet gateways or security gateways. In essence, a firewall system
represents a blockade between a privately owned and protected network,



3.1 Introduction 51

which is assumed to be secure and trustworthy, and another network,
typically a public network or the Internet, which is assumed to be insecure
and untrustworthy. The purpose of the firewall is to prevent unwanted and
unauthorized communications into or out of the protected network.

There are several possibilities to more formally define the term firewall.
For example, according to [3], a firewall refers to “‘an internetwork gateway
that restricts data communication traffic to and from one of the connected
networks (the one said to be ‘inside’ the firewall) and thus protects that
network’s system resources against threats from the other network (the one
that is said to be ‘outside’ the firewall).”” This definition is fairly broad and
not too precise.

In their pioneering book [4] and article [5] on firewalls and Internet
security, William Cheswick and Steven Bellovin defined a firewall (system)
as a collection of components placed between two networks that collectively
have the following three properties:

1. All traffic from inside to outside, and vice versa, must pass through
the firewall.

2. Only authorized traffic, as defined by the local security policy, will
be allowed to pass.

3. The firewall itself is immune to penetration.

Note that these properties are design goals. A failure in one aspect does
not necessarily mean that the collection is not a firewall, simply that it is not
a good one. Consequently, there are different grades of security that a
firewall can achieve. In either case, there must be a security policy for the
firewall to enforce.

If one wants to exclude the fact that a simple packet filter can be called a
firewall, one has to come up with an even more complex definition for the
term firewall. In this case, a system can be called a firewall if it is able:

» To enforce strong authentication for users who wish to establish
inbound or outbound! connections;

1. In this book, the terms inbound and outbound are used to refer to connections or IP packets from the point of view
of the protected network, which is typically the intranet. Consequently, an outbound connection is a connection
initiated from a client on an internal machine to a server on an external machine. Note that while the connection as
a whole is outbound, it includes both outbound IP packets (those from the internal client to the external server) and
inbound IP packets (those from the external server to the internal client). Similarly, an inbound connection is



52

Proxy Servers and Firewalls

» To associate data streams that are allowed to pass through the firewall
with previously authenticated and authorized users.

Again, it is a policy decision if a data stream is allowed to pass through.
Thus, this definition also leads to the necessity of an explicitly specified
firewall policy, similar to the definition of Cheswick and Bellovin.

In this book, we make a clear distinction between packet filters (i.e.,
static or dynamic packet filters) and application gateways (i.e., circuit-level
gateways or application-level gateways). It is interesting to note at this point
that the last definition of a firewall requires the use of application gateways.
Because application gateways operate at the higher layers of the OSI
reference model, they typically have access to more information than
packet-filtering devices and can therefore be programmed to operate more
intelligently and to be more secure. Some vendors, perhaps for marketing
reasons, blur the distinction between a packet filter and a firewall to the
extent that they call any packet filtering device a firewall. This practice must
be considered with care.

From a practical point of view, a firewall refers to a collection of
hardware, software, and policy that is placed between a private network,
typically a corporate intranet, and an external network, typically the
Internet. As such, the firewall implements parts of a network security policy
by enforcing that all data traffic is directed or routed to the firewall, where it
can be examined and evaluated accordingly. A firewall seeks to prevent
unwanted? and unauthorized communications into or out of a corporate
intranet, and to allow an organization to enforce a policy on traffic flowing
between the intranet and the Internet. Typically, a firewall also requires its
users to authenticate themselves before any further action is deployed. The
last definition given above has made this requirement mandatory. In this
case, strong authentication mechanisms are used to replace password-based
or address-based authentication schemes.

The general reasoning behind firewall usage is that without a firewall, a
site is more exposed to inherently insecure host operating systems, TCP/IP
protocols and services, and probes and attacks from the Internet. In a
firewall-less environment, network security is a function of each host, and
all hosts must, in a sense, cooperate to achieve a uniformlv high level of

a connection initiated from a client on an external machine to a server on an internal machine. Following this
terminology, the inbound interface for an IP packet refers to the physical network interface on a screening router
on which the packet actually appeared, while the outbound interface refers to the physical network interface on
which the packet will go out if it is not denied by the application of a specific packet-filtering rule.

The formalization of what ““‘unwanted”” communications refers to is generally a difficult task.



3.1 Introduction 53

security. The larger the network, the less manageable it usually is to
maintain all hosts at the same level of security. As mistakes and lapses in
security become more common, break-ins can occur not only as a result of
complex attacks, but also because of simple errors in configuration files and
inadequately chosen passwords. Assuming that software is buggy, one can
conclude that most host systems have security holes that can eventually be
exploited by intruders. Firewalls are designed to run less software, and hence
may potentially have fewer bugs, vulnerabilities, and security holes than
conventional hosts. In addition, firewalls generally have advanced logging
and monitoring facilities and can be professionally administered.
With firewall usage, only a few hosts® are exposed to attacks from the
Internet, which considerably simplifies the task of securing the intranet
environment.

Later in this chapter, we will discuss the advantages and disadvantages of
the firewall technology as a whole. Probably one of the main disadvantages
is due to the fact that a firewall cannot protect sites and corporate intranets
against insider attacks. For that matter, internal firewalls may be used to
control access between different administration and security domains, or to
protect sensitive parts of a corporate intranet. Internal firewalls are
sometimes also called intranet firewalls. From a technical point of view,
there is nothing that distinguishes an intranet firewall from an Internet
firewall except for the policy it enforces.

More recently, the notion of decentralized or personal firewalls has
become popular. A personal firewall protects a single system (e.g., a
personal computer or laptop system) from network-based attacks. As such,
personal firewalls are most often simple packet filters that can be configured
by each user individually. Similar to intranet firewalls, personal firewalls
work like ‘““normal”’ firewalls and are not discussed separately in this
book.

There are many books available that address firewall technologies (e.g.,
[1]1). As a matter of fact, most books that have addressed Internet and
intranet security in the past are actually books on firewalls [4, 6, 7], or put
the main emphasis on firewalls [8]. There are also many research papers and
reports that address specific topics related to firewalls. You may refer to the
proceedings of any conference or workshop related to network security. As
part of the Centre for Education and Research on Information Assurance and
Security (CERIAS) at Purdue University, many resources related to Internet
firewalls are available. In addition, there is the Firewalls Mailing List that is

3. Namely, the hosts that are part of the firewall.



54 Proxy Servers and Firewalls

archived at several sites.* Finally, a more or less comprehensive list of
firewall products is available at http://www.thegild.com/firewall.

3.2 Static packet filtering

Generally speaking, a router is a dedicated internetworking device that runs
a specialized operating system (e.g., Cisco IOS) to transfer packets between
two or more physically separated network segments.’ It operates at the
network layer of the OSI reference model, or the Internet layer of the
Internet model. As such, it routes IP packets by consulting tables that
indicate the best path the IP packet should take to reach its destination. More
accurately, a router receives an IP packet on one network interface and
forwards it on another network interface, possibly in the direction of the
destination IP address that is included in the IP header. If the router knows
on which interface to forward the packet, it does so. Otherwise, it is not able
to route the packet. In this case, the router usually returns the packet using
an ICMP destination unreachable message to the source IP address.

Because every IP packet contains a source and a destination IP address,
packets originating from or destined to a particular host or network
segment can be selectively filtered by a packet-filtering device. Also,
transport layer protocols such as TCP or UDP add a source and destination
port number to each segment or datagram as part of their header
information. These port numbers indicate which processes on each host
finally will receive the data encapsulated within the IP packet. This
information can also be used to selectively filter IP packets. In the late
1980s and early 1990s, several scientific papers and articles were published
that described how to use packet filters to provide access control services for
corporate intranets [9-13]. Some of these papers actually described the use
of packet filtering in early firewall configurations at AT&T [10] and Digital
Equipment Corporation (DEC) [11].°

Today, most commercial router products (e.g., Cisco routers) provide the
capability to screen IP packets and filter them in accordance with a set of
packet filter rules. Such routers are sometimes also called screening routers. In

E.g., http://lists.gnac.net/firewalls.
5. Despite the fact that most routers in use today are able to route multiple protocols, we mainly focus on IP
routing in this book. This is because IP is by far the most dominant network layer protocol used in the Internet.
6. The DEC firewall was designed and implemented by Marcus J. Ranum. The same firewall was also used to
secure the Web site of the White House at http://www.whitehouse.gov.



3.2 Static packet filtering 58

general, screening routers can provide an efficient mechanism to control the
type of network traffic that can enter or leave a particular network segment.
By controlling the type of network traffic that can enter or leave a network
segment, they can also control the types of services that may exist. Services
that eventually compromise the security of the network segment can be
effectively and efficiently restricted.

As mentioned above, IP packets are usually filtered based on information
that is found in packet headers:

» Protocol numbers;

» Source and destination IP addresses;

» Source and destination port numbers;
» TCP connection flags;

» Some other options.

Note that routers do not normally look at (TCP or UDP) port numbers
when making routing decisions, but do for filtering purposes, knowing that
the source and destination port number allow selective filtering based on the
service being used. For example, a Telnet server usually listens at port 23,
whereas an SMTP server usually listens at port 25. Selective filtering by port
numbers also takes advantage of how ports are assigned. Although a Telnet
server uses port 23 most of the time, a Telnet client port number is not fixed,
but assigned dynamically. In a UNIX or Linux environment, for example, the
client port is assigned a number greater than 1,023. Also note that screening
routers can filter on any of the TCP connection flags, but that the SYN and
ACK flags are the most frequently used flags for packet filtering (this is
because these two flags collectively determine whether a TCP connection is
established inbound or outbound). For example, all TCP segments except the
first one (i.e., the TCP connection request message) carry an ACK flag.

Unfortunately, not all screening routers are able to filter IP packets based
on all header fields mentioned earlier. For example, some screening routers
are not able to consider the source port of an IP packet. This can make
packet-filtering rules more complex and can even open up holes in the entire
packet filtering scheme. There is, for example, such a problem if a site wishes
to allow both inbound and outbound SMTP traffic for e-mail. Remember
that in the case of a client establishing an SMTP connection to a server, the
client’s source port number would be randomly chosen at or above 1,024,
and the destination port number would be 25, the port at which an SMTP
server conventionally resides. Consequently, the SMTP server would return



56

Proxy Servers and Firewalls

IP packets with a source port number of 25 and a destination port number
equal to the port number randomly chosen by the client. In this scenario, a
packet filter must be configured to allow destination and source port
numbers greater than 1,023 to pass through in either direction. If the router
is able to filter on the source port, it can block incoming SMTP traffic with a
destination port greater than 1,023 and a source port other than 25. Without
this ability, however, the router cannot consider the source port and must
therefore permit incoming SMTP traffic with a destination port greater than
1,023 and an arbitrary source port number. Consequently, legitimate but
malicious users could conceivably make use of this situation and run servers
at ports greater than 1,023 to circumvent the service access policy enforced
by the packet filter. For example, a Telnet server that normally listens at port
23 could be told to listen at port 7,777 instead. Users on the Internet could
then use a normal Telnet client to connect to this internal server even if the
packet filter blocks destination port 23.

In addition to the header information itemized above, some packet-
filtering devices also allow the administrator to specify packet-filtering rules
based on which network interface an IP packet actually entered and on
which interface the packet is destined to leave. Being able to specify filters on
both inbound and outbound interfaces allows an administrator significant
control over where the packet filter appears in the overall scheme and is very
convenient for useful filtering on screening routers with more than two
network interfaces. Unfortunately, for efficiency reasons, not all screening
routers can filter on both inbound and outbound interfaces, and many
routers implement packet filtering only on the outbound interface. Note that
for outgoing IP packets, the filter rules can be applied when the router
consults its routing tables to determine the interface to send the packet out
on. At this point, however, the router no longer knows on which interface
the packet entered; it has lost some important information.

Screening routers filter IP packets according to a set of packet filter rules.
More accurately, when an IP packet arrives at a network interface of a
filtering device, the packet headers are parsed. Each packet-filtering rule is
applied to the packet in the order in which the packet-filtering rules are
stored. If a rule blocks the transmission or reception of a packet, the packet is
not allowed. If a rule allows the transmission or reception of a packet, the
packet is allowed to proceed. If a packet does not satisfy any rule, it is either
allowed or blocked depending on the firewall’s ““default”” rule. In general, it
is good practice to have a rule that will block IP packets that don’t match any
other rules.

Packet filters are stateless, meaning that each IP packet must be
examined in isolation from what has happened in the past (and what will



3.3 Dynamic packet filtering or stateful inspection 87

happen in the future), forcing the filter to make a decision to permit or deny
each packet individually based upon the packet-filtering rules. Routers are
generally optimized to shuffle TP packets quickly. The packet filters of a
screening router take time and can defeat the overall optimization efforts. In
fact, packet filtering is a slow operation that may considerably reduce routing
throughput. Logging of IP packets also occurs without regard to past history,
and enabling logging results in another hit on performance. More often than
not, packet filtering and logging are not enabled in routers primarily to
achieve better throughput and performance. If enabled and used, packet
filtering and logging are typically installed at the interface between different
administrative domains.

3.3 Dynamic packet filtering or stateful inspection

There is an increasingly large number of application protocols that make use
of multiple connections and/or dynamically assigned port numbers. This
makes it difficult to specify and set up appropriate packet-filtering rules. For
example, FTP uses two TCP connections to transfer a file (i.e., an FTP control
connection and an FTP data connection). Imagine a situation in which an
intranet client wishes to establish an outbound FTP session to a server located
on the Internet. According to the FTP specification, the client would first
establish an outbound TCP connection from a randomly chosen port X to the
FTP control port (i.e., port 21) of the server. Among other things, this
connection would be used by the client to inform the server on which port Y
it is going to listen for the incoming FTP data connection (using the PORT
command of the FTP protocol). The server, in turn, would establish an
inbound TCP connection from its FTP data port (i.e., port 20) to port Y on
the client side. A file requested by the client would then be transferred on
this TCP connection. Now imagine what happens if Internet connectivity is
mediated through a screening router and the corresponding packet-filtering
rules are configured in a restrictive way (meaning that inbound TCP
connections are not allowed). In this situation, the second TCP connection
(i.e., the FTP data connection) would be denied and the corresponding file
transfer would not be able to take place. The underlying problem is that,
due to the stateless nature of (static) packet filtering, it is not possible to
recognize that the second TCP connection (i.e., the FTP data connection)
logically belongs to the first TCP connection (i.e., the FTP control
connection), and that the two connections collectively represent an FTP
session. Consequently, the screening router simply sees an Internet server
trying to establish an inbound TCP connection from server port 20 to client



58

Proxy Servers and Firewalls

port Y. According to its policy and configuration, it is very likely that the
screening router refuses this TCP connection. In the case of FTP, the
problem can easily be solved using passive mode FTP.” There are, however,
other application protocols that are more complex and for which a simple
solution does not exist.

Remember that packet filters are stateless, meaning that each IP packet is
examined in isolation from what has happened in the past, forcing the
packet filter to make a decision to permit or deny each packet based upon the
packet-filtering rules. Contrary to that, the notion and technology of dynamic
packet filtering or stateful inspection was created by the developers of the
FireWall-1 at CheckPoint Software Technologies, Ltd.® In short, stateful
inspection refers to a technology in which a packet filter maintains state
information about past IP packets to make more intelligent decisions about
the legitimity of present and future IP packets. For example, a dynamic
packet filter compares the first packet in a connection to the packet-filtering
rules, and if the packet is permitted, state information is added to an internal
database. One might think of this state information as representing an
internal virtual circuit in the stateful inspection device on top of the
transport layer association. This information permits subsequent packets in
that association to pass quickly through the stateful inspection device. If the
rules for a specific type of service require examining application data, then
part of each packet must still be examined. As an example, FireWall-1 can
react to seeing an FTP PORT command by creating a dynamic rule
permitting a connection back from the FTP server to that particular port
number on the client’s side.

Dynamic packet filtering or stateful inspection provides much better
possibilities to define packet-filtering rules and to filter IP packets (as
compared to static packet filtering). In many situations, it makes sense to use
stateful inspection to improve the capabilities (and security) of packet-
filtering devices.

3.4 Circuit-level gateways

The idea of an application gateway is fundamentally different from a
packet filter (i.e., a static or dynamic packet filter). This is equally true for

Using passive mode FTP, the FTP data connection is also established outbound.

The technology is covered by U.S. patent No. 5,606,668 that specifies a “‘system for securing inbound and
outbound data packet flow in a computer network.” The patent was granted to Checkpoint Software
Technologies, Ltd., on February 25, 1997.



3.4 Circuit-level gateways 59

circuit-level gateways. In essence, a circuit-level gateway is a proxy server
for TCP? (i.e., it is typically located and running on the firewall of a corporate
intranet and it relays TCP connections).

More specifically, a circuit-level gateway does the following three things
when a client wants to establish a TCP connection to a server:

1. TItreceives the TCP connection establishment request that is sent out
by the client (because the client is configured to make use of the
circuit-level gateway).

2. It authenticates and possibly authorizes the client (or the user
behind the client).

3. It establishes a second TCP connection to the server on the client’s
behalf.

After having successfully established the second TCP connection, the
circuit-level gateway simply relays application data forth and back.!® As
such, it does not interfere with the data stream. This differentiates a circuit-
level gateway from an application-level gateway or proxy server that is able
to understand the application protocol employed by the two endpoints of the
connection. What this basically means is that the circuit-level gateway need
not understand the application protocol in wuse. This simplifies the
implementation and deployment of circuit-level gateways considerably.

The most important circuit-level gateway in use today is SOCKS.!! It is a
circuit-level gateway that follows a customized client approach, meaning
that it requires customizations and modifications to the client software (i.e.,
no change is usually required to user procedures). More precisely, SOCKS
requires modifications either to the client software or the TCP/IP stack to
accommodate the interception at the firewall between the client and the
server:

10.

This statement is not completely true, as contemporary circuit-level gateways also are able to handle UDP-
based application protocols. This will be explained later in this chapter.

Note that the only difference between a circuit-level gateway and a simple port forwarding mechanism is that
with a circuit-level gateway, the client must be aware of the intermediate system, whereas in the case of a
simple port-forwarding mechanism, the client need not be aware and may be completely oblivious of the
existence of the intermediary. Also, a circuit-level gateway is generic, and any TCP connection can be handled
by the same gateway (if enabled in its configuration). Contrary to that, a port-forwarding mechanism is usually
specific to a given service, meaning that all qualifying TCP segments are forwarded to a specific port of a server.

11. http://www.socks.nec.com



60

Proxy Servers and Firewalls

» A client that has been modified to handle SOCKS interactions is
commonly referred to as a ‘‘socksified” client. Following this
terminology, most Web browsers (e.g., Microsoft’s Internet Explorer)
are socksified clients and issue SOCKS calls that are transparent to
their users.

» Socksified TCP/IP stacks are also available, which may obviate the
need for client software modifications.

In either case, the SOCKS server resides at the firewall and interacts
with the socksified clients or TCP/IP stacks. There are no further changes
required for the servers that may reside either on the Internet or intranet.

SOCKS and the original SOCKS protocol for communications between a
socksified client and a SOCKS server was originally proposed in [14]. The
original implementation consisted of two components: a SOCKS server or
daemon (i.e., sockd) and a SOCKS library that can be used to replace regular
Sockets calls in the client software. More specifically, the application
developer has to recompile and link the client software with a few
preprocessor directives to intercept and replace the regular TCP/IP
networking Sockets calls with their SOCKS counterparts, as summarized
in Table 3.1. This is sufficiently easy to be used on a large scale.

The design goal of SOCKS was to provide a general framework for
TCP/IP applications to securely use (i.e., traverse) a firewall. Complying
with these design goals, SOCKS is independent of any supported TCP/IP
application protocol. When a socksified intranet client requires access to a
server on the Internet, it must first open a TCP connection to the
appropriate port on the SOCKS server residing on the firewall system
(the SOCKS server conventionally listens at TCP port 1080). If this first
TCP connection is established, the client uses the SOCKS protocol to
have a second TCP connection to the server be established by the SOCKS
server.

Table 3.1 Sockets Calls and SOCKS Counterparts

SOCKS Call Socket Call
Rconnect connect
Rbind bind
Rlisten listen
Rselect select
Rgetsockname getsockname
Raccept accept




3.4 Circuit-level gateways 61

The SOCKS protocol used between the socksified client (i.e., the client
using the SOCKS library routines) and the SOCKS server basically consists of
the following two commands:

» The CONNECT command takes as arguments the IP address and port
number of the server, as well as a username. It basically requests that
the SOCKS server establishes a TCP connection to the given IP
address and port number.

» The BIND command takes as arguments the client IP address and a
username. It is used only in protocols that require the client to accept
connections back from the server. As we saw previously, FTP is an
example of such a protocol (since it requires the client to accept a
data connection from the server).

In either case, the username is a string passed from the requesting client
to the SOCKS server for the purposes of authentication, authorization, and
accounting.

After having received a request (i.e., a CONNECT or BIND command),
the SOCKS server evaluates the information provided by the client. The
evaluation is performed against a sockd configuration file that may include a
ruleset. Each rule in the set either permits or denies communications with
one or several systems. In either case, the SOCKS server sends a reply back to
the client. Among other things, the reply includes information indicating
whether the request was successful. Once the requested second connection
is established, the SOCKS server simply relays data back and forth between
the client and the server (without looking into or interpreting the data
stream).

The original SOCKS implementation was refined into a SOCKS package
and a protocol that is widely deployed and commonly referred to as SOCKS
Protocol version 4, or SOCKS V4. After the successful deployment of SOCKS
V4, the IETF chartered an Authenticated Firewall Traversal (AFT) WG to
“start with the SOCKS system described’” in [14], and to ““specify a protocol
to address the issue of application-layer support for firewall traversal” in
1994.'% The major result of the IETF AFT WG was the specification of the
SOCKS protocol version 5 (SOCKS V5) in March 1996 [15]."> As such,

12. http://www.ietf.org/html.charters/aft-charter.html
13. At the time of this writing, an updated version of the SOCKS Protocol version 5 specification is published as an
Internet draft.



62

Proxy Servers and Firewalls

SOCKS V5 has been submitted to the Internet standards track as a proposed
standard. It is possible and very likely that the protocol will become an
Internet Standard.

As compared with SOCKS V4, SOCKS V5 provides some additional
features. These features are related to user authentication, communication
security, UDP support, and extended addressing schemes:

In SOCKS V4, user authentication is relatively simple and straight-
forward. It basically consists of a username that is sent from the
socksified client to the SOCKS server as part of the CONNECT or
BIND method. In addition to this simple authentication scheme,
SOCKS VS5 supports a handshake between the client and the SOCKS
server for authentication method negotiation. The first message is
sent by the client to the SOCKS server. It declares the authentication
methods the client is currently able to support. The second message is
sent from the SOCKS server back to the client. It selects a particular
authentication method according to the SOCKS server’s security
policy. If none of the methods declared by the client meet the
security requirements of the SOCKS server, communications are
dropped. After the authentication method has been negotiated, the
client and SOCKS server start the authentication process using the
chosen method. Two authentication methods are specified in
corresponding RFC documents: password-based authentication in
[16] and Kerberos V5 GSS-API authentication in [17]. The approach
for use of GSS-API in SOCKS V5 is to authenticate the client and
server by successfully establishing a security context. This context
can then be used to protect messages that are subsequently
exchanged. Prior to use of GSS-API primitives, the client and server
should be locally authenticated and have established default GSS-API
credentials.

Depending on the underlying authentication methods implemented
via GSS-AP]I, a client can negotiate with the SOCKS server about the
security of subsequent messages. In the case of Kerberos V5, either
integrity and/or confidentiality services are provided for the rest of
messages, including the client’s requests, the SOCKS server’s replies,
and all application data. Note that this feature is particularly well
suited for use by reverse proxy servers, because it supports data
encryption between clients (on the Internet) and the SOCKS server.

SOCKS V4 is only able to handle TCP applications. Unfortunately, an
increasingly large number of TCP/IP applications are making use of



3.4 Circuit-level gateways 63

UDP (e.g., applications that make use of real-time and/or multicast
communications). Against this background, the SOCKS protocol has
been extended to additionally provide support for UDP. More
specifically, a new method, called UDP ASSOCIATE, has been
added to the SOCKS V5 protocol specification [15]. The UDP
ASSOCIATE request sent from the client to the SOCKS server is
used to establish an association within the UDP relay process to
handle UDP datagrams. According to this association, the SOCKS
server relays UDP datagrams to the requesting client. Obviously, this
approach is conceptually similar to stateful inspection or dynamic
packet filtering as discussed above. The UDP association terminates
when the TCP connection that the UDP ASSOCIATE request arrived
on terminates. As a result, the SOCKS VS5 library can now be used to
socksify both TCP- and UDP-based applications.

» Finally, SOCKS V5 supports DNS names and IP version 6 addresses in
addition to normal IP version 4 addresses.

Because of their fundamental differences, the SOCKS V5 protocol
specification does not require any provision for supporting the SOCKS V4
protocol. However, it is a simple matter of implementation to enable SOCKS
V5 servers to communicate with V5 and V4 clients. In fact, most SOCKS V5
servers that are available today provide backward compatibility.

In summary, a circuit-level gateway (e.g., a SOCKS server) provides an
interesting technology and possibility to have applications and application
protocols securely traverse a firewall. A clear advantage of circuit-level
gateways is their generality, meaning that a circuit-level gateway can act as a
proxy server for any application (not just one). Circuit-level gateways are
particularly useful for applications for which application-level gateways (i.e.,
proxy servers) do not exist or are conceptually hard to design and
implement. For example, an application protocol that is hard to deal with
(using packet-filtering technologies and application-level gateways) is the
Internet Inter-ORB Protocol (IIOP) that is used in environments and
applications that conform to the Common Object Request Broker Archi-
tecture (CORBA). The difficulty stems from the fact that the IIOP makes use
of UDP and dynamically assigned port numbers. Against this background, a
group of vendors have jointly specified the use of SOCKS V5 to have IIOP
communications securely traverse a firewall.'* This is a technology that we

14. http://www.socks.nec.com/corba-firewall.pdf



64

Proxy Servers and Firewalls

will likely see deployed in the future. The generality of circuit-level
gateways, however, also comes with some disadvantages. For example, a
SOCKS server is not able to scan application data for specific commands or
executable content (e.g., Java applets or ActiveX controls). Consequently, if
a configuration must be optimized for maximum security, the use of
application-level gateways is still the preferred option.

3.5 Application-level gateways

Contrary to a circuit-level gateway, an application-level gateway serves only
one application protocol. To clarify this point, imagine the situation in which
the packet filter of a firewall blocks all inbound Telnet and FTP sessions,
unless the sessions are terminated by a bastion host (that is also part of the
firewall configuration). The bastion host, in turn, hosts an application
gateway that operates at the transport (circuit) or application layer. The
situation is slightly different in either case:

» If the application gateway operates at the transport layer, a circuit-
level gateway (e.g., a SOCKS server) must be running on the bastion
host.

» If the application gateway operates at the application layer, there are
basically two application-level gateways or proxy servers that must
be running on the bastion host (i.e., one proxy server for Telnet and
another proxy server for FTP).

In either case, a user who wishes to connect inbound to an intranet
server must have his or her Telnet or FTP client connect to the application
gateway running on the bastion host. The application gateway, in turn,
would then authenticate and authorize the user. In the positive case, it
would set up a secondary TCP connection to the intranet server and
relay application data between the two TCP connections back and forth. If
the application gateway were a circuit-level gateway, it would not look into
the application data it relays. If, however, the application gateway were an
application-level gateway, it would look into and fully control the
application data stream. In an attempt to make it hard to retrieve internal
files from systems located on the Internet, an application-level gateway
could, for example, be configured in a way that permits the use of the FTP
PUT command but denies the use of the FTP GET command. Similarly, an
application-level gateway for HTTP could be configured to screen data traffic



3.8 Application-level gateways 65

and filter out Java applets and ActiveX controls to protect internal hosts from
mobile code and software-driven attacks (this kind of filtering is not possible
in the case of circuit-level gateways).

From the client’s point of view, interaction with an application gateway
requires some additional steps. This is equally true for circuit-level gateways
and application-level gateways. In the case of a SOCKS server the additional
steps are hidden from the user and the corresponding client software must be
modified to be aware of the SOCKS server (i.e., it must be “‘socksified”’).

In general, the use of an application gateway requires some customiza-
tion and modification of either the user procedures or the client software:

» The customization and modification of the user procedures is a
simple and straightforward approach to implementing application
gateway support. Following this approach, the user first establishes a
connection to the application gateway and then requests the
establishment of a second connection to the server. An important
benefit is that the customization of the user procedures, in general,
requires no impact to client software. Given the extensive presence of
client software, this approach is attractive for implementing Internet
access (in fact, the first Internet firewalls worked that way). The main
disadvantage of this approach is that the user has to be trained for an
extra step to log on to the proxy server.

» The other approach to implementing application gateway support is
to customize and modify the client software (similar to the process of
““socksifying’” a client). The main advantage of this approach is that it
may provide transparency to users in accessing the Internet and
traversing firewall systems. The main disadvantage, however, is that
it obviously requires modifications to client software. This is not
always possible and seldom easy to accomplish.

Note that both approaches have severe disadvantages, as they require
customization and modification of either the user procedures or the client
software. Which approach is simpler depends on the application, its
availability in source code, and the organization that makes use of the
application.'’

Against this background, it would be nice to have a firewall that
maintains all software modifications required for application gateway

15. For example, in large organizations, training users may be harder than modifying an application.



66

Proxy Servers and Firewalls

support in the firewall. In this case, neither the user procedures nor the
client software would have to be customized or modified accordingly. This
idea has led to the development of transparent firewalls.

In short, a transparent firewall is configured to listen on the network
segment of the firewall for outgoing TCP connections and to autonomously
relay these connections on the client’s behalf. Note, however, that
transparency is not necessarily provided in both directions. As a matter of
fact, inbound transparency is seldom required or used, as users must usually
authenticate themselves at a firewall system. Also note that a transparent
firewall still requires that all messages to and from the Internet be
transmitted through the firewall. However, the existence of the firewall
system can be hidden entirely from both the user and the client software.

Let us have a look at an example in which a Telnet client tries to connect
to a Telnet server making use of a proxy server. The procedure to establish a
Telnet session can be summarized as follows:

1. The Telnet client acting on behalf of the user requests a TCP
connection to the Telnet proxy server running on the firewall (at an
arbitrary but fixed port number). If a screening router is put in front
of the firewall, the connection must be authorized according to the
corresponding packet-filtering rules.

2. The Telnet proxy server, in turn, may check the source IP address of
the client machine. The connection request can be accepted or
rejected according to some authorization and access control
information.

3. In addition to the source IP address check of the client, the user may
also need to authenticate himself or herself (e.g., using a username
and password).

4. If the user is properly authenticated, the client must provide the
address or name of the Telnet server (again, this step can be and will
be made transparent to the user).

5. The Telnet proxy server then establishes a second TCP connection to
the Telnet server. Again, this connection request may have to pass
through a screening router. In this case, the packet-filtering rules of
the screening router must be configured so that they let packets
through that are originated by a firewall system.

6. After having established the second TCP connection to the Telnet
server, the Telnet proxy server relays Telnet data between the two



3.8 Application-level gateways 67

connections. In addition, the Telnet proxy server also may scan the
data traffic for specific Telnet commands and filter them out. Also,
the Telnet proxy server may log all command executions to build an
audit trail.

To properly authenticate the user, the Telnet proxy server must have
access to some authentication and authorization information. This is
generally true for any application-level gateway or proxy server that
provides support for user-level authentication (not just Telnet proxy
servers). In general, there are several user authentication and authorization
schemes that an application-level gateway or proxy server could implement
and use. In either case, the application-level gateway or proxy server must
have access to some reference information it can use to verify whether the
authentication information provided by a client (or user) is valid (e.g., a one-
way hash value of a user password or the public key certificate of a user). The
reference information can be stored either locally or remotely. If many
firewall systems and network access servers (NAS) are put in place, the
second approach is preferable since it makes it possible to aggregate security
information at a single point. Typically, a standardized protocol is used to
retrieve the reference information from a centralized security server. There
are currently two competing protocol proposals:

» Livingston Enterprises, Inc., has developed and implemented a
protocol called Remote Authentication Dial-In User Service
(RADIUS) [18].!° In short, the RADIUS protocol can be used to
carry authentication, authorization, and configuration information
between an NAS that desires to authenticate its users and a shared
authentication or security server. Livingston Enterprises, Inc., also
has made publicly and freely available corresponding RADIUS
security server software. A companion protocol that can be used to
carry accounting information between an NAS and a shared
authentication or security server is specified in [19].

» The terminal access controller access control system (TACACS) was
originally developed by BBN under ARPA funding in the early 1980s.
It was used to authenticate users to terminal access computers on the
ARPANET. Later, Cisco Systems developed, implemented, and
deployed a family of protocols that are based on TACACS [20].

16. As of this writing, the IETF has made the RADIUS protocol a draft standard.



68

Proxy Servers and Firewalls

While the TACACS and extended TACACS (XTACACS) protocols are
no longer in use, TACACS+ is a protocol in current use. Refer to the
Cisco manuals for the corresponding TACACS, XTACACS, and
TACACS+ commands.

Both protocols (RADIUS and the protocol family for the TACACS
derivates) are widely supported by firewall systems and network access
Servers.

After having successfully authenticated and authorized the client (or
user), a proxy server sets up a secondary TCP connection to the requested
application server. From the user’s point of view, a secondary authentication
may now be required and actually take place, since the application server
may want to authenticate and authorize the client (or user) as well. This
secondary authentication step is beyond the scope of the firewall. If the user
is successfully authenticated and authorized, the application server usually
starts serving the request.

In summary, application-level gateways and proxy servers provide a
sophisticated and advanced technology to secure TCP-based applications and
application protocols for the WWW. Commercial firewalls typically come
along with proxy server support for Telnet, FTP, SMTP, HTTP, and many
other TCP-based applications and application protocols. There are advan-
tages and disadvantages that should be kept in mind when discussing the
suitability of application-level gateways and proxy servers. The advantages
are related to user authentication and authorization, application protocol
control, logging, and accounting. Contrary to that, the disadvantages are
related to the fact that a proxy server must be built specifically for
each application protocol, that application gateways (i.e., circuit-level and
application-level gateways) are notoriously bad at handling UDP-based
application protocols, and that it is necessary to know the application
protocol in order to code and set up a proxy server.

3.6 Firewall configurations

A firewall configuration is an arrangement of packet filters and application
gateways. In theory, there are many possibilities for combining these
components. In practice, however, there are only three firewall configura-
tions that are deployed: dual-homed firewall, screened host firewall, and
screened subnet firewall. These configurations are overviewed and briefly
discussed next.



3.6 Firewall configurations 69

3.6.1 Dual-homed firewall

In TCP/IP parlance, the term multihomed host refers to a host with multiple
network interfaces. Usually, each network interface is connected to a
separate network segment, and the multihomed host can typically forward
or route IP packets between these network segments. If, however, IP
forwarding and IP routing are disabled on the host, it provides isolation
between the network segments and may be used in a firewall configuration
accordingly. To disable IP routing is usually a relatively simple and
straightforward task. It basically means to turn off any program that
might be advertising the host as a router. To disable IP forwarding is
considerably more difficult and may require modifying the operating
system kernel. Fortunately, a number of operating system vendors provide a
simple possibility to modify the kernel and to turn off IP forwarding
accordingly.

A dual-homed host is a special case of a multihomed host, namely, one
that has exactly two network interfaces. Again, IP routing and IP forwarding
can be disabled to provide isolation between the two network segments the
dual-homed host physically interconnects.

As illustrated in Figure 3.1, a simple dual-homed firewall configuration
may consist of a dual-homed host that serves as a bastion host. IP routing
and IP forwarding are disabled so that IP packets can no longer be
routed or forwarded between the two network interfaces. Consequently,
data can only be transferred from one network interface to the other if there
is an application-level gateway (or proxy) process to do it. Note that
Figure 3.1 is simplified in the sense that the routers are not shown (they are
assumed to be part of the intranet and Internet environments). In contrast,
Figure 3.2 shows a more detailed configuration of a dual-homed firewall.
In this configuration, the bastion host’s external network interface is

Bastion host

Figure 3.1 A simple dual-homed firewall configuration.



70

Proxy Servers and Firewalls

!

Outer network segment

Bastion host

Inner network segment

Figure 3.2 A more realistic configuration of a dual-homed firewall.

connected to an outer network segment and the bastion host’s internal
network interface is connected to an inner network segment:'”

The outer network segment is connected with a screening router to
the Internet.'® The aim of the screening router is to ensure that any
outbound IP packet carries the IP address of the bastion host as its
source IP address, and that any inbound IP packet carries the IP
address of the bastion host as its destination IP address. The packet-
filtering rules must be configured accordingly.

Similarly, the inner network segment hosts a screening router that is
interconnected to the intranet. The aim of this screening router is to
make sure that any outbound IP packet carries the IP address of the
bastion host as its destination IP address, and that any inbound IP
packet carries the IP address of the bastion host as its source IP
address. Again, the packet-filtering rules must be configured
accordingly.

In the firewall configuration illustrated in Figure 3.2, the outer network
segment can be used to host server systems that are intended to be publicly
accessible, such as public Web servers, DNS servers with public information,

17. In some literature, the outer network segment is labeled red and the inner network segment is labeled blue to
refer to their different sensitivity and security status.

18. Consequently, this router serves as an access router.



3.6 Firewall configurations 71

and access servers for other networks (e.g., modem pools for the PSTN or
ISDN). This is common practice to make server systems and corresponding
services publicly available and accessible from the Internet.

It is fairly obvious that the bastion host (and the application gateways
running on it) can be replicated an arbitrary number of times in a dual-
homed firewall configuration (e.g., to improve performance). The resulting
configuration is sometimes also called a parallel dual-homed firewall. It may
consist of several bastion hosts that are all connected to the same inner and
outer network segments.

The dual-homed firewall is a simple and highly secure firewall
configuration. The security originates from the fact that all data must pass
an application gateway to get from one network interface of the bastion host
to the other. There is no possibility of bypassing the bastion host or its
application gateways. There are, however, also several disadvantages that
are important in practice, and that should be considered with care
accordingly:

» Performance is a problem because the bastion host may become a
bottleneck (note that all data must pass the bastion host).

» The bastion host represents a single point of failure. If it crashes,
Internet connectivity is also lost.

» There are some practical problems related to TCP/IP application
protocols with no proxy support (e.g., proprietary protocols). In this
case, the dual-homed firewall configuration turns out to be rather
inflexible, and this inflexibility could turn out to be disadvantageous.

In summary, the dual-homed firewall configuration is secure but rather
inflexible. Contrary to this, the screened host and screened subnet firewall
configurations discussed next are more flexible but less secure. Conse-
quently, where throughput and flexibility are important or required, these
configurations may be the preferable choices.

3.6.2 Screened host firewall

As illustrated in Figure 3.3, a screened host firewall configuration basically
consists of a screening router that interconnects the intranet to the Internet,
and a bastion host that is logically situated on the intranet. Contrary to the
bastion host of a dual-homed firewall, the bastion host of a screened host
firewall is single-homed, meaning that it has only one network interface



72

Proxy Servers and Firewalls

Internet

Bastion host | |Router|

Intranet

Figure 3.3 A simple configuration of a screened host firewall.

that interconnects it with an internal network segment (i.e., a network
segment that is part of the intranet).

In a screened host firewall configuration, the screening router has to
make sure that IP packets destined for intranet systems are first sent to an
appropriate application gateway on the bastion host. If a specific TCP/IP
application protocol is assumed to be secure, the screening router also can be
configured to bypass the bastion host and to send the corresponding IP
packets directly to the destination system. For very obvious reasons, this
possibly increases flexibility but also decreases security.

Similar to the dual-homed firewall configuration, the bastion host and
its application gateways can also be replicated an arbitrary number of times
in the screened host firewall configuration. In fact, this is likely to be the
preferred configuration, as different application gateways are typically
running on different hosts (all of them representing bastion hosts for the
applications they serve as a gateway).

In summary, the screened host firewall configuration is very simple and
straightforward. As compared with the dual-homed firewall configuration, it
is more flexible but also potentially less secure. This is because the bastion
host can be bypassed (i.e., by configuring the screening router that
interconnects the intranet and the Internet accordingly). Due to the dual-
homed nature of the bastion host, this is not possible in the dual-homed
firewall configuration.

3.6.3 Screened subnet firewall

As illustrated in Figure 3.4, a screened subnet firewall configuration basically
consists of a subnet that is screened by a single-homed bastion host. The
outer screening router has to make sure that all (or at least most) data pass



3.6 Firewall configurations 73

Internet

|Bastion hostl |Router|

Screened subnet

Router

Figure 3.4 A screened subnet firewall configuration.

an application gateway running on a bastion host. Consequently, the
bastion host screens the subnet located between the outer and the inner
screening router, and this screened subnet is sometimes also referred to as a
demilitarized zone (DMZ).'? Similar to the other configurations discussed thus
far, the bastion host can be replicated an arbitrary number of times in a
screened subnet firewall configuration. Each bastion host may provide a
specific service. In fact, the resulting separation of servers and services is an
interesting feature from a security point of view. A screened subnet firewall
configuration with multiple bastion hosts is illustrated in Figure 3.5.

Note that the two screening routers provide redundancy in that an
attacker would have to subvert both routers in order to access intranet
systems. Also note that the bastion host and the additional servers on the
DMZ could be set up to be the only systems seen from the Internet; no other
system name would be known or used in a DNS database that is made
accessible to the outside world.

A screened subnet firewall configuration can be made more flexible by
permitting certain services to pass around the bastion host and the
corresponding application gateways. As an alternative to passing services
directly between the intranet and Internet, one may also place the systems
that need these services directly on the screened subnet. In fact, this would
be the preferred configuration but is not always possible (e.g., if the
placement of the systems on the screened subnet represents an unacceptable

19. The DMZ is named after the strip of no-man’s-land between North and South Korea.



74 Proxy Servers and Firewalls

Internet

|Bastion hostl |Router| |Bastion hostl

|Bastion hostl |Router|

Figure 3.5 A screened subnet firewall configuration with multiple bastion hosts.

tradeoff between security and functionality). Again, we refer to the
importance of policy.

In summary, the screened subnet firewall configuration is flexible and
provides a reasonable level of security. As such, it has been the firewall
configuration of choice for many network security professionals in the past.

3.7 Network address translation

Many contemporary firewall systems provide support for what is known as
network address translation (NAT). NAT basically means that an organization
can use private IP addresses on its own network (i.e., the intranet) to
increase its address space.? If IP packets are sent to the Internet, the private
IP addresses are dynamically converted to IP addresses that have been
officially assigned to the organization and that are routable on the Internet.
Similarly, if IP packets are received from the Internet, the officially assigned
IP addresses are converted back to the appropriate private IP addresses.

20. In IP version 4, IP addresses are 32 bits long. The resulting address space is 2*2. Due to the popularity and wide
deployment of Internet technologies, this address space is almost used (i.e., almost all IP addresses have been
officially assigned to organizations. Against this background, the use of private IP addresses (i.e., IP addresses
that are not routable on the Internet) provides a viable solution to overcome the lack of officially assigned IP
addresses. IP version 6 will use IP addresses that are 128 bits long. The resulting address space is 223,
Consequently, there should be enough IP addresses for all future purposes.



3.7 Network address translation 78

Based on the private IP addresses, the IP packets are then routed on the
intranet to their appropriate destination.

In RFC 1918 and BCP 5 [21], three blocks of the IP address space are
reserved for private use. The blocks are summarized in Table 3.2.

A firewall that supports NAT works similarly to a transparent firewall. IP
packets with external destination IP addresses are routed to the network
segment that hosts the firewall configuration. The firewall, in turn, grabs the
IP packets that request a TCP connection establishment and establishes the
connection on behalf of the client. In addition, a firewall that supports NAT
also substitutes the private IP addresses (used on the intranet) with officially
assigned IP addresses (used on the Internet). Obviously, this substitution is
reversed in the opposite direction.

For example, let’s look at a company that is officially assigned an IP class
C address. For its internal use, the company uses IP addresses from the 20-bit
block itemized in Table 3.2 (i.e., 172.16.0.0 to 172.31.255.255). As
illustrated in Figure 3.6, an FTP client (on the left) with a private IP address
C wants to retrieve a file from a destination FTP server with IP address S
located somewhere on the Internet (on the right). Therefore, the client
makes use of a transparent firewall with IP address F (in the middle). The
transparent firewall, in turn, actively supports NAT.

In this situation, the following steps are performed to establish a
connection between the FTP client and the FTP server:

1. The FTP client sends out a TCP connection establishment request
message to port 21 of the destination FTP server (the notation c@C
> 21@S indicates that a message is sent out from source IP address C
and port number c to destination IP address S and port number 21).
Because the FTP server is not directly reachable by the client,

Table 3.2 Private IP Address Blocks (According to [21])

10.0.0.0-10.255.255.255 24-bit block
172.16.0.0-172.31.255.255 20-bit block
192.168.0.0-192.168.255.255 16-bit block
Firewall
c@C > 21@S f@F > 21@S
FTP client | T Proxy [ "|  FTPserver
T 21@S > c@C " 21@S > f@F

Figure 3.6 A firewall supporting NAT.



76 Proxy Servers and Firewalls

the message is forwarded to the network segment that hosts the
firewall and its proxy servers.

2. The FTP proxy server of the firewall grabs the initial TCP connection
establishment request message, authenticates and authorizes the
user, and eventually forwards the message to the destination FTP
server. In this case, however, the message source is initialized with
an IP address F and a randomly chosen and dynamically assigned
port number (the port number is specific for this particular FTP
session).

3. The destination FTP server receives the TCP connection establish-
ment request message and eventually establishes a TCP connection
to the FTP proxy server. Any FTP command that is sent out by the
FTP client is then automatically forwarded by the FTP proxy server
to the destination FTP server.

In the opposite direction, FTP application data are sent from the
destination FTP server to the proxy server of the firewall, and from the proxy
server to the FTP client. Note that in this direction, the source IP address is
usually not substituted by the proxy server, and that officially assigned IP
addresses may appear on the intranet accordingly (in the source IP address
fields).

Transparent application gateways provide the most recent and most
sophisticated firewall technology available today. Whenever possible, this
technology should be the preferred one to use, as it does not require user
procedures or client software to be modified. Unfortunately, most firewalls
that implement this technology must also use NAT. The IETF has debated
NAT for some time and there is considerable feeling that it is an unfortunate
technical approach that is justified only when an organization is unable to
acquire adequate IP address space. Because of its increased address space, the
use and wide deployment of IP version 6 (IPv6) will make NAT obsolete in
the future.?!

3.8 Configuring the browser

First of all, it is important to note that most parts of a firewall configuration
are transparent and ““invisible’” to the Web user and his or her browser. For

21. One may also argue in the opposite direction, namely, that NAT will make IPv6 obsolete.



3.8 Configuring the browser 17

example, packet filters and screening routers operate on the IP packets
originated or received by particular hosts without having the corresponding
users be able to influence the packet filtering behavior. Similarly, the use of a
transparent firewall doesn’t have to be configured on the browser side (this is
the idea of transparency). Also, a user doesn’t have to care whether a firewall
is configured as dual-homed or screened subnet. (i.e., the browser
configuration is the same in either case).

If, however, a firewall is not transparent and uses application gateways
(i.e., a circuit-level gateway or application-level gateways), a Web user
locating behind that firewall must configure his or her browser to properly
interact with the application gateways that are running on the bastion
host(s). This is true for any traffic destined to external IP addresses. The
browser must know how to reach these addresses. For internal IP addresses,
there is usually no need to use application gateways and configure browsers
accordingly.

Using Microsoft’s Internet Explorer, for example, the user can configure
the browser using the local-area network (LAN) Settings panel as illustrated
in Figure 3.7.22 According to the screenshot of this figure, there are basically
three possibilities to configure the browser:

1. Have the browser automatically detect the settings.
2. Use an automatic configuration script.

3. Manually configure the use of one (or several) proxy server(s).

In practice, the second and third possibilities are most often used. In fact,
it is always possible to manually configure the use of one (or several) proxy
server(s). If only one proxy server is used (e.g., an HTTP proxy server), its use
can be directly configured in the lower section of the ‘“Local Area Network
(LAN) Settings’” panel.

If, however, a proxy server must be specified for more than one
application protocol, the ‘“Advanced’” button may be pressed to open the
Proxy Settings panel, as illustrated in Figure 3.8. In this panel, the use of
proxy servers can be configured for HTTP, HTTPS (named ‘‘Secure” in
Microsoft’s Internet Explorer), FTP, Gopher, and SOCKS. Obviously, it is
possible to specify only one proxy server and to activate the checkbox
entitled ““Use the same proxy server for all protocols.” It is also possible to

22. The Local Area Network (LAN) Settings panel can be found in the Connections tab of the Tools > Internet
Options ... menu.



18

Proxy Servers and Firewalls

Local Area Network (LAN) Settings | 2] X]

—Automatic configuration

Autormatic configuration may override manual settings. To ensure the use of
manual settings, disable automatic configuration.

[T Automatically detect settings

I~ Use automatic configuration script

Address

—Proxy server

¥ Use a proxy server

Address: Port: ] Advanced... |

[T Bypass proxy server for local addresses

[ ok | concsl |

Figure 3.1 Configuring Microsoft’s Internet Explorer using the Local Area Network (LAN)
Settings panel. (© 2002 Microsoft Corporation.)

specify Internet addresses that may be contacted directly (i.e., without
having to go through a proxy server). These addresses are named
“Exception”” in Microsoft’s Internet Explorer.

The manual configuration of proxy servers does not scale in intranet
environments. In this situation, it is usually more convenient to use an
automatic configuration script. Automatic configuration scripts were
originally introduced by Netscape Communications under the term proxy
auto-config (PAC) files. Consequently, a PAC file is typically named
proxy.pac. In short, a PAC file is written in a scripting language (e.g.,
JavaScript) and provides the following function:

function FindProxyForURL(url, host)
{
}

There are two arguments for a FindProxyForURL function call: url
specifies the full URL being accessed, and host specifies the hostname
extracted from the URL (this is only for convenience, since it is the same
string as between :// and the first : or / after that). The FindProxyForURL
function returns a string describing the configuration. If the return string is



3.8 Configuring the browser 79

Proxy Settings [ 2] ]

—3ervers
wl,  Type Proxy address to use Port

HTTP: |

Secure:

Gopher:

|
ETP: |
|
Socks: |

" Use the same proxy server for all protocals

—Exceptions
el Do not use proxy server for addresses beginning with:

=
=

Use semicolons (; ) to separate entries.

[ o | cancel |

Figure 3.8 Configuring the use of proxy servers in Microsoft’s Internet Explorer. (© 2002
Microsoft Corporation.)

null, no proxies should be used. The string can contain any number of the
following building blocks, separated by a semicolon:

» DIRECT—In this case, connections should be made directly, without
using any proxies;

» PROXY host:port—In this case, the specified proxy server should be
used;

» SOCKS host:port—In this case, the specified SOCKS server should be
used.

The use of a PAC file is very convenient to have all browsers in an
intranet environment use the same proxy settings.

As illustrated in Figure 3.9, the Opera browser can also be configured to
make use of proxy servers or PAC files using the Proxy servers panel. Similar



80 Proxy Servers and Firewalls

Proxy servers

—Proxy servers

I IHITP | Pat [
rHTTPS | Pot |
| RERE | Port I—‘
" Gopher | Port ﬁ
[ WAIS | Pot [

[ Do notuse proxy on the addresses below

[T Use automatic proxy configuration

OK I Cancel Help

Figures 3.9 Configuring the use of proxy servers in the Proxy servers panel of Opera.
(© 2002 Opera Software.)

to Microsoft’s Internet Explorer, proxy servers can be specified for HTTP,
HTTPS, FTP, and Gopher. Unlike Microsoft’s Internet Explorer, however,
Opera supports WAIS but does not support SOCKS. This may change in the
tuture, because WALIS is seldom used.

3.9 Conclusions

Today, many companies and organizations want to have interconnectivity
between their internal computer systems and the global Internet. As such,
they interconnect their intranets to the Internet and try to control access
using firewalls. Depending on the basic components and configuration,



3.9 Conclusions 81

there are several grades of firewall protection that can be obtained. For
example, there is no security by allowing unrestricted access between a
corporate intranet and the Internet. Next, packet filters can be added to
obtain a certain level of data traffic interception, and stateful inspection
technologies may help to make more intelligent decisions whether to
forward particular IP packets. Also, the firewall can include both packet
filters and application gateways. A variety of circuit-level and application-
level gateways can be added along with different strengths of the
corresponding authentication mechanisms. Similarly, the firewall can also
reside on a secure operating system,?*> thereby improving the underlying
security for the firewall code and files. Finally, the firewall can provide
support for Internet layer security protocols to build secure tunnels between
firewall-protected sites and to build virtual private networks (VPNs)
accordingly. Similarly, intrusion detection systems may be used to detect
illegitimate attempts to access the intranet environment. Last but not least, a
company can also deny any access to and from the Internet, thereby
ensuring isolation and complete security from the outside world. Although
this is seemingly a theoretical option in these euphoric times for Internet
access, it is still the only prudent approach to follow for certain highly secure
environments.

Firewall systems are a fact of life on the Internet today. If properly
implemented and deployed, they provide efficient and effective access
control services for corporate intranets. Consequently, more and more
network managers are setting up firewalls as their first line of defense against
outside attacks. Nevertheless, the firewall technology has remained an
emotional topic within the Internet community. Let’s briefly summarize the
main concerns:

» Firewall advocates consider firewalls as important additional safe-
guards, because they aggregate security functions in a single point,
simplifying installation, configuration, and management.

» Firewall detractors are usually concerned about the difficulty of using
firewalls, requiring multiple logins and other out-of-band mechan-
isms, as well as their interference with the usability and vitality of the
Internet as a whole. They claim that firewalls foster a false sense of
security, leading to lax security within the firewall perimeter.

23. In this context, a secure operating system refers to an operating system that is hardened and minimized,
meaning that anything not urgently required for the firewall’s functionality is stripped off.



82

Proxy Servers and Firewalls

At minimum, firewall advocates and detractors both agree that firewalls
are a powerful tool for network security, but that they aren’t by any means a
panacea or a magic bullet for all network and Internet-related security
problems. For example, any firewall can be circumvented by tunneling
unauthorized application protocols in authorized ones. For example, if a
firewall is configured to deny POP traffic between an intranet client and an
Internet server, it is always possible to tunnel POP traffic inside HTTP. In fact,
there are many tools that support this kind of tunneling and make it
transparent to the user. Consequently, firewalls should not be regarded as a
substitute for careful security management within a corporate intranet. Also,
a firewall is useful only if it handles all traffic to and from the Internet. This is
not always the case, since many sites permit dial-in access to modems that
are located at various points throughout the site. This is a potential back door
and could negate all the protection provided by the firewall. A much better
method for handling modems is to concentrate them into a modem pool. In
essence, a modem pool consists of several modems connected to a terminal
server. A dial-in user connects to the terminal server and then connects from
there to other internal hosts. Some terminal servers provide security features
that can restrict connections to specific hosts, or require users to authenticate
themselves. Obviously, RADIUS, TACACS, and TACACS+ can again be used
to secure communications between the terminal server and a centralized
security server. Sometimes, authorized users also wish to have a dial-out
capability. These users, however, need to recognize the vulnerabilities they
may be creating if they are careless with modem access. A dial-out capability
may easily become a dial-in capability if proper precautions are not taken. In
general, dial-in and dial-out capabilities should be considered in the design
of a firewall and incorporated into it. Forcing outside users to go through the
strong authentication of the firewall should be reflected in the firewall
policy.

In summary, firewall systems provide basic access control services for
corporate intranets. A pair of historical analogies can help us better
understand the role of firewall technology for the current Internet [22]:

» Our Stone-Age predecessors lived in caves, each inhabited by a
tamily whose members knew each other quite well. They could use
this knowledge to identify and authenticate one another. Someone
wanting to enter the cave would have to be introduced by a family
member trusted by the others. History of human society has shown
that this security model is too simple to work on a large scale. As
families grew in size and started to interact with one another, it was
no longer possible for all family members to know all other members



3.9 Conclusions 83

of the community, or even to reliably remember all persons who had
ever been introduced to them.

» In the Middle Ages, our predecessors lived in castles and villages
surrounded by town walls. The inhabitants were acquainted with
each other, but they did not trust each other. Instead, identification
and authentication, as well as authorization and access control, were
centralized at a front gate. Anyone who wanted to enter the castle or
village had to pass the front gate and was thoroughly checked there.
Those who managed to pass the gate were implicitly trusted by all
inhabitants. But human history has shown that this security model
doesn’t work either. For one thing, town walls don’t protect against
malicious insider attacks; for another, town walls and front gates
don’t scale easily (since they are so massive). Many remnants of
medieval town walls bear witness to this lack of scalability.

Using the above analogies, the Internet has just entered the Middle Ages.
The simple security model of the Stone Age still works for single hosts and
local area networks. But it no longer works for wide area networks in general
and the Internet in particular. As a first—and let’s hope intermediate—step,
firewalls have been erected at the Internet gateways. Because they are
capable of selectively dropping IP packets, firewalls also restrict the
connectivity of the Internet as a whole. The Internet’s firewalls are thus
comparable to the town walls and front gates of the Middle Ages. Screening
routers correspond to general-purpose gates, while application gateways
correspond to more specialized gates. Today, we don’t see town walls
anymore. Instead, countries issue passports to their citizens to use worldwide
for identification and authentication. It is possible and very likely that the
Internet will experience a similar development and that trusted parties will
issue locally or globally accepted certificates for Internet principals. These
certificates could then be used to provide complementary security services,
such as authentication, data confidentiality and integrity, and nonrepudia-
tion services. The tool to achieve this goal is cryptography. The following
chapters elaborate on cryptography and its use providing security services on
the WWW.

References

[1] Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech
House, 2002.



84

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Proxy Servers and Firewalls

Fraser, B., ““Site Security Handbook,”” Request for Comments 2196, September
1997.

Shirey, R., “Internet Security Glossary,” Request for Comments 2828, May
2000.

Cheswick, W. R., and S. M. Bellovin, Firewalls and Internet Security: Repelling the
Wily Hacker, Reading, MA: Addison-Wesley, 1994.

Cheswick, W. R., and S. M. Bellovin, ““Network Firewalls,”” IEEE Communica-
tions Magazine, September 1994, pp. 50-57.

Siyan, K., and C. Hare, Internet Firewalls and Network Security, Indianapolis, IN:
New Riders Publishing, 1995.

Zwicky, E. D., et al., Building Internet Firewalls, 2nd Edition, Sebastopol, CA:
O’Reilly & Associates, 2000.

Garfinkel, S., and G. Spafford, Practical UNIX and Internet Security, 2nd ed.,
Sebastopol, CA: O’Reilly & Associates, 1996.

Mogul, J. C., ““Simple and Flexible Datagram Access Controls for UNIX-Based
Gateways,”” Proceedings of the USENIX Summer Conference, 1989, pp. 203-221.

Cheswick, B., “The Design of a Secure Internet Gateway,” Proceedings of the
USENIX Summer Conference, 1990, pp. 233-237.

Ranum, M. J., “A Network Firewall,”” Proceedings of World Conference on System
Administration Security, July 1992, pp. 153-163.

Chapman, D. B., “Network (In)Security Through IP Packet Filtering,”
Proceedings of USENIX UNIX Security Symposium III, September 1992,
pp. 63-76.

Avolio, F., and M. J. Ranum, ‘“A Network Perimeter with Secure Internet
Access,” Proceedings of the Internet Society Symposium on Network and Distributed
System Security, February 1994, pp. 109-119.

Koblas, D., and M. R. Koblas, “SOCKS,”" Proceedings of USENIX UNIX Security IIT
Symposium, September 1992, pp. 77-82.

Leech, M., et al., “SOCKS Protocol Version 5,” Request for Comments 1928,
March 1996.

Leech, M., ““Username/Password Authentication for SOCKS V5,” Request for
Comments 1929, March 1996.

McMahon, P., ““GSS-API Authentication Method for SOCKS Version 5,”
Request for Comments 1961, June 1996.

Rigney, C., et al., “Remote Authentication Dial-In User Service (RADIUS),”
Request for Comments 2138, April 1997.

Rigney, C., “RADIUS Accounting,” Request for Comments 2139, April
1997.



3.9 Conclusions 85

[20] Finseth, C., ““An Access Control Protocol, Sometimes Called TACACS,”
Request for Comments 1492, July 1993.

[21] Rekhter, Y., et al., ““Address Allocation for Private Internets,”” Request for
Comments 1918 (BCP 5), February 1996.

[22] Oppliger, R., “Internet Kiosk: Internet Security Enters the Middle Ages,”” IEEE
Computer, Vol. 28, October 1995, pp. 100-101.



Team-F[y®



41
42
43
44
45
46

41

48
49

CHAPTER

Contents

Introduction

Cryptographic hash functions
Secret key cryptography
Public key cryptography
Digital envelopes

Protection of cryptographic
keys

Generation of pseudorandom
bit sequences

Legal Issues
Notation

References

Cryptographic Techniques

In this chapter, we introduce and briefly overview some
cryptographic techniques that are used in the rest of the book.
More specifically, we introduce the topic in Section 4.1; address
cryptographic hash functions, secret key cryptography, and
public key cryptography in Sections 4.2, 4.3, and 4.4, res-
pectively; address digital envelopes in Section 4.5; and elaborate
on some techniques to protect private keys and generate
pseudorandom bit sequences in Sections 4.6 and 4.7. Finally, we
discuss some legal issues that surround the use of cryptography
in Section 4.8, and introduce a notation that can be used to
describe cryptographic protocols and applications in Section 4.9.

Note that this chapter is far too short to provide a
comprehensive overview about all cryptographic techniques
that are relevant for WWW security. For this purpose, you must
read one (or several) of the many books on cryptography that
are available today. Among these books, I particularly
recommend [1-7].

4.1 Introduction

According to [4], the term cryptography refers to the study of
mathematical techniques related to various aspects of informa-
tion security such as confidentiality, data integrity, entity
authentication, and data origin authentication. It is commonly
agreed that cryptography is a major enabling technology for
network security, and that cryptographic algorithms and
protocols are essential building blocks:

87



88

Cryptographic Techniques

A cryptographic algorithm is an algorithm defined by a sequence of
steps precisely specifying the actions required to calculate a specific
function of the input data. Most of the time, cryptographic algorithms
are used to achieve specific security objectives.

A cryptographic protocol is a distributed algorithm defined by a
sequence of steps precisely specifying the actions required of two or
more entities.

Cryptographic algorithms and protocols are being studied in both theory
and practice. The aim is to design and come up with algorithms and protocols
that are both secure and practical. Note, however, that there are at least two
basic approaches to discussing the security of cryptographic algorithms and
protocols:

Computational security measures the computational effort required to
break a specific cryptographic algorithm or protocol. An algorithm or
protocol is said to be computationally secure if the best method for
breaking it requires at least n operations, where 7 is some specified,
usually very large, number. The problem is that no known practical
algorithm or protocol can be proven to be secure under this
definition. In practice, an algorithm or protocol is called computation-
ally secure if the best known method of breaking it requires an
unreasonably large amount of computational resources (e.g., time or
memory). Another approach is to provide evidence of computational
security by reducing the security of an algorithm or protocol to some
well-studied problem that is thought to be difficult. For example, it
may be possible to prove that an algorithm or protocol is secure if a
given integer cannot be factored or a discrete logarithm cannot be
computed. Algorithms and protocols of this type are sometimes called
provably secure, but it must be understood that this approach only
provides a proof of security relative to the difficulty of solving
another problem, not an absolute proof of security.

Unconditional security measures the security of a cryptographic
algorithm or protocol when there is no upper bound placed on the
amount of computational resources an adversary has at hand.
Consequently, an algorithm or protocol is called unconditionally
secure if it cannot be broken, even with infinite time and memory.

The computational security of a cryptographic algorithm or protocol can
be studied from the point of view of computational complexity, whereas



4.1 Introduction 89

the unconditional security cannot be studied from this point of view because
computational resources are allowed to be infinite. The appropriate frame-
work in which unconditional security must be studied is probability theory,
and the application thereof in communication or information theory [8, 9].

Unconditional security is preferable from a security point of view,
because it protects against an infinitely powerful adversary. Unfortunately,
unconditional security is generally hard and expensive to achieve in many
cases, and sometimes impossible. For example, theory shows that uncondi-
tionally secure encryption systems use very long keys, making them
unsuitable for most practical applications. Similarly, there is no such thing
as an unconditionally secure public key cryptosystem. The best we can
achieve is provable security, in the sense that the problem of breaking the
public key cryptosystem is arguably at least as difficult as solving a complex
mathematical problem. Consequently, one is satisfied with computational
security, given some reasonable assumptions about the computational
power of a potential adversary. But keep in mind that the security that a
computationally secure cryptographic algorithm or protocol may provide is,
for the most part, based on the perceived difficulty of a mathematical
problem, such as the factorization problem or the discrete logarithm problem
in the case of public key cryptography. Confidence in the security of such
systems may be high because the problems are public and many minds have
attempted to attack them. However, the vulnerability remains that a new
insight or computing technology may defeat this type of cryptography. There
are at least two recent developments that provide some evidence for this
intrinsic vulnerability:

» In 1994, Peter W. Shor proposed randomized polynomial-time
algorithms for computing discrete logarithms and factoring integers
on a quantum computer, a computational device based on quantum
mechanical principles [10, 11]. Note that it is not known how to
build a quantum computer of a useful size; it is not even known to be
possible at all.

» Alsoin 1994, Len M. Adleman! demonstrated the feasibility of using
tools from molecular biology to solve an instance of the directed
Hamiltonian path problem, which is known to be hard? [12].
The problem instance was encoded in molecules of deoxyribonucleic
acid (DNA), and the steps of the computation were performed with

1. Len M. Adleman is a coinventor of the Rivest, Shamir, and Adleman (RSA) cryptosystem.
2. According to theoretical computer science, the directed Hamiltonian path problem is NP-complete.



90

Cryptographic Techniques

standard protocols and enzymes. Adleman notes that while the
currently available fastest supercomputers can execute approxi-
mately 10'? operations per second, it is plausible for DNA computers
to execute 10?° or even more operations per second. Moreover, a
DNA computer would be far more energy efficient than existing
supercomputers. Similar to the quantum computer, it is not clear at
present whether it is feasible to actually build a DNA computer with
such performance characteristics. Further information on DNA
computing can be found in the relevant literature (e.g., [13]).

Should either quantum computers or DNA computers ever become
practical, they would have a tremendous impact on modern cryptography.
In fact, many cryptographic algorithms and protocols that are computation-
ally secure would be rendered worthless. This is particularly true for
algorithms and protocols that make use of public key cryptography.

Cryptographic algorithms and protocols are used to establish secured
channels (both in terms of authenticity and integrity, as well as
confidentiality). Note the subtle difference between a secure channel and a
secured channel. Certain channels are assumed to be secure, including
trusted couriers and personal contacts between communicating parties,
whereas other channels may be secured by physical or cryptographic
techniques. Physical security may be established through physical means,
such as dedicated communication links with corresponding access controls
put in place, or the use of quantum cryptography. Contrary to conventional
cryptography, the security of quantum cryptography does not rely upon any
complexity-theoretic or probability-theoretic assumptions, but is based on
the Heisenberg uncertainty principle of quantum physics [14]. As such,
quantum cryptography is immune to advances in computing power and
human cleverness. In the future, quantum cryptography may provide a
physical alternative to unconditionally secure cryptographic algorithms and
protocols. In the meantime, however, conventional and computationally
secure cryptographic algorithms and protocols are much easier to use and
deploy. Consequently, we are not going to delve into the details of quantum
cryptography in this book. You may refer to any book mentioned above to
get information about quantum cryptography.

4.2 Cryptographic hash functions

According to [4], a hash function is a function / that has, as a minimum, the
following two properties:



4.2 Cryptographic hash functions 91

1. /4 maps an input x of arbitrary finite bit-length, to an output /(x) of
fixed bit-length (compression);

2. Given & and x, h(x) is easy to compute (ease of computation).

In addition, hash functions that are relevant for cryptographic
applications (i.e., cryptographic hash functions) may fulfill one or several
of the following requirements:

» A hash function is preimage resistant (or one-way) if for essentially all
prespecified outputs, it is computationally infeasible to find any input
that hashes to that output, that is, to find any preimage x' such that
h(xy =y when given any y for which a corresponding input is not
known.

» A hash function is second-preimage resistant (or weak collision resistant) it
it is computationally infeasible to find any second input that has the
same output as any specified input, that is, given x, to find a second
preimage x'#x such that h(x) = h(x).

» A hash function is collision resistant (or strong collision resistant) if it is
computationally infeasible to find any distinct inputs x, ¥ that have
the same output, that is, such that a(x) = h(X).

In the literature, the term one-way hash function (OWHEF) or weak one-way
hash function is often used to refer to a hash function that is both preimage
resistant and second-preimage resistant, whereas the term collision resistant
hash function (CRHF) or strong one-way hash function is often used to refer to a
hash function that is collision resistant. Furthermore, the term cryptographic
hash function is used to refer to either of them (i.e., OWHF or CRHF).

Mainly because of their efficiency, cryptographic hash functions are of
central importance for cryptographic algorithms and protocols. For
example, cryptographic hash functions can be used to compute and verify
digests for arbitrary messages. In this context, these functions may also be
called message digest algorithms, and in this book we use both terms
synonymously and interchangeably. Also, keyed cryptographic hash
functions can be used to compute and verify message authentication codes
(MACs). Almost all cryptographic security protocols make use of MACs in
one way or another.

All definitions given above are not precise in a mathematically strong
sense, because they do not resolve what the terms easy and computationally
infeasible actually mean. Nevertheless, we want to use these definitions in
this book. It is important to note that the existence of OWHF (or even



92

Cryptographic Techniques

CRHEF) is still an unproven assumption and that, until today, no function
has been shown to be preimage resistant (i.e., one-way) in a mathematically
pure sense. Obviously, a sufficiently large domain prohibiting an exhaustive
search is a necessary but not sufficient condition for a function to be
preimage resistant.

Most cryptographic hash functions in use today work on similar
principles. They have a basic compression function that is iteratively applied
on subsequent blocks of data (until the result of the last compression step is
taken as output value). Examples of cryptographic hash functions include
MD2 [15], MD4 [16], MD5 [17], and the Secure Hash Algorithm 1 (SHA-1)
[18]. MD2, MD4, and MD5 produce 128-bit hash values, whereas SHA-1
produces 160-bit hash values. RIPEMD is another example of an iterative
cryptographic hash function. It was developed as part of a European research
project and is basically a variation of MD4. RIPEMD-160 is a strengthened
version of RIPEMD producing another 160-bit hash value [19]. As of this
writing, MD5 and SHA-1 are by far the most widely used and deployed
cryptographic hash functions. Due to some recent results in the cryptanalysis
of MDS5, SHA-1 is the preferred choice.

4.3 Secret key cryptography

Secret key cryptography refers to traditional cryptography. In this kind of
cryptography, a secret key is established and shared between communicat-
ing peers, and the key is used to encrypt and decrypt messages on either
side. Because of its symmetry, secret key cryptography is often referred to as
symmetric cryptography.

The use of a secret key cryptosystem is overviewed in Figure 4.1. We
assume that A on the left side wants to send a confidential message to B on
the right side. A therefore shares a secret key K with B. This key may be
preconfigured manually or distributed by a key distribution center (KDC).
Note that during its initial distribution, K must be secured in terms of
confidentiality, integrity, and authenticity. This is usually done by having
the KDC encrypt K with secret keys that it shares with A and B, respectively.
With regard to the use of cryptographic algorithms and protocols, persons are
usually represented by cryptographic implementations (e.g., crypto boxes
that implement an encryption algorithm). In Figure 4.1, the cryptographic
implementations are represented with black rectangles that are located in
front of A or B, respectively. A (or the crypto box representing A) encrypts a
plaintext message P by applying an encryption function E and the key K,
and sends the resulting ciphertext C = Ex(P) to B. On the other side, B



4.3 Secret key cryptography 93

Figure 4.1 The use of a secret key cryptosystem.

(or the crypto box representing B) decrypts C by applying the decryption
function D and the key K. B therefore computes Dy (C) = Dg(Ex(P)) = P, and
recovers the plaintext P accordingly.

Secret key cryptography has been in use for many years in a variety of
forms. Two basic categories of secret key cryptosystems are block ciphers and
stream ciphers. As their names suggest, block ciphers operate on blocks of
data (e.g., 64 bits), whereas stream ciphers operate on data one bit or byte at
a time.

Examples of secret key cryptosystems that are in widespread use are
itemized in Table 4.1 and overviewed next.> Again, you may refer to [4] for a
comprehensive description of the cryptosystems and the corresponding
encryption and decryption algorithms.

4.3.1 DES

The Data Encryption Standard (DES) is still the most well-known and widely
deployed secret key cryptosystem in use today. It was originally designed by
a group of researchers at IBM and published as Federal Information
Processing Standard (FIPS) 46 in 1977 [20]. As such, it has been used for the
encryption of unclassified information by the U.S. National Institute of
Standards and Technology (NIST) for almost a quarter of a century.

3.

Note that the cryptosystems are randomly chosen and that there are many others one may discuss.



94

Cryptographic Techniques

Table 4.1 Secret Key Cryptosystems

Algorithm Name Main Mode Effective Key Length

DES Block cipher 56 bits

Triple-DES (3DES) Block cipher 112 or 168 bits

IDEA Block cipher 128 bits

SAFER Block cipher 64 or 128 bits

Blowfish Block cipher Variable from 1 up to 448 bits
CAST-128 Block cipher 128 bits

RC2, RC5, and RC6 Block cipher Variable from 1 up to 2,048 bits
RC4 Stream cipher Variable from 1 up to 2,048 bits

DES operates as a block cipher with 64-bit blocks, 16 rounds, and a
variable key length up to 56 bits. In electronic code book (ECB) mode, DES
encrypts data in discrete blocks of 64 bits. To improve its cryptographical
strength, DES is often used in cipher block chaining (CBC) mode. In this
mode, the encryption of each block depends on the contents of the previous
one, preventing an interloper from tampering with the message by
rearranging the encrypted blocks. Furthermore, there are two modes that
can be used to turn DES into a stream cipher: cipher feedback (CFB) mode
and output feedback (OFB) mode.

DES’s 56-bit effective key length was sufficiently secure during its first
two decades of operation, but it is far too short today. In fact, it has become
feasible to perform an exhaustive key search in a reasonable amount of
time.*

4.3.2 Triple-DES

One way to improve the cryptographical strength of a secret key
cryptosystem with limited key length (e.g., DES) is to apply the algorithm
multiple times. Applying the algorithm twice does not improve the situation,
because of the existence of a specific cryptanalytical attack.” Consequently,
at least three applications are necessary for a security improvement, and the
threefold application of DES is called Triple-DES (3DES). It can be used with
two or three different keys, and the resulting secret key cryptosystems are

http : //www.eff.org/descracker

The attack is called meet-in-the-middle attack. It requires that a known plaintext is encrypted with all possible
keys, and that a corresponding ciphertext is decrypted with all possible keys. If an encryption result matches a
decryption result in the middle, a key candidate is found (that’s why the attack is called meet-in-the-middle
attack). The key candidate must be verified using another plaintext-ciphertext pair.



4.3 Secret key cryptography 98

usually called two-key 3DES or three-key 3DES, respectively. Many
contemporary applications use 3DES as a replacement for DES. Note,
however, that the use of 3DES is not very efficient (in fact, it is
approximately three times slower than DES), and that there are many
real-time applications that require faster encryption algorithms.

4.3.3 IDEA

The International Data Encryption Algorithm (IDEA) was developed by
Xuejia Lai and James Massey in the early 1990s at the ETH Zurich,
Switzerland [21]. IDEA is a 64-bit block cipher that uses a 128-bit key. The
algorithm is patented and must be licensed for commercial use.

4.3.4 SAFER

After having developed IDEA, James Massey proposed SAFER K-64 and
SAFER K-128. As their names suggest, SAFER K-64 uses a 64-bit key [22],
whereas SAFER K-128 uses a proprietary key schedule algorithm that is able
to accommodate 128-bit keys. Furthermore, SAFER K-64 uses 6 rounds,
whereas SAFER K-128 recommends 10 rounds (12 maximum).

4.3.5 Blowfish

The Blowfish algorithm was developed by Bruce Schneier [23]. It is a DES-
like encryption algorithm that can be used as a block cipher with 64-bit
blocks, 16 rounds, and variable key lengths up to 448 bits.

4.3.6 CAST-128

The term CAST refers to a design procedure for a family of DES-like
encryption algorithms with variable key size and numbers of rounds. In RFC
2144, a 128-bit CAST encryption algorithm is specified [24]. This algorithm
is called CAST-128 and is used and widely deployed for Internet
applications.

4.3.1 RC2, RC4, RC5, and RC6

RC2, RC4, RC5, and RC6 are secret key cryptosystems with variable key
lengths that were designed by Ronald L. Rivest for RSA Security, Inc.:



96 Cryptographic Techniques

» RC2is ablock cipher (block size is 64 bits), designed as a replacement
for DES.

» RC4 is a stream cipher.

» RCS5 is a block cipher that is configurable with regard to word length
and number of rounds (in addition to the ley length).

» RC6 is a recent proposal to improve RC5.

The RC2 and RC4 algorithms were originally protected by trade secrets,
but were disassembled, reverse-engineered, and anonymously posted to a
Usenet newsgroup in 1996 and 1994, respectively.

4.3.8 AES

In November 2001, the U.S. NIST officially released FIPS 197 that specifies an
Advanced Encryption Standard (AES) to replace DES [25]. The AES emerged
from a proposal called Rijndael that originated from Belgium. You may refer
to http://www.esat.kuleuven.ac.be/"rijmen/rijndael for more infor-
mation about the Rijndael algorithm. In addition, there is an official AES
home page® hosted by the U.S. NIST.

4.4 Public key cryptography

The idea of using one-way functions, which can only be inverted if a certain
secret (a so-called trapdoor) is known, has led to the invention of public key
cryptography or asymmetric cryptography [26].” Today, public key cryptography
is a battlefield for mathematicians and theoretical computer scientists. We
are not going to delve into the mathematical details. Instead, we address
public key cryptography from a practical point of view. From this point of
view, a public key cryptosystem is simply a cryptosystem in which a user
has a pair of mathematically related keys:

» A public key that can be published without doing any harm to the
system’s overall security;

6. http://csrc.nist.gov/encryption/aes
7. In spite of the fact that [26] is commonly used to refer to the invention of public key cryptography, similar
ideas were pursued by Ralph C. Merkle.



4.4 Public key cryptography 97

» A private key that is assumed to never leave the possession of its
owner.

For both the public and private keys, it must be computationally
infeasible for an outsider to derive one from the other.

The use of a public key cryptosystem is overviewed in Figure 4.2. Again,
A and B represent users, and the dark rectangles located in front of them
represent the implementations of the cryptographic algorithms and protocols
in use. A and B each has a key pair (k,, k;') and (kz, k5'). The private keys k!
and k3' must not be revealed to anyone, whereas the public keys k, and kj
must be publicly available in certified form. This basically means that they
are digitally signed by a certification authority as further addressed below.

If A wants to securely transfer a plaintext message P to B, she does the
following things:

1. She gets the public key of B (i.e., k) from an authentic source;

2. She encrypts P with kg;

3. She sends the resulting ciphertext C = E; (P) to B. (The term E, (P)
is abbreviated with Ez(P) in Figure 4.2).

On the other side, B uses his private key k' to successfully decrypt
pP= Dk;‘ (€)= Dk; (Eg, (P)).

= — = ————— ——

C=EyP)
S =Dy (M)

Figure 4.2 The use of a public key cryptosystem.



98

Cryptographic Techniques

A public key cryptosystem can be used not only to protect the
confidentiality of a message, but also to protect its authenticity and integrity.
If A wants to protect the authenticity and integrity of a message M, she
creates a digital signature S = Dy, (M) (the term Dy, (M) is abbreviated with
D4 (P) in Figure 4.2) for M and send it together with the message to B. Using
the public key of A (i.e., k4), B can now verify the digital signature.
Consequently, the value V in Figure 4.2 represents a boolean value (i.e.,
either the digital signature is correctly verified or it is not).

Digital signatures provide an electronic analog of handwritten signatures
for electronic documents, and—similar to handwritten signatures—digital
signatures must not be forgeable, recipients must be able to verify them, and
the signers must not be able to repudiate them later. However, a major
difference between a handwritten signature and a digital signature is that the
digital signature cannot be constant, but must be a function of the document
on which it appears. If this were not the case, a digital signature, because of
its electronic nature, could be copied and attached to arbitrary documents.

Arbitrated digital signature schemes are based on secret key crypto-
graphy. In such a scheme, a trusted third party (TTP) validates the signature
and forwards it on the signer’s behalf. Obviously, this does not scale and
requires a TTP that may become a bottleneck. Consequently, digital
signature schemes should come along without TTPs taking an active role.
They usually require the use of public key cryptography: Signed messages
are sent directly from signers to recipients. In essence, a digital signature
scheme consists of the following:

» A key-generation algorithm that randomly selects a public key pair;

» A signature algorithm that takes as input a message and a private key,
and that generates as output a digital signature for the message;

» A signature verification algorithm that takes as input a digital signature
and a public key, and that generates as output a message and an infor-
mation bit according to whether the signature is valid for the message.

A comprehensive overview and discussion of public-key-based digital
signature schemes are given in [27]. According to the OSI security
architecture, a digital signature refers to data appended to, or a cryptographic
transformation of, a data unit that allows a recipient of the data unit to prove
the source and integrity of the data unit and protect against forgery (e.g., by
the recipient). Consequently, there are two classes of digital signatures:

1. A digital signature giving message recovery refers to the situation in
which a cryptographic transformation is applied to a data unit.



4.4 Public key cryptography 99

In this case, the data is automatically recovered if the recipient
verifies the signature.

2. A digital signature with appendix refers to the situation in which some
cryptographically protected data is appended to the data unit. In
fact, the data represents a digital signature and can be decoupled
from the data unit that it signs.

The structure of a digital signature giving message recovery (a) and a
digital signature with appendix (b) are illustrated in Figure 4.3. A dark
rectangle represents an encrypted message part, whereas a white rectangle
represents a message part that is not encrypted.

In the case of digital signatures with appendix, the bandwidth limitation
of public key cryptography is unimportant because of the use of one-way
hash functions as auxiliaries. A can use her private key k;' to compute a
digital signature S = D, (M) or S = D,(h(M)) for message M. In the second
case, h refers to a cryptographic hash function that is applied to M before
generating the digital signature. In summary, A does the following things
when she computes and sends to B a digital signature with appendix for
message M:

1. She uses a cryptographic hash function % to compute A(M).

2. She encrypts /(M) with her private key k;'. The result represents
the digital signature that is appended to the message.

3. She transmits M and the digital signature to B.

On the other side, B does the following things to verify the signature:

1. He hashes the message M with the same cryptographic hash
function 4.

2. He decrypts the digital signature with A’s public key (i.e., k).

3. He verifies whether the two values match or not (the signature is
verified only if the values match).

—

Figure 4.3 The structure of a digital signature giving (a) message recovery and
(b) a digital signature with appendix.




100

Cryptographic Techniques

The use of public key cryptography considerably simplifies the problem
of key distribution. Note that in Figure 4.2, instead of providing A and B with
a unique session key that is protected in terms of confidentiality, integrity,
and authenticity, the trusted third party, which is now called a certification
authority (CA), has only to provide A and B with the public key of the
communicating peer. This key is public in nature and need not be protected
in terms of confidentiality. Nevertheless, the use of public key cryptography
requires an authentication framework that binds public keys to user
identities. As further addressed in Chapter 7, a public key certificate is a
certified proof of such binding vouched for by a TTP acting as a CA.
According to Webster’s Dictionary, the term certificate refers to a document
stating the truth. In the digital world we live in today, the term is mostly
used to refer to a collection of information to which a digital signature has
been affixed by some authority who is recognized and trusted by some
community of certificate users. According to this definition, there exist
various types of certificates that potentially may serve many purposes. In
either case, a certificate is a form of credentials. Examples of credentials used
in daily life are the driver’s license, Social Security card, and birth certificate.
Each of these credentials has some information on it identifying its owner
and some authorization stating that someone else has confirmed the
information.

A public key (or digital) certificate consists of three main elements:

1. A public key;

2. Certificate information that refers to the certificate owner’s identity,
such as his or her name;

3. One or more digital signatures.

The aim of the digital signature(s) on the certificate is to state that the
other certificate information has been attested to by some other person or
entity.

A digital certificate can be one of a number of different formats,
including, for example, PGP and ITU-T X.509. Again, this point is further
addressed in Chapter 7. In the following sections, we overview some public
key cryptosystems that are in widespread use today.

4.4.1 RSA

The most widely used public key cryptosystem is RSA, invented by Ronald L.
Rivest, Adi Shamir, and Len M. Adleman at MIT in 1977 [28]. The RSA



4.4 Public key cryptography 101

cryptosystem gets its security from the difficulty and intractability of the
integer factorization problem. What this means is that it is fairly simple to
multiply two large prime numbers, but difficult to compute the prime factors
of a large number. One of the nice properties of RSA is that the same
operation (i.e., exponentiation modulo a large number) can be used for both
message encryption and decryption, as well as digital signature generation
and verification. This is not the case for most other public key cryptosystems.

Mathematically spoken, the RSA public key cryptosystem requires two
distinct large primes (p and ¢q). Denote n=pq and ¢(n) =(p—1)(g—1),
where ¢ refers to Euler’s totient function. Each user chooses a large number
d > 1 such that ged(d, ¢(n)) = 1 and computes the number e (1 < e < ¢(n))
that satisfies the congruence ed =1 (mod ¢(n)). The numbers » and e
constitute the public key, whereas the remaining items p, g, ¢(n), and 4 form
the private information. More commonly, 4 is referred to as the private key.

Against this background, message encryption and decryption work as
follows:

» To encrypt, one raises the plaintext block P to the power of ¢ and
reduces modulo n: C = P° (mod n);

» To decrypt, one raises the ciphertext block C to the power of 4 and
reduces modulo #: P = ¢? (mod n).

Digital signature generation and verification uses the same algorithms
with different keys (the private key is used to digitally sign a message,
whereas the public key is used to verify the signature).

The RSA public key cryptosystem was protected by U.S. Patent No.
4,405,829 ““Cryptographic Communications System and Method,” issued
and granted to MIT on September 20, 1983. The patent expired on
September 20, 2000. Outside the U.S., the RSA public key cryptosystem
has never been protected by a patent.

4.4.2 Diffie-Hellman

In 1977, Whitfield Diffie and Martin Hellman proposed a key agreement
protocol that allows participants to agree on a key over an insecure public
channel [26]. The protocol gets its security from the difficulty and
intractability of the discrete logarithm problem in a finite group, such as
the multiplicative group of a finite field. What this basically means is that, in
general, the inverse operation of the exponentiation function is the
logarithm function. There are efficient algorithms for computing logarithms
in many groups; however, one does not know a polynomial-time algorithm



102

Cryptographic Techniques

for computing discrete logarithms in cyclic groups. For example, for a very
large prime number p and two smaller numbers y and g, it is computationally
intractable to find an x that satisfies the equation y = a* mod p.

Mathematically speaking, the Diffie-Hellman key agreement protocol
requires a finite cyclic group G of order |G| and generator a. To agree on a
session key, A and B secretly choose elements x, and xz in G. These elements
represent A and B’s private keys. A and B then compute their public keys
y4 =a* and yz = a**, and exchange these public keys over an unsecured
public channel. Finally, A and B compute Kuz=y5 =a** and
Kgs = yif = a+*®. Note that K,z = Kg,, so this value can actually be used
as a shared secret or session key to secure communications between A and B.
Also note that an eavesdropper seeing either or both of the public keys
cannot derive either private key nor the shared secret, because of the
difficulty of the discrete logarithm problem.

The Diffie-Hellman key agreement protocol was protected by U.S. Patent
No. 4,200,770, “‘Cryptographic Apparatus and Method,”” issued and granted
to Stanford University on April 29, 1980. The patent expired in 1997. Similar
to the RSA public key cryptosystem, the Diffie-Hellman key agreement
protocol has never been protected by a patent outside the United States.

4.4.3 ElGamal

In the early 1980s, Taher ElGamal adapted the Diffie-Hellman key
agreement protocol and came up with a public key cryptosystem that can
be used for data encryption and digital signatures [29, 30]. Contrary to RSA,
however, the ElGamal algorithms for data encryption and decryption are
different from the the ElGamal algorithms for digital signature generation
and verification. This is no serious drawback but is also not advantageous
from an implementor’s point of view.

Unlike many other public key cryptosystems, the ElGamal public key
cryptosystem has not been patented in the U.S.

4.4.4 DSS

In the early 1990s, the U.S. NIST published the Digital Signature Standard
(DSS) as a viable alternative to RSA signature schemes. The DSS refers to an
optimized modification of the ElGamal cryptosystem that can be used only
for digital signature generation and verification [31].

4.4.5 ECC

More recently, the use of elliptic curve cryptography (ECC) has attracted a
lot of interest. ECC-based public key cryptosystems obtain their security



4.5 Digital envelopes 103

from the difficulty and intractability of the elliptic curve discrete logarithm
problem (that uses groups of points on elliptic curves). As illustrated in
Table 4.2, a number of different types of cryptography have been defined
over elliptic curves. The resulting ECC-based public key cryptosystems seem
to be advantageous with regard to their security properties (meaning that
smaller keys are required for a similar level of security). As such, they are
particularly useful in situations where small keys are required (e.g., mobile
and wireless applications).

Unlike RSA, the general category of ECC is not patented. Individual
companies, however, have filed patents for specific efficiency or security
algorithms that are related to ECC. Most importantly, the Certicom
Corporation® holds several patents in this field.

4.5 Digital envelopes

There are advantages and disadvantages related to both secret and public key
cryptography. For example, the use of secret key cryptography is efficient
but does not scale well beyond a certain number of participants.
Furthermore, secret key cryptography does not provide the possibility to
digitally sign data. Conversely, public key cryptography solves the scalability
and digital signature problems but is highly inefficient in terms of
computational resources.

In an attempt to combine the advantages of secret and public key
cryptography, a hybrid scheme may be used. In short, a hybrid scheme
combines secret and public key cryptography to produce a scheme that is as
efficient and effective as possible. For example, the digital envelope is a hybrid
scheme that is heavily used in many applications. The aim of a digital
envelope is similar to a letter envelope: It must protect the confidentiality
of a message. As such, the digital envelope provides a digital analog for

Table 4.2 ECC-Based Public Key Cryptosystems

Acronym Text

ECDH Elliptic curve Diffie-Hellman key agreement

ECDSA Elliptic curve digital signature algorithm

ECES Elliptic curve encryption scheme

ECMQV Elliptic curve MQV key agreement

ECNRA Elliptic curve Nyberg-Rueppel signature scheme with appendix

8. http://www.certicom.com



104

Cryptographic Techniques

the letter envelope in the physical world (hopefully with better security
properties).

When A wants to send a confidential message M to B, she can generate a
digital envelope for M and send the envelope to B. On the sender’s side the
procedure is as follows:”

1. A retrieves B’s public key & from a directory service or from a local
repository.

2. A randomly generates a transaction key K from a secret key
cryptosystem.

3. A encrypts M with K (the result is {M}K).
4. A encrypts K with kg (the result is {K}kg).

5. A concatenates {M}K with {K}k;, and sends the result to B.

Upon receipt of {M}K and {K}kg, B uses his private key k3' to decrypt the
message. The two-step procedure is as follows:

1. B decrypts {K}ky with k3! (the result is K).

2. B decrypts {M}K with K (the result is M).

Obviously, an alternative procedure would be to directly encrypt the
message M with B’s public key kg, and to send the result, {M}ks, to B.
However, the use of a digital envelope has at least two advantages compared
with this simple scheme:

» First, the use of a digital envelope is more efficient. Remember from
our previous discussions that public key cryptography is computa-
tionally expensive compared with secret key cryptography. Conse-
quently, encrypting a message with a public key requires more
computational resources than encrypting a message with a secret
key. The longer the message, the more efficient and advantageous
the use of secret key cryptography.

» Second, the use of a digital envelope is more appropriate for messages
sent to multiple recipients. If A wanted to send a message M to

9.

The notation used is introduced in Section 4.9.



4.6 Protection of cryptographic keys 105

recipients By, B,,...,B, (n> 1), she would have to build {M}kp for
each recipient B; (i =1,...,n) individually. The resulting message
would grow in proportion to the number of recipients. For example,
if A wanted to send a 1-MB file to n = 4 recipients (Bj,..., By), the
resulting messages would fill 4 MB of data. Contrary to that, the use
of digital envelopes considerably reduces this amount of data. If the
public keys of the n =4 recipients are 1,024 bits long each, the
digitally enveloped message would sum up to 1 MB + 4x1 KB =
1.004 MB of data.

Consequently, the use of digital envelopes is almost always advanta-
geous, as compared with public key cryptography used for bulk data
encryption.

4.6 Protection of cryptographic keys

Any system that uses cryptographic techniques has to deal with keys that
must be protected against passive and active attacks. This is equally true for
session keys that originate from a secret key cryptosystem and private keys
that originate from a public key cryptosystem. If such a key is locally stored on
a computer system, it is vulnerable to access and misuse by unauthorized
users. In fact, file permissions alone are often not adequate for protecting
cryptographic keys on most computer systems, though they are part of an
overall solution. Cryptographic keys protected only by file permissions are
generally vulnerable to intruders and the accidental missetting of permis-
sions.

Encryption is an accepted solution for protecting cryptographic keys
stored on removable media, such as floppy disks. The use of encryption,
however, also requires access to some other key that must be protected
from disclosure. Consequently, the use of encryption to protect crypto-
graphic keys leads to a recursion, and this recursion can only be stopped
by making some key derivable from otherwise available information.
The recommended advice is to make this information a passphrase selected
by the user. A passphrase is different from a password in that no restrictions
are usually placed on its length or value. This accomplishes two useful
features:

1. The domain from which the passphrase is chosen is limited only by
the input device of the user.



106

Cryptographic Techniques

2. The user can select an easily remembered value, such as a favorite
quotation or other concatenation of easily remembered words.

The key that is used to actually encrypt and protect another key (e.g.,
the user’s private key) is derived from the user’s passphrase. A possibility
to compute a random-looking hash value from a user’s passphrase is to
use an OWHEF. Whenever the private key is needed (e.g., to decrypt an
encryption key or to digitally sign a message), the user enters his or her
passphrase, the cryptographic key is derived, the private key is decrypted,
and then the private key is available for use. Typically, the file that is used
to store the encrypted private key also includes a one-way hash value of
the private key. Checking the hash value after decrypting the file contents
provides a fast mechanism for determining if the correct passphrase was
entered by the user. Without the hash value check, the only mechanism
by which the private key’s value can be checked would be to use it and
see if it works. This may be computationally expensive.

If a user’s private key is stored in encrypted form, the user must enter
his or her passphrase to decrypt and locally use the key. From a security
point of view, this is the optimal behavior. However, users quickly become
irritated if they must send or receive more than a few messages during a
session (because they have to reenter their passphrase multiple times).
Consequently, many products include a feature that allows the pass-
phrases to be kept in memory and users to choose usability over security.
This badly hurts the overall security of the products (because the
passphrases are vulnerable in memory and can be attacked accordingly).

In summary, the combination of file permissions and passphrase-
derived encryption provides some nondisclosure protection for crypto-
graphic keys (if the users choose appropriate passphrases). In addition,
there are some cryptographic techniques (e.g., cryptographic camouflage
as further addressed in [32]) that can be used to provide better protection
for locally stored private keys. Even better protection is provided if the file
containing the encrypted cryptographic key is stored on a removable
media, such as a floppy disk. Best possible protection is available if the key
is stored in some tamper-resistant hardware device, such as a smart card, a
PCMUCI card, or a USB token. Recent research and development activities
also focus on the use of alternative hardware devices, such as cellular
phones, personal digital assistants (e.g., Palm Pilots), or any other device
that implements the Wireless Application Protocol (WAP). There is arguably
no single best hardware token to store cryptographic keys. Any device the
user usually carries around with him or her is a potentially good hardware
token and may serve this purpose (perhaps after some modification).



4.8 Legal issues 107

4.1 Generation of pseudorandom bit sequences

Many cryptographic systems use sequences of random (or pseudorandomly
generated) bits. For example, if an e-mail message is digitally enveloped, an
encryption key—sometimes also called session key—must be randomly
selected by the sender of the message. This key is used to encrypt and
digitally envelope the message. Also, random or pseudorandom numbers
are required to initially generate public key pairs.

Randomness is a statistical property of a sequence of values. In the case
of bit values, the requirement is for an adversary to be unable to predict the
next bit in a sequence even when all previously generated bits are known.
The problem is that if it is possible to predict some of the sequence of bits
used, it may be possible to reduce the size of the domain from which the key
being generated is selected. If the domain is significantly reduced, an
exhaustive key search may become feasible.

Locating a source of unpredictable bits presents a unique challenge on
most computer systems (because a hardware source of unpredictable bits is
usually not available). Consequently, a whole branch of cryptographic
research is dedicated to the problem of how to generate pseudorandom bit
sequences using only software. In fact, there are various approaches to
address this problem. For example, one software-based approach is to use a
cryptographically strong OWHF to hash a large amount of information with
limited unpredictability available. Such information can, for example, be
derived from the current status of the computer system (using corresponding
system commands) or the mouse movements and position of keyboard
strokes. Because a OWHF generates a fixed size quantity, the process is
iterated as many times as are necessary to get the required number of bits.

In 1994, an informational RFC was published that addresses the problem
of how to randomly or pseudorandomly generate bit sequences [33]. It
recommends the use of hardware and shows that the existing hardware on
many systems can be used for this purpose. Also, it provides suggestions for
ameliorating the problem when a hardware solution is not available.

4.8 Legal issues

There are some legal issues to keep in mind when using cryptographic
techniques. In particular, there are patent claims; regulations for the import,
export, and use of cryptography; and legislation for electronic and digital
signatures. Some legal issues are briefly mentioned next. You may refer to
[34, 35] for more information about the legal implications of using

cryptography.



108 Cryptographic Techniques

4.8.1 Patent claims

Patents applied to computer programs are usually called software patents. In
the U.S. computer industry, software patents are a subject of ongoing
controversy. Some of the earliest and most important software patents
granted by the U.S. Patent and Trademark Office were in the field of
cryptography. These software patents go back to the late 1960s and early
1970s. Although computer algorithms were widely thought to be
unpatentable at that time, cryptography patents were granted because
they were written as patents on encryption devices built in hardware.
Indeed, most early encryption devices were built in hardware because
general-purpose computers simply could not execute the encryption
algorithms fast enough in software. For example, IBM obtained several
patents in the early 1970s on its Lucifer algorithm, which went on to
become the DES. Today, many secret key cryptosystems also are covered by
patent claims. For example, DES is patented but royalty-free, whereas IDEA
is patented and royalty-free for noncommercial use, but requires a license
for commercial use. Later in the 1970s, many pioneers in the field of public
key cryptography filed and obtained patents for their work. Consequently,
the field of public key cryptography is largely governed by a couple of
software patents. Some of them have already expired (e.g., the Diffie-
Hellman and RSA patents) or are about to expire soon.

Outside the United States, the patent situation is quite different. For
example, patent law in Europe and Japan differs from U.S. patent law in one
very important aspect. In the United States, an inventor has a grace period of
one year between the first public disclosure of an invention and the last day
on which a patent application can be filed. In Europe and Japan, there is no
grace period. Any public disclosure instantly forfeits all patent rights.
Because the inventions contained in the original patents related to public
key cryptography were publicly disclosed before patent applications were
filed, these algorithms were never patentable in Europe and Japan.!'®

Under U.S. patent law, patent infringement is not a criminal offense, and
the penalties and damages are the jurisdiction of the civil courts. It is the
responsibility of the user of a particular cryptographic algorithm or technique
to make sure that correct licenses have been obtained from the correspond-
ing patent holders. If these licenses do not exist, the patent holders can sue
the user in court. Therefore, most products that make use of cryptographic
algorithms or techniques include the licenses required to use them.

10. As a consequence of the lack of patent claims, public key cryptography has been more widely adapted in
European countries and in Japan.



4.8 Legal issues 109

Finally, it is important to note that the IETF has a special requirement
with regard to the use of patented technology in Internet standards track
protocols. In fact, before approving a protocol specification for the Internet
standards track, a written statement from a patent holder is required stating
that a license will be made available to applicants under reasonable terms
and conditions.

4.8.2 Regulations

There are different regulations for the use and export of cryptographic
techniques.!! For example, France had some regulations for the use of
cryptographic techniques and some countries from the Far East still have
them as well. On the other side, there are some countries that require that
specific data be encrypted to certain standards. This is particularly true for
medical data.

With regard to the export of cryptographic techniques, the situation is
even more complicated. For example, the United States regulates the export
of cryptographic systems and technical data regarding them. More
specifically, U.S. export controls on commercial encryption products are
administered by the Bureau of Export Administration (BXA) in the
Department of Commerce (DoC). Regulations governing exports of encryp-
tion are found in the Export Administration Regulations (EAR). Conse-
quently, if a U.S. company wants to sell cryptographic systems and technical
data overseas, it must have export approval by the BXA according to the EAR.

On January 14, 2000, the BXA published a regulation implementing the
White House’s announcement of a new framework for U.S. export controls
on encryption items (the announcement was made on September 16, 1999).
The policy is in response to the changing global market, advances in
technology, and the need to give U.S. industry better access to these markets,
while continuing to provide essential protections for national security.'?
The regulation enlarges the use of license exceptions, implements the
changes agreed to at the Wassenaar Arrangement!®> on export controls for
conventional arms and dual-use goods and technologies in December 1998,

11. There are typically no regulations for the import of cryptographic techniques.

12. http://www.bxa.doc.gov/Encryption

13. The Wassenaar Arrangement is a treaty originally negotiated in July 1996 and signed by 31 countries to restrict
the export of dual-use goods and technologies to specific countries considered to be dangerous. The countries
that have signed the Wassenaar Arrangement include the former Coordinating Committee for Multilateral
Export Controls (COCOM) member and cooperating countries, as well as some new countries such as Russia.
The COCOM was an international munitions control organization that also restricted the export of
cryptography as a dual-use technology. It was formally dissolved in March 1994. More recently,



110 Cryptographic Techniques

and eliminates the deemed export rule for encryption technology. In
addition, new license exception provisions are created for certain types of
encryption, such as source code and toolkits. There are some countries
exempted from the regulation (i.e., Cuba, Iran, Iraq, Libya, North Korea,
Sudan, and Syria). In these countries, some or all technologies and products
mentioned in this book will not be available. In all other countries, most
technologies and products mentioned in this book will be available.

4.8.3 Electronic and digital signature legislation

In the recent past, many countries have enacted electronic or digital
signature laws in an effort to facilitate electronic commerce (e-commerce)
and e-commerce applications:

» In the European Union (EU), the European Parliament and the
Council of the European Union adopted Directive 1999/93/EC on a
community framework for electronic signatures'* on December 13,
1999. The purpose of the directive was (and still is) to facilitate the
use of electronic signatures and to contribute to their legal
recognition in Europe. According to the directive, EU ‘““member
states shall bring into force the laws, regulations and administrative
provisions necessary to comply with this Directive before 19 July
2001.” As of this writing, several EU member states already have an
electronic signature law or are about to draft and enact one.

» In the United States, former president Bill Clinton signed the
Electronic Signatures in Global and National Commerce Act (E-
SIGN) on June 30, 2000. The E-SIGN Act implements a national
uniform standard for all electronic transactions that encourages the use
of electronic signatures, electronic contracts, and electronic records by
providing legal certainty for these instruments when signatories
comply with its standards. The E-SIGN Act became effective on
October 1. 2000.

the Wassenaar Arrangement was updated. The participating countries of the Wassenaar Arrangement are
Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Czech Republic, Denmark, Finland, France,
Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, The Netherlands, New Zealand, Norway,
Poland, Portugal, The Republic of Korea, Romania, Russian Federation, Slovak Republic, Spain, Sweden,
Switzerland, Turkey, Ukraine, United Kingdom, and the United States. Further information on the Wassenaar
Arrangement can be found on the Web by following the URL http://www.wassenaar.org.

14. http://europa.eu.int/comm/internal_market/en/media/sign



4.9 Notation 111

In addition, many countries outside the EU and the United States have
enacted electronic or digital signature laws or are about to work out the legal
details thereof (e.g., some countries in Asia).

Unfortunately, the formal specification of requirements for both
certification service providers and cryptographic devices that can be used
to securely store private keys and generate digital signatures (e.g., smart
cards or USB tokens) is very difficult and challenging. For example, how do
you measure and quantify the security and trustworthiness of a commercial
certification service provider? What criteria are relevant? How do you take
into account organizational criteria? Similarly, how do you measure and
quantify the security of a cryptographic device that is used to store private
keys and/or digitally sign documents? Does the device, for example, really
sign what the user sees on the screen (i.e., ““what you sign is what you see”’)
or can it be spoofed with wrong input data? Keep in mind that the
cryptographic device runs in a potentially hostile environment and that any
kind of spoofing attack is possible there.

The requirements for certification service providers and cryptographic
devices tend to be either too strong or too weak:

» If the requirements are too strong, their implementation may become
too expensive and prohibitive in practice. This is basically what
happened in Germany when the first version of a signature law was
put in place a couple of years ago.

» If the requirements are too weak, their implementation—or the
security thereof—may be challenged in court. Consequently, the
legal value of the resulting electronic or digital signatures may not be
very high. Against this background, it will be very interesting to see
the E-SIGN Act be applied in practice.

Against this background, it will be interesting to see the requirements of
future electronic and digital signature legislations. In either case, there is still
a long way to go until we use electronic or digital signatures the same way
we use handwritten signatures in daily life. In the meantime, however,
digital signatures may serve as evidence gathering tools.

4.9 Notation

As mentioned before, a cryptographic protocol is a distributed algorithm
defined by a sequence of steps precisely specifying the actions required of two



112

Cryptographic Techniques

or more entities to achieve a specific security objective. The following notation
is used in this book to describe cryptographic protocols:

Capital letters, such as A, B, C, ..., are used to refer to principals. Note
that many publications on cryptography and cryptographic protocols
use names, such as Alice and Bob, to refer to principals. This is a
convenient way of making things unambiguous with relatively few
words, because the pronoun ‘“‘she’” can be used for Alice, and ‘““he”
can be used for Bob. However, the advantages and disadvantages of
this naming scheme are controversial, and we are not going to use it
in this book.

K is used to refer to a secret key. A secret key is basically a key of a
secret key cryptosystem.

The pair (k, k') is used to refer to a public key pair, whereas k is used
to refer to the public key and k™! is used to refer to the corresponding
private key.

In either case, key subscripts are used to indicate principals. In general,
capital letter subscripts are used for long-term keys, and small letter
subscripts are used for short-term keys. For example, K, is used to refer
to A’s long-term secret key, whereas k; is used to refer to B’s short-term
public key.

The term {M}K is used to refer to a message M that is encrypted with
the secret key K. Since the same key K is used for decryption,
{{M}K}K equals M. If K is used to compute and verify a message
authentication code (MAC) for message M, then the term (M)XK is
used to refer to the MAC.

Similarly, the term {M}k is used to refer to a message M that is
encrypted with the public key k. The message can only be decrypted
with the corresponding private key k¥~'. If a public key cryptosystem
is used to digitally sign messages, the private key is used for signing,
and the corresponding public key is used for verifying signatures.
Referring to the terminology of the OSI security architecture, the
term {M}k~! is used to refer to a digital signature giving message
recovery, and (MK is used to refer to a digital signature with
appendix. Note that in the second case, (M)k™' in fact abbreviates
M, {h(M)}k~!, with h being an OWHF or CRHF.



4.9 Notation

113

Finally, the term X < Y>> is used to refer to a public key certificate that
has been issued by X for Y’s public key. It implies that X has verified Y's
identity and certified the binding of Y’s long-term public key ky with its
identity.

References
[1] Koblitz, N.I., A Course in Number Theory and Cryptography, 2nd ed., New York:
Springer-Verlag, 1994.

[2] Stinson, D., Cryptography Theory and Practice, Boca Raton, FL: CRC Press, 1995.

[31 Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd
ed., New York: John Wiley & Sons, 1996.

[4] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, Boca Raton, FL: CRC Press, 1996.

[5] Mollin, R.A., An Introduction to Cryptography, Boca Raton, FL: CRC Press, 2000.
[6] Buchmann, J., Introduction to Cryptography, New York: Springer, 2000.

[7]1 Goldreich, O., Foundations of Cryptography: Basic Tools, Cambridge, UK:
Cambridge University Press, 2001.

[8] Shannon, C. E. “A Mathematical Theory of Communication,” Bell
System Technical Journal, Vol. 27, No. 3/4, July/October 1948, pp. 379-423/
623-656.

[91 Shannon, C. E., ““Communication Theory of Secrecy Systems,”” Bell System
Technical Journal, Vol. 28, No. 4, October 1949, pp. 656-715.

[10] Shor, P. W., ““Algorithms for Quantum Computation: Discrete Logarithms and
Factoring,” Proc. IEEE 35th Annual Symposium Foundations Computer Science,
1994, pp. 124-134.

[11] Shor, P. W., “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM Journal of Computing,
October 1997, pp. 1484-1509.

[12] Adleman, L. M., ““Molecular Computation of Solutions to Combinatorial
Problems,”” Science, November 1994, pp. 1021-1024.

[13] Paun, G., G. Rozenberg, and A. Salomaa, DNA Computing: New Computing
Paradigms, New York: Springer-Verlag, 1998.

[14] Bennett, C. H.,, G. Brassard, and A. K. Ekert, “Quantum Cryptography,”
Scientific American, October 1992, pp. 50-57.

[15] Kaliski, B., “The MD2 Message-Digest Algorithm,” Request for Comments
1319, April 1992.



114

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Cryptographic Techniques

Rivest, R. L., “The MD4 Message-Digest Algorithm,” Request for Comments
1320, April 1992.

Rivest, R. L., and S. Dusse, “The MD5 Message-Digest Algorithm,”” Request for
Comments 1321, April 1992.

U.S. National Institute of Standards and Technology (NIST), ““Secure Hash
Standard (SHS),”” FIPS PUB 180-1, April 1995.

Dobbertin, H., A. Bosselaers, and B. Preneel, “RIPEMD-160: A Strengthened
Version of RIPEMD,"”’ Proceedings of Fast Software Encryption Workshop, 1996,
pp. 71-82.

U.S. National Institute of Standards and Technology (NIST), “‘Data Encryption
Standard,” FIPS PUB 46, January 1977.

Lai, X., On the Design and Security of Block Ciphers, Ph.D. thesis, ETH No. 9752,
ETH Ziirich, Switzerland, 1992.

Massey, J. L., “SAFER K-64: A Byte-Oriented Block Ciphering Algorithm,”
Proceedings of Fast Software Encryption Workshop, 1994, pp. 1-17.

Schneier, B., “Description of a New Variable-Length Key, 64-Bit Block
Cipher (Blowfish),” Proceedings of Fast Software Encryption Workshop, 1994,
pp. 191-204.

Adams, C., “The CAST-128 Encryption Algorithm,” Request for Comments
2144, May 1997.

U.S. National Institute of Standards and Technology (NIST), ‘“Advanced
Encryption Standard (AES),”” FIPS PUB 197, November 2001.

Diffie, W., and M. E. Hellman, ““New Directions in Cryptography,” IEEE
Transactions on Information Theory, IT-22(6), 1976, pp. 644-654.

Pfitzmann, B., Digital Signature Schemes, Berlin, Germany: Springer-Verlag,
1996.

Rivest, R. L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the ACM, 21(2),
February 1978, pp. 120-126.

ElGamal, T., ““Cryptography and Logarithms over Finite Fields,”” Ph.D. thesis,
Stanford University, 1984.

ElGamal, T., ““A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithm,”” IEEE Transactions on Information Theory, IT-31(4), 1985,
pp. 469-472.

U.S. National Institute of Standards and Technology (NIST), Digital Signature
Standard (DSS), FIPS PUB 186, May 1994.

Hoover, D. N., and B. N. Kausik, “Software Smart Cards via Cryptographic
Camouflage,” Proceedings of IEEE Symposium on Security and Privacy, 1999.



4.9 Notation 115

[33] Eastlake, D., S. Crocker, and J. Schiller, “Randomness Recommendations for
Security,”” Request for Comments 1750, December 1994.

[34] Baker, S. A., and P. R. Hurst, The Limits of Trust: Cryptography, Governments, and
Electronic Commerce, Cambridge, MA: Kluwer Law International, 1998.

[35] Ditfie, W., and S. Landau, Privacy on the Line: The Politics of Wiretapping and
Encryption, Cambridge, MA: MIT Press, 1998.



Team-F[y®



8.1
5.2

5.3

5.4

9.5

5.6

CHAPTER

Contents

Introduction

Network access layer
security protocols

Internet layer security
protocols

Transport layer security
protocols

Application layer security
protocols

Conclusions

References

Internet Security Protocols

In this chapter, we overview and briefly discuss some
cryptographic security protocols that have been proposed,
specified, and partly implemented for the Internet and that can
also be used on the WWW. In particular, we introduce the topic
in Section 5.1, address security protocols for the network access,
Internet, transport, and application layers in Sections 5.2 to 5.5,
and draw some conclusions in Section 5.6.

5.1 Introduction

There is a strong consensus that providing security services in
computer networks and distributed systems requires the use of
cryptographic techniques, and that these techniques must be
integrated into security protocols accordingly. This is also true
for the Internet and the WWW. Consequently, many crypto-
graphic security protocols have been proposed, specified,
implemented, and deployed on the Internet and the WWW in
the past. Some of these protocols have been successful, whereas
others have not found their market shares and have dis-
appeared accordingly.

In the case of TCP/IP-based networks, cryptographic
security protocols can operate at any layer of the corresponding
communications protocol suite. Consequently, there are pro-
posals for providing security services at the network access,
Internet, transport, and application layers. There are even some
proposals to provide security services above the application
layer. All of these possibilities are overviewed and briefly

117



118 Internet Security Protocols

discussed in the sequel. Keep in mind, however, that the treatment in this
book is rather short, and that a more detailed overview and discussion can be
found in Part III of [1]. Also, the chapter provides a long list of references for
turther study.

5.2 Network access layer security protocols

In the Internet model and protocol stack, the network access layer handles
issues related to local area networking and dial-up connectivity. Protocols
that operate at this layer include Ethernet (IEEE 802.3), token bus (IEEE
802.4), token ring (IEEE 802.5), FDDI, and protocols for serial line dial-up
networking, such as the Serial Line IP Protocol (SLIP) and—most
importantly—the Point-to-Point Protocol (PPP) [2]. SLIP and PPP both
define encapsulation mechanisms for transporting multiprotocol data
across layer two point-to-point links (e.g., serial lines). In short, an
encapsulation mechanism specifies how protocol data units (PDUs) from
one protocol are encapsulated in PDUs of another protocol, and how these
PDUs are then transported through the network. For all practical purposes,
Ethernet is the most widely used and deployed technology for local area
networking, and PPP is the most widely deployed protocol for dial-up
networking.

In the late 1980s, the IEEE started to address issues related to LAN and
metropolitan area network (MAN) security. In particular, the IEEE 802.10 [AQ1]
working group (WG) was formed in May 1988 to address LAN and MAN
security. Meanwhile, the IEEE 802.10 WG specified several standards for
interoperable LAN/MAN security (SILS) that are compatible with existing IEEE
802 and OSI specifications [3, 4]. Unfortunately, SILS has not been
commercially successful, and there are hardly any products that implement
the standards. Consequently, we do not address the work of the IEEE
802.10 WG. Instead, we elaborate on recent work that has been done to
secure dial-up connections using PPP with security enhancements.

First of all, we consider the problem that a European conference
attendee traveling in the United States faces if he or she wants to connect his
or her laptop computer to his or her corporate intranet in Europe (e.g., to
read e-mail messages or download a presentation). There are at least two
solutions for this problem:

1. A very obvious solution for the problem is to use the public-
switched telephone network (PSTN) or the integrated services
digital network (ISDN) to connect to a remote access server (RAS)



8.2 Network access layer security protocols 119

located on the corporate intranet (e.g., a modem pool), to set up
a PPP connection, and to use this connection to log in to the
destination server located on the corporate intranet. The major
advantages of this solution are availability and simplicity, whereas
the major disadvantages are related to security and costs:

» The problem related to security is that the data traffic between
the laptop computer and the intranet server goes unencrypted
and unprotected.

» The problem related to costs is that the user is charged a long-
distance call (or the company is charged the fees in the case of a
modem pool with free charging or dial-back facilities).

2. A more sophisticated solution for the problem is to use a virtual
private network (VPN) channel or tunnel. As we discuss later, there
are many technologies that refer to and make use of the term VPN.
Some of these technologies use cryptography to encapsulate data
traffic and to establish and maintain cryptographically protected
tunnels between the communicating peers. There are basically two
approaches to create such a tunnel:

» One possibility is to encapsulate a given network layer protocol,
such as IP, IPX, or AppleTalk, inside PPP, to cryptographically
protect the PPP frames and to encapsulate the data inside a
tunneling protocol, which is typically IP (but could also be ATM
or Frame Relay). This approach is commonly referred to as layer 2
tunneling because the passenger of the tunneling scheme is
actually a layer 2 protocol (i.e., PPP).

» Another possibility is to encapsulate a given network layer
protocol, such as IP, IPX, or AppleTalk, directly into a tunneling
protocol, such as 3Com’s Virtual Tunneling Protocol (VTP), and
to encapsulate the data inside another network layer protocol
(e.g., IP) that is used to tunnel the data through the Internet. This
approach is commonly referred to as layer 3 tunneling because the
passenger of the tunneling scheme is actually a layer 3 protocol
(i.e., VIP).

Figure 5.1 illustrates and puts into perspective the layer 2 tunneling and
layer 3 tunneling encapsulation schemes (for IPX encapsulated inside IP). In
either case, the protected part of the data is IPX. The major advantages of
VPN tunnels are related to the fact that data traffic is encapsulated in IP



120 Internet Security Protocols

Layer 2 tunneling

IP L2TP PPP IPX

Layer 3 tunneling

IP VPT IPX

Figure 5.1 The layer 2 and layer 3 tunneling encapsulation schemes.

packets that can be routed over the Internet and that cryptographic
techniques can then be used to protect the IP packets.

The first solution is simple and straightforward; it does not deserve
further explanation. In the following sections we elaborate on the second
solution. In particular, we briefly overview and partly discuss the layer 2
forwarding/tunneling protocols that have been proposed and deployed in
the past (layer 3 tunneling protocols are addressed in the following section).

Today, there is a strong consensus that the Layer 2 Tunneling Protocol
(L2TP) is the preferred choice for applications that want to use layer 2
tunneling. Following the terminolgy introduced by the L2TP specifications,
the following terms and acronyms are used (instead of POP and RAS'):

» A remote system or dial-up client is a computer system or router that is
typically the initiator of a layer 2 tunnel.

» An L2TP access concentrator (LAC) is a node that acts as one side of a
layer 2 tunnel endpoint and is a peer to the layer 2 tunneling
protocol server (e.g., the L2TP network server discussed next).
As such, the LAC sits between the remote system or dial-up client
and the server and forwards packets to and from each. The connec-
tion from the LAC to the remote system is either local or a PPP link.

1. Because the term RAS is heavily used in the PPTP implementation of Microsoft, we use it when we discuss
MS-PPTP later in this chapter.



8.2 Network access layer security protocols 121

» Finally, an L2TP network server (LNS) is a node that acts as one side of
a layer 2 tunnel endpoint (typically the recipient) and is a peer to
the LAC. As such, the LNS is the logical termination point of a PPP
session that is being tunneled from the remote system by the LAC.

Note that the LAC and the LNS require a common understanding of the
encapsulation protocol so that layer 2 frames (e.g., PPP frames) can be
successfully transmitted and received across the Internet. Also note that in
this terminology, a network access server (NAS) is a device that provides
access to users across a remote access network, such as the PSTN or ISDN. As
such, the NAS may serve as either a LAC, LNS, or both.

5.2.1 Layer 2 Forwarding Protocol

Historically, the first layer 2 forwarding/tunneling protocol was the Layer 2
Forwarding (L2F) Protocol originally developed and proposed by Cisco
Systems. It addressed two areas of standardization:

» The encapsulation of layer 2 frames (i.e., PPP frames) within the L2F
protocol. Each L2F frame, including an L2F header and a payload, is
then encapsulated and sent within an IP packet or a UDP datagram,
respectively. Contrary to more recent layer 2 forwarding/tunneling
protocol proposals, the L2F protocol does not take into account the
use of cryptography to protect the confidentiality of the encapsulated
layer 2 frames.

» The connection management for the layer 2 tunnel (i.e., how the
tunnel is initiated and terminated).

Both areas are specified in RFC 2341 [5]. According to this specification,
the L2F protocol uses the well-known UDP port 1701 (for both source and
destination ports).

Because the L2F protocol is only of historical value,? we do not delve
into the technical details of the L2F protocol specification. You may refer to
the referenced RFC document if you are interested in history (or if you are an
administrator in charge of installing and configuring an implementation of
the L2F protocol).

2.

Note that the category of the referenced RFC document is historic.



122

Internet Security Protocols

5.2.2 Point-to-Point Tunneling Protocol

Similar to the L2F protocol, the Point-to-Point Tunneling Protocol (PPTP) was
originally developed and designed to solve the problem of creating and
maintaining VPN tunnels over public TCP/IP-based networks using the PPP
[6, 7].> The PPTP is the result of joint efforts of Microsoft and a set of product
vendors, including, for example, Ascend Communications, 3Com/Primary
Access, ECI Telematics, and U.S. Robotics. These companies originally
constituted the PPTP Forum, whose resulting PPTP specification was made
publicly available and submitted to the IETF Point-to-Point Protocol
Extensions (PPPEXT?) WG for possible consideration as an Internet
Standard in 1996.°

A typical deployment of the PPTP starts with a remote system or dial-up
client, such as a laptop computer, that must be interconnected to an LNS
located on a corporate intranet using an LAC. As such, the PPTP can be used
to encapsulate PPP frames in IP packets for transmission over the Internet or
any other publicly accessible TCP/IP-based network. More specifically, the
remote system can connect to the LNS in two ways:

1. If the remote system supports PPTP, it can directly use it to connect
to the LNS.

2. If, however, the remote system does not support PPTP, it can use
PPP to connect to an Internet service provider’s LAC, and this LAC
can then use PPTP to connect to the LNS.

In the first case, the situation is comparably simple. The remote system
first establishes a PPP connection to the Internet service provider’s LAC and
then uses PPTP to send encapsulated PPP frames to the LNS. The IP packets
that encapsulate the PPP frames are simply forwarded by the LAC.

In the second case, however, the LAC must use the PPTP to encapsulate
the PPP frames in IP packets on behalf of the remote system. Consequently,
the LAC must play the role of an intermediate or proxy server in one way or
another. In fact, there are two connections. The first connection uses the PPP
to interconnect the remote system and the LAC, whereas the second
connection uses the PPTP to interconnect the LAC and the LNS. PPP frames
received by the LAC are encapsulated in IP packets using the PPTP.

3
4.
5.

http://www.microsoft.com/technet/winnt/winntas/technote/pptpudst.asp
http://www.ietf.org/html.charters/pppext-charter.html
Note that the IETF PPPEXT WG is situated in the IETF’s Internet area (not in the security area).



8.2 Network access layer security protocols 123

In either case, the PPTP uses a sophisticated encapsulation scheme to
tunnel PPP frames through the Internet (or any other TCP/IP-based
network that interconnects the LAC and the LNS). In fact, network or
Internet layer protocol data units (e.g., IP packets, IPX packets, or NetBEUI
messages) are first framed using PPP. The resulting PPP frames are then
encapsulated using a generic routing encapsulation (GRE) header [8] as
well as an IP header that is used to route the frame through the Internet.
Finally, the resulting IP packets are framed with still another media-specific
header before they can be forwarded to the interface connected to the
Internet.

In addition to the data channel that uses IP encapsulation to transmit
data, the PPTP uses a TCP connection for signaling. The corresponding
messages that are sent or received over this connection are used to query
status and to convey signaling information between the LAC (i.e., the PPTP
client) and the LNS (i.e., the PPTP server). The control channel is always
initiated by the PPTP client to the PPTP server using TCP port number 1723.
In most cases, it is a bidirectional channel where the client can send messages
to the server and vice versa. Note that the notion of an outband signaling
channel is something very specific for PPTP. Most other security protocols
(e.g., the IPsec protocols) use inband signaling, meaning that signaling
information is transported together with the protected data units.

The PPTP specification does not mandate the use of specific algorithms
for authentication and encryption. Instead, it provides a framework for the
negotiation of particular algorithms. This negotiation is not specific to PPTP,
and relies on existing PPP option negotiations contained within the PPP
compression protocol (CCP) [9], the challenge handshake authentication
protocol (CHAP) [10], and some other PPP extensions and enhancements.
Also outside the world of the PPTP, PPP sessions have been able to negotiate
compression algorithms as well as authentication and encryption algorithms
[11, 12].

In spite of the fact that the PPTP specification was submitted to the IETF
PPPEXT WG for consideration as an Internet Standard, its standardization
effort has been abandoned. Microsoft’s implementation of the PPTP (i.e.,
MS-PPTP) is heavily used in Windows NT environments. Outside these
environments, however, neither MS-PPTP nor another implementation of
PPTP is widely deployed.

Using MS-PPTP, the client and the server typically authenticate each
other using MS-CHAP [13], which is Microsoft’s version of the CHAP, and
encrypt data using the Microsoft Point-to-Point Encryption (MPPE) protocol [14].

As outlined in [15], MS-PPTP has severe flaws in both its design and
implementation. This is particularly true for MS-PPTP version 1, but it is also



124

Internet Security Protocols

true for MS-PPTP version 2 (e.g., [16, 17]). Consequently, the use of MS-
PPTP cannot be recommended from a security point of view.

5.2.3 Layer 2 Tunneling Protocol

In June 1996, Microsoft and Cisco Systems proposed and submitted a
combination of MS-PPTP and the L2F protocol to the IETF PPPEXT WG. The
proposal was named Layer 2 Tunneling Protocol (L2TP) [18]. This collaborative
protocol specification was particularly good news, as it meant that there
would be just one industrywide IETF specification for a layer 2 tunneling
and VPN dial-up protocol.

Similar to the L2F protocol and PPTP, the L2TP facilitates the tunneling
of encapsulated PPP frames across an intervening network in a way that is as
transparent as possible to both end users and applications. Contrary to the
other protocols, however, L2TP uses and even requires the use of IPsec
security associations (SAs) to cryptographically protect data that are
transmitted between LACs and LNSs.

After this initial release, the L2TP specification was further refined. In
August 1999, a preliminary release was published in RFC 2661 [19] and
submitted to the Internet standards track. As such, the L2TP is likely to
replace both the L2F protocol and PPTP in the future (in both Microsoft and
Cisco products).

5.2.4 Virtual private networking

In summary, the L2F protocol, PPTP, and L2TP provide means for virtual
private networking. Consequently, a final word is due on the use of these
protocols for virtual private networking. According to RFC 2828, a virtual
private network (VPN) is ‘‘a restricted-use, logical computer network that is
constructed from the system resources of a relatively public, physical
network (such as the Internet), often by using encryption, and often by
tunneling links of the virtual network across the real network” [20].
According to this definition, the use of encryption is not mandatory for
VPNs. Consequently, there are some alternative technologies and notions of
virtual private networking in use today. These technologies use controlled
route leaking (i.e., route filtering) or label switching instead of cryptography
to provide VPN facilities.

For example, multiprotocol label switching (MPLS) is a technology that can
be used to implement something similar to closed user groups (CUGs) in a
TCP/IP-based network [21, 22]. In short, MPLS makes sure that IP packets
cannot reach hosts that are not legitimate members of a specific host group.



5.3 Internet layer security protocols 125

Note, however, that there is no cryptographic protection in use, and that
an MPLS subscriber has to trust the network provider not to eavesdrop on
its communications and not to manipulate the IP traffic accordingly.
Sometimes this level of trust may be justified. Sometimes, however, this
level of trust may not be justified and the subscriber is then well advised to
look into and consider the use of VPN technologies that employ
cryptography in one way or another.

5.3 Internet layer security protocols

In most network architectures and corresponding communications protocol
stacks, network layer protocol data units are transmitted in the clear,
meaning that they are not cryptographically protected during their
transmission. Consequently, it is relatively simple to do malicious things,
such as inspecting the contents of the data units, forging the source or
destination addresses, modifying the contents, or even replaying old data
units. There is no guarantee that data units received are in fact from the
claimed originators (i.e., the claimed source addresses), that they are
delivered to the proper recipients, that they contain the original contents,
and that the contents have not been inspected by an eavesdropper while the
data units were transmitted from the originators to the recipients. The lack of
built-in security is particularly true for IP packets.

Against this background, the idea of having a standardized network or
Internet layer security protocol (to protect network or Internet layer protocol
data units) is not new, and several protocols had been proposed before the
IETF IPSEC WG started to meet:

» The Security Protocol 3 (SP3) was a network layer security protocol
jointly developed and proposed by the U.S. National Security Agency
(NSA) and the National Institute of Science and Technology (NIST) as
part of the secure data network system (SDNS) suite of security
protocols [23]. Outside the U.S. military, the SDNS and its security
protocols have not seen widespread use. This is particularly true for
SP3.

» The Network Layer Security Protocol (NLSP) was developed by the ISO
to secure the Connectionless Network Protocol (CLNP) [24]. Similar
to IP in the Internet model, CLNP provides a connectionless and
unreliable network layer service to the higher layers in the OSI
reference model. As such, the aim of the NLSP is to secure



126

Internet Security Protocols

the network layer service and to provide some basic security services
to the higher layers. The NLSP is an incompatible descendent of SP3.

» The Integrated NLSP (I-NLSP) was originally developed and proposed
by the U.S. NIST to provide security services for both IP (i.e., IPv4)
and CLNP.® Again, the security function of I-NLSP is roughly similar
to that of SP3, although some details differ. For example, I-NLSP
provides some additional functionality, such as security label
processing.

» A protocol named swIPe was yet another experimental Internet layer
security protocol that was developed and prototyped by John
Ioannidis and Matt Blaze [25]. The prototype implementation is
publicly and freely available on the Internet.”

The network and Internet layer security protocols listed are more alike
than they are different. In fact, they all use secure encapsulation as their
basic enabling technique. What this basically means is that authenticated or
encrypted network layer protocol data units are contained within other data
units. In the case of secure IP encapsulation, for example, outgoing plaintext
IP packets are authenticated or encrypted and encapsulated in new IP
packets by adding new IP headers that are used to route the packets through
the internetwork. At the peer systems, the incoming IP packets are
decapsulated, meaning that the outer IP headers are stripped off and the
inner IP packets are authenticated or decrypted and then forwarded to
the intended recipients.

An encapsulated IP packet is illustrated in Figure 5.2. Note that the
original IP header and IP payload (together with some additional data) are

New IP Additional Original IP

header data header IP payload

< New IP payload ——8@ ™

Figure 5.2 Encapsulated IP packet.

6.
7.

I-NLSP was specified in an Internet-Draft that expired long ago.
ftp://ftp.csua.berkeley.edu/pub/cypherpunks/swIPe/swipe.tar.Z



5.3 Internet layer security protocols 127

treated as the payload for the new IP packet, that this payload is the one that
is protected, and that a new IP header must be prepended to the new
payload. Consequently, the new IP header must not be encrypted, since it
must be used to route (or tunnel) the new IP packet through the
(inter)network. Such an encapsulation or tunneling scheme is convenient,
since it means that no changes are required to the existing Internet routing
infrastructure: authenticated or encrypted IP packets have an unencrypted,
normal-looking outer IP header, and this IP header can be used to route and
process the packet as usual. This transparency is convenient for the large-
scale deployment of encapsulation and tunneling schemes in general, and IP
encapsulation or tunneling in particular. In fact, similar IP encapsulation or
tunneling schemes can be used to transfer multicast or IPv6 traffic through
unicast or IPv4 networks.

When the IETF started to develop the next version of IP (i.e., IPv6), it
was commonly agreed that this version had to incorporate strong security
features (at least for users who desire security). The security features had to
be algorithm-independent so that the cryptographic algorithms could be
altered without affecting the other parts of an implementation. Further-
more, the security features should be useful in enforcing a wide variety of
security policies, and yet they should be designed in a way that avoids
adverse impacts on Internet users who do not need security services for the
protection of their IP traffic at all.

Against this background, the IETF chartered an IPSEC WG in 1992.
The aim was to define a security architecture (mainly for IPv6), and to
standardize both an IP Security Protocol (IPSP) and a related Internet Key
Management Protocol (IKMP). Soon it was realized that the same security
architecture that was being developed for IPv6 could also be used for IPv4.
Consequently, the charter of the IETF IPSEC WG was revised to target
both IPv6 and IPv4, and the resulting security architecture had to be the
same. The main difference is that the security mechanisms specified in the
IP security architecture have to be retrofitted into IPv4 implementations,
whereas they must be present in all IPv6 implementations at the
beginning.

In August 1995, the IETF IPSEC WG published a series of RFC
documents that collectively specified a first version of the IP security
architecture and the IPSP [26-30]. This version was incomplete and rushed
to publication, mainly to satisty a perceived industry need. Nevertheless, the
IESG approved the IPSP specification to enter the Internet standards track as
a Proposed Standard, and the participants of the IETF IPSEC WG continued
their work to refine the IP security architecture and the IPSP specifi-
cation, as well as to standardize the IKMP [31, 32]. The discussion on



128

Internet Security Protocols

the standardization of the IKMP was very controversial. In the end, two
protocol proposals, namely, the Internet Security Association and Key
Management Protocol (ISAKMP) and the OAKLEY Key Determination
Protocol, were merged to become the IKMP. Furthermore, the acronym IPSP
was replaced with the term IPsec protocols (as it consists of two subprotocols),
and the acronym IKMP was replaced with the term Internet Key Exchange
(IKE). Consequently, the IP security architecture as we understand it today
comprises both a set of IPsec protocols and the IKE protocol.

In November 1998, the IETF IPSEC WG published a series of RFC
documents that collectively specify a revised version of the IP security
architecture [33], including revised versions of the IPsec [34-39] and IKE
[40-42] protocols.® In addition, an informational REC was published that
provides a road map for the various documents that are released under the
auspices of the IETF IPSEC WG [43]. Further information about the current
status of the various protocol specifications can be found on the home page
of the IETF IPSEC WG.®? In addition, there are several books that address
IPsec and virtual private networking [44-46]. Among these books, I
particularly recommend [46].

Soon after the release of the revised series of RFC documents, it was
realized that two topics deserved further study:

1. The use of policies in IPsec environments;
2. The use of IPsec technologies to secure remote access services.

In early 2000, the IETF chartered an IP Security Policy (IPSP)!® WG
to address the first topic and an IP Security Remote Access (IPSRA)!! WG to
address the second topic. You may refer to the home pages of the two WGs
to get an overview about the current status of their work.

5.3.1 IP security architecture

As mentioned above, the IP security architecture comprises an entire suite of
security protocols. The suite includes the IPsec protocols and the IKE
protocol. The IPsec protocols comprise the Authentication Header (AH) and
Encapsulating Security Payload (ESP) subprotocols. Similarly, the IKE

10.
11.

As of this writing, the protocol specifications refer to proposed standards.
http://www.ietf.org/html.charters/ipsec-charter.html
http://www.ietf.org/html.charters/ipsp-charter.html
http://www.ietf.org/html.charters/ipsra-charter.html



5.3 Internet layer security protocols 129

protocol has evolved from two major key management protocol proposals
(i.e., ISAKMP and OAKLEY).

A high-level overview of the IP security architecture is given in
Figure 5.3. In short, an IPsec module is a (hardware or software) module
that implements the IPsec architecture and its protocols. The primary goal of
an IPsec module is to secure IP traffic that is sent to or received from another
IPsec module. What this basically means in terms of security services and
mechanisms is specified in a corresponding security association (SA). The aim
of the IKE protocol is to establish SAs and the aim of the IPsec protocols is to
make use of these SAs. On either side of an SA, the security parameters of
that SA (e.g., encryption algorithm and session key) are stored in a security
association database (SAD). Each SA and corresponding entry in the SAD is
indexed with three values:

» A security parameters index (SPI);

» An IP destination address;

» A security protocol identifier (i.e., AH or ESP).

As will be explained later, each IPsec-protected packet carries an SPI
value that can be used by the recipient to retrieve the correct SA parameters
from its SAD. In addition to the SAD, there is a security policy database (SPD)

in each IPsec module. The SPD provides detailed specifications of the security
services accorded to each packet.

IPsec module 1 IPsec module 2
D >

1 \\ // 1
| |
1 |
1 IKE IKE :
|
| |

SAD IPsec < g IPsec SAD

SA

Figure 5.3 High-level overview of the IP security architecture.



130

Internet Security Protocols

In accordance with this high-level overview, the concept of an SA is at
the core of the IP security architecture. An SA specifies the security services
and mechanisms that must be implemented and used between two endpoints
or IPsec modules. The endpoints, in turn, may be hosts or network security
gateways, such as IPsec-enabled routers or application gateways. For
example, an SA may require the provision of data confidentiality services
through the use of the IPsec ESP protocol (this protocol will be explained
later). Furthermore, the SA may specifiy the parameters for this protocol,
such as the encryption algorithm (e.g., the DES algorithm), the mode of
operation (e.g., the CBC mode), and its initialization vector (IV). The SA is a
simplex (unidirectional) connection or relationship. Security services are
afforded to an SA by the use of AH, or ESP, but not both. If both AH and ESP
protection is applied to a data stream, then two SAs must be established and
maintained. Similarly, to secure bidirectional communications between two
hosts or security gateways, two SAs (one in each direction) are required. The
term SA bundle refers to a set of SAs through which traffic must be processed
to satisty a specific security policy.

The IPsec architecture allows the user or system administrator to control
the granularity at which security services are offered. In the first series of
RFCs, three approaches toward how to feed SAs with security parameters
and cryptographic keys were distinguished:

1. Host-oriented keying has all users on one host share the same session
key for use on traffic destined for all users on another host.

2. User-oriented keying lets each user on one host have one or more
unique session keys for the traffic destined for another host (such
session keys are not shared with other users).

3. Session-unique keying has a single session key being assigned to a
given IP address, upper-layer protocol, and port number triple (in
this case, a user’s FTP session may use a different key than the same
user’s Telnet session).

From a security point of view, user-oriented and session-unique keying
are superior and therefore preferred. This is due to the fact that in many
cases, a single computer system will have at least two suspicious users that do
not mutually trust each other. When host-oriented keying is used and
mutually suspicious users exist on a system, it is sometimes possible for a
user to determine the host-oriented key by cryptanalytical attacks. Once this
user has improperly obtained the key in use, he or she can either read
another user’s encrypted traffic or forge traffic from this particular user.



5.3 Internet layer security protocols 131

Some possible attacks that follow and take advantage of this line of
argumentation can be found in [47, 48]. When user-oriented or session-
unique keying is used, certain kinds of attack from one user onto another
user’s data traffic are simply not possible. Unfortunately, the distinction
between the three keying approaches is no longer used in the current
protocol specifications of the IETF IPSEC WG. In reality, all we see today is
host-oriented keying.

The SPD of an IPsec implementation defines at a high level of
abstraction the security requirements for the IP packets that are forwarded
or routed. As such, the SPD is established and maintained by a user or
system administrator (or by an application operating within constraints
established by either of them). Each entry in the SPD defines the traffic to be
protected, how to protect it, and with whom the protection is shared. For
each IP packet entering or leaving the IPsec implementation, the SPD must
be consulted for the possible application of the IPsec security services. More
specifically, an SPD entry may define one of the three actions to take upon a
traffic match:

1. Discard: A packet is not let in or out.

2. Bypass: A packet is let in and out without applying IPsec security
services.

3. Apply: A packet is only let in or out after having applied IPsec
security services.

As such, the SPD provides access control enforcement equivalent to a
(static) packet filter.

In general, the IPsec protocols (i.e., AH and ESP) are largely independent
of the associated SA and key management techniques and protocols,
although the techniques and protocols involved do affect some of the
security services offered by the protocols. The IPsec protocols and the
complementary IKE protocol are overviewed next.

5.3.2 IPsec protocols

According to the terminology introduced in the OSI security architecture,
the IPsec protocols provide the following security services:
» A data origin authentication service;

» A connectionless data integrity service (including protection against
replay attacks);



132

Internet Security Protocols

» A data confidentiality service;
» An access control service;

» A limited traffic flow confidentiality service.

The security services are provided at the Internet layer, offering
protection for IP and upper-layer protocols. As mentioned previously, the
security services are provided by two subprotocols, namely, the AH and the
ESP. Each protocol can be used to protect either only the upper-layer
payload of an IP packet or the entire IP packet. This distinction is handled by
considering two different modes of operation:

1. Transport mode is used to protect the upper-layer payload of an IP
packet.

2. Tunnel mode is used to protect an entire IP packet (in this case, IP
encapsulation is used as an enabling technique).

Figure 5.4 illustrates the IPsec transport and tunnel modes. In transport
mode, an IPsec header (i.e., an AH or ESP header) is inserted between the
original IP header and payload (i.e., the TCP segment or UDP datagram). In
tunnel mode, the original IP packet is encapsulated into another IP packet.
What this means is that there are two IP headers:

1. Aninner IP header that carries the original IP header (specifying the
original source and destination IP addresses);

2. An outer IP header that carries the new IP header (specifying new
source and destination IP addresses).

Transport mode IP IPsec Payload
Protected
Tunnel mode 1P IPsec IP Payload
Protected

Figure 5.4 IPsec transport and tunnel modes.



5.3 Internet layer security protocols 133

The tunnel mode IPsec header appears between the outer IP header and
the inner IP header.

Both IPsec protocols—AH and ESP—can operate in either transport or
tunnel mode. Transport mode is typically used to secure IP traffic between
two endpoints (i.e., computer systems), whereas tunnel mode is typically
used to secure IP traffic between two points that are not necessarily the
endpoints of the communications. For example, one of the points may be a
security gateway for a corporate intranet. In this case, the IP traffic is
encapsulated (i.e., using IPsec in tunnel mode) between the remote system
and the security gateway (making sure that the systems located on the
corporate intranet must not be able to handle IPsec). Note that whenever
either endpoint is a security gateway (e.g., a router or firewall), IPsec must be
used in tunnel mode (in the case where traffic is destined for a security
gateway, e.g., SNMP commands, the security gateway is acting as a host, and
transport mode is also allowed).

5.3.2.1 Authentication header

The IPsec AH protocol provides data origin authentication and connection-
less data integrity for IP packets (collectively referred to as “‘authentication”
in this section). The precision of the authentication is a function of the
granularity of the SA with which AH is employed. Depending on which
cryptographic algorithm is used and how keying is performed, the AH may
also provide non-repudiation of origin services. Finally, the AH may offer an
antireplay service at the discretion of the receiver, to help counter specific
DOS attacks.

The IANA has assigned the protocol number 51 for the AH protocol, so
the header immediately preceding the AH must include 51 in its protocol or
next header field. As specified in RFC 2402 [34] and illustrated in Figure 5.5,
the AH header consists of the following fields:

» An 8-bit Next Header field;

» An 8-bit Payload Length field;

» A 16-bit field that is reserved for future use;
» A 32-bit SPI field;

» A 32-bit Sequence Number field;

» A variable-length n x 32-bit Authentication Data field.



134

Internet Security Protocols

Payload

length Reserved

Next header

Security parameters index (SPI)

Sequence number

Authentication data (n X 32 bit)

< 32 bit

\ 4

Figure 5.5 The authentication header (AH) format.

The authentication data is computed by using an authentication
algorithm and a cryptographic key specified in the corresponding SA. The
sender computes the data before sending the IP packet, and the receiver
verifies it upon reception. Several algorithms for authentication data
computation and verification have been proposed in the past. The HMAC
construction is explained in [49]. In short, the HMAC construction takes as
input the message M and the authentication key K, and produces as output
the following expression:

HMACg(M) = h(K @ opad, h(K & ipad, M))

To compute HMACg(M), the key K and an inner pad value ipad
(ipad refers to the byte 0x36 repeated several times) are first added
modulo 2. The result is concatenated with the message M and hashed
with the OWHEF / (which can be either MD5 or SHA-1). Similarly, the result
is concatenated with the sum of K and an outer pad value opad (opad
refers to the byte 0x5C repeated several times) modulo 2. Finally, this
result is hashed with the appropriate one-way hash function # (MD5 or
SHA-1), and the resulting authentication data is truncated to 96 bits.!2
Depending on the OWHF in use, the resulting HMAC constructions are

12. The truncation was introduced because of a desire to achieve a specific packet alignment goal, to avoid

devoting all 128 or 160 bits to the authentication function, and to have a uniform size MAC, whether MD5 or
SHA-1 is employed.



5.3 Internet layer security protocols 135

called HMAC-MD5-96 (in the case of MD5) and HMAC-SHA-1-96 (in the
case of SHA-1).

Because the AH protocol does not provide data confidentiality services,
implementations thereof may be widely deployed, even in countries where
controls on encryption would preclude deployment of technology that
potentially offered data confidentiality services. Consequently, AH is an
appropriate protocol to employ when confidentiality is not required.

5.3.2.2 Encapsulating security payload

As its name suggests, the IPsec ESP protocol uses IP encapsulation to provide
data confidentiality and partial traffic flow confidentiality (in tunnel mode
and with the invocation of padding data to hide the size of an IP packet).
Similar to the AH, the ESP protocol also provides authentication (referring to
data origin authentication and connectionless data integrity services). Note,
however, that the scope of the authentication offered by the ESP is narrower
than that for the AH (i.e., the IP headers below the ESP header are not
protected). If only the upper-layer protocols need to be authenticated, then
ESP authentication is an appropriate choice and is more space efficient than
use of an AH encapsulating an ESP.

The TANA has assigned the protocol number 50 for the ESP protocol, so
the header immediately preceding the ESP must include 50 in its protocol or
next header field. The ESP format is specified in RFC 2406 [38] and
illustrated in Figure 5.6. It consists of the following fields:

» A 32-bit SPI field (not encrypted);

» A 32-bit Sequence Number field (not encrypted);

» A variable-length Payload Data field;

» A variable-length Padding field;

» An 8-bit Pad Length field;

» An 8-bit Next Header field;

» In addition, the ESP may also include a variable-length n*32-bit

Authentication Data field.

In RFC 2405, the DES in cipher block chaining (CBC) mode with an
explicit initialization vector (IV) is introduced as the default algorithm to
encrypt the ESP Payload Data field [37]. But this default algorithm may be
replaced by any other algorithm at will. For example, RFC 1851 specifies



136

Internet Security Protocols

Security parameters index (SPI)

Sequence number

A

Payload data (includes
cryptographic synchronization Authenticity
data) protected

Confidentiality

protected

Padding
Padding Pad length Next header |y v

Authentication data (n X 32 bit)

< 32 bit >

Figure 5.6 The encapsulating security payload (ESP) format.

the experimental use of 3DES. In the future, it is possible and very likely that
we will see more AES implementations instead of DES or 3DES implementa-
tions. Unfortunately, export, import, and use of specific encryption
algorithms may be regulated in some countries. The algorithms for computing
the authentication data are the same as the ones suggested for the AH.

Note that both AH and ESP are also vehicles for access control, based on
the distribution of cryptographic keys and the management of traffic flows
relative to these security protocols. Also note that full protection from traffic
analysis is not provided by any of the two IPsec subprotocols. At the most,
tunnel mode ESP can provide a partial traffic flow confidentiality service. In
fact, the ESP protocol can be used to create a secure tunnel between two
security gateways. In this case, anyone eavesdropping on the communica-
tions between the security gateways is not able to see what hosts are actually
sending and receiving IP packets from behind the security gateways.
Nevertheless, it is fair to mention that only a few Internet users worry about
traffic analysis at all.

5.3.3 IKE Protocol

The IP security architecture mandates support for both manual and
automated SA and key management (using a key management protocol).



5.3 Internet layer security protocols 137

For several years, the IETF IPSEC WG had been struggling with competing
proposals for an automated SA and key management protocol:

» IBM proposed a Modular Key Management Protocol (MKMP) for its
IP Secure Tunnel Protocol (IPST) [50].

» Sun Microsystems proposed and is using its Simple Key-Management
for Internet Protocols (SKIP) [51].

» Phil Karn originally proposed and prototyped a Photuris Key
Management Protocol!® [52, 53] that is conceptually similar to the
Station-to-Station (STS) protocol originally proposed in [54]. The
Photuris protocol combines an ephemeral Diffie-Hellman key
exchange with a subsequent authentication step to protect against
man-in-the-middle attacks. To protect the participanting peers
against resource clogging attacks, the Photuris protocol introduced
a cookie exchange.

» Hugo Krawczyk proposed a variation and generalization of the
Photuris protocol, called Photuris Plus or SKEME [55].

» Because Bill Simpson (one of the coauthors of the latest Photuris Key
Management Protocol specification) refused to make changes to
protocol specification in accordance with suggestions provided by the
IETF IPSEC WG chairs, the Photuris Key Management Protocol was
dropped from consideration and Hilarie Orman drafted a version of
the Photuris and SKEME protocols that was called OAKLEY Key
Determination Protocol [56]. In this protocol, several parameters are
negotiable, including, for example, the mathematical structure in
which the Diffie-Hellman key exchange is supposed to take place and
the authentication method that is being used.

» The NSA Office of INFOSEC Computer Science proposed a general
Internet Security Association and Key Management Protocol
(ISAKMP).

In the first half of the 1990s, the developers of the various key
management protocols competed with one another within the IETF IPSEC
WG. There were basically two groups: (1) SKIP and (2) the group of
Photuris-like protocols, including, for example, the OAKLEY Key Determi-

13. Phil Karn was later joined by Bill Simpson to write the experimental Photuris protocol specifications.



138

Internet Security Protocols

nation Protocol. Also, because of the fact that SKIP does not make use of SAs
at all, the ISAKMP is useful only for the protocols of group (b).
Consequently, the two major contenders were SKIP and ISAKMP/OAKLEY.

In September 1996, the IETF Security Area Director'* posted a
document to the Internet to end the controversy. In this document, the
two contenders (i.e., SKIP and ISAKMP/OAKLEY) were reviewed, and it was
concluded that ISAKMP/OAKLEY should become the mandatory standard
(SKIP can still become an elective standard).

In short, ISAKMP defines how two peers communicate, how the
messages they use to communicate are constructed, and through which state
transitions they go to secure their communications. It provides the means to
authenticate a peer, to exchange information for a key exchange, and to
negotiate security services. It does not, however, define how a particular
authenticated key exchange is done, nor does it define the attributes
necessary for an SAs. These issues are left to a specific key exchange protocol,
such as OAKLEY. As such, ISAKMP is a general-purpose security exchange
protocol that may be used for policy negotiation and establishment of keying
material for a variety of needs. The specification of what IKE is being used for
is done in a domain of interpretation (DOI). The IP security DOI for ISAKMP is
specified in RFC 2407 [40]. More specifically, RFC 2407 defines how
ISAKMP can be used to negotiate IKE and IPsec SAs. If and when IKE is
used by other protocols, they will each have to define their own DOL!® In
other words, ISAKMP defines the language to establish authenticated
session keys, whereas OAKLEY defines the steps two peers must actually
take to establish the keys. Together they constitute the IKE protocol.

The IKE protocol is a request-response type of protocol with an initiator
and a responder. The IKE initiator is the party that is instructed by its IPsec
module to establish an SA or SA bundle as a result of an outbound packet
matching an SPD entry. The SPD of IPsec is used to instruct IKE what to
establish but does not instruct IKE how to do so. In fact, how IKE establishes
the IPsec SAs is based on its own policy settings. IKE defines policy in terms
of protection suites. Each protection suite must define at least an encryption
algorithm, a hash algorithm, a Diffie-Hellman group, and a method for
authentication. IKE’s policy database then is the list of all protection suites
weighted in order of preference.

The establishment of an IPsec SA (or an SA bundle) using IKE is a two-
phase process:

14. The IETF Security Area Director was (and still is) Jeffrey Schiller from MIT.
15. At the time of this writing, no other DOI is available.



5.3 Internet layer security protocols 139

» In phase one, an IKE SA is established. The IKE SA defines the way in
which the two peers communicate, for example, which algorithm to
use to encrypt IKE traffic, how to authenticate the remote peer, and
SO on.

» In phase two, the IKE SA is used to establish any given number of
IPsec SAs between the communicating peers. The IPsec SAs
established by IKE may optionally have perfect forward secrecy
(PES'®) of the keys and, if desired, also of the peer identity.

5.3.3.1 Phase one: establishing an IKE SA

The establishment of an IKE SA basically consists of three steps and
corresponding exchanges:

1. A cookie exchange;
2. A value exchange;

3. An authentication exchange.

In short, the cookie exchange protects the responder from simple
resource clogging attacks. Once initiator and responder cookies have been
established, a value exchange and a subsequent authentication exchange are
used to implement an authenticated Diffie-Hellman key exchange, and to
provide the initiator and responder with an authenticated shared secret
accordingly.

Cookie Exchange: To protect the responder from simple resource clog-
ging attacks, the initiator must provide a valid cookie whenever he or she
wants to enter a value exchange and initiate a computationally expensive
Diffie-Hellman key exchange accordingly. A valid cookie, in turn, is a value
that can be computed and verified only by the responder. For example, it can
be a keyed one-way hash value of the initiator’s and responder’s IP addresses
and port numbers. In this case, the key must be known only to the
responder.

16. For a key agreement protocol based on public key cryptography, PES ensures that a session key derived from a
set of long-term public and private keys will not be compromised if one of the private keys is compromised in
the future.



140

Internet Security Protocols

Value Exchange: A value exchange establishes a shared secret key between
the communicating peers. In general, there is more than one way to establish
a key, but IKE always uses a Diffie-Hellman key exchange. Consequently,
the act of doing a Diffie-Hellman key exchange is not negotiable, but the
parameters to use are. In fact, IKE borrows five groups from the OAKLEY
specification; three are traditional exchanges doing exponentiation modulo
a large prime, and two are elliptic curve groups. Upon completion of the
value exchange, the two peers share a key and this key still needs to be
authenticated.

Authentication Exchange: In a final step, the Diffie-Hellman key and,
therefore, the IKE SA must be authenticated. There are five methods of
authentication defined in IKE: preshared keys, digital signature using DSS,
digital signature using RSA, and two methods that use an encrypted nonce
exchange with RSA.

There are basically two modes and corresponding exchanges that can be
used in phase one: a main mode exchange and an aggressive mode
exchange.

1. In a main mode exchange, the request and response messages for each
of the three exchanges are sent and received one after the other,
totaling six messages.

2. Contrary to that, some of the messages are sent together in an
aggressive mode exchange, totaling three messages. Most important, an
aggressive mode exchange cannot use cookies to protect against
resource clogging attacks.

In short, aggressive mode is faster but main mode is more flexible. Once
Phase One is completed, Phase Two may commence and the required IPsec
SAs may be created.

5.3.3.2 Phase two: establishing IPsec SAs

Contrary to Phase One, there is a single Phase Two exchange, and this
exchange has been named quick mode exchange. This exchange negotiates
IPsec SAs under the protection of the IKE SA, which was created in Phase
One. The keys used for the IPsec SAs are, by default, derived from the IKE
secret state. Pseudorandom nonces are exchanged in quick mode and
hashed with the secret state to generate keys and guarantee that all SAs



5.3 Internet layer security protocols 141

have unique keys. All such keys do not have the property of PES as they are
all derived from the same root key (i.e., the IKE shared secret). To provide
PFS, Diffie-Hellman public values, and the group from which they are
derived, are exchanged along the nonces and IPsec SA negotiation
parameters. The resulting secret is used to generate the IPsec SA keys to
guarantee PFS.

5.3.4 Implementations

As illustrated in Figure 5.7, there are three possibilities to implement
the IPsec architecture (with or without key management) and to place the
implementation in a host or security gateway:

The most simple and straightforward possibility is to integrate the
IPsec protocols into a native IP implementation (a). This is applicable
to hosts and security gateways, but requires access to the correspond-
ing source code.

Another possibility is provided by so-called bump-in-the-stack (BITS)
implementations (b). In these implementations, IPsec is implemented
underneath an existing IP stack, between the native IP implementa-
tion and the local network drivers. Source code access for the IP stack
is not required in this case, making it appropriate for use with legacy
systems. This approach, when adopted, is usually employed with
hosts.

A somewhat related possibility is provided by so-called bump-in-the-
wire (BITW) implementations (c). Similar to BITS implementations,
source code access for the IP stack is not required for BITW
implementations. But in addition to BITS implementations, additional
hardware in the form of outboard cryptographic processors are

(a) (a)
®) ®)
(© (©

Figure 5.1 The three possibilities to implement the IPsec architecture.



142

Internet Security Protocols

typically used. This is a common design feature of network security
systems used by the military, and of some commercial systems as well.
BITW implementations may be designed to serve both hosts and
security gateways.

As of this writing, most IPsec implementations are either BITS or BITW.
For example, PGPnet is a BITS implementation, whereas most firewall
products that support IPsec for virtual private networking are BITW
implementations. The dominance of BITS or BITW implementations is
expected to change in the future, because more vendors of networking
software have integrated or are about to integrate the IPsec protocols into
their products. For example, Windows 2000 comes along with IPsec support
and the Cisco IOS also provides support for the IPsec protocols in the more
recent releases.

From an implementation point of view, it is important that the key
management protocol in use (e.g., IKE protocol) implements a standardized
APL. The IETF IPSEC WG has specified a corresponding PF_KEY key
management API version 2 [57].

There are advantages and disadvantages related to security protocols
that operate at the Internet layer in general, and the IPsec protocols in
particular:

» The main advantage is that applications need not be changed to use
the IPsec protocols. Another advantage is that providing security at
the Internet layer works for both TCP- and UDP-based applications.
This is advantageous because a steadily increasing number of appli-
cations are based on UDP that is hard to secure at the transport layer.

» The main disadvantage is that IP stacks must either be changed or
extended. Because of the inherent complexity of the IKE protocol,
the changes or extensions are not trivial. In the long term, high-speed
networking may also provide a performance problem. As of this
writing, it is not clear whether encryption rates and key agility
properties of IPsec implementations will meet the performance
requirements of future high-speed networks.

Because of the disadvantages of providing security at the Internet layer,
some alternative approaches have appeared in the past (as discussed in the
other sections of this chapter). The current trend in industry suggests that
the IPsec protocols will primarily be used for virtual private networking and
connecting mobile users to corporate intranets.



5.8 Application layer security protocols 143

5.4 Transport layer security protocols

Again, the idea of having a standardized transport layer security protocol is
not new, and several protocols had been proposed before the IETF TLS WG
even started to meet:

» The security protocol 4 (SP4) is a transport layer security protocol
that was developed by the NSA and NIST as part of the secure data
network system (SDNS) suite of security protocols [58].

» The transport layer security protocol (TLSP) was developed and
standardized by the International Organization for Standardization
(ISO) [59].

» Matt Blaze and Steven Bellovin from AT&T Bell Laboratories
developed an encrypted session manager (ESM) software package
that operates at the transport layer [60].

In Internet application programming, it is common to use a generalized
interprocess communications facility (IPC) to work with different transport
layer protocols. Two popular IPC interfaces are BSD sockets and the transport
layer interface (TLI), found on System V UNIX derivates. One idea that
comes to mind first when trying to provide security services for TCP/IP
applications is to enhance an IPC interface such as BSD sockets with the
ability to authenticate peer entities, to exchange secret keys, and to use these
keys to authenticate and encrypt data streams transmitted between the
communicating peer entities. Netscape Communications Corporation
followed this approach when it specified a secure sockets layer (SSL) and a
corresponding SSL Protocol. The idea was later adopted by the IETF transport
layer security (TLS) WG that is tasked to develop a security protocol for the
transport layer. Due to their importance on the marketplace for network
security solutions, we address the SSL and TLS protocols separately in the
following chapter.

5.5 Application layer security protocols

In general, there are three approaches to provide security services at or above
the application layer. First, the services can be integrated into each
application protocol individually. Second, a generic security system can be
built that provides the possibility to incorporate security services into



144

Internet Security Protocols

arbitrary application programs. Third, it is possible to leave the application
layer as it is and to provide security services above it.!”

5.5.1 Security-enhanced application protocols

There are several application protocols that have been enhanced to provide
integrated security services. For example, the Secure Shell (SSH) is a widely
used and deployed protocol that serves as a secure replacement for terminal
access and file transfer [61, 62]. DNS Security, or DNSSEC in short, refers to
a set of security extensions and enhancements for DNS [63]. Furthermore,
there are several cryptographic file systems that have been developed and
proposed in the past. Examples include the Cryptographic File System (CES)
[64, 65] and the Andrew File System (AFS) [66].

With regard to Web security, the IETF chartered a Web Transaction
Security (WTS) WG'® in 1995. The goal of the WG was to “develop
requirements and a specification for the provision of security services to Web
transaction.”” The starting point was the specification of the Secure Hypertext
Transfer Protocol (S-HTTP) that had been developed and was originally
proposed by Eric Rescorla and Allan Schiffman on behalf of the
CommerceNet consortium in the early 1990s.'” S-HTTP version 1.0 was
publicly released in June 1994 and distributed by the CommerceNet
consortium. Since 1995, the S-HTTP specification has been further refined
under the auspices of the IETF WTS WG. In August 1999, the S-HTTP was
specified and released in an experimental RFC document [67] (comple-
mented by other RFC documents). Due to the success and widespread
deployment of SSL and TLS, S-HTTP and the IETF WTS WG silently
disappeared.

5.5.2 Authentication and key distribution systems

In the 1990s, a considerable amount of work had been done to develop
authentication and key distribution systems that can be used by arbitrary
applications to incorporate security services. Examples include the following
authentication and key distribution systems:

18.
19.

In [1], the third approach is discussed in a separate chapter with the title ““message security protocols.”
http://www.ietf.org/html.charters/wts-charter.html

Launched in 1994 as a nonprofit organization, CommerceNet is dedicated to advancing electronic commerce
on the Internet. Its almost 600 member companies and organizations seek solutions to technology issues,
sponsor industry pilots, and foster market and business development. The CommerceNet consortium is
available on-line at http://www.commerce.net.



5.8 Application layer security protocols 145

» Kerberos, originally developed at MIT;
» Network Security Program (NetSP), developed by IBM;
» SPX, developed by DEC;

» The Exponential Security System (TESS), designed and developed at
the University of Karlsruhe.

In addition, there are several extensions to the basic Kerberos
authentication system, such as those provided by Yaksha, SESAME (secure
European system for applications in a multivendor environment), and the
Distributed Computing Environment (DCE) developed by the Open
Group.?® In this section we are not going to describe and discuss the
authentication and key distribution systems mentioned above. Instead we
refer to [68]. Kerberos will be overviewed and discussed in Section 8.3, when
we talk about Kerberos-based authentication and authorization infrastruc-
tures (AAIs).

The important thing to keep in mind is that an authentication and key
distribution system is to provide an API that makes it simple to secure any
application protocol. The API of choice is the Generic Security Services API
(GSS API) as specified by the IETF Common Authentication Technology
(CAT) WG.2!

5.5.3 Layering security protocols above the application layer

In addition to security-enhanced application protocols and authentication
and key distribution systems, it is possible to layer security protocols above
the application layer (i.e., leave the application protocols as they are). In this
case, one may use any given (insecure) application protocol and secure the
stream of bits and bytes before it is submitted to the application.

There are bascially two approaches that can be mentioned in this
context: secure messaging (e.g., PGP or S/MIME as further addressed in [69])
and XML security as specified by the World Wide Web Consortium (W3C).
In fact, the use of XML makes it possible to encrypt or digitally sign data
segments (e.g., messages) in a standardized way before they are trans-
mitted in computer networks or distributed systems. The corresponding

20.

21.

The Open Group was formed in early 1996 by the consolidation of two open-systems consortia, namely the
Open Software Foundation (OSF) and the X/Open Company Ltd. The Open Group includes a large number of
computer vendors, including IBM, DEC, and Microsoft.
http://wuw.ietf.org/html.charters/cat-charter.html



146 Internet Security Protocols

specifications are known as XML Encryption and XML Digital Signatures.
Because XML security is a very new and still transient topic, it is not further
addressed in this book. Note, however, that the IETF XMLDSIG WG?? has
been asked ““to develop an XML compliant syntax used for representing the
signature of Web resources and portions of protocol messages (anything
referenceable by a URI) and procedures for computing and verifying such
signatures.” In March 2001, the WG came up with a specification that has
been submitted to the Internet standards track [70].

In April 2002, Microsoft Corporation, IBM Corporation, and VeriSign,
Inc. jointly proposed an architecture and a road map to properly address
security within a Web service environment. The specifications that are
currently being developed build upon foundational technologies, such as
SSL/TLS, SOAP, WSDL, XML Digital Signatures, and XML Encryption. As of
this writing, the only specification that is available is the WS-Security
specification. In short, it describes how to attach digital signature and
encryption headers to SOAP messages. In addition, it describes how to attach
security tokens, including binary security tokens such as X.509 certificates
and Kerberos tickets, to messages. In addition to the WS-Security
specification, there are many specifications in the queue. Examples include
the WS-Policy, WS-Trust, WS-Privacy, WS-SecureConversation, WS-
Federation, and WS-Authorization specifications. You may refer to
http://www-106.ibm. com/developerworks/library/ws-secmap for a cor-
responding overview.

5.6 Conclusions

In this chapter we overviewed and briefly discussed some cryptographic
security protocols that can be used to provide communication security
services for TCP/IP-based networks. While most of these protocols are
similar in terms of security services they provide as well as cryptographic
algorithms and techniques they employ, they vary fundamentally in the
manner in which they provide the security services and their placement
within the TCP/IP communications protocol suite. In particular, we have
seen protocols for the network access, Internet, transport, and application
layer.

Given this variety of cryptographic security protocols, we ask at least two
questions:

22. http://www.ietf.org/html.charters/xmldsig-charter.html



5.6 Conclusions 147

1. Which security protocol is the best?

2. Which layer is best suited to provide communication security
services?

With regard to the first question, the cryptographic security protocols
have unique and partly incomparable advantages and disadvantages.
For example, the IPsec and IKE protocols provide support for many
parameters and options that are negotiable between the communicating
peers, whereas the SSL and TLS protocols are rather strict in terms of
parameters and options that must be implemented and supported. Given this
situation and its diversity, it is very difficult or even impossible to have the
protocols compete with each another and to actually decide which one is the
best. Fortunately, most security protocols provide a reasonable level of
security. In fact, most of them use the same or very similar cryptographic
techniques and algorithms (e.g., the HMAC construction for message
authentication, DES, 3DES, or AES for bulk data encryption, and RSA for
entity authentication and key exchange). Only a few protocols have been
shown to be weak and have serious security problems (e.g., MS-PPTP). Note,
however, that this is only an example and that there are probably more weak
than strong protocols in use today. This is particularly true for proprietary and
unpublished security protocols that one sometimes finds in commercial
products.

If deciding which security protocol is the best is difficult if not impossible,
the next question is which layer is best suited to provide communication
security services. This question is simpler to answer mainly because it
addresses classes of security protocols (instead of individual security
protocols). In order to further simplify the discussion (and to reduce the
variety of layers that can provide communication security services), one
usually distinguishes between lower layers (i.e., the network access and
Internet layers) and higher layers (i.e., the transport and application layers,
as well as the provision of security services above the application layer). In
either case, there are arguments to provide security services at either the
lower or higher layers in a given protocol stack:

» In short, the proponents of providing security services at the lower
layers argue that lower-layer security can be implemented transpar-
ently to users and application programs, effectively killing many birds
with a single stone.

» Contrary to that, the proponents of providing security services at the
higher layers argue that lower-layer security attempts to do too many



148 Internet Security Protocols

things, and that only protocols that work at higher layers can meet
application-specific security needs and provide corresponding secur-
ity services both effectively and efficiently.

Unfortunately, both arguments are true in some sense and there is no
generally agreed-upon best layer to provide security services. The best layer
actually depends on the security services that are required in a given
environment and the application environment in which the services must be
implemented and deployed. For example, nonrepudiation services are
typically provided at the higher layers, whereas data confidentiality services
can also be provided at the lower layers. Also, in an application environment
where one can assume users to have smartcards and public key certificates
the implementation and provision of non-repudiation services is usually
simple and straightforward. In either case, the end-to-end argument
originally proposed in [71] also applies for security and provides a strong
argument for providing security services at the higher layers. In short, the
end-to-end argument says that the function in question (e.g., a security
function) can completely and correctly be implemented only with the
knowledge of the application standing at the endpoints of the communica-
tions system. Therefore, providing that function as a feature of the
communications system itself is not possible (sometimes an incomplete
version of the function provided by the communications system may be
useful as a performance enhancement).

References
[11 Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech
House, 2002.

[2] Simpson, W., “The Point-to-Point Protocol (PPP),” Request for Comments
1661, STD 51, July 1994.

[3] IEEE 802.10, “IEEE Standards for Local and Metropolitan Area Networks:
Interoperable LAN/MAN Security (SILS),” 1998.

[4] IEEE 802.10c, “Supplements to IEEE Std 802.10, Interoperable LAN/MAN
Security (SILS): Key Management (Clause 3),” 1992.

[5] Valencia, A., M. Littlewood, and T. Kolar, ““Cisco Layer Two Forwarding
(Protocol) L2F,” Request for Comments 2341, May 1998.

[6] Scott, C., P. Wolfe, and M. Erwin, Virtual Private Networks, 2nd ed., Sebastopol,
CA: O'Reilly & Associates, 1998.



5.6 Conclusions

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

149

Brown, S., Implementing Virtual Private Networks, New York: McGraw-Hill,
1999.

Hanks, S., et al.,, ““Generic Routing Encapsulation (GRE),”” Request for
Comments 1701, October 1994.

Rand, D., “The PPP Compression Control Protocol (CCP),” Request for
Comments 1962, June 1996.

Simpson, W., “PPP Challenge Handshake Authentication Protocol (CHAP),”
Request for Comments 1994, August 1996.

Meyer, G., “The PPP Encryption Control Protocol (ECP),” Request for
Comments 1968, June 1996.

Blunk, L., and J. Vollbrecht, ““PPP Extensible Authentication Protocol (EAP),”
Request for Comments 2284, March 1998.

Zorn, G., and S. Cobb, “Microsoft PPP CHAP Extensions,” Request for
Comments 2433, October 1998.

Pall, G. S., and G. Zorn, ‘““Microsoft Point-to-Point Encryption (MPPE)
Protocol,” Request for Comments 2118, April 1998.

Schneier, B., and P. Mudge, ‘““Cryptanalysis of Microsoft’s Point-to-Point
Tunneling Protocol,” Proceedings of ACM Conference on Communcations and
Computer Security, November 1998.

Zorn, G., ““Microsoft PPP CHAP Extensions, Version 2,”” Request for Comments
2759, January 2000.

Schneier, B., and P. Mudge, “Cryptanalysis of Microsoft’s PPTP Authentication
Extensions (MS-CHAPv2),” June 1999.

Shea, R., L2TP: Implementation and Operation, Reading, MA: Addison-Wesley,
1999.

Townsley, W., et al., “Layer Two Tunneling Protocol ‘L2TP’,” Request for
Comments 2661, August 1999.

Shirey, R., “Internet Security Glossary,” Request for Comments 2828, May
2000.

Davie, B. S., and Y. Rekhter, MPLS: Technology and Applications, San Francisco,
CA: Morgan Kaufmann Publishers, 2000.

Black, U., MPLS and Label Switching Networks, Englewood Cliffs, NJ: Prentice
Hall, 2001.

Nelson, R., ““SDNS Services and Architecture,” Proceedings of National Computer
Security Conference, 1987, pp. 153-157.

ISO/IEC 11577, Information Technology—Telecommunications and Informa-
tion Exchange Between Systems—Network Layer Security Protocol, Geneva,
Switzerland, 1993.



150

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Internet Security Protocols

Ioannidis, J., and M. Blaze, ““The Architecture and Implementation of
Network-Layer Security Under Unix,” Proceedings of the USENIX UNIX Security
Symposium IV, October 1993, pp. 29-39.

Atkinson, R. J., ““Security Architecture for the Internet Protocol,”” Request for
Comments 1825, August 1995.

Atkinson, R. J., “IP Authentication Header,”” Request for Comments 1826,
August 1995.

Atkinson, R. J., “IP Encapsulating Security Payload,”” Request for Comments
1827, August 1995.

Metzger, P., and W. Simpson, “IP Authentication Using Keyed MD5,”” Request
for Comments 1828, August 1995.

Karn, P., P. Metzger, and W. Simpson, “The ESP DES-CBC Transform,”
Request for Comments 1829, August 1995.

Atkinson, R. J., “Towards a More Secure Internet,” IEEE Computer, Vol. 30,
January 1997, pp. 57-61.

Oppliger, R., “‘Security at the Internet Layer,” IEEE Computer, Vol. 31, No. 9,
September 1998, pp. 43-47.

Kent, S., and R. Atkinson, ““Security Architecture for the Internet Protocol,”
Request for Comments 2401, November 1998.

Kent, S., and R. Atkinson, “IP Authentication Header,” Request for Comments
2402, November 1998.

Madson, C., and R. Glenn, ““The Use of HMAC-MD5-96 Within ESP and AH,"”’
Request for Comments 2403, November 1998.

Madson, C., and R. Glenn, “The Use of HMAC-SHA-1-96 Within ESP and
AH,” Request for Comments 2404, November 1998.

Madson, C., and N. Doraswamy, ‘“The ESP DES-CBC Cipher Algorithm with
Explicit IV,” Request for Comments 2405, November 1998.

Kent, S., and R. Atkinson, ““IP Encapsulating Security Payload (ESP),”” Request
for Comments 2406, November 1998.

Glenn, R., and S. Kent, ““The NULL Encryption Algorithm and Its Use with
IPsec,” Request for Comments 2410, November 1998.

Piper, D., ““The Internet IP Security Domain of Interpretation for ISAKMP,"”
Request for Comments 2407, November 1998.

Maughan, D., et al.,, “Internet Security Association and Key Management
Protocol (ISAKMP),” Request for Comments 2408, November 1998.

Harkins, D., and D. Carrel, “The Internet Key Exchange (IKE),” Request for
Comments 2409, November 1998.



5.6 Conclusions

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

151

Thayer, R., and N. Doraswamy, “IP Security Document Roadmap,” Request
for Comments 2411, November 1998.

Doraswamy, N., and D. Harkins, IPSec: The News Security Standard for the Internet,
Intranets, and Virtual Private Networks, Upper Saddle River, NJ: Prentice Hall,
1999.

Kaufman, E., and A. Neuman, Implementing IPSec: Making Security Work on
VPNs, Intranets, and Extranets, New York: John Wiley & Sons, 1999.

Frankel, S., Demystifying the IPsec Puzzle, Norwood, MA: Artech House, 2001.

Bellovin, S. M., ““Problem Areas for the IP Security Protocols,”” Proceedings of the
6th USENIX Security Symposium, 1996, pp. 1-16.

Bellovin, S. M., ‘“Probable Plaintext Cryptanalysis of the IP Security
Protocols,” Proceedings of the Symposium on Network and Distributed System
Security, 1997, pp. 155-160.

Oehler, M., and R. Glenn, “HMAC-MD5 IP Authentication with Replay
Prevention,” Request for Comments 2085, February 1997.

Cheng, P. C., et al., “A Security Architecture for the Internet Protocol,” IBM
Systems Journal, Vol. 37, No. 1, 1998, pp. 42-60.

Caronni, G., et al., ““SKIP—Securing the Internet,”” Proceedings of WET ICE 96,
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, June 1996, pp. 62-67.

Karn, P., and W. Simpson, ‘‘Photuris: Session-Key Management Protocol,”
Request for Comments 2522, March 1999.

Karn, P., and W. Simpson, ““Photuris: Extended Schemes and Attributes,”
Request for Comments 2523, March 1999.

Diffie, W., P. C. van Oorshot, and M. J. Wiener, ‘“Authentication and
Authenticated Key Exchanges,”” Designs, Codes and Cryptography, Norwell, MA:
Kluwer Academic Publishers, 1992, pp. 107-125.

Krawczyk, H., “SKEME: A Versatile Secure Key Exchange Mechanism for
Internet,”” Proceedings of Internet Society Symposium on Network and Distributed
System Security, February 1996.

Orman, H. “The OAKLEY Key Determination Protocol,” Request for
Comments 2412, November 1998.

McDonald, D., C. Metz, and B. Phan, ““PF_KEY Key Management API, Version
2,” Request for Comments 2367, July 1998.

Nelson, R., ““SDNS Services and Architecture,” Proceedings of National Computer
Security Conference, 1987, pp. 153-157.

ISO/IEC 10736, Information Technology—Telecommunications and Information
Exchange Between Systems—Transport Layer Security Protocol, Geneva, Switzer-
land, 1993.



152

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Internet Security Protocols

Blaze, M., and S. M. Bellovin, ““Session-Layer Encryption,” Proceedings of
USENIX UNIX Security Symposium, June 1995.

Ylonen, T., ““SSH—Secure Login Connections over the Internet,”” Proceedings of
USENIX UNIX Security Symposium, July 1996.

Barrett, D. J., and R. E. Silverman, SSH, the Secure Shell: The Definitive Guide,
Sebastopol, CA: O’Reilly & Associates: 2001.

Eastlake, D., “Domain Name System Security Extensions,”” Request for
Comments 2535, March 1999.

Blaze, M., ““A Cryptographic File System for UNIX,” Proceedings of ACM
Conference on Computer and Communications Security, November 1993, pp. 9-16.

Blaze, M., “Key Management in an Encrypting File System,” Proceedings of
USENIX Summer Conference, June 1994, pp. 27-35.

Howard, J. H., “An Overview of the Andrew File System,” Proceedings of
USENIX Conference, 1988, pp. 23-26.

Rescorla, E., and A. Schiffman, “The Secure HyperText Transfer Protocol,”
Request for Comments 2660, August 1999.

Oppliger, R., Authentication Systems for Secure Networks, Norwood, MA: Artech
House, 1996.

Oppliger, R., Secure Messaging with PGP and S/MIME, Norwood, MA: Artech
House, 2000.

Eastlake, D., J. Reagle, and D. Solo, ““XML-Signature Syntax and Processing,”’
Request for Comments 3075, March 2001.

Saltzer, J. H., D. P. Reed, and D. D. Clark, “End-to-End Arguments in System
Design,” ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984,
pp- 277-288.


WMcCaul
Author Query
AQ1 Correction not clear. When checked with "Abbreviation and
Acronyms" there seems to be no hyphen between the words
"metropolitan" "area"


6.1
6.2
6.3
6.4
6.5

CHAPTER

Contents
SSL Protocol

TLS Protocol

SSL and TLS certificates
Firewall traversal
Conclusions

References

SSL and TLS Protocols

As mentioned in the previous chapter, there are two
transport layer security protocols that are of utmost
importance for the security of Web-based applications: the
SSL and TLS protocols. In this chapter, we elaborate on the two
protocols. More specifically, we overview and briefly discuss
the protocols in Sections 6.1 and 6.2, address SSL and TLS
certificates in Section 6.3, and elaborate on firewall traversal in
Section 6.4. Finally, we draw some conclusions in Section 6.5.

6.1 SSL Protocol

In this section, we elaborate on the history, architecture, two
subprotocols (i.e., the SSL Record Protocol and SSL Handshake
Protocol), security analysis, and implementations of the SSL
protocol.

6.1.1 History

In general, there are several possibilities to cryptographically
protect HTTP data traffic. For example, in the early 1990s the
CommerceNet! consortium proposed S-HTTP that was basically
a security-specific enhancement of HTTP. An implementation
of S-HTTP was made publicly available in a modified version of

1. http://www.commerce.net

183



154

SSL and TLS Protocols

the NCSA Mosaic browser that users had to purchase (contrary to the
“normal” NCSA Mosaic browser that was publicly and freely available on
the Internet).

At the same time, however, Netscape Communications introduced SSL
and a corresponding protocol with the first version of Netscape Navigator.?
Contrary to the CommerceNet consortium, Netscape Communications did
not charge its customers for the implementation of its security protocol.
Consequently, SSL became the predominant protocol to provide security
services for HTTP data traffic after 1994, and S-HTTP silently sank into
oblivion.

So far, there have been three versions of SSL:

1. SSL version 1.0 was used internally only by Netscape Communica-
tions. It contained some serious flaws and was never released in
public.

2. SSL version 2.0 was incorporated into Netscape Navigator versions
1.0 through 2.x. It had some weaknesses related to specific
incarnations of the man-in-the-middle attack. In an attempt to
leverage public uncertainty about SSL’s security, Microsoft also
introduced the competing Private Communication Technology (PCT)
Protocol in its first release of Internet Explorer in 1996.

3. Netscape Communications responded to Microsoft’s PCT challenge
by introducing SSL version 3.0 that addressed the problems in SSL
2.0 and added some new features. At this point, Microsoft backed
down and agreed to support SSL in all versions of its TCP/IP-based
software (although its own software still supports PCT for backward
compatibility).

The latest specification of SSL 3.0 was officially released in March 1996.>
It is implemented in all major browsers, including, for example, Microsoft
Internet Explorer 3.0 (and higher), Netscape Navigator 3.0 (and higher), and
Opera. As discussed later in this chapter, SSL 3.0 has also been adapted by
the IETF TLS WG. In fact, the TLS 1.0 protocol specification is a derivative of

On August 12, 1997, Netscape Communications was granted U.S. patent 5,657,390 entitled “Secure socket
layer application program apparatus and method”” for the technology employed by the SSL protocol.

The SSL 3.0 specification was drafted by Alan O. Freier and Philip Karlton of Netscape Communications, as
well as Paul C. Kocher of Cryptography Research.



6.1 SSL Protocol 155

SSL 3.0. In the following two sections, we focus only on the SSL and TLS
protocols; the PCT protocol is not further addressed in this book.

6.1.2 Architecture

The architecture of SSL and the corresponding SSL protocol are illustrated in
Figure 6.1. According to this figure, SSL refers to an intermediate (security)
layer between the transport layer and the application layer. SSL is layered on
top of a connection-oriented and reliable transport service, such as provided
by TCP. It is conceptually able to provide security services for arbitrary TCP-
based application protocols, not just HTTP. As a matter of fact, one major
advantage of transport layer security protocols in general, and the SSL
protocol in particular, is that they are application-independent, in the sense
that they can be used to transparently secure any application protocol
layered on top of TCP. Figure 6.1 illustrates several exemplary application
protocols, including NSIIOP, HTTP, FTP, Telnet, IMAP, IRC, and POP3. They
can all be secured by layering them on top of SSL (the appended letter S in
the corresponding protocol acronyms indicates the use of SSL). Note,
however, that SSL has a strong client-server orientation and does not really
meet the requirements of peer application protocols.

In short, the SSL protocol provides communication security that has
three basic properties:

1. The communicating parties (i.e., the client and the server) can
authenticate each other using public key cryptography.

Application | POP3s| | IRCS IMAP | | TELNETS | | FTPS | oo HTTPS | | NSIIOPS
layer # 995 # 994 # 993 # 992 # 990 # 443 # 261
Intermediate SSL Handshake SSL Change Cipherspec SSL Alert SSL Application
security Protocol Protocol Protocol Data Protocol
layer
SSL Record Protocol

lTransport User Datagram Protocol (UDP) Transport Control Protocol (TCP)

ayer
Internet Internet Protocol (IP)
layer

Figure 6.1 The architecture of SSL and the SSL protocol.



156

SSL and TLS Protocols

2. The confidentiality of the data traffic is protected, as the connection
is transparently encrypted after an initial handshake and session
key negotiation has taken place.

3. The authenticity and integrity of the data traffic is also protected, as
messages are transparently authenticated and integrity-checked
using MACs.

Nevertheless, it is important to note that SSL does not protect against
traffic analysis attacks. For example, by examining the unencrypted source
and destination IP addresses and TCP port numbers, or examining the
volume of transmitted data, a traffic analyst can still determine what parties
are interacting, what types of services are being used, and sometimes even
recover information about business or personal relationships. We have
already mentioned in this book that users generally consider the threat of
traffic analysis to be relatively low, and so the developers of SSL have not
attempted to address it, either. Furthermore, SSL does not protect against
attacks directed against the TCP implementation, such as TCP SYN flooding*
or session hijacking attacks.’

To use SSL protection, both the client and server must know that the
other side is using SSL. In general, there are three possibilities to address this
issue:

1. Use dedicated port numbers reserved by the Internet Assigned
Numbers Authority (IANA). In this case, a separate port number
must be assigned for every application protocol that uses SSL.

2. Use the normal port number for every application protocol, and to
negotiate security options as part of the (now slightly modified)
application protocol.

3. Use a TCP option to negotiate the use of a security protocol, such as
SSL, during the normal TCP connection establishment phase.

The application-specific negotiation of security options (i.e., the second
possibility) has the disadvantage of requiring each application protocol to be
modified to understand the negotiation process. Also, defining a TCP option
(i.e., the third possibility) would be a fine solution, but has not been

4.
5.

This attack requires the flooding of a TCP implementation with SYN messages.
This attack targets an endpoint of a TCP connection and tries to take over the connection.



6.1 SSL Protocol 157

seriously discussed so far. In practice, separate port numbers have been
reserved and assigned by the IANA for every application protocol that may
run on top of SSL or TLS (i.e., the first possibility).® Note, however, that the
use of separate port numbers also has the disadvantage of requiring two TCP
connections if the client does not know what the server supports. First the
client must connect to the secure port, and then to the unsecure port, or vice
versa. It is very possible that future protocols will abandon this approach and
go for the second possibility. For example, the Simple Authentication and
Security Layer (SALS) defines a method for adding authentication support to
connection-based application protocols [1]. According to the SALS specifica-
tion, the use of authentication mechanisms is negotiable between the client
and server of a given application protocol. As of this writing, SALS is
primarily used to secure communications between IMAP4 clients and
servers. It is not clear at the moment whether SALS or similar mechanisms
will also be used to secure other application protocols.

The port numbers assigned by the IANA for application protocols that
run on top of SSL/TLS are summarized in Table 6.1 and partly illustrated in
Figure 6.1. Note that some acronyms for application protocols that run on
top of SSL/TLS have changed since publication of the first edition of this
book. Today, the /S’ indicating the use of SSL is consistently appended
(postfixed) to the acronyms of the corresponding application protocols (in
some earlier terminologies, the S was inconsistently used and prepended
(prefixed) to some acronyms).

Table 6.1 Port Numbers Assigned for Application Protocols That Run on Top of

SSL/TLS

Keyword Port Description

nsiiops 261 IIOP name service over TLS/SSL
https 443 HTTP over TLS/SSL

smtps 465 SMTP over TLS/SSL (former ssmtp)
nntps 563 NNTP over TLS/SSL (former snntp)
ldaps 636 LDAP over TLS/SSL (former sldap)
ftps-data 989 FTP (data) over TLS/SSL

ftps 990 FTP (control) over TLS/SSL
telnets 992 TELNET over TLS/SSL

imaps 993 IMAP4 over TLS/SSL

ircs 994 IRC over TLS/SSL

pop3s 995 POP3 over TLS/SSL (former spop3)

6. http://www.isi.edu/in-notes/iana/assignments/port-numbers



158

SSL and TLS Protocols

In general, an SSL session is stateful and the SSL protocol must initialize
and maintain the state information on either side of the session. The
corresponding session state information elements, including a session ID,
a peer certificate, a compression method, a cipher spec, a master secret, and a
flag that indicates whether the session is resumable, are summarized in
Table 6.2. An SSL session can be used for several connections, and the
corresponding connection state information elements are summarized
in Table 6.3. They include cryptographic parameters, such as server and
client random byte sequences, server and client write MAC secrets, server
and client write keys, an initialization vector, and a sequence number. In
either case, it is important to note that communicating parties may use
multiple simultaneous SSL sessions and sessions with multiple simultaneous
connections.

As illustrated in Figure 6.1, the SSL protocol consists of two main parts,
the SSL Record Protocol and several SSL subprotocols layered on top of it:

Table 6.2 SSL Session State Information Elements

Element Description
Session ID Identifier chosen by the server to identify an active

or resumable session state
Peer certificate X.509 version 3 certificate of the peer entity
Compression method Algorithm used to compress data prior to encryption
Cipher spec Specification of the data encryption and MAC algorithms
Master secret 48-byte secret shared between the client and server
Is resumable Flag that indicates whether the session can be used

to initiate new connections

Table 6.3 SSL Connection State Information Elements

Element Description

Server and client random Byte sequences that are chosen by the server and client for
each connection

Server write MAC secret Secret used for MAC operations on data written by the server

Client write MAC secret Secret used for MAC operations on data written by the client

Server write key Key used for data encryption by the server and decryption
by the client

Client write key Key used for data encryption by the client and decryption
by the server

Initialization vector Initialization state for a block cipher in CBC mode. This field

is first initialized by the SSL Handshake Protocol
Thereafter, the final ciphertext block from each record is
preserved for use with the following record

Sequence number Each party maintains separate sequence numbers for
transmitted and received messages for each connection




6.1

SSL Protocol 159

» The SSL Record Protocol is layered on top of a connection-oriented and
reliable transport layer service, such as provided by TCP, and provides
message origin authentication, data confidentiality, and data integ-
rity services (including such things as replay protection).

» The SSL subprotocols are layered on top of the SSL Record Protocol to
provide support for SSL session and connection establishment
management.

The most important SSL subprotocol is the SSL Handshake Protocol. This
protocol, in turn, is an authentication and key exchange protocol that can be
used to negotiate, initialize, and synchronize security parameters and
corresponding state information located at either endpoint of an SSL session
or connection.

After the SSL Handshake Protocol has completed, application data can be
sent and received using the SSL Record Protocol and the negotiated security
parameters and state information elements. The SSL Record and Handshake
Protocols are overviewed next.

6.1.3 SSL Record Protocol

The SSL Record Protocol receives data from higher layer SSL subprotocols
and addresses data fragmentation, compression,” authentication, and
encryption. More precisely, the protocol takes as input a data block of
arbitrary size, and produces as output a series of SSL data fragments (further
referred to as SSL records) of less than or equal to 2 —1= 16,383
bytes each.

The various steps of the SSL Record Protocol that lead from a raw data
fragment to an SSLPlaintext (fragmentation step), SSLCompressed (com-
pression step), and SSLCiphertext (encryption step) record are illustrated in
Figure 6.2. Finally, each SSL record contains the following information
fields:

» Content type;
» Protocol version number;

» Length;

7.

Data compression as addressed by the SSL Record Protocol is not supported by the major SSL implementations

in use today.



160

SSL and TLS Protocols

Data fragment

Fragmentation
Y

SSLPlaintext

Compression
Y

SSLCompressed

Encryption

Y
SSLCiphertext

Figure 6.2 The SSL Record Protocol steps.

» Data payload (optionally compressed and encrypted);

» MAC.

The content type defines the higher layer protocol that must be used to
subsequently process the SSL record data payload (after proper decompres-
sion and decryption). The protocol version number determines the SSL
version in use (typically 3.0). Each SSL record data payload is compressed
and encrypted according to the current compression method and cipher spec
defined for the SSL session. At the start of each SSL session, the compression
method and cipher spec are usually defined as null. They are both set during
the initial execution of the SSL Handshake Protocol. Finally, a MAC is
appended to each SSL record. It provides message origin authentication and
data integrity services. Similar to the encryption algorithm, the algorithm
that is used to compute and verify the MAC is defined in the cipher spec of
the current session state. By default, the SSL Record Protocol uses a MAC
construction that is similar but still different from the newer HMAC
construction specified in RFC 2104 [2]. There are three major differences
between the SSL MAC construction and the HMAC construction:

1. The SSL MAC construction includes a sequence number in the
message before hashing to protect against specific forms of replay
attacks.

2. The SSL MAC construction includes the record length.

3. The SSL MAC construction uses concatenation operators, whereas
the HMAC construction uses the addition modulo 2.



6.1 SSL Protocol 161

All these differences exist mainly because the SSL MAC construction
predates adoption of the HMAC construction in almost all Internet security
protocol specifications. The HMAC construction was also adopted for the
more recent TLS protocol specification.

As illustrated in Figure 6.1, several SSL subprotocols are layered on top
of the SSL Record Protocol. Each subprotocol may refer to specific types of
messages that are sent using the SSL Record Protocol. The SSL 3.0
specification defines the following three SSL protocols:

» Alert Protocol;
» Handshake Protocol;

» ChangeCipherSpec Protocol.

In short, the SSL Alert Protocol is used to transmit alerts (i.e., alert
messages) via the SSL Record Protocol. Each alert message consists of two
parts, an alert level and an alert description.

The SSL Handshake Protocol is the major SSL subprotocol. It is used to
mutually authenticate the client and the server and to exchange a session
key. As such, the SSL Handshake Protocol is overviewed and briefly
discussed in the following section.

Finally, the SSL ChangeCipherSpec Protocol is used to change between
one cipher spec and another. Although the cipher spec is normally changed
at the end of an SSL handshake, it can also be changed at any later point in
time.

In addition to these SSL subprotocols, an SSL Application Data Protocol
is used to directly pass application data to the SSL Record Protocol.

6.1.4 SSL Handshake Protocol

The SSL Handshake Protocol is the main SSL subprotocol that is layered on
top of the SSL Record Protocol. Consequently, SSL handshake messages are
supplied to the SSL record layer, where they are encapsulated within one or
more SSL records, which are processed and transmitted as specified by the
compression method and cipher spec of the current SSL session, and the
cryptographic keys of the corresponding SSL connection. The aim of the SSL
Handshake Protocol is to have a client and server establish and maintain
state information that is used to secure communications. More specifically,
the protocol is to have the client and server agree on a common SSL protocol
version, select the compression method and cipher spec, optionally



162

SSL and TLS Protocols

authenticate each other, and create a master secret from which the various
session keys for message authentication and encryption may be derived.

In short, an execution of the SSL Handshake Protocol between a client C
and a server S can be summarized as follows (the messages that are put in
square brackets are optional):

1:C— S : CLIENTHELLO

2 : S — C : SERVERHELLO
[CERTIFICATE]
[SERVERKEYEXCHANGE]
[ CERTIFICATEREQUEST]
SERVERHELLODONE

3 : C — S : [CERTIFICATE]
CLIENTKEYEXCHANGE
[ CERTIFICATEVERIFY]
CHANGECIPHERSPEC
FINISHED

4 : S — C : CHANGECIPHERSPEC
FINISHED

When the client C wants to connect to the server S, it establishes a TCP
connection to the HTTPS port (not included in the protocol description) and
sends a CLIENTHELLO message to the server in step 1 of the SSL Handshake
Protocol execution. The client can also send a CLIENTHELLO message in
response to a HELLOREQUEST message or on its own initiative to renegotiate
the security parameters of an existing connection. The CLIENTHELLO message
includes the following fields:

» The number of the highest SSL version understood by the client
(typically 3.0);

» A client-generated random structure that consists of a 32-bit
timestamp in standard UNIX format, and a 28-byte value generated
by a pseudorandom number generator;

» A session identity the client wishes to use for this connection;
» A list of cipher suites that the client supports;
» A list of compression methods that the client supports.

Note that the session identity field should be empty if no SSL session
currently exists or if the client wishes to generate new security



6.1 SSL Protocol 163

parameters. In either case, a nonempty session identity field is to specify
an existing SSL session between the client and the server (i.e., a session
whose security parameters the client wishes to reuse). The session
identity may be from an earlier connection, this connection, or another
currently active connection. Also note that the list of supported cipher
suites, passed from the client to the server in the CLIENTHELLO message,
contains the combinations of cryptographic algorithms supported by the
client in order of preference. Each cipher suite defines both a key exchange
algorithm and a cipher spec. The server will select a cipher suite or, if no
acceptable choices are presented, return an error message and close the
connection accordingly. After having sent the CLIENTHELLO message, the
client waits for a SERVERHELLO message. Any other message returned by the
server except for a HELLOREQUEST message is treated as an error at this point
in time.

In step 2, the server processes the CLIENTHELLO message and responds
with either an error or SERVERHELLO message. Similar to the CLIENTHELLO
message, the SERVERHELLO message includes the following fields:

» A server version number that contains the lower version of that
suggested by the client in the CLIENTHELLO message and the highest
supported by the server;

» A server-generated random structure that also consists of a 32-bit
timestamp in standard UNIX format, and a 28-byte value generated
by a pseudorandom number generator;

» A session identity corresponding to this connection;

» A cipher suite selected by the server from the list of cipher suites
supported by the client;

» A compression method selected by the server from the list of
compression algorithms supported by the client.

If the session identity in the CLIENTHELLO message was nonempty, the
server looks in its session cache for a match. If a match is found and the
server is willing to establish the new connection using the corresponding
session state, the server responds with the same value as supplied by the
client. This indicates a resumed session and dictates that both parties must
proceed directly to the CHANGECIPHERSPEC and FINISHED messages as
addressed further below. Otherwise, this field contains a different value
identifying a new session. The server may also return an empty session
identity field to indicate that the session will not be cached and therefore



164

SSL and TLS Protocols

cannot be resumed later. Also note that in the SERVERHELLO message,
the server selects a cipher suite and a compression method from the lists
provided by the client in the CLIENTHELLO message. The key exchange,
authentication, encryption, and message authentication algorithms are
determined by the cipher suite selected by the server and revealed in the
SERVERHELLO message. The cipher suites that have been defined for the SSL
protocol are essentially the same as the ones that are specified for the TLS
protocol (as summarized in Tables 6.4 to 6.7).

In addition to the SERVERHELLO message, the server may also send other
messages to the client. For example, if the server is using certificate-based
authentication (which is currently almost always the case), the server sends
its site certificate to the client in a corresponding CERTIFICATE message. The
certificate must be appropriate for the selected cipher suite’s key exchange
algorithm, and is generally an X.509v3 certificate. The same message type
will be used later for the client’s response to the server’s CERTIFICATERequest
message. In the case of X.509v3 certificates, a certificate may actually refer
to an entire chain of certificates, ordered with the sender’s certificate first
followed by any CA certificates proceeding sequentially upward to a root CA
(that will be accepted by the client).

Next, the server may send a SERVERKEYEXCHANGE message to the client if
it has no certificate, a certificate that can be used only for verifying digital
signatures, or uses the FORTEZZA token-based key exchange algorithm
(KEA).® Obviously, this message is not required if the site certificate
includes an RSA public key that can be used for encryption. Also, a
nonanonymous server can optionally request a personal certificate to
authenticate the client. It therefore sends a CERTIFICATERequest message to
the client. The message includes a list of the types of certificates requested,
sorted in order of the server’s preference, as well as a list of distinguished
names for acceptable CAs. At the end of step 2, the server sends a
SERVERHELLODone message to the client to indicate the end of the
SERVERHELLO and associated messages.

Upon receipt of the SERVERHELLO and associated messages, the client
verifies that the server site certificate (if provided) is valid,” and checks that
the security parameters provided in the SERVERHELLO message are indeed
acceptable. If the server has requested client authentication, the client sends

Netscape Communications was paid a large amount of money by the NSA to include support for the
FORTEZZA KEA in the SSL protocol specification.

A server site certificate is considered to be valid if its server’s common name field entry matches the host part of
the URL the client wants to access.



6.1 SSL Protocol

165

a CERTIFICATE message that includes a personal certificate for the user’s
public key to the server in step 3. Next, the client sends a CLIENT-
KEYEXCHANGE message, whose format depends on the key exchange
algorithm selected by the server:

If RSA is used for server authentication and key exchange, the client
generates a 48-byte premaster secret,'® encrypts it with the public
key found in the site certificate or the temporary RSA key from the
SERVERKEYEXCHANGE message, and sends the result back to the server
in the CLIENTKEYEXCHANGE message. The server, in turn, uses the
corresponding private key to decrypt the premaster secret. We will
return to this key exchange algorithm later in this section when we
talk about a specific attack.

If FORTEZZA tokens are used for key exchange, the client derives a
token encryption key (TEK) using the KEA. The client's KEA
calculation uses the public key from the server certificate along
with some private parameters in the client’s token. The client sends
public parameters needed for the server to also generate the TEK,
using its private parameters. It generates a premaster secret, wraps
it using the TEK, and sends the result together with some
initialization vectors to the server as part of the CLIENTKEYEXCHANGE
message. The server, in turn, can decrypt the premaster secret
accordingly. This key exchange algorithm is not widely used in
practice.

If a Diffie-Hellman key exchange is performed, the server and client
exchange their public parameters as part of the SERVERKEYEXCHANGE
and CLIENTKEYEXCHANGE messages. Obviously, this is only required if
the Diffie-Hellman public parameters are not included in the site and
personal certificates. The negotiated Diffie-Hellman key can then be
used as premaster secret. Because a Diffie-Hellman key exchange
involves both parties in a key exchange, the resulting key exchange is
less vulnerable to weak pseudorandom number generators in client
software packages. Consequently, it is possible and very likely that
we will see more widespread use of the Diffie-Hellman key exchange
in the future.

10. The premaster secret is 48 bytes long and consists of 2 bytes specifying the protocol version and 46 bytes of
randomly generated data.



166

SSL and TLS Protocols

For the RSA, FORTEZZA, and Diffie-Hellman key exchanges, the same
algorithms are used to convert the premaster secret into a 48-byte master
secret (stored in the corresponding SSL session state), and to derive
session keys for encryption and message authentication from this master
secret. Nevertheless, some key exchange algorithms, such as the
FORTEZZA token-based key exchange, may also use their own procedures
for generating encryption keys. In this case, the master secret is only used
to derive keys for message authentication. The procedures to derive
master and session keys, as well as initialization vectors, are fully described
in the SSL protocol specification and are not further addressed in this
book.

If client authentication is required, the client also sends a CERTIFICATE-
VERIFY message to the server. This message is used to provide explicit
verification of the user’s identity based on the personal certificate. It is only
sent following a client certificate that has signing capability (all certificates
except those containing fixed Diffie-Hellman parameters). Finally, the client
finishes step 3 by sending a CHANGECIPHERSPEC message and a correspond-
ing FINISHED message to the server. The FINISHED message is always sent
immediately after the CHANGECIPHERSPEC message to verify that the key
exchange and authentication processes were successful. As a matter of fact,
the FINISHED message is the first message that is protected with the newly
negotiated algorithms and session keys. It can only be generated and
verified if these keys are properly installed on both sides. No acknowl-
edgment of the FINISHED message is required; parties may begin sending
encrypted data immediately after having sent the FINISHED message. The SSL
Handshake Protocol execution finishes up by also having the server send a
CHANGECIPHERSPEC message and a corresponding FINISHED message to the
client in step 4.

After the SSL handshake is complete, a secure connection is established
between the client and the server. This connection can now be used to send
application data that is encapsulated by the SSL Record Protocol. More
accurately, application data may be fragmented, compressed, encrypted, and
authenticated according to the SSL Record Protocol, as well as the session
and connection state information that is now established (according to the
execution of the SSL Handshake Protocol).

The SSL Handshake Protocol can be shortened if the client and server
decide to resume a previously established (and still cached) SSL session or
duplicate an existing SSL session. In this case, only three message flows and a
total of six messages are required. The corresponding message flows can be
summarized as follows:



6.1

SSL Protocol 167

1:C — S : CLIENTHELLO

2 : S — C : SERVERHELLO
CHANGECIPHERSPEC
FINISHED

3 :S — C : CHANGECIPHERSPEC
FINISHED

In step 1, the client sends a CLIENTHELLO message to the server that
includes a session identity to be resumed. The server, in turn, checks its
session cache for a match. If a match is found, and the server is willing to
resume the connection under the specified session state, it returns a
SERVERHELLO message with the same session identity in step 2. At this point,
both the client and the server must send CHANGECIPHERSPEC and FINISHED
messages to each other in steps 2 and 3. Once the session reestablishment is
complete, the client and server can begin exchanging application data.

In summary, the SSL protocol can be used to establish secure TCP
connections between clients and servers. In particular, it can be used to
authenticate the server, to optionally authenticate the client, to perform a
key exchange, and to provide message authentication, as well as data
confidentiality and integrity services for arbitrary application protocols
layered on top of TCP. Although it may seem that not providing client
authentication goes against the principles that should be espoused by a
secure system, an argument can be made that the decision to optionally
support it helped SSL gain widespread use in the first place. Support for client
authentication requires public keys and personal certificates for each client,
and because SSL support for HTTP must be embedded in the corresponding
browser software, requiring client authentication would involve distributing
public keys and personal certificates to every user on the Internet. In the
short term, it was believed to be more crucial that consumers be aware of
with whom they are conducting business than to give the merchants the
same level of assurance. Furthermore, because the number of Internet
servers is much smaller than the number of clients, it is easier and more
practical to first outfit servers with the necessary-public keys and site
certificates. As of this writing, however, support for client-side public keys
and personal certificates is growing as people generally push the use of PKI
technologies.

6.1.5 Security analysis

A comprehensive security analysis of SSL 3.0 was performed by Bruce
Schneier and David Wagner in 1996 [3]. Except for some minor flaws and



168

SSL and TLS Protocols

worrisome features that could be easily corrected without overhauling the
basic structure of the SSL protocol, they found no serious vulnerability or
security problem in their analysis. Consequently, they concluded that the
SSL protocol provides excellent security against eavesdropping and other
passive attacks, and that people implementing the protocol should be aware
of some sophisticated active attacks.

A few months later, however, Daniel Bleichenbacher from Bell
Laboratories found an adaptive chosen ciphertext attack against protocols
based on the public key cryptography standard (PKCS) #1 [4]. The attack was
published in 1998 [5]. In short, an RSA private key operation (a decryption
or digital signature operation) can be performed if the attacker has access to
an oracle that, for any chosen ciphertext, returns only 1 bit telling whether
the ciphertext corresponds to some unknown block of data encrypted using
PKCS #1.

To understand the Bleichenbacher attack, it is necessary to have a look at
PKCS #1. In fact, there are three block formats specified in PKCS #1: block
types 0 and 1 are used for RSA digital signatures, and block type 2 is used for
RSA encryption. Recall from our previous discussion that if the RSA algorithm
is used for server authentication and key exchange, the client randomly
generates a 46-byte premaster secret, prepends the two bytes 03 (the SSL
protocol version number) and 00 to the premaster secret, encrypts the result
using the public key of the server, and sends it in a CLIENTKEYEXCHANGE
message to the server. As such, the CLIENTKEYEXCHANGE message carrying
the encrypted premaster secret must conform to the format specified in
PKCS #1 block type 2. The format is illustrated in Figure 6.3.

Now, assume there is an attacker who can send an arbitrary number of
randomly looking messages to an SSL server, and the server responds for
each of these messages with a bit indicating whether a particular message is
correctly encrypted and encoded according to PKCS #1 (the server thus acts
as an oracle). Under this assumption, Bleichenbacher developed an attack to
illegitimately perform an RSA operation with the private key of the server
(either a decryption or a digital signature operation). When applied to
decrypt a premaster secret of a previously sent CLIENTKEYEXCHANGE message,
the attacker can rebuild the premaster secret and the session keys that are

Data block

00102|  Paddingstring  100|  ; 'sq1.03|00|pre_master _secret

A
\ 4
A

Variable length D Variable length ”
(in SSL: 48 bytes)

Figure 6.3 PKCS #1 block format for encryption.



SSL Protocol 169

derived from it accordingly. Consequently, the attacker can then decrypt
the entire session (if he or she has monitored and stored the data stream of
that session).

The attack is primarily of theoretical interest. Note that experimental
results have shown that typically between 300,000 and 2 million chosen
ciphertexts are required to actually perform the (decryption or digital
signature) operation. To make things worse, the attack can only be launched
against an SSL server that is available on-line (since it must act as an oracle).
From the attacker’s point of view, it may be difficult to send this huge
number of chosen ciphertexts to the SSL server without causing the server
administrator to become suspicious.

There are several possibilities to protect against the Bleichenbacher
attack. First of all, it is not necessary for the server to respond with an error
message after having received a CLIENTKEYEXCHANGE message that does not
conform to PKCS #1. Another possibility is to change the PKCS #1 block
format for encryption and to remove the leading 00 and 02 bytes, as well as
the 00, 03, and 00 bytes in the middle of the message (as illustrated in
Figure 6.3). Finally, another possibility is to use plaintext-aware encryption
schemes, such as the one proposed by Mihir Bellare and Phillip Rogaway
[6], or any other public key cryptosystem that is provably secure against
adaptive chosen ciphertext attacks [7].!! For example, in the aftermath of
the publication of Bleichenbacher’s results, IBM launched a marketing
initiative to promote such a cryptosystem jointly developed by Ronald
Cramer and Victor Shoup [8].

Before Bleichbacher published his attack, he had been collaborating
with RSA Laboratories to update PKCS #1 and to specify a version 2 that is
secure against adaptive chosen ciphertext attacks [9]. Meanwhile, all major
vendors of SSL servers have incorporated and implemented PKCS #1 version
2 into their products. Unfortunately, PKCS #1 version 2 has also turned out
be be vulnerable against specific types of chosen ciphertext attacks [10].

6.1.6 Implementations

As of this writing, the SSL protocol is by far the most pervasive security
protocol for the Internet in general, and the WWW in particular. For
example, most banks that offer their services over the Internet have their
corresponding home banking client software based on SSL. This decision also

11. Note that plaintext awareness always implies security against chosen ciphertext attacks.



170

SSL and TLS Protocols

conforms to the strategic view of the European Committee for Banking
Standards (ECBS).!2

There are many implementations of SSL."> Examples include SSLref, a
reference implementation of SSL from Netscape Communications; SSLeay,
an internationally distributed implementation written by Eric Young in
Australia; and OpenSSL, an open source implementation of SSL.'* Last but
not least, there is an interesting software called Stunnel that can be used to
add SSL protection to existing TCP-based application servers in a UNIX
environment without requiring changes to the corresponding code. The
software can be invoked from the Internet daemon (i.e., inetd) as a
wrapper for any number of services or run standalone, accepting network
connections itself for a particular service. Refer to the Stunnel home page!®
for further information about the software package.

In addition to these SSL implementations, most browsers and Web
servers have been modified to incorporate support for SSL. For example, the
Apache Web server has been modified to make use of SSLeay [11]. Typically,
Web servers that use SSL (or TLS) are called secure or commerce servers. Note,
however, that these servers are not necessarily more secure than any other
Web server; they just support SSL to secure the data traffic that is
transmitted between the client and the server. Most SSL-enabled products
support the RC4 algorithm for encryption and the MD2 and MD5 one-way
functions for hashing.

For obvious reasons, the use of SSL slows the speed of a browser
interacting with an HTTPS server. This performance degradation is in fact
noticeable by the user. It is primarily due to the public key encryption and
decryption operations that are required to initialize the SSL session and
connection state information elements. In practice, users experience an
additional pause of a few seconds between opening a connection to the
HTTPS server and retrieving the first HTML page from it. Because SSL is
designed to cache the master secret between subsequent sessions, this delay
affects only the first SSL connection between the browser and the server.
Compared with the session establishment, the additional overhead of

12.

14.
15.

In May 1997, the ECBS published TR401 V1 entitled ‘‘Secure Banking over the Internet.” The document is
electronically available and can be downloaded from the home page of the ECBS at http://www.ecbs.org.

. In the first edition of this book, the problem of using SSL- and TLS-enabled software products with limited

cryptographic strength was also addressed. Due to the liberalized U.S. export controls, this problem has become
obsolete in most parts of the world. Consequently, we are not going to repeat the discussion in this edition of
the book.

http://www.openssl.org

http://www.stunnel.org



6.2 TLS Protocol 171

encrypting and decrypting the data traffic using one of the supported
encryption algorithms, such as DES, RC2, or RC4, is practically insignificant
(and not necessarily noticeable by the user). Consequently, for users that
have a fast computer and a relatively slow network connection to an HTTPS
server, the overhead of SSL is insignificant, especially if a large amount of
data is sent afterward over the SSL session or over multiple SSL sessions that
use a shared master secret. However, administrators of very busy SSL servers
should consider getting either extremely fast computers or hardware
assistance for the public key operations.

6.2 TLS Protocol

Early in 1996, the IETF chartered a TLS WG within the security and transport
areas. The objective of the IETF TLS WG was to write Internet standards track
RFCs for a TLS protocol using the currently available specifications of SSL
(2.0 and 3.0), PCT (1.0), and SSH version 2 as a basis.'®

Shortly before the IETF meeting in December 1996, a first TLS 1.0
document was released as an Internet-Draft. The document was essentially
the same as the SSL 3.0 specification. In fact, it was the explicit strategy of the
IETF TLS WG to have the TLS 1.0 specification be based on SSL 3.0, as
opposed to SSL 2.0, PCT 1.0, SSH version 2, or any other transport layer
security protocol proposal. At least three major modifications were suggested
for SSL 3.0 to be incorporated into TLS 1.0:

1. The HMAC construction developed in the IETF IPsec WG should be
adopted and consistently used in TLS 1.0.

2. The FORTEZZA token-based KEA should be removed from TLS
1.0, since it refers to a proprietary and unpublished technology.
Instead, a DSS-based key exchange mechanism should be included
in TLS 1.0.

3. The TLS Record Protocol and the TLS Handshake Protocol should be
separated out and specified more clearly in related documents.

After having adopted these modifications, the resulting TLS protocol was
specified in a series of Internet-Drafts. In January 1999, the TLS protocol

16. Note that at this point in time the SSH protocol had been investigated by the IETF TLS WG, and that the IETF
later chartered a SECSH WG to update and standardize the SSH protocol independently of the TLS protocol.
The SSH protocol is overviewed and discussed in Chapter 16.



172

SSL and TLS Protocols

version 1.0 was specified in RFC 2246 [12] and submitted to the Internet
standards track (as a Proposed Standard). The differences between TLS 1.0
and SSL 3.0 are not huge, but they are significant enough that TLS 1.0 and
SSL 3.0 do not easily interoperate. Nevertheless, TLS 1.0 does incorporate a
mechanism by which a TLS implementation can back down to SSL 3.0.
Similar to the SSL protocol, the TLS protocol is a layered protocol that
consists of a TLS Record Protocol and several TLS subprotocols layered on top

of it:

On the lower layer, the TLS Record Protocol takes messages to be
transmitted, fragments them into manageable data blocks (so-called
TLS records), optionally compresses them, computes and appends a
MAC to each record, encrypts the result, and transmits it. Again,
similar to SSL, the resulting records are called TLSPlaintext,
TLSCompressed, and TLSCiphertext. A received TLSCiphertext
record, in turn, is decrypted, verified, decompressed, and reas-
sembled before it is delivered to the appropriate application protocol.
A TLS connection state is the operating environment of the TLS
Record Protocol. It specifies compression, encryption, and message
authentication algorithms, and determines parameters for these
algorithms, such as encryption and MAC keys and IVs for a
connection in both the read and write directions. There are always
four connection states in memory: the current read and write states
and the pending read and write states. All records are processed
under the current read and write states. The security parameters for
the pending states are set by the TLS Handshake Protocol, and the
handshake protocol selectively makes either of the pending states
current, in which case the appropriate current state is disposed of and
replaced with the pending state; the pending state is then reinitialized
to an empty state.

On the higher layer, there are several TLS subprotocols layered on
top of the TLS Record Protocol. For example, the TLS Handshake
Protocol is used to negotiate session and connection information
elements that comprise a session identifier, a peer certificate, a
compression method, a cipher spec, a master key, and a flag whether
the session is resumable and can be used to initiate new connections.
These items are used to create security parameters for use by the TLS
Record Protocol when protecting application data. In addition, there
are a TLS Change Cipher Spec Protocol and a TLS Alert Protocol. Both are
similar to the corresponding SSL protocols (and are not further
addressed in this book).



6.2 TLS Protocol 173

After a TLS handshake has been performed, the client and server can
exchange application data messages. These messages are carried by the TLS
Record Protocol and fragmented, compressed, authenticated, and encrypted
accordingly. The messages are treated as transparent data to the TLS record
layer.

The cipher suites that are specified for TLS 1.0 are summarized in
Table 6.4."” The key exchange and encryption mechanisms, as well as the
one-way hash function that are used in a particular cipher suite, are all encod-
ed in its name. For example, the cipher suite TLS_.RSA_WITH _RC4_128_MD5
uses RSA public key encryption for key exchange, RC4 with 128 bit session
keys for encryption, and MD5 for computing one-way hash function results.
Similarly, the cipher suite TLS_.DH_DSS_WITH_3DES_EDE_CBC_SHA uses

Table 6.4 TLS 1.0 Cipher Suites As Specified in [12]

Cipher Suite

TLS_NULL_WITH_NULL_NULL
TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_WITH_IDEA_CBC_SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_DSS_WITH_DES_CBC_SHA
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_RSA_WITH_DES_CBC_SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_anon_EXPORT_WITH_RC4_40_MD5
TLS_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_anon_WITH_DES_CBC_SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

17. More recently, the use of the AES has been specified in RFC 3268.



174

SSL and TLS Protocols

the Diffie-Hellman key exchange algorithm (DH) for key exchange, the digital
signature standard (DSS) to compute and verify digital signatures, Triple-DES
in CBC mode for encryption, and SHA-1 for computing one-way hash
function results. Consequently, a TLS cipher suite is always named
TLS_X_WITH._Y_Z, where X refers to the key exchange algorithm, Y to the
encryption algorithm, and Z to the one-way hash function that is being used.

The key exchange and encryption algorithms, as well as the one-way
hash functions that are specified in TLS 1.0, are itemized and further
explained in Tables 6.5 to 6.7. In Table 6.6, the type of a cipher indicates
whether it is a stream cipher or a block cipher running in CBC mode.
Similarly, the key length indicates the number of bytes that are used for
generating the encryption keys, whereas the expanded key length indicates
the number of bytes actually fed into the encryption algorithm. Finally, the
effective key bits measure how much entropy is in the key material being fed
into the encryption routine, and the IV size measures how much data needs

Table 6.5 TLS 1.0 Key Exchange Algorithms As Specified in [12]

Key Exchange Algorithm Description Key Size Limit
DHE_DSS Ephemeral DH with DSS signatures None
DHE_DSS_EXPORT Ephemeral DH with DSS signatures DH = 512 bits
DHE_RSA Ephemeral DH with RSA signatures None
DHE_RSA_EXPORT Ephemeral DH with RSA signatures DH = 512 bits
DH_anon Anonymous DH, no signatures None
DH_anon_EXPORT Anonymous DH, no signatures DH = 512 bits
DH_DSS DH with DSS-based certificates None
DH_DSS_EXPORT DH with DSS-based certificates DH = 512 bits
DH_RSA DH with RSA-based certificates None
DH_RSA_EXPORT DH with RSA-based certificates DH = 512 bits
NULL No key exchange N/A

RSA RSA key exchange None
RSA_EXPORT RSA key exchange RSA =512 bits

Table 6.6 TLS 1.0 Encryption Algorithms As Specified in [12]

Key Expanded Effective v Block
Cipher Type Length Key Length Key Size [bits] Size Size
NULL Stream 0 0 0 0 N/A
IDEA_CBC Block 16 16 128 8 8
RC2_CBC_40 Block 5 16 40 8 8
RC4_40 Stream 5 16 40 0 N/A
RC4_128 Stream 16 16 128 0 N/A
DES40_CBC Block 5 8 40 8 8
DES_CBC Block 8 8 56 8 8
3DES_EDE_CBC Block 24 24 168 8 8




6.3 SSL and TLS certificates 175

Table 6.7 TLS 1.0 One-Way Hash Func-
tions As Specified in [13]

Hash Function Hash Size Padding Size
NULL 0 0
MD5 16 48
SHA 20 40

to be generated for the IV. All numbers except the effective key size are given
in bytes (i.e., 8 bits).

TLS 1.0 as specified in RFC 2246 [12] was submitted to the IESG for
consideration as a Proposed Standard for the Internet in January 1999.
Meanwhile, two other standards track RFC documents and have been
officially released by the IETF TLS WG:

» RFC 2712 specifies the addition of Kerberos Cipher Suites to TLS [14].

» RFC 2817 specifies how to upgrade to TLS Within HTTP/1.1 [15].

In addition, an informational RFC document specifies the use of HTTP
over TLS (i.e., HTTPS) [16]. Finally, there are various Internet-Drafts
specifying specific issues related to TLS or the use of TLS to secure TCP-based
application protocols. Refer to the home page of the IETF TLS WG for an
overview about the most recent developments and achievements.

6.3 SSL and TLS certificates

When Netscape Communications released its first version of Netscape
Navigator with SSL support, it was faced with a practical problem: the SSL
protocol required the existence of one or several CAs to make it work, but
there were no CAs offering their services to the general public. Conse-
quently, Netscape Communications turned to RSA Data Security, Inc.,
which had supplied the public key technology software on which Netscape
Navigator was actually based. For several years RSA Data Security, Inc. had
operated its own CA, called RSA Certification Services. The CA’s primary
reason for existence was to enable protocols that required certification
services. In 1995, RSA Data Security, Inc. spun off its certification services
division to a new company called VeriSign, Inc.!'8

18. http://www.verisign.com



176

SSL and TLS Protocols

Since then, each successive version of Netscape Navigator has added
technology to allow for creation of a marketplace for commercial CAs and
CA services. The first version contained a certificate for a single root CA. The
second version still came with support for only a single root CA, but allowed
other root CAs to be dynamically loaded with the user’s permission.
Netscape Navigator 3.0 came preloaded with certificates for 16 root CAs.
In addition, the browser also contained a user interface for viewing the
currently loaded certificates, deleting certificates, and adding more. The
number of preconfigured and loaded certificates has steadily increased in all
later releases of Netscape Navigator. This is equally true for all other
browsers, including, for example, Microsoft’s Internet Explorer and Opera.
In fact, certificate management becomes an inportant issue for the usability
of contemporary browsers.

For example, Figure 6.4 illustrates Microsoft Internet Explorer’s
Certificate Manager. There are basically four sets of certificates that can be
managed using the Certificate Manager:

— Cettificate Intended Purposes

Certificate Manager (2] ]
Intended purpose: |<AII> ;I
F’ersonall OtherPeopIeI Intermediate Certification Authoriies  Trusted Root Certification Authorities |
Issued To | |ssued By | Expirati... | Friendly Name ] jI
[ZABAECOM Roo.. ABAECOMPoot.. 090709 DST(ABAEC.
Autoridad Cedifi.. Autoridad Certifica.. 28.06.03  Autoridad Cer..
ElAutoridad Certifi..  Autoridad Certifica.. 290609  Autoridad Cer.
ElBaltimore EZ by .. Baltimore EZbyD.. 030709 DST (Baltimor
EBelgacom E-Tru... Belgacom E-Trust.. 210110 Belgacom E-
EBundesamtfuer |, Bundesamtfuerinf.. 070403  siCA1998
EC8W HKT Secur.. CEWHKT Secure.. 161009 CWHKT Sec
ECaw HKT Secur... CAW HKT Secure 161009 CWHKT Sec
Ecaw HKT Secur... C&WHKT Secure.. 161010 CWHKT Sec
ECawW HKT Secur.. CAWHKT Secure.. 161009 CWHKT Sec
Ecat CA1 11.03.19  Viacode CA1
FAmaimanta Mlane  Cadinoete Claseo FANE 18 Crtimoeto S el _!J
Impart... Export.. Bemove Advanced.. |

Secure Email. Server Authentication

Close |

Figure 6.4 Microsoft Internet Explorer’s Certificate Manager.
Corporation.)

(© 2002 Microsoft




6.3 SSL and TLS certificates 177

» Personal certificates;
» Other peoples’ certificates;
» Intermediate CAs’ certificates;

» Trusted root CAs’ certificates.

Personal certificates are certificates that belong to the current user of
the browser, whereas other peoples” certificates belong to other people (as
the name suggests). Other peoples’ certificates are mainly used for secure
messaging (i.e., S/MIME). In addition, trusted root CAs" and intermediate
CAs’ certificates are used to verify the certificates of both Web sites and
other people. Trusted root CAs’ certificates are implictly trusted by the user
because they come preloaded with the browser’s software distribution (i.e.,
the browser assumes that the user will trust these root CAs’ certificates,
without even asking him or her). This fact must be considered with care.

Other browsers use similar control panels and mechanisms to manage
personal and CA certificates. For example, Figure 6.5 illustrates Opera’s
Preferences panel. If a user presses the ‘“Authorities...”” button, he or she
comes to a screen where one can manage the certificates of trusted root CAs.
This screen is illustrated in Figure 6.6. Again, there is a long list of CAs that

8 Starand exit
Langunger Certificates

Fersitialinfamation

Search

Eersonal. . I Authorities
#® Browser look
Browser layout
Windows — Security protocols
Accassibility  Ensble S5L2 -
Sounds LCanfigura 5512
4 Fonts and colors ¥ Enable S5L3

Page "
Ml.]im?ji P Enable TLS 1 Configure S5L3 and TLS..

Ml Progrems and paths
E-rnail P

News Ask for pagsword
Fila types Selpassword.

Distoult brawser & Everyime needed

F Network : " Once per session
Hhsteiry and cache
Privacy " Agk for pazsword sftar 5 minttag
Security

—Warnings -
¥ Ask before submitiing & form insecuraly

¥ Azk before submitting a pags forwvalidation

Ok | Cancel | Apphy | Help |

Figure 6.5 The Preferences panel in the Opera 6.0 browser. (© 2002 Opera Software.)



178 SSL and TLS Protocols

Certificate authorities | x]

These are the cedificate autharities registered in the database.

Certificates

Thawte Personal Freemail CA Import... |
Thawte Personal Basic CA

Thavwte Personal Premium CA Expart.. |
Thawte Server CA

Thawte Premium Server CA, Delate |
TC TrustCenter, Germany, Class 0 CA ;I
Certificate name |ssuer
Thawte Fersonal Freemail CA ~| |Thawte Fersonal Freemail Cé -
| Thawte Consulting Thawte Consulting
Certification Services Division Certification Services Division —
Cape Town Cape Town

L] =
Certificate version: 3 k=l

Setial nurmber: 0

MNotwvalid before: Jan 1 00:00:00 1936 GMT

MNotwvalid after: Dec 31 23:59:59 2020 GMT

Fingerprint TE74 C386 3C0C 35 CE3E C2 7FEF 3CAA3CDY

Fublic key algarithm: reaEncryption ;|

[~ Allow connections to sites cerified by this authority
¥ ‘Warn before sending data to sites certified by this authority

oK I Cancel Help

Figure 6.6 The screen to manage CA certificates in the Opera 6.0 browser. (© 2002 Opera
Software.)

are configured to be trustworthy. The management of public key certificates
is further addressed in the following chapter.

6.4 Firewall traversal

As of this writing, SSL and TLS in general, and HTTPS in particular, are
widely used and deployed on the Internet and the WWW. Unfortunately,
the protocols do not easily interoperate with application gateways
(i.e., circuit-level gateways and application-level gateways). Note that an
SSL or TLS connection is always established on an end-to-end basis, and that
any application gateway or proxy server running at the firewall (between
the client and the origin server) must be considered to be a man-in-the-
middle. Also note that different protocols generally have different



6.4 Firewall traversal 179

requirements for proxy servers. Consequently, firewall traversal represents
an important problem area for SSL and TLS.

In general, an application protocol can either be proxied or tunneled
through a proxy server:

» When we say that an application protocol is being proxied, we
actually mean that the corresponding proxy server is aware of the
specifics of the protocol and can understand what is happening on
the protocol level. This allows such things as protocol-level filtering,
access control, accounting, and logging. Examples of protocols that
are usually proxied include Telnet, FTP, and HTTP.

» Contrary to that, we say that an application protocol is being
tunneled when we actually mean that the corresponding proxy
server (which is basically acting as a circuit-level gateway) is not
aware of the specifics of the protocol and cannot understand what is
happening on the protocol level accordingly. It is simply relaying, or
tunneling, the data between the client and the server, and does not
necessarily understand the protocol being used. Consequently, it
cannot perform such things as protocol-level filtering, access control,
and logging to the same extent as is possible for a full-fledged proxy
server. Examples of protocols that are usually tunneled by proxy
servers or circuit-level gateways include SSL-enhanced protocols,
such as HTTPS, as well as the IIOP used in CORBA environments.

In an intranet environment, outbound SSL/TLS connections are often
tunneled, whereas inbound SSL/TLS connections are proxied most of the
times.

6.4.1 SSL/TLS tunneling

In an early attempt to address the problem of having SSL or HTTPS traffic
going through a proxy-based firewall, Ari Luotonen from Netscape
Communications proposed an SSL Tunneling Protocol that allows an HTTP
proxy server to act as a tunnel for SSL-enhanced protocols. The protocol
allows an SSL (or HTTPS) client to open a secure tunnel through an HTTP
proxy server that resides on a firewall. When tunneling SSL, the proxy server
must not have access to the data being transferred in either direction (for the
sake of confidentiality). The proxy server must merely know the source and
destination addresses (IP addresses and port numbers), and possibly, if the
proxy server supports user authentication, the name of the requesting user.
Consequently, there is a handshake between the browser and the proxy



180

SSL and TLS Protocols

server to establish the connection between the browser and the remote
server through the intermediate proxy server. To make the SSL tunneling
extension be backward compatible, the handshake must be in the same
format as normal HTTP/1.0 requests, so that proxy servers without support
for this feature can still determine the request as impossible for them to
service, and provide proper error notifications. As such, SSL tunneling is not
really SSL specific. It is rather a general way to have a third party establish a
connection between two endpoints, after which bytes are simply copied back
and forth by this intermediary.

The SSL Tunneling Protocol is simple and straightforward. It uses a
special HTTP method (i.e., CONNECT) and requires the browser to use this
method to connect to the remote server.'” More specifically, the browser
connects to the proxy server and uses the CONNECT method to specify the
hostname and the port number to connect to (the hostname and port
number are separated by a colon). The host:port part is then followed by a
space and a string specifying the HTTP version number (e.g., HTTP/1.0) and
the line terminator. After that, there is a series of zero or more HTTP request
header lines, followed by an empty line. Consequently, the first line of a
CONNECT request message may look as follows:

CONNECT www.esecurity.ch:443 HTTP/1.0

After having received this message, the proxy server ties to establish a
TCP connection to port 443 of www.esecurity.ch. If the server accepts the
connection, the proxy server acts as a relay between the browser and the
server. At this point in time, the browser and the server can start using SSL
or TLS to establish a secure connection between them.

The SSL tunneling handshake is freely extensible using arbitrary
HTTP/1.0 headers. For example, to enforce client authentication, the
proxy may use the 407 status code and the Proxy-authenticate response
header to ask the client to provide some authentication information to the
proxy. Consequently, the SSL tunneling sequence looks as follows:

HTTP/1.0 407 Proxy authentication required
Proxy-authenticate: ...

In this case, the client would send the required authentication
information in a message that looks as follows:

CONNECT www.esecurity.ch:443 HTTP/1.0
Proxy-authorization: ...

19. Meanwhile, the HTTP CONNECT method has become part of the HTTP specification.



6.4 Firewall traversal 181

Note that the CONNECT method provides a lower level function than
the other HTTP methods. Think of it as some kind of an escape mechanism
for saying that the proxy server should not interfere with the transaction, but
merely serve as a circuit-level gateway and forward the data stream. In fact,
the proxy server should not need to know the entire URL that is being
requested—only the information that is actually needed to serve the request,
such as the hostname and port number of the origin Web server.
Consequently, the proxy server cannot verify that the protocol being spoken
is really SSL, and the proxy server configuration should therefore explicitly
limit allowed (tunneled) connections to well-known SSL ports, such as 443
for HTTPS or 563 for NNTPS (the port numbers are assigned by the IANA). As
of this writing, SSL tunneling is supported by most HTTP proxy servers and
browsers that are commercially available, including Microsoft Internet
Explorer, Opera, and Netscape Navigator.

6.4.2 SSL/TLS proxy servers

As mentioned above, the primary use of SSL tunneling is to let internal
users within a corporate intranet access external HTTPS servers on the
Internet (in this case, it is seldom necessary to check the destination port
number, because outbound HTTP connections are allowed in most security
policies). Nevertheless, SSL tunneling can also be used in the opposite
direction, namely, to make internal HTTPS servers visible and accessible to
the outside world (to the users located on the Internet). In this case,
however, the proxy server acts as an inbound proxy?° for the SSL data
traffic. What this basically means is that HTTPS connections originating
from the outside world are simply relayed by the inbound proxy to the
internal HTTPS servers, where the requesting users should be strongly
authenticated. Therefore, the internal Web servers must implement the SSL
or TLS protocol. Unfortunately, this is not always the case and most internal
Web servers are still not SSL- or TLS-enabled (and do not represent HTTPS
servers accordingly). In this case, the inbound proxy must authenticate the
requesting clients and connect them to the appropriate internal Web
servers. To make this possible (and to make these servers visible to the
outside world), several SSL/TLS gateways or SSL/TLS proxy servers have

20. In the literature, inbound proxies are called reverse proxies most of the time. In this book, however, we use the
term inbound proxy, as there is no reverse functionality involved. In fact, a reverse proxy is doing nothing
differently than a normal proxy servers. The only difference is that it primarily serves inbound (instead of
outbound) connections.



182 SSL and TLS Protocols

been developed and are being marketed today. For example, a group of
researchers from the DEC Systems Research Center proposed the use of a
combination of SSL client authentication (at the inbound proxy) and URL
rewriting techniques in a technology called secure Web tunneling [16]. A
similar technology to access internal Web servers has been developed and
complemented with a one-time password system by a group of reseachrers
at AT&T Laboratories [17].%!

A final word is necessary due to the fact that use of the SSL and TLS
protocols to secure (i.e., encrypt) HTTP data traffic also negatively influences
the usefulness of proxy servers for caching. If a resource is encrypted end-
to-end, it is encrypted in a way that is useful only for the server and one
particular client (i.e., the client that has requested the resource and holds
the corresponding session key). Consequently, there is no use in caching the
encrypted resource for other clients.

6.5 Conclusions

In this chapter, we focused on a pair of security protocols that have been
proposed for the transport layer. In particular, we overviewed and discussed
the SSL and TLS protocols. Given the current situation on the Internet
security market, it is possible and very likely that the TLS protocol will be
one of the most important security protocols for the Internet. This is
particularly true for the HTTP and the WWW. It is, however, also true for
other applications (protocols) layered on top of TCP. For example, one can
reasonably expect that future releases of software packages for Telnet,
FTP, SMTP, POP3, and IMAP4 will implement and support the TLS protocol
as well.

Both the SSL and the TLS protocols are layered on top of TCP. They
neither address nor meet the security requirements of applications and
application protocols that are layered on UDP. Unfortunately, there is an
increasingly large number of applications and application protocols layered
on UDP (e.g., protocols for real-time or multicast communications). For all
these applications and application protocols, the SSL and the TLS protocols
do not provide a viable solution. There are at least two conclusions one can
draw from this situation:

21. http://www.research.att.com/projects/absent



6.5 Conclusions

183

» There is room for further research to address the question of how
to secure UDP-based applications on the transport layer (e.g., a
preliminary study is done in [18]).

» There is room for security protocols that operate either below or
above the transport layer.

The second conclusion is particularly important, as it counters the

argument that all other security protocols have become obsolete with the
wide deployment of SSL/TLS. In the previous chapter, we overviewed and
discussed other secruity protocols that operate below or above the transport
layer.

References

(11

(2]

(3]

(4]

(51

(6]

(7]

(8]

[°]

[10]

Myers, J., ““Simple Authentication and Security Layer,”” Request for
Comments 2222, October 1997.

Krawczyk, H., M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” Request for Comments 2104, February 1997.

Wagner, D., and B. Schneier, ‘“Analysis of the SSL 3.0 Protocol,”” Proceedings of
2nd USENIX Workshop on Electronic Commerce, November 1996, pp. 29-40.

Bleichenbacher, D., “Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1,” Proceedings of CRYPTO ‘98, August
1998, pp. 1-12.

RSA Data Security, Inc., PKCS #1: RSA Encryption Standard, Redwood City, CA,
November 1993.

Bellare, M., and P. Rogaway, “Optimal Asymmetric Encryption,’” Proceedings of
EUROCRYPT 94, 1994, pp. 92-111.

Bellare, M., et al., “Relations Among Notions of Security for Public-Key
Encryption Schemes,”” Proceedings of CRYPTO ‘98, August 1998.

Cramer, R., and V. Shoup, ““A Practical Public Key Cryptosystem Provably
Secure Against Adaptive Chosen Ciphertext Attack,”” Proceedings of CRYPTO '98,
August 1998, pp. 13-25.

Kaliski, B., and J. Staddon, “PKCS #1: RSA Cryptography Specifications
Version 2.0,” Request for Comments 2437, October 1998.

Manger, J., “A Chosen Ciphertext Attack on RSA Optimal Asymmetric
Encryption Padding (OAEP) as Standardized in PKCS#1 v2.0,” Proceedings of
CRYPTO '01, August 2001, pp. 230-238.



184

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

SSL and TLS Protocols

Laurie, B., and P. Lauried, Apache: The Definitive Guide, Sebastopol, CA: O’'Reilly
& Associates, 1997.

Dierks, T., and C. Allen, “The TLS Protocol Version 1.0,” Request for
Comments 2246, January 1999.

Abadi, M., et al., ““Secure Web Tunneling,”” Proceedings of 7th International World
Wide Web Conference, April 1998, pp. 531-539.

Medvinsky, A., and M. Hur, ““Addition of Kerberos Cipher Suites to Transport
Layer Security (TLS),” Request for Comments 2712, October 1999.

Khare, R., and S. Lawrence, ““Upgrading to TLS Within HTTP/1.1,”” Request for
Comments 2817, May 2000.

Rescorla, E., “HTTP over TLS,”” Request for Comments 2818, May 2000.

Gilmore, C., D. Kormann, and A. D. Rubin, ““Secure Remote Access to an
Internal Web Server,”” Proceedings of ISOC Symposium on Network and Distributed
System Security, February 1999.

Mittra, S., and T. Y. C. Woo, ““A Flow-Based Approach to Datagram Security,”
Proceedings of ACM SIGCOMM, September 1997.



11
12
13
14
15
16

CHAPTER

Contents

Introduction

Public key certificates
IETF PKIX W6
Certificate revocation
Certificates for the WWW
Conclusions

References

Certificate Management
and Public Key Infrastructures

:[n Chapter 4, we introduced public key cryptography and the
notion of public key certificates. In Chapters 5 and 6, we then
used these certificates in cryptographic security protocols
without addressing the question on how to manage them and
how to establish and operate a public key infrastructure (PKI).
These questions are addressed in this chapter. More specifically,
we introduce the topic in Section 7.1, focus on public key cer-
tificates in Section 7.2, overview and discuss the work of the
relevant IETF Working Group (i.e., IETF PKIX WG) in Section
7.3, address certificate revocation in Section 7.4, elaborate on
certificates for the WWW in Section 7.5, and conclude with
some final remarks in Section 7.6. Further information about
the topic can be found in [1 — 3], Chapter 13 of [4], and Chapter
19 of [5]. Also, note that the topic is very dynamic and that you
are invited to use the sources for further information men-
tioned throughout the chapter to update yourself periodically.

7.1 Introduction

According to RFC 2828 [6], the term certificate refers to “‘a
document that attests to the truth of something or the
ownership of something.”” Historically, the term was coined
and first used by Loren M. Kohnfelder to refer to a digitally
signed record holding a name and a public key [7]. As such, the
certificate attests to the legitimate ownership of a public key

185



186

Certificate Management and Public Key Infrastructures

and attributes a public key to a principal, such as a person, a hardware
device, or any other entity. As discussed in Chapter 4, the resulting
certificates are called public key certificates. They are used by many
cryptographic security protocols, such as IPsec and IKE, SSL/TLS, and
S/MIME. According to REC 2828 [6], a public key certificate is a special type
of digital certificate, namely, one ‘‘that binds a system entity’s identity to a
public key value, and possibly to additional data items.” As such, it is a
digitally signed data structure that attests to the ownership of a public key.

More generally and in accordance with RFC 2828, a certificate can be
used not only to attest to the legitimate ownership of a public key (in the case
of a public key certificate), but also to attest to the truth of any property
attributable to a certificate owner. This more general class of certificates is
commonly referred to as attribute certificates and will be discussed in the
following chapter. In short, the major difference between a public key
certificate and an attribute certificate is that the former includes a public key
(i.e., the public key that is certified), whereas the latter includes a list of
attributes (i.e., the attributes that are certified). In either case, the
certificates are issued (and possibly revoked) by authorities that are
recognized and trusted by some community of users. In the case of public
key certificates, these authorities are called certification authorities (CAs).! In
the case of attribute certificates, however, these authorities are called
attribute authorities (AAS).

In short, a PKI consists of one (or several) CA(s). According to RFC 2828
[6], a PKI is ‘““a system of CAs that perform some set of certificate
management, archive management, key management, and token manage-
ment functions for a community of users” that employ public key
cryptography.? Another way to look at a PKI is as an infrastructure that can
be used to issue, validate, and revoke public keys and public key certificates.
As such, a PKI comprises a set of agreed-upon standards, CAs, structures
among multiple CAs, methods to discover and validate certification paths,
operational and management protocols, interoperable tools, and supporting
legislation. In the past couple of years, PKIs have experienced a hype and
many companies and organizations have announced their intentions to
provide certification services to the general public. Unfortunately, only

In the past, CAs were often called trusted third parties (TTPs). This is particularly true for CAs that are operated
by government bodies.

The last part of the sentence is particularly important, because in the past many people felt like having to enter
the field of PKIs without having a legitimate reason to do so (if, for example, they are not using public key
cryptography in the first place).



7.2 Public key certificates 187

a few of these companies and organizations have succeeded and actually
provide such services that can be taken seriously.

Many standardization bodies are working in the field of public key
certificates and PKIs. Most importantly, the Telecommunication Standardi-
zation Sector of the International Telecommunication Union (ITU-T) has
released and is periodically updating a recommendation that is commonly
referred to as ITU-T X.509 [8], or X.509 in short. Meanwhile, the ITU-T
recommendation X.509 has also been adopted by many other standardiza-
tion bodies, including, for example, the ISO/IEC JTC1 [9]. Furthermore,
many standardization bodies work in the field of profiling ITU-T X.509 for
specific application environments.? For example, there is an IETF WG (i.e.,
the IETF PKIX WG) that is chartered to profile the use of ITU-T X.509 on the
Internet. Due to the existence of this IETF WG, the W3C is not actively
working in this field.

1.2 Public key certificates

There are several types and formats of public key certificates. All of them
contain at least the following three pieces of information:

» A public key;
» Some naming information;

» One or more digital signatures.

The public key is the raison d’étre for the public key certificate in the first
place.

The naming information is used to identify the owner of the public key
certificate, such as his or her name. In the past, there has been some
confusion about the naming scheme that is appropriate for the global
Internet. For example, the ITU-T recommendation X.500 introduced the
notion of a distinguished name (DN) that can be used to uniquely identify
an entity (i.e., a public key certificate owner) in a globally unique
namespace. There are other examples of globally unique namespaces on
the Internet, the most prominent being the DNS. The existence and
usefulness of globally unique namespaces, however, has also been

3.

To profile ITU-T X.509—or any general standard or recommendation—basically means to fix the details with
regard to a specific application environment. The result is a profile that elaborates on how to use and deploy
ITU-T X.509 in the environment.



188

Certificate Management and Public Key Infrastructures

challenged in the past (e.g., [10]). Most important, the Simple Distributed
Security Infrastructure (SDSI) architecture and initiative [11] have evolved
from the argument that a globally unique namespace is not appropriate for
the global Internet, and that logically linked local namespaces provide a
simpler and more realistic model [12]. As such, work on SDSI inspired
establishment of a Simple Public Key Infrastructure (SPKI) WG within the
IETF. The WG was tasked with producing a certificate infrastructure and
operating procedure to meet the needs of the Internet community for trust
management in as easy, simple, and extensible a way as possible. It
published a pair of experimental RFC documents [13, 14] before its activities
were abandoned in 2001.

Finally, the digital signature(s) is (are) used to attest to the fact that the
other two items (i.e., the public key and the naming information) actually
belong together. This part of a public key certificate turns the certificate into
something useful.

As of this writing, there are two practically relevant formats for public
key certificates*: Certificates used for Pretty Good Privacy (PGP) or OpenPGP
(i.e., PGP certificates) and certificates that conform to the ITU-T recommen-
dation X.509 (i.e., X.509 certificates) and are used for many contemporary
security protocols and applications. They use different certificate formats and
trust models.”

7.2.1 PGP certificates

PGP is used and deployed for secure messaging on the Internet. It refers to
both a standard and a software package. As mentioned above, PGP uses a
special certificate format and a cumulative trust model.

The distinguishing feature of the PGP certificate format is that it allows
potentially multiple user identities (user IDs) and signatures per certificate.
What this basically means is that a PGP certificate is issued for a public key
and that multiple user IDs can be associated with this key. Furthermore,
multiple signatures can certify the fact that a specific user ID is associated

There are also other certificate formats, such as the format for certificates that conform to the Wireless
Transport Layer Security (WTLS) specifications that is used to secure the Wireless Application Protocol (WAP).
Due to the uncertain future of WAP and WTLS, we don’t look at these certificates in this book.

The term trust model refers to the set of rules a system or application uses to decide whether a certificate is valid.
In the direct trust model, for example, a user trusts a public key certificate because he or she knows where it
came from and considers this entity as trustworthy. In addition to the direct trust model, there is a cumulative
trust model (employed, for example, by PGP certificates) and a hierarchical trust model (employed, for
example, by ITU-T X.509 certificates).



7.2 Public key certificates 189

with the public key. Consequently, there is a one-to-many relationship
between the public key of a PGP certificate and the user IDs associated with
it, and there is another one-to-many relationship for each of these user IDs
and the signatures that are associated with it. Contrary to that, we will see
below that the X.509 certificate format is much simpler. It allows only one
user ID associated with a public key and one signature that certifies this
association. The situation is illustrated in Figure 7.1. The left side illustrates
the structure of a PGP certificate, whereas the right side illustrates the
structure of an X.509 certificate.

Technically spoken, a PGP certificate is a data structure that includes the
following fields:

» Version number: This field is used to identify which version of PGP was
used to create the public key pair (of which the public key is
associated with the certificate).

» Public key: This field is used to hold the public key and a
corresponding algorithm identifier (i.e., RSA, Diffie-Hellman, or
DSS).

» Certificate owner information: This field is used to hold identity
information about the certificate owner and the holder of the
corresponding private key. As discussed above, it may include several
identities and signatures.

» Self-signature: This field is used to hold a self-signature for the
certificate. As its name suggests, a self-signature is generated by the
certificate owner using the private key that corresponds to the public
key associated with the certificate. Note that X.509 certificates

PGP certificate X.509 certificate

| Public key |

Public key

| User ID | User ID ” User ID ” User ID | | User ID |
\ 4 Y
| Signature | Signature ” Signature | Signature

Figure 1.1 The structures of PGP and X.509 certificates.



190

Certificate Management and Public Key Infrastructures

normally do not include self-signatures (they include self-signatures
only in the case of root CA certificates).

» Validity period: This field is used to determine the start and expiration
date and time of the certificate. As such, it specifies the certificate’s
validity period or lifetime.

» Preferred encryption algorithm: This field is used to identify the
encryption algorithm of choice for the certificate owner (e.g.,
CAST, IDEA, or 3DES).

One may think of a PGP certificate as a public key with one or more
labels attached to it. For example, several user identifiers (user IDs) may be
attached to a PGP certificate or public key, each of which contains different
means of identifying the certificate owner (e.g., the certificate owner’s name
and corporate e-mail address or the certificate owner’s first name and private
e-mail address). Typically, a user ID includes the name of the user and one of
his e-mail addresses put in angle brackets (< >), such as Rolf Oppliger
<rolf.oppliger@esecurity.ch>. Also, one or several photographs may be
attached to a PGP certificate or public key to simplify visual authentication
processes. Again, this is a feature that is not known and does not exist in
standard X.509 certificates.

In addition to their specific format, PGP certificates use a cumulative
trust model. This basically means that there is no central CA that is trusted by
every user, but that every user can decide for himself or herself whom to
trust. More specifically, the association of a user ID with a PGP certificate or
public key may be testified by one or several people, each of them generating
a digital signature that is attached to the corresponding user ID in the PGP
certificate. In fact, many people may sign a PGP certificate to attest to their
own assurance that the public key included in the certificate actually belongs
to the claimed user ID. The more people who sign a certificate, the more
likely it will be trusted by somebody else. The resulting certification and trust
infrastructure is highly distributed. It is sometimes also called a web of trust.
The PGP web of trust is discussed in many references and books, including,
for example, Chapter 8 of [4].

7.2.2 X.509 certificates

The ITU-T recommendation X.509 specifies both a certificate format and a
certificate distribution scheme [8]. It was first published in 1988 as part of the
X.500 directory recommendations. The X.509 version 1 (X.509v1) format
was extended in 1993 to incorporate two new fields, resulting in the X.509



7.2 Public key certificates 191

version 2 (X.509v2) format. In addition, and as a result of attempting to
deploy certificates within the global Internet, X.509v2 was revised to allow
for additional extension fields. The resulting X.509 version 3 (X.509v3)
specification was officially released in June 1996. Meanwhile, the ITU-T
recommendation X.509 has been approved by the ISO/IEC JTCI [9].

The format of an X.509v3 certificate is specified in abstract syntax
notation one (ASN.1°) and the resulting certificates are encoded according to
specific encoding rules’ to produce a series of bits and bytes suitable for
transmission. Anyway, an X.509 public-key certificate contains the follow-
ing 10 data items:

1. A version number (identifying version 1, version 2, or version 3);

2. A serial number (i.e., a unique integer value assigned by the issuer);

3. An object identifier (OID) that specifies the signature algorithm that
is used to sign the public key certificate;

4. The DN of the issuer (i.e., the name of the CA that actually signed
the certificate);

5. A validity period that specifies an interval in which the certificate is
valid;

6. The DN of the subject (i.e., the owner of the certificate);

7. Information related to the public key of the subject (i.e., the key and
the OID of the algorithm);

8. Some optional information related to the issuer (defined for
versions 2 and 3 only);

9. Some optional information related to the subject (defined for
versions 2 and 3 only);

10. Some optional extensions (defined for version 3 only).
All three versions of X.509 certificates contain the items 1 through 7

listed. Only version 2 and version 3 certificates may additionally contain
items 8 and 9, whereas only version 3 may contain item 10.

6. ASN.1 is officially specified in ITU-T X.680 and ISO/IEC 8824.

7. There are three standardized encoding rules, namely the basic encoding rules (BER), the distinguished
encoding rules (DER), and the packet encoding rules (PER). Obviously, anybody can specify and use his or her
own set of encoding rules.



192

Certificate Management and Public Key Infrastructures

The trust model employed by ITU-T X.509 is hierarchical.® This basically
means that a user must define a number of root CAs and corresponding root
certificates (i.e., certificates that are trusted by default) from which trust may
extend. Typically, a root certificate is self-signed, meaning that the root CA
has issued its own certificate (i.e., the subject and issuer are identical). Note
that from a theoretical point of view, self-signed certificates are not
particularly useful. Anybody can claim something and issue a certificate
for this claim. Consequently, a self-signed certificate basically says here is my
public key; trust me.

Having established a number of root CAs and corresponding root
certificates, a user can try to find a certification path (or certification chain) that
leads from a root certificate to a leaf certificate (i.e., a certificate that is
issued for a user or system). Formally speaking, a certification path or chain
is defined in a tree or wood of CAs (root CAs and intermediate CAs) and
refers to a sequence of one or more certificates that lead from a root
certificate to a leaf certificate. Each certificate certifies the public key of its
successor. Finally, the leaf certificate is typically issued for a person or a
system. Let’s assume that CA,,, is a root certificate and B is an entity for
which a certificate must be verified. In this case, a certification path or chain
with 7 intermediate CAs (i.e., CA,, CA,, ..., CA,) would look as follows:

CA oot € CA>>
CA, < CAy>
CAy < CA3>

CA,_, < CA>
CA, < B>

The simplest model one may think of is a certification hierarchy
representing a tree with a single root CA. However, more general structures
and graphs (including mutually certifying CAs, cross-certificates, and
multiple root CAs) are possible, as well. A PKI structure or graph among
multiple CAs generally provides one or more certification paths between two
entities.

Note, however, that ITU-T X.509 does not embody a hierarchic trust model. The existence of cross-certificates, as
well as forward and reverse certificates, makes the X.509 model a mesh, analogous in some ways to PGP’s web of
trust. The X.509 model is often erroneously characterized as a hierarchic trust model because it is usually mapped
to the directory information tree (DIT), which is hierarchic, more like name schemes.



7.3 IETF PKIX WG 193

ITU-T X.509 can be used in many ways. Consequently, every nontrivial
group of users who want to work with X.509 certificates has to produce a
profile that nails down the features that are left undefined in X.509. The
difference between a specification (i.e., ITU-T X.509) and a profile is that a
specification does not generally set any limitations on which combinations
can and cannot appear in various certificate types, whereas a profile sets
various limitations, for example, by requiring that signing and confidenti-
ality keys be different. Many profiling activities are currently going on with
regard to the legislation of digital and electronic signatures. We overview and
address the profiling activities of the IETF next.

1.3 IETF PKIX WG

In 1995, the IETF recognized the importance of public key certificates, and
chartered an IETF Public-Key Infrastructure X.509 (PKIX’) WG with the
intent of developing Internet Standards needed to support an X.509-based
PKI for the Internet community.'® In the past, the IETF PKIX WG has
initiated and stimulated a lot of standardization and profiling activities
within the IETF. It is closely aligned with the activities within the ITU-T.

The operational model of the IETF PKIX WG consists of end entities,'!
CAs, and registration authorities (RAs).'? The functions that the RA may carry
out will vary from case to case but may include personal authentication,
token distribution, certificate revocation reporting, name assignment, key
generation, and key archival. In fact, a CA can delegate some of its
authorities (apart from certificate signing) to an RA. Consequently, RAs are
optional components that are transparent to the end entities. Finally, the
certificates generated by the CAs may be made available in on-line
directories and certificate repositories.'?

9. http://www.ietf.org/html.charters/pkix-charter.html

10. In addition to the PKIX WG, the IETF also chartered another WG to address PKI issues. As mentioned above,
this WG was called IETF Simple Public Key Infrastructure (SPKI) WG and was abandoned in 2001.

11. In the specifications of the IETF PKIX WG, the term end entity is used rather than the term subject to avoid
confusion with the X.509v3 certificate field of the same name.

12. Other terms are used elsewhere for the functionality of an RA. For example, the term local registration agent
(LRA) is used in ANSI X9 standards, local registration authority (also with the acronym LRA) is used in [3],
organizational registration agent (ORA) is used in certain U.S. government specifications, and registration agent
(RA) has also been used elsewhere.

13. The term certificate repositories is often used in the RFC documents of the IETF PKIX WG. Therefore, it is also
used in this book.



194 Certificate Management and Public Key Infrastructures

According to this operational model, several informational, experimen-
tal, and standards track RFC documents in support of the original goals of
the IETF PKIX WG have been approved by the IESG:

» Standards track RFC 2459 [15] profiles the format and semantics of
X.509v3 certificates and X.509v2 certificate revocation lists (CRLs'%)
for use on the Internet. As such, it describes in detail the X.509v3
certificate format and its standard and Internet-specific extension
fields, as well as the X.509v2 CRL format and a required extension
set. Finally, the RFC also describes an algorithm for X.509 certificate
path validation and provides ASN.1 specifications for all data
structures that are used in the profiles.

» Standards track RFC 2510 [16] describes the various certificate
management protocols that are supposed to be used in an X.509-
based PKI for the Internet.

» More specifically, standards track RFC 2511 [17] specifies the syntax
and semantics of the Internet X.509 certificate request message
format (CRMF) that is used to convey a request for a certificate to a
CA (possibly via an RA) for the purpose of X.509 certificate
production. The request typically includes a public key and some
related registration information.

» Informational RFC 2527 [18] presents a framework to assist writers of
certificate policies and certificate practice statements (CPS) for CAs
and PKIs. More specifically, the framework provides a comprehen-
sive list of topics that potentially need to be covered in a certificate
policy definition or CPS. Note that the framework needs to be
customized in a particular operational environment.

» Informational RFC 2528 [19] profiles the format and semantics of the
field in X.509v3 certificates containing cryptographic keys for the
Key Exchange Algorithm (KEA)."

» Standards track RFC 2559 [20] addresses requirements to provide
access to certificate repositories for the purpose of retrieving PKI
information and managing that information. The mechanism is based

14. The notion of a CRL will be introduced and discussed in Section 7.4.1.

15. The KEA is a key exchange algorithm that was originally proposed by NIST for use together with the Skipjack
encryption algorithm in Clipper and Fortezza chips. Refer to http://csrc.nist.gov/encryption/skipjack-
kea.html for specification of the Skipjack and KEA algorithms.



1.3

IETF PKIX WG 195

on the Lightweight Directory Access Protocol (LDAP) as specified in
RFC 1777 [21], defining a profile of LDAP for use within the X.509-
based PKI for the Internet. In addition, RFC 2587 [22] defines a
minimal schema to support PKIX in an LDAPv2 environment, as
defined in RFC 2559.

» Standards track RFC 2585 [23] specifies the conventions for using
FTP and HTTP to obtain certificates and CRLs from certificate
repositories.

» Standards track RFC 2560 [24] specifies an Online Certificate Status
Protocol (OCSP) that is useful in determining the current status of a
digital certificate.

» Standards track RFC 2797 [25] specifies a certificate management
protocol using the cryptographic message syntax (CMS). The
resulting protocol has the acronym CMC.

» Standards track RFC 2875 [26] specifies two methods for producing
an integrity check value from a Diffie-Hellman key pair.'®

» Standards track RFC 3039 [27] forms a certificate profile for qualified
certificates,!” based on REC 2459, for Internet use.

» The experimental RFC 3029 [28] describes a general data validation
and certification server (DVCS) and the protocols to be used when
communicating with it. In short, the DVCS is a TTP that can be used
as one component in building reliable nonrepudiation services. It is
designed to provide data validation services, asserting correctness of
digitally signed documents, validity of public key certificates, and
possession or existence of data. As a result of a validation process, the
DVCS generates a data validation certificate (DVC).

» Finally, standards track RFC 3039 [29] elaborates on a Time-Stamp
Protocol that can be used to provide a time stamping service. More
specifically, it specifies the format of a request sent to a Time
Stamping Authority (TSA) and of the response that is eventually
returned.

16.

17.

This behavior is needed for such operations as creating the signature of a PKCS #10 certification request. These
algorithms are designed to provide proof of possession rather than general-purpose signing.

The term qualified certificate is used to describe a certificate with a certain qualified status within applicable
governing law.



196 Certificate Management and Public Key Infrastructures

In summary, the RFC documents itemized above specify an X.509-based
PKI for the Internet community. This evolving PKI is sometimes also referred
to as Internet X.509 Public Key Infrastructure (IPKI). As of this writing, the RFC
documents that specify the IPKI refer to Proposed Standards.

The number of RFC documents that specify various aspects of the IPKI
will certainly grow in the future, since a lot of work is done to further refine
the IPKI and its operational protocols and procedures. In fact, the number of
RFC documents specifying the IPKI will certainly have increased by the time
you read this book. Refer to the IETF PKIX WG home page to get a complete
and more comprehensive overview about the RFC and Internet-Draft
documents that are currently available. The current trend in the industry is
to make commercial PKI products ““PKIX compliant,” and this trend is likely
to continue in the future.

7.4 Certificate revocation

According to RFC 2828 [6], certificate revocation refers to ‘‘the event that
occurs when a CA declares that a previously valid digital certificate issued by
that CA has become invalid.” In practice, there are many reasons that may
require certificate revocation. For example, a user’s or a CA’s private key
may be compromised, or a user may no longer be registered and certified by a
particular CA.

In general, certification and revocation of certification involve three
different parties:

» The certificate-issuing authority, such as the CA or attribute
authority (AA);

» The certificate repository, such as a networked directory service
(which may be replicated several times);

» The users of certificates.

In this setting, the certificate-issuing authorities do not necessarily
provide on-line certificate status information about the certificates they have
issued to users. Instead, they may operate off-line and update the certificate
repositories only on a periodic basis. The certificate repositories, in turn, may
operate on-line to be permanently available and accessible to the users. In
general, it must be assumed that the certificate-issuing authorities are
trusted, whereas the certificate repository and the users may not be. A user
who contacts the certificate repository does not only want to retrieve



7.4 Certificate revocation 197

a certificate, but also may want to get some kind of proof of validity for the
certificates he or she retrieves.

From a theoretical point of view, there are four approaches to certificate
revocation:

1. Having certificates expire automatically after a certain amount of
time and requiring periodic renewals of certificates;

2. Listing all nonrevoked certificates in an on-line certificate reposi-
tory, and accepting only certificates that are found there;

3. Having all certificate-issuing authorities periodically issue lists that
itemize all certificates that have been revoked and should no longer
be used;

4. Providing an on-line certificate status checking mechanism that
informs users whether a specific certificate has been revoked.

Note that the approaches are not mutually exclusive, but can be
combined to develop more efficient or more effective certificate revocation
schemes. Also note that all approaches have advantages and disadvantages.
For example, the first approach has the advantage of not requiring explicit
certificate revocation (because the certificates expire after a certain amount
of time). The disadvantages of this approach are due to the fact that
certificate expiration only provides a slow revocation mechanism, and
that it depends on servers’ having accurate clocks. Someone who can trick
a server into turning back its local clock can still use expired certificates
(the security of the certificate revocation mechanism thus depends on the
security of the timing service). Similarly, the second approach has the
advantage that it is almost immediate, whereas the disadvantages are that
the availability of authentication is only as good as the availability of the
certificate repository, and that the security of the certificate revocation
mechanism as a whole is only as good as the security of the certificate
repository. Furthermore, users tend to cache -certificates they have
retrieved from the directory service for performance reasons, and the use
of such a cache actually defeats the original purpose of the certificate
repository (i.e., to provide timely status information). The third approach
has the advantage that it is simple and straightforward, whereas the
disadvantages are that the lists must be retrieved and taken into account
and that the revocation of a certificate is enforced only after the publication
and distribution of the next list. Finally, the fourth approach is immediate
and provides a high level of security, but also reintroduces an on-line
component.



198

Certificate Management and Public Key Infrastructures

For all practical purposes, the first and second approaches are the ones
that are being followed for the revocation of attribute certificates, whereas
the third and fourth approaches are the ones that are being followed for the
revocation of public key certificates. For example, the ITU-T recommenda-
tion X.509 follows the third approach for the revocation of public key
certificates.'® More specifically, it recommends that each CA periodically
issue a certificate revocation list (CRL) that itemizes all certificates that have
been revoked and should no longer be used. The CRLs can be pushed or
pulled by the communicating peers:

» If a CRL is pushed, the initiating peer (e.g., the client) provides the
currently valid CRL to the responding peer (e.g., the server).

» Contrary to that, if a CRL is pulled, the responding peer retrieves the
CRL from the certificate-issuing authority.

Applications that use certificates can either use the push model, the pull
model, or both. For example, IKE, SSL/TLS, and S/MIME are all protocols
that can push CRLs rather than requiring CRL retrieval from a repository.

In addition to the use of CRLs as proposed in the ITU-T recommendation
X.509, the IETF PKIX WG is also following the fourth approach and has
specified an Online Certificate Status Protocol (OCSP) in standards track RFC
2560 [24] and a complementary DVCS in experimental RFC 3029 [28]. CRLs
and OCSP are further addressed in the rest of this section. Afterward, we
mention some alternative certificate revocation schemes that are primarily
of theoretical interest.

1.4.1 CRLs

The classical and simplest solution to the certificate revocation problem is the
use of CRLs. As mentioned above, this approach is followed in the ITU-T
recommendation X.509 [8] and ISO/IEC 9594-8 [9]. In this approach, a CA
periodically issues and digitally signs a message that lists all certificates that
have been revoked and should no longer be used. This message is called a
CRL and it is made available through the certificate repository. In addition to
the revoked certificates, a CRL generally indicates the date and time of the
next issue.

18. The X.509 CRL format is an ITU-T and ISO/IEC standard, first published in 1988 as version 1 (X.509v1 CRL).

Similar to the ITU-T X.509 certificate format, the X.509v1 CRL was subsequently modified to allow for
extension fields, resulting in the X.509 version 2 CRL (X.509v2 CRL) format.



7.4 Certificate revocation 199

Users who want to make sure that a particular certificate has not been
revoked must query the certificate repository and retrieve the latest CRL. If
the CRL does not include the certificate, the user can assume that the
certificate has not been revoked (at least since the time the CRL was issued
and digitally signed).

If a CRL is becoming too large, the use of delta CRLs may be appropriate.
In short, a delta CRL lists all certificates that have been revoked and should
no longer be used since the latest break point. Consequently, the set of all
revoked certificates at a given point in time consists of all certificates listed in
the most recent CRL plus all certificates listed in the delta CRLs that have
been published meanwhile. Furthermore, other mechanisms are included in
X.509 to allow a CA to split CRLs into multiple pieces (e.g., using CRL
distribution points).

The major advantage of using CRLs (together with delta CRLs) is
simplicity. A user of a certificate is required to retrieve the latest CRL from
the appropriate CA or the repository and check whether the certificate has
been revoked. Only if the certificate is not included in the CRL (and has not
been revoked accordingly) is the user authorized to accept and use the
certificate. Obviously, the consequence of this scheme is that the user has to
periodically retrieve the latest CRLs from all the CAs he or she uses and
accepts certificates from. This introduces some communication costs
between the CA and the certificate repository, and high communication
costs between the repository and the users (as CRLs may be very long).
Furthermore, even though the use of CRLs can improve the fineness of the
granularity with which certificates can be revoked, this granularity may still
be coarser than people want (e.g., it may be a week or month, rather than an
hour). In either case, a user does not receive succinct proof for the validity of
a particular certificate.

Finally, note that a CRL is a negative statement. It is the digital
equivalent of the little paper books of bad checks or bad credit cards that
were distributed to cashiers in the 1970s and before. These have been
replaced in the retail world by positive statements in the form of on-line
validation of a single check, ATM card, or credit card. The digital equivalent
to this on-line validation of a certificate is provided by the OCSP or a similar
protocol.

1.4.2 OCSP

Instead of, or as a supplement to, checking against periodically issued CRLs,
it may be necessary to obtain timely information regarding a certificate’s
current status. Examples include high-value funds transfer or large stock



200

Certificate Management and Public Key Infrastructures

trades. Consequently, the IETF PKIX WG specified and standardized an
OCSP in RFC 2560 [24]. In short, the OCSP enables a user to determine the
status of an identified certificate. An OCSP client issues a status request to an
OCSP responder and suspends acceptance of the certificate in question until
the responder provides a response (whether the certificate in question is
good, revoked, or is in an unknown state for the responder). A certificate-
issuing authority can either respond to OCSP requests directly or have one
(or several) delegated OCSP responder(s) providing OCSP responses to the
requesting entities on its behalf.

As of this writing, the OCSP is not yet widely deployed on the Internet.'?
Nevertheless, it is possible and very likely that future CAs and certificate
repositories will provide support for both certificate revocation mechanisms
(i.e., CRLs and OCSP). It is equally possible and very likely that the value of
an e-commerce transaction will determine whether a check in a CRL is
sufficient, or whether an OCSP query must be invoked.

Finally, note that for financial transactions, the merchant often needs to
know notjust whether a certificate is valid, but whether the charge tobe made
against the account represented by the certificate is acceptable (e.g., because
of credit-limit concerns). Thus, in such circumstances, timeliness of certificate
status information may be irrelevant, because the merchant may need to
contact the site responsible for the account (e.g., a bank for a bank credit-card
charge), and that site would have very timely knowledge of certificate status
information, because it probably does not rely on CRLs and OCPS.

7.4.3 Alternative schemes

The use of CRLs introduces some communication costs between the CA and
the certificate repository, and high communication costs between the
repository and the users (as CRLs may be very long). Furthermore, by using
CRLs, a user does not receive succinct proof for the validity of a particular
certificate. Protocols, such as the OCSP, can be used to address the second
problem.

Some alternative certificate revocation schemes have been proposed that
try to address both problems. For example, there is Silvio Micali’s certificate
revocation system (CRS) [30], Paul Kocher’s certificate revocation trees

19. Note that browsers do not currently check the revocation status of any certificate at all. The only time a

browser knows that a site certificate has been revoked is when it eventually expires. It is possible and very
likely that this behavior will change in the future, and that certificate revocation checking will be adopted in
one way or another.



7.5 Certificates for the WWW 201

(CRT) [31], and a certificate revocation and update scheme proposed by Moni
Naor and Kobbi Nissim [32]. More recently, the design and optimization of
certificate revocation schemes has become an active area of research. The
results, however, are interesting mainly from a theoretical point of view (as of
this writing, they are not relevant for all practical purposes).

A final word is due about the notion of certificate suspension. In many
legislations for digital or electronic signatures, the user may suspend a
certificate (in addition to revoking it). This is interesting from a user’s point
of view, because it allows him or her to temporarily disable a certificate.
Note, however, that providing support for certificate suspension is also very
difficult to say the least. It requires that the entire history of a certificate (i.e.,
the validity intervals for the certificate) is maintained and properly managed
for a potentially very long period of time. While we are starting to
understand certificate revocation, certificate suspension and its implications
are still largely not understood today.

7.5 Certificates for the WWW

There are several types of certificates in use on the WWW. For example,
every CA that issues certificates must have a certificate. This certificate, in
turn, is either self-signed or signed by another CA. Next, every SSL/TLS-
enabled Web server must have a server or site certificate to authenticate itself
to browsers. Similarly, if certificate-based authentication is required by the
server, each user must have a personal certificate. Finally, many software
publishers use certificates to digitally sign code distributed over the Internet.
As discussed next, the four types of certificates are named differently by
different software vendors. For example, Figure 6.4 illustrates the Certificate
Manager of Micrsoft’s Internet Explorer. The Certificate Manager can be
used to manage certificates that belong to the actual user of the browser,
other people, intermediate CAs, and trusted CAs. In this terminology, the
former two classes of certificates refer to personal certificates, whereas the
latter two classes refer to CA certificates. As illustrated in Figures 6.5 and 6.6,
the Opera browser does only distinguish between personal and CA
certificates.

1.5.1 CA certificates

A CA certificate certifies that a public key actually belongs to a CA. As
mentioned above, such a certificate may either be self-signed or signed by
another CA.



202

Certificate Management and Public Key Infrastructures

» In the first case, the certificate is signed with the private key that
belongs to the public key that is certified and that is attributed to the
certificate owner (i.e., the CA). Note that every CA can issue a self-
signed certificate, and that the assurance such a certificate provides is
not very convincing (to say the least). In fact, a self-signed CA
certificate says something like I am CA such and such. My public
key is such and such. Trust me.”

» In the second case, the certificate is signed with the private key of
another CA. To verify the certificate, however, the public key of the
other CA is needed. To make sure that this key is in an authentic and
integer form, it should be provided as part of a public key certificate.
Again, this certificate can be self-signed or signed by another CA.
Consequently, the verification of such a CA certificate leads to a
recursion. The recursion continues until a root certificate is found
(i.e., a certificate that is trusted by default).

In practice, it is common to distribute software that makes use of CA
certificates with a preconfigured list of trusted root certificates. Assurance
then results from the way this list is managed by the software developer or
distributor. For example, in Microsoft’s Internet Explorer, the trusted root
certificates that are preconfigured and come along with the software
distribution can be found in the trusted root CA tab of the Certificate
Manager (as illustrated in Figure 6.4). The list includes several dozens of
commercially operating CAs. Similarly, in the Opera browser, the trusted
root certificates can be found in the ‘Certificate authorities’ panel (as
illustrated in Figures 6.5 and 6.6). In either case, it is possible to import,
export, and delete trusted root certificates.

The fact that browsers are packaged and shipped with lists of
preconfigured and trusted root certificates must be considered with care. A
user who does not alter this list in his or her browser will automatically and
implicitly trust all certificates that are issued by any CA from that list. This is
transparent to him or her. Sometimes this level of trust is appropriate, but
sometimes it is not. For example, if you go through the list of trusted root
certificates in your browser, you will see that there are some root certificates
you would not immediately trust if you were asked off hand. To make things
worse, trusted root certificates tend to have unreasonably long lifetimes.*°

20. The long lifetimes are due to the fact that it is very uncomfortable to have trusted root certificates that expire.

This has motivated certification service providers to use root certificates with very long lifetimes.



7.5 Certificates for the WWW 203

Some of them will expire not before 2028 or 2036. The preferred way to
ship browsers would be to package them with empty lists and to have
users import certificates from the CAs they trust. Unfortunately, this is not
likely to happen anytime soon (mainly because it is uncomfortable for the
user).

1.5.2 Server or site certificates

In the previous chapter we saw that the SSL and TLS protocols require that a
server authenticates itself to a browser using a public key certificate. Such a
certificate is called a server or site certificate. Every SSL/TLS-enabled Web
server must be equipped with a server or site certificate, and there are many
companies that provide such certificates.?!

If a Web server provides a certificate that is issued by a CA found in the
browser’s list of trusted CA certificates, the certificate is silently accepted. If,
however, a Web server provides a certificate that is issued by a CA not
found in the list, the user is prompted whether he wants to accept it and
proceed accordingly. For example, Figure 7.2 illustrates the Security Alert
panel that Microsoft’s Internet Explorer pops up when a server provides a
certificate that is not signed by a trusted CA. In this example, the server
certificate is valid (i.e., it has not expired yet) and the certificate matches
the server’s domain name. The only problem recognized by the browser is
the fact that the certificate is digitally signed by an unknown and untrusted
CA. In this situation, the user is asked whether or not he or she wants to
proceed, and whether he or she wants to view the certificate’s details,
respectively.

Unfortunately, users tend to click ‘Yes” buttons whenever they appear
simply to continue their work as soon as possible. There is hardly any user
who carefully reads messages that appear in security alerts. Against this
background, any browser that automatically displays some relevant details
about server certificates is advantageous from a security point of view. For
example, the Opera browser does so and automatically displays information
about the server or site certificate, such as the certificate name and its issuer.
Consequently, the user is automatically confronted with some information
that may help to make more intelligent decisions about the validity of server
or site certificates.

21.

Some of these companies are mentioned at the end of the chapter.



204

Certificate Management and Public Key Infrastructures

Security Alert | X]

ml’.-”; Infarmation you exchange with this site cannot be viewed or changed
by others. However. there is a problem with the site's security
certificate.

/Ty The security cerificate was issued by a company you have not
chosen fo trust. Yiew the cerificate to determine whether you want
to trust the certifying authority.

@ The security certificate date is walid.

@  The security cerificate matches the name of the page you are
trying to view.

Do youwantto proceed?

Vi I |"i_\l_m ....................... | o

Figure 7.2 Microsoft Internet Explorer’s Security Alert panel, which is displayed if the
browser does not know or trust a server or site certificate. (© 2002 Microsoft Corporation.)

1.5.3 Personal certificates

Each user can have zero, one, or several personal certificate(s) to
authenticate himself or herself to SSL/TLS-enabled Web servers that require
client authentication. For example, in Microsoft’s Internet Explorer, the
Certificate Manager can be used to select a personal certificate.

As illustrated in Figure 7.3, this certificate can then be looked at in a
special panel. In this example, the certificate is issued by VeriSign for Rolf
Oppliger.?? The certificate expired on December 16, 2001. Further
information about the certificate is available by clicking at the Details
and Certification Path tabs (as illustrated in Figures 7.4 and 7.5).
The certificate’s details show the fields of the X.509 certificate, whereas
the certification path illustrates the certificate chain that is used to verify the
certificate. In this example, the certificate of Rolf Oppliger is issued by the
VeriSign Class 1 CA, and the certificate of this CA is issued by the VeriSign
Class 1 Public Primary CA.

22. The certificate used in this example is used only for illustrative purposes.



7.5 Certificates for the WWW 205

Certificate [ 7] X

General | Detsils | Certification Path |

Certificate Information

This certificate has expired or is not yet valid.

Issued to:  Ruoli Oppliger

Issued by: VerSign Class 1 CA Individual Subscriber-Persona
Mot Validated

Yalid from 16.10.071 to 16.12.01

92 Youhave a private key that corresponds to this certificate.

| lssuer Statement... I

Ok I

Figure 1.3 Microsoft Internet Explorer’s Certificate panel. (© 2002 Microsoft Corporation.)

1.5.4 Software publisher certificates

As will be discussed in Chapter 10, code signing is getting increasingly
important to protect the authenticity and integrity of software distributed
over the Internet. A digital signature computed for and distributed with
software is sometimes also referred to as ““digital shrink-wrap.”” It provides a
feature similar to shrink-wrapped software packages (meaning that it is
difficult to modify the software without giving the recipient a possibility to
detect the modification).

Digitally shrink-wrapping software basically means that the software
publisher must compute a digital signature for the software, and that



206 Certificate Management and Public Key Infrastructures

Certificate [ 7] X

General Details lCer‘h’ficatinn Pathl

Showe: 381 -

Field | Walue | p=
Flversion W3
[Flserial Mumber 04F2 7137 5951 36E2 21...
FElsignature Algorithm mdbRSA
Flissuer YeriSign Class 1 CAIndiv...
Flvalid From Dienstag, 16. Oktober 20..
Valid To Sonntag, 16. Dezember 2... -
Esubject rolf. oppliger@esecurity.c...
ElPublic Key RSA (1024 Bits)
[F§]Basic Constraints Subject Type=End Entity....
EﬁCer‘tiﬂcate Folicies [1Cettificate Policy:Palic... ;|

Edit Properties.. | Copyta File... |

Figure 7.4 The ‘Details’ tab of Microsoft Internet Explorer’s Certificate panel. (© 2002
Microsoft Corporation.)

the software must be distributed together with the digital signature.
Anybody in possession of the corresponding public key can verify the digital
signature and authenticate the source of the software accordingly. Again, it
is important to distribute the public keys that are necessary to verify the
digital signatures in an authentic and integer form. This is where software
publisher certificates come into play. A software publisher certificate
basically certifies the authenticity and integrity of a software publisher’s
public key. Such certificates are typically issued by commercially operating
certification service providers.



7.6 Conclusions

Certificate

General[ Details Cetification Path I

— Cerification path

207

“ariSign Class 1 Public Primary CA
[ WeriSign Class 1 CA Individual Subscriber-Persana Not Validated

i @ olf Op :||I|]E!r

Wi EBarificate

Certificate status:

This certificate has expired or is notyetvalid,

Figure 1.5 The Certification Path tab of Microsoft Internet Explorer’s Certificate panel.
(© 2002 Microsoft Corporation.)

7.6 Conclusions

Certificate management and PKIs are increasingly important topics for the
Internet. In fact, many organizations face the problem of how to get the
X.509v3 certificates they require for emerging technologies, such as IPsec,
SSL/TLS, and S/MIME. In general, there are two possibilities:

The organization can establish a PKI of its own;

2. The organization can outsource the services and buy X.509v3 certi-

ficates from one or several commercial certification service providers.



208

Certificate Management and Public Key Infrastructures

If an organization wants to establish a PKI of its own, it can use one of
the many commercial PKI solutions and products that are available on the
market. Companies that offer PKI solutions and products include Entrust,??
Baltimore Technologies,>* and RSA Security.?”> You may refer to the trade
press to get a more comprehensive and up-to-date overview about currently
available PKI solutions and products.

If a company or organization wants to outsource certification services, it
can buy corresponding X.509v3 certificates from one (or several) commer-
cial certification service provider(s). Exemplary providers are VeriSign, Inc.
and Entrust.net.”’ In fact, an increasingly large number of commercial
certification service providers are offering their services to the general public.
Again, this trend is strengthened by legislation initiatives for digital or
electronic signatures. Note, however, that the market for certification
services is far from being mature, and that there are many ongoing changes.

In addition to the two possibilities mentioned, there is a whole range of
intermediate possibilities. The general idea is to have the company or
organization act as RA for its users and make use of a commercial
certification service provider to actually issue certificates. This is interesting
mainly because it is simple for the company or organization to register and
authenticate its users, and also because almost everything can be batched
from the certification service provider’s point of view. A corresponding
architecture was proposed in [33]. A similar architecture has been
implemented and marketed in various offerings, such as VeriSign’s OnSite
Managed Trust Service.®

A more critical word should be said about the overall cost of public key
cryptography in general, and PKIs in particular. Note that one of the original
claims of public key cryptography was to minimize the initiation cost of a
secure communication path between parties that share no prior adminis-
trative relationship. It was assumed that this would be the major reason why
public key cryptography would dominate e-commerce applications in the
first place. Note, however, that with no shared administrative structure to
connect the parties, we must invent many things, such as certificate chaining,
certificate revocation, and certificate directory services. In other words,

23.
24.
25.
26.
27.
28.

http://www.
http://www.
http://www.
http://www.
http://www.
http://www.

entrust.com/entrust
baltimore.com
rsa.com
verisign.com
entrust.net

verisign.com/products/onsite



7.6 Conclusions 209

we have to invent the very thing that public key cryptography claimed not to
need, namely administrative overhead. This point was made by Aviel D.
Rubin, Daniel Geer, and Marcus J. Ranum in [34]. In fact, they do not argue
against public key cryptography in general, but they argue that much of the
implied cost savings of public key cryptography over secret key cryptography
is nothing more than an illusion. To further clarify the point, they argue that
the sum of the cost for cryptographic-key issuance and the cost for
cryptographic-key revocation is more or less constant (for both public key
cryptography and secret key cryptography). Note that this argument is only
an assertion and is not yet substantiated by any detailed analysis. Also note
that much of the initial motivation for use of public key cryptography was not
cost based, but rather security based. For example, the argument was made
that there are many more vulnerabilities associated with schemes that make
use of secret key cryptography only as compared with schemes that
selectively make use of public key cryptography, especially when one crosses
organizational boundaries. As an example, you may look at the Kerberos
authentication system, especially in the case of inter-realm authentication. In
spite of the fact that the argument is not substantiated by any detailed
analysis and that the initial motivation for the use of public key cryptography
and corresponding PKIs was security (not costs), the argument should still be
considered with care. Note, for example, the problems we face when we try to
establish and operate a PKI today. Some of the problems are caused by the
need to revoke certificates. This problem makes it necessary to have an on-
line component permanently available for an otherwise off-line CA. Ideally,
certificate revocation is handled by an on-line component that is physically
or logically separated from the off-line CA [35].

Finally, it should be kept in mind that the widespread use of public key
certificates that include (or are logically linked to) globally unique names,
such as DNs, may also provide the means to build a worldwide tracking
system for user transactions. If a user acquires multiple certificates, each of
which contains a different subject name with only local significance, he or
she will not be able to be tracked. If, however, he or she acquires only one
certificate and this certificate is used for multiple (or all) applications, he or
she can be tracked very easily. Consequently, the widespread use of a single
certificate per person may also contradict his or her privacy requirements.’
Against this background, Stefan A. Brands developed a technological
approach that can be used to replace X.509-based certificates [36]. The
resulting certificates can be used to authenticate and authorize their owners;

29. This is particularly true for electronic ID cards that use unique personal certificates.



210

Certificate Management and Public Key Infrastructures

they do not, however, reveal any information that is not necessary to the
certificate verifier. As such, the certificates may be called “minimum-
disclosure” certificates. They provide a first example of a privacy enhancing
technology (PET) in this area, and it is possible and very likely that we will
see other PETs being developed and deployed in the future. We will come
back to the notion of a PET in Chapter 12.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Feghhi, J., J. Feghhi, and P. Williams, Digital Certificates: Applied Internet Security,
Reading, MA: Addison-Wesley, 1999.

Adams, C., and S. Lloyd, Understanding the Public-Key Infrastructure, Indiana-
polis, IN: New Riders Publishing, 1999.

Ford, W., and M. S. Baum, Secure Electronic Commerce: Building the Infrastructure
for Digital Signatures & Encryption, 2nd ed., Upper Saddle River, NJ: Prentice
Hall, 2000.

Oppliger, R., Secure Messaging with PGP and S/MIME, Norwood, MA: Artech
House, 2001.

Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA:
Artech House, 2002.

Shirey, R., “Internet Security Glossary,” Request for Comments 2828, May
2000.

Kohnfelder, L. M., ““Towards a Practical Public-Key Cryptosystem,”” Bachelor’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1978.

ITU-T, Recommendation X.509: The Directory—Authentication Framework,
1988.

ISO/IEC 9594-8, Information Technology—Open Systems Interconnection—The
Directory—Part 8: Authentication Framework, 1990.

Ellison, C., “Establishing Identity Without Certification Authorities,” Proceed-
ings of USENIX Security Symposium, July 1996.

Rivest, R. L., and B. Lampson, ‘“SDSI—A Simple Distributed Security
Infrastructure,” April 1996.

Abadi, M., “On SDSI's Linked Local Name Spaces,”” Proceedings of 10th IEEE
Computer Security Foundations Workshop, June 1997, pp. 98-108.

Ellison, C., ““SPKI R equirements,” Request for Comments 2692, September
1999.

Ellison, C., et al., “SPKI Certificate Theory,” Request for Comments 2693,
September 1999.



7.6 Conclusions

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

211

Housley, R., et al., “Internet X.509 Public Key Infrastructure Certificate and
CRL Profile,” Request for Comments 2459, January 1999.

Adams, C., “Internet X.509 Public Key Infrastructure Certificate Management
Protocols,” Request for Comments 2510, March 1999.

Myers, M., et al., “Internet X.509 Certificate Request Message Format,”
Request for Comments 2511, March 1999.

Chokhani, S., and W. Ford, “Internet X.509 Public Key Infrastructure
Certificate Policy and Certification Practices Framework,” Request for
Comments 2527, March 1999.

Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure
Representation of Key Exchange Algorithm (KEA) Keys in Internet X.509
Public Key Infrastructure Certificates,” Request for Comments 2528, March
1999.

Boeyen, S., T. Howes, and P. Richard, “Internet X.509 Public Key
Infrastructure Operational Protocols—LDAPv2,” Request for Comments
2559, April 1999.

Yeong, Y., T. Howes, and S. Kille, ““Lightweight Directory Access Protocol,”
Request for Comments 1777, March 1995.

Boeyen, S., T. Howes, and P. Richard, “Internet X.509 Public Key
Infrastructure LDAPv2 Schema,” Request for Comments 2587, June 1999.

Housley, R., and P. Hoffman, “Internet X.509 Public Key Infrastructure
Operational Protocols: FTP and HTTP,” Request for Comments 2585, May
1999.

Myers, M., et al., “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol—OCSP,” Request for Comments 2560, June 1999.

Myers, M., et al., ““Certificate Management Messages over CMS,”” Request for
Comments 2797, April 2000.

Prafullchandra H., and J. Schaad, “‘Diffie-Hellman Proof-of-Possession Algo-
rithms,” Request for Comments 2875, July 2000.

Santesson, S., et al., “Internet X.509 Public Key Infrastructure Qualified
Certificates Profile,” Request for Comments 3039, January 2001.

Adams, C., et al., “Internet X.509 Public Key Infrastructure Data Validation
and Certification Server Protocols,” Request for Comments 3029, February
2001.

Adams, C., et al.,, “Internet X.509 Public Key Infrastructure Time-Stamp
Protocol (TSP),” Request for Comments 3161, August 2001.

Micali, S., “Efficient Certificate Revocation,”” Massachusetts Institute of
Technology (MIT), Technical Memo MIT/LCS/TM-542b, 1996.

Kocher, P., A Quick Introduction to Certificate Revocation Trees (CRTs)."”



212

[32]

[33]

[34]

[35]

[36]

Certificate Management and Public Key Infrastructures

Naor, M., and K. Nissim, ““Certificate Revocation and Certificate Update,”
Proceedings of 7th USENIX Security Symposium, January 1998.

Oppliger, R., A. Greulich, and P. Trachsel, ““A Distributed Certificate Manage-
ment System (DCMS) Supporting Group-Based Access Controls,”” Proceedings of
Annual Computer Security Applications Conference (ACSAC '99), 1999, pp. 241-248.

Rubin, A. D., D. Geer, and M. J. Ranum, Web Security Sourcebook, New York:
John Wiley & Sons, 1997.

Lomas, M., “Untrusted Third Parties: Key Management for the Prudent,”
Report on DIMACS Workshop on Trust Management, 1996.

Brands, S. A., Rethinking Public Key Infrastructures and Digital Certificates: Building
in Privacy, Cambridge, MA: MIT Press, 2000



8.1
8.2
8.3
84
8.5

CHAPTER

Contents

Introduction

Microsoft .Net Passport
Kerberos-based AAIs
PKI-based ARIs
Conclusions

References

Authentication and Authorization
Infrastructures

:[n this chapter, we address the notion of an authentication
and authorization infrastructure (AAI) and discuss some
technologies to build and operate an AAI. More specifically, we
introduce the topic in Section 8.1, addresses Microsoft .NET
Passport in Section 8.2, and elaborate on Kerberos- and
PKI-based AAIs in Sections 8.3 and 8.4. Finally, we conclude
with some final remarks in Section 8.5.

8.1 Introduction

In a 1993 edition of The New Yorker, Peter Steiner published a
cartoon' that showed a dog explaining to another dog the
major advantage of the Internet, namely that ““on the Internet,
nobody knows you’'re a dog.”” In subsequent years, the cartoon
was used by many security companies as an argument that
e-commerce requires a PKI to be successful in the first place.
The statement was made that an Internet merchant must know
the identity of his or her customers, and that the merchant
would face a problem if he or she did not know that the,
customers were dogs.

1. The cartoon was published on page 61 of the July 5, 1993, issue of The New
Yorker (Vol. 69, No. 20). It is reproduced, for example, at http://
www.unc.edu/courses/jomc050/idog.html for academic discussion,
evaluation, and research.

213



214

Authentication and Authorization Infrastructures

One may argue whether this statement actually hits the point. Would an
Internet merchant really face a problem if he or she did not know that the
customers were dogs? To answer this question, it is helpful to have a look at
the real world and to ask whether a real merchant would face the same
problem. In the real world we would probably say yes. More interestingly,
however, we would say yes, not because the merchant dislikes dogs, but
because the probablity that the merchant would get money out of a dog is
negligible. Consequently, as a result of risk analysis considerations, the
merchant would typically refuse to serve a dog, out of fear of loosing money.
There are (at least) two conclusions to draw:

1. Everything we do is subject to risk analysis.

2. The merchant may not care about the identity (or breed) of his or
her customers if the risk of not getting paid is negligible.

This line of argumentation leads to the insight that e-commerce requires
authenticity only in the foreground, and that authorization is much more
important from a commercial point of view. More specifically, a merchant is
typically more interested in the authorization of his or her customers than in
their authenticity. This point was first made by Joan Feigenbaum in an
invited talk she gave at the 1998 USENIX Workshop on Electronic
Commerce [1]. It has led to many research and development activities that
are collectively referred to as trust management (e.g., [2-8]).

Trust management is a rather artificial term, and its use is greatly
overblown in the PKI industry. Following the line of argumentation
introduced in [9] and further explored in Chapter 15 of this book, one
may argue that trust management is not particularly important and that all
that matters is risk management:

Trust management is surely exciting, but like most exciting ideas it is
unimportant. What is important is risk management, the sister, the dual of
trust management. And because risk management makes money, it drives
the security world from here on out. [9]

To clarify the point, we consider the situation in which a customer wants
to order some goods from an on-line merchant. In this situation, there are
two possible questions a customer may ask:

1. Does he or she trust the merchant (to handle the order properly)?

2. Does he or she carry the risk of having the merchant not properly
handle the order?



8.1 Introduction 215

Obviously, the first question is related to trust management, whereas the
second one is related to risk management. In many situations, it is much
simpler and more efficient to elaborate on risks than to discuss trust. In fact,
trust is difficult to address and even more difficult to quantify. In either case,
however, it is important to note that trust and risks are not independent, and
that the two things basically try to measure the same (or at least closely
related) things. For example, if we trust something we usually mean that the
risks involved using it are small or negligible. Similarly, if we assume high
risks we usually do not trust something or somebody.

If we agree that for all practical purposes authorization is more (or at
least equally) important than authentication, we may want to extend the
scope of a security infrastructure (e.g., a PKI) to address both authentication
and authorization. This is where AAIs come into play. Similar to a PKI, an
AAI may employ public key cryptography and public key certificates.
Contrary to a PKI, however, an AAI need not necessarily be based on public
key certificates. In fact, there is an increasingly large body of research and
development that elaborates on other or complementary technologies to
provide authentication and authorization services to communicating peers.
This body of research and development is overviewed and briefly discussed
in this chapter.

The simplest AAI one may think of is a password-based authentication
system that is provided by a trusted third party (TTP), and that leaves
authorization and access control decisions to participating server systems.
This is basically the service that Microsoft .NET Passport provides. One may
argue about the trustworthiness of Microsoft and the security properties of
Microsoft .NET Passport, but for participants who only require a low level of
security Microsoft .NET Passport provides a fairly simple and straightforward
approach and solution for their AAI requirements.

The rest of this chapter starts with a thorough overview and discussion of
Microsoft .NET Passport in Section 8.2. This discussion also takes into
account that Microsoft is promoting .NET Passport very aggressively as a key
technology for its user-centric application model and .NET initiative.

The design and development of authentication and key distribution
systems has a long history in network security [10], and many more or less
sophisticated authentication and key distribution systems are available in
theory and practice (some of them have expired and are no longer supported
by their original developers or vendors). One system that is particularly
widely deployed on the Internet is the Kerberos authentication system (as
briefly mentioned in Chapter 5). Kerberos may serve as a starting point to
design and develop an AAL In fact, there are several Kerberos-based AAIs
that are overviewed and discussed in Section 8.3. Note that Microsoft .NET



216

Authentication and Authorization Infrastructures

Passport and Kerberos are not mutually exclusive, and that Microsoft has
already announced that future releases of .NET Passport will also make use of
and support Kerberos.

Microsoft .NET Passport and Kerberos-based AAIs depend on passwords
that are selected by users. This basically means that the overall security of the
resulting system is bounded by the security of passwords. Unfortunately, all
statistical investigations reveal the fact that passwords selected by users have
bad security properties (meaning, for example, that they can be guessed
easily). Consequently, from a security point of view it is interesting to look
into technologies that don’t depend on users to select ““good’” secrets (for any
meaningful definition of ‘““good”’) and use computer-generated secrets
instead. One such technology is public key crytography and public key
certificates. As mentioned in the previous chapter, public key certificates and
PKIs can be used to provide authentication infrastructures. Combined with
some complementary technologies, they can also serve as a starting-point to
additionally provide an authorization infrastructure and to come up with a
comprehensive AAI accordingly. Such technologies are addressed in Section
8.4. Finally, the various technologies that can be used to build and operate
an AAI are put into perspective in Section 8.5.

8.2 Microsoft .NET Passport

As part of its .NET initiative, Microsoft has introduced a set of XML-and
SOAP-based Web services that collectively support what Microsoft has
named a “user-centric’’ application model.? In this model, it is the user and
not the hardware that needs to be authenticated and authorized to run the
software, so user authentication and authorization become the core
attributes.

As of this writing, Microsoft calls the services that implement the user-
centric application model .NET My Services.> At the core of Microsoft .NET
My Services is a user authentication service named Microsoft .NET Passport
[11, 12]. The service was initially released in 1999 and is currently the most
widely used service of its kind on the Internet and WWW.*

This is in contrast to a machine-centric application model in which software is licensed to run on a specific
hardware device.

The services have formerly been code-named HailStorm.

As of July 2001, Microsoft claimed to have more than 165 million accounts. One reason for the large number is
that all Hotmail accounts were converted to the .NET Passport system. Furthermore, it is not possible to delete
an account once it is created (at least it is not obvious how one can delete it).



8.2 Microsoft .NET Passport 217

8.2.1 Overview

As mentioned in the introduction, Microsoft .NET Passport provides a
password-based authentication service that makes use of a TTP. The TTP, in
turn, is provided by Microsoft through its .NET Passport service, or via the
servers that provide the service.

Microsoft uses the term single sign-in (SSI) to refer to the service that
Microsoft .NET Passport provides. This is in contrast to the term single sign-on
(SSO) that is otherwise used in the literature. It is not clear to what extent
SSI differs from SSO in the terminology of Microsoft.’ In this book, we use
the terms SSI and SSO synonymously and interchangeably.

To make use of Microsoft .NET Passport and its service (i.e., the SSI
service), a user must create a .NET Passport account to store his or her
credentials. The credentials, in turn, must include his or her e-mail address
(or phone number) and password. A corresponding .NET Passport registra-
tion screen is illustrated in Figure 8.1. Note that it is possible and very likely
that the GUI will have changed when this book hits the shelves of the
bookstores. So this figure, and some of the following figures, only serve
illustrative purposes.

Each user may store additional, optional user profile information, such
as demographic or preference data (for example, gender, occupation, and ZIP
code) or their first and last name in his or her .NET Passport account. The
screen that is used to request this additional information is illustrated in
Figure 8.2. In addition, through .NET Passport express purchase service (as
discussed below), the user can store credit-card information and addresses in
his or her .NET Passport wallet and use this information to purchase products
and services on-line. The corresponding screen to enter the user’s payment
information is illustrated in Figure 8.3. In summary, the .NET Passport user
account can be used to store any information that is needed and must
eventually be provided at multiple sites.

In essence, Microsoft .NET Passport provides a SSI service by hosting a
central database that contains users” accounts, as well as the registration
and sign-in/sign-out pages, that participating .NET Passport sites can
cobrand. Using this service, a user can easily move between participating
sites and services without the need to remember a specific set of credentials
for each of them (this is basically the idea of an SSI or SSO service).
Furthermore, there are several security levels that Microsoft .NET Passport

5. Note, for example, that the term SSO is used in the documentation that describes Microsoft’s Kerberos
implementation in Windows 2000 and XP.



218

Authentication and Authorization Infrastructures

A Get a .NET Passport - Microsoft Internet Explorer

¢ . =2 .0 O & | @ & i
| Back O Erd Stop Fefresh Home Search Fenorites
;Addrass |@ 2Ecom%2FCDnsumar%2Fdafault%2Easp%3FIc%3El1DSS%?EIC%3D1DS3:] @ Go ‘ Links >

Microsoft® .NET Passp ; e —

Registration

Completing this farm will register you with NET Passport Web Site and with Microsaoft® NET
Passport. With NET Passport, you can use the e-mail address and password you provide below
to sign in to any site that has the NET Passport sign-in button.

Click the NET Passport sign-in button if you have already registered for a NET
SignIn,.| Passport at another site. (All @hotmail.com and @msn.com e-mail addresses
are NET Passports.)

Fields marked with [# will be stored in your NET Passport, Hel
E-mail Address | @
Password | ] =

Six-character minimum; no spaces

Retype Password | IE]

I8 Tired of registration forms? You can speed registration
ﬂ_ﬂj" y and get personalized services at participating sites by
F J sharing your NET Passport information with therm when
you sign in. Select the boxes below to choose how much
of your NET Passport information Microsoft can share

with other companies' NET Passport sites at sign-in:

" Share my e-mail address.

Tell me mare about NET Passport, privacy, and security. -|
4] i B
}E‘I hitp:/ ferwow. passpont.com/ default asp?lc=1033 l_ |_I‘ Internet e

Figure 8.1 The .NET Passport registration screen. (© 2002 Microsoft Corporation.)

may provide (i.e., standard sign-in, secure channel sign-in, and strong
credential sign-in). These security levels are described below.

Sites become participating .NET Passport sites by implementing the .NET
Passport SSI service. Participating .NET Passport sites rely on .NET Passport to
authenticate users rather than hosting and maintaining their own
authentication schemes. However, .NET Passport does not authorize or
deny a specific user’s access to individual participating sites. Web sites that
implement .NET Passport maintain control over permissions. As such, .NET
Passport provides an authentication system or infrastructure and does not
provide a complete and comprehensive AAL This is similar to the Kerberos



8.2 Microsoft .NET Passport 219

soft Internet Explorer

S R > ) B a Q (2] g

| Back OnyErd Stop Refresh Home Search  Favorites
| Address |@ https://register.passport.com/ editprof sr?lc=10338 chid=486| :] @ Go ‘ Links *
Microsoft® .NET Passpd — =

Home ___ oy L .NEt Passport

.MET Passport Home | Kids Passport | Member Services | Site Directory |Privacy Fianﬂi.ﬂ:;z

Edit Your .NET Passport Profile

To edit your Microsoft® NET Passpoart profile information or to choose

which information to share with participating NET Passport sites at sign-

in, please enter your new information and click Update.

rolf.oppliger@esecurity.ch Help

Lneed to change this,

First Name |

Last Name [

E-mail Address rolf.oppliger@esecurity.ch

Country /Region IUmted States E| B

State [[Choose One] =l

ZIP Code [

Time Zone [Universal Time - GMT x|

Gender C Male € Female

Birth Date [Morth  SlOay=ll | (ex. 1999)

Occupation |[Select an Occupation] ;I

Accessibility CYes & No

{Use a site's accessibility options.) j

2] [ & @ Intemet 4

Figure 8.2 The .NET Passport screen to edit a user profile. (© 2002 Microsoft Corporation.)

system. Also similar to the Kerberos system, Microsoft .NET Passport can
easily be extended to provide an AAL

8.2.2

.NET Passport user accounts

Each .NET Passport user account may include the following components:

The .NET Passport Unique Identifier (PUID) that is a 64-bit numeric
value assigned by the .NET Passport service during the creation of the
account. For obvious reasons, this component is required for every
.NET Passport user account.



220 Authentication and Authorization Infrastructures

Microsoft Internet Exp... M= E3

| Eile Edit View Favortes Tools Help |-
| »
S R ) B A Q ]
| Back Felpzier] Stop Refresh Home Search  Fawvorites
;Addrass |@ berseNice%2EsrP&SFcbid%SD485%26lc%3D10333lc=1033&m0=default:] @ Go " Links *
Microsoft® .NET Passpol 2 -
Enter Payment Information = Secure Site
Payment Information NET Passportwallet accepts these payment
Card type: types
L =
Card number: | Q‘J n —
Narne on card.‘l ‘Your NET Passport wallet safely stores your
e purchase information, so you don't have to retype it
Explration: 01 'I / |2002 'l at participating sites.
Description: isa
ok . Use yourwallet to shop online from any computer
Type a description that will help connected fo the Internet,
you identify this card (such as
business or personal).
Billing Address
Firstname: | Postal code: |
Last name: | Countryregion: |-N|;|t Listed- j
Address line 1: | Phone: |
Address line 2: | E-mail: |
City: | Description: |
S Type a description that will help
Stat z i : i
Ao | you identify this address.
Cancel

S

2] Dane [ 18 |® inemet

Figure 8.3 The .NET Passport screen to enter the user’s payment information. (© 2002
Microsoft Corporation.)

» The .NET Passport user profile that may contain the following
components:

» The user’s e-mail address or phone number;
» The user’s first and last name;

» The user’s demographic information such as postal code, country,
and state or region.

The user’s e-mail address or phone number is the only required
profile information.



8.2 Microsoft .NET Passport 221

» The .NET Passport credentials that contain the following components:

» The standard .NET Passport credentials consist of the user’s e-mail
address or phone number stored in the .NET Passport user profile
and a password (or PIN) of at least six characters. An optional
secret question and answer may be used to reset the password. The
standard credentials are the minimum amount of information
required for a user to have a .NET Passport account and to use the
.NET Passport authentication service (i.e., for standard sign-in and
secure channel sign-in).

» An additional four-digit security key that is used when the user
accesses sites requiring strong credential sign-in. When created,
the security key requires three associated secret questions and
answers to reset it. The security key is created the first time the
user accesses a site requiring strong credential sign-in.

» The optional .NET Passport wallet, used by the .NET Passport express
purchase service. Each wallet may contain the following pieces of
information:

» The user’s credit-card numbers and the associated expiration dates,
billing address, and friendly names.

» The user’s shipping addresses and associated friendly names.

To operate the .NET Passport service, .NET Passport also stores some
operational data about the user account. This includes the version number,
whether the account contains a .NET Passport wallet, and so on.

Users create their account the first time they register for a .NET Passport.
There are several ways to register. The most direct way is to register at the
home page of .NET Passport® or by using the Microsoft Windows XP
Registration Wizard. Also, a user may register by opening a Hotmail” account
(i.e., Hotmail accounts are automatically registered as Passports) or he or she
may register at a participating site. Participating sites automatically redirect
users to a cobranded, centrally hosted .NET Passport registration page. In
either case, the amount of information the user is asked for when registering
for a Passport depends on the site where the user registers. For example,
users directly registering at the .NET Passport home page are asked only for

6.
7.

http://www.passport.com
http://www.hotmail.com



222

Authentication and Authorization Infrastructures

the minimum information needed to create a Passport (i.e., an e-mail
address and a password). If a participating site asks for additional, non-
Passport information during registration, an arrow icon indicates the
information that will be stored in the user’s .NET Passport account.
Information typed in fields not followed by this icon is not stored in the
user’s .NET Passport account (i.e., it is stored at the participating site only).

During Passport creation, users can choose what type of information
they want to share with participating sites during sign-in (i.e., e-mail
address, first and last names, all other .NET Passport user profile
information). The site users register from can store all the information the
site requested during Passport creation. Other participating .NET Passport
sites, however, receive only the information the user has decided to share
with participating .NET Passport sites. For example, users can decide not to
share their e-mail address and their user profile information. In this case,
when the user is authenticated, the participating Web sites receive only the
user PUID. Furthermore, .NET Passport wallet information is shared only
when users use the .NET Passport express purchase service.

We overview and briefly discuss the .NET Passport SSI and some
complementary services, such as the .NET Passport Express Purchase and
Kids .NET Passport services, next.

8.2.3 .NET Passport SSI service

The SSI service is the core service that .NET Passport provides. The service is
implemented by a protocol and the protocol’s message flows are illustrated in
Figure 8.4. When a registered .NET Passport user clicks the standard sign-in
link on a participating .NET Passport site, an initial HTTP request message is
sent to this site (i.e., message 1). The participating site, in turn, sends back an
HTTP redirect message for the cobranded .NET Passport sign-in page® located
at the .NET Passport server (i.e., messages 2 and 3). From the user’s point of
view, the HTTP redirect for authentication is transparent.” A unique site ID is
used to identify the participating site requesting the authentication.
Furthermore, a return URL (generally the same URL as the one the user
originally requested) is added to the .NET Passport URL in query string
parameters.

The current version of .NET Passport also allows participating sites, using JavaScript, to display the .NET
Passport sign-in module (called inline sign-in) within their own pages.

This transparency means that the user does not have to type in a new URL. The browser is automatically
redirected to the authentication server.



8.2 Microsoft .NET Passport 223

.NET passport

\4

<
<

Browser Participating site

Y

®|O1| DO =

i
<

Figure 8.4 The .NET Passport Protocol’s message flows.

Before displaying the appropriate .NET Passport sign-in page, .NET
Passport checks the site ID and return URL. If they do not match an entry in
the list of participating .NET Passport sites, the authentication is rejected (this
ensures that only participating .NET Passport sites can request .NET Passport
user authentication). The .NET Passport server then displays a page with a
secure form that prompts the user to enter his or her .NET Passport
credentials (i.e., his or her e-mail address and password). Again, this page
might be cobranded by the participating site. In either case, the password is
not displayed in the clear. When the user clicks the .NET Passport sign-in
link, the credentials are transmitted to the .NET Passport server using the
HTTP POST method on top of SSL (i.e., HTTPS). Consequently, the
transmission of the user’s credentials are strongly encrypted and protected
against eavesdropping.

If the user’s credentials match an entry in the .NET Passport database, he
or she is authenticated. The PUID is extracted from the database along with
the .NET Passport user profile information that he or she has agreed to share
with participating sites at sign-in. The .NET Passport server then uses this
information to create the following three cookies:

1. The fticket cookie that includes the PUID and a time stamp;
2. The profile cookie that includes the user profile information;
3. The visited sites cookie that includes a list of the sites the user has

signed in to.

Cookies are encrypted using 3DES and a site encryption key that is
shared between the .NET Passport server and the participating site (the key is



224

Authentication and Authorization Infrastructures

identified through the site ID and must be distributed out-of-band). Using
the site encryption key, the .NET Passport server encrypts the ticket and
profile cookies, adds them as query string parameters to the return URL
provided in the authentication request, and presents this URL to the
user’s browser so that it gets redirected to the participating site (i.e., messages
4 and 5).

The participating site extracts the encrypted ticket and profile cookies
from the query string parameters and sends them to the .NET Passport
Manager object running locally. The .NET Passport Manager object, in turn,
decrypts the information and receives the PUID, the time stamp, and the
user’s profile information accordingly. The time stamp can be used to decide
whether the user must reauthenticate. If the site’s time window has expired,
it displays the cobranded .NET Passport sign-in page with the user’s e-mail
address and the prompt to enter the user’s password before proceeding. If
everything is fine, the user is authenticated and the participating site displays
the requested page (i.e., message 6). To personalize the user’s experience in
some way, the site might populate the page using information it has already
gathered from the user or extracted from the profile cookie. The site can also
use information from the profile cookie to create or upgrade its own database
entry for that particular user. In either case, the requested page includes a
sign-out link.

Note that there is no direct server-to-server communication of users’
authentication and profile information between the .NET Passport server
and the participating site. The information exchange always occurs through
the client’s browser using HTTP redirects and cookies. However, the Passport
Manager on the participating site does periodically download a centrally
hosted configuration file. This is an XML document that contains current
URLs for the .NET Passport servers and the current .NET Passport profile
configuration (or profile schema).

After signing in at one .NET Passport participating site, a user can sign in
to any other participating site simply by clicking the corresponding .NET
Passport sign-in link on that particular site. Again, the browser is silently
redirected to the .NET Passport server and the site ID and return URL are sent
for authentication. The .NET Passport server checks the validity of the site ID
and the ticket cookie (i.e., PUID and time stamp) and silently returns
encrypted ticket and profile cookies to the site to authenticate the user.
Again, these cookies are encrypted using a key that is shared between the
.NET Passport server and the participating site. In this way, after the first
sign-in to any participating site has occured, the user can be authenticated by
any other participating site with just one click. If, however, a participating
site wants to ensure a recent authentication for added security, it can ask the



8.2 Microsoft .NET Passport 225

.NET Passport server to force a new authentication. Obviously, this requires
the user to reenter his or her password regardless of the user’s authentication
state. Last but not least, users can also choose to be signed in automatically
by saving their .NET Passport sign-in name and password on a given
computer (i.e., the “‘sign-me in automatically”” option). This option keeps a
consumer signed in to .NET Passport at all times on that computer, even if
the consumer disconnects from the Internet, closes the browser, or turns off
the computer. From a security point of view, this option should be
considered with care and is certainly not preferred.

Even though a user can use his or her .NET Passport account at multiple
sites, the password is stored only in the .NET Passport database and is shared
only with the .NET Passport servers that need it for authentication. If a
legitimate user (or someone else) makes several incorrect attempts during
sign-in, .NET Passport automatically blocks access to this users’s account for a
couple of minutes. This makes it significantly more difficult to launch a
password cracker (i.e., a password-cracking program) to gain illegitimate
access to a user’s .NET Passport account.

When a user signs out by clicking the sign-out link on any participating
site, the .NET Passport server checks the visited site’s cookie to learn all the
sites the user has signed in to during the session. For each of these sites, the
NET Passport redirects the browser to the site!® and has the site locally
execute a script. The script, in turn, is to delete all cookies that have been
created at sign-in. Consequently, only the site that has created a cookie can
also delete it.

Furthermore, unless users choose the option to automatically sign in to
.NET Passport, all .NET Passport cookies are temporary cookies that are
deleted when the browser session is closed. Even if a user does not sign out of
.NET Passport or close his or her browser, .NET Passport cookies are time
sensitive, meaning that they expire after a time period specified by .NET
Passport or the participating site. This ensures that .NET Passport-related
information is never stored in the user’s computer system for an infinite
amount of time.

.NET Passport includes three security levels that Microsoft intends to
complement in future releases to support additional credential types (e.g.,
Kerberos tickets, public key certificates, and so on). Participating sites can
request the level of secure authentication they require based on the
sensitivity of the content or services they provide. In either case, the user’s
.NET Passport password is not sent to a participating site, and authentication

10. The URL for the script is provided by the site during the registration process.



226

Authentication and Authorization Infrastructures

and profile information is always sent encrypted using a key specific to the
site.

8.2.3.1 Standard sign-in

Using .NET Passport standard sign-in, SSL is used only to secure the
transmission of user credentials between the browser and the .NET Passport
service (i.e., SSLis not used between the browser and the participating site).
This is the security level described above. It is intended to be used by
participating sites that don’t require a high level of security. For example,
Microsoft’s Hotmail service employs .NET Passport standard sign-in.

8.2.3.2 Secure channel sign-in

.NET Passport standard sign-in is vulnerable to replay attacks because a
participating site receives the encrypted ticket and profile cookies over an
HTTP connection. The participating site then writes the cookies to the user’s
browser over the same connection. Consequently, an attacker listening to
network traffic (between the browser and the participating site) could
capture the encrypted tickets. The user’s credentials are not at risk because
the cookies are encrypted with a key that is known only to the .NET Passport
server or the participating site, respectively. However, the attacker could
replay the tickets against the participating site. He or she would then appear
to be the user for the lifetime of the tickets.

In general, there are at least three possibilities to address and counter this
vulnerability:

1. Limit the lifetime of a ticket;

2. Provide a possibility for an owner of a ticket to prove his or her
legitimate ownership;

3. Send and receive tickets only over secured channels.

The first approach is simple and straightforward. Each participating site
of .NET Passport can make use of this possibility by selecting sufficiently
short lifetimes for the tickets it issues. Obviously, the disadvantage is that
users are frequently requested to reenter their credentials, ensuring that
they are valid .NET Passport users. The second approach is not supported by
.NET Passport. It was chosen, for example, by the developers of the Kerberos
authentication system. In fact, Kerberos uses the notion of an authenticator
to prove legitimate ownership of a ticket (this mechanism is explained in the
next section). Finally, the third approach is supported by .NET Passport



8.2 Microsoft .NET Passport 227

secure channel sign-in. In this mode, all communication takes place over
secured channels (i.e., SSL or HTTPS channels) and are cryptographically
protected accordingly. With .NET Passport secure channel sign-in, an
attacker listening to the network traffic won’t be able to get the tickets
because the entire traffic is encrypted with a session key that is held only by
the legitimate participants. From the user’s point of view, the secure channel
sign-in interface is the same as the standard sign-in interface except that the
.NET Passport sign-in page is displayed using SSL.

8.2.3.3 Strong credential sign-in

As mentioned above, if a legitimate user makes several incorrect attempts
during sign-in, .NET Passport automatically blocks access to that users’s
account for a couple of minutes (mainly to make it more difficult to launch
password-cracking programs). In spite of this countermeasure, a determined
and long-term brute-force attack is still possible and represents a potential
risk. There are at least two approaches to addressing this problem:

1. Make the passwords stronger;

2. Block the account after a given number of unsuccessful attempts to
sign-in.

Both approaches have drawbacks. Making passwords stronger adversely
affects the usability of the .NET Passport service because of stringent
password requirements, such as a minimal length, password expiration, and
the requirement to use mixed-case, numeric, and symbol characters as part
of the passwords. Similarly, blocking an account could easily be exploited in
a denial-of-service attack.

Against this background, the designers of .NET Passport have chosen to
use a two-stage sign-in process for protecting participating sites with more
stringent security requirements. The first stage is identical to the secure
channel sign-in process described above. The second stage, however,
involves a second sign-in page that requires the user to enter a four-digit
security key, or PIN. This page is displayed only through an SSL connection
and incorporates a persistent failed-attempts counter for each user. The
counter is reset upon each successful sign-in. In the event that five
consecutive failed attempts are made, the user’s security key is disabled. The
user is still able to use the normal .NET Passport sign-in (i.e., standard sign-in
or secure channel sign-in), but he or she has to go through a process to reset
the security key. Since the security key is locked after five failed attempts to



228

Authentication and Authorization Infrastructures

sign in and then must be reset to restore access, it is not vulnerable to an
automated dictionary attack and therefore constitutes a strong credential.
Consequently, the resulting authentication scheme is named .NET Passport
strong credential sign-in.

.NET Passport strong credential sign-in is currently the highest level of
security participating sites can request and will be used by sites for which
preventing malicious access to a user’s account is more important than ease
of use.

8.2.4 Complementary services

There are two complementary services that can be provided in addition to
the basic .NET Passport SSI service: the .NET Passport Express Purchase
service and the Kids .NET Passport service. The two complementary services
are briefly overviewed next.

8.2.4.1 .NET Passport express purchase service

Using the .NET Passport Express Purchase service and the optional .NET
Passport wallet, a user can make use of his or her credit cards to purchase
products or services online. In fact, .NET Passport Express Purchase uses the
same redirection mechanism as described above. To post data, .NET Passport
Express Purchase uses labels that comply with the electronic commerce
modeling language (ECML).!! When users click the .NET Passport Express
Purchase link or button on a participating site’s check-out page, they are
redirected to their .NET Passport wallet page by means of a secure SSL
connection. The site ID and return URL, supplied to .NET Passport by the
participating site during registration for the .NET Passport Express Purchase
service, are passed to the .NET Passport Wallet server as query string
parameters during the redirection. Both the site ID and the return URL are
checked by the .NET Passport Wallet server to identify the site and verify that
itisavalid .NET Passport site (if the site is not valid, the request is rejected). If
authenticated, users can select the credit card, billing address, and shipping
address they want to use for the purchase.!? By clicking the Continue button
on the .NET Passport wallet page, they send their selected information to the
participating site. This information is returned to the calling site only over an

11.
12.

Further information about the ECML can be found at http://www.ecml.org.

When a user chooses a stored credit card in a .NET Passport wallet, the complete credit card number is never
displayed on the screen. The .NET Passport wallet pages display only the first six digits of the credit card
number to help the user identify it, while preventing others from seeing the card’s entire number.



8.2 Microsoft .NET Passport 229

SSL connection. Note that .NET Passport does not receive or track the
purchase price or product information when processing .NET Passport
Express Purchase transactions. Also, the .NET Passport Express Purchase
service is not itself a credit card or debit card service. Participating sites are
still required to process the transaction directly or through a third-party
service.

8.2.4.2 Kids .NET passport service

In the United States the Children’s Online Privacy Protection Act (COPPA)
went into effect on April 21, 2000. COPPA requires that operators of online
services or Web sites obtain parental consent prior to the collection, use,
disclosure, or display of personal information from children.

Against this background, the designers of .NET Passport have provided a
complementary service that makes the consent process easy for parents by
providing one location for them to give consent for all participating Kids
NET Passport sites. The service has been named Kids .NET Passport."?

More specifically, .NET Passport users can register children under the age
of 13 for special Kids .NET Passports that let parents and guardians control
what information their children can share with participating Kids .NET
Passport sites, and what those sites can do with that information. As with
a standard .NET Passport account, a Kids .NET Passport account can store
personal information (e.g., name, date of birth, e-mail address) that can be
shared with participating sites. When a child with a Kids .NET Passport signs
in at a particular site, .NET Passport checks the birth-date field in the profile.
If the child is younger than 13, .NET Passport checks the account to
determine whether the parent or guardian has granted consent for that site,
and at what level (i.e., deny, limited, or full). The consent levels are
summarized in Table 8.1. If the child’s profile indicates that consent at one of
the three levels has been granted for that site, the child is allowed to proceed.

Table 8.1 Consent Levels Used by the Kids .NET Passport Service

Deny The site is not authorized to collect personal information from a child

Limited The site is authorized to collect, store, and use personal information from a child,
but it is not authorized to disclose it to a third party (unless it is necessary to operate the site)
Full The site is authorized to collect, store, and use personal information from a child,
and to disclose it to third parties

13. http://kids.passport.com



230

Authentication and Authorization Infrastructures

If, however, consent has not been granted, .NET Passport displays a
notification message that the child must request consent from a parent or
guardian before processing.

The Kids .NET Passport service works fine in theory. In practice,
however, it is very unlikely that a child will use its Kids .NET Passport instead
of simply requesting a normal .NET Passport. History has shown that kids
turn out to be very innovative and ingenious when it comes to
circumventing parental obstacles.

8.2.5 Security analysis

A short time after Microsoft launched the first version of its .NET Passport
service in 1999, David P. Kormann and Aviel D. Rubin published!* a paper
entitled ‘“Risks of the Passport Single Sign-on Protocol”” [13]. In this paper,
the AT&T researchers identified several risks and feasible attacks, and
revealed a flaw in the interaction of Passport and Netscape Navigator that
leaves a user logged in while informing him or her that he or she successfully
logged out. Most of the identified risks and feasible attacks are related to key
management. For example, most users don’t care about server-side
authenticity and don’t properly verify server certificates. Consequently,
various types of man-in-the-middle attacks are feasible. The same is true for
DNS spoofing. Furthermore, .NET Passport is designed to have each
participating site use one single key to generate cookies. This could be
generalized to have each participating site use client-specific keys. The
advantage of this would be that cookies are bound to clients and cannot be
used universally. Most importantly, .NET Passport is a centralized system
that has a single point of failure (i.e., the central database is an attractive
target, since its knowledge allows an attacker to spoof any user that has an
account in the system).

In their security analysis, Kormann and Rubin also argued that .NET
Passport is a ticketing system that lacks a basic component of many such
systems (e.g., Kerberos), namely, authenticators, to prove the legitimate
ownership of tickets. Instead of authenticators, .NET Passport employs SSL
connections to securely transfer tickets. It is too early to tell whether there
are any risks and feasible attacks that will result from this alternative
technology.

As mentioned previously, .NET Passport is one of the simplest
authentication service one can think of that is based on user-selected

14. The paper was first published on the Web and was later published in [13].



8.3 Kerberos-based AAls 231

passwords. In the following section, we elaborate on alternative and more
sophisticated designs that are based on one of the oldest authentication
systems still in use today (i.e., Kerberos).

8.3 Kerberos-based AAlIs

Microsoft .NET Passport implements a simple and straightforward approach
to provide password-based authentication. There is, however, another
authentication system that is also based on user passwords and that is in
widespread use (even in the Microsoft world). This system is called Kerberos
and it was briefly mentioned in Chapter 5. Kerberos can be used to provide a
starting point of an AALI In fact, the Kerberos system is used in the Windows
2000 and XP operating systems for SSO.

8.3.1 Kerberos

The authentication and key distribution system Kerberos'® [10, 14-16] was
originally developed at MIT to protect the emerging network services
provided by Athena Project [17-19]. The aim of the Kerberos system was to
extend the notion of authentication to the computing and networking
environment at MIT.

The first three versions of the Kerberos system were used only at MIT.
The first version that was made publicly available was Kerberos version 4
(Kerberos V4), and this version has achieved widespread use beyond MIT.!®
Officially released in December 1992, MIT Kerberos V4 is in its final state.
In fact, MIT does not anticipate ever making a new Kerberos V4 software
release in the future.

Some sites require functionality that Kerberos V4 does not provide,
while others have a computing and networking environment or adminis-
trative procedures that differ from those at MIT. In addition, in 1990, Steven
Bellovin and Michael Merrit published a paper describing some short-
comings and limitations of Kerberos V4 [20]. Against this background, work
on Kerberos version 5 (V5) commenced also fueled by discussions with
Kerberos V4 users and administrators about their experience with the
Kerberos model in general, and the MIT reference implementation in

15.

16.

In Greek mythology, Kerberos is the name of the three-headed watchdog of Hades, whose duty it was to guard
the entrance of the underworld.

Outside the United States and Canada, the eBones distribution of Kerberos V4 is used and widely deployed.
The eBones distribution is available at http://www.pdc.kth.se/kth-krb.



232

Authentication and Authorization Infrastructures

particular. In September 1993, Kerberos V5 was officially specified in RFC
1510 [21], and as such it was submitted to the Internet standards track.
Again, MIT provided a publicly and freely available Kerberos V5 reference
implementation.

It should be noted that Kerberos V4 and V5, although conceptually
similar, are substantially different from one another, and are even competing
for dominance in the marketplace. In short, Kerberos V4 has a greater
installed base, is simpler, and has better performance than V5, but works
only with IP addresses; whereas Kerberos V5 has a smaller installed base, is
less simple and thus less efficient, but provides more functionality than V4.
For the purpose of this book, we simplify the Kerberos system and protocol
considerably. This simplified form of Kerberos is equally valid for Kerberos
V4 and V5. Further and more detailed information can be obtained from
Chapter 2 of [10] and [22]. Also, the Kerberos home pages at MIT!” and the
Information Sciences Institute (ISI)!® of the University of Southern
California provide good sources of information. In particular, there is a
document originally written by Bill Bryant in 1988. Entitled ““Designing an
Authentication System: A Dialogue in Four Scenes,” the document
introduces and discusses the considerations and decisions that led to
Kerberos V4 design. The document is recommended reading and can be
downloaded from the MIT Kerberos home page'’ and many other sites
related to network security.

Kerberos is based on authentication and key distribution protocols that
were originally proposed in [23, 24] and later modified to use time stamps
[25]. In the Kerberos model and terminology, an administration domain is
called a realm. It is assumed that every company or organization that runs
the Kerberos system establishes a realm that is uniquely identified by a
realm name. Also, Kerberos is based on the client-server model. Users,
clients, and servers implementing and providing specific network services
are considered principals, and each principal is uniquely identified by a
principal identifier.

The aim of Kerberos is to allow a client acting on behalf of a user to
authenticate (i.e., prove its identity) to a service (i.e., an application server)
without having to send authentication information in the clear across the
network. Also, user authentication should be empowered by passwords, but
the use of the passwords should be minimized (i.e., they should be used only

17. http://web.mit.edu/kerberos/www
18. http://nii.isi.edu/info/kerberos
19. http://web.mit.edu/kerberos/www/dialogue.html



8.3 Kerberos-based AAls 233

once during the single sign-on processes). To achieve these goals, the
Kerberos system requires the existence of a TTP that acts as a key distribution
center (KDC). The KDC, in turn, consists of two logically separated
components:

» An authentication server (AS);

» A set of ticket-granting servers (TGSs).

Note that the AS and the TGSs are only logically separated components
and that they may be processes running on the same machines. Also note
that the machines that provide these services must be carefully protected and
located in physically secure environments. If an intruder is able to subvert
either the AS or any of the TGSs, he or she may compromise the entire
system at will.

The KDC maintains a database that includes an entry for every principal
registered in the Kerberos realm. The information a Kerberos KDC stores for
each principal P includes (but is not restricted to) the following two items:

» The principal identifier of P;

» The key K, that is shared between P and the KDC (e.g., a password if
P is a user).

For obvious reasons, the confidentiality of the keys (i.e., K, for each
principal P) mustbe protected. The Kerberos system therefore encrypts all keys
with a KDC master key. This encryption allows a system manager to remove
copies of the KDC database from the master server, and send copies thereof
to slave servers without going to extraordinary lengths to protect the privacy
of the copies. Slave servers are required in large realms to provide a highly
available Kerberos authentication service. Note that Kerberos does not store
the KDC master key in the same database, but manages that key separately.

In principle, Kerberos implements a ticketing system. This basically
means that a central authority (i.e., the KDC) issues tickets that clients and
servers can use to mutually authenticate themselves and to agree on a shared
secret. The shared secret, in turn, can then be used for subsequent data
authentication and encryption. In either case, a Kerberos ticketis a data record
that is issued by the Kerberos KDC. Among other things, the ticket contains
the following:

» The session key that will be used for authentication between the
client and the server;



234 Authentication and Authorization Infrastructures

» The name of the principal to whom the session key was issued;

» An expiration time after which the session key is no longer valid.

The ticket is not sent directly to the server, but instead sent to the client,
who forwards it to the server as part of an authentication exchange. A
Kerberos ticket is always encrypted with the server key, known only to the
AS and the intended server. Because of this encryption, it is not possible for
the client to modify the ticket without detection. There are two types of
tickets:

» Ticket-granting tickets (TGTs) are issued by the Kerberos AS and can be
used to request service tickets from a TGS;

» Service tickets, or tickets in short, in turn, are issued by a TGS and can be
used to authenticate to specific server systems.

During the duration of a typical session, a TGT is usually obtained first.
The TGT (instead of the user’s password) is then locally stored on the client
and used to request service tickets for each and every server system the client
must authenticate to.

Figure 8.5 illustrates the Kerberos system and the corresponding
protocol steps. The six steps can be be formalized as follows:

KDC
/ AS
) Database
(2) % TGS

3)

4)

Client

(5)

(6)
Server

Figure 8.5 The Kerberos system and the corresponding protocol steps.



8.3 Kerberos-based AAls 235

1:C — AKRB_AS REQ(U, TGS, L, N,)

2:AS — CKRB_AS_REP(U, T, 445, { TGS, K, Tyyart, Toxpire> N1}Ky7)
3:C — T®RRB_TGS_REQ(S, Ly, N3, T 15, Acygs)

4 : TGS — CKRB_TGS REP(U, T;5,4S, K', Tiiare, Toxpire» N2 1K)
5:C — S KRB_AP_REQ(T,, A,;)

6:8S — CKRB_AP_REP({T"}K’)

Furthermore, the six steps can be grouped in three exchanges:

» The AS exchange between the client and the AS (steps 1 and 2);
» The TGS exchange between the client and the TGS (steps 3 and 4);

» The AP exchange between the client and the application server (steps 5
and 6).

Obviously, the AS exchange must be performed only once during the
log-in process, whereas the TGS exchange and the AP exchange must be
performed for each server the client wants to access (if the server requires
authentication).

When a user U wants to sign on a Kerberos realm, he or she has a client C
send a KRB_AS_REQ (Kerberos authentication server request) message to
the AS of the Kerberos KDC in step 1. The message basically includes the
principal identifier for U, the identifier for a TGS, a desired lifetime L, for the
TGT, and a randomly chosen nonce N;.

After having received the KRB_AS_REQ message, the AS looks up and
extracts the secret keys for both U and the TGS. If required, the AS
preauthenticates the request, and if preauthentication fails, a corresponding
error message is returned to C. Otherwise, the AS randomly selects a new
session key K, and returns a KRB_AS_REP (Kerberos authentication server
reply) message to C in step 2. The message includes U, a TGT
To1gs = {U, C, TGS, K, Tyars, Toxpire}Kigsr  and  {TGS, K, Tyars, Toxpires N1 }Kyy.  The
TGT'’s start and expiration times Ty, and T,y,;, are set in accordance with
the realm’s security policy in a way that fits the specified lifespan L, of the
KRB_AS_REQ message.

After having received the KRB_AS_REP message in step 2, C applies a
well-known one-way hash function / to the user-provided password pwdy,
to compute the user’s master key K, = h(pwd,;).?° Equipped with this key, C
can decrypt {TGS, K, Ty, Tonpire}Ky, and extract TGS, K, Tyuy, and Ty

20. Kerberos V4 did not prompt the user to enter the password until after C has received the KRB_AS_REP
message. This is because Kerberos V4 was serious in following the generally good security rule of having C
know the user’s password only for the minimum time possible. But waiting the few seconds to retrieve the



236

Authentication and Authorization Infrastructures

accordingly. C is now in the possession of a TGT that is valid from Ty, to
Texpire- It can use this TGT to request a service ticket from the TGS for every
registered server S in the realm. Note that in a TGT, a lifetime is used like a
password expiration time. Limiting the lifetime of a TGT thus limits the
amount of damage that can be caused by a compromise of the TGT. In
Kerberos, there is generally no possibility to revoke a TGT once it has been
issued. Thus, limiting the TGT lifetime implicitly sets a deadline after which
the TGT becomes obsolete.

Before initiating a TGS exchange, C must determine in which realm the
application server he or she will request a ticket for has been registered. If C
does not already possess a TGT for that realm, C must obtain one. This is first
attempted by requesting a TGT for the destination realm from the local
Kerberos server (using the KRB.TGS_REQ message recursively). The
Kerberos server may return a TGT for the desired realm, in which case C
can proceed. Alternatively, the Kerberos server may also return a TGT for a
realm which is closer to the desired realm, in which case this step must be
repeated with a Kerberos server in the realm specified in the returned TGT. If
neither is returned, the request must be retried with a Kerberos server for a
realm higher in the hierarchy. This request will itself require a TGT for the
higher realm, which must be obtained by recursively applying these
directions. Once the client obtains a TGT for the appropriate realm, it
determines which Kerberos servers serve that realm, and contacts one. The
list might be obtained through a configuration file or a corresponding
network service.

In step 3, C sends a KRB_.TGS_REQ (Kerberos ticket-granting server
request) message to the TGS. The message includes the principal identifier S
for the server, a requested lifetime L, for the service ticket, a nonce N,, the
TGT T, 4, and an authenticator A, to prove legitimate ownership of the
TGT. A4 can be regarded as the principal identifier of C and a time stamp,
both of them encrypted with the session key K: A, ={C, T}K. Note that
T, 4s can have a comparably long lifetime, and could be eavesdropped upon
and replayed. The purpose of the authenticator is thus to show that C holds
the secret key, and to thwart this kind of attack. Also note that the use of
authenticators generally requires that principals on the network keep

KRB_AS_REP message before asking the user for the password really does not enhance security significantly,
and in fact Kerberos V5 has the user enter the password before C sends the KRB_AS_REQ message. The reason
for the designers of Kerberos V5 to change the order was that V5 requires C to prove that it knows the user’s
password before the AS sends the KRB_AS_REP message, which makes it less easy to obtain a quantity with
which to launch an offline password guessing attack.



8.3 Kerberos-based AAls 237

reasonably synchronized time. The times can be off by some amount. The
allowable time skew is independently set at each server, and therefore some
servers may be configured to be fussier than others about times being close.
The allowed time skew is usually set to be accurate within 5 minutes without
undue administrative burden. In practice, that assumption has turned out to
be more problematic than expected. Distributed time services, once
deployed, make much tighter synchronization possible.

The KRB_TGS_REQ message is processed in a manner similar to that of
the KRB_AS_REQ message, but there are some additional checks to be
performed. In step 4, the TGS returns a KRB_TGS_REP message (Kerberos
ticket-granting server reply) that shares its format with the KRB_AS_REP
message. It includes the principal identifier for the user, a ticket T,  for the
requested server S, and an expression (i.e., {S, K', Tz, Texpire> N2}) encrypted
with K. Again, the client can use K to decrypt the expression and to extract
the identifier for the server, the new session key K’ (which the client uses to
talk to the server), a lifetime for the ticket, and the nonce N,.

When the KRB_TGS_REP is received by C, it is processed in the same
manner as the KRB_AS REP processing described above. The primary
difference is that the ciphertext part of the response must be decrypted
with the session key that is shared with the TGS rather than with the user’s
master key.

It turns out that there is neither functionality nor security gained by
having Kerberos require an authenticator as part of the KRB_TGS_REQ
message. If someone who did not know the session key K transmitted T, to
the TGS, the TGS would return a message encrypted with K, which would be
of no use to someone who did not know the session key. The reason the
designers of Kerberos did it this way is to make the protocol for talking to the
TGS be the same as for talking to the other servers. When talking to other
servers, the authenticator does indeed provide security, because it
authenticates the knowledge of the corresponding session key.

The AP exchange of the Kerberos V4 protocol is used by network
applications either to authenticate a client to a server, or to mutually
authenticate a client and a server to each other. The client must have already
acquired credentials for the server using the AS or TGS exchange.

In step 5, C sends a KRB_AP_REQ (Kerberos application request)
message to the server S. The message includes T, ;, A. ; = {C, T'}K’, and some
additional bookkeeping information. Authentication is based on the server’s
current time of day, the ticket T, ;, and the authenticator 4, ;.

To make sure that the KRB_AP_REQ message is not a replay of a request
recent enough to look current given the time skew, S should keep all time
stamps received within the maximum allowable time skew and check that



238

Authentication and Authorization Infrastructures

each received time stamp is different from any of the stored values. Any
authenticator older than the maximum allowable time skew would be
rejected anyway, so there is no need to remember values older than the
threshold value. Kerberos V4, however, does not bother saving time stamps.
Saving time stamps does not help if S is a replicated service in which all the
instances of the service use the same master key. The threat of an
eavesdropper replaying the authenticator C sent to one instance of S to a
different instance of S could have been avoided if Kerberos had done
something like put the network layer of the instance of S in the
authenticator, too.

If no error occurs, and if mutual authentication is required, S has to
return a KRB_AP_REP (Kerberos application reply) message to C in step 6.
Again, this message is encrypted with the session key K’ that is shared
between C and S. Since this key was in the ticket encrypted with the server’s
secret key, possession of this key is proof that S is the intended principal.
More accurately, S has to increment the time stamp included in the
KRB_AP_REQ message authenticator and re-encrypt it with K.

As described thus far, Kerberos provides mutual authentication services
for the client and server. However, a by-product of the Kerberos
authentication protocol is the exchange of a session key K’ that is shared
between the clients and the servers. This key can then be used by the
application to protect the confidentiality and integrity of communications.
Typically, communications between the client and server is transparently
encrypted and decrypted using the DES and the session key K'.

