
TEAMFL
Y

Team-Fly®

Security Technologies for the World
Wide Web

For quite a long time, computer security was a rather narrow field of study that was

populated mainly by theoretical computer scientists, electrical engineers, and applied

mathematicians. With the proliferation of open sys- tems in general, and of the Internet and

the World Wide Web (WWW) in particular, this situation has changed fundamentally.

Today, computer and network practitioners are equally interested in computer security,

since they require technologies and solutions that can be used to secure applications related

to electronic commerce. Against this background, the field of computer security has become

very broad and includes many topics of interest. The aim of this series is to publish state-of-

the-art, high standard technical books on topics related to computer security. Further

information about the series can be found on the WWW at the following URL:

http://WWW.esecurity.ch/serieseditor.html

Also, if you’d like to contribute to the series by writing a book about a topic related to

computer security, feel free to contact either the Commissioning Editor or the Series Editor

at Artech House.

Recent Titles in the Artech House
Computer Security Series

Rolf Oppliger, Series Editor

Computer Forensics and Privacy, Michael A. Caloyannides

Demystifying the IPsec Puzzle, Sheila Frankel

Developing Secure Distributed Systems with CORBA, Ulrich Lang and Rudolf Schreiner

Implementing Electronic Card Payment Systems, Cristian Radu

Implementing Security for ATM Networks, Thomas Tarman and Edward Witzke

Information Hiding Techniques for Steganography and Digital Watermarking,

Stefan Katzenbeisser and Fabien A. P. Petitcolas, editors

Internet and Intranet Security, Second Edition, Rolf Oppliger

Non-repudiation in Electronic Commerce, Jianying Zhou

Secure Messaging with PGP and S/MIME, Rolf Oppliger

Security Fundamentals for E-Commerce, Vesna Hassler

Security Technologies for the World Wide Web, Second Edition, Rolf Oppliger

For a listing of recent titles in the Artech House

Computing Library, turn to the back of this book.

Security Technologies for the World
Wide Web

Second Edition

Rolf Oppliger

Artech House

Boston * London

Library of Congress Cataloging-in-Publication Data
Oppliger, Rolf.

Security technologies for the World Wide Web/Rolf Oppliger.—2nd ed.
p. cm. — (Artech House computer security library)

Includes bibliographical references and index.
ISBN 1-58053-348-5 (alk. paper)
1. Computer security. 2. World Wide Web (Information retrieval system)—Security measures
I. Title II. Series.

QA76.9.A.25 O67 2002
005.8—dc21 2002032665

British Library Cataloguing in Publication Data
Oppliger, Rolf

Security technologies for the World Wide Web.—2nd ed.—
(Artech House computer security library)
1. World Wide Web—Security measures
I. Title
005.8

ISBN 1-58053-348-5

Cover design by Christine Stone

© 2003 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

Many screen shots in this book are copyright 2002 Microsoft Corporation (USA) or Opera Software ASA (Nor-
way). All rights reserved. These pages may not be reprinted or copied without express written permission of Mi-
crosoft or Opera Software.

Microsoft Corporation and Opera Software ASA have not authorized, sponsored, endorsed, or approved this
publication and are not resposible for its content. Microsoft and the Microsoft corporate logos are trademarks and
trade names of Microsoft Corporation. Similarly, Opera and Opera Software logos are trademarks and trade
names of Microsoft Corporation. Similarly, Opera and Opera Software logos are trademarks and trade names of
Opera Software ASA. All other product names and logos are trademarks of their respective owners.

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.

International Standard Book Number: 1-58053-348-5
Library of Congress Catalog Card Number: 2002032665

10 9 8 7 6 5 4 3 2 1

To my daughter, Lara

Contents

Preface . xv

References. xx

Acknowledgments . xxiii

1 Introduction . 1

1.1 Internet . 1

1.2 WWW. 5

1.3 Vulnerabilities, threats, and countermeasures 8

1.4 Generic security model. 10

1.4.1 Security policy . 12

1.4.2 Host security. 13

1.4.3 Network security. 13

1.4.4 Organizational security . 16

1.4.5 Legal security . 17

References. 17

2 HTTP Security . 21

2.1 HTTP . 21

2.2 User authentication, authorization,

and access control . 26

vii

2.3 Basic authentication. 29

2.4 Digest access authentication . 34

2.5 Certificate-based authentication . 41

2.6 Server configuration. 42

2.6.1 Configuring HTTP basic authentication 42

2.6.2 Configuring HTTP digest access authentication 45

2.7 Conclusions . 46

References. 48

3 Proxy Servers and Firewalls . 49

3.1 Introduction . 49

3.2 Static packet filtering . 54

3.3 Dynamic packet filtering or stateful inspection. 57

3.4 Circuit-level gateways . 58

3.5 Application-level gateways . 64

3.6 Firewall configurations . 68

3.6.1 Dual-homed firewall . 69

3.6.2 Screened host firewall . 71

3.6.3 Screened subnet firewall. 72

3.7 Network address translation . 74

3.8 Configuring the browser. 76

3.9 Conclusions . 80

References. 83

4 Cryptographic Techniques . 87

4.1 Introduction . 87

4.2 Cryptographic hash functions . 90

4.3 Secret key cryptography . 92

4.3.1 DES . 93

4.3.2 Triple-DES. 93

4.3.3 IDEA . 95

4.3.4 SAFER . 95

4.3.5 Blowfish . 95

viii

4.3.6 CAST-128 . 95

4.3.7 RC2, RC4, RC5, and RC6. 95

4.3.8 AES . 96

4.4 Public key cryptography . 96

4.4.1 RSA . 100

4.4.2 Diffie-Hellman . 101

4.4.3 ElGamal . 102

4.4.4 DSS . 102

4.4.5 ECC . 102

4.5 Digital envelopes . 103

4.6 Protection of cryptographic keys . 105

4.7 Generation of pseudorandom bit sequences 107

4.8 Legal issues . 107

4.8.1 Patent claims . 108

4.8.2 Regulations . 109

4.8.3 Electronic and digital signature legislation 110

4.9 Notation . 111

References. 113

5 Internet Security Protocols . 117

5.1 Introduction . 117

5.2 Network access layer security protocols 118

5.2.1 Layer 2 Forwarding Protocol . 121

5.2.2 Point-to-Point Tunneling Protocol 122

5.2.3 Layer 2 Tunneling Protocol . 124

5.2.4 Virtual private networking. 124

5.3 Internet layer security protocols . 125

5.3.1 IP security architecture . 128

5.3.2 IPsec protocols . 131

5.3.3 IKE Protocol . 136

5.3.4 Implementations . 141

5.4 Transport layer security protocols . 143

5.5 Application layer security protocols. 143

5.5.1 Security-enhanced application protocols 144

ix

5.5.2 Authentication and key distribution systems 144

5.5.3 Layering security protocols above the

application layer. 145

5.6 Conclusions . 146

References. 148

6 SSL and TLS Protocols . 153

6.1 SSL Protocol . 153

6.1.1 History . 153

6.1.2 Architecture . 155

6.1.3 SSL Record Protocol . 159

6.1.4 SSL Handshake Protocol . 161

6.1.5 Security analysis . 167

6.1.6 Implementations . 169

6.2 TLS Protocol . 171

6.3 SSL and TLS certificates . 175

6.4 Firewall traversal . 178

6.4.1 SSL/TLS tunneling . 179

6.4.2 SSL/TLS proxy servers . 181

6.5 Conclusions . 182

References. 183

7 Certificate Management and Public Key
Infrastructures. 185

7.1 Introduction . 185

7.2 Public key certificates . 187

7.2.1 PGP certificates . 188

7.2.2 X.509 certificates . 190

7.3 IETF PKIX WG. 193

7.4 Certificate revocation . 196

7.4.1 CRLs . 198

7.4.2 OCSP . 199

7.4.3 Alternative schemes . 200

x

TEAMFL
Y

Team-Fly®

7.5 Certificates for the WWW. 201

7.5.1 CA certificates . 201

7.5.2 Server or site certificates . 203

7.5.3 Personal certificates . 204

7.5.4 Software publisher certificates . 205

7.6 Conclusions . 207

References. 210

8 Authentication and Authorization Infrastructures 213

8.1 Introduction . 213

8.2 Microsoft .NET Passport . 216

8.2.1 Overview . 217

8.2.2 .NET Passport user accounts. 219

8.2.3 .NET Passport SSI service . 222

8.2.4 Complementary services . 228

8.2.5 Security analysis . 230

8.3 Kerberos-based AAIs . 231

8.3.1 Kerberos . 231

8.3.2 SESAME . 240

8.3.3 Windows 2000 . 240

8.4 PKI-based AAIs . 241

8.5 Conclusions . 245

References. 245

9 Electronic Payment Systems . 249

9.1 Introduction . 249

9.2 Electronic cash systems . 255

9.3 Electronic checks . 257

9.4 Electronic credit-card payments . 259

9.5 Micropayment systems . 261

9.6 Conclusions . 262

References. 264

xi

10 Client-side Security . 267

10.1 Introduction . 267

10.2 Binary mail attachments. 271

10.3 Helper applications and plug-ins . 272

10.4 Scripting languages . 275

10.5 Java applets . 278

10.5.1 Security architecture . 279

10.5.2 Security policy . 281

10.5.3 Code signing . 281

10.6 ActiveX controls. 283

10.7 Security zones . 288

10.8 Implications for firewalls . 291

10.9 Conclusions . 293

References. 294

11 Server-side Security . 297

11.1 Introduction . 297

11.2 CGI . 300

11.3 Server APIs . 309

11.4 FastCGI . 310

11.5 Server-side includes . 311

11.6 ASP . 312

11.7 JSP . 313

11.8 Conclusions . 314

References. 314

12 Privacy Protection and Anonymity Services 317

12.1 Introduction . 317

12.2 Early work. 321

12.3 Cookies . 324

12.4 Anonymous browsing. 328

12.4.1 Anonymizing HTTP proxy servers 329

12.4.2 JAP . 330

xii

12.4.3 Crowds . 330

12.4.4 Onion routing . 333

12.4.5 Freedom network . 336

12.5 Anonymous publishing. 336

12.5.1 JANUS and the rewebber service 336

12.5.2 TAZ servers and the rewebber network 338

12.5.3 Publius . 340

12.6 Voluntary privacy standards . 341

12.6.1 Privacy seals . 341

12.6.2 P3P . 342

12.7 Conclusions . 343

References. 344

13 Intellectual Property Protection 347

13.1 Introduction . 347

13.2 Usage control . 349

13.3 Digital copyright labeling . 351

13.3.1 Introduction . 351

13.3.2 Categories of watermarking techniques 352

12.3.3 Attacks . 355

13.4 Digital Millinium Copyright Act . 356

13.5 Conclusions . 357

References. 358

14 Censorship on the WWW . 359

14.1 Introduction . 359

14.2 Content blocking . 360

14.2.1 IP address blocking . 361

14.2.2 URL blocking. 363

14.3 Content rating and self-determination 365

14.4 Conclusions . 371

References. 373

xiii

15 Risk Management . 375

15.1 Introduction . 375

15.2 Formal risk analysis . 378

15.3 Alternative approaches and technologies 379

15.3.1 Security Scanning . 379

15.3.2 Intrusion Detection . 381

15.4 Conclusions . 382

References. 383

16 Conclusions and Outlook . 385

Abbreviations and Acronyms. 389

About the Author. 403

Index . 405

xiv

Preface

During the past decade, I have been heavily involved in security issues

related to TCP/IP-based networks.1 The results of this work are

summarized in Authentication Systems for Secure Networks [1], Secure Messaging

with PGP and S/MIME [2], and—most importantly—the second edition of

Internet and Intranet Security [3]. The three books overview and fully discuss

the technologies that are available today and that can be used in TCP/IP-

based networks to provide access control and communication security

services. They are mainly written for computer scientists, electrical

engineers, and network practitioners with some background in computer

and communication security.

Some time ago, I was asked whether one of the books could be used to

educate World Wide Web (WWW) professionals (e.g., Webmasters and Web

server administrators) in security matters. Unfortunately, I realized that

while the books cover most technologies used to secure applications for the

WWW, they are written in a language that is inappropriate for Web

professionals. Note that these folks are generally familiar with network

operating system issues and communication protocols, but they are neither

security experts nor cryptographic specialists. They may not even be

interested in architectural details and design considerations for crypto-

graphic technologies and protocols that are widely deployed.

Having in mind the Web professional who must be educated in security

matters within a relatively short period of time, I decided to write a book

that may serve as a security primer. While writing the book, I realized that

1. TCP/IP-based networks are networks that are based on the communications protocol suite. This protocol suite,

in turn, is centered around the Transport Control Protocol (TCP) and the Internet Protocol (IP).

xv

the result could also be used by Web users and application software

developers. The resulting book, Security Technologies for the World Wide Web,

was published in 2000. It overviewed and briefly discussed all major topics

that are relevant for Web security. Unfortunately, and due to the dynamic

nature of the field, it has become necessary to update the book and come up

with a second edition after only a relatively short period of time. There are

many new terms and buzzwords that need to be explained and put into

perspective. Consequently, Security Technologies for the World Wide Web,

Second Edition elaborates on some well-known security technologies that

have already been covered in the first edition, as well as some more recent

developments in the field.

First of all, it is important to note that the term ‘‘WWW security’’ means

different things to different people:

w For Webmasters, it means confidence that their sites won’t be hacked

and vandalized or used as a gateway to break into their local area

networks (LANs);

w For Web users, it means the ability to browse securely through the

Web, knowing that no one is looking into their communications;

w Finally, for proponents of electronic commerce applications, it means

the ability to conduct commercial and financial transactions in a safe

and secure way.

According to [4], Web security refers to ‘‘a set of procedures, practices,

and technologies for protecting Web servers, Web users, and their

surrounding organizations.’’ In this book, we mainly focus on the

technologies that can be used to provide security services for the WWW.

Some of these technologies are covered in detail, whereas others are only

briefly introduced and left for further study. For example, most security

problems and corresponding exploits that make press headlines are due to

bugs and flawed configurations of specific Web servers, such as Microsoft’s

Internet Information Server (IIS). Due to their transient nature, however,

bugs and configuration flaws are not addressed in this book. There are many

books mainly on computer security and hacking that address these issues.

All of these books suffer the problem that they generally obsolesce faster

than new editions can be produced. Also, an increasingly large number of

CERT2 advisories, incident notes, and vulnerability notes can be used to

provide this type of information.

2. The acronym CERT stands for Computer Emergency Response Team.

xvi

The reader of Security Technologies for the World Wide Web, Second Edition

gets an overview of all major topics that are relevant for the WWW and its

security properties. As such, the book is intended for anyone who is

concerned about security on the Web, is in charge of security for a network,

or manages an organization that uses the WWW as a platform for providing

information. It can be used for lectures, courses, and tutorials. It can also be

used for self-study or serve as a handy reference for Web professionals.

Further information can also be found in other books on WWW security.

Among these books, I particularly recommend [4–6].3 There are also some

books that focus entirely on one specific cryptographic security protocol

(i.e., the Secure Sockets Layer or Transport Layer Security protocol) that is

widely deployed on the WWW [7, 8]. These books are recommended

reading but are more narrow in scope than Security Technologies for the World

Wide Web. Finally, there is also a frequently asked questions (FAQ)

document available on the Web.4

While it is not intended that this book be read linearly from front to

back, the material has been arranged so that doing so has some merit. In

particular, Security Technologies for the World Wide Web, Second Edition has been

organized in 15 chapters, summarized as follows:

w In Chapter 1, we introduce the topic and elaborate on the Internet,

the WWW, vulnerabilities, threats, and countermeasures, as well as a

model that can be used to discuss various aspects of security.

w In Chapter 2, we elaborate on the security features of the Hypertext

Transfer Protocol (H T T P). Most importantly, we address the user

authentication and authorization schemes provided by HTTP and

some implementations thereof.

w In Chapter 3, we explain and address the implications of proxy

servers and firewalls for Web-based applications.

w In Chapter 4, we introduce cryptographic techniques that are

employed by many security technologies for the WWW. These

techniques will be used in subsequent chapters.

w In Chapter 5, we overview and briefly discuss the cryptographic

security protocols that have been proposed and partly implemented

for the Internet (and that can also be used for the WWW).

3. Among these books only [6] has been updated in a second edition so far.

4. http://www.w3.org/Security/Faq

xvii

w In Chapter 6, we focus on two transport layer security protocols,

namely the Secure Sockets Layer (SSL) and Transport Layer Security

(TLS) protocols. These protocols are particularly important to secure

Web-based applications.

w In Chapter 7, we address the problem of how to manage certificates

and discuss the issues that surround public key infrastructures (PKIs).

w In Chapter 8, we broaden the topic addressed in Chapter 7 and

discuss authentication and authorization infrastructures (AAIs).

w In Chapter 9, we overview and briefly discuss some electronic

payment systems that can be used in e-commerce applications for the

Internet or WWW.

w In Chapter 10, we focus on client-side security and the security

implications of executable (or active) content (e.g., Java applets and

ActiveX controls).

w In Chapter 11, we address server-side security and the security

implications of some widely deployed server programming technol-

ogies (e.g., CGI and API scripts).

w In Chapter 12, we address the increasingly important field of privacy

protection and anonymity services for the WWW.

w In Chapter 13, we overview and discuss some technologies that can

be used for intellectual property protection.

w In Chapter 14, we address the politically relevant issues that

surround censorship on the Internet or WWW.

w In Chapter 15, we elaborate on risk management.

w In Chapter 16, we draw conclusions and predict some future

developments in the field.

Unlike the first edition, Security Technologies for the World Wide Web, Second

Edition does not include a glossary. This is because in May 2000, an Internet

Security Glossary was published as informational RFC 2828 (or FYI 36,

respectively) [9]. This document can be used as a reference for anyone

working in the field.5 However, Security Technologies for the World Wide Web,

5. There are many other glossaries available on the Internet. Examples include a glossay compiled by Networks

Associates, Inc. at http://www.pgp.com/glossary/default.asp and another glossary compiled by Rob Slade at

http://victoria.tc.ca/int-grps/books/techrev/secgloss.htm

xviii

Second Edition still includes a list of abbreviations and acronyms. References

are included at the end of each chapter. This is also true for the various RFC

documents that are relevant for WWW security.6 At the end of the book, an

About the Author section is included to tell you a little bit about me. Finally,

there is an Index to help you find particular terms.

Some authors make a clear distinction between client-side security,

server-side security, and document security, and structure their books

accordingly (e.g., [4]). This book does not follow this approach but uses a

functional organization instead. More precisely, the various chapters

outlined above address zero, one, or even more than one of the above-

mentioned classes of security issues.

There has been a long tradition in the computer and network security

literature of providing various kinds of checklists. Again, Security Technologies

for the World Wide Web, Second Edition breaks with this tradition, mainly

because security is more than checking off items on checklists. The single

most important thing in security is to understand the underlying concepts

and technological approaches. If you understand them, it is a simple

exercise to formulate and implement your own checklist(s).

While time brings new technologies and outdates current technologies, I

have attempted to focus primarily on the conceptual approaches to providing

security services for the WWW. The Web is changing so rapidly that any

book is out of date by the time it hits the shelves in the bookstores (that’s

why this book had to go into a second edition after a relatively short period of

time). By the time you read this book, several of my comments will probably

have moved from the future to the present, and from the present to the past,

resulting in inevitable anachronisms.

Due to the nature of this book, it is necessary to mention company,

product, and service names. It is, however, important to note that the

presence or absence of a specific name implies neither any criticism or

endorsement, nor does it imply that the corresponding company, product, or

service is necessarily the best available. For a more comprehensive products

overview, I particularly recommend the Computer Security Products Buyer’s

Guide that’s compiled and published annually by the Computer Security

Institute (CSI) based in San Francisco, California.7

Whenever possible, I add some uniform resource locators (URLs) as

footnotes to the text. The URLs point to corresponding information pages

6. There are many RFC archives available. For example, RFC documents can be downloaded from http://

www.ietf.org/rfc.

7. http://www.gocsi.com

xix

provided on the Web. While care has been taken to ensure that the URLs are

valid, due to the dynamic nature of the Web, these URLs as well as their

contents may not remain valid forever. Similarly, I use screen shots to

illustrate some aspects related to the graphical user interfaces (GUIs). Unlike

in the first edition, I use Microsoft Internet Explorer version 5.5 and Opera

version 6.0 (instead of Netscape Navigator). Keep in mind, however, that

software vendors, including Microsoft and Opera Software, tend to update

and modify their GUIs periodically. Therefore, chances are that the GUI you

currently use looks (slightly or completely) different than the one replicated

in this book.

Finally, I would like to take the opportunity to invite you as a reader of

this book to let me know your opinion and thoughts. If you have something

to correct or add, please let me know. If I haven’t expressed myself clearly

please also let me know. I appreciate and sincerely welcome any comment or

suggestion, in order to update the book periodically. The best way to reach

me is to send an e-mail to rolf.oppliger@esecurity.ch. You can also visit

the home page8 of my company eSECURITY Technologies Rolf Oppliger and

drop a message there. In addition, I have also established a home page for

this book. The page is located at URL http://WWW.esecurity.ch/Books/

WWWsec2e.html.

References

[1] Oppliger, R., Authentication Systems for Secure Networks, Artech House, Norwood,

MA, 1996.

[2] Oppliger, R., Secure Messaging with PGP and S/MIME, Artech House, Norwood,

MA, 2001.

[3] Oppliger, R., Internet and Intranet Security, Second Edition, Artech House,

Norwood, MA, 2002.

[4] Stein, L. D., Web Security: A Step-by-Step Reference, Addison-Wesley, Reading,

MA, 1998.

[5] Rubin, A. D., D. Geer, and M. J. Ranum, Web Security Sourcebook, John Wiley &

Sons, Inc., New York, NY, 1997.

[6] Garfinkel, S., with E. H. Spafford, Web Security, Privacy & Commerce, Second

Edition, O’Reilly & Associates, Sebastopol, CA, 2001.

[7] Thomas, S. A., SSL & TLS Essentials: Securing the Web, John Wiley & Sons, Inc.,

New York, NY, 2000.

8. http://www.esecurity.ch

xx

TEAMFL
Y

Team-Fly®

[8] Rescorla, E., SSL and TLS: Designing and Building Secure Systems, Addison-

Wesley, Reading, MA, 2000.

[9] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

xxi

Acknowledgments

First, I want to express my thanks to all people who contributed to and

were involved in the writing, publishing, and selling of the first edition of

this book. Among these people, I am particularly grateful for the interest and

support of Kurt Bauknecht, Dieter Hogrefe, Hansjürg Mey, and Günther

Pernul. Also, I want to thank all buyers of the first edition; they have made it

possible for me to update the book and to develop a second edition. Since

publication of the first edition, many security professionals, colleagues,

customers, and students have provided valuable comments, suggestions,

pointers, and further material to me. I hope that this input was taken into

proper consideration. Ruedi Rytz and my brother, Hans Oppliger, have been

particularly helpful in finding mistakes and making the book more

comprehensive and understandable. The same is true for John Yesberg,

who has thoroughly reviewed the entire manuscript and provided many

useful comments and hints. As with the first edition the staff at Artech House

was enormously helpful in producing the second edition of this book.

Among these people, I’d like to thank Tim Pitts, Ruth Harris, Judi Stone, and

Jen Kelland. Above all, I want to thank my family—my wife Isabelle and our

beloved children Marc and Lara—for their encouragement, support, and

patience during the writing of the book. Once again, they have tolerated the

long writing hours into the night, the scattered papers and manuscripts, the

numerous business trips, and many other inconveniences while I completed

this edition of the book. Soon before the book went into production, our

daughter Lara was born. Consequently, it is dedicated to her.

xxiii

Introduction

A s mentioned in the Preface, this book assumes that the

reader is familiar with the fundamentals of computer

networks and distributed systems in general, and TCP/IP

networking in particular. You may refer to [1–4] for a com-

prehensive introduction, or Chapter 2 of [5] for a corresponding

summary. Against this background, we overview the scope of

the book in this chapter. In particular, we introduce the

Internet and the World Wide Web (WWW) in Sections 1.1 and

1.2, distinguish between vulnerabilities, threats, and counter-

measures in Section 1.3, and introduce a generic security model

in Section 1.4.

1.1 Internet

The emerging use of TCP/IP networking has led to a global

system of interconnected hosts and networks that is commonly

referred to as the Internet.1 The Internet was created initially to

help foster communications among government-sponsored

researchers and grew steadily to include educational institu-

tions, government agencies, and commercial organizations.

In fact, the Internet has experienced a triumphant advance

during the past decade. Today, it is the world’s largest

1

C H A P T E R

1
Contents

1 Internet1

2 WWW5

3 Vulnerabilities, threats
and countermeasures8

4 Generic security model10

References

1. Note the definite article and the capital letter ‘‘I’’ in the term ‘‘the

Internet.’’ More generally, the term ‘internet’ is used to refer to any TCP/IP-

based internetwork, whereas the term ‘intranet’ is used to refer to a TCP/IP-

based corporate or enterprise network.

computer network and has been doubling in size each year. With this

phenomenal growth rate, the Internet’s size is increasing faster than any

other network ever created, including even the public-switched telephone

network (PSTN).2 Early in 1998, more than 2 million Web servers and more

than 30 million computer systems were connected to the Internet [6] and

these numbers have steadily increased meanwhile. Consequently, the

Internet is may be seen as the basis and first incarnation of an information

superhighway, or national information infrastructure (NII) as, for example,

promoted by the U.S. government.3

But in spite of its exacting role, the initial, research-oriented Internet

and its TCP/IP communications protocol suite were designed for a more

benign environment than now exists. It could, perhaps, best be described as a

collegial environment, where the users trusted each other and were

interested in a free and open exchange of information. In this environment,

the people on the Internet were the people who actually built the Internet.

Later on, when the Internet became more useful and reliable, these people

were joined by others with different ethical interests and behaviors. With

fewer common goals and more people, the Internet steadily twisted away

from its original intent.

Today, the Internet environment is much less collegial and trustworthy.

It contains all the dangerous situations, nasty people, and risks that one can

find in society as a whole. Along with the well-intentioned and honest users

of the Internet, there are also people who intentionally try to break into

computer systems connected to it. Consequently, the Internet is plagued

with the kind of delinquents who enjoy the electronic equivalent of writing

on other people’s walls with spray paint, tearing off mailboxes, or hanging

around in the streets annoying the neighborhood. In this environment, the

openness of the Internet has turned out to be a double-edged sword. Since its

very beginning, but especially since its opening in the 1990s and its ongoing

commercialization, the Internet has become a popular target to attack. The

number of security breaches has in fact escalated faster than the growth of

the Internet as a whole.4

Security problems on the Internet receive public attention, and the

media carry stories of high-profile malicious attacks via the Internet against

2. Only mobile networks experience similar growth rates.

3. http://nii.nist.gov

4. There are several statistics that illustrate this point. For example, refer to the publications of the Computer

Security Institute (CSI) at http://www.gocsi.com or the reports and articles published by the CERT

Coordination Center (CERT/CC) at http://www.cert.org.

2 Introduction

government, business, and academic sites. Perhaps the first and still most

significant incident was the Internet Worm, launched by Robert T. Morris,

Jr. on November 2, 1988 [7, 8]. The Internet Worm flooded thousands of

hosts connected to the Internet and woke up the Internet community

accordingly. It gained a lot of publicity and led to increased awareness of

security issues on the Internet. In fact, the computer emergency response

team (CERT5) that is operated by the Software Engineering Institute at

Carnegie Mellon University was created in the aftermath of the Internet

Worm, and other CERTs have been founded in various countries around the

world.6 Today, the CERT at Carnegie Mellon University serves as the CERT

Coordination Center (CERT/CC) for the Internet community.

Since the Internet Worm incident, reports of network-based attacks,

such as password sniffing, IP spoofing, sequence number guessing, session

hijacking, flooding, and other denial-of-service (DOS) attacks, as well as

exploitations of well-known bugs and design limitations, have grown

dramatically [9–11]. In addition, the use and wide deployment of executable

content, such as provided by Java applets and ActiveX controls, has provided

new possibilities to attack hosts or entire sites.7

Many Internet breaches are publicized and attract the attention of the

Internet community, while numerous incidents go unnoticed. For example,

early in 1994, thousands of passwords were captured by sniffer programs

that had been remotely installed on compromised hosts on various

university networks connected to the Internet. At the end of the same

year, sequence number guessing attacks were successfully launched by

Kevin Mitnick against several computing centers, including Tsutomu

Shimomura’s San Diego Center for Supercomputing [12]. This story actually

shocked the world when it became The New York Times headline news on

January 23, 1995. In 1996, several forms of DOS attacks were launched,

such as e-mail bombing and TCP SYN flooding [13]. Also late in 1996,

Dan Farmer conducted a security survey of approximately 2,200 computing

systems on the Internet.8 What he found was indeed surprising: almost

two-thirds of the more interesting Internet or Web sites had serious

security problems that could have been exploited by determined attackers.

5. http://www.cert.org

6. Many of these CERTs are member organizations of the Forum of Incident Response and Security Teams

(FIRST).

7. Refer to the WWW home page of DigiCrime at URL http://www.digicrime.com to convince yourself that

executable content is in fact dangerous.

8. http://www.trouble.org/survey

1.1 Internet 3

Several Web sites of large companies and federal offices have been

vandalized, and Webjacking has become a popular activity for casual

Internet hackers.9 More recently, macro viruses and distributed denial of

service (DDoS) attacks have troubled the Internet community considerably.

The trend to more and highly automated attacks is likely to continue in the

future.

In spite of the fact that unscrupulous people make press headlines with

various types of attacks, the vulnerabilities they exploit are usually well

known. For example, security experts warned against passwords transmitted

in cleartext at the very beginning of (inter)networking, and Robert T. Morris,

Jr., described sequence number guessing attacks for BSD UNIX version 4.2

when he was with AT&T Bell Laboratories in 1985 [14, 15]. Some of the

problems related to Internet security are a result of inherent vulnerabilities

in the TCP/IP protocols and services, while others are a result of host

configuration and access controls that are poorly implemented or too

complex to administer. Additionally, the role and importance of system

administration is often shortchanged in job descriptions, resulting in many

administrators’ being, at best, part-time and poorly prepared. This is further

aggravated by the tremendous growth and speed of the Internet as a whole.

Today, individuals, commercial organizations, and government agencies

depend on the Internet for communication and research, and thus have

much more to lose if their sites are compromised. In fact, virtually everyone

on the Internet is vulnerable, and the Internet’s security problems are the

center of attention, generating much fear throughout the computer and

communications industries. Concerns about security problems have already

begun to chill the overheated expectations about the Internet’s readiness for

full commercial activity, possibly delaying or preventing it from becoming a

mass medium for the NII or the global information infrastructure (GII).

Several studies have independently shown that many individuals and

companies are abstaining from joining the Internet simply because of

security concerns. At the same time, analysts are warning companies about

the dangers of not being connected to the Internet. In this conflicting

situation, almost everyone agrees that the Internet needs more and better

security. In a workshop held by the Internet Architecture Board (IAB) in

1994, scaling and security were nominated as the two most important

problem areas for the Internet architecture as a whole [16]. This has not

9. Note, however, that the real losses caused by Webjacking activities are comparably small, since the Web pages

that are vandalized are often located outside the firewall in a so-called demilitarized zone (for easy access by

the casual Web user).

4 Introduction

changed so far and is not likely to change in the future [17]. It is particularly

true for the WWW and Web-based applications.

1.2 WWW

The WWW is a virtual network that is overlaid on the Internet. It comprises

all client10 and server systems that communicate with one another using the

Hypertext Transfer Protocol (HTTP). HTTP, in turn, is a simple client/server

application protocol that is layered on top of a reliable transport service,

such as provided by the Transport Control Protocol (TCP). The protocol

defines how WWW resources11 may be requested and transmitted across

the Internet. In this book, we do not delve into the technical details of the

HTTP specifications. Instead, we refer to the many books that address HTTP

and its features. Among these books, I particularly recommend [18].

HTTP and the WWW were originally invented in the late 1980s by Tim

Berners-Lee and his colleagues at the European Laboratory for Particle

Physics (CERN12) located in Geneva, Switzerland. It was envisioned as a way

of publishing physics papers on the Internet without requiring that physicists

go through the laborious process of downloading a file and printing it out. As

such, HTTP and the WWW have been in use since 1989. Note, however, that

the first version of HTTP, referred to as HTTP/0.9 (i.e., HTTP version 0.9), was

only a simple protocol for raw data transfer across the Internet.

HTTP was (and still is) a simple request/response protocol. This basically

means that a client sends an HTTP request message to a server, and that the

server sends back a corresponding HTTP response message. There are no

multiple-step handshakes in the beginning as with other TCP/IP application

protocols, such as Telnet or FTP. In the case of HTTP/0.9, the browser simply

established a TCP connection to the appropriate port of the origin server and

sent a request message like GET /index.html to the origin server. The origin

server, in turn, responded with the contents of the requested resource

(the file /index.html in the example above). In HTTP/0.9, there were no

request headers, no request methods other than GET, and the response had

to be a file written in a special language, namely the hypertext markup

10. In WWW parlance, HTTP clients are often called browsers. In this book, we are going to use the terms HTTP

client, client, browser, andWeb browser synonymously. Note, however, that most browsers provide client support for

other application protocols in addition to HTTP, such as Telnet, FTP, and Gopher.

11. Examples of WWW resources include text and HTML files, GIF, and JPEG image files, or any other file that

stores digitally encoded data in some specific format.

12. The acronym is derived from the French name of the research laboratory.

1.2 WWW 5

language (HTML). All current servers are capable of understanding and

handling HTTP/0.9 requests, but the protocol is so simple that it is not very

useful anymore.

After the first implementations of HTTP/0.9, the protocol was enhanced

with some new features, such as request headers and additional request

methods, as well as a message format that conforms to the multipurpose

Internet mail extensions (MIME) specification originally proposed for

Internet-based electronic messaging. The resulting HTTP/1.0 (version 1.0)

specification was officially released in 1996 in RFC 1945 [19].

Compared to HTTP/0.9, HTTP/1.0 was a major step ahead. Nevertheless,

HTTP/1.0 still did not sufficiently take into consideration the effects of

hierarchical proxies, caching, the need for persistent connections, and

virtual hosting. In addition, the proliferation of incompletely implemented

applications calling themselves ‘‘compliant to HTTP/1.0’’ required a protocol

version change in order for two communicating applications to determine

each other’s capabilities. Consequently, an updated version of the HTTP

specification was drafted in 1997. After a 2 year trial period, the specification

of HTTP/1.1 (version 1.1) was officially released in RFC 2616 [20] and

submitted to the Internet standards track. The basic operation of HTTP/1.1

has remained the same as for HTTP/1.0 (and HTTP/0.9), and the protocol

ensures that browsers and servers of different versions can correctly

interoperate. More precisely, if the browser understands version 1.1, it

uses HTTP/1.1 on the request line instead of HTTP/1.0. When the server sees

this version number, it can make use of HTTP/1.1 features. If, however, an

HTTP/1.1 server sees a lower version number, it adjusts its responses to use

that protocol version instead. In addition to RFC 2616, there is an

experimental RFC 2774 that describes an HTTP extension framework [21].

This framework is not addressed in this book.

Originally developed on NeXT computers, the WWW didn’t really take

off until a team of researchers at the National Center for Supercomputer

Application (NCSA) of the University of Illinois wrote Mosaic, a browser for

the X Window system. In the early 1990s, this browser soon became the

standard against which all other browsers were compared. Marc Andreessen,

who was the head of the original Mosaic development team, went on to

cofound a start-up company called Mosaic Communications. The company

first created a new browser called Mozilla.13 Afterwards, the company was

renamed Netscape Communications and the corresponding browser was

renamed Netscape Navigator. After Microsoft released its own browser,

13. Note that sometimes browsers are still called Mozilla.

6 Introduction

TEAMFL
Y

Team-Fly®

called the Internet Explorer, Netscape Communications and Microsoft

started a tough competition for market share. The competition ended in

1998 when America On-line (AOL) bought Netscape Communications.

Netscape Navigator is still available and in use today, but it has lost a lot of

market share. Instead of Netscape Navigator, a new browser called Opera14

is used and widely deployed on the Internet today. Opera has been

developed in Norway to meet the requirements of clients with limited

computing power. As such, it is the browser of choice for many users of

personal digital assistants (PDAs) and handheld computer devices. As of this

writing, it is difficult to tell whether Microsoft Internet Explorer will

increase its market share or loose it to a competitor, such as Opera.

HTTP and Web technologies are omnipresent on the Internet and an

increasingly large number of Internet services have been redesigned and

implemented so they can also be accessed from a standard off-the-shelf

browser (instead of only a dedicated client software package). For example,

most browsers implement the File Transfer Protocol (FTP)—in addition to

HTTP—and can be used to electronically download files accordingly.

Consequently, these browsers may serve as replacement tools for formerly

used FTP clients. Also, many e-mail users regularly access their message

stores using Web browsers and HTTP instead of e-mail user agents and

message store access protocols, such as POP3 or IMAP4. In fact, Web-based

messaging has become very popular in the recent past (especially among

roaming users) and many companies have installed and are operating

corresponding Web frontends to their messaging infrastructures. In the case

of Microsoft Exchange, for example, Outlook Web Access may provide this

kind of functionality.

Against this background, the term Web services has been created to

become a new buzzword in the industry, and many software vendors have

launched initiatives to promote Web services based on the extensible markup

language (XML). Examples include Microsoft’s .NET initiative and the Sun

Open Net Environment (Sun ONE).15 In either case, the Web services markup

language (WSDL) is used to formally describe Web services in some

structured and standardized way. Implementing a Web service means

structuring data and operations inside of an XML document that complies

with the Simple Object Access Protocol (SOAP) specification. The SOAP, in

turn, is a simple and lightweight XML-based client/server protocol that

14. http://www.opera.com

15. In its latest material, Sun Microsystems uses the term services on demand to go one step further and to collectively

refer to local applications, client/server applications, Web applications, and Web services.

1.2 WWW 7

defines a messaging framework for exchanging structured data and type

information across the Web. It can be used in combination with any

transport protocol or mechanism that is able to transport SOAP messages

(also known as SOAP envelopes). Many programming or scripting languages

can be used to implement a Web service and to construct, transmit, read,

and process corresponding SOAP messages (e.g., Java and C+). Once a Web

service has been implemented, it must be published somewehere that

allows interested parties to find it. Information about how a client would

connect to a Web service and interact with it must also be exposed

somewhere accessible to them. This connection and interaction information

is commonly referred to as binding information. Universal description discovery

and integration (UDDI) registries are the primary means to publish, discover,

and bind Web services. These registries contain the data structures and

taxonomies used to describe Web services and Web service providers. A

UDDI registry can be hosted either by private organizations or by third

parties. More recently, IBM and Microsoft have announced the Web services

inspection language (WSIL) specification to allow applications to browse Web

servers for XML Web services. As such, WSIL promises to complement UDDI

by making it easier to discover available services on Web sites not listed in

the UDDI registries. By the time this book hits the shelves of bookstores,

many new terms and acronyms will have been created and put in place. All

of these technologies are not at the core of this book. Consequently, they

are mentioned and put into perspective only where useful and appropriate.

You may refer to many other books to learn about XML or Web services in

general, and WSDL, SOAP, and UDDI in particular [22, 23]. You may also

refer to the home page of the World Wide Web Consortium16 (W3C) to get

some further information about the latest acronyms and buzzwords.

1.3 Vulnerabilities, threats, and countermeasures

In general, a vulnerability refers to a weakness that can be exploited by

somebody (e.g., an intruder) to violate a system or the information it

contains. In a computer network or distributed system, passwords

transmitted in cleartext often represent a major vulnerability. The pass-

words are exposed to eavesdropping and corresponding sniffing attacks.

Similarly, the ability of a network host to boot with a network address that

has originally been assigned to another host refers to another vulnerability

16. http://www.w3.org

8 Introduction

that can be used to spoof that particular host and to masquerade

accordingly. Unfortunately, the power of Web technology in general and

HTTP in particular also makes the WWW vulnerable to a number of serious

attacks.

A threat refers to a circumstance, condition, or event with the potential

to either violate the security of a system or to cause harm to system

resources. Computer networks and distributed systems are susceptible to a

wide variety of threats that may be mounted either by intruders17 or

legitimate users. As a matter of fact, legitimate users are more powerful

adversaries, since they possess internal information that is not usually

available to intruders.

Finally, a countermeasure is a feature or function that either reduces or

eliminates one (or several) system vulnerability(ies) or counters one (or

several) threats. For example, the use of strong authentication techniques

reduces the vulnerability of passwords transmitted in the clear and counters

the threat of password sniffing and replay attacks. Similarly, the use of

cryptographic authentication at the network layer effectively eliminates

attacks based on machines spoofing other machines’ IP addresses and

counters IP spoofing attacks.

In essence, this book is about countermeasures that can be used and

deployed to secure the WWW and applications that make use of it. Note,

however, that security in general and WWW security in particular are vague

terms that may mean various things to different people. The nature of

security is such that it cannot be proven.18 The very best we can show is

resistance against a certain set of attacks we know and with which we are

familiar. There is nothing in the world that can protect us against new types

of attack. For example, timing attacks, differential fault analysis (DFA), and

differential power analysis (DPA) are some of the latest tools in the never-

ending competition between cryptographers and cryptanalysists.

In this book, we are not going to define the term security formally

Instead, we focus on techniques and mechanisms that are available today

and that can be used to provide security services (i.e., access control and

communication security services) on the Web. The assumption is that if a

WWW application is able to provide these security services, there are at least

17. The term hacker is often used to describe computer vandals who break into computer systems. These vandals

call themselves hackers, and that is how they got the name, but in my opinion, they don’t deserve it. In this

book, we use the terms intruder and attacker instead.

18. In certain environments, specific security properties can be proven formally. This is, however, seldom

completely proven.

1.3 Vulnerabilities, threats, and countermeasures 9

some obstacles to overcome in order to successfully attack the application. If

the security services are well designed and properly implemented, the

resulting obstacles are far too big to be overcome by occasional intruders.

Before we delve into the technical details, we want to briefly introduce a

generic security model that explains and puts into perspective the various

aspects of security.

1.4 Generic security model

Discussing security in computer networks and distributed systems is difficult,

mainly because the term security is hard to define and even harder to

quantify. Security is a subjective feeling that is perceived differently by

different people. What somebody considers to be secure may be considered

by somebody else to be completely insecure. An example to illustrate this

point is an airplane flight: While many people consider flying to be secure,

there are also people who refuse to fly mainly for security and safety

reasons.

To convince a customer about the security and safety properties of a

particular product or service is a difficult (marketing) task. How do you, for

example, persuade a potential buyer about the security and safety properties

of a specific car? A somehow unsatisfactory solution for a car dealer is to

invite a potential buyer for a ride and to steer the car straight into the next

tree. If the buyer remains uninjured, chances are that he or she is convinced

about the security and safety properties of the car. Unfortunately, the car

itself will be damaged and the dealer will have to give the buyer another one.

The question that arises immediately is whether the security and safety

properties of this car are equal to the ones from the other car.

Marketing professionals have come up with better solutions, such as

tests conducted by independent consumer societies. The good marketing

approach is aimed at increasing the reputation of a product or service in

terms of security and safety. For example, in the car industry, Volvo has

managed to steadily achieve this kind of reputation. Many people buy a

Volvo car simply because they want to increase their security and safety

when driving on the road. Unfortunately, a similar appreciation of security

and safety properties is very immature in the information technology (IT)

industry (if it exists at all).

In general, there are many aspects involved in securing a networked or

distributed system, such as, for example, the WWW. First and foremost,

there must be a security policy that formalizes the proper and improper use

of the (networked or distributed) system, the possible threats against it, as

10 Introduction

well as countermeasures that must be employed to protect assets from these

threats. Most importantly, the security policy is to specify the goals that

should be achieved. For example, a possible goal for a corporate intranet

would be that any access from external sites requires strong authentication

of the requesting user at a security gateway. This goal can be achieved, for

example, by using a one-time password or challenge-response system at the

firewall. If another goal were the transparent encryption of the data traffic

between internal and external sites, the use of Internet or transport layer

security protocols would be another possibility to implement the security

policy. After having specified a security policy, there are several aspects

related to host, network, organizational, and legal security that all need to be

addressed. The situation is comparable with politics and the military: politics

may declare war, but the military must conduct it. Similarly, the security

policy must specify the goals, but host and network security techniques and

mechanisms must meet these goals. For example, the hosts must run a

secure (network) operating system to protect internal resources against

outside attacks. Similarly, the hosts must communicate over links that are

considerably secure. Either the links are physically secure or they are secured

through other means, such as cryptographic algorithms and protocols.

Additionally, organizational security controls must be defined and put in

place to enforce the technical (host and network) security techniques and

mechanisms. If organizational security controls do not exist, everybody will

try to do everything, effectively circumventing any security policy. Finally,

legal security controls must ensure that if somebody misbehaves or

maliciously attacks a system within the computer network or distributed

system, he or she can be prosecuted and punished accordingly.

Following this line of argumentation, our generic security model for

computer networks and distributed systems takes into account the following

five aspects:

1. Security policy;

2. Host security;

3. Network security;

4. Organizational security;

5. Legal security.

These aspects are illustrated in Figure 1.1 and further addressed in the

remaining part of this chapter. Whereas the rest of this book focuses

exclusively on network security, the other aspects of security are equally

1.4 Generic security model 11

important and should also be considered with care. It is simply not possible to

achieve security on the Web if these aspects are not adequately addressed. In

fact, we have already mentioned in the Preface that most security breaches

are due to software bugs that are exploited or configuration failures.

1.4.1 Security policy

As mentioned before, a security policy must specify the goals that should be

achieved with regard to the security of a networked or distributed system. In

fact, if a security policy is not specified, it is useless to talk about security in

the first place. Put in other words: If one does not know what to protect and

against what types of attacks this protection should hold, every security

technology is fine and makes sense. Security often comes at some expense,

often at the expense of some functionality that people want, and some

monetary expense. A security policy should be a tool that guides a

practitioner in working out which tradeoffs are acceptable, and which

ones aren’t. Many people new to the security field jump straight into

technology and it is usually hard to convince them of the importance of

policy.

The security policy should be specified by management, without taking

into account the technical implementation and enforcement.19 In fact, the

security policy should be driven by requirements rather than technical

considerations. Typical statements found in a security policy include phrases

Figure 1.1 A generic security model for computer networks and distributed systems.

19. While the policy should be written by management, it will often be the case that management doesn’t

understand what is required. A security practitioner will be required to present options to management, asking

them to choose or endorse a policy.

12 Introduction

such as ‘‘any access from the Internet to intranet resources must be strongly

authenticated and properly authorized at the security gateway,’’ or ‘‘any

classified data must be properly encrypted for transmission.’’

1.4.2 Host security

Host security has traditionally addressed such questions as

w How to securely authenticate users;

w How to effectively control access to system resources;

w How to securely store and process data within the system;

w How to do the audit trail.

These and similar questions have been studied within the computer

security community for quite a long time. A special field of study in this area

is the evaluation and certification of IT systems and products. For example,

the National Computer Security Center (NCSC) of the U.S. National Security

Agency (NSA) developed the Trusted Computer Security Evaluation Criteria

(TCSEC), also known as the ‘‘Orange Book,’’ in the late 1980s [24]. In

Europe, similar developments in Germany, France, the United Kingdom,

and the Netherlands led to the Information Technology Security Evaluation

Criteria (ITSEC) [25]. Europe, the United States, and Canada worked

together and came up with common criteria.20 The efforts were later joined by

many other countries. In December 1999, ISO/IEC approved and published

the Common Criteria version 2.1 as International Standard (IS) 15408.

Note, however, that except for some government-sponsored programs, the

idea of evaluating and certifying IT systems and products has not yet really

taken off in the commercial world. This is particularly true for networked

and distributed systems. The TCSEC has been interpreted [26] and people

have drafted Common Criteria protection profiles for such systems, but

there still remain many unsolved problems.

1.4.3 Network security

Network security addresses questions such as how to efficiently control

access to computer networks and distributed systems, and how to securely

transmit data between them.

20. http://csrc.nist.gov/cc

1.4 Generic security model 13

In network security parlance, one clearly distinguishes between a

security service and a security mechanism:

w A security service is the performance of a set of useful or helpful

functions and actions that can provide a particular quality or benefit

to the requesting entity (e.g., user or client) as may be required by a

security policy;

w A security mechanism can be used to provide one (or several) security

service(s).

For example, user authentication is a security service that can be

implemented with passwords or biometrics. Similarly, there are many

encryption algorithms that can be used to provide data confidentiality

services. In either case, one has to distinguish between specification and

implementation. In short, a specification identifies what is needed, whereas

an implementation provides it. This basically means that a security service

(security mechanism) can be specified or implemented.

For example, the security architecture for the open systems inter-

connection (OSI) reference model enumerates the following five classes of

security services [27, 28]:

1. Authentication services;

2. Data confidentiality services;

3. Data integrity services;

4. Access control services;

5. Non-repudiation services.

Network users and applications must be able to selectively make use of

services that conform to their security requirements. These requirements are

individual by nature, and may vary from user to user or application to

application. There are also some security services that are not enumerated in

the OSI security architecture, such as anonymity services as further

addressed in Chapter 12 of this book.

In addition to the security services mentioned above, the OSI security

architecture also enumerates a couple of security mechanisms that can

be used to implement the security services. In particular, the following

eight specific security mechanisms are enumerated in the OSI security

architecture:

14 Introduction

1. Encipherment;

2. Digital signature mechanisms;

3. Access control mechanisms;

4. Data integrity mechanisms;

5. Authentication exchange mechanism;

6. Traffic padding mechanism;

7. Routing control mechanism;

8. Notarization mechanism.

Complementary to these specific security mechanisms, the OSI security

architecture also enumerates the following five pervasive security mechanisms:

1. Trusted functionality;

2. Security labels;

3. Event detection;

4. Security audit trail;

5. Security recovery.

The OSI security architecture is extensively covered in the literature. In

particular, Chapter 4 of [5] is dedicated entirely to the OSI security

architecture. From a more practical point of view, it is appropriate to

distinguish between access control and communication security services:

w Access control services are used to logically separate (inter)networks and

to essentially control access to corporate networks which are also

called intranets in the case of TCP/IP-based networks;

w Communication security services are used to protect communications

within and between these networks. According to the OSI security

architecture, communication security services include authentication,

data confidentiality and integrity, as well as nonrepudiation services.

The predominant technology to provide access control services for

corporate networks and intranets is the firewall technology as further

addressed in Part II of [5] and Chapter 3 of this book. With regard to

communication security services, many cryptographic protocols have been

1.4 Generic security model 15

proposed for the various network layers of both the OSI reference model and

the Internet model. These protocols are addressed in Part III of [5] and

Chapters 5 and 6 of this book.

1.4.4 Organizational security

Any technical solution for host and network security must be backed up with

organizational security controls. In fact, organizational security is required

where technical host and network security mechanisms alone do not or only

insufficiently work. A quotation from Richard H. Baker elaborates on the

problem regarding technical versus organizational security [29]:

Security continues to be and probably will always be a people problem. If

you overlook that, you’re in trouble.

According to this quotation, it is dangerous to depend on technical (host

and network) security mechanisms alone. If people are not convinced about

the need for the security mechanisms that are put in place, they will always

try to circumvent them. In one of his later books, Baker has even been more

succinct in this point [30]:

The real challenges are human, not technical. Oldtimers will recognize a

once-popular saying that the most important part of an automobile is the

nut that holds the steering wheel. That’s still true, even though a modern

steering wheel may also contain an air bag and any number of controls and

antitheft devices.

Our personal experience is in line with this quotation. In fact, human

behavior is still the most important factor with regard to security and safety.

Human behavior can be influenced by education and organizational security

controls. Education is very important. If people understand the security

controls they must rely on, they will make use of them instead of always

trying to circumvent them. Additionally, organizational security controls

must be put in place to make illegitimate procedures more difficult.

Organizational security controls include directions and instructions that

are released to define legitimate human behavior.

An analogy that may help better understand security in computer

networks and distributed systems is the existing highway system, and the

way we try to achieve safety and security on it.21 In particular, we use and

21. Similar things could also be said for the airway system.

16 Introduction

TEAMFL
Y

Team-Fly®

deploy several technical and organizational measures to achieve safe and

secure traffic:

w On the technical side, we try to build highways in a way that

minimizes the risks of careless drivers’ being able to cause serious

accidents. We also require drivers to have a license and cars to have

passed a vehicle inspection test.

w On the organizational side, we have educational programs, traffic

laws, and police to enforce these laws.

Using this analogy, it is obvious that we can learn several things from the

way we handle security and safety in the real world.

1.4.5 Legal security

Finally, it is possible that host or network security techniques or mechanisms

will fail and not provide sufficient protection against more sophisticated

attacks. Similarly, it is possible that organizational security controls won’t be

able to back up technical deficiencies. In this case, it is important to have the

possibility to legally prosecute the attacker(s). Consequently, legal security is

a major topic with regard to computer networks and distributed systems.

Again, there is an analogy to better illustrate this point: We are all

familiar with the postal delivery service. We send letters in envelopes in

order to protect the confidentiality of the contents. In addition, we trust the

employees of the postal delivery service not to open the envelopes and to

respect the privacy of the mail accordingly. However, if we recognized that a

letter was opened during its delivery, we would have cause to suspect the

employee(s) of the postal delivery service of not respecting the privacy of the

mail, and a case could even be brought to court. One can reasonably expect

that similar legal security controls will be put in place in computer networks

and distributed systems, such as the Web, and that the need for

nonrepudiation services will be the major driving force for this development

to happen.

References

[1] Tanenbaum, A. S., Computer Networks, 3d ed., Englewood Cliffs, NJ: Prentice

Hall, 1998.

[2] Comer, D. E., and R. E. Droms, Computer Networks and Internets, 2nd ed.,

Englewood Cliffs, NJ: Prentice Hall, 1998.

1.4 Generic security model 17

[3] Wilder, F., A Guide to the TCP/IP Protocol Suite, Second Edition, Norwood, MA:

Artech House, 1998.

[4] Comer, D., Internetworking with TCP/IP: Vol. I: Principles, Protocols, and

Architecture, 4th ed., Englewood Cliffs, NJ: Prentice Hall, 2000.

[5] Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech

House, 2002.

[6] Zakon, R. H., ‘‘Hobbes’ Internet Timeline,’’ Request for Comments 2235, (FYI

32), November 1997.

[7] Spafford, E. H., The Internet Worm: Crisis and Aftermath,’’ Communications of

the ACM, Vol. 32, 1989, pp. 678–688.

[8] Rochlis, J. A., and M. W. Eichin, ‘‘With Microscope and Tweezers: The Worm

from MIT’s Perspective,’’ Communications of the ACM, Vol. 32, 1989, pp. 689–

703.

[9] Denning, P. J., Computers Under Attack: Intruders, Worms, and Viruses, New York:

ACM Press/Addison-Wesley, 1990.

[10] Neumann, P. G., Computer-Related Risks, New York: ACM Press/Addison-

Wesley, 1995.

[11] Howard, J. D., ‘‘An Analysis of Security Incidents on the Internet 1989–1995,’’ Ph.D.

Thesis, Carnegie Mellon University, April 1997.

[12] Shimomura, T., with J. Markoff, Takedown, New York: Hyperion, 1996.

[13] Schuba, C. L., et al., ‘‘Analysis of a Denial of Service Attack on TCP,’’

Proceedings of IEEE Symposium on Security and Privacy, 1997, pp. 208–223.

[14] Morris, R. T., ‘‘A Weakness in the 4.2BSD UNIX TCP/IP Software,’’ Computer

Science Technical Report No. 117, Murray Hill, NJ: AT&T Bell Laboratories, 1985.

[15] Bellovin, S. M., ‘‘Security Problems in the TCP/IP Protocol Suite,’’ ACM

Computer Communication Review, Vol. 19, No. 2, 1989, pp. 32–48.

[16] Braden, R., et al., ‘‘Report of the IAB Workshop on Security in the Internet

Architecture (February 8–10, 1994),’’ Request for Comments 1636, June

1994.

[17] Bellovin, S., ‘‘Report of the IAB Security Architecture Workshop,’’ Request for

Comments 2316, April 1998.

[18] Thomas, S., HTTP Essentials: Protocols for Secure, Scaleable Web Sites, New York:

John Wiley & Sons, 2001.

[19] Berners-Lee, T., R. Fielding, and H. Frystyk, ‘‘Hypertext Transfer Protocol—

HTTP/1.0,’’ Request for Comments 1945, May 1996.

[20] Fielding, R., et al., ‘‘Hypertext Transfer Protocol—HTTP/1.1,’’ Request for

Comments 2616, June 1999.

18 Introduction

[21] Nielsen, H., P. Leach, and S. Lawrence, ‘‘An HTTP Extension Framework,’’

Request for Comments 2774, February 2000.

[22] Oellermann, W. L., Jr., Architecting Web Services, Berkeley, CA: Apress, 2001.

[23] Graham, S., et al., Building Web Services with Java: Making Sense of XML, SOAP,

WSDL and UDDI, Indianapolis, IN: Sams, 2001.

[24] U.S. Department of Defense, Trusted Computer System Evaluation Criteria,

Standard DoD 5200.28-STD, Fort George G. Meade, MD, 1985.

[25] Commission of the European Communities, Information Technology Security

Evaluation Criteria, Version 1.2, Directorate General XIII, 1991.

[26] U.S. Department of Defense, Trusted Network Interpretation of the Trusted

Computer System Evaluation Criteria, Fort George G. Meade, MD, 1987.

[27] ISO/IEC 7498-2, Information Processing Systems—Open Systems Intercon-

nection Reference Model—Part 2: Security Architecture, 1989.

[28] ITU X.800, Security Architecture for Open Systems Interconnection for CCITT

Applications, 1991.

[29] Baker, R. H., Computer Security Handbook, New York: McGraw-Hill, 1991.

[30] Baker, R. H., Network Security: How To Plan for It and Achieve It, New York:

McGraw-Hill, 1995.

1.4 Generic security model 19

HTTP Security

HTTP is the main application protocol used on the WWW. In

this chapter, we overview and briefly discuss HTTP and its

basic security features. More specifically, we introduce HTTP

and its mode of operation in Section 2.1, overview HTTP user

authentication, authorization, and access control in Section 2.2,

address HTTP basic authentication, HTTP digest access authen-

tication, and certificate-based authentication in Sections 2.3 to

2.5, discuss the proper configuration of a Web server (i.e.,

Apache Web server) in Section 2.6, and draw some conclusions

in Section 2.7.

2.1 HTTP

As mentioned in Chapter 1, HTTP is a simple request/response

protocol that is used between a client (i.e., browser) and a Web

server [1].1 This basically means that the client requests

information and the server provides the requested information

using the HTTP. The information, in turn, may be represented

by Web pages that are static or dynamically created. In many

cases, the pages may be written in a specific format or language,

such as HTML or XML. In the future, XML will be the preferred

21

C H A P T E R

2
Contents

2.1 HTTP1

2.2 User authentication,
authorization,
and access control6

2.3 Basic authentication9

2.4 Digest access authentication13

2.5 Certificate-based
authentication19

2.6 Server configuration20

2.7 Conclusions25

References
48

1. In practice, the term Web server is used interchangeably to refer to the

computer on which Web pages reside, and the program on the computer that

receives HTTP request messages and sends back resources in corresponding

response messages.

language for the information provided on the WWW (and elsewhere). This is

particularly true for the use of XML in conjunction with complementary

technologies, such as WSDL, SOAP, and UDDI registries (we have briefly

reviewed these technologies in Chapter 1).

If the server provides static Web pages, the situation is comparably

simple and the pages can be directly retrieved from the server’s document

tree. If, however, the server must provide dynamically created Web pages,

the pages must be created by a specific program in response to an incoming

HTTP request message. Historically, the first solution was to have these

programs invoked using the Common Gateway Interface (CGI). Although

CGI makes it simple to have a Web server perform a specific operation, such

as a database lookup, it is not efficient because it requires that a separate

program is started and a corresponding process is initialized for each

incoming HTTP request message. There are some alternative technologies

that can be used instead of CGI. For example, FastCGI is an open Web

server interface that solves the performance problems inherent in CGI.2

Also, many vendors provide proprietary application programming interfaces

(APIs) for their Web servers. Examples include the Netscape Server API

(NSAPI) from Netscape and the Internet Server API (ISAPI) from Microsoft.

Last but not least, there are server-side technologies, such as ASP and JSP.

The security implications of these technologies are further addressed in

Chapter 11.

If a client wants to retrieve a resource (e.g., a static or dynamically

created Web page) from a Web server, it must establish a TCP connection to

the corresponding port (e.g., port 80 by default) of the server and send a

corresponding HTTP request message to the server. In essence, the HTTP

request message includes the following components:

w A request method that indicates the purpose of the HTTP request.

The most important request method is GET. There are, however,

other methods defined in the HTTP/1.1 specification (i.e., OPTIONS,

HEAD, POST, PUT, DELETE, TRACE, and CONNECT). You may refer

to RFC 2616 [1] for a complete and comprehensive description of

these methods.

w A reference that indicates the resource to which the method should

be applied (e.g., http://www.esecurity.ch/index.html). In theory,

such a reference may be given in one of the following forms:

2. Further information about FastCGI is available at http://www.fastcgi.com.

22 HTTP Security

w A uniform resource locator (URL) [2, 3];

w A uniform resource name (URN) [4];

w A uniform resource identifier (URI) [5].

In practice, however, URLs are most widely used. Sometimes they are

called URLs and sometimes they are called URIs (e.g., in many IETF protocol

specifications).

w A string indicating the HTTP protocol version (e.g., HTTP/1.0 for

version 1.0 of the HTTP);

w A MIME-like message containing request modifiers, client informa-

tion, and possibly some body content.

Again, the exact format and syntax of HTTP messages (i.e., HTTP request

and response messages) is specified in [1]. This RFC document is

recommended reading for anybody working in the field.

As a working example, consider the situation in which a user wants to

retrieve the home page of eSECURITY Technologies Rolf Oppliger. Therefore,

the user simply enters www.esecurity.ch in the browser’s address or URL

field. The browser, in turn, does the following things on the user’s behalf:

1. It uses the Internet Domain Name System (DNS) to retrieve the IP

address of the Web server that hosts www.esecurity.ch.

2. It uses the client system’s IP stack to establish a TCP connection to

the Web server.3 Since the user has not specified a port number at

first place, the browser assumes that the Web server runs at port 80.

Any other port is possible but must be specified in the URL

(separated with a colon from the rest of the resource reference).

3. It composes an HTTP request message and uses the TCP connection

to send the message to the server (it assumes the use of HTTP by

default).

It is now up to the Web server to process the HTTP request message and

to send back a corresponding HTTP response message.

3. HTTP communication usually takes place over TCP connections. The default port is TCP 80, but other ports can

be used. This does not preclude HTTP from being implemented on top of any other protocol on the Internet, or

on other networks. HTTP only presumes a reliable transport; any protocol that provides such guarantees can be

used.

2.1 HTTP 23

In the example given above, the browser would compose an HTTP

request message that may look as follows:

GET http://www.esecurity.ch HTTP/1.0

Host: www.esecurity.ch

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)

Accept: image/gif, image/jpeg, ...

Accept-Language: en

...

Note that this HTTP request message only includes a header part (i.e., the

body part is empty). The header part, in turn, includes a number of HTTP

headers. Each HTTP header provides specific information. For example, the

Host header specifies that the requested Web site is www.esecurity.ch and

the Proxy-Connection header specifies that the TCP connection that is

going to be established between the browser and the proxy server must be

kept alive and used to serve subsequent HTTP requests. Furthermore, the

User-Agent header specifies what browser on what platform the user

employs (i.e., Microsoft’s Internet Explorer version 5.5 on a Windows NT

version 4.0 system),4 and the Accept and Accept-Language headers

specifiy the MIME types and languages accepted by the browser. In

addition, there is an increasingly large number of complementary HTTP

headers that may be used in HTTP request and response messages.

In response to the HTTP request message, the Web server could send

back an HTTP response message that consists of a status line, including the

message’s protocol version and a success or error code, followed by a MIME-

like message containing some server information, entity meta information,

and possibly some body content (separated with an empty line from the

header). For example, a typical HTTP response message may look as follows:

HTTP/1.0 200 OK

Date: Mon, 03 Dec 2001 12:10:13 GMT

Server: Apache/1.3.20 (Unix) PHP/4.0.6 FrontPage/4.0.4.3

Last-Modified: Wed, 03 May 2000 08:01:16 GMT

ETag:"81dfc1-14e-390fdccc"

Accept-Ranges: bytes

Content-Length: 334

4. The term Mozilla is still in use today. Remember that from Chapter 1 that this is what Mosaic Communications

called its first browser.

24 HTTP Security

Content-Type: text/html

Proxy-Connection: Keep-Alive

<HTML>

<HEAD>

<TITLE>eSECURITY Technologies Rolf Oppliger</TITLE>

</HEAD>

<FRAMESET COLS="23%,*">

<FRAME SRC="http://www.esecurity.ch/toc.html">

<FRAME SRC="http://www.esecurity.ch/esecurity.html’’

NAME="view_frame">

</FRAMESET>

<NOFRAME>

Your browser does not support frames.

</NOFRAME>

</HTML>

The first line of the HTTP response message includes a status code. In this

case, the status code 200 means that the HTTP request message is fine (i.e.,

OK) and that it is served. The HTTP response headers that follow give

information either about the server (e.g., the Server header) or the returned

resource (e.g., the Date and Last-Modied headers). In either case, a

Content-Type header is required to inform the browser about the type of

the provided resource. In the example given above, the content type text/

html indicates a text document written in HTML. Finally, the HTTP response

message may also include the requested resource (separated with an empty

line from the header part). In this example, it is the index.html file that is

found at the root of the requested server’s document tree.

Most HTTP communication is initiated by the browser and consists of a

request to be applied to a resource on some Web server. In the simplest case,

this may be accomplished via a single TCP connection between the client and

the server. A more complicated situation occurs when one or more

intermediaries are present in the request/response chain. According to [1],

there are three common forms of intermediary:

w A proxy server (or proxy) is a forwarding agent, receiving requests for a

URL in its absolute form, rewriting all or part of the message, and

forwarding the reformatted request toward the server identified by

the URL.

w A gateway is a receiving agent, acting as a layer above some other

server(s) and, if necessary, translating the requests to the underlying

server’s protocol.

2.1 HTTP 25

w A tunnel acts as a relay point between two connections without

changing the messages. Tunnels are used when the communication

needs to pass through an intermediary (such as a firewall) even when

the intermediary cannot understand the content of the messages.

This distinction is important because certain HTTP communication

options may apply only to the connection with the nearest, nontunnel

neighbor, only to the end-points of the request/response chain, or to all

connections along the chain. Also, any party to the communication that is

not acting as a tunnel may employ an internal cache for serving requests.

The effect of a cache is that the request/response chain is shortened if one of

the participants along the chain has a cached response applicable to that

request. Not all responses are usefully cacheable, and some requests may

contain modifiers that place special requirements on cache behavior (as

explained later). In fact, there are a huge variety of architectures and

configurations of caches and proxies currently being experimented with or

deployed across the WWW. There are many things that need to be said about

proxy servers, gateways, and tunnels. These things will be said in Chapter 3.

2.2 User authentication, authorization, and access control

In general, organizations run Web servers to make resources publicly

available and accessible to as many users as possible. In this situation, the

Web servers are typically configured to accept requests from anonymous

users, and there is no need for user authentication, authorization, and access

control. Sometimes, however, organizations run Web servers whose

resources must not be available and accessible to anyone. For example, access

to a Web server may be restricted to the employees of an organization, or

certain resources may be accessible only to customers who have paid a sub-

scription fee or have signed a nondisclosure agreement. In these cases, proper

user authentication, authorization, and access control may be required.

Roughly speaking, the following techniques may be used to control

access to resources located on a Web server:

w Restricting access by using hidden URLs (i.e., URLs that are kept

secret);

w Restricting access to a particular group of computers based on those

computers’ address information (i.e., the computers’ IP addresses or

DNS hostnames);

26 HTTP Security

TEAMFL
Y

Team-Fly®

w Restricting access to a particular group of users based on their

identity information and corresponding credentials.

Obviously, the easiest way to restrict access is by storing the resources in

hidden locations on the Web server’s document tree. This refers to the

technique of restricting access by using URLs that are kept secret and hidden.

Hidden URLs (in the digital world) are about as secure as a key underneath a

door mat (in the physical world). Nobody can access the resources unless

they know which URLs to use. But anybody who knows a hidden URL has

full access to the resource it refers to. Furthermore, the information is

transitive. You might tell a friend of yours about a specific URL, and he might

tell a friend of his or hers, and so on, until finally the URL gets posted to a

mailing list or newsgroup, or it may even end up in a link in another HTML

document. At this point, the URL may get registered by an automated

program that sweeps through all the pages on a Web server, adding

keywords from each page to a central database. If such a program follows the

HTML link, it will add the formerly hidden URL, along with identifying index

entries, to its database and make it accessible to a search engine accordingly.

Thereafter, someone searching for the resource might be able to find it

through the index service. In general, hidden URLs should only be used if its

compromise and the loss of the resource’s confidentiality does not pose any

problem. Aviel D. Rubin, Daniel Geer, and Marcus J. Ranum have put this in

other words [6]:

As everyone in the data security business is fond of saying, ’Obscurity is not

security.’ If you want to protect data, you will have to do better than

naming it /tmp/nobody_would_guess_this_URL.html; you will need to

provide a security mechanism.

Most Web servers allow their administrators to restrict access to a

particular group of computers based on those computers’ address informa-

tion (e.g., the allow and deny directives in the case of the Apache Web

server). The address information can be specified by the computers’ IP

addresses or DNS hostnames. In fact, restricting access to specific IP

addresses or a range of IP addresses is relatively simple and works well for an

organization that wishes to restrict access to people on its intranet. For

example, you might consider restricting access to an intranet Web server to

the range of IP addresses that has been assigned to your organization.

Instead of specifying computers by IP addresses, most Web servers allow

their administrators to restrict access on the basis of DNS hostnames. This

has the advantage that IP addresses can be changed without having to

2.2 User authentication, authorization, and access control 27

change the Web server’s configuration files, as well (as long as the DNS

hostnames remain the same). The disadvantage of restricting access based

on DNS hostnames is that the DNS itself can be attacked and misused. Either

way, it is important to note that host-based addressing is not foolproof (e.g.,

IP spoofing can be used to transmit IP packets that appear to come from a

different computer than the one actually used). In fact, the security of

restricting access based on address information is comparable to the security

of packet filtering as discussed in the next chapter.

Finally, restricting access to a particular group of users based on their

identity information and corresponding credentials is the most effective way

of controlling access to resources. For example, if the users of a Web server

are widely dispersed (eventually using dynamically assigned IP addresses), or

the administrator needs to be able to control access on an individual basis, it

is necessary to implement a user-centric authentication and authorization

scheme. In short, the process of verifying the identity of a requesting user is

called user authentication, whereas the process of granting the privileges to

access particular resources is called user authorization. In the simplest case,

each user is given a username and a password. The username identifies the

person who wishes to access the Web server, and the password

authenticates the person. To increase security, more sophisticated user

authentication schemes may be used.

Roughly speaking, setting up HTTP user authentication, authorization,

and access control takes two steps:

1. A file containing the user authentication information must be

created. Optionally, the set of users may be structured in some way

(e.g., using groups).

2. The Web server must be told what resources to protect and which

users to allow access (after proper authentication).

In the following sections, we address and briefly overview two HTTP

user authentication schemes that are implemented and widely used today:

basic authentication and digest access authentication. The authentication

schemes specified in RFC 2617 [7] complement the HTTP/1.1 specification

in RFC 2616 [1].5

5. Note that the HTTP digest access authentication scheme has been slightly modified and that RFC 2617 [7]

supercedes RFC 2069.

28 HTTP Security

2.3 Basic authentication

As mentioned above, the HTTP basic authentication scheme implements

password-based authentication to protect and to control access to the

resources of a server. The server, in turn, may be a Web server or an HTTP

proxy server. The HTTP basic authentication scheme works similarly for both

types of servers. As of this writing, the scheme is supported by all major

browser and server software packages. On the client side, the scheme is

supported by, for example, Netscape Navigator, Microsoft’s Internet

Explorer, and Opera. On the server side, the scheme is supported by almost

all software packages, including, for example, Microsoft IIS and Apache.

If a browser requests a resource that is protected with the HTTP basic

authentication scheme, the server challenges the browser to provide some

valid authentication information (typically a username and a password).

This is equally true for Web servers and HTTP proxy servers. The browser

either remembers the authentication information from a previous HTTP

Ïsession, or prompts the user to type in that information. In either case, the

browser forwards the information to the server in the clear (this fact

represents the most serious weakness and vulnerability of the HTTP basic

authentication scheme).

For example, let us assume that a user wants his or her browser to

retrieve the file index.html that is located in the protected directory /Demo/

HTTPBasicAuthentication/ at www.esecurity.ch. At first sight, the

browser does not know that this file is protected with the HTTP basic

authentication scheme. So it sends out a normal-looking HTTP request

message. Remember from our previous discussions that such a message may

start with the following request line:

GET http://www.esecurity.ch/Demo/HTTPBasicAuthentication/HTTP/ 1.0

All other HTTP request headers basically remain the same. After

having received the HTTP request message, the Web server recognizes that

the requested file is located in a directory that is protected with the HTTP

basic authentication scheme. As further explained below, the server

recognizes that the file is protected because it is located in a directory that

contains a specific file (i.e., the file .htaccess in the case of an Apache Web

server). Instead of directly returning the requested file, the server generates

an HTTP response message that includes the following two characteristic

lines:

HTTP/1.0 401 Unauthorized

...

WWW-Authenticate: Basic realm="HTTP Basic Authentication Demo"

2.3 Basic authentication 29

The first line informs the browser that the server has not been able to

serve the request because the browser did not provide valid credentials. In

our example, the status code 401 (i.e., ‘‘Unauthorized’’) reveals the fact that

the server is a Web server (note that it could also be an HTTP proxy server).

In the second line, the WWW-Authenticate header requests user credentials

for the realm named ‘‘Basic Authentication Demo.’’

If the server were an HTTP proxy server, the HTTP response message

would have the following two characteristic lines:

HTTP/1.0 407 Proxy Authentication Required

...

Proxy-Authenticate: Basic realm="HTTP Basic Authentication Demo"

Everything else would remain the same. In either case, the server may

also return Date, Server, and possibly some other HTTP response headers.

These headers are neither illustrated above nor discussed below (they are

not very relevant from a security point of view).

The HTTP response message is received by the browser and the user

is prompted to enter his or her password accordingly. For the server being a

Web server, Figures 2.1 and 2.2 illustrate the prompts used by Microsoft’s

Internet Explorer and Opera. If the user obeys and properly enters his or her

username and password (i.e., rolf and test in this example), the browser

resends the HTTP request message that now carries an additional

Figure 2.1 The Internet Explorer 5.5 ‘Enter Network Password’ prompt using the HTTP

basic authentication scheme. (q 2002 Microsoft Corporation.)

30 HTTP Security

Authorization header (if the server were an HTTP proxy server, the

browser would resend an HTTP request message with a Proxy-Authoriza-

tion header). In our example, the Authorization header may look as

follows:

Authorization: Basic cm9sZjp0ZXN0

The value cm9sZjp0ZXN0 refers to the user’s authentication information

(i.e., the username and password separated with a colon) encoded using the

Base-64 encoding scheme.6 This basically works as follows:

1. Each character of the complete authentication information (i.e.,

rolf:test) is converted to its ASCII value (according to Table 2.1).

The resulting string of hexademical values is 726F6C663A74657374

(each pair of hexademical values represents one ASCII character).

Alternatively, the string of hexademical values may also be written

as a bit string:

Figure 2.2 The Opera 6.0 ‘Password required’ prompt using the HTTP basic authentication

scheme. (q 2002 Opera Software.)

6. The Base-64 encoding scheme is explained, for example, in Chapter 2 of [8].

2.3 Basic authentication 31

7 2 6 F 6 C 6 6 3

0111 0010 0110 1111 0110 1100 0110 0110 0011

A 7 4 6 5 7 3 7 4

1010 0111 0100 0110 0101 0111 0011 0111 0100

2. The bit string is rearranged and split into groups of six bits each.

011100 100110 111101 101100 011001 100011

101001 110100 011001 010111 001101 110100

3. Each group of six bits is represented by a new character in the Base-

64 encoding scheme (according to Table 2.2). For example, the first

substring 011100 refers to the decimal value 28 or the hexadecimal

value 1C. Referring to Table 2.2, this value is represented by the

letter c in the Base-64 encoding scheme. Similarly, the second

substring 100110 refers to the decimal value 38 or hexadecimal

value 26, and this value is represented by the letter m in the Base-64

encoding scheme. The resulting string can be constructed as follows:

011100 100110 111101 101100 011001 100011

28 38 61 44 25 35

1C 26 3D 2C 19 23

c m 9 s Z j

Table 2.1 ASCII Characters with Hexadecimal Values

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

+0 NUL DLE 0 @ P ‘ p

+1 SOH DC1 ! 1 A Q a q

+2 STX DC2 " 2 B R b r

+3 ETX DC3 # 3 C S c s

+4 EOT DC4 4 D T d t

+5 ENQ NAK % 5 E U e u

+6 ACK SYN & 6 F V f v

+7 BEL ETB ’ 7 G W g w

+8 BS CAN (8 H X h x

+9 HT EM) 9 I Y i y

+A LF SUB * : J Z j z

+B VT ESC + ; K [k {

+C FF FS , < L \ l |

+D CR GS - = M] m }

+E SO RS . > N ^ n

+F SI US / ? O _ o DEL

32 HTTP Security

101001 110100 011001 010111 001101 110100

41 52 25 23 13 52

29 34 19 17 D 34

p O Z X N O

The first line represents the groups of six bits. The second and third

line represent the corresponding decimal and hexadecimal values,

whereas the fourth line represents the corresponding charcaters in

the Base-64 encoding scheme. Consequently, the resulting string is

cm9sZjp0ZXN0 and this string may serve as authentication informa-

tion in the HTTP basic authentication scheme. Another example is

given in [7]. The interested reader is invited to follow the above-

mentioned steps to encode an arbitrary username and password

pair, and to verify the correctness of his or her encoding result using

a Web browser and a network monitoring tool.

In spite of the fact that the authentication information (i.e., the

username and password separated with a colon) is Base-64-encoded, there is

nothing that protects it against passive eavesdropping. In fact, anyone who

intercepts the HTTP request message that is sent from the browser to the

server can obtain the authentication information, decode the username and

password (according to the Base-64 decoding scheme), and (mis)use this

information illegitimately. To make things worse, HTTP is stateless and the

browser reauthenticates itself each time it contacts the server (not just

Table 2.2 Characters Used in the Base-64

Encoding Scheme

0x00 0x10 0x20 0x30

+0 A Q g w

+1 B R h x

+2 C S i y

+3 D T j z

+4 E U k 0

+5 F V l 1

+6 G W m 2

+7 H X n 3

+8 I Y o 4

+9 J Z p 5

+A K a q 6

+B L b r 7

+C M c s 8

+D N d t 9

+E O e u +

+F P f v /

2.3 Basic authentication 33

the first time). In order to make that transparent to the user, browsers

usually cache the usernames and passwords and retransmit them auto-

matically each time they contact the server. This is convenient but also

causes many password transmissions that are transparent and ‘‘invisible’’ to

the user (unfortunately, these retransmissions are not ‘‘invisible’’ for a

passive attacker). More worrisome, it is generally not possible to log out an

authenticated ‘‘HTTP session.’’ This would require the browser to forget

about the relevant user credentials. This is currently not a supported feature

in most browsers. Last but not least, the most recent versions of some

browsers provide the feature to remember a password forever, so that a user

never has to type in the password again. As illustrated in Figure 2.1, this

ability can be activated in Microsoft’s Internet Explorer by employing the

checkbox entitled ‘‘Save this password in your password list.’’ From a

security point of view, this feature is highly debatable. It is, however,

convenient for the user and simplifies the user experience considerably.

That’s why people use it.

In summary, the HTTP basic authentication scheme is not secure.

Although the passwords are stored on the server in encrypted form, they are

passed from the browsers to the server in the clear7 (or in Base-64-encoded

form) for every single request. As such, they are exposed to eavesdropping

and replay attacks.

2.4 Digest access authentication

Due to the fact that the HTTP basic authentication scheme must be

considered to be weak and vulnerable, the complementary and inherently

more secure HTTP digest access authentication scheme has been specified in [7]

and submitted to the Internet standards track. Note, however, that the HTTP

digest access authentication scheme still suffers from many known

limitations and weaknesses (as discussed at the end of this section), and

that it is intended as a simple replacement for the HTTP basic authentication

scheme. More secure HTTP authentication schemes can be designed using

public key certificates or authentication and key distribution systems, such

as Kerberos [9].

Unfortunately (and contrary to the HTTP basic authentication scheme),

the HTTP digest access authentication scheme is not widely deployed and

7. This is similar to many other TCP/IP application protocols that lack strong user authentication, such as Telnet

and FTP.

34 HTTP Security

supported by Web browsers and servers.8 On the client side, for example, the

scheme is supported by the latest releases of Microsoft’s Internet Explorer

and Opera (the scheme is not supported by Netscape Navigator). On the

server side, the scheme is supported by Microsoft IIS and Apache.9

Like the HTTP basic authentication scheme, the HTTP digest access

authentication scheme implements a simple challenge-response mechanism

to verify that the user knows a secret he or she shares with the server (i.e.,

the password). Unlike the HTTP basic authentication scheme, however, the

verification is done without actually sending the secret in the clear. Instead,

the HTTP digest access authentication scheme employs a one-way hash

function (typically MD510) to compute (on the browser side) and verify (on

the server side) a digest value that is used to proof knowledge of the secret.

More specifically, when a browser requests a resource that is protected

using the HTTP digest access authentication scheme, the server challenges

the browser using a nonce (i.e., a randomly chosen value). The browser, in

turn, must respond with a valid digest value to authenticate itself to the

server. The digest value is computed from the following input parameters:

w The username;

w The user password (or a hash value thereof);

w The nonce;

w The HTTP access method;

w The URL of the requested resource.

Roughly speaking, the digest value is computed as follows:

h(h(A1):nonce:h(A2))

8. The major reason for this astonishing fact is that those products typically implement the SSL and TLS protocols.

If the browser and server are communicating with HTTP on top of SSL or TLS (using HTTPS), the problem of

password sniffing automatically goes away. The encrypted channel is set up before any HTTP header passes

across the network, so the username and password are part of the encrypted SSL data stream and cannot be

sniffed accordingly.

9. Digest access authentication as specified in [7] is implemented by the module mod_auth_digest. There is an

older module, mod_digest, which implemented the older digest authentication scheme specified in RFC 2069.

10. An optional header may allow the server to specify the algorithm that must be used to create the one-way hash

value. By default the MD5 algorithm as specified in RFC 1321 [10] is used. As further explained in Chapter 4,

an MD5 hash value is 128 bits long. As such, it can be represented in 32 ASCII printable characters that each

represent a hexadecimal number.

2.4 Digest access authentication 35

In this formula, h represents the one-way hash function,11 A1 the

expression that consists of the username, the realm string, and the user

password (each component separated with a colon), and A2 the expression

that consists of the HTTP access method and the requested URL (again,

separated with a colon). There are some options that complicate the formula,

but in principle, this is the way the browser has to compute the digest value it

must encode as a response. Note that the user password is not sent in the

clear. Instead, it is used as a secret input to the one-way hash function. As

with the HTTP basic authentication scheme, the usernames and passwords

must be prearranged and distributed out-of-band.

Let us assume that a browser wants to retrieve the index.html file

located in the protected directory /Demo/HTTPDigestAccessAuthentica-

tion/ at www.esecurity.ch. Again, the browser does not know that this file

is protected using the HTTP digest access authentication scheme. So it sends

sends out a normal-looking HTTP request message. Remember from our

previous discussions that this message may start with the following request

line:

GET http://www.esecurity.ch/Demo/HTTPDigestAccessAuthentication/

HTTP/1.0

All other HTTP request headers remain the same as in the previous

example(s). After having received the HTTP request message, the Web

server recognizes that the requested file is located in a directory of the

Web server’s document tree that is protected using the HTTP digest access

authentication scheme. So it returns an HTTP response message that

includes the following two characteristic lines (among other lines and

HTTP headers):

HTTP/1.0 401 Unauthorized

...

WWW-Authenticate: Digest

realm="HTTP Digest Access Authentication Demo",

nonce="1011598310"

Again, if the server were an HTTP proxy server, it would return an HTTP

response message with a 407 status code and a Proxy-Authenticate header.

This case is not discussed in this book.

Contrary to the HTTP basic authentication scheme, the WWW-Authenti-

cate header includes the keyword Digest (referring to the HTTP digest

11. Refer to Section 4.2 for an introduction to one-way hash functions.

36 HTTP Security

TEAMFL
Y

Team-Fly®

access authentication scheme instead of Basic referring to the HTTP basic

authentication scheme) as well as a comma-separated list of parameters. In

our example, there are only two parameters (i.e., realm and nonce) with

corresponding values:

w The realm parameter carries a string that is displyed to the user so he

or she knows which username and password to use. As illustrated in

Figure 2.3 for Opera, most browsers display this string in the prompt

in which they ask the users to type in their username and password.

w The nonce parameter carries the random value that is used by the

server to challenge the user (or the browser, repectively). The value

is uniquely generated each time a 401 response message is compiled.

The contents of the nonces are implementation dependent. An

exemplary procedure to generate nonces (using time stamps and a

secret key that is known only to the server) is given in [7]. In our

example, the nonce is 1011598310.

As further addressed in [7], there are many other parameters that can be

used in the WWW-Authenticate header. Most of them are optional. To keep

Figure 2.3 The Opera 6.0 ‘Password required’ prompt using the HTTP digest access

authentication scheme. (q 2002 Opera Software.)

2.4 Digest access authentication 37

the discussion sufficiently simple, we do not look into the synatx and

semantics of these parameters.

In response to the HTTP response message, the browser prompts the user

to enter his or her username and password. From a graphical user interface’s

point of view, this is very similar to the way the user is prompted in the HTTP

basic authentication scheme. Figure 2.3 illustrates the prompt used by the

Opera browser. If the user entered the requested information (i.e., the

username and password), the browser would compute a response value and

return it as part of an Authorization header in a second HTTP request

message to the server. In our example, the Authorization header would

look as follows:

Authorization: Digest

username="rolf",

realm="HTTP Digest Access Authentication Demo",

uri="http://www.esecurity.ch/Demo/HTTPDigestAccessAuthen-

tication/",

algorithm=MD5,

nonce="1011598310",

response="2cbdf234349bbfbfa8460c2410acb445"

In this header, the response parameter carries the digest value that is

needed to authenticate to the server. It is a 32-bit hexademical value that

carries a one-way hash value (i.e., an MD5 hash value in this example) that

is computed as described above. Due to the fact that the WWW-Authenticate

header may include many optional parameters and that implementations

should be compatible with a previous version of the HTTP digest access

authentication scheme,12 the actual format and procedures to compute and

verify the hash values is quite complex. Consequently, we have used a

simplified formula and you may refer to [7] to get a more comprehensive

description and specification, as well as examples of HTTP request and

response messages that conform to this specification.

Upon receiving an HTTP request message with a proper WWW-Authenti-

cate header, the server must check the validity of the response value. In

particular, it must look up the A1 hash value that corresponds to the

submitted username, recompute the digest value, and compare the result to

the response that was provided by the browser. If the values match, the user

is assumed to be authentic. Note, however, that the server does not need to

12. As mentioned before, this version is called ‘‘HTTP Digest Authentication’’ and it is specified in RFC document

2069.

38 HTTP Security

know the user password in the clear. It is sufficient for the server to know

the A1 hash value (i.e., the hash value of the username, the realm string,

and the user password).

In the following chapter, we address the implications of proxy

servers and firewalls for Web applications. As with the HTTP basic

authentication, the use of proxy servers must be completely transparent

in HTTP digest access authentication. That is, the proxy servers must

forward the relevant headers (i.e., the WWW-Authenticate, Authoriza-

tion, and some other headers) as they are. If a proxy server wanted to

authenticate a client before a request is forwarded to a Web server, it would

have to use appropriate Proxy-Authenticate and Proxy-Authorization

headers as specified in [1]. Consequently, Web server authentication and

HTTP proxy server authentication may coexist in the same challenge/

response messages.

There is a potential difficulty in using an HTTP authentication scheme

(i.e., HTTP basic authentication or HTTP digest access authentication)

together with caching mechanisms implemented by HTTP proxy servers.

Note that one goal of a proxy server is to cache resources that have been

downloaded once to serve requests that are issued by multiple browsers.

Consequently, if a resource has been downloaded by an authenticated

browser, the resource may end up in a proxy cache, from where it may be

redistributed to multiple (not authenticated) browsers. To protect against

this redistribution, HTTP (since version 1.1) specifies that when a proxy

server has received an HTTP request message containing an Authorization

header, and a response message from relaying that request, it must not

return that response message as a reply to any other request, unless one of

the following two cache-control directives was sent in the corresponding

original HTTP response message:

w If the original HTTP response message includes the must-revalidate

cache-control directive, the proxy server can cache the resource and

use it to serve further requests for the same resource. Each time the

resource is requested, however, the proxy server must first

reauthenticate the browser (using the HTTP request headers from

the new request to allow the origin Web server to authenticate the

browser).

w Alternatively, if the original HTTP response includes the public

cache-control directive, the proxy server can cache the resource and

use it to serve further requests for the same resource (without

browser reauthentication).

2.4 Digest access authentication 39

In summary, the HTTP digest access authentication scheme solves the

most severe security problem of the HTTP basic authentication scheme,

namely, that passwords are transmitted in the clear (or in Base-64-encoded

form that is equivalent to the unencrypted form). Instead of sending the

username and password to the server, the browser uses the password to

properly compute a response for the challenge provided by the server.

As such, the password is never transmitted across the Internet. Provided

that the user has picked a good (i.e., hard to guess) password, it is

computationally infeasible for an attacker to derive the password from the

response. For further protection, the user password may not be stored in the

clear on the server side (where it could be stolen by someone with access to

the server). Instead, only the hash value of the password may be stored. This

is similar to the way that contemporary operating systems, such as UNIX or

Windows NT, store passwords. As a final precaution, the requested URL is

part of the response. Consequently, if the response is intercepted by an

eavesdropper who attempts to play it back to gain illegitimate access to

resources, he or she will be able to get access only to that single URL. More

specifically, he or she will be unable to generate new responses to gain access

to resources that are found in other branches of the document tree. Servers

can further protect themselves against replay attacks by adding a timestamp

to the nonces so that responses automatically expire after a relatively short

period of time.

The HTTP digest access authentication scheme is intended as a simple

replacement for the HTTP basic authentication scheme, and nothing more.

In spite of all of its security features, the HTTP digest access authentication

scheme still suffers from known limitations and weaknesses. For example,

both the HTTP basic authentication scheme and the HTTP digest access

authentication scheme are vulnerable to the man-in-the-middle attack

(mainly because the server does not authenticate itself to the browser before

it sends out the challenge).13 Also, the HTTP digest access authentication

scheme is (still) a password-based system and suffers from all the problems of

such a system.

For example, digest authentication requires that the authenticating

party (usually the server) store some data derived from the username and

password in a user password file associated with a given realm. The security

implications of this are that if this file is compromised, an attacker gains

immediate access to documents on the server using this realm. On the other

hand, a brute force attack would be necessary to obtain a user’s password.

13. In a man-in-the-middle attack, an attacker spoofs a server and requests a browser to provide a user password.

40 HTTP Security

This is why the realm is part of the hashed data stored in the file. It means

that if one digest authentication password file is compromised, it does not

automatically compromise others with the same username and password

(though it does expose them to brute force attack). This is somewhat similar

to the UNIX salt mechanism. There are two important security consequences

of this:

1. The user password file must be protected as if it contained

unencrypted passwords (that is why it is usually not stored in the

document tree).

2. The realm name should be unique among all realms that any single

user is likely to use. In particular, a realm name should include the

name of the host doing the authentication (contrary to the example

given previously in this chapter).

Furthermore, no provision is made in the specification of the HTTP digest

access authentication scheme for the initial arrangement between the user

and server to establish the user password. Consequently, the HTTP digest

authentication scheme does not provide a complete answer to the need for

security on the WWW. Also note that the HTTP digest access authentication

scheme is only an authentication scheme that does not provide any data

confidentiality or integrity services. This is where cryptographic security

protocols, such as the Secure Sockets Layer (SSL) and Transport Layer

Security (TLS) protocols, come into play.

2.5 Certificate-based authentication

The SSL and TLS protocols are the security technology of choice for the

WWW and, indeed, most Web applications. As further addressed in Chapter

6, these protocols can be used to have a Web browser and a server

authenticate each other,14 establish a session key, and use this key to

transparently encrypt, decrypt, and authenticate data segments that are

exchanged between them. Consequently, this protocol can also be used to

have a Web server (or HTTP proxy server) properly authenticate its users.

This makes user authentication and authorization simple and straightfor-

ward. On the other side, however, it also requires that servers and browsers

be equipped with public key certificates. Public key certificates and

14. Server-side authentication is mandatory in SSL and TLS, whereas client-side authentication is optional.

2.5 Certificate-based authentication 41

the establishment and use of corresponding infrastructures is further

addressed in Chapters 7 and 8.

2.6 Server configuration

Based on the HTTP basic and digest access authentication schemes

overviewed in the previous sections, Web server software packages usually

provide support for user-based and group-based authorization and access

control. For example, the Apache server allows an administrator to define

authorized users, give them passwords, and place them in groups similar to

the UNIX operating system. The syntax that is used to specify access control

rules heavily depends on the Web server software in use. You may refer to

the manual of your server software package for a description of the syntax

that must be used. In the examples that follow, we refer to the Apache Web

server software that is widely deployed today. Further information can be

found at http://httpd.apache.org/docs/howto/auth.html.

2.6.1 Configuring HTTP basic authentication

To protect the contents of an Apache Web server with the HTTP basic

authentication scheme, the following two configuration steps must be

completed:

1. A password file must be created. The file must include the names

and encrypted passwords of the legitimate and authorized users of

the server. Because the file contains sensitive information, it should

be stored outside of the document tree. To create and manage the

password file, a utility called htpasswd may be used.15 This utility

creates entries that look as follows (for username rolf and

password test):

rolf:yIvSBWSuLs2N2

Obviously, the first field includes the username (i.e., rolf) and the

second field includes the encrypted password (i.e., yIvSBWSuLs2N2).

The password is encrypted using the standard UNIX password

encryption function [i.e., crypt()]. This basically means that the

zero-string is encrypted using the password as a key, that a modified

and slowed-down version of the DES serves as encryption

15. The htpasswd utility is typically located in the bin directory of the Apache installation.

42 HTTP Security

algorithm, that an additional 12-bit value (i.e., a so-called salt) is

used to seed the encryption, and that each encrypted password is

Base-64-encoded as 13 printable characters (the first two characters

representing the salt). Due to the salt mechanism, the password

encryption function is nondeterministic, meaning that two users

who have randomly chosen the same password may end up having

encrypted passwords that look completely different. For example,

8DPEnfGmhy3f., oC.DJuDdSwd4w, and N.Ecp9ZAWAPXE are all valid

and equivalent encodings of the username rolf and the encrypted

password test (i.e., they all use different salt values). Optionally, a

group file may be created to define that certain users belong

together and may be treated as a group (mainly to simplify user

management). Each group is defined by a group name and a list of

members (i.e., users). For example:

family: isabelle marc lara rolf

In this case, a group named family is defined to include the

members isabelle, marc, lara, and rolf. Note that for each of these

members an entry in the password file must exist.

2. The use of the password and group files must be configured on the

server side. There are a number of server directives that can be used

for this purpose:

w The AuthType directive is used to specify the authentication type

being used (i.e., Basic or Digest).

w The AuthName directive is used to specify the authentication realm

or name.

w The AuthUserFile directive is used to specify the location of the

password file.

w The AuthGroupFile directive is used to specify the location of the

group file, if any.

w The Require directive is used to specify the requirement(s) that

must be satisfied in order to grant admission.

The directives can be placed in a .htaccess file in the particular

directory being protected, or may go in a <Directory> section of the

server’s access configuration file (i.e., access.conf). To allow a

directory to be restricted within an .htaccess file, however, the

access.conf file must allow user authentication and authorization

2.6 Server configuration 43

to be set up in .htaccess files. This is controlled by the AuthCong

override. More specifically, the access.conf file must include

AllowOverride AuthCong to allow user authentication and authori-

zation in .htaccess files. In the explanations that follow, we

assume the AuthCong override is included in the Web server’s access

configuration file.

Let’s have a look at the server configuration that is used to protect the

directory /Demo/HTTPBasicAuthentication at www.esecurity.ch. Protec-

tion is invoked by placing the following .htaccess file in the protected

directory:

AuthType Basic

AuthName "HTTP Basic Authentication Demo"

AuthUserFile /home/esecurity.ch/conf/passwords

AuthGroupFile /home/esecurity.ch/conf/groups

require valid-user

Obviously, the first line indicates the use of the HTTP basic authentica-

tion scheme. The second line specifies the realm string that is used in the

prompt to request the user to enter his or her password (this is illustrated in

Figures 2.1 and 2.2). The third and fourth lines specify the location of the

password and group files. Finally, the fifth line requires that any user

provides his or her valid password to get access (in this case, the group file is

not used at all). This part could be expanded to limit access to specific users or

groups or specific access methods (e.g., GET). For example:

<LIMIT GET>

require group family

</LIMIT>

limits user access to the members of the family group employing the HTTP

GET method (in this case, the group file is used). In general, a <Limit>

section is established between the <Limit> and </Limit> directives. It can

be used to establish an access control policy for the directory. The format is

<Limit X Y ...>, where each of the parameters is one of the HTTP access

methods (e.g., GET, POST, PUT, or DELETE). Browsers that try to use one of

the listed methods are restricted according to the rules listed within the

section. If no method is listed, the restrictions apply to all methods. Multiple

groups may be listed and multiple require directives may be used.

Using the htpasswd utility to create and manage a list of users in a

password file, and maintaining a list of groups in a corresponding group file,

is a relatively simple task. However, if the number of users becomes large,

44 HTTP Security

the server has a lot of processing to do in finding a user’s authentication

information. In fact, the server has to open the password file, look through

it one line at a time until it finds the user that is trying to log in, and verify

the password. In the worst case, if the username supplied is not there at all,

every line in the file will need to be checked. On average, half of the file will

need to be read before the user is found. To make things worse, this

processing must be done for every request to access the protected realm

(even though the user only enters his or her password once, the server has

to reauthenticate on every request). This can be slow with a lot of users,

and adds to the Web server load. Much faster access is possible using a

database system. In the case of the Apache Web server, there are several

database modules that may be used (e.g., mod_auth_db and mod_auth_dbm).

The corresponding directives may change (e.g., AuthDBUserFile instead of

AuthUserFile in the case of using Berkeley DB files and HTTP basic

authentication) but the principle ideas remain the same. It is also possible to

have an arbitrary external program check whether the given username and

password are valid (this could be used to write an interface to check against

any other database or authentication service). Modules are also available to

check against the system password file or—more interestingly—to use a

Kerberos authentication system.

2.6.2 Configuring HTTP digest access authentication

To protect the contents of an Apache Web server with the HTTP digest access

authentication scheme, the following two configuration steps must be

completed:

1. A password file must be created. For every legitimate and

authorized user, the file must include the username, the realm

string, and the user password in possibly encrypted form. Again, the

file contains sensitive information and should be stored outside of

the document tree. To create and manage the password file, a utility

called htdigest can be used.16 It creates entries like

rolf:HTTP Digest Access Authentication Demo:672203b528e0-

c29e08df53cba3f51b66

for the username rolf, the realm string ‘‘HTTP Digest Ac-

cess Authentication Demo,’’ and the password test. Note that

16. Similar to the htpasswd utility, the htdigest utulity is typically located in the bin directory of the Apache

installation.

2.6 Server configuration 45

the username and the realm string are not encrypted, and that the

password is the only value that is encrypted. Contrary to the

password encryption routine employed by the .htpasswd utility,

however, the password encryption routine employed by the

.htpasswd utility is deterministic, meaning that no salt is used,

and that the same password is always encrypted and encoded to the

same value (i.e., 672203b528e0c29e08df53cba3f51b66 in the

example above). Optionally, a group file can be created to simplify

user management. The syntax of the file is the same as the one

employed by the HTTP basic authentication scheme.

2. The use of the password and group files must be configured on the

server side. In addition to the directives that are available for the

HTTP basic authentication scheme (i.e., AuthType, AuthName, and

Require), the following two directives may be used to configure the

use of the HTTP digest access authentication scheme:

w The AuthDigestFile directive is used to specify the location of the

password file.

w The AuthDigestGroupFile directive is used to specify the location

of the group file (if any).

The placement of the directives is identical to the HTTP basic

authentication scheme.

For example, the following .htaccess file may be used to protect the

directory /Demo/HTTPBasicAuthentication at www.esecurity.ch:

AuthType Digest

AuthName "HTTP Digest Access Authentication Demo"

AuthDigestFile /home/esecurity.ch/conf/digests

AuthDigestGroupFile /home/esecurity.ch/conf/groups

require valid-user

The semantics of the directives should be clear. Again, access to the

protected directory may be restricted to specific HTTP access methods (e.g.,

GET) using the <Limit> and </Limit> directives.

2.7 Conclusions

In the early days of the WWW, it was assumed that the resources made

available by Web servers were inherently public and that there would be no

46 HTTP Security

TEAMFL
Y

Team-Fly®

need for such things as user authentication, authorization, and access

control. Since then, however, the situation has changed fundamentally and

the WWW is also used for the distribution of protected material. Con-

sequently, there is urgent need for proper user authentication, authorization,

and access control mechanisms.

The simplest mechanism to control access to Web resources is to use

hidden URLs. Also, most Web servers can be configured to restrict access to

a particular group of computers based on those computers’ address

information (IP addresses or DNS hostnames). Most importantly, some

Web servers provide support for the HTTP user authentication and

authorization schemes that are described in this chapter: HTTP basic

authentication and HTTP digest access authentication. Unfortunately, the

HTTP digest access authentication scheme is not widely deployed. This is

because HTTP digest access authentication is always less secure than a full-

fledged cryptographic security protocol, such as SSL or TLS. Consequently,

some browsers implement SSL or TLS and leave beside HTTP digest

access authentication. As mentioend in this chapter and further addressed

in Chapter 6, SSL and TLS employ certificate-based authentication

mechanisms.

In practice, many Web servers are configured to allow access to all users

from computers located on the same network (i.e., intranet), whereas they

allow access to other users only after proper authentication and authoriza-

tion. For example, the .htaccess file of an Apache Web server could be

extended as follows:

AuthType Basic

AuthName "HTTP Basic Authentication Demo"

AuthUserFile /home/esecurity.ch/conf/passwords

AuthGroupFile /home/esecurity.ch/conf/groups

Require valid-user

Allow from esecurity.ch

Satisfy any

The extension (i.e., the allow and satisfy directives) would make sure

that either a valid user is requesting the resource (i.e., the require valid-

user directive), or a request is originating from the esecurity.ch domain

(i.e., the allow from esecurity.ch directive).17 It is also possible to deny

access for specific computers using the deny directive, and to define an order

of preference (regarding the allow and deny directives). In general, it is

17. The satisfy any directive says that either of the two conditions must hold.

2.7 Conclusions 47

possible to express any access control condition using the allow, deny,

order, and satisfy directives.

References

[1] Fielding, R., et al., ‘‘Hypertext Transfer Protocol—HTTP/1.1,’’ Request for

Comments 2616, June 1999.

[2] Berners-Lee, T., L. Masinter, and M. McCahill, ‘‘Uniform Resource Locators

(URL),’’ Request for Comments 1738, December 1994.

[3] Fielding, R., ‘‘Relative Uniform Resource Locators (URL),’’ Request for

Comments 1808, June 1995.

[4] Sollins, K., and L. Masinter, ‘‘Functional Requirements for Uniform Resource

Names,’’ Request for Comments 1737, December 1994.

[5] Berners-Lee, T., R. Fielding, and L. Masinter, ‘‘Uniform Resource Identifiers

(URI): Generic Syntax and Semantics,’’ Request for Comments 2396, August

1998.

[6] Rubin, A. D., D. Geer, and M. J. Ranum, Web Security Sourcebook, New York:

John Wiley & Sons, Inc., 1997.

[7] Franks, J., et al., ‘‘HTTP Authentication: Basic and Digest Access Authentica-

tion,’’ Request for Comments 2617, June 1999.

[8] Oppliger, R., Secure Messaging with PGP and S/MIME, Norwood, MA: Artech

House, 2001.

[9] Oppliger, R., Authentication Systems for Secure Networks, Norwood, MA: Artech

House, 1996.

[10] Rivest, R. L., and S. Dusse, ‘‘The MD5 Message-Digest Algorithm,’’ Request for

Comments 1321, April 1992.

48 HTTP Security

Proxy Servers and Firewalls

In this chapter, we address proxy servers and firewalls as well

as their implications for the WWW and Web-based applica-

tions. After a brief introduction in Section 3.1, we address the

major firewall technologies (i.e., static packet filtering, dynamic

packet filtering or ‘‘stateful’’ inspection, circuit-level gateways,

and application-level gateways or proxy servers) in Sections 3.2

to 3.5. In Section 3.6, we overview and discuss firewall

configurations that are used and widely deployed today. In

Section 3.7, we address network address translation (NAT). In

Section 3.8, we elaborate on the question of how to properly

configure a browser to make use of proxy servers. In Section

3.9, we conclude with a discussion of the firewall technology as

a whole. Note that the focus of this chapter is on how to get out

of a corporate intranet (actually traversing a firewall). This is

the usual situation one faces when dealing with firewalls. For

mobile users and teleworkers, however, the situation is inverse

and their primary focus is on how to get in a corporate intranet

(e.g., to access an internal Web server). This leads to reverse

proxies and the need for strong authentication mechanisms.

These topics are further addressed in Chapter 6. Also, you may

refer to part two of [1] for an overview and more comprehen-

sive discussion of the firewall technology.

3.1 Introduction

While Internet connectivity offers enormous benefits in terms

of increased availability and access to information, Internet

49

C H A P T E R

3
Contents

3.1 Introduction1

3.2 Static packet filtering6

3.3 Dynamic packet filtering
or stateful inspection9

3.4 Circuit-level gateways11

3.5 Application-level gateways16

3.6 Firewall configurations21

3.7 Network address
translation25

3.8 Configuring the browser27

3.9 Conclusions29

References
83

connectivity is not always a good thing, especially for sites with low levels of

security. In fact, the Internet suffers from glaring security problems that, if

ignored, could have disastrous impacts for unprepared sites. Inherent

problems with the TCP/IP protocols and services, the complexity of host and

site configuration, vulnerabilities introduced in the software development

process, and a variety of other factors all contribute to making unprepared

sites open for intruder activities.

Host security is generally hard to achieve and does not scale well in the

sense that as the number of hosts increases, the ability to ensure that security

is at a high level for each host usually decreases. Given the fact that secure

management of just one single system can be a demanding task, managing

many such systems could easily result in mistakes and omissions. A

contributing factor is that the role of system administration is often

undervalued and performed in a difficult situation. As a result of this

situation, some systems will be less secure than others, and these systems

will probably be the ones that ultimately break the security of either a site or

an entire corporate intranet. This book does not address host and site

security. There is an informational RFC document specifying a site security

handbook [2]. You may refer to this document for a comprehensive

overview about issues related to host and site security.

In days of old, brick walls were built between buildings in apartment

complexes so that if a fire broke out, it would not spread from one building to

another. Quite naturally, these walls were called firewalls.

Today, when a private network (i.e., an intranet) is connected to a public

network (i.e., the Internet), its users are usually enabled to communicate

with the outside world. At the same time, however, the outside world can

also interact with the private network and its computer systems. In this

situation, an intermediate system can be plugged between the private

network and the public network to establish a controlled link, and to erect a

security wall or perimeter. The aim of the intermediate system is to protect

the private network from attacks that may originate from the outside world,

and to provide a single choke point where security and audit can be imposed.

Note that all traffic in and out of the private network can be enforced to pass

through this single, narrow choke point. Also note that this point provides a

good place to collect information about system and network use and misuse.

As a single point of access, the intermediate system can record what occurs

between the private network and the outside world. In analogy to physical

firewalls, these intermediate systems are called firewall systems, or firewalls for

short. In other literature, Internet firewalls are sometimes also referred to as

secure Internet gateways or security gateways. In essence, a firewall system

represents a blockade between a privately owned and protected network,

50 Proxy Servers and Firewalls

which is assumed to be secure and trustworthy, and another network,

typically a public network or the Internet, which is assumed to be insecure

and untrustworthy. The purpose of the firewall is to prevent unwanted and

unauthorized communications into or out of the protected network.

There are several possibilities to more formally define the term firewall.

For example, according to [3], a firewall refers to ‘‘an internetwork gateway

that restricts data communication traffic to and from one of the connected

networks (the one said to be ‘inside’ the firewall) and thus protects that

network’s system resources against threats from the other network (the one

that is said to be ‘outside’ the firewall).’’ This definition is fairly broad and

not too precise.

In their pioneering book [4] and article [5] on firewalls and Internet

security, William Cheswick and Steven Bellovin defined a firewall (system)

as a collection of components placed between two networks that collectively

have the following three properties:

1. All traffic from inside to outside, and vice versa, must pass through

the firewall.

2. Only authorized traffic, as defined by the local security policy, will

be allowed to pass.

3. The firewall itself is immune to penetration.

Note that these properties are design goals. A failure in one aspect does

not necessarily mean that the collection is not a firewall, simply that it is not

a good one. Consequently, there are different grades of security that a

firewall can achieve. In either case, there must be a security policy for the

firewall to enforce.

If one wants to exclude the fact that a simple packet filter can be called a

firewall, one has to come up with an even more complex definition for the

term firewall. In this case, a system can be called a firewall if it is able:

w To enforce strong authentication for users who wish to establish

inbound or outbound1 connections;

1. In this book, the terms inbound and outbound are used to refer to connections or IP packets from the point of view

of the protected network, which is typically the intranet. Consequently, an outbound connection is a connection

initiated from a client on an internal machine to a server on an external machine. Note that while the connection as

a whole is outbound, it includes both outbound IP packets (those from the internal client to the external server) and

inbound IP packets (those from the external server to the internal client). Similarly, an inbound connection is

3.1 Introduction 51

w To associate data streams that are allowed to pass through the firewall

with previously authenticated and authorized users.

Again, it is a policy decision if a data stream is allowed to pass through.

Thus, this definition also leads to the necessity of an explicitly specified

firewall policy, similar to the definition of Cheswick and Bellovin.

In this book, we make a clear distinction between packet filters (i.e.,

static or dynamic packet filters) and application gateways (i.e., circuit-level

gateways or application-level gateways). It is interesting to note at this point

that the last definition of a firewall requires the use of application gateways.

Because application gateways operate at the higher layers of the OSI

reference model, they typically have access to more information than

packet-filtering devices and can therefore be programmed to operate more

intelligently and to be more secure. Some vendors, perhaps for marketing

reasons, blur the distinction between a packet filter and a firewall to the

extent that they call any packet filtering device a firewall. This practice must

be considered with care.

From a practical point of view, a firewall refers to a collection of

hardware, software, and policy that is placed between a private network,

typically a corporate intranet, and an external network, typically the

Internet. As such, the firewall implements parts of a network security policy

by enforcing that all data traffic is directed or routed to the firewall, where it

can be examined and evaluated accordingly. A firewall seeks to prevent

unwanted2 and unauthorized communications into or out of a corporate

intranet, and to allow an organization to enforce a policy on traffic flowing

between the intranet and the Internet. Typically, a firewall also requires its

users to authenticate themselves before any further action is deployed. The

last definition given above has made this requirement mandatory. In this

case, strong authentication mechanisms are used to replace password-based

or address-based authentication schemes.

The general reasoning behind firewall usage is that without a firewall, a

site is more exposed to inherently insecure host operating systems, TCP/IP

protocols and services, and probes and attacks from the Internet. In a

firewall-less environment, network security is a function of each host, and

all hosts must, in a sense, cooperate to achieve a uniformly high level of

a connection initiated from a client on an external machine to a server on an internal machine. Following this

terminology, the inbound interface for an IP packet refers to the physical network interface on a screening router

on which the packet actually appeared, while the outbound interface refers to the physical network interface on

which the packet will go out if it is not denied by the application of a specific packet-filtering rule.

2. The formalization of what ‘‘unwanted’’ communications refers to is generally a difficult task.

52 Proxy Servers and Firewalls

security. The larger the network, the less manageable it usually is to

maintain all hosts at the same level of security. As mistakes and lapses in

security become more common, break-ins can occur not only as a result of

complex attacks, but also because of simple errors in configuration files and

inadequately chosen passwords. Assuming that software is buggy, one can

conclude that most host systems have security holes that can eventually be

exploited by intruders. Firewalls are designed to run less software, and hence

may potentially have fewer bugs, vulnerabilities, and security holes than

conventional hosts. In addition, firewalls generally have advanced logging

and monitoring facilities and can be professionally administered.

With firewall usage, only a few hosts3 are exposed to attacks from the

Internet, which considerably simplifies the task of securing the intranet

environment.

Later in this chapter, we will discuss the advantages and disadvantages of

the firewall technology as a whole. Probably one of the main disadvantages

is due to the fact that a firewall cannot protect sites and corporate intranets

against insider attacks. For that matter, internal firewalls may be used to

control access between different administration and security domains, or to

protect sensitive parts of a corporate intranet. Internal firewalls are

sometimes also called intranet firewalls. From a technical point of view,

there is nothing that distinguishes an intranet firewall from an Internet

firewall except for the policy it enforces.

More recently, the notion of decentralized or personal firewalls has

become popular. A personal firewall protects a single system (e.g., a

personal computer or laptop system) from network-based attacks. As such,

personal firewalls are most often simple packet filters that can be configured

by each user individually. Similar to intranet firewalls, personal firewalls

work like ‘‘normal’’ firewalls and are not discussed separately in this

book.

There are many books available that address firewall technologies (e.g.,

[1]). As a matter of fact, most books that have addressed Internet and

intranet security in the past are actually books on firewalls [4, 6, 7], or put

the main emphasis on firewalls [8]. There are also many research papers and

reports that address specific topics related to firewalls. You may refer to the

proceedings of any conference or workshop related to network security. As

part of the Centre for Education and Research on Information Assurance and

Security (CERIAS) at Purdue University, many resources related to Internet

firewalls are available. In addition, there is the Firewalls Mailing List that is

3. Namely, the hosts that are part of the firewall.

3.1 Introduction 53

archived at several sites.4 Finally, a more or less comprehensive list of

firewall products is available at http://www.thegild.com/firewall.

3.2 Static packet filtering

Generally speaking, a router is a dedicated internetworking device that runs

a specialized operating system (e.g., Cisco IOS) to transfer packets between

two or more physically separated network segments.5 It operates at the

network layer of the OSI reference model, or the Internet layer of the

Internet model. As such, it routes IP packets by consulting tables that

indicate the best path the IP packet should take to reach its destination. More

accurately, a router receives an IP packet on one network interface and

forwards it on another network interface, possibly in the direction of the

destination IP address that is included in the IP header. If the router knows

on which interface to forward the packet, it does so. Otherwise, it is not able

to route the packet. In this case, the router usually returns the packet using

an ICMP destination unreachable message to the source IP address.

Because every IP packet contains a source and a destination IP address,

packets originating from or destined to a particular host or network

segment can be selectively filtered by a packet-filtering device. Also,

transport layer protocols such as TCP or UDP add a source and destination

port number to each segment or datagram as part of their header

information. These port numbers indicate which processes on each host

finally will receive the data encapsulated within the IP packet. This

information can also be used to selectively filter IP packets. In the late

1980s and early 1990s, several scientific papers and articles were published

that described how to use packet filters to provide access control services for

corporate intranets [9–13]. Some of these papers actually described the use

of packet filtering in early firewall configurations at AT&T [10] and Digital

Equipment Corporation (DEC) [11].6

Today, most commercial router products (e.g., Cisco routers) provide the

capability to screen IP packets and filter them in accordance with a set of

packet filter rules. Such routers are sometimes also called screening routers. In

4. E.g., http://lists.gnac.net/firewalls.

5. Despite the fact that most routers in use today are able to route multiple protocols, we mainly focus on IP

routing in this book. This is because IP is by far the most dominant network layer protocol used in the Internet.

6. The DEC firewall was designed and implemented by Marcus J. Ranum. The same firewall was also used to

secure the Web site of the White House at http://www.whitehouse.gov.

54 Proxy Servers and Firewalls

general, screening routers can provide an efficient mechanism to control the

type of network traffic that can enter or leave a particular network segment.

By controlling the type of network traffic that can enter or leave a network

segment, they can also control the types of services that may exist. Services

that eventually compromise the security of the network segment can be

effectively and efficiently restricted.

As mentioned above, IP packets are usually filtered based on information

that is found in packet headers:

w Protocol numbers;

w Source and destination IP addresses;

w Source and destination port numbers;

w TCP connection flags;

w Some other options.

Note that routers do not normally look at (TCP or UDP) port numbers

when making routing decisions, but do for filtering purposes, knowing that

the source and destination port number allow selective filtering based on the

service being used. For example, a Telnet server usually listens at port 23,

whereas an SMTP server usually listens at port 25. Selective filtering by port

numbers also takes advantage of how ports are assigned. Although a Telnet

server uses port 23 most of the time, a Telnet client port number is not fixed,

but assigned dynamically. In a UNIX or Linux environment, for example, the

client port is assigned a number greater than 1,023. Also note that screening

routers can filter on any of the TCP connection flags, but that the SYN and

ACK flags are the most frequently used flags for packet filtering (this is

because these two flags collectively determine whether a TCP connection is

established inbound or outbound). For example, all TCP segments except the

first one (i.e., the TCP connection request message) carry an ACK flag.

Unfortunately, not all screening routers are able to filter IP packets based

on all header fields mentioned earlier. For example, some screening routers

are not able to consider the source port of an IP packet. This can make

packet-filtering rules more complex and can even open up holes in the entire

packet filtering scheme. There is, for example, such a problem if a site wishes

to allow both inbound and outbound SMTP traffic for e-mail. Remember

that in the case of a client establishing an SMTP connection to a server, the

client’s source port number would be randomly chosen at or above 1,024,

and the destination port number would be 25, the port at which an SMTP

server conventionally resides. Consequently, the SMTP server would return

3.2 Static packet filtering 55

IP packets with a source port number of 25 and a destination port number

equal to the port number randomly chosen by the client. In this scenario, a

packet filter must be configured to allow destination and source port

numbers greater than 1,023 to pass through in either direction. If the router

is able to filter on the source port, it can block incoming SMTP traffic with a

destination port greater than 1,023 and a source port other than 25. Without

this ability, however, the router cannot consider the source port and must

therefore permit incoming SMTP traffic with a destination port greater than

1,023 and an arbitrary source port number. Consequently, legitimate but

malicious users could conceivably make use of this situation and run servers

at ports greater than 1,023 to circumvent the service access policy enforced

by the packet filter. For example, a Telnet server that normally listens at port

23 could be told to listen at port 7,777 instead. Users on the Internet could

then use a normal Telnet client to connect to this internal server even if the

packet filter blocks destination port 23.

In addition to the header information itemized above, some packet-

filtering devices also allow the administrator to specify packet-filtering rules

based on which network interface an IP packet actually entered and on

which interface the packet is destined to leave. Being able to specify filters on

both inbound and outbound interfaces allows an administrator significant

control over where the packet filter appears in the overall scheme and is very

convenient for useful filtering on screening routers with more than two

network interfaces. Unfortunately, for efficiency reasons, not all screening

routers can filter on both inbound and outbound interfaces, and many

routers implement packet filtering only on the outbound interface. Note that

for outgoing IP packets, the filter rules can be applied when the router

consults its routing tables to determine the interface to send the packet out

on. At this point, however, the router no longer knows on which interface

the packet entered; it has lost some important information.

Screening routers filter IP packets according to a set of packet filter rules.

More accurately, when an IP packet arrives at a network interface of a

filtering device, the packet headers are parsed. Each packet-filtering rule is

applied to the packet in the order in which the packet-filtering rules are

stored. If a rule blocks the transmission or reception of a packet, the packet is

not allowed. If a rule allows the transmission or reception of a packet, the

packet is allowed to proceed. If a packet does not satisfy any rule, it is either

allowed or blocked depending on the firewall’s ‘‘default’’ rule. In general, it

is good practice to have a rule that will block IP packets that don’t match any

other rules.

Packet filters are stateless, meaning that each IP packet must be

examined in isolation from what has happened in the past (and what will

56 Proxy Servers and Firewalls

TEAMFL
Y

Team-Fly®

happen in the future), forcing the filter to make a decision to permit or deny

each packet individually based upon the packet-filtering rules. Routers are

generally optimized to shuffle IP packets quickly. The packet filters of a

screening router take time and can defeat the overall optimization efforts. In

fact, packet filtering is a slow operation that may considerably reduce routing

throughput. Logging of IP packets also occurs without regard to past history,

and enabling logging results in another hit on performance. More often than

not, packet filtering and logging are not enabled in routers primarily to

achieve better throughput and performance. If enabled and used, packet

filtering and logging are typically installed at the interface between different

administrative domains.

3.3 Dynamic packet filtering or stateful inspection

There is an increasingly large number of application protocols that make use

of multiple connections and/or dynamically assigned port numbers. This

makes it difficult to specify and set up appropriate packet-filtering rules. For

example, FTP uses two TCP connections to transfer a file (i.e., an FTP control

connection and an FTP data connection). Imagine a situation in which an

intranet client wishes to establish an outbound FTP session to a server located

on the Internet. According to the FTP specification, the client would first

establish an outbound TCP connection from a randomly chosen port X to the

FTP control port (i.e., port 21) of the server. Among other things, this

connection would be used by the client to inform the server on which port Y

it is going to listen for the incoming FTP data connection (using the PORT

command of the FTP protocol). The server, in turn, would establish an

inbound TCP connection from its FTP data port (i.e., port 20) to port Y on

the client side. A file requested by the client would then be transferred on

this TCP connection. Now imagine what happens if Internet connectivity is

mediated through a screening router and the corresponding packet-filtering

rules are configured in a restrictive way (meaning that inbound TCP

connections are not allowed). In this situation, the second TCP connection

(i.e., the FTP data connection) would be denied and the corresponding file

transfer would not be able to take place. The underlying problem is that,

due to the stateless nature of (static) packet filtering, it is not possible to

recognize that the second TCP connection (i.e., the FTP data connection)

logically belongs to the first TCP connection (i.e., the FTP control

connection), and that the two connections collectively represent an FTP

session. Consequently, the screening router simply sees an Internet server

trying to establish an inbound TCP connection from server port 20 to client

3.3 Dynamic packet filtering or stateful inspection 57

port Y. According to its policy and configuration, it is very likely that the

screening router refuses this TCP connection. In the case of FTP, the

problem can easily be solved using passive mode FTP.7 There are, however,

other application protocols that are more complex and for which a simple

solution does not exist.

Remember that packet filters are stateless, meaning that each IP packet is

examined in isolation from what has happened in the past, forcing the

packet filter to make a decision to permit or deny each packet based upon the

packet-filtering rules. Contrary to that, the notion and technology of dynamic

packet filtering or stateful inspection was created by the developers of the

FireWall-1 at CheckPoint Software Technologies, Ltd.8 In short, stateful

inspection refers to a technology in which a packet filter maintains state

information about past IP packets to make more intelligent decisions about

the legitimity of present and future IP packets. For example, a dynamic

packet filter compares the first packet in a connection to the packet-filtering

rules, and if the packet is permitted, state information is added to an internal

database. One might think of this state information as representing an

internal virtual circuit in the stateful inspection device on top of the

transport layer association. This information permits subsequent packets in

that association to pass quickly through the stateful inspection device. If the

rules for a specific type of service require examining application data, then

part of each packet must still be examined. As an example, FireWall-1 can

react to seeing an FTP PORT command by creating a dynamic rule

permitting a connection back from the FTP server to that particular port

number on the client’s side.

Dynamic packet filtering or stateful inspection provides much better

possibilities to define packet-filtering rules and to filter IP packets (as

compared to static packet filtering). In many situations, it makes sense to use

stateful inspection to improve the capabilities (and security) of packet-

filtering devices.

3.4 Circuit-level gateways

The idea of an application gateway is fundamentally different from a

packet filter (i.e., a static or dynamic packet filter). This is equally true for

7. Using passive mode FTP, the FTP data connection is also established outbound.

8. The technology is covered by U.S. patent No. 5,606,668 that specifies a ‘‘system for securing inbound and

outbound data packet flow in a computer network.’’ The patent was granted to Checkpoint Software

Technologies, Ltd., on February 25, 1997.

58 Proxy Servers and Firewalls

circuit-level gateways. In essence, a circuit-level gateway is a proxy server

for TCP9 (i.e., it is typically located and running on the firewall of a corporate

intranet and it relays TCP connections).

More specifically, a circuit-level gateway does the following three things

when a client wants to establish a TCP connection to a server:

1. It receives the TCP connection establishment request that is sent out

by the client (because the client is configured to make use of the

circuit-level gateway).

2. It authenticates and possibly authorizes the client (or the user

behind the client).

3. It establishes a second TCP connection to the server on the client’s

behalf.

After having successfully established the second TCP connection, the

circuit-level gateway simply relays application data forth and back.10 As

such, it does not interfere with the data stream. This differentiates a circuit-

level gateway from an application-level gateway or proxy server that is able

to understand the application protocol employed by the two endpoints of the

connection. What this basically means is that the circuit-level gateway need

not understand the application protocol in use. This simplifies the

implementation and deployment of circuit-level gateways considerably.

The most important circuit-level gateway in use today is SOCKS.11 It is a

circuit-level gateway that follows a customized client approach, meaning

that it requires customizations and modifications to the client software (i.e.,

no change is usually required to user procedures). More precisely, SOCKS

requires modifications either to the client software or the TCP/IP stack to

accommodate the interception at the firewall between the client and the

server:

9. This statement is not completely true, as contemporary circuit-level gateways also are able to handle UDP-

based application protocols. This will be explained later in this chapter.

10. Note that the only difference between a circuit-level gateway and a simple port forwarding mechanism is that

with a circuit-level gateway, the client must be aware of the intermediate system, whereas in the case of a

simple port-forwarding mechanism, the client need not be aware and may be completely oblivious of the

existence of the intermediary. Also, a circuit-level gateway is generic, and any TCP connection can be handled

by the same gateway (if enabled in its configuration). Contrary to that, a port-forwarding mechanism is usually

specific to a given service, meaning that all qualifying TCP segments are forwarded to a specific port of a server.

11. http://www.socks.nec.com

3.4 Circuit-level gateways 59

w A client that has been modified to handle SOCKS interactions is

commonly referred to as a ‘‘socksified’’ client. Following this

terminology, most Web browsers (e.g., Microsoft’s Internet Explorer)

are socksified clients and issue SOCKS calls that are transparent to

their users.

w Socksified TCP/IP stacks are also available, which may obviate the

need for client software modifications.

In either case, the SOCKS server resides at the firewall and interacts

with the socksified clients or TCP/IP stacks. There are no further changes

required for the servers that may reside either on the Internet or intranet.

SOCKS and the original SOCKS protocol for communications between a

socksified client and a SOCKS server was originally proposed in [14]. The

original implementation consisted of two components: a SOCKS server or

daemon (i.e., sockd) and a SOCKS library that can be used to replace regular

Sockets calls in the client software. More specifically, the application

developer has to recompile and link the client software with a few

preprocessor directives to intercept and replace the regular TCP/IP

networking Sockets calls with their SOCKS counterparts, as summarized

in Table 3.1. This is sufficiently easy to be used on a large scale.

The design goal of SOCKS was to provide a general framework for

TCP/IP applications to securely use (i.e., traverse) a firewall. Complying

with these design goals, SOCKS is independent of any supported TCP/IP

application protocol. When a socksified intranet client requires access to a

server on the Internet, it must first open a TCP connection to the

appropriate port on the SOCKS server residing on the firewall system

(the SOCKS server conventionally listens at TCP port 1080). If this first

TCP connection is established, the client uses the SOCKS protocol to

have a second TCP connection to the server be established by the SOCKS

server.

Table 3.1 Sockets Calls and SOCKS Counterparts

SOCKS Call Socket Call

Rconnect connect

Rbind bind

Rlisten listen

Rselect select

Rgetsockname getsockname

Raccept accept

60 Proxy Servers and Firewalls

The SOCKS protocol used between the socksified client (i.e., the client

using the SOCKS library routines) and the SOCKS server basically consists of

the following two commands:

w The CONNECT command takes as arguments the IP address and port

number of the server, as well as a username. It basically requests that

the SOCKS server establishes a TCP connection to the given IP

address and port number.

w The BIND command takes as arguments the client IP address and a

username. It is used only in protocols that require the client to accept

connections back from the server. As we saw previously, FTP is an

example of such a protocol (since it requires the client to accept a

data connection from the server).

In either case, the username is a string passed from the requesting client

to the SOCKS server for the purposes of authentication, authorization, and

accounting.

After having received a request (i.e., a CONNECT or BIND command),

the SOCKS server evaluates the information provided by the client. The

evaluation is performed against a sockd configuration file that may include a

ruleset. Each rule in the set either permits or denies communications with

one or several systems. In either case, the SOCKS server sends a reply back to

the client. Among other things, the reply includes information indicating

whether the request was successful. Once the requested second connection

is established, the SOCKS server simply relays data back and forth between

the client and the server (without looking into or interpreting the data

stream).

The original SOCKS implementation was refined into a SOCKS package

and a protocol that is widely deployed and commonly referred to as SOCKS

Protocol version 4, or SOCKS V4. After the successful deployment of SOCKS

V4, the IETF chartered an Authenticated Firewall Traversal (AFT) WG to

‘‘start with the SOCKS system described’’ in [14], and to ‘‘specify a protocol

to address the issue of application-layer support for firewall traversal’’ in

1994.12 The major result of the IETF AFT WG was the specification of the

SOCKS protocol version 5 (SOCKS V5) in March 1996 [15].13 As such,

12. http://www.ietf.org/html.charters/aft-charter.html

13. At the time of this writing, an updated version of the SOCKS Protocol version 5 specification is published as an

Internet draft.

3.4 Circuit-level gateways 61

SOCKS V5 has been submitted to the Internet standards track as a proposed

standard. It is possible and very likely that the protocol will become an

Internet Standard.

As compared with SOCKS V4, SOCKS V5 provides some additional

features. These features are related to user authentication, communication

security, UDP support, and extended addressing schemes:

w In SOCKS V4, user authentication is relatively simple and straight-

forward. It basically consists of a username that is sent from the

socksified client to the SOCKS server as part of the CONNECT or

BIND method. In addition to this simple authentication scheme,

SOCKS V5 supports a handshake between the client and the SOCKS

server for authentication method negotiation. The first message is

sent by the client to the SOCKS server. It declares the authentication

methods the client is currently able to support. The second message is

sent from the SOCKS server back to the client. It selects a particular

authentication method according to the SOCKS server’s security

policy. If none of the methods declared by the client meet the

security requirements of the SOCKS server, communications are

dropped. After the authentication method has been negotiated, the

client and SOCKS server start the authentication process using the

chosen method. Two authentication methods are specified in

corresponding RFC documents: password-based authentication in

[16] and Kerberos V5 GSS-API authentication in [17]. The approach

for use of GSS-API in SOCKS V5 is to authenticate the client and

server by successfully establishing a security context. This context

can then be used to protect messages that are subsequently

exchanged. Prior to use of GSS-API primitives, the client and server

should be locally authenticated and have established default GSS-API

credentials.

w Depending on the underlying authentication methods implemented

via GSS-API, a client can negotiate with the SOCKS server about the

security of subsequent messages. In the case of Kerberos V5, either

integrity and/or confidentiality services are provided for the rest of

messages, including the client’s requests, the SOCKS server’s replies,

and all application data. Note that this feature is particularly well

suited for use by reverse proxy servers, because it supports data

encryption between clients (on the Internet) and the SOCKS server.

w SOCKS V4 is only able to handle TCP applications. Unfortunately, an

increasingly large number of TCP/IP applications are making use of

62 Proxy Servers and Firewalls

UDP (e.g., applications that make use of real-time and/or multicast

communications). Against this background, the SOCKS protocol has

been extended to additionally provide support for UDP. More

specifically, a new method, called UDP ASSOCIATE, has been

added to the SOCKS V5 protocol specification [15]. The UDP

ASSOCIATE request sent from the client to the SOCKS server is

used to establish an association within the UDP relay process to

handle UDP datagrams. According to this association, the SOCKS

server relays UDP datagrams to the requesting client. Obviously, this

approach is conceptually similar to stateful inspection or dynamic

packet filtering as discussed above. The UDP association terminates

when the TCP connection that the UDP ASSOCIATE request arrived

on terminates. As a result, the SOCKS V5 library can now be used to

socksify both TCP- and UDP-based applications.

w Finally, SOCKS V5 supports DNS names and IP version 6 addresses in

addition to normal IP version 4 addresses.

Because of their fundamental differences, the SOCKS V5 protocol

specification does not require any provision for supporting the SOCKS V4

protocol. However, it is a simple matter of implementation to enable SOCKS

V5 servers to communicate with V5 and V4 clients. In fact, most SOCKS V5

servers that are available today provide backward compatibility.

In summary, a circuit-level gateway (e.g., a SOCKS server) provides an

interesting technology and possibility to have applications and application

protocols securely traverse a firewall. A clear advantage of circuit-level

gateways is their generality, meaning that a circuit-level gateway can act as a

proxy server for any application (not just one). Circuit-level gateways are

particularly useful for applications for which application-level gateways (i.e.,

proxy servers) do not exist or are conceptually hard to design and

implement. For example, an application protocol that is hard to deal with

(using packet-filtering technologies and application-level gateways) is the

Internet Inter-ORB Protocol (IIOP) that is used in environments and

applications that conform to the Common Object Request Broker Archi-

tecture (CORBA). The difficulty stems from the fact that the IIOP makes use

of UDP and dynamically assigned port numbers. Against this background, a

group of vendors have jointly specified the use of SOCKS V5 to have IIOP

communications securely traverse a firewall.14 This is a technology that we

14. http://www.socks.nec.com/corba-firewall.pdf

3.4 Circuit-level gateways 63

will likely see deployed in the future. The generality of circuit-level

gateways, however, also comes with some disadvantages. For example, a

SOCKS server is not able to scan application data for specific commands or

executable content (e.g., Java applets or ActiveX controls). Consequently, if

a configuration must be optimized for maximum security, the use of

application-level gateways is still the preferred option.

3.5 Application-level gateways

Contrary to a circuit-level gateway, an application-level gateway serves only

one application protocol. To clarify this point, imagine the situation in which

the packet filter of a firewall blocks all inbound Telnet and FTP sessions,

unless the sessions are terminated by a bastion host (that is also part of the

firewall configuration). The bastion host, in turn, hosts an application

gateway that operates at the transport (circuit) or application layer. The

situation is slightly different in either case:

w If the application gateway operates at the transport layer, a circuit-

level gateway (e.g., a SOCKS server) must be running on the bastion

host.

w If the application gateway operates at the application layer, there are

basically two application-level gateways or proxy servers that must

be running on the bastion host (i.e., one proxy server for Telnet and

another proxy server for FTP).

In either case, a user who wishes to connect inbound to an intranet

server must have his or her Telnet or FTP client connect to the application

gateway running on the bastion host. The application gateway, in turn,

would then authenticate and authorize the user. In the positive case, it

would set up a secondary TCP connection to the intranet server and

relay application data between the two TCP connections back and forth. If

the application gateway were a circuit-level gateway, it would not look into

the application data it relays. If, however, the application gateway were an

application-level gateway, it would look into and fully control the

application data stream. In an attempt to make it hard to retrieve internal

files from systems located on the Internet, an application-level gateway

could, for example, be configured in a way that permits the use of the FTP

PUT command but denies the use of the FTP GET command. Similarly, an

application-level gateway for HTTP could be configured to screen data traffic

64 Proxy Servers and Firewalls

and filter out Java applets and ActiveX controls to protect internal hosts from

mobile code and software-driven attacks (this kind of filtering is not possible

in the case of circuit-level gateways).

From the client’s point of view, interaction with an application gateway

requires some additional steps. This is equally true for circuit-level gateways

and application-level gateways. In the case of a SOCKS server the additional

steps are hidden from the user and the corresponding client software must be

modified to be aware of the SOCKS server (i.e., it must be ‘‘socksified’’).

In general, the use of an application gateway requires some customiza-

tion and modification of either the user procedures or the client software:

w The customization and modification of the user procedures is a

simple and straightforward approach to implementing application

gateway support. Following this approach, the user first establishes a

connection to the application gateway and then requests the

establishment of a second connection to the server. An important

benefit is that the customization of the user procedures, in general,

requires no impact to client software. Given the extensive presence of

client software, this approach is attractive for implementing Internet

access (in fact, the first Internet firewalls worked that way). The main

disadvantage of this approach is that the user has to be trained for an

extra step to log on to the proxy server.

w The other approach to implementing application gateway support is

to customize and modify the client software (similar to the process of

‘‘socksifying’’ a client). The main advantage of this approach is that it

may provide transparency to users in accessing the Internet and

traversing firewall systems. The main disadvantage, however, is that

it obviously requires modifications to client software. This is not

always possible and seldom easy to accomplish.

Note that both approaches have severe disadvantages, as they require

customization and modification of either the user procedures or the client

software. Which approach is simpler depends on the application, its

availability in source code, and the organization that makes use of the

application.15

Against this background, it would be nice to have a firewall that

maintains all software modifications required for application gateway

15. For example, in large organizations, training users may be harder than modifying an application.

3.5 Application-level gateways 65

support in the firewall. In this case, neither the user procedures nor the

client software would have to be customized or modified accordingly. This

idea has led to the development of transparent firewalls.

In short, a transparent firewall is configured to listen on the network

segment of the firewall for outgoing TCP connections and to autonomously

relay these connections on the client’s behalf. Note, however, that

transparency is not necessarily provided in both directions. As a matter of

fact, inbound transparency is seldom required or used, as users must usually

authenticate themselves at a firewall system. Also note that a transparent

firewall still requires that all messages to and from the Internet be

transmitted through the firewall. However, the existence of the firewall

system can be hidden entirely from both the user and the client software.

Let us have a look at an example in which a Telnet client tries to connect

to a Telnet server making use of a proxy server. The procedure to establish a

Telnet session can be summarized as follows:

1. The Telnet client acting on behalf of the user requests a TCP

connection to the Telnet proxy server running on the firewall (at an

arbitrary but fixed port number). If a screening router is put in front

of the firewall, the connection must be authorized according to the

corresponding packet-filtering rules.

2. The Telnet proxy server, in turn, may check the source IP address of

the client machine. The connection request can be accepted or

rejected according to some authorization and access control

information.

3. In addition to the source IP address check of the client, the user may

also need to authenticate himself or herself (e.g., using a username

and password).

4. If the user is properly authenticated, the client must provide the

address or name of the Telnet server (again, this step can be and will

be made transparent to the user).

5. The Telnet proxy server then establishes a second TCP connection to

the Telnet server. Again, this connection request may have to pass

through a screening router. In this case, the packet-filtering rules of

the screening router must be configured so that they let packets

through that are originated by a firewall system.

6. After having established the second TCP connection to the Telnet

server, the Telnet proxy server relays Telnet data between the two

66 Proxy Servers and Firewalls

TEAMFL
Y

Team-Fly®

connections. In addition, the Telnet proxy server also may scan the

data traffic for specific Telnet commands and filter them out. Also,

the Telnet proxy server may log all command executions to build an

audit trail.

To properly authenticate the user, the Telnet proxy server must have

access to some authentication and authorization information. This is

generally true for any application-level gateway or proxy server that

provides support for user-level authentication (not just Telnet proxy

servers). In general, there are several user authentication and authorization

schemes that an application-level gateway or proxy server could implement

and use. In either case, the application-level gateway or proxy server must

have access to some reference information it can use to verify whether the

authentication information provided by a client (or user) is valid (e.g., a one-

way hash value of a user password or the public key certificate of a user). The

reference information can be stored either locally or remotely. If many

firewall systems and network access servers (NAS) are put in place, the

second approach is preferable since it makes it possible to aggregate security

information at a single point. Typically, a standardized protocol is used to

retrieve the reference information from a centralized security server. There

are currently two competing protocol proposals:

w Livingston Enterprises, Inc., has developed and implemented a

protocol called Remote Authentication Dial-In User Service

(RADIUS) [18].16 In short, the RADIUS protocol can be used to

carry authentication, authorization, and configuration information

between an NAS that desires to authenticate its users and a shared

authentication or security server. Livingston Enterprises, Inc., also

has made publicly and freely available corresponding RADIUS

security server software. A companion protocol that can be used to

carry accounting information between an NAS and a shared

authentication or security server is specified in [19].

w The terminal access controller access control system (TACACS) was

originally developed by BBN under ARPA funding in the early 1980s.

It was used to authenticate users to terminal access computers on the

ARPANET. Later, Cisco Systems developed, implemented, and

deployed a family of protocols that are based on TACACS [20].

16. As of this writing, the IETF has made the RADIUS protocol a draft standard.

3.5 Application-level gateways 67

While the TACACS and extended TACACS (XTACACS) protocols are

no longer in use, TACACS+ is a protocol in current use. Refer to the

Cisco manuals for the corresponding TACACS, XTACACS, and

TACACS+ commands.

Both protocols (RADIUS and the protocol family for the TACACS

derivates) are widely supported by firewall systems and network access

servers.

After having successfully authenticated and authorized the client (or

user), a proxy server sets up a secondary TCP connection to the requested

application server. From the user’s point of view, a secondary authentication

may now be required and actually take place, since the application server

may want to authenticate and authorize the client (or user) as well. This

secondary authentication step is beyond the scope of the firewall. If the user

is successfully authenticated and authorized, the application server usually

starts serving the request.

In summary, application-level gateways and proxy servers provide a

sophisticated and advanced technology to secure TCP-based applications and

application protocols for the WWW. Commercial firewalls typically come

along with proxy server support for Telnet, FTP, SMTP, HTTP, and many

other TCP-based applications and application protocols. There are advan-

tages and disadvantages that should be kept in mind when discussing the

suitability of application-level gateways and proxy servers. The advantages

are related to user authentication and authorization, application protocol

control, logging, and accounting. Contrary to that, the disadvantages are

related to the fact that a proxy server must be built specifically for

each application protocol, that application gateways (i.e., circuit-level and

application-level gateways) are notoriously bad at handling UDP-based

application protocols, and that it is necessary to know the application

protocol in order to code and set up a proxy server.

3.6 Firewall configurations

A firewall configuration is an arrangement of packet filters and application

gateways. In theory, there are many possibilities for combining these

components. In practice, however, there are only three firewall configura-

tions that are deployed: dual-homed firewall, screened host firewall, and

screened subnet firewall. These configurations are overviewed and briefly

discussed next.

68 Proxy Servers and Firewalls

3.6.1 Dual-homed firewall

In TCP/IP parlance, the term multihomed host refers to a host with multiple

network interfaces. Usually, each network interface is connected to a

separate network segment, and the multihomed host can typically forward

or route IP packets between these network segments. If, however, IP

forwarding and IP routing are disabled on the host, it provides isolation

between the network segments and may be used in a firewall configuration

accordingly. To disable IP routing is usually a relatively simple and

straightforward task. It basically means to turn off any program that

might be advertising the host as a router. To disable IP forwarding is

considerably more difficult and may require modifying the operating

system kernel. Fortunately, a number of operating system vendors provide a

simple possibility to modify the kernel and to turn off IP forwarding

accordingly.

A dual-homed host is a special case of a multihomed host, namely, one

that has exactly two network interfaces. Again, IP routing and IP forwarding

can be disabled to provide isolation between the two network segments the

dual-homed host physically interconnects.

As illustrated in Figure 3.1, a simple dual-homed firewall configuration

may consist of a dual-homed host that serves as a bastion host. IP routing

and IP forwarding are disabled so that IP packets can no longer be

routed or forwarded between the two network interfaces. Consequently,

data can only be transferred from one network interface to the other if there

is an application-level gateway (or proxy) process to do it. Note that

Figure 3.1 is simplified in the sense that the routers are not shown (they are

assumed to be part of the intranet and Internet environments). In contrast,

Figure 3.2 shows a more detailed configuration of a dual-homed firewall.

In this configuration, the bastion host’s external network interface is

Figure 3.1 A simple dual-homed firewall configuration.

3.6 Firewall configurations 69

connected to an outer network segment and the bastion host’s internal

network interface is connected to an inner network segment:17

w The outer network segment is connected with a screening router to

the Internet.18 The aim of the screening router is to ensure that any

outbound IP packet carries the IP address of the bastion host as its

source IP address, and that any inbound IP packet carries the IP

address of the bastion host as its destination IP address. The packet-

filtering rules must be configured accordingly.

w Similarly, the inner network segment hosts a screening router that is

interconnected to the intranet. The aim of this screening router is to

make sure that any outbound IP packet carries the IP address of the

bastion host as its destination IP address, and that any inbound IP

packet carries the IP address of the bastion host as its source IP

address. Again, the packet-filtering rules must be configured

accordingly.

In the firewall configuration illustrated in Figure 3.2, the outer network

segment can be used to host server systems that are intended to be publicly

accessible, such as public Web servers, DNS servers with public information,

Figure 3.2 A more realistic configuration of a dual-homed firewall.

17. In some literature, the outer network segment is labeled red and the inner network segment is labeled blue to

refer to their different sensitivity and security status.

18. Consequently, this router serves as an access router.

70 Proxy Servers and Firewalls

and access servers for other networks (e.g., modem pools for the PSTN or

ISDN). This is common practice to make server systems and corresponding

services publicly available and accessible from the Internet.

It is fairly obvious that the bastion host (and the application gateways

running on it) can be replicated an arbitrary number of times in a dual-

homed firewall configuration (e.g., to improve performance). The resulting

configuration is sometimes also called a parallel dual-homed firewall. It may

consist of several bastion hosts that are all connected to the same inner and

outer network segments.

The dual-homed firewall is a simple and highly secure firewall

configuration. The security originates from the fact that all data must pass

an application gateway to get from one network interface of the bastion host

to the other. There is no possibility of bypassing the bastion host or its

application gateways. There are, however, also several disadvantages that

are important in practice, and that should be considered with care

accordingly:

w Performance is a problem because the bastion host may become a

bottleneck (note that all data must pass the bastion host).

w The bastion host represents a single point of failure. If it crashes,

Internet connectivity is also lost.

w There are some practical problems related to TCP/IP application

protocols with no proxy support (e.g., proprietary protocols). In this

case, the dual-homed firewall configuration turns out to be rather

inflexible, and this inflexibility could turn out to be disadvantageous.

In summary, the dual-homed firewall configuration is secure but rather

inflexible. Contrary to this, the screened host and screened subnet firewall

configurations discussed next are more flexible but less secure. Conse-

quently, where throughput and flexibility are important or required, these

configurations may be the preferable choices.

3.6.2 Screened host firewall

As illustrated in Figure 3.3, a screened host firewall configuration basically

consists of a screening router that interconnects the intranet to the Internet,

and a bastion host that is logically situated on the intranet. Contrary to the

bastion host of a dual-homed firewall, the bastion host of a screened host

firewall is single-homed, meaning that it has only one network interface

3.6 Firewall configurations 71

that interconnects it with an internal network segment (i.e., a network

segment that is part of the intranet).

In a screened host firewall configuration, the screening router has to

make sure that IP packets destined for intranet systems are first sent to an

appropriate application gateway on the bastion host. If a specific TCP/IP

application protocol is assumed to be secure, the screening router also can be

configured to bypass the bastion host and to send the corresponding IP

packets directly to the destination system. For very obvious reasons, this

possibly increases flexibility but also decreases security.

Similar to the dual-homed firewall configuration, the bastion host and

its application gateways can also be replicated an arbitrary number of times

in the screened host firewall configuration. In fact, this is likely to be the

preferred configuration, as different application gateways are typically

running on different hosts (all of them representing bastion hosts for the

applications they serve as a gateway).

In summary, the screened host firewall configuration is very simple and

straightforward. As compared with the dual-homed firewall configuration, it

is more flexible but also potentially less secure. This is because the bastion

host can be bypassed (i.e., by configuring the screening router that

interconnects the intranet and the Internet accordingly). Due to the dual-

homed nature of the bastion host, this is not possible in the dual-homed

firewall configuration.

3.6.3 Screened subnet firewall

As illustrated in Figure 3.4, a screened subnet firewall configuration basically

consists of a subnet that is screened by a single-homed bastion host. The

outer screening router has to make sure that all (or at least most) data pass

Figure 3.3 A simple configuration of a screened host firewall.

72 Proxy Servers and Firewalls

an application gateway running on a bastion host. Consequently, the

bastion host screens the subnet located between the outer and the inner

screening router, and this screened subnet is sometimes also referred to as a

demilitarized zone (DMZ).19 Similar to the other configurations discussed thus

far, the bastion host can be replicated an arbitrary number of times in a

screened subnet firewall configuration. Each bastion host may provide a

specific service. In fact, the resulting separation of servers and services is an

interesting feature from a security point of view. A screened subnet firewall

configuration with multiple bastion hosts is illustrated in Figure 3.5.

Note that the two screening routers provide redundancy in that an

attacker would have to subvert both routers in order to access intranet

systems. Also note that the bastion host and the additional servers on the

DMZ could be set up to be the only systems seen from the Internet; no other

system name would be known or used in a DNS database that is made

accessible to the outside world.

A screened subnet firewall configuration can be made more flexible by

permitting certain services to pass around the bastion host and the

corresponding application gateways. As an alternative to passing services

directly between the intranet and Internet, one may also place the systems

that need these services directly on the screened subnet. In fact, this would

be the preferred configuration but is not always possible (e.g., if the

placement of the systems on the screened subnet represents an unacceptable

Figure 3.4 A screened subnet firewall configuration.

19. The DMZ is named after the strip of no-man’s-land between North and South Korea.

3.6 Firewall configurations 73

tradeoff between security and functionality). Again, we refer to the

importance of policy.

In summary, the screened subnet firewall configuration is flexible and

provides a reasonable level of security. As such, it has been the firewall

configuration of choice for many network security professionals in the past.

3.7 Network address translation

Many contemporary firewall systems provide support for what is known as

network address translation (NAT). NAT basically means that an organization

can use private IP addresses on its own network (i.e., the intranet) to

increase its address space.20 If IP packets are sent to the Internet, the private

IP addresses are dynamically converted to IP addresses that have been

officially assigned to the organization and that are routable on the Internet.

Similarly, if IP packets are received from the Internet, the officially assigned

IP addresses are converted back to the appropriate private IP addresses.

Figure 3.5 A screened subnet firewall configuration with multiple bastion hosts.

20. In IP version 4, IP addresses are 32 bits long. The resulting address space is 232. Due to the popularity and wide

deployment of Internet technologies, this address space is almost used (i.e., almost all IP addresses have been

officially assigned to organizations. Against this background, the use of private IP addresses (i.e., IP addresses

that are not routable on the Internet) provides a viable solution to overcome the lack of officially assigned IP

addresses. IP version 6 will use IP addresses that are 128 bits long. The resulting address space is 2128.

Consequently, there should be enough IP addresses for all future purposes.

74 Proxy Servers and Firewalls

Based on the private IP addresses, the IP packets are then routed on the

intranet to their appropriate destination.

In RFC 1918 and BCP 5 [21], three blocks of the IP address space are

reserved for private use. The blocks are summarized in Table 3.2.

A firewall that supports NAT works similarly to a transparent firewall. IP

packets with external destination IP addresses are routed to the network

segment that hosts the firewall configuration. The firewall, in turn, grabs the

IP packets that request a TCP connection establishment and establishes the

connection on behalf of the client. In addition, a firewall that supports NAT

also substitutes the private IP addresses (used on the intranet) with officially

assigned IP addresses (used on the Internet). Obviously, this substitution is

reversed in the opposite direction.

For example, let’s look at a company that is officially assigned an IP class

C address. For its internal use, the company uses IP addresses from the 20-bit

block itemized in Table 3.2 (i.e., 172.16.0.0 to 172.31.255.255). As

illustrated in Figure 3.6, an FTP client (on the left) with a private IP address

C wants to retrieve a file from a destination FTP server with IP address S

located somewhere on the Internet (on the right). Therefore, the client

makes use of a transparent firewall with IP address F (in the middle). The

transparent firewall, in turn, actively supports NAT.

In this situation, the following steps are performed to establish a

connection between the FTP client and the FTP server:

1. The FTP client sends out a TCP connection establishment request

message to port 21 of the destination FTP server (the notation c@C

> 21@S indicates that a message is sent out from source IP address C

and port number c to destination IP address S and port number 21).

Because the FTP server is not directly reachable by the client,

Table 3.2 Private IP Address Blocks (According to [21])

10.0.0.0–10.255.255.255 24-bit block

172.16.0.0–172.31.255.255 20-bit block

192.168.0.0–192.168.255.255 16-bit block

Figure 3.6 A firewall supporting NAT.

3.7 Network address translation 75

the message is forwarded to the network segment that hosts the

firewall and its proxy servers.

2. The FTP proxy server of the firewall grabs the initial TCP connection

establishment request message, authenticates and authorizes the

user, and eventually forwards the message to the destination FTP

server. In this case, however, the message source is initialized with

an IP address F and a randomly chosen and dynamically assigned

port number (the port number is specific for this particular FTP

session).

3. The destination FTP server receives the TCP connection establish-

ment request message and eventually establishes a TCP connection

to the FTP proxy server. Any FTP command that is sent out by the

FTP client is then automatically forwarded by the FTP proxy server

to the destination FTP server.

In the opposite direction, FTP application data are sent from the

destination FTP server to the proxy server of the firewall, and from the proxy

server to the FTP client. Note that in this direction, the source IP address is

usually not substituted by the proxy server, and that officially assigned IP

addresses may appear on the intranet accordingly (in the source IP address

fields).

Transparent application gateways provide the most recent and most

sophisticated firewall technology available today. Whenever possible, this

technology should be the preferred one to use, as it does not require user

procedures or client software to be modified. Unfortunately, most firewalls

that implement this technology must also use NAT. The IETF has debated

NAT for some time and there is considerable feeling that it is an unfortunate

technical approach that is justified only when an organization is unable to

acquire adequate IP address space. Because of its increased address space, the

use and wide deployment of IP version 6 (IPv6) will make NAT obsolete in

the future.21

3.8 Configuring the browser

First of all, it is important to note that most parts of a firewall configuration

are transparent and ‘‘invisible’’ to the Web user and his or her browser. For

21. One may also argue in the opposite direction, namely, that NAT will make IPv6 obsolete.

76 Proxy Servers and Firewalls

TEAMFL
Y

Team-Fly®

example, packet filters and screening routers operate on the IP packets

originated or received by particular hosts without having the corresponding

users be able to influence the packet filtering behavior. Similarly, the use of a

transparent firewall doesn’t have to be configured on the browser side (this is

the idea of transparency). Also, a user doesn’t have to care whether a firewall

is configured as dual-homed or screened subnet. (i.e., the browser

configuration is the same in either case).

If, however, a firewall is not transparent and uses application gateways

(i.e., a circuit-level gateway or application-level gateways), a Web user

locating behind that firewall must configure his or her browser to properly

interact with the application gateways that are running on the bastion

host(s). This is true for any traffic destined to external IP addresses. The

browser must know how to reach these addresses. For internal IP addresses,

there is usually no need to use application gateways and configure browsers

accordingly.

Using Microsoft’s Internet Explorer, for example, the user can configure

the browser using the local-area network (LAN) Settings panel as illustrated

in Figure 3.7.22 According to the screenshot of this figure, there are basically

three possibilities to configure the browser:

1. Have the browser automatically detect the settings.

2. Use an automatic configuration script.

3. Manually configure the use of one (or several) proxy server(s).

In practice, the second and third possibilities are most often used. In fact,

it is always possible to manually configure the use of one (or several) proxy

server(s). If only one proxy server is used (e.g., an HTTP proxy server), its use

can be directly configured in the lower section of the ‘‘Local Area Network

(LAN) Settings’’ panel.

If, however, a proxy server must be specified for more than one

application protocol, the ‘‘Advanced’’ button may be pressed to open the

Proxy Settings panel, as illustrated in Figure 3.8. In this panel, the use of

proxy servers can be configured for HTTP, HTTPS (named ‘‘Secure’’ in

Microsoft’s Internet Explorer), FTP, Gopher, and SOCKS. Obviously, it is

possible to specify only one proxy server and to activate the checkbox

entitled ‘‘Use the same proxy server for all protocols.’’ It is also possible to

22. The Local Area Network (LAN) Settings panel can be found in the Connections tab of the Tools > Internet

Options . . . menu.

3.8 Configuring the browser 77

specify Internet addresses that may be contacted directly (i.e., without

having to go through a proxy server). These addresses are named

‘‘Exception’’ in Microsoft’s Internet Explorer.

The manual configuration of proxy servers does not scale in intranet

environments. In this situation, it is usually more convenient to use an

automatic configuration script. Automatic configuration scripts were

originally introduced by Netscape Communications under the term proxy

auto-config (PAC) files. Consequently, a PAC file is typically named

proxy.pac. In short, a PAC file is written in a scripting language (e.g.,

JavaScript) and provides the following function:

function FindProxyForURL(url, host)

{

}

There are two arguments for a FindProxyForURL function call: url

specifies the full URL being accessed, and host specifies the hostname

extracted from the URL (this is only for convenience, since it is the same

string as between :// and the first : or / after that). The FindProxyForURL

function returns a string describing the configuration. If the return string is

Figure 3.7 Configuring Microsoft’s Internet Explorer using the Local Area Network (LAN)

Settings panel. (q 2002 Microsoft Corporation.)

78 Proxy Servers and Firewalls

null, no proxies should be used. The string can contain any number of the

following building blocks, separated by a semicolon:

w DIRECT—In this case, connections should be made directly, without

using any proxies;

w PROXY host:port—In this case, the specified proxy server should be

used;

w SOCKS host:port—In this case, the specified SOCKS server should be

used.

The use of a PAC file is very convenient to have all browsers in an

intranet environment use the same proxy settings.

As illustrated in Figure 3.9, the Opera browser can also be configured to

make use of proxy servers or PAC files using the Proxy servers panel. Similar

Figure 3.8 Configuring the use of proxy servers in Microsoft’s Internet Explorer. (q 2002

Microsoft Corporation.)

3.8 Configuring the browser 79

to Microsoft’s Internet Explorer, proxy servers can be specified for HTTP,

HTTPS, FTP, and Gopher. Unlike Microsoft’s Internet Explorer, however,

Opera supports WAIS but does not support SOCKS. This may change in the

future, because WAIS is seldom used.

3.9 Conclusions

Today, many companies and organizations want to have interconnectivity

between their internal computer systems and the global Internet. As such,

they interconnect their intranets to the Internet and try to control access

using firewalls. Depending on the basic components and configuration,

Figures 3.9 Configuring the use of proxy servers in the Proxy servers panel of Opera.

(q 2002 Opera Software.)

80 Proxy Servers and Firewalls

there are several grades of firewall protection that can be obtained. For

example, there is no security by allowing unrestricted access between a

corporate intranet and the Internet. Next, packet filters can be added to

obtain a certain level of data traffic interception, and stateful inspection

technologies may help to make more intelligent decisions whether to

forward particular IP packets. Also, the firewall can include both packet

filters and application gateways. A variety of circuit-level and application-

level gateways can be added along with different strengths of the

corresponding authentication mechanisms. Similarly, the firewall can also

reside on a secure operating system,23 thereby improving the underlying

security for the firewall code and files. Finally, the firewall can provide

support for Internet layer security protocols to build secure tunnels between

firewall-protected sites and to build virtual private networks (VPNs)

accordingly. Similarly, intrusion detection systems may be used to detect

illegitimate attempts to access the intranet environment. Last but not least, a

company can also deny any access to and from the Internet, thereby

ensuring isolation and complete security from the outside world. Although

this is seemingly a theoretical option in these euphoric times for Internet

access, it is still the only prudent approach to follow for certain highly secure

environments.

Firewall systems are a fact of life on the Internet today. If properly

implemented and deployed, they provide efficient and effective access

control services for corporate intranets. Consequently, more and more

network managers are setting up firewalls as their first line of defense against

outside attacks. Nevertheless, the firewall technology has remained an

emotional topic within the Internet community. Let’s briefly summarize the

main concerns:

w Firewall advocates consider firewalls as important additional safe-

guards, because they aggregate security functions in a single point,

simplifying installation, configuration, and management.

w Firewall detractors are usually concerned about the difficulty of using

firewalls, requiring multiple logins and other out-of-band mechan-

isms, as well as their interference with the usability and vitality of the

Internet as a whole. They claim that firewalls foster a false sense of

security, leading to lax security within the firewall perimeter.

23. In this context, a secure operating system refers to an operating system that is hardened and minimized,

meaning that anything not urgently required for the firewall’s functionality is stripped off.

3.9 Conclusions 81

At minimum, firewall advocates and detractors both agree that firewalls

are a powerful tool for network security, but that they aren’t by any means a

panacea or a magic bullet for all network and Internet-related security

problems. For example, any firewall can be circumvented by tunneling

unauthorized application protocols in authorized ones. For example, if a

firewall is configured to deny POP traffic between an intranet client and an

Internet server, it is always possible to tunnel POP traffic inside HTTP. In fact,

there are many tools that support this kind of tunneling and make it

transparent to the user. Consequently, firewalls should not be regarded as a

substitute for careful security management within a corporate intranet. Also,

a firewall is useful only if it handles all traffic to and from the Internet. This is

not always the case, since many sites permit dial-in access to modems that

are located at various points throughout the site. This is a potential back door

and could negate all the protection provided by the firewall. A much better

method for handling modems is to concentrate them into a modem pool. In

essence, a modem pool consists of several modems connected to a terminal

server. A dial-in user connects to the terminal server and then connects from

there to other internal hosts. Some terminal servers provide security features

that can restrict connections to specific hosts, or require users to authenticate

themselves. Obviously, RADIUS, TACACS, and TACACS+ can again be used

to secure communications between the terminal server and a centralized

security server. Sometimes, authorized users also wish to have a dial-out

capability. These users, however, need to recognize the vulnerabilities they

may be creating if they are careless with modem access. A dial-out capability

may easily become a dial-in capability if proper precautions are not taken. In

general, dial-in and dial-out capabilities should be considered in the design

of a firewall and incorporated into it. Forcing outside users to go through the

strong authentication of the firewall should be reflected in the firewall

policy.

In summary, firewall systems provide basic access control services for

corporate intranets. A pair of historical analogies can help us better

understand the role of firewall technology for the current Internet [22]:

w Our Stone-Age predecessors lived in caves, each inhabited by a

family whose members knew each other quite well. They could use

this knowledge to identify and authenticate one another. Someone

wanting to enter the cave would have to be introduced by a family

member trusted by the others. History of human society has shown

that this security model is too simple to work on a large scale. As

families grew in size and started to interact with one another, it was

no longer possible for all family members to know all other members

82 Proxy Servers and Firewalls

of the community, or even to reliably remember all persons who had

ever been introduced to them.

w In the Middle Ages, our predecessors lived in castles and villages

surrounded by town walls. The inhabitants were acquainted with

each other, but they did not trust each other. Instead, identification

and authentication, as well as authorization and access control, were

centralized at a front gate. Anyone who wanted to enter the castle or

village had to pass the front gate and was thoroughly checked there.

Those who managed to pass the gate were implicitly trusted by all

inhabitants. But human history has shown that this security model

doesn’t work either. For one thing, town walls don’t protect against

malicious insider attacks; for another, town walls and front gates

don’t scale easily (since they are so massive). Many remnants of

medieval town walls bear witness to this lack of scalability.

Using the above analogies, the Internet has just entered the Middle Ages.

The simple security model of the Stone Age still works for single hosts and

local area networks. But it no longer works for wide area networks in general

and the Internet in particular. As a first—and let’s hope intermediate—step,

firewalls have been erected at the Internet gateways. Because they are

capable of selectively dropping IP packets, firewalls also restrict the

connectivity of the Internet as a whole. The Internet’s firewalls are thus

comparable to the town walls and front gates of the Middle Ages. Screening

routers correspond to general-purpose gates, while application gateways

correspond to more specialized gates. Today, we don’t see town walls

anymore. Instead, countries issue passports to their citizens to use worldwide

for identification and authentication. It is possible and very likely that the

Internet will experience a similar development and that trusted parties will

issue locally or globally accepted certificates for Internet principals. These

certificates could then be used to provide complementary security services,

such as authentication, data confidentiality and integrity, and nonrepudia-

tion services. The tool to achieve this goal is cryptography. The following

chapters elaborate on cryptography and its use providing security services on

the WWW.

References

[1] Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech

House, 2002.

3.9 Conclusions 83

[2] Fraser, B., ‘‘Site Security Handbook,’’ Request for Comments 2196, September

1997.

[3] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

[4] Cheswick, W. R., and S. M. Bellovin, Firewalls and Internet Security: Repelling the

Wily Hacker, Reading, MA: Addison-Wesley, 1994.

[5] Cheswick, W. R., and S. M. Bellovin, ‘‘Network Firewalls,’’ IEEE Communica-

tions Magazine, September 1994, pp. 50–57.

[6] Siyan, K., and C. Hare, Internet Firewalls and Network Security, Indianapolis, IN:

New Riders Publishing, 1995.

[7] Zwicky, E. D., et al., Building Internet Firewalls, 2nd Edition, Sebastopol, CA:

O’Reilly & Associates, 2000.

[8] Garfinkel, S., and G. Spafford, Practical UNIX and Internet Security, 2nd ed.,

Sebastopol, CA: O’Reilly & Associates, 1996.

[9] Mogul, J. C., ‘‘Simple and Flexible Datagram Access Controls for UNIX-Based

Gateways,’’ Proceedings of the USENIX Summer Conference, 1989, pp. 203–221.

[10] Cheswick, B., ‘‘The Design of a Secure Internet Gateway,’’ Proceedings of the

USENIX Summer Conference, 1990, pp. 233–237.

[11] Ranum, M. J., ‘‘A Network Firewall,’’ Proceedings of World Conference on System

Administration Security, July 1992, pp. 153–163.

[12] Chapman, D. B., ‘‘Network (In)Security Through IP Packet Filtering,’’

Proceedings of USENIX UNIX Security Symposium III, September 1992,

pp. 63–76.

[13] Avolio, F., and M. J. Ranum, ‘‘A Network Perimeter with Secure Internet

Access,’’ Proceedings of the Internet Society Symposium on Network and Distributed

System Security, February 1994, pp. 109–119.

[14] Koblas, D., and M. R. Koblas, ‘‘SOCKS,’’ Proceedings of USENIX UNIX Security III

Symposium, September 1992, pp. 77–82.

[15] Leech, M., et al., ‘‘SOCKS Protocol Version 5,’’ Request for Comments 1928,

March 1996.

[16] Leech, M., ‘‘Username/Password Authentication for SOCKS V5,’’ Request for

Comments 1929, March 1996.

[17] McMahon, P., ‘‘GSS-API Authentication Method for SOCKS Version 5,’’

Request for Comments 1961, June 1996.

[18] Rigney, C., et al., ‘‘Remote Authentication Dial-In User Service (RADIUS),’’

Request for Comments 2138, April 1997.

[19] Rigney, C., ‘‘RADIUS Accounting,’’ Request for Comments 2139, April

1997.

84 Proxy Servers and Firewalls

[20] Finseth, C., ‘‘An Access Control Protocol, Sometimes Called TACACS,’’

Request for Comments 1492, July 1993.

[21] Rekhter, Y., et al., ‘‘Address Allocation for Private Internets,’’ Request for

Comments 1918 (BCP 5), February 1996.

[22] Oppliger, R., ‘‘Internet Kiosk: Internet Security Enters the Middle Ages,’’ IEEE

Computer, Vol. 28, October 1995, pp. 100–101.

3.9 Conclusions 85

TEAMFL
Y

Team-Fly®

Cryptographic Techniques

In this chapter, we introduce and briefly overview some

cryptographic techniques that are used in the rest of the book.

More specifically, we introduce the topic in Section 4.1; address

cryptographic hash functions, secret key cryptography, and

public key cryptography in Sections 4.2, 4.3, and 4.4, res-

pectively; address digital envelopes in Section 4.5; and elaborate

on some techniques to protect private keys and generate

pseudorandom bit sequences in Sections 4.6 and 4.7. Finally, we

discuss some legal issues that surround the use of cryptography

in Section 4.8, and introduce a notation that can be used to

describe cryptographic protocols and applications in Section 4.9.

Note that this chapter is far too short to provide a

comprehensive overview about all cryptographic techniques

that are relevant for WWW security. For this purpose, you must

read one (or several) of the many books on cryptography that

are available today. Among these books, I particularly

recommend [1–7].

4.1 Introduction

According to [4], the term cryptography refers to the study of

mathematical techniques related to various aspects of informa-

tion security such as confidentiality, data integrity, entity

authentication, and data origin authentication. It is commonly

agreed that cryptography is a major enabling technology for

network security, and that cryptographic algorithms and

protocols are essential building blocks:

87

C H A P T E R

4
Contents

4.1 Introduction1

4.2 Cryptographic hash functions5

4.3 Secret key cryptography6

4.4 Public key cryptography10

4.5 Digital envelopes16

4.6 Protection of cryptographic
keys18

4.7 Generation of pseudorandom
bit sequences20

4.8 Legal Issues20

4.9 Notation25

References
113

w A cryptographic algorithm is an algorithm defined by a sequence of

steps precisely specifying the actions required to calculate a specific

function of the input data. Most of the time, cryptographic algorithms

are used to achieve specific security objectives.

w A cryptographic protocol is a distributed algorithm defined by a

sequence of steps precisely specifying the actions required of two or

more entities.

Cryptographic algorithms and protocols are being studied in both theory

and practice. The aim is to design and come up with algorithms and protocols

that are both secure and practical. Note, however, that there are at least two

basic approaches to discussing the security of cryptographic algorithms and

protocols:

w Computational security measures the computational effort required to

break a specific cryptographic algorithm or protocol. An algorithm or

protocol is said to be computationally secure if the best method for

breaking it requires at least n operations, where n is some specified,

usually very large, number. The problem is that no known practical

algorithm or protocol can be proven to be secure under this

definition. In practice, an algorithm or protocol is called computation-

ally secure if the best known method of breaking it requires an

unreasonably large amount of computational resources (e.g., time or

memory). Another approach is to provide evidence of computational

security by reducing the security of an algorithm or protocol to some

well-studied problem that is thought to be difficult. For example, it

may be possible to prove that an algorithm or protocol is secure if a

given integer cannot be factored or a discrete logarithm cannot be

computed. Algorithms and protocols of this type are sometimes called

provably secure, but it must be understood that this approach only

provides a proof of security relative to the difficulty of solving

another problem, not an absolute proof of security.

w Unconditional security measures the security of a cryptographic

algorithm or protocol when there is no upper bound placed on the

amount of computational resources an adversary has at hand.

Consequently, an algorithm or protocol is called unconditionally

secure if it cannot be broken, even with infinite time and memory.

The computational security of a cryptographic algorithm or protocol can

be studied from the point of view of computational complexity, whereas

88 Cryptographic Techniques

the unconditional security cannot be studied from this point of view because

computational resources are allowed to be infinite. The appropriate frame-

work in which unconditional security must be studied is probability theory,

and the application thereof in communication or information theory [8, 9].

Unconditional security is preferable from a security point of view,

because it protects against an infinitely powerful adversary. Unfortunately,

unconditional security is generally hard and expensive to achieve in many

cases, and sometimes impossible. For example, theory shows that uncondi-

tionally secure encryption systems use very long keys, making them

unsuitable for most practical applications. Similarly, there is no such thing

as an unconditionally secure public key cryptosystem. The best we can

achieve is provable security, in the sense that the problem of breaking the

public key cryptosystem is arguably at least as difficult as solving a complex

mathematical problem. Consequently, one is satisfied with computational

security, given some reasonable assumptions about the computational

power of a potential adversary. But keep in mind that the security that a

computationally secure cryptographic algorithm or protocol may provide is,

for the most part, based on the perceived difficulty of a mathematical

problem, such as the factorization problem or the discrete logarithm problem

in the case of public key cryptography. Confidence in the security of such

systems may be high because the problems are public and many minds have

attempted to attack them. However, the vulnerability remains that a new

insight or computing technology may defeat this type of cryptography. There

are at least two recent developments that provide some evidence for this

intrinsic vulnerability:

w In 1994, Peter W. Shor proposed randomized polynomial-time

algorithms for computing discrete logarithms and factoring integers

on a quantum computer, a computational device based on quantum

mechanical principles [10, 11]. Note that it is not known how to

build a quantum computer of a useful size; it is not even known to be

possible at all.

w Also in 1994, Len M. Adleman1 demonstrated the feasibility of using

tools from molecular biology to solve an instance of the directed

Hamiltonian path problem, which is known to be hard2 [12].

The problem instance was encoded in molecules of deoxyribonucleic

acid (DNA), and the steps of the computation were performed with

1. Len M. Adleman is a coinventor of the Rivest, Shamir, and Adleman (RSA) cryptosystem.

2. According to theoretical computer science, the directed Hamiltonian path problem is NP-complete.

4.1 Introduction 89

standard protocols and enzymes. Adleman notes that while the

currently available fastest supercomputers can execute approxi-

mately 1012 operations per second, it is plausible for DNA computers

to execute 1020 or even more operations per second. Moreover, a

DNA computer would be far more energy efficient than existing

supercomputers. Similar to the quantum computer, it is not clear at

present whether it is feasible to actually build a DNA computer with

such performance characteristics. Further information on DNA

computing can be found in the relevant literature (e.g., [13]).

Should either quantum computers or DNA computers ever become

practical, they would have a tremendous impact on modern cryptography.

In fact, many cryptographic algorithms and protocols that are computation-

ally secure would be rendered worthless. This is particularly true for

algorithms and protocols that make use of public key cryptography.

Cryptographic algorithms and protocols are used to establish secured

channels (both in terms of authenticity and integrity, as well as

confidentiality). Note the subtle difference between a secure channel and a

secured channel. Certain channels are assumed to be secure, including

trusted couriers and personal contacts between communicating parties,

whereas other channels may be secured by physical or cryptographic

techniques. Physical security may be established through physical means,

such as dedicated communication links with corresponding access controls

put in place, or the use of quantum cryptography. Contrary to conventional

cryptography, the security of quantum cryptography does not rely upon any

complexity-theoretic or probability-theoretic assumptions, but is based on

the Heisenberg uncertainty principle of quantum physics [14]. As such,

quantum cryptography is immune to advances in computing power and

human cleverness. In the future, quantum cryptography may provide a

physical alternative to unconditionally secure cryptographic algorithms and

protocols. In the meantime, however, conventional and computationally

secure cryptographic algorithms and protocols are much easier to use and

deploy. Consequently, we are not going to delve into the details of quantum

cryptography in this book. You may refer to any book mentioned above to

get information about quantum cryptography.

4.2 Cryptographic hash functions

According to [4], a hash function is a function h that has, as a minimum, the

following two properties:

90 Cryptographic Techniques

1. h maps an input x of arbitrary finite bit-length, to an output hðxÞ of

fixed bit-length (compression);

2. Given h and x, hðxÞ is easy to compute (ease of computation).

In addition, hash functions that are relevant for cryptographic

applications (i.e., cryptographic hash functions) may fulfill one or several

of the following requirements:

w A hash function is preimage resistant (or one-way) if for essentially all

prespecified outputs, it is computationally infeasible to find any input

that hashes to that output, that is, to find any preimage x0 such that

hðx0Þ ¼ y when given any y for which a corresponding input is not

known.

w A hash function is second-preimage resistant (or weak collision resistant) if

it is computationally infeasible to find any second input that has the

same output as any specified input, that is, given x, to find a second

preimage x0 6¼x such that hðxÞ ¼ hðx0Þ.

w A hash function is collision resistant (or strong collision resistant) if it is

computationally infeasible to find any distinct inputs x, x0 that have

the same output, that is, such that hðxÞ ¼ hðx0Þ.

In the literature, the term one-way hash function (OWHF) or weak one-way

hash function is often used to refer to a hash function that is both preimage

resistant and second-preimage resistant, whereas the term collision resistant

hash function (CRHF) or strong one-way hash function is often used to refer to a

hash function that is collision resistant. Furthermore, the term cryptographic

hash function is used to refer to either of them (i.e., OWHF or CRHF).

Mainly because of their efficiency, cryptographic hash functions are of

central importance for cryptographic algorithms and protocols. For

example, cryptographic hash functions can be used to compute and verify

digests for arbitrary messages. In this context, these functions may also be

called message digest algorithms, and in this book we use both terms

synonymously and interchangeably. Also, keyed cryptographic hash

functions can be used to compute and verify message authentication codes

(MACs). Almost all cryptographic security protocols make use of MACs in

one way or another.

All definitions given above are not precise in a mathematically strong

sense, because they do not resolve what the terms easy and computationally

infeasible actually mean. Nevertheless, we want to use these definitions in

this book. It is important to note that the existence of OWHF (or even

4.2 Cryptographic hash functions 91

CRHF) is still an unproven assumption and that, until today, no function

has been shown to be preimage resistant (i.e., one-way) in a mathematically

pure sense. Obviously, a sufficiently large domain prohibiting an exhaustive

search is a necessary but not sufficient condition for a function to be

preimage resistant.

Most cryptographic hash functions in use today work on similar

principles. They have a basic compression function that is iteratively applied

on subsequent blocks of data (until the result of the last compression step is

taken as output value). Examples of cryptographic hash functions include

MD2 [15], MD4 [16], MD5 [17], and the Secure Hash Algorithm 1 (SHA-1)

[18]. MD2, MD4, and MD5 produce 128-bit hash values, whereas SHA-1

produces 160-bit hash values. RIPEMD is another example of an iterative

cryptographic hash function. It was developed as part of a European research

project and is basically a variation of MD4. RIPEMD-160 is a strengthened

version of RIPEMD producing another 160-bit hash value [19]. As of this

writing, MD5 and SHA-1 are by far the most widely used and deployed

cryptographic hash functions. Due to some recent results in the cryptanalysis

of MD5, SHA-1 is the preferred choice.

4.3 Secret key cryptography

Secret key cryptography refers to traditional cryptography. In this kind of

cryptography, a secret key is established and shared between communicat-

ing peers, and the key is used to encrypt and decrypt messages on either

side. Because of its symmetry, secret key cryptography is often referred to as

symmetric cryptography.

The use of a secret key cryptosystem is overviewed in Figure 4.1. We

assume that A on the left side wants to send a confidential message to B on

the right side. A therefore shares a secret key K with B. This key may be

preconfigured manually or distributed by a key distribution center (KDC).

Note that during its initial distribution, K must be secured in terms of

confidentiality, integrity, and authenticity. This is usually done by having

the KDC encrypt K with secret keys that it shares with A and B, respectively.

With regard to the use of cryptographic algorithms and protocols, persons are

usually represented by cryptographic implementations (e.g., crypto boxes

that implement an encryption algorithm). In Figure 4.1, the cryptographic

implementations are represented with black rectangles that are located in

front of A or B, respectively. A (or the crypto box representing A) encrypts a

plaintext message P by applying an encryption function E and the key K,

and sends the resulting ciphertext C ¼ EKðPÞ to B. On the other side, B

92 Cryptographic Techniques

(or the crypto box representing B) decrypts C by applying the decryption

function D and the key K. B therefore computes DKðCÞ ¼ DKðEKðPÞÞ ¼ P, and

recovers the plaintext P accordingly.

Secret key cryptography has been in use for many years in a variety of

forms. Two basic categories of secret key cryptosystems are block ciphers and

stream ciphers. As their names suggest, block ciphers operate on blocks of

data (e.g., 64 bits), whereas stream ciphers operate on data one bit or byte at

a time.

Examples of secret key cryptosystems that are in widespread use are

itemized in Table 4.1 and overviewed next.3 Again, you may refer to [4] for a

comprehensive description of the cryptosystems and the corresponding

encryption and decryption algorithms.

4.3.1 DES

The Data Encryption Standard (DES) is still the most well-known and widely

deployed secret key cryptosystem in use today. It was originally designed by

a group of researchers at IBM and published as Federal Information

Processing Standard (FIPS) 46 in 1977 [20]. As such, it has been used for the

encryption of unclassified information by the U.S. National Institute of

Standards and Technology (NIST) for almost a quarter of a century.

Figure 4.1 The use of a secret key cryptosystem.

3. Note that the cryptosystems are randomly chosen and that there are many others one may discuss.

4.3 Secret key cryptography 93

DES operates as a block cipher with 64-bit blocks, 16 rounds, and a

variable key length up to 56 bits. In electronic code book (ECB) mode, DES

encrypts data in discrete blocks of 64 bits. To improve its cryptographical

strength, DES is often used in cipher block chaining (CBC) mode. In this

mode, the encryption of each block depends on the contents of the previous

one, preventing an interloper from tampering with the message by

rearranging the encrypted blocks. Furthermore, there are two modes that

can be used to turn DES into a stream cipher: cipher feedback (CFB) mode

and output feedback (OFB) mode.

DES’s 56-bit effective key length was sufficiently secure during its first

two decades of operation, but it is far too short today. In fact, it has become

feasible to perform an exhaustive key search in a reasonable amount of

time.4

4.3.2 Triple-DES

One way to improve the cryptographical strength of a secret key

cryptosystem with limited key length (e.g., DES) is to apply the algorithm

multiple times. Applying the algorithm twice does not improve the situation,

because of the existence of a specific cryptanalytical attack.5 Consequently,

at least three applications are necessary for a security improvement, and the

threefold application of DES is called Triple-DES (3DES). It can be used with

two or three different keys, and the resulting secret key cryptosystems are

Table 4.1 Secret Key Cryptosystems

Algorithm Name Main Mode Effective Key Length

DES Block cipher 56 bits

Triple-DES (3DES) Block cipher 112 or 168 bits

IDEA Block cipher 128 bits

SAFER Block cipher 64 or 128 bits

Blowfish Block cipher Variable from 1 up to 448 bits

CAST-128 Block cipher 128 bits

RC2, RC5, and RC6 Block cipher Variable from 1 up to 2,048 bits

RC4 Stream cipher Variable from 1 up to 2,048 bits

4. http : ==www:eff:org=descracker

5. The attack is called meet-in-the-middle attack. It requires that a known plaintext is encrypted with all possible

keys, and that a corresponding ciphertext is decrypted with all possible keys. If an encryption result matches a

decryption result in the middle, a key candidate is found (that’s why the attack is called meet-in-the-middle

attack). The key candidate must be verified using another plaintext-ciphertext pair.

94 Cryptographic Techniques

usually called two-key 3DES or three-key 3DES, respectively. Many

contemporary applications use 3DES as a replacement for DES. Note,

however, that the use of 3DES is not very efficient (in fact, it is

approximately three times slower than DES), and that there are many

real-time applications that require faster encryption algorithms.

4.3.3 IDEA

The International Data Encryption Algorithm (IDEA) was developed by

Xuejia Lai and James Massey in the early 1990s at the ETH Zurich,

Switzerland [21]. IDEA is a 64-bit block cipher that uses a 128-bit key. The

algorithm is patented and must be licensed for commercial use.

4.3.4 SAFER

After having developed IDEA, James Massey proposed SAFER K-64 and

SAFER K-128. As their names suggest, SAFER K-64 uses a 64-bit key [22],

whereas SAFER K-128 uses a proprietary key schedule algorithm that is able

to accommodate 128-bit keys. Furthermore, SAFER K-64 uses 6 rounds,

whereas SAFER K-128 recommends 10 rounds (12 maximum).

4.3.5 Blowfish

The Blowfish algorithm was developed by Bruce Schneier [23]. It is a DES-

like encryption algorithm that can be used as a block cipher with 64-bit

blocks, 16 rounds, and variable key lengths up to 448 bits.

4.3.6 CAST-128

The term CAST refers to a design procedure for a family of DES-like

encryption algorithms with variable key size and numbers of rounds. In RFC

2144, a 128-bit CAST encryption algorithm is specified [24]. This algorithm

is called CAST-128 and is used and widely deployed for Internet

applications.

4.3.7 RC2, RC4, RC5, and RC6

RC2, RC4, RC5, and RC6 are secret key cryptosystems with variable key

lengths that were designed by Ronald L. Rivest for RSA Security, Inc.:

4.3 Secret key cryptography 95

w RC2 is a block cipher (block size is 64 bits), designed as a replacement

for DES.

w RC4 is a stream cipher.

w RC5 is a block cipher that is configurable with regard to word length

and number of rounds (in addition to the ley length).

w RC6 is a recent proposal to improve RC5.

The RC2 and RC4 algorithms were originally protected by trade secrets,

but were disassembled, reverse-engineered, and anonymously posted to a

Usenet newsgroup in 1996 and 1994, respectively.

4.3.8 AES

In November 2001, the U.S. NIST officially released FIPS 197 that specifies an

Advanced Encryption Standard (AES) to replace DES [25]. The AES emerged

from a proposal called Rijndael that originated from Belgium. You may refer

to http://www.esat.kuleuven.ac.be/~rijmen/rijndael for more infor-

mation about the Rijndael algorithm. In addition, there is an official AES

home page6 hosted by the U.S. NIST.

4.4 Public key cryptography

The idea of using one-way functions, which can only be inverted if a certain

secret (a so-called trapdoor) is known, has led to the invention of public key

cryptography or asymmetric cryptography [26].7 Today, public key cryptography

is a battlefield for mathematicians and theoretical computer scientists. We

are not going to delve into the mathematical details. Instead, we address

public key cryptography from a practical point of view. From this point of

view, a public key cryptosystem is simply a cryptosystem in which a user

has a pair of mathematically related keys:

w A public key that can be published without doing any harm to the

system’s overall security;

6. http://csrc.nist.gov/encryption/aes

7. In spite of the fact that [26] is commonly used to refer to the invention of public key cryptography, similar

ideas were pursued by Ralph C. Merkle.

96 Cryptographic Techniques

TEAMFL
Y

Team-Fly®

w A private key that is assumed to never leave the possession of its

owner.

For both the public and private keys, it must be computationally

infeasible for an outsider to derive one from the other.

The use of a public key cryptosystem is overviewed in Figure 4.2. Again,

A and B represent users, and the dark rectangles located in front of them

represent the implementations of the cryptographic algorithms and protocols

in use. A and B each has a key pair ðkA; k�1
A Þ and ðkB; k�1

B Þ. The private keys k�1
A

and k�1
B must not be revealed to anyone, whereas the public keys kA and kB

must be publicly available in certified form. This basically means that they

are digitally signed by a certification authority as further addressed below.

If A wants to securely transfer a plaintext message P to B, she does the

following things:

1. She gets the public key of B (i.e., kB) from an authentic source;

2. She encrypts P with kB;

3. She sends the resulting ciphertext C ¼ EkB
ðPÞ to B. (The term EkB

ðPÞ

is abbreviated with EBðPÞ in Figure 4.2).

On the other side, B uses his private key k�1
B to successfully decrypt

P ¼ Dk�1
B
ðCÞ ¼ Dk�1

B
ðEkB

ðPÞÞ.

Figure 4.2 The use of a public key cryptosystem.

4.4 Public key cryptography 97

A public key cryptosystem can be used not only to protect the

confidentiality of a message, but also to protect its authenticity and integrity.

If A wants to protect the authenticity and integrity of a message M, she

creates a digital signature S ¼ DkA
ðMÞ (the term DkA

ðMÞ is abbreviated with

DAðPÞ in Figure 4.2) for M and send it together with the message to B. Using

the public key of A (i.e., kA), B can now verify the digital signature.

Consequently, the value V in Figure 4.2 represents a boolean value (i.e.,

either the digital signature is correctly verified or it is not).

Digital signatures provide an electronic analog of handwritten signatures

for electronic documents, and—similar to handwritten signatures—digital

signatures must not be forgeable, recipients must be able to verify them, and

the signers must not be able to repudiate them later. However, a major

difference between a handwritten signature and a digital signature is that the

digital signature cannot be constant, but must be a function of the document

on which it appears. If this were not the case, a digital signature, because of

its electronic nature, could be copied and attached to arbitrary documents.

Arbitrated digital signature schemes are based on secret key crypto-

graphy. In such a scheme, a trusted third party (TTP) validates the signature

and forwards it on the signer’s behalf. Obviously, this does not scale and

requires a TTP that may become a bottleneck. Consequently, digital

signature schemes should come along without TTPs taking an active role.

They usually require the use of public key cryptography: Signed messages

are sent directly from signers to recipients. In essence, a digital signature

scheme consists of the following:

w A key-generation algorithm that randomly selects a public key pair;

w A signature algorithm that takes as input a message and a private key,

and that generates as output a digital signature for the message;

w A signature verification algorithm that takes as input a digital signature

and a public key, and that generates as output a message and an infor-

mation bit according to whether the signature is valid for the message.

A comprehensive overview and discussion of public-key-based digital

signature schemes are given in [27]. According to the OSI security

architecture, a digital signature refers to data appended to, or a cryptographic

transformation of, a data unit that allows a recipient of the data unit to prove

the source and integrity of the data unit and protect against forgery (e.g., by

the recipient). Consequently, there are two classes of digital signatures:

1. A digital signature giving message recovery refers to the situation in

which a cryptographic transformation is applied to a data unit.

98 Cryptographic Techniques

In this case, the data is automatically recovered if the recipient

verifies the signature.

2. A digital signature with appendix refers to the situation in which some

cryptographically protected data is appended to the data unit. In

fact, the data represents a digital signature and can be decoupled

from the data unit that it signs.

The structure of a digital signature giving message recovery (a) and a

digital signature with appendix (b) are illustrated in Figure 4.3. A dark

rectangle represents an encrypted message part, whereas a white rectangle

represents a message part that is not encrypted.

In the case of digital signatures with appendix, the bandwidth limitation

of public key cryptography is unimportant because of the use of one-way

hash functions as auxiliaries. A can use her private key k�1
A to compute a

digital signature S ¼ DAðMÞ or S ¼ DAðhðMÞÞ for message M. In the second

case, h refers to a cryptographic hash function that is applied to M before

generating the digital signature. In summary, A does the following things

when she computes and sends to B a digital signature with appendix for

message M:

1. She uses a cryptographic hash function h to compute hðMÞ.

2. She encrypts hðMÞ with her private key k�1
A . The result represents

the digital signature that is appended to the message.

3. She transmits M and the digital signature to B.

On the other side, B does the following things to verify the signature:

1. He hashes the message M with the same cryptographic hash

function h.

2. He decrypts the digital signature with A’s public key (i.e., kA).

3. He verifies whether the two values match or not (the signature is

verified only if the values match).

Figure 4.3 The structure of a digital signature giving (a) message recovery and

(b) a digital signature with appendix.

4.4 Public key cryptography 99

The use of public key cryptography considerably simplifies the problem

of key distribution. Note that in Figure 4.2, instead of providing A and B with

a unique session key that is protected in terms of confidentiality, integrity,

and authenticity, the trusted third party, which is now called a certification

authority (CA), has only to provide A and B with the public key of the

communicating peer. This key is public in nature and need not be protected

in terms of confidentiality. Nevertheless, the use of public key cryptography

requires an authentication framework that binds public keys to user

identities. As further addressed in Chapter 7, a public key certificate is a

certified proof of such binding vouched for by a TTP acting as a CA.

According to Webster’s Dictionary, the term certificate refers to a document

stating the truth. In the digital world we live in today, the term is mostly

used to refer to a collection of information to which a digital signature has

been affixed by some authority who is recognized and trusted by some

community of certificate users. According to this definition, there exist

various types of certificates that potentially may serve many purposes. In

either case, a certificate is a form of credentials. Examples of credentials used

in daily life are the driver’s license, Social Security card, and birth certificate.

Each of these credentials has some information on it identifying its owner

and some authorization stating that someone else has confirmed the

information.

A public key (or digital) certificate consists of three main elements:

1. A public key;

2. Certificate information that refers to the certificate owner’s identity,

such as his or her name;

3. One or more digital signatures.

The aim of the digital signature(s) on the certificate is to state that the

other certificate information has been attested to by some other person or

entity.

A digital certificate can be one of a number of different formats,

including, for example, PGP and ITU-T X.509. Again, this point is further

addressed in Chapter 7. In the following sections, we overview some public

key cryptosystems that are in widespread use today.

4.4.1 RSA

The most widely used public key cryptosystem is RSA, invented by Ronald L.

Rivest, Adi Shamir, and Len M. Adleman at MIT in 1977 [28]. The RSA

100 Cryptographic Techniques

cryptosystem gets its security from the difficulty and intractability of the

integer factorization problem. What this means is that it is fairly simple to

multiply two large prime numbers, but difficult to compute the prime factors

of a large number. One of the nice properties of RSA is that the same

operation (i.e., exponentiation modulo a large number) can be used for both

message encryption and decryption, as well as digital signature generation

and verification. This is not the case for most other public key cryptosystems.

Mathematically spoken, the RSA public key cryptosystem requires two

distinct large primes (p and q). Denote n ¼ pq and fðnÞ ¼ ðp � 1Þðq � 1Þ,

where f refers to Euler’s totient function. Each user chooses a large number

d > 1 such that gcdðd;fðnÞÞ ¼ 1 and computes the number e ð1 < e < fðnÞÞ

that satisfies the congruence ed � 1 ðmod fðnÞÞ. The numbers n and e

constitute the public key, whereas the remaining items p, q, fðnÞ, and d form

the private information. More commonly, d is referred to as the private key.

Against this background, message encryption and decryption work as

follows:

w To encrypt, one raises the plaintext block P to the power of e and

reduces modulo n: C ¼ Pe ðmod nÞ;

w To decrypt, one raises the ciphertext block C to the power of d and

reduces modulo n: P ¼ Cd ðmod nÞ.

Digital signature generation and verification uses the same algorithms

with different keys (the private key is used to digitally sign a message,

whereas the public key is used to verify the signature).

The RSA public key cryptosystem was protected by U.S. Patent No.

4,405,829 ‘‘Cryptographic Communications System and Method,’’ issued

and granted to MIT on September 20, 1983. The patent expired on

September 20, 2000. Outside the U.S., the RSA public key cryptosystem

has never been protected by a patent.

4.4.2 Diffie-Hellman

In 1977, Whitfield Diffie and Martin Hellman proposed a key agreement

protocol that allows participants to agree on a key over an insecure public

channel [26]. The protocol gets its security from the difficulty and

intractability of the discrete logarithm problem in a finite group, such as

the multiplicative group of a finite field. What this basically means is that, in

general, the inverse operation of the exponentiation function is the

logarithm function. There are efficient algorithms for computing logarithms

in many groups; however, one does not know a polynomial-time algorithm

4.4 Public key cryptography 101

for computing discrete logarithms in cyclic groups. For example, for a very

large prime number p and two smaller numbers y and a, it is computationally

intractable to find an x that satisfies the equation y ¼ ax mod p.

Mathematically speaking, the Diffie-Hellman key agreement protocol

requires a finite cyclic group G of order jGj and generator a. To agree on a

session key, A and B secretly choose elements xA and xB in G. These elements

represent A and B’s private keys. A and B then compute their public keys

yA ¼ axA and yB ¼ axB , and exchange these public keys over an unsecured

public channel. Finally, A and B compute KAB ¼ y
xA

B ¼ axBxA and

KBA ¼ y
xB

A ¼ axAxB . Note that KAB ¼ KBA, so this value can actually be used

as a shared secret or session key to secure communications between A and B.

Also note that an eavesdropper seeing either or both of the public keys

cannot derive either private key nor the shared secret, because of the

difficulty of the discrete logarithm problem.

The Diffie-Hellman key agreement protocol was protected by U.S. Patent

No. 4,200,770, ‘‘Cryptographic Apparatus and Method,’’ issued and granted

to Stanford University on April 29, 1980. The patent expired in 1997. Similar

to the RSA public key cryptosystem, the Diffie-Hellman key agreement

protocol has never been protected by a patent outside the United States.

4.4.3 ElGamal

In the early 1980s, Taher ElGamal adapted the Diffie-Hellman key

agreement protocol and came up with a public key cryptosystem that can

be used for data encryption and digital signatures [29, 30]. Contrary to RSA,

however, the ElGamal algorithms for data encryption and decryption are

different from the the ElGamal algorithms for digital signature generation

and verification. This is no serious drawback but is also not advantageous

from an implementor’s point of view.

Unlike many other public key cryptosystems, the ElGamal public key

cryptosystem has not been patented in the U.S.

4.4.4 DSS

In the early 1990s, the U.S. NIST published the Digital Signature Standard

(DSS) as a viable alternative to RSA signature schemes. The DSS refers to an

optimized modification of the ElGamal cryptosystem that can be used only

for digital signature generation and verification [31].

4.4.5 ECC

More recently, the use of elliptic curve cryptography (ECC) has attracted a

lot of interest. ECC-based public key cryptosystems obtain their security

102 Cryptographic Techniques

from the difficulty and intractability of the elliptic curve discrete logarithm

problem (that uses groups of points on elliptic curves). As illustrated in

Table 4.2, a number of different types of cryptography have been defined

over elliptic curves. The resulting ECC-based public key cryptosystems seem

to be advantageous with regard to their security properties (meaning that

smaller keys are required for a similar level of security). As such, they are

particularly useful in situations where small keys are required (e.g., mobile

and wireless applications).

Unlike RSA, the general category of ECC is not patented. Individual

companies, however, have filed patents for specific efficiency or security

algorithms that are related to ECC. Most importantly, the Certicom

Corporation8 holds several patents in this field.

4.5 Digital envelopes

There are advantages and disadvantages related to both secret and public key

cryptography. For example, the use of secret key cryptography is efficient

but does not scale well beyond a certain number of participants.

Furthermore, secret key cryptography does not provide the possibility to

digitally sign data. Conversely, public key cryptography solves the scalability

and digital signature problems but is highly inefficient in terms of

computational resources.

In an attempt to combine the advantages of secret and public key

cryptography, a hybrid scheme may be used. In short, a hybrid scheme

combines secret and public key cryptography to produce a scheme that is as

efficient and effective as possible. For example, the digital envelope is a hybrid

scheme that is heavily used in many applications. The aim of a digital

envelope is similar to a letter envelope: It must protect the confidentiality

of a message. As such, the digital envelope provides a digital analog for

Table 4.2 ECC-Based Public Key Cryptosystems

Acronym Text

ECDH Elliptic curve Diffie-Hellman key agreement

ECDSA Elliptic curve digital signature algorithm

ECES Elliptic curve encryption scheme

ECMQV Elliptic curve MQV key agreement

ECNRA Elliptic curve Nyberg-Rueppel signature scheme with appendix

8. http://www.certicom.com

4.5 Digital envelopes 103

the letter envelope in the physical world (hopefully with better security

properties).

When A wants to send a confidential message M to B, she can generate a

digital envelope for M and send the envelope to B. On the sender’s side the

procedure is as follows:9

1. A retrieves B’s public key kB from a directory service or from a local

repository.

2. A randomly generates a transaction key K from a secret key

cryptosystem.

3. A encrypts M with K (the result is fMgK).

4. A encrypts K with kB (the result is fKgkB).

5. A concatenates fMgK with fKgkB, and sends the result to B.

Upon receipt of fMgK and fKgkB, B uses his private key k�1
B to decrypt the

message. The two-step procedure is as follows:

1. B decrypts fKgkB with k�1
B (the result is K).

2. B decrypts fMgK with K (the result is M).

Obviously, an alternative procedure would be to directly encrypt the

message M with B’s public key kB, and to send the result, fMgkB, to B.

However, the use of a digital envelope has at least two advantages compared

with this simple scheme:

w First, the use of a digital envelope is more efficient. Remember from

our previous discussions that public key cryptography is computa-

tionally expensive compared with secret key cryptography. Conse-

quently, encrypting a message with a public key requires more

computational resources than encrypting a message with a secret

key. The longer the message, the more efficient and advantageous

the use of secret key cryptography.

w Second, the use of a digital envelope is more appropriate for messages

sent to multiple recipients. If A wanted to send a message M to

9. The notation used is introduced in Section 4.9.

104 Cryptographic Techniques

recipients B1;B2; . . . ;Bn (n > 1), she would have to build fMgkBi
for

each recipient Bi ði ¼ 1; . . . ; nÞ individually. The resulting message

would grow in proportion to the number of recipients. For example,

if A wanted to send a 1-MB file to n ¼ 4 recipients (B1; . . . ;B4), the

resulting messages would fill 4 MB of data. Contrary to that, the use

of digital envelopes considerably reduces this amount of data. If the

public keys of the n ¼ 4 recipients are 1,024 bits long each, the

digitally enveloped message would sum up to 1 MB þ 4 · 1 KB =

1.004 MB of data.

Consequently, the use of digital envelopes is almost always advanta-

geous, as compared with public key cryptography used for bulk data

encryption.

4.6 Protection of cryptographic keys

Any system that uses cryptographic techniques has to deal with keys that

must be protected against passive and active attacks. This is equally true for

session keys that originate from a secret key cryptosystem and private keys

that originate from a public key cryptosystem. If such a key is locally stored on

a computer system, it is vulnerable to access and misuse by unauthorized

users. In fact, file permissions alone are often not adequate for protecting

cryptographic keys on most computer systems, though they are part of an

overall solution. Cryptographic keys protected only by file permissions are

generally vulnerable to intruders and the accidental missetting of permis-

sions.

Encryption is an accepted solution for protecting cryptographic keys

stored on removable media, such as floppy disks. The use of encryption,

however, also requires access to some other key that must be protected

from disclosure. Consequently, the use of encryption to protect crypto-

graphic keys leads to a recursion, and this recursion can only be stopped

by making some key derivable from otherwise available information.

The recommended advice is to make this information a passphrase selected

by the user. A passphrase is different from a password in that no restrictions

are usually placed on its length or value. This accomplishes two useful

features:

1. The domain from which the passphrase is chosen is limited only by

the input device of the user.

4.6 Protection of cryptographic keys 105

2. The user can select an easily remembered value, such as a favorite

quotation or other concatenation of easily remembered words.

The key that is used to actually encrypt and protect another key (e.g.,

the user’s private key) is derived from the user’s passphrase. A possibility

to compute a random-looking hash value from a user’s passphrase is to

use an OWHF. Whenever the private key is needed (e.g., to decrypt an

encryption key or to digitally sign a message), the user enters his or her

passphrase, the cryptographic key is derived, the private key is decrypted,

and then the private key is available for use. Typically, the file that is used

to store the encrypted private key also includes a one-way hash value of

the private key. Checking the hash value after decrypting the file contents

provides a fast mechanism for determining if the correct passphrase was

entered by the user. Without the hash value check, the only mechanism

by which the private key’s value can be checked would be to use it and

see if it works. This may be computationally expensive.

If a user’s private key is stored in encrypted form, the user must enter

his or her passphrase to decrypt and locally use the key. From a security

point of view, this is the optimal behavior. However, users quickly become

irritated if they must send or receive more than a few messages during a

session (because they have to reenter their passphrase multiple times).

Consequently, many products include a feature that allows the pass-

phrases to be kept in memory and users to choose usability over security.

This badly hurts the overall security of the products (because the

passphrases are vulnerable in memory and can be attacked accordingly).

In summary, the combination of file permissions and passphrase-

derived encryption provides some nondisclosure protection for crypto-

graphic keys (if the users choose appropriate passphrases). In addition,

there are some cryptographic techniques (e.g., cryptographic camouflage

as further addressed in [32]) that can be used to provide better protection

for locally stored private keys. Even better protection is provided if the file

containing the encrypted cryptographic key is stored on a removable

media, such as a floppy disk. Best possible protection is available if the key

is stored in some tamper-resistant hardware device, such as a smart card, a

PCMCI card, or a USB token. Recent research and development activities

also focus on the use of alternative hardware devices, such as cellular

phones, personal digital assistants (e.g., Palm Pilots), or any other device

that implements the Wireless Application Protocol (WAP). There is arguably

no single best hardware token to store cryptographic keys. Any device the

user usually carries around with him or her is a potentially good hardware

token and may serve this purpose (perhaps after some modification).

106 Cryptographic Techniques

TEAMFL
Y

Team-Fly®

4.7 Generation of pseudorandom bit sequences

Many cryptographic systems use sequences of random (or pseudorandomly

generated) bits. For example, if an e-mail message is digitally enveloped, an

encryption key—sometimes also called session key—must be randomly

selected by the sender of the message. This key is used to encrypt and

digitally envelope the message. Also, random or pseudorandom numbers

are required to initially generate public key pairs.

Randomness is a statistical property of a sequence of values. In the case

of bit values, the requirement is for an adversary to be unable to predict the

next bit in a sequence even when all previously generated bits are known.

The problem is that if it is possible to predict some of the sequence of bits

used, it may be possible to reduce the size of the domain from which the key

being generated is selected. If the domain is significantly reduced, an

exhaustive key search may become feasible.

Locating a source of unpredictable bits presents a unique challenge on

most computer systems (because a hardware source of unpredictable bits is

usually not available). Consequently, a whole branch of cryptographic

research is dedicated to the problem of how to generate pseudorandom bit

sequences using only software. In fact, there are various approaches to

address this problem. For example, one software-based approach is to use a

cryptographically strong OWHF to hash a large amount of information with

limited unpredictability available. Such information can, for example, be

derived from the current status of the computer system (using corresponding

system commands) or the mouse movements and position of keyboard

strokes. Because a OWHF generates a fixed size quantity, the process is

iterated as many times as are necessary to get the required number of bits.

In 1994, an informational RFC was published that addresses the problem

of how to randomly or pseudorandomly generate bit sequences [33]. It

recommends the use of hardware and shows that the existing hardware on

many systems can be used for this purpose. Also, it provides suggestions for

ameliorating the problem when a hardware solution is not available.

4.8 Legal issues

There are some legal issues to keep in mind when using cryptographic

techniques. In particular, there are patent claims; regulations for the import,

export, and use of cryptography; and legislation for electronic and digital

signatures. Some legal issues are briefly mentioned next. You may refer to

[34, 35] for more information about the legal implications of using

cryptography.

4.8 Legal issues 107

4.8.1 Patent claims

Patents applied to computer programs are usually called software patents. In

the U.S. computer industry, software patents are a subject of ongoing

controversy. Some of the earliest and most important software patents

granted by the U.S. Patent and Trademark Office were in the field of

cryptography. These software patents go back to the late 1960s and early

1970s. Although computer algorithms were widely thought to be

unpatentable at that time, cryptography patents were granted because

they were written as patents on encryption devices built in hardware.

Indeed, most early encryption devices were built in hardware because

general-purpose computers simply could not execute the encryption

algorithms fast enough in software. For example, IBM obtained several

patents in the early 1970s on its Lucifer algorithm, which went on to

become the DES. Today, many secret key cryptosystems also are covered by

patent claims. For example, DES is patented but royalty-free, whereas IDEA

is patented and royalty-free for noncommercial use, but requires a license

for commercial use. Later in the 1970s, many pioneers in the field of public

key cryptography filed and obtained patents for their work. Consequently,

the field of public key cryptography is largely governed by a couple of

software patents. Some of them have already expired (e.g., the Diffie-

Hellman and RSA patents) or are about to expire soon.

Outside the United States, the patent situation is quite different. For

example, patent law in Europe and Japan differs from U.S. patent law in one

very important aspect. In the United States, an inventor has a grace period of

one year between the first public disclosure of an invention and the last day

on which a patent application can be filed. In Europe and Japan, there is no

grace period. Any public disclosure instantly forfeits all patent rights.

Because the inventions contained in the original patents related to public

key cryptography were publicly disclosed before patent applications were

filed, these algorithms were never patentable in Europe and Japan.10

Under U.S. patent law, patent infringement is not a criminal offense, and

the penalties and damages are the jurisdiction of the civil courts. It is the

responsibility of the user of a particular cryptographic algorithm or technique

to make sure that correct licenses have been obtained from the correspond-

ing patent holders. If these licenses do not exist, the patent holders can sue

the user in court. Therefore, most products that make use of cryptographic

algorithms or techniques include the licenses required to use them.

10. As a consequence of the lack of patent claims, public key cryptography has been more widely adapted in

European countries and in Japan.

108 Cryptographic Techniques

Finally, it is important to note that the IETF has a special requirement

with regard to the use of patented technology in Internet standards track

protocols. In fact, before approving a protocol specification for the Internet

standards track, a written statement from a patent holder is required stating

that a license will be made available to applicants under reasonable terms

and conditions.

4.8.2 Regulations

There are different regulations for the use and export of cryptographic

techniques.11 For example, France had some regulations for the use of

cryptographic techniques and some countries from the Far East still have

them as well. On the other side, there are some countries that require that

specific data be encrypted to certain standards. This is particularly true for

medical data.

With regard to the export of cryptographic techniques, the situation is

even more complicated. For example, the United States regulates the export

of cryptographic systems and technical data regarding them. More

specifically, U.S. export controls on commercial encryption products are

administered by the Bureau of Export Administration (BXA) in the

Department of Commerce (DoC). Regulations governing exports of encryp-

tion are found in the Export Administration Regulations (EAR). Conse-

quently, if a U.S. company wants to sell cryptographic systems and technical

data overseas, it must have export approval by the BXA according to the EAR.

On January 14, 2000, the BXA published a regulation implementing the

White House’s announcement of a new framework for U.S. export controls

on encryption items (the announcement was made on September 16, 1999).

The policy is in response to the changing global market, advances in

technology, and the need to give U.S. industry better access to these markets,

while continuing to provide essential protections for national security.12

The regulation enlarges the use of license exceptions, implements the

changes agreed to at the Wassenaar Arrangement13 on export controls for

conventional arms and dual-use goods and technologies in December 1998,

11. There are typically no regulations for the import of cryptographic techniques.

12. http://www.bxa.doc.gov/Encryption

13. The Wassenaar Arrangement is a treaty originally negotiated in July 1996 and signed by 31 countries to restrict

the export of dual-use goods and technologies to specific countries considered to be dangerous. The countries

that have signed the Wassenaar Arrangement include the former Coordinating Committee for Multilateral

Export Controls (COCOM) member and cooperating countries, as well as some new countries such as Russia.

The COCOM was an international munitions control organization that also restricted the export of

cryptography as a dual-use technology. It was formally dissolved in March 1994. More recently,

4.8 Legal issues 109

and eliminates the deemed export rule for encryption technology. In

addition, new license exception provisions are created for certain types of

encryption, such as source code and toolkits. There are some countries

exempted from the regulation (i.e., Cuba, Iran, Iraq, Libya, North Korea,

Sudan, and Syria). In these countries, some or all technologies and products

mentioned in this book will not be available. In all other countries, most

technologies and products mentioned in this book will be available.

4.8.3 Electronic and digital signature legislation

In the recent past, many countries have enacted electronic or digital

signature laws in an effort to facilitate electronic commerce (e-commerce)

and e-commerce applications:

w In the European Union (EU), the European Parliament and the

Council of the European Union adopted Directive 1999/93/EC on a

community framework for electronic signatures14 on December 13,

1999. The purpose of the directive was (and still is) to facilitate the

use of electronic signatures and to contribute to their legal

recognition in Europe. According to the directive, EU ‘‘member

states shall bring into force the laws, regulations and administrative

provisions necessary to comply with this Directive before 19 July

2001.’’ As of this writing, several EU member states already have an

electronic signature law or are about to draft and enact one.

w In the United States, former president Bill Clinton signed the

Electronic Signatures in Global and National Commerce Act (E-

SIGN) on June 30, 2000. The E-SIGN Act implements a national

uniform standard for all electronic transactions that encourages the use

of electronic signatures, electronic contracts, and electronic records by

providing legal certainty for these instruments when signatories

comply with its standards. The E-SIGN Act became effective on

October 1, 2000.

the Wassenaar Arrangement was updated. The participating countries of the Wassenaar Arrangement are

Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Czech Republic, Denmark, Finland, France,

Germany, Greece, Hungary, Ireland, Italy, Japan, Luxembourg, The Netherlands, New Zealand, Norway,

Poland, Portugal, The Republic of Korea, Romania, Russian Federation, Slovak Republic, Spain, Sweden,

Switzerland, Turkey, Ukraine, United Kingdom, and the United States. Further information on the Wassenaar

Arrangement can be found on the Web by following the URL http://www.wassenaar.org.

14. http://europa.eu.int/comm/internal_market/en/media/sign

110 Cryptographic Techniques

In addition, many countries outside the EU and the United States have

enacted electronic or digital signature laws or are about to work out the legal

details thereof (e.g., some countries in Asia).

Unfortunately, the formal specification of requirements for both

certification service providers and cryptographic devices that can be used

to securely store private keys and generate digital signatures (e.g., smart

cards or USB tokens) is very difficult and challenging. For example, how do

you measure and quantify the security and trustworthiness of a commercial

certification service provider? What criteria are relevant? How do you take

into account organizational criteria? Similarly, how do you measure and

quantify the security of a cryptographic device that is used to store private

keys and/or digitally sign documents? Does the device, for example, really

sign what the user sees on the screen (i.e., ‘‘what you sign is what you see’’)

or can it be spoofed with wrong input data? Keep in mind that the

cryptographic device runs in a potentially hostile environment and that any

kind of spoofing attack is possible there.

The requirements for certification service providers and cryptographic

devices tend to be either too strong or too weak:

w If the requirements are too strong, their implementation may become

too expensive and prohibitive in practice. This is basically what

happened in Germany when the first version of a signature law was

put in place a couple of years ago.

w If the requirements are too weak, their implementation—or the

security thereof—may be challenged in court. Consequently, the

legal value of the resulting electronic or digital signatures may not be

very high. Against this background, it will be very interesting to see

the E-SIGN Act be applied in practice.

Against this background, it will be interesting to see the requirements of

future electronic and digital signature legislations. In either case, there is still

a long way to go until we use electronic or digital signatures the same way

we use handwritten signatures in daily life. In the meantime, however,

digital signatures may serve as evidence gathering tools.

4.9 Notation

As mentioned before, a cryptographic protocol is a distributed algorithm

defined by a sequence of steps precisely specifying the actions required of two

4.9 Notation 111

or more entities to achieve a specific security objective. The following notation

is used in this book to describe cryptographic protocols:

w Capital letters, such as A, B, C, . . ., are used to refer to principals. Note

that many publications on cryptography and cryptographic protocols

use names, such as Alice and Bob, to refer to principals. This is a

convenient way of making things unambiguous with relatively few

words, because the pronoun ‘‘she’’ can be used for Alice, and ‘‘he’’

can be used for Bob. However, the advantages and disadvantages of

this naming scheme are controversial, and we are not going to use it

in this book.

w K is used to refer to a secret key. A secret key is basically a key of a

secret key cryptosystem.

w The pair ðk; k�1Þ is used to refer to a public key pair, whereas k is used

to refer to the public key and k�1 is used to refer to the corresponding

private key.

In either case, key subscripts are used to indicate principals. In general,

capital letter subscripts are used for long-term keys, and small letter

subscripts are used for short-term keys. For example, KA is used to refer

to A’s long-term secret key, whereas kb is used to refer to B’s short-term

public key.

w The term fMgK is used to refer to a message M that is encrypted with

the secret key K. Since the same key K is used for decryption,

ffMgKgK equals M. If K is used to compute and verify a message

authentication code (MAC) for message M, then the term hMiK is

used to refer to the MAC.

w Similarly, the term fMgk is used to refer to a message M that is

encrypted with the public key k. The message can only be decrypted

with the corresponding private key k�1. If a public key cryptosystem

is used to digitally sign messages, the private key is used for signing,

and the corresponding public key is used for verifying signatures.

Referring to the terminology of the OSI security architecture, the

term fMgk�1 is used to refer to a digital signature giving message

recovery, and hMik�1 is used to refer to a digital signature with

appendix. Note that in the second case, hMik�1 in fact abbreviates

M; fhðMÞgk�1, with h being an OWHF or CRHF.

112 Cryptographic Techniques

Finally, the term X p Yq is used to refer to a public key certificate that

has been issued by X for Y’s public key. It implies that X has verified Y’s

identity and certified the binding of Y’s long-term public key kY with its

identity.

References

[1] Koblitz, N.I., A Course in Number Theory and Cryptography, 2nd ed., New York:

Springer-Verlag, 1994.

[2] Stinson, D., Cryptography Theory and Practice, Boca Raton, FL: CRC Press, 1995.

[3] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd

ed., New York: John Wiley & Sons, 1996.

[4] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied

Cryptography, Boca Raton, FL: CRC Press, 1996.

[5] Mollin, R.A., An Introduction to Cryptography, Boca Raton, FL: CRC Press, 2000.

[6] Buchmann, J., Introduction to Cryptography, New York: Springer, 2000.

[7] Goldreich, O., Foundations of Cryptography: Basic Tools, Cambridge, UK:

Cambridge University Press, 2001.

[8] Shannon, C. E., ‘‘A Mathematical Theory of Communication,’’ Bell

System Technical Journal, Vol. 27, No. 3/4, July/October 1948, pp. 379–423/

623–656.

[9] Shannon, C. E., ‘‘Communication Theory of Secrecy Systems,’’ Bell System

Technical Journal, Vol. 28, No. 4, October 1949, pp. 656–715.

[10] Shor, P. W., ‘‘Algorithms for Quantum Computation: Discrete Logarithms and

Factoring,’’ Proc. IEEE 35th Annual Symposium Foundations Computer Science,

1994, pp. 124–134.

[11] Shor, P. W., ‘‘Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer,’’ SIAM Journal of Computing,

October 1997, pp. 1484–1509.

[12] Adleman, L. M., ‘‘Molecular Computation of Solutions to Combinatorial

Problems,’’ Science, November 1994, pp. 1021–1024.

[13] P�aun, G., G. Rozenberg, and A. Salomaa, DNA Computing: New Computing

Paradigms, New York: Springer-Verlag, 1998.

[14] Bennett, C. H., G. Brassard, and A. K. Ekert, ‘‘Quantum Cryptography,’’

Scientific American, October 1992, pp. 50–57.

[15] Kaliski, B., ‘‘The MD2 Message-Digest Algorithm,’’ Request for Comments

1319, April 1992.

4.9 Notation 113

[16] Rivest, R. L., ‘‘The MD4 Message-Digest Algorithm,’’ Request for Comments

1320, April 1992.

[17] Rivest, R. L., and S. Dusse, ‘‘The MD5 Message-Digest Algorithm,’’ Request for

Comments 1321, April 1992.

[18] U.S. National Institute of Standards and Technology (NIST), ‘‘Secure Hash

Standard (SHS),’’ FIPS PUB 180-1, April 1995.

[19] Dobbertin, H., A. Bosselaers, and B. Preneel, ‘‘RIPEMD-160: A Strengthened

Version of RIPEMD,’’ Proceedings of Fast Software Encryption Workshop, 1996,

pp. 71–82.

[20] U.S. National Institute of Standards and Technology (NIST), ‘‘Data Encryption

Standard,’’ FIPS PUB 46, January 1977.

[21] Lai, X., On the Design and Security of Block Ciphers, Ph.D. thesis, ETH No. 9752,

ETH Zürich, Switzerland, 1992.

[22] Massey, J. L., ‘‘SAFER K-64: A Byte-Oriented Block Ciphering Algorithm,’’

Proceedings of Fast Software Encryption Workshop, 1994, pp. 1–17.

[23] Schneier, B., ‘‘Description of a New Variable-Length Key, 64-Bit Block

Cipher (Blowfish),’’ Proceedings of Fast Software Encryption Workshop, 1994,

pp. 191–204.

[24] Adams, C., ‘‘The CAST-128 Encryption Algorithm,’’ Request for Comments

2144, May 1997.

[25] U.S. National Institute of Standards and Technology (NIST), ‘‘Advanced

Encryption Standard (AES),’’ FIPS PUB 197, November 2001.

[26] Diffie, W., and M. E. Hellman, ‘‘New Directions in Cryptography,’’ IEEE

Transactions on Information Theory, IT-22(6), 1976, pp. 644–654.

[27] Pfitzmann, B., Digital Signature Schemes, Berlin, Germany: Springer-Verlag,

1996.

[28] Rivest, R. L., A. Shamir, and L. Adleman, ‘‘A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,’’ Communications of the ACM, 21(2),

February 1978, pp. 120–126.

[29] ElGamal, T., ‘‘Cryptography and Logarithms over Finite Fields,’’ Ph.D. thesis,

Stanford University, 1984.

[30] ElGamal, T., ‘‘A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithm,’’ IEEE Transactions on Information Theory, IT-31(4), 1985,

pp. 469–472.

[31] U.S. National Institute of Standards and Technology (NIST), Digital Signature

Standard (DSS), FIPS PUB 186, May 1994.

[32] Hoover, D. N., and B. N. Kausik, ‘‘Software Smart Cards via Cryptographic

Camouflage,’’ Proceedings of IEEE Symposium on Security and Privacy, 1999.

114 Cryptographic Techniques

[33] Eastlake, D., S. Crocker, and J. Schiller, ‘‘Randomness Recommendations for

Security,’’ Request for Comments 1750, December 1994.

[34] Baker, S. A., and P. R. Hurst, The Limits of Trust: Cryptography, Governments, and

Electronic Commerce, Cambridge, MA: Kluwer Law International, 1998.

[35] Diffie, W., and S. Landau, Privacy on the Line: The Politics of Wiretapping and

Encryption, Cambridge, MA: MIT Press, 1998.

4.9 Notation 115

TEAMFL
Y

Team-Fly®

Internet Security Protocols

In this chapter, we overview and briefly discuss some

cryptographic security protocols that have been proposed,

specified, and partly implemented for the Internet and that can

also be used on the WWW. In particular, we introduce the topic

in Section 5.1, address security protocols for the network access,

Internet, transport, and application layers in Sections 5.2 to 5.5,

and draw some conclusions in Section 5.6.

5.1 Introduction

There is a strong consensus that providing security services in

computer networks and distributed systems requires the use of

cryptographic techniques, and that these techniques must be

integrated into security protocols accordingly. This is also true

for the Internet and the WWW. Consequently, many crypto-

graphic security protocols have been proposed, specified,

implemented, and deployed on the Internet and the WWW in

the past. Some of these protocols have been successful, whereas

others have not found their market shares and have dis-

appeared accordingly.

In the case of TCP/IP-based networks, cryptographic

security protocols can operate at any layer of the corresponding

communications protocol suite. Consequently, there are pro-

posals for providing security services at the network access,

Internet, transport, and application layers. There are even some

proposals to provide security services above the application

layer. All of these possibilities are overviewed and briefly

117

C H A P T E R

5
Contents

5.1 Introduction1

5.2 Network access layer
security protocols2

5.3 Internet layer security
protocols8

5.4 Transport layer security
protocols24

5.5 Application layer security
protocols25

5.6 Conclusions28

References

discussed in the sequel. Keep in mind, however, that the treatment in this

book is rather short, and that a more detailed overview and discussion can be

found in Part III of [1]. Also, the chapter provides a long list of references for

further study.

5.2 Network access layer security protocols

In the Internet model and protocol stack, the network access layer handles

issues related to local area networking and dial-up connectivity. Protocols

that operate at this layer include Ethernet (IEEE 802.3), token bus (IEEE

802.4), token ring (IEEE 802.5), FDDI, and protocols for serial line dial-up

networking, such as the Serial Line IP Protocol (SLIP) and—most

importantly—the Point-to-Point Protocol (PPP) [2]. SLIP and PPP both

define encapsulation mechanisms for transporting multiprotocol data

across layer two point-to-point links (e.g., serial lines). In short, an

encapsulation mechanism specifies how protocol data units (PDUs) from

one protocol are encapsulated in PDUs of another protocol, and how these

PDUs are then transported through the network. For all practical purposes,

Ethernet is the most widely used and deployed technology for local area

networking, and PPP is the most widely deployed protocol for dial-up

networking.

In the late 1980s, the IEEE started to address issues related to LAN and

metropolitan ½AQ1�area network (MAN) security. In particular, the IEEE 802.10

working group (WG) was formed in May 1988 to address LAN and MAN

security. Meanwhile, the IEEE 802.10 WG specified several standards for

interoperable LAN/MAN security (SILS) that are compatible with existing IEEE

802 and OSI specifications [3, 4]. Unfortunately, SILS has not been

commercially successful, and there are hardly any products that implement

the standards. Consequently, we do not address the work of the IEEE

802.10 WG. Instead, we elaborate on recent work that has been done to

secure dial-up connections using PPP with security enhancements.

First of all, we consider the problem that a European conference

attendee traveling in the United States faces if he or she wants to connect his

or her laptop computer to his or her corporate intranet in Europe (e.g., to

read e-mail messages or download a presentation). There are at least two

solutions for this problem:

1. A very obvious solution for the problem is to use the public-

switched telephone network (PSTN) or the integrated services

digital network (ISDN) to connect to a remote access server (RAS)

118 Internet Security Protocols

located on the corporate intranet (e.g., a modem pool), to set up

a PPP connection, and to use this connection to log in to the

destination server located on the corporate intranet. The major

advantages of this solution are availability and simplicity, whereas

the major disadvantages are related to security and costs:

w The problem related to security is that the data traffic between

the laptop computer and the intranet server goes unencrypted

and unprotected.

w The problem related to costs is that the user is charged a long-

distance call (or the company is charged the fees in the case of a

modem pool with free charging or dial-back facilities).

2. A more sophisticated solution for the problem is to use a virtual

private network (VPN) channel or tunnel. As we discuss later, there

are many technologies that refer to and make use of the term VPN.

Some of these technologies use cryptography to encapsulate data

traffic and to establish and maintain cryptographically protected

tunnels between the communicating peers. There are basically two

approaches to create such a tunnel:

w One possibility is to encapsulate a given network layer protocol,

such as IP, IPX, or AppleTalk, inside PPP, to cryptographically

protect the PPP frames and to encapsulate the data inside a

tunneling protocol, which is typically IP (but could also be ATM

or Frame Relay). This approach is commonly referred to as layer 2

tunneling because the passenger of the tunneling scheme is

actually a layer 2 protocol (i.e., PPP).

w Another possibility is to encapsulate a given network layer

protocol, such as IP, IPX, or AppleTalk, directly into a tunneling

protocol, such as 3Com’s Virtual Tunneling Protocol (VTP), and

to encapsulate the data inside another network layer protocol

(e.g., IP) that is used to tunnel the data through the Internet. This

approach is commonly referred to as layer 3 tunneling because the

passenger of the tunneling scheme is actually a layer 3 protocol

(i.e., VTP).

Figure 5.1 illustrates and puts into perspective the layer 2 tunneling and

layer 3 tunneling encapsulation schemes (for IPX encapsulated inside IP). In

either case, the protected part of the data is IPX. The major advantages of

VPN tunnels are related to the fact that data traffic is encapsulated in IP

5.2 Network access layer security protocols 119

packets that can be routed over the Internet and that cryptographic

techniques can then be used to protect the IP packets.

The first solution is simple and straightforward; it does not deserve

further explanation. In the following sections we elaborate on the second

solution. In particular, we briefly overview and partly discuss the layer 2

forwarding/tunneling protocols that have been proposed and deployed in

the past (layer 3 tunneling protocols are addressed in the following section).

Today, there is a strong consensus that the Layer 2 Tunneling Protocol

(L2TP) is the preferred choice for applications that want to use layer 2

tunneling. Following the terminolgy introduced by the L2TP specifications,

the following terms and acronyms are used (instead of POP and RAS1):

w A remote system or dial-up client is a computer system or router that is

typically the initiator of a layer 2 tunnel.

w An L2TP access concentrator (LAC) is a node that acts as one side of a

layer 2 tunnel endpoint and is a peer to the layer 2 tunneling

protocol server (e.g., the L2TP network server discussed next).

As such, the LAC sits between the remote system or dial-up client

and the server and forwards packets to and from each. The connec-

tion from the LAC to the remote system is either local or a PPP link.

Figure 5.1 The layer 2 and layer 3 tunneling encapsulation schemes.

1. Because the term RAS is heavily used in the PPTP implementation of Microsoft, we use it when we discuss

MS-PPTP later in this chapter.

120 Internet Security Protocols

w Finally, an L2TP network server (LNS) is a node that acts as one side of

a layer 2 tunnel endpoint (typically the recipient) and is a peer to

the LAC. As such, the LNS is the logical termination point of a PPP

session that is being tunneled from the remote system by the LAC.

Note that the LAC and the LNS require a common understanding of the

encapsulation protocol so that layer 2 frames (e.g., PPP frames) can be

successfully transmitted and received across the Internet. Also note that in

this terminology, a network access server (NAS) is a device that provides

access to users across a remote access network, such as the PSTN or ISDN. As

such, the NAS may serve as either a LAC, LNS, or both.

5.2.1 Layer 2 Forwarding Protocol

Historically, the first layer 2 forwarding/tunneling protocol was the Layer 2

Forwarding (L2F) Protocol originally developed and proposed by Cisco

Systems. It addressed two areas of standardization:

w The encapsulation of layer 2 frames (i.e., PPP frames) within the L2F

protocol. Each L2F frame, including an L2F header and a payload, is

then encapsulated and sent within an IP packet or a UDP datagram,

respectively. Contrary to more recent layer 2 forwarding/tunneling

protocol proposals, the L2F protocol does not take into account the

use of cryptography to protect the confidentiality of the encapsulated

layer 2 frames.

w The connection management for the layer 2 tunnel (i.e., how the

tunnel is initiated and terminated).

Both areas are specified in RFC 2341 [5]. According to this specification,

the L2F protocol uses the well-known UDP port 1701 (for both source and

destination ports).

Because the L2F protocol is only of historical value,2 we do not delve

into the technical details of the L2F protocol specification. You may refer to

the referenced RFC document if you are interested in history (or if you are an

administrator in charge of installing and configuring an implementation of

the L2F protocol).

2. Note that the category of the referenced RFC document is historic.

5.2 Network access layer security protocols 121

5.2.2 Point-to-Point Tunneling Protocol

Similar to the L2F protocol, the Point-to-Point Tunneling Protocol (PPTP) was

originally developed and designed to solve the problem of creating and

maintaining VPN tunnels over public TCP/IP-based networks using the PPP

[6, 7].3 The PPTP is the result of joint efforts of Microsoft and a set of product

vendors, including, for example, Ascend Communications, 3Com/Primary

Access, ECI Telematics, and U.S. Robotics. These companies originally

constituted the PPTP Forum, whose resulting PPTP specification was made

publicly available and submitted to the IETF Point-to-Point Protocol

Extensions (PPPEXT4) WG for possible consideration as an Internet

Standard in 1996.5

A typical deployment of the PPTP starts with a remote system or dial-up

client, such as a laptop computer, that must be interconnected to an LNS

located on a corporate intranet using an LAC. As such, the PPTP can be used

to encapsulate PPP frames in IP packets for transmission over the Internet or

any other publicly accessible TCP/IP-based network. More specifically, the

remote system can connect to the LNS in two ways:

1. If the remote system supports PPTP, it can directly use it to connect

to the LNS.

2. If, however, the remote system does not support PPTP, it can use

PPP to connect to an Internet service provider’s LAC, and this LAC

can then use PPTP to connect to the LNS.

In the first case, the situation is comparably simple. The remote system

first establishes a PPP connection to the Internet service provider’s LAC and

then uses PPTP to send encapsulated PPP frames to the LNS. The IP packets

that encapsulate the PPP frames are simply forwarded by the LAC.

In the second case, however, the LAC must use the PPTP to encapsulate

the PPP frames in IP packets on behalf of the remote system. Consequently,

the LAC must play the role of an intermediate or proxy server in one way or

another. In fact, there are two connections. The first connection uses the PPP

to interconnect the remote system and the LAC, whereas the second

connection uses the PPTP to interconnect the LAC and the LNS. PPP frames

received by the LAC are encapsulated in IP packets using the PPTP.

3. http://www.microsoft.com/technet/winnt/winntas/technote/pptpudst.asp

4. http://www.ietf.org/html.charters/pppext-charter.html

5. Note that the IETF PPPEXT WG is situated in the IETF’s Internet area (not in the security area).

122 Internet Security Protocols

In either case, the PPTP uses a sophisticated encapsulation scheme to

tunnel PPP frames through the Internet (or any other TCP/IP-based

network that interconnects the LAC and the LNS). In fact, network or

Internet layer protocol data units (e.g., IP packets, IPX packets, or NetBEUI

messages) are first framed using PPP. The resulting PPP frames are then

encapsulated using a generic routing encapsulation (GRE) header [8] as

well as an IP header that is used to route the frame through the Internet.

Finally, the resulting IP packets are framed with still another media-specific

header before they can be forwarded to the interface connected to the

Internet.

In addition to the data channel that uses IP encapsulation to transmit

data, the PPTP uses a TCP connection for signaling. The corresponding

messages that are sent or received over this connection are used to query

status and to convey signaling information between the LAC (i.e., the PPTP

client) and the LNS (i.e., the PPTP server). The control channel is always

initiated by the PPTP client to the PPTP server using TCP port number 1723.

In most cases, it is a bidirectional channel where the client can send messages

to the server and vice versa. Note that the notion of an outband signaling

channel is something very specific for PPTP. Most other security protocols

(e.g., the IPsec protocols) use inband signaling, meaning that signaling

information is transported together with the protected data units.

The PPTP specification does not mandate the use of specific algorithms

for authentication and encryption. Instead, it provides a framework for the

negotiation of particular algorithms. This negotiation is not specific to PPTP,

and relies on existing PPP option negotiations contained within the PPP

compression protocol (CCP) [9], the challenge handshake authentication

protocol (CHAP) [10], and some other PPP extensions and enhancements.

Also outside the world of the PPTP, PPP sessions have been able to negotiate

compression algorithms as well as authentication and encryption algorithms

[11, 12].

In spite of the fact that the PPTP specification was submitted to the IETF

PPPEXT WG for consideration as an Internet Standard, its standardization

effort has been abandoned. Microsoft’s implementation of the PPTP (i.e.,

MS-PPTP) is heavily used in Windows NT environments. Outside these

environments, however, neither MS-PPTP nor another implementation of

PPTP is widely deployed.

Using MS-PPTP, the client and the server typically authenticate each

other using MS-CHAP [13], which is Microsoft’s version of the CHAP, and

encryptdatausing theMicrosoft Point-to-Point Encryption (MPPE) protocol [14].

As outlined in [15], MS-PPTP has severe flaws in both its design and

implementation. This is particularly true for MS-PPTP version 1, but it is also

5.2 Network access layer security protocols 123

true for MS-PPTP version 2 (e.g., [16, 17]). Consequently, the use of MS-

PPTP cannot be recommended from a security point of view.

5.2.3 Layer 2 Tunneling Protocol

In June 1996, Microsoft and Cisco Systems proposed and submitted a

combination of MS-PPTP and the L2F protocol to the IETF PPPEXT WG. The

proposal was named Layer 2 Tunneling Protocol (L2TP) [18]. This collaborative

protocol specification was particularly good news, as it meant that there

would be just one industrywide IETF specification for a layer 2 tunneling

and VPN dial-up protocol.

Similar to the L2F protocol and PPTP, the L2TP facilitates the tunneling

of encapsulated PPP frames across an intervening network in a way that is as

transparent as possible to both end users and applications. Contrary to the

other protocols, however, L2TP uses and even requires the use of IPsec

security associations (SAs) to cryptographically protect data that are

transmitted between LACs and LNSs.

After this initial release, the L2TP specification was further refined. In

August 1999, a preliminary release was published in RFC 2661 [19] and

submitted to the Internet standards track. As such, the L2TP is likely to

replace both the L2F protocol and PPTP in the future (in both Microsoft and

Cisco products).

5.2.4 Virtual private networking

In summary, the L2F protocol, PPTP, and L2TP provide means for virtual

private networking. Consequently, a final word is due on the use of these

protocols for virtual private networking. According to RFC 2828, a virtual

private network (VPN) is ‘‘a restricted-use, logical computer network that is

constructed from the system resources of a relatively public, physical

network (such as the Internet), often by using encryption, and often by

tunneling links of the virtual network across the real network’’ [20].

According to this definition, the use of encryption is not mandatory for

VPNs. Consequently, there are some alternative technologies and notions of

virtual private networking in use today. These technologies use controlled

route leaking (i.e., route filtering) or label switching instead of cryptography

to provide VPN facilities.

For example, multiprotocol label switching (MPLS) is a technology that can

be used to implement something similar to closed user groups (CUGs) in a

TCP/IP-based network [21, 22]. In short, MPLS makes sure that IP packets

cannot reach hosts that are not legitimate members of a specific host group.

124 Internet Security Protocols

Note, however, that there is no cryptographic protection in use, and that

an MPLS subscriber has to trust the network provider not to eavesdrop on

its communications and not to manipulate the IP traffic accordingly.

Sometimes this level of trust may be justified. Sometimes, however, this

level of trust may not be justified and the subscriber is then well advised to

look into and consider the use of VPN technologies that employ

cryptography in one way or another.

5.3 Internet layer security protocols

In most network architectures and corresponding communications protocol

stacks, network layer protocol data units are transmitted in the clear,

meaning that they are not cryptographically protected during their

transmission. Consequently, it is relatively simple to do malicious things,

such as inspecting the contents of the data units, forging the source or

destination addresses, modifying the contents, or even replaying old data

units. There is no guarantee that data units received are in fact from the

claimed originators (i.e., the claimed source addresses), that they are

delivered to the proper recipients, that they contain the original contents,

and that the contents have not been inspected by an eavesdropper while the

data units were transmitted from the originators to the recipients. The lack of

built-in security is particularly true for IP packets.

Against this background, the idea of having a standardized network or

Internet layer security protocol (to protect network or Internet layer protocol

data units) is not new, and several protocols had been proposed before the

IETF IPSEC WG started to meet:

w The Security Protocol 3 (SP3) was a network layer security protocol

jointly developed and proposed by the U.S. National Security Agency

(NSA) and the National Institute of Science and Technology (NIST) as

part of the secure data network system (SDNS) suite of security

protocols [23]. Outside the U.S. military, the SDNS and its security

protocols have not seen widespread use. This is particularly true for

SP3.

w The Network Layer Security Protocol (NLSP) was developed by the ISO

to secure the Connectionless Network Protocol (CLNP) [24]. Similar

to IP in the Internet model, CLNP provides a connectionless and

unreliable network layer service to the higher layers in the OSI

reference model. As such, the aim of the NLSP is to secure

5.3 Internet layer security protocols 125

the network layer service and to provide some basic security services

to the higher layers. The NLSP is an incompatible descendent of SP3.

w The Integrated NLSP (I-NLSP) was originally developed and proposed

by the U.S. NIST to provide security services for both IP (i.e., IPv4)

and CLNP.6 Again, the security function of I-NLSP is roughly similar

to that of SP3, although some details differ. For example, I-NLSP

provides some additional functionality, such as security label

processing.

w A protocol named swIPe was yet another experimental Internet layer

security protocol that was developed and prototyped by John

Ioannidis and Matt Blaze [25]. The prototype implementation is

publicly and freely available on the Internet.7

The network and Internet layer security protocols listed are more alike

than they are different. In fact, they all use secure encapsulation as their

basic enabling technique. What this basically means is that authenticated or

encrypted network layer protocol data units are contained within other data

units. In the case of secure IP encapsulation, for example, outgoing plaintext

IP packets are authenticated or encrypted and encapsulated in new IP

packets by adding new IP headers that are used to route the packets through

the internetwork. At the peer systems, the incoming IP packets are

decapsulated, meaning that the outer IP headers are stripped off and the

inner IP packets are authenticated or decrypted and then forwarded to

the intended recipients.

An encapsulated IP packet is illustrated in Figure 5.2. Note that the

original IP header and IP payload (together with some additional data) are

Figure 5.2 Encapsulated IP packet.

6. I-NLSP was specified in an Internet-Draft that expired long ago.

7. ftp://ftp.csua.berkeley.edu/pub/cypherpunks/swIPe/swipe.tar.Z

126 Internet Security Protocols

TEAMFL
Y

Team-Fly®

treated as the payload for the new IP packet, that this payload is the one that

is protected, and that a new IP header must be prepended to the new

payload. Consequently, the new IP header must not be encrypted, since it

must be used to route (or tunnel) the new IP packet through the

(inter)network. Such an encapsulation or tunneling scheme is convenient,

since it means that no changes are required to the existing Internet routing

infrastructure: authenticated or encrypted IP packets have an unencrypted,

normal-looking outer IP header, and this IP header can be used to route and

process the packet as usual. This transparency is convenient for the large-

scale deployment of encapsulation and tunneling schemes in general, and IP

encapsulation or tunneling in particular. In fact, similar IP encapsulation or

tunneling schemes can be used to transfer multicast or IPv6 traffic through

unicast or IPv4 networks.

When the IETF started to develop the next version of IP (i.e., IPv6), it

was commonly agreed that this version had to incorporate strong security

features (at least for users who desire security). The security features had to

be algorithm-independent so that the cryptographic algorithms could be

altered without affecting the other parts of an implementation. Further-

more, the security features should be useful in enforcing a wide variety of

security policies, and yet they should be designed in a way that avoids

adverse impacts on Internet users who do not need security services for the

protection of their IP traffic at all.

Against this background, the IETF chartered an IPSEC WG in 1992.

The aim was to define a security architecture (mainly for IPv6), and to

standardize both an IP Security Protocol (IPSP) and a related Internet Key

Management Protocol (IKMP). Soon it was realized that the same security

architecture that was being developed for IPv6 could also be used for IPv4.

Consequently, the charter of the IETF IPSEC WG was revised to target

both IPv6 and IPv4, and the resulting security architecture had to be the

same. The main difference is that the security mechanisms specified in the

IP security architecture have to be retrofitted into IPv4 implementations,

whereas they must be present in all IPv6 implementations at the

beginning.

In August 1995, the IETF IPSEC WG published a series of RFC

documents that collectively specified a first version of the IP security

architecture and the IPSP [26–30]. This version was incomplete and rushed

to publication, mainly to satisfy a perceived industry need. Nevertheless, the

IESG approved the IPSP specification to enter the Internet standards track as

a Proposed Standard, and the participants of the IETF IPSEC WG continued

their work to refine the IP security architecture and the IPSP specifi-

cation, as well as to standardize the IKMP [31, 32]. The discussion on

5.3 Internet layer security protocols 127

the standardization of the IKMP was very controversial. In the end, two

protocol proposals, namely, the Internet Security Association and Key

Management Protocol (ISAKMP) and the OAKLEY Key Determination

Protocol, were merged to become the IKMP. Furthermore, the acronym IPSP

was replaced with the term IPsec protocols (as it consists of two subprotocols),

and the acronym IKMP was replaced with the term Internet Key Exchange

(IKE). Consequently, the IP security architecture as we understand it today

comprises both a set of IPsec protocols and the IKE protocol.

In November 1998, the IETF IPSEC WG published a series of RFC

documents that collectively specify a revised version of the IP security

architecture [33], including revised versions of the IPsec [34–39] and IKE

[40–42] protocols.8 In addition, an informational RFC was published that

provides a road map for the various documents that are released under the

auspices of the IETF IPSEC WG [43]. Further information about the current

status of the various protocol specifications can be found on the home page

of the IETF IPSEC WG.9 In addition, there are several books that address

IPsec and virtual private networking [44–46]. Among these books, I

particularly recommend [46].

Soon after the release of the revised series of RFC documents, it was

realized that two topics deserved further study:

1. The use of policies in IPsec environments;

2. The use of IPsec technologies to secure remote access services.

In early 2000, the IETF chartered an IP Security Policy (IPSP)10 WG

to address the first topic and an IP Security Remote Access (IPSRA)11 WG to

address the second topic. You may refer to the home pages of the two WGs

to get an overview about the current status of their work.

5.3.1 IP security architecture

As mentioned above, the IP security architecture comprises an entire suite of

security protocols. The suite includes the IPsec protocols and the IKE

protocol. The IPsec protocols comprise the Authentication Header (AH) and

Encapsulating Security Payload (ESP) subprotocols. Similarly, the IKE

8. As of this writing, the protocol specifications refer to proposed standards.

9. http://www.ietf.org/html.charters/ipsec-charter.html

10. http://www.ietf.org/html.charters/ipsp-charter.html

11. http://www.ietf.org/html.charters/ipsra-charter.html

128 Internet Security Protocols

protocol has evolved from two major key management protocol proposals

(i.e., ISAKMP and OAKLEY).

A high-level overview of the IP security architecture is given in

Figure 5.3. In short, an IPsec module is a (hardware or software) module

that implements the IPsec architecture and its protocols. The primary goal of

an IPsec module is to secure IP traffic that is sent to or received from another

IPsec module. What this basically means in terms of security services and

mechanisms is specified in a corresponding security association (SA). The aim

of the IKE protocol is to establish SAs and the aim of the IPsec protocols is to

make use of these SAs. On either side of an SA, the security parameters of

that SA (e.g., encryption algorithm and session key) are stored in a security

association database (SAD). Each SA and corresponding entry in the SAD is

indexed with three values:

w A security parameters index (SPI);

w An IP destination address;

w A security protocol identifier (i.e., AH or ESP).

As will be explained later, each IPsec-protected packet carries an SPI

value that can be used by the recipient to retrieve the correct SA parameters

from its SAD. In addition to the SAD, there is a security policy database (SPD)

in each IPsec module. The SPD provides detailed specifications of the security

services accorded to each packet.

Figure 5.3 High-level overview of the IP security architecture.

5.3 Internet layer security protocols 129

In accordance with this high-level overview, the concept of an SA is at

the core of the IP security architecture. An SA specifies the security services

and mechanisms that must be implemented and used between two endpoints

or IPsec modules. The endpoints, in turn, may be hosts or network security

gateways, such as IPsec-enabled routers or application gateways. For

example, an SA may require the provision of data confidentiality services

through the use of the IPsec ESP protocol (this protocol will be explained

later). Furthermore, the SA may specifiy the parameters for this protocol,

such as the encryption algorithm (e.g., the DES algorithm), the mode of

operation (e.g., the CBC mode), and its initialization vector (IV). The SA is a

simplex (unidirectional) connection or relationship. Security services are

afforded to an SA by the use of AH, or ESP, but not both. If both AH and ESP

protection is applied to a data stream, then two SAs must be established and

maintained. Similarly, to secure bidirectional communications between two

hosts or security gateways, two SAs (one in each direction) are required. The

term SA bundle refers to a set of SAs through which traffic must be processed

to satisfy a specific security policy.

The IPsec architecture allows the user or system administrator to control

the granularity at which security services are offered. In the first series of

RFCs, three approaches toward how to feed SAs with security parameters

and cryptographic keys were distinguished:

1. Host-oriented keying has all users on one host share the same session

key for use on traffic destined for all users on another host.

2. User-oriented keying lets each user on one host have one or more

unique session keys for the traffic destined for another host (such

session keys are not shared with other users).

3. Session-unique keying has a single session key being assigned to a

given IP address, upper-layer protocol, and port number triple (in

this case, a user’s FTP session may use a different key than the same

user’s Telnet session).

From a security point of view, user-oriented and session-unique keying

are superior and therefore preferred. This is due to the fact that in many

cases, a single computer system will have at least two suspicious users that do

not mutually trust each other. When host-oriented keying is used and

mutually suspicious users exist on a system, it is sometimes possible for a

user to determine the host-oriented key by cryptanalytical attacks. Once this

user has improperly obtained the key in use, he or she can either read

another user’s encrypted traffic or forge traffic from this particular user.

130 Internet Security Protocols

Some possible attacks that follow and take advantage of this line of

argumentation can be found in [47, 48]. When user-oriented or session-

unique keying is used, certain kinds of attack from one user onto another

user’s data traffic are simply not possible. Unfortunately, the distinction

between the three keying approaches is no longer used in the current

protocol specifications of the IETF IPSEC WG. In reality, all we see today is

host-oriented keying.

The SPD of an IPsec implementation defines at a high level of

abstraction the security requirements for the IP packets that are forwarded

or routed. As such, the SPD is established and maintained by a user or

system administrator (or by an application operating within constraints

established by either of them). Each entry in the SPD defines the traffic to be

protected, how to protect it, and with whom the protection is shared. For

each IP packet entering or leaving the IPsec implementation, the SPD must

be consulted for the possible application of the IPsec security services. More

specifically, an SPD entry may define one of the three actions to take upon a

traffic match:

1. Discard: A packet is not let in or out.

2. Bypass: A packet is let in and out without applying IPsec security

services.

3. Apply: A packet is only let in or out after having applied IPsec

security services.

As such, the SPD provides access control enforcement equivalent to a

(static) packet filter.

In general, the IPsec protocols (i.e., AH and ESP) are largely independent

of the associated SA and key management techniques and protocols,

although the techniques and protocols involved do affect some of the

security services offered by the protocols. The IPsec protocols and the

complementary IKE protocol are overviewed next.

5.3.2 IPsec protocols

According to the terminology introduced in the OSI security architecture,

the IPsec protocols provide the following security services:

w A data origin authentication service;

w A connectionless data integrity service (including protection against

replay attacks);

5.3 Internet layer security protocols 131

w A data confidentiality service;

w An access control service;

w A limited traffic flow confidentiality service.

The security services are provided at the Internet layer, offering

protection for IP and upper-layer protocols. As mentioned previously, the

security services are provided by two subprotocols, namely, the AH and the

ESP. Each protocol can be used to protect either only the upper-layer

payload of an IP packet or the entire IP packet. This distinction is handled by

considering two different modes of operation:

1. Transport mode is used to protect the upper-layer payload of an IP

packet.

2. Tunnel mode is used to protect an entire IP packet (in this case, IP

encapsulation is used as an enabling technique).

Figure 5.4 illustrates the IPsec transport and tunnel modes. In transport

mode, an IPsec header (i.e., an AH or ESP header) is inserted between the

original IP header and payload (i.e., the TCP segment or UDP datagram). In

tunnel mode, the original IP packet is encapsulated into another IP packet.

What this means is that there are two IP headers:

1. An inner IP header that carries the original IP header (specifying the

original source and destination IP addresses);

2. An outer IP header that carries the new IP header (specifying new

source and destination IP addresses).

Figure 5.4 IPsec transport and tunnel modes.

132 Internet Security Protocols

The tunnel mode IPsec header appears between the outer IP header and

the inner IP header.

Both IPsec protocols—AH and ESP—can operate in either transport or

tunnel mode. Transport mode is typically used to secure IP traffic between

two endpoints (i.e., computer systems), whereas tunnel mode is typically

used to secure IP traffic between two points that are not necessarily the

endpoints of the communications. For example, one of the points may be a

security gateway for a corporate intranet. In this case, the IP traffic is

encapsulated (i.e., using IPsec in tunnel mode) between the remote system

and the security gateway (making sure that the systems located on the

corporate intranet must not be able to handle IPsec). Note that whenever

either endpoint is a security gateway (e.g., a router or firewall), IPsec must be

used in tunnel mode (in the case where traffic is destined for a security

gateway, e.g., SNMP commands, the security gateway is acting as a host, and

transport mode is also allowed).

5.3.2.1 Authentication header

The IPsec AH protocol provides data origin authentication and connection-

less data integrity for IP packets (collectively referred to as ‘‘authentication’’

in this section). The precision of the authentication is a function of the

granularity of the SA with which AH is employed. Depending on which

cryptographic algorithm is used and how keying is performed, the AH may

also provide non-repudiation of origin services. Finally, the AH may offer an

antireplay service at the discretion of the receiver, to help counter specific

DOS attacks.

The IANA has assigned the protocol number 51 for the AH protocol, so

the header immediately preceding the AH must include 51 in its protocol or

next header field. As specified in RFC 2402 [34] and illustrated in Figure 5.5,

the AH header consists of the following fields:

w An 8-bit Next Header field;

w An 8-bit Payload Length field;

w A 16-bit field that is reserved for future use;

w A 32-bit SPI field;

w A 32-bit Sequence Number field;

w A variable-length n · 32-bit Authentication Data field.

5.3 Internet layer security protocols 133

The authentication data is computed by using an authentication

algorithm and a cryptographic key specified in the corresponding SA. The

sender computes the data before sending the IP packet, and the receiver

verifies it upon reception. Several algorithms for authentication data

computation and verification have been proposed in the past. The HMAC

construction is explained in [49]. In short, the HMAC construction takes as

input the message M and the authentication key K, and produces as output

the following expression:

HMACKðMÞ ¼ hðK � opad; hðK � ipad;MÞÞ

To compute HMACKðMÞ, the key K and an inner pad value ipad

(ipad refers to the byte 0x36 repeated several times) are first added

modulo 2. The result is concatenated with the message M and hashed

with the OWHF h (which can be either MD5 or SHA-1). Similarly, the result

is concatenated with the sum of K and an outer pad value opad (opad

refers to the byte 0x5C repeated several times) modulo 2. Finally, this

result is hashed with the appropriate one-way hash function h (MD5 or

SHA-1), and the resulting authentication data is truncated to 96 bits.12

Depending on the OWHF in use, the resulting HMAC constructions are

Figure 5.5 The authentication header (AH) format.

12. The truncation was introduced because of a desire to achieve a specific packet alignment goal, to avoid

devoting all 128 or 160 bits to the authentication function, and to have a uniform size MAC, whether MD5 or

SHA-1 is employed.

134 Internet Security Protocols

called HMAC-MD5-96 (in the case of MD5) and HMAC-SHA-1-96 (in the

case of SHA-1).

Because the AH protocol does not provide data confidentiality services,

implementations thereof may be widely deployed, even in countries where

controls on encryption would preclude deployment of technology that

potentially offered data confidentiality services. Consequently, AH is an

appropriate protocol to employ when confidentiality is not required.

5.3.2.2 Encapsulating security payload

As its name suggests, the IPsec ESP protocol uses IP encapsulation to provide

data confidentiality and partial traffic flow confidentiality (in tunnel mode

and with the invocation of padding data to hide the size of an IP packet).

Similar to the AH, the ESP protocol also provides authentication (referring to

data origin authentication and connectionless data integrity services). Note,

however, that the scope of the authentication offered by the ESP is narrower

than that for the AH (i.e., the IP headers below the ESP header are not

protected). If only the upper-layer protocols need to be authenticated, then

ESP authentication is an appropriate choice and is more space efficient than

use of an AH encapsulating an ESP.

The IANA has assigned the protocol number 50 for the ESP protocol, so

the header immediately preceding the ESP must include 50 in its protocol or

next header field. The ESP format is specified in RFC 2406 [38] and

illustrated in Figure 5.6. It consists of the following fields:

w A 32-bit SPI field (not encrypted);

w A 32-bit Sequence Number field (not encrypted);

w A variable-length Payload Data field;

w A variable-length Padding field;

w An 8-bit Pad Length field;

w An 8-bit Next Header field;

w In addition, the ESP may also include a variable-length n�32-bit

Authentication Data field.

In RFC 2405, the DES in cipher block chaining (CBC) mode with an

explicit initialization vector (IV) is introduced as the default algorithm to

encrypt the ESP Payload Data field [37]. But this default algorithm may be

replaced by any other algorithm at will. For example, RFC 1851 specifies

5.3 Internet layer security protocols 135

the experimental use of 3DES. In the future, it is possible and very likely that

we will see more AES implementations instead of DES or 3DES implementa-

tions. Unfortunately, export, import, and use of specific encryption

algorithms may be regulated in some countries. The algorithms for computing

the authentication data are the same as the ones suggested for the AH.

Note that both AH and ESP are also vehicles for access control, based on

the distribution of cryptographic keys and the management of traffic flows

relative to these security protocols. Also note that full protection from traffic

analysis is not provided by any of the two IPsec subprotocols. At the most,

tunnel mode ESP can provide a partial traffic flow confidentiality service. In

fact, the ESP protocol can be used to create a secure tunnel between two

security gateways. In this case, anyone eavesdropping on the communica-

tions between the security gateways is not able to see what hosts are actually

sending and receiving IP packets from behind the security gateways.

Nevertheless, it is fair to mention that only a few Internet users worry about

traffic analysis at all.

5.3.3 IKE Protocol

The IP security architecture mandates support for both manual and

automated SA and key management (using a key management protocol).

Figure 5.6 The encapsulating security payload (ESP) format.

136 Internet Security Protocols

TEAMFL
Y

Team-Fly®

For several years, the IETF IPSEC WG had been struggling with competing

proposals for an automated SA and key management protocol:

w IBM proposed a Modular Key Management Protocol (MKMP) for its

IP Secure Tunnel Protocol (IPST) [50].

w Sun Microsystems proposed and is using its Simple Key-Management

for Internet Protocols (SKIP) [51].

w Phil Karn originally proposed and prototyped a Photuris Key

Management Protocol13 [52, 53] that is conceptually similar to the

Station-to-Station (STS) protocol originally proposed in [54]. The

Photuris protocol combines an ephemeral Diffie-Hellman key

exchange with a subsequent authentication step to protect against

man-in-the-middle attacks. To protect the participanting peers

against resource clogging attacks, the Photuris protocol introduced

a cookie exchange.

w Hugo Krawczyk proposed a variation and generalization of the

Photuris protocol, called Photuris Plus or SKEME [55].

w Because Bill Simpson (one of the coauthors of the latest Photuris Key

Management Protocol specification) refused to make changes to

protocol specification in accordance with suggestions provided by the

IETF IPSEC WG chairs, the Photuris Key Management Protocol was

dropped from consideration and Hilarie Orman drafted a version of

the Photuris and SKEME protocols that was called OAKLEY Key

Determination Protocol [56]. In this protocol, several parameters are

negotiable, including, for example, the mathematical structure in

which the Diffie-Hellman key exchange is supposed to take place and

the authentication method that is being used.

w The NSA Office of INFOSEC Computer Science proposed a general

Internet Security Association and Key Management Protocol

(ISAKMP).

In the first half of the 1990s, the developers of the various key

management protocols competed with one another within the IETF IPSEC

WG. There were basically two groups: (1) SKIP and (2) the group of

Photuris-like protocols, including, for example, the OAKLEY Key Determi-

13. Phil Karn was later joined by Bill Simpson to write the experimental Photuris protocol specifications.

5.3 Internet layer security protocols 137

nation Protocol. Also, because of the fact that SKIP does not make use of SAs

at all, the ISAKMP is useful only for the protocols of group (b).

Consequently, the two major contenders were SKIP and ISAKMP/OAKLEY.

In September 1996, the IETF Security Area Director14 posted a

document to the Internet to end the controversy. In this document, the

two contenders (i.e., SKIP and ISAKMP/OAKLEY) were reviewed, and it was

concluded that ISAKMP/OAKLEY should become the mandatory standard

(SKIP can still become an elective standard).

In short, ISAKMP defines how two peers communicate, how the

messages they use to communicate are constructed, and through which state

transitions they go to secure their communications. It provides the means to

authenticate a peer, to exchange information for a key exchange, and to

negotiate security services. It does not, however, define how a particular

authenticated key exchange is done, nor does it define the attributes

necessary for an SAs. These issues are left to a specific key exchange protocol,

such as OAKLEY. As such, ISAKMP is a general-purpose security exchange

protocol that may be used for policy negotiation and establishment of keying

material for a variety of needs. The specification of what IKE is being used for

is done in a domain of interpretation (DOI). The IP security DOI for ISAKMP is

specified in RFC 2407 [40]. More specifically, RFC 2407 defines how

ISAKMP can be used to negotiate IKE and IPsec SAs. If and when IKE is

used by other protocols, they will each have to define their own DOI.15 In

other words, ISAKMP defines the language to establish authenticated

session keys, whereas OAKLEY defines the steps two peers must actually

take to establish the keys. Together they constitute the IKE protocol.

The IKE protocol is a request-response type of protocol with an initiator

and a responder. The IKE initiator is the party that is instructed by its IPsec

module to establish an SA or SA bundle as a result of an outbound packet

matching an SPD entry. The SPD of IPsec is used to instruct IKE what to

establish but does not instruct IKE how to do so. In fact, how IKE establishes

the IPsec SAs is based on its own policy settings. IKE defines policy in terms

of protection suites. Each protection suite must define at least an encryption

algorithm, a hash algorithm, a Diffie-Hellman group, and a method for

authentication. IKE’s policy database then is the list of all protection suites

weighted in order of preference.

The establishment of an IPsec SA (or an SA bundle) using IKE is a two-

phase process:

14. The IETF Security Area Director was (and still is) Jeffrey Schiller from MIT.

15. At the time of this writing, no other DOI is available.

138 Internet Security Protocols

w In phase one, an IKE SA is established. The IKE SA defines the way in

which the two peers communicate, for example, which algorithm to

use to encrypt IKE traffic, how to authenticate the remote peer, and

so on.

w In phase two, the IKE SA is used to establish any given number of

IPsec SAs between the communicating peers. The IPsec SAs

established by IKE may optionally have perfect forward secrecy

(PFS16) of the keys and, if desired, also of the peer identity.

5.3.3.1 Phase one: establishing an IKE SA

The establishment of an IKE SA basically consists of three steps and

corresponding exchanges:

1. A cookie exchange;

2. A value exchange;

3. An authentication exchange.

In short, the cookie exchange protects the responder from simple

resource clogging attacks. Once initiator and responder cookies have been

established, a value exchange and a subsequent authentication exchange are

used to implement an authenticated Diffie-Hellman key exchange, and to

provide the initiator and responder with an authenticated shared secret

accordingly.

Cookie Exchange: To protect the responder from simple resource clog-

ging attacks, the initiator must provide a valid cookie whenever he or she

wants to enter a value exchange and initiate a computationally expensive

Diffie-Hellman key exchange accordingly. A valid cookie, in turn, is a value

that can be computed and verified only by the responder. For example, it can

be a keyed one-way hash value of the initiator’s and responder’s IP addresses

and port numbers. In this case, the key must be known only to the

responder.

16. For a key agreement protocol based on public key cryptography, PFS ensures that a session key derived from a

set of long-term public and private keys will not be compromised if one of the private keys is compromised in

the future.

5.3 Internet layer security protocols 139

Value Exchange: A value exchange establishes a shared secret key between

the communicating peers. In general, there is more than one way to establish

a key, but IKE always uses a Diffie-Hellman key exchange. Consequently,

the act of doing a Diffie-Hellman key exchange is not negotiable, but the

parameters to use are. In fact, IKE borrows five groups from the OAKLEY

specification; three are traditional exchanges doing exponentiation modulo

a large prime, and two are elliptic curve groups. Upon completion of the

value exchange, the two peers share a key and this key still needs to be

authenticated.

Authentication Exchange: In a final step, the Diffie-Hellman key and,

therefore, the IKE SA must be authenticated. There are five methods of

authentication defined in IKE: preshared keys, digital signature using DSS,

digital signature using RSA, and two methods that use an encrypted nonce

exchange with RSA.

There are basically two modes and corresponding exchanges that can be

used in phase one: a main mode exchange and an aggressive mode

exchange.

1. In a main mode exchange, the request and response messages for each

of the three exchanges are sent and received one after the other,

totaling six messages.

2. Contrary to that, some of the messages are sent together in an

aggressive mode exchange, totaling three messages. Most important, an

aggressive mode exchange cannot use cookies to protect against

resource clogging attacks.

In short, aggressive mode is faster but main mode is more flexible. Once

Phase One is completed, Phase Two may commence and the required IPsec

SAs may be created.

5.3.3.2 Phase two: establishing IPsec SAs

Contrary to Phase One, there is a single Phase Two exchange, and this

exchange has been named quick mode exchange. This exchange negotiates

IPsec SAs under the protection of the IKE SA, which was created in Phase

One. The keys used for the IPsec SAs are, by default, derived from the IKE

secret state. Pseudorandom nonces are exchanged in quick mode and

hashed with the secret state to generate keys and guarantee that all SAs

140 Internet Security Protocols

have unique keys. All such keys do not have the property of PFS as they are

all derived from the same root key (i.e., the IKE shared secret). To provide

PFS, Diffie-Hellman public values, and the group from which they are

derived, are exchanged along the nonces and IPsec SA negotiation

parameters. The resulting secret is used to generate the IPsec SA keys to

guarantee PFS.

5.3.4 Implementations

As illustrated in Figure 5.7, there are three possibilities to implement

the IPsec architecture (with or without key management) and to place the

implementation in a host or security gateway:

w The most simple and straightforward possibility is to integrate the

IPsec protocols into a native IP implementation (a). This is applicable

to hosts and security gateways, but requires access to the correspond-

ing source code.

w Another possibility is provided by so-called bump-in-the-stack (BITS)

implementations (b). In these implementations, IPsec is implemented

underneath an existing IP stack, between the native IP implementa-

tion and the local network drivers. Source code access for the IP stack

is not required in this case, making it appropriate for use with legacy

systems. This approach, when adopted, is usually employed with

hosts.

w A somewhat related possibility is provided by so-called bump-in-the-

wire (BITW) implementations (c). Similar to BITS implementations,

source code access for the IP stack is not required for BITW

implementations. But in addition to BITS implementations, additional

hardware in the form of outboard cryptographic processors are

Figure 5.7 The three possibilities to implement the IPsec architecture.

5.3 Internet layer security protocols 141

typically used. This is a common design feature of network security

systems used by the military, and of some commercial systems as well.

BITW implementations may be designed to serve both hosts and

security gateways.

As of this writing, most IPsec implementations are either BITS or BITW.

For example, PGPnet is a BITS implementation, whereas most firewall

products that support IPsec for virtual private networking are BITW

implementations. The dominance of BITS or BITW implementations is

expected to change in the future, because more vendors of networking

software have integrated or are about to integrate the IPsec protocols into

their products. For example, Windows 2000 comes along with IPsec support

and the Cisco IOS also provides support for the IPsec protocols in the more

recent releases.

From an implementation point of view, it is important that the key

management protocol in use (e.g., IKE protocol) implements a standardized

API. The IETF IPSEC WG has specified a corresponding PF KEY key

management API version 2 [57].

There are advantages and disadvantages related to security protocols

that operate at the Internet layer in general, and the IPsec protocols in

particular:

w The main advantage is that applications need not be changed to use

the IPsec protocols. Another advantage is that providing security at

the Internet layer works for both TCP- and UDP-based applications.

This is advantageous because a steadily increasing number of appli-

cations are based on UDP that is hard to secure at the transport layer.

w The main disadvantage is that IP stacks must either be changed or

extended. Because of the inherent complexity of the IKE protocol,

the changes or extensions are not trivial. In the long term, high-speed

networking may also provide a performance problem. As of this

writing, it is not clear whether encryption rates and key agility

properties of IPsec implementations will meet the performance

requirements of future high-speed networks.

Because of the disadvantages of providing security at the Internet layer,

some alternative approaches have appeared in the past (as discussed in the

other sections of this chapter). The current trend in industry suggests that

the IPsec protocols will primarily be used for virtual private networking and

connecting mobile users to corporate intranets.

142 Internet Security Protocols

5.4 Transport layer security protocols

Again, the idea of having a standardized transport layer security protocol is

not new, and several protocols had been proposed before the IETF TLS WG

even started to meet:

w The security protocol 4 (SP4) is a transport layer security protocol

that was developed by the NSA and NIST as part of the secure data

network system (SDNS) suite of security protocols [58].

w The transport layer security protocol (TLSP) was developed and

standardized by the International Organization for Standardization

(ISO) [59].

w Matt Blaze and Steven Bellovin from AT&T Bell Laboratories

developed an encrypted session manager (ESM) software package

that operates at the transport layer [60].

In Internet application programming, it is common to use a generalized

interprocess communications facility (IPC) to work with different transport

layer protocols. Two popular IPC interfaces are BSD sockets and the transport

layer interface (TLI), found on System V UNIX derivates. One idea that

comes to mind first when trying to provide security services for TCP/IP

applications is to enhance an IPC interface such as BSD sockets with the

ability to authenticate peer entities, to exchange secret keys, and to use these

keys to authenticate and encrypt data streams transmitted between the

communicating peer entities. Netscape Communications Corporation

followed this approach when it specified a secure sockets layer (SSL) and a

corresponding SSL Protocol. The idea was later adopted by the IETF transport

layer security (TLS) WG that is tasked to develop a security protocol for the

transport layer. Due to their importance on the marketplace for network

security solutions, we address the SSL and TLS protocols separately in the

following chapter.

5.5 Application layer security protocols

In general, there are three approaches to provide security services at or above

the application layer. First, the services can be integrated into each

application protocol individually. Second, a generic security system can be

built that provides the possibility to incorporate security services into

5.5 Application layer security protocols 143

arbitrary application programs. Third, it is possible to leave the application

layer as it is and to provide security services above it.17

5.5.1 Security-enhanced application protocols

There are several application protocols that have been enhanced to provide

integrated security services. For example, the Secure Shell (SSH) is a widely

used and deployed protocol that serves as a secure replacement for terminal

access and file transfer [61, 62]. DNS Security, or DNSSEC in short, refers to

a set of security extensions and enhancements for DNS [63]. Furthermore,

there are several cryptographic file systems that have been developed and

proposed in the past. Examples include the Cryptographic File System (CFS)

[64, 65] and the Andrew File System (AFS) [66].

With regard to Web security, the IETF chartered a Web Transaction

Security (WTS) WG18 in 1995. The goal of the WG was to ‘‘develop

requirements and a specification for the provision of security services to Web

transaction.’’ The starting point was the specification of the Secure Hypertext

Transfer Protocol (S-HTTP) that had been developed and was originally

proposed by Eric Rescorla and Allan Schiffman on behalf of the

CommerceNet consortium in the early 1990s.19 S-HTTP version 1.0 was

publicly released in June 1994 and distributed by the CommerceNet

consortium. Since 1995, the S-HTTP specification has been further refined

under the auspices of the IETF WTS WG. In August 1999, the S-HTTP was

specified and released in an experimental RFC document [67] (comple-

mented by other RFC documents). Due to the success and widespread

deployment of SSL and TLS, S-HTTP and the IETF WTS WG silently

disappeared.

5.5.2 Authentication and key distribution systems

In the 1990s, a considerable amount of work had been done to develop

authentication and key distribution systems that can be used by arbitrary

applications to incorporate security services. Examples include the following

authentication and key distribution systems:

17. In [1], the third approach is discussed in a separate chapter with the title ‘‘message security protocols.’’

18. http://www.ietf.org/html.charters/wts-charter.html

19. Launched in 1994 as a nonprofit organization, CommerceNet is dedicated to advancing electronic commerce

on the Internet. Its almost 600 member companies and organizations seek solutions to technology issues,

sponsor industry pilots, and foster market and business development. The CommerceNet consortium is

available on-line at http://www.commerce.net.

144 Internet Security Protocols

w Kerberos, originally developed at MIT;

w Network Security Program (NetSP), developed by IBM;

w SPX, developed by DEC;

w The Exponential Security System (TESS), designed and developed at

the University of Karlsruhe.

In addition, there are several extensions to the basic Kerberos

authentication system, such as those provided by Yaksha, SESAME (secure

European system for applications in a multivendor environment), and the

Distributed Computing Environment (DCE) developed by the Open

Group.20 In this section we are not going to describe and discuss the

authentication and key distribution systems mentioned above. Instead we

refer to [68]. Kerberos will be overviewed and discussed in Section 8.3, when

we talk about Kerberos-based authentication and authorization infrastruc-

tures (AAIs).

The important thing to keep in mind is that an authentication and key

distribution system is to provide an API that makes it simple to secure any

application protocol. The API of choice is the Generic Security Services API

(GSS API) as specified by the IETF Common Authentication Technology

(CAT) WG.21

5.5.3 Layering security protocols above the application layer

In addition to security-enhanced application protocols and authentication

and key distribution systems, it is possible to layer security protocols above

the application layer (i.e., leave the application protocols as they are). In this

case, one may use any given (insecure) application protocol and secure the

stream of bits and bytes before it is submitted to the application.

There are bascially two approaches that can be mentioned in this

context: secure messaging (e.g., PGP or S/MIME as further addressed in [69])

and XML security as specified by the World Wide Web Consortium (W3C).

In fact, the use of XML makes it possible to encrypt or digitally sign data

segments (e.g., messages) in a standardized way before they are trans-

mitted in computer networks or distributed systems. The corresponding

20. The Open Group was formed in early 1996 by the consolidation of two open-systems consortia, namely the

Open Software Foundation (OSF) and the X/Open Company Ltd. The Open Group includes a large number of

computer vendors, including IBM, DEC, and Microsoft.

21. http://www.ietf.org/html.charters/cat-charter.html

5.5 Application layer security protocols 145

specifications are known as XML Encryption and XML Digital Signatures.

Because XML security is a very new and still transient topic, it is not further

addressed in this book. Note, however, that the IETF XMLDSIG WG22 has

been asked ‘‘to develop an XML compliant syntax used for representing the

signature of Web resources and portions of protocol messages (anything

referenceable by a URI) and procedures for computing and verifying such

signatures.’’ In March 2001, the WG came up with a specification that has

been submitted to the Internet standards track [70].

In April 2002, Microsoft Corporation, IBM Corporation, and VeriSign,

Inc. jointly proposed an architecture and a road map to properly address

security within a Web service environment. The specifications that are

currently being developed build upon foundational technologies, such as

SSL/TLS, SOAP, WSDL, XML Digital Signatures, and XML Encryption. As of

this writing, the only specification that is available is the WS-Security

specification. In short, it describes how to attach digital signature and

encryption headers to SOAP messages. In addition, it describes how to attach

security tokens, including binary security tokens such as X.509 certificates

and Kerberos tickets, to messages. In addition to the WS-Security

specification, there are many specifications in the queue. Examples include

the WS-Policy, WS-Trust, WS-Privacy, WS-SecureConversation, WS-

Federation, and WS-Authorization specifications. You may refer to

http://www-106.ibm.com/developerworks/library/ws-secmap for a cor-

responding overview.

5.6 Conclusions

In this chapter we overviewed and briefly discussed some cryptographic

security protocols that can be used to provide communication security

services for TCP/IP-based networks. While most of these protocols are

similar in terms of security services they provide as well as cryptographic

algorithms and techniques they employ, they vary fundamentally in the

manner in which they provide the security services and their placement

within the TCP/IP communications protocol suite. In particular, we have

seen protocols for the network access, Internet, transport, and application

layer.

Given this variety of cryptographic security protocols, we ask at least two

questions:

22. http://www.ietf.org/html.charters/xmldsig-charter.html

146 Internet Security Protocols

TEAMFL
Y

Team-Fly®

1. Which security protocol is the best?

2. Which layer is best suited to provide communication security

services?

With regard to the first question, the cryptographic security protocols

have unique and partly incomparable advantages and disadvantages.

For example, the IPsec and IKE protocols provide support for many

parameters and options that are negotiable between the communicating

peers, whereas the SSL and TLS protocols are rather strict in terms of

parameters and options that must be implemented and supported. Given this

situation and its diversity, it is very difficult or even impossible to have the

protocols compete with each another and to actually decide which one is the

best. Fortunately, most security protocols provide a reasonable level of

security. In fact, most of them use the same or very similar cryptographic

techniques and algorithms (e.g., the HMAC construction for message

authentication, DES, 3DES, or AES for bulk data encryption, and RSA for

entity authentication and key exchange). Only a few protocols have been

shown to be weak and have serious security problems (e.g., MS-PPTP). Note,

however, that this is only an example and that there are probably more weak

than strong protocols in use today. This is particularly true for proprietary and

unpublished security protocols that one sometimes finds in commercial

products.

If deciding which security protocol is the best is difficult if not impossible,

the next question is which layer is best suited to provide communication

security services. This question is simpler to answer mainly because it

addresses classes of security protocols (instead of individual security

protocols). In order to further simplify the discussion (and to reduce the

variety of layers that can provide communication security services), one

usually distinguishes between lower layers (i.e., the network access and

Internet layers) and higher layers (i.e., the transport and application layers,

as well as the provision of security services above the application layer). In

either case, there are arguments to provide security services at either the

lower or higher layers in a given protocol stack:

w In short, the proponents of providing security services at the lower

layers argue that lower-layer security can be implemented transpar-

ently to users and application programs, effectively killing many birds

with a single stone.

w Contrary to that, the proponents of providing security services at the

higher layers argue that lower-layer security attempts to do too many

5.6 Conclusions 147

things, and that only protocols that work at higher layers can meet

application-specific security needs and provide corresponding secur-

ity services both effectively and efficiently.

Unfortunately, both arguments are true in some sense and there is no

generally agreed-upon best layer to provide security services. The best layer

actually depends on the security services that are required in a given

environment and the application environment in which the services must be

implemented and deployed. For example, nonrepudiation services are

typically provided at the higher layers, whereas data confidentiality services

can also be provided at the lower layers. Also, in an application environment

where one can assume users to have smartcards and public key certificates

the implementation and provision of non-repudiation services is usually

simple and straightforward. In either case, the end-to-end argument

originally proposed in [71] also applies for security and provides a strong

argument for providing security services at the higher layers. In short, the

end-to-end argument says that the function in question (e.g., a security

function) can completely and correctly be implemented only with the

knowledge of the application standing at the endpoints of the communica-

tions system. Therefore, providing that function as a feature of the

communications system itself is not possible (sometimes an incomplete

version of the function provided by the communications system may be

useful as a performance enhancement).

References

[1] Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech

House, 2002.

[2] Simpson, W., ‘‘The Point-to-Point Protocol (PPP),’’ Request for Comments

1661, STD 51, July 1994.

[3] IEEE 802.10, ‘‘IEEE Standards for Local and Metropolitan Area Networks:

Interoperable LAN/MAN Security (SILS),’’ 1998.

[4] IEEE 802.10c, ‘‘Supplements to IEEE Std 802.10, Interoperable LAN/MAN

Security (SILS): Key Management (Clause 3),’’ 1992.

[5] Valencia, A., M. Littlewood, and T. Kolar, ‘‘Cisco Layer Two Forwarding

(Protocol) L2F,’’ Request for Comments 2341, May 1998.

[6] Scott, C., P. Wolfe, and M. Erwin, Virtual Private Networks, 2nd ed., Sebastopol,

CA: O’Reilly & Associates, 1998.

148 Internet Security Protocols

[7] Brown, S., Implementing Virtual Private Networks, New York: McGraw-Hill,

1999.

[8] Hanks, S., et al., ‘‘Generic Routing Encapsulation (GRE),’’ Request for

Comments 1701, October 1994.

[9] Rand, D., ‘‘The PPP Compression Control Protocol (CCP),’’ Request for

Comments 1962, June 1996.

[10] Simpson, W., ‘‘PPP Challenge Handshake Authentication Protocol (CHAP),’’

Request for Comments 1994, August 1996.

[11] Meyer, G., ‘‘The PPP Encryption Control Protocol (ECP),’’ Request for

Comments 1968, June 1996.

[12] Blunk, L., and J. Vollbrecht, ‘‘PPP Extensible Authentication Protocol (EAP),’’

Request for Comments 2284, March 1998.

[13] Zorn, G., and S. Cobb, ‘‘Microsoft PPP CHAP Extensions,’’ Request for

Comments 2433, October 1998.

[14] Pall, G. S., and G. Zorn, ‘‘Microsoft Point-to-Point Encryption (MPPE)

Protocol,’’ Request for Comments 2118, April 1998.

[15] Schneier, B., and P. Mudge, ‘‘Cryptanalysis of Microsoft’s Point-to-Point

Tunneling Protocol,’’ Proceedings of ACM Conference on Communcations and

Computer Security, November 1998.

[16] Zorn, G., ‘‘Microsoft PPP CHAP Extensions, Version 2,’’ Request for Comments

2759, January 2000.

[17] Schneier, B., and P. Mudge, ‘‘Cryptanalysis of Microsoft’s PPTP Authentication

Extensions (MS-CHAPv2),’’ June 1999.

[18] Shea, R., L2TP: Implementation and Operation, Reading, MA: Addison-Wesley,

1999.

[19] Townsley, W., et al., ‘‘Layer Two Tunneling Protocol ‘L2TP’,’’ Request for

Comments 2661, August 1999.

[20] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

[21] Davie, B. S., and Y. Rekhter, MPLS: Technology and Applications, San Francisco,

CA: Morgan Kaufmann Publishers, 2000.

[22] Black, U., MPLS and Label Switching Networks, Englewood Cliffs, NJ: Prentice

Hall, 2001.

[23] Nelson, R., ‘‘SDNS Services and Architecture,’’ Proceedings of National Computer

Security Conference, 1987, pp. 153–157.

[24] ISO/IEC 11577, Information Technology—Telecommunications and Informa-

tion Exchange Between Systems—Network Layer Security Protocol, Geneva,

Switzerland, 1993.

5.6 Conclusions 149

[25] Ioannidis, J., and M. Blaze, ‘‘The Architecture and Implementation of

Network-Layer Security Under Unix,’’ Proceedings of the USENIX UNIX Security

Symposium IV, October 1993, pp. 29–39.

[26] Atkinson, R. J., ‘‘Security Architecture for the Internet Protocol,’’ Request for

Comments 1825, August 1995.

[27] Atkinson, R. J., ‘‘IP Authentication Header,’’ Request for Comments 1826,

August 1995.

[28] Atkinson, R. J., ‘‘IP Encapsulating Security Payload,’’ Request for Comments

1827, August 1995.

[29] Metzger, P., and W. Simpson, ‘‘IP Authentication Using Keyed MD5,’’ Request

for Comments 1828, August 1995.

[30] Karn, P., P. Metzger, and W. Simpson, ‘‘The ESP DES-CBC Transform,’’

Request for Comments 1829, August 1995.

[31] Atkinson, R. J., ‘‘Towards a More Secure Internet,’’ IEEE Computer, Vol. 30,

January 1997, pp. 57–61.

[32] Oppliger, R., ‘‘Security at the Internet Layer,’’ IEEE Computer, Vol. 31, No. 9,

September 1998, pp. 43–47.

[33] Kent, S., and R. Atkinson, ‘‘Security Architecture for the Internet Protocol,’’

Request for Comments 2401, November 1998.

[34] Kent, S., and R. Atkinson, ‘‘IP Authentication Header,’’ Request for Comments

2402, November 1998.

[35] Madson, C., and R. Glenn, ‘‘The Use of HMAC-MD5-96 Within ESP and AH,’’

Request for Comments 2403, November 1998.

[36] Madson, C., and R. Glenn, ‘‘The Use of HMAC-SHA-1-96 Within ESP and

AH,’’ Request for Comments 2404, November 1998.

[37] Madson, C., and N. Doraswamy, ‘‘The ESP DES-CBC Cipher Algorithm with

Explicit IV,’’ Request for Comments 2405, November 1998.

[38] Kent, S., and R. Atkinson, ‘‘IP Encapsulating Security Payload (ESP),’’ Request

for Comments 2406, November 1998.

[39] Glenn, R., and S. Kent, ‘‘The NULL Encryption Algorithm and Its Use with

IPsec,’’ Request for Comments 2410, November 1998.

[40] Piper, D., ‘‘The Internet IP Security Domain of Interpretation for ISAKMP,’’

Request for Comments 2407, November 1998.

[41] Maughan, D., et al., ‘‘Internet Security Association and Key Management

Protocol (ISAKMP),’’ Request for Comments 2408, November 1998.

[42] Harkins, D., and D. Carrel, ‘‘The Internet Key Exchange (IKE),’’ Request for

Comments 2409, November 1998.

150 Internet Security Protocols

[43] Thayer, R., and N. Doraswamy, ‘‘IP Security Document Roadmap,’’ Request

for Comments 2411, November 1998.

[44] Doraswamy, N., and D. Harkins, IPSec: The News Security Standard for the Internet,

Intranets, and Virtual Private Networks, Upper Saddle River, NJ: Prentice Hall,

1999.

[45] Kaufman, E., and A. Neuman, Implementing IPSec: Making Security Work on

VPNs, Intranets, and Extranets, New York: John Wiley & Sons, 1999.

[46] Frankel, S., Demystifying the IPsec Puzzle, Norwood, MA: Artech House, 2001.

[47] Bellovin, S. M., ‘‘Problem Areas for the IP Security Protocols,’’ Proceedings of the

6th USENIX Security Symposium, 1996, pp. 1–16.

[48] Bellovin, S. M., ‘‘Probable Plaintext Cryptanalysis of the IP Security

Protocols,’’ Proceedings of the Symposium on Network and Distributed System

Security, 1997, pp. 155–160.

[49] Oehler, M., and R. Glenn, ‘‘HMAC-MD5 IP Authentication with Replay

Prevention,’’ Request for Comments 2085, February 1997.

[50] Cheng, P. C., et al., ‘‘A Security Architecture for the Internet Protocol,’’ IBM

Systems Journal, Vol. 37, No. 1, 1998, pp. 42–60.

[51] Caronni, G., et al., ‘‘SKIP—Securing the Internet,’’ Proceedings of WET ICE ’96,

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises, June 1996, pp. 62–67.

[52] Karn, P., and W. Simpson, ‘‘Photuris: Session-Key Management Protocol,’’

Request for Comments 2522, March 1999.

[53] Karn, P., and W. Simpson, ‘‘Photuris: Extended Schemes and Attributes,’’

Request for Comments 2523, March 1999.

[54] Diffie, W., P. C. van Oorshot, and M. J. Wiener, ‘‘Authentication and

Authenticated Key Exchanges,’’ Designs, Codes and Cryptography, Norwell, MA:

Kluwer Academic Publishers, 1992, pp. 107–125.

[55] Krawczyk, H., ‘‘SKEME: A Versatile Secure Key Exchange Mechanism for

Internet,’’ Proceedings of Internet Society Symposium on Network and Distributed

System Security, February 1996.

[56] Orman, H., ‘‘The OAKLEY Key Determination Protocol,’’ Request for

Comments 2412, November 1998.

[57] McDonald, D., C. Metz, and B. Phan, ‘‘PF KEY Key Management API, Version

2,’’ Request for Comments 2367, July 1998.

[58] Nelson, R., ‘‘SDNS Services and Architecture,’’ Proceedings of National Computer

Security Conference, 1987, pp. 153–157.

[59] ISO/IEC 10736, Information Technology—Telecommunications and Information

Exchange Between Systems—Transport Layer Security Protocol, Geneva, Switzer-

land, 1993.

5.6 Conclusions 151

[60] Blaze, M., and S. M. Bellovin, ‘‘Session-Layer Encryption,’’ Proceedings of

USENIX UNIX Security Symposium, June 1995.

[61] Ylönen, T., ‘‘SSH—Secure Login Connections over the Internet,’’ Proceedings of

USENIX UNIX Security Symposium, July 1996.

[62] Barrett, D. J., and R. E. Silverman, SSH, the Secure Shell: The Definitive Guide,

Sebastopol, CA: O’Reilly & Associates: 2001.

[63] Eastlake, D., ‘‘Domain Name System Security Extensions,’’ Request for

Comments 2535, March 1999.

[64] Blaze, M., ‘‘A Cryptographic File System for UNIX,’’ Proceedings of ACM

Conference on Computer and Communications Security, November 1993, pp. 9–16.

[65] Blaze, M., ‘‘Key Management in an Encrypting File System,’’ Proceedings of

USENIX Summer Conference, June 1994, pp. 27–35.

[66] Howard, J. H., ‘‘An Overview of the Andrew File System,’’ Proceedings of

USENIX Conference, 1988, pp. 23–26.

[67] Rescorla, E., and A. Schiffman, ‘‘The Secure HyperText Transfer Protocol,’’

Request for Comments 2660, August 1999.

[68] Oppliger, R., Authentication Systems for Secure Networks, Norwood, MA: Artech

House, 1996.

[69] Oppliger, R., Secure Messaging with PGP and S/MIME, Norwood, MA: Artech

House, 2000.

[70] Eastlake, D., J. Reagle, and D. Solo, ‘‘XML-Signature Syntax and Processing,’’

Request for Comments 3075, March 2001.

[71] Saltzer, J. H., D. P. Reed, and D. D. Clark, ‘‘End-to-End Arguments in System

Design,’’ ACM Transactions on Computer Systems, Vol. 2, No. 4, November 1984,

pp. 277–288.

Author Query

AQ1 Correction not clear. When checked with "Abbreviation and

Acronyms" there seems to be no hyphen between the words

"metropolitan" "area"

152 Internet Security Protocols

WMcCaul
Author Query
AQ1 Correction not clear. When checked with "Abbreviation and
Acronyms" there seems to be no hyphen between the words
"metropolitan" "area"

SSL and TLS Protocols

A s mentioned in the previous chapter, there are two

transport layer security protocols that are of utmost

importance for the security of Web-based applications: the

SSL and TLS protocols. In this chapter, we elaborate on the two

protocols. More specifically, we overview and briefly discuss

the protocols in Sections 6.1 and 6.2, address SSL and TLS

certificates in Section 6.3, and elaborate on firewall traversal in

Section 6.4. Finally, we draw some conclusions in Section 6.5.

6.1 SSL Protocol

In this section, we elaborate on the history, architecture, two

subprotocols (i.e., the SSL Record Protocol and SSL Handshake

Protocol), security analysis, and implementations of the SSL

protocol.

6.1.1 History

In general, there are several possibilities to cryptographically

protect HTTP data traffic. For example, in the early 1990s the

CommerceNet1 consortium proposed S-HTTP that was basically

a security-specific enhancement of HTTP. An implementation

of S-HTTP was made publicly available in a modified version of

153

C H A P T E R

6
Contents

6.1 SSL Protocol1

6.2 TLS Protocol19

6.3 SSL and TLS certificates23

6.4 Firewall traversal26

6.5 Conclusions30

References
183

1. http://www.commerce.net

the NCSA Mosaic browser that users had to purchase (contrary to the

‘‘normal’’ NCSA Mosaic browser that was publicly and freely available on

the Internet).

At the same time, however, Netscape Communications introduced SSL

and a corresponding protocol with the first version of Netscape Navigator.2

Contrary to the CommerceNet consortium, Netscape Communications did

not charge its customers for the implementation of its security protocol.

Consequently, SSL became the predominant protocol to provide security

services for HTTP data traffic after 1994, and S-HTTP silently sank into

oblivion.

So far, there have been three versions of SSL:

1. SSL version 1.0 was used internally only by Netscape Communica-

tions. It contained some serious flaws and was never released in

public.

2. SSL version 2.0 was incorporated into Netscape Navigator versions

1.0 through 2.x. It had some weaknesses related to specific

incarnations of the man-in-the-middle attack. In an attempt to

leverage public uncertainty about SSL’s security, Microsoft also

introduced the competing Private Communication Technology (PCT)

Protocol in its first release of Internet Explorer in 1996.

3. Netscape Communications responded to Microsoft’s PCT challenge

by introducing SSL version 3.0 that addressed the problems in SSL

2.0 and added some new features. At this point, Microsoft backed

down and agreed to support SSL in all versions of its TCP/IP-based

software (although its own software still supports PCT for backward

compatibility).

The latest specification of SSL 3.0 was officially released in March 1996.3

It is implemented in all major browsers, including, for example, Microsoft

Internet Explorer 3.0 (and higher), Netscape Navigator 3.0 (and higher), and

Opera. As discussed later in this chapter, SSL 3.0 has also been adapted by

the IETF TLS WG. In fact, the TLS 1.0 protocol specification is a derivative of

2. On August 12, 1997, Netscape Communications was granted U.S. patent 5,657,390 entitled ‘‘Secure socket

layer application program apparatus and method’’ for the technology employed by the SSL protocol.

3. The SSL 3.0 specification was drafted by Alan O. Freier and Philip Karlton of Netscape Communications, as

well as Paul C. Kocher of Cryptography Research.

154 SSL and TLS Protocols

SSL 3.0. In the following two sections, we focus only on the SSL and TLS

protocols; the PCT protocol is not further addressed in this book.

6.1.2 Architecture

The architecture of SSL and the corresponding SSL protocol are illustrated in

Figure 6.1. According to this figure, SSL refers to an intermediate (security)

layer between the transport layer and the application layer. SSL is layered on

top of a connection-oriented and reliable transport service, such as provided

by TCP. It is conceptually able to provide security services for arbitrary TCP-

based application protocols, not just HTTP. As a matter of fact, one major

advantage of transport layer security protocols in general, and the SSL

protocol in particular, is that they are application-independent, in the sense

that they can be used to transparently secure any application protocol

layered on top of TCP. Figure 6.1 illustrates several exemplary application

protocols, including NSIIOP, HTTP, FTP, Telnet, IMAP, IRC, and POP3. They

can all be secured by layering them on top of SSL (the appended letter S in

the corresponding protocol acronyms indicates the use of SSL). Note,

however, that SSL has a strong client-server orientation and does not really

meet the requirements of peer application protocols.

In short, the SSL protocol provides communication security that has

three basic properties:

1. The communicating parties (i.e., the client and the server) can

authenticate each other using public key cryptography.

Figure 6.1 The architecture of SSL and the SSL protocol.

6.1 SSL Protocol 155

2. The confidentiality of the data traffic is protected, as the connection

is transparently encrypted after an initial handshake and session

key negotiation has taken place.

3. The authenticity and integrity of the data traffic is also protected, as

messages are transparently authenticated and integrity-checked

using MACs.

Nevertheless, it is important to note that SSL does not protect against

traffic analysis attacks. For example, by examining the unencrypted source

and destination IP addresses and TCP port numbers, or examining the

volume of transmitted data, a traffic analyst can still determine what parties

are interacting, what types of services are being used, and sometimes even

recover information about business or personal relationships. We have

already mentioned in this book that users generally consider the threat of

traffic analysis to be relatively low, and so the developers of SSL have not

attempted to address it, either. Furthermore, SSL does not protect against

attacks directed against the TCP implementation, such as TCP SYN flooding4

or session hijacking attacks.5

To use SSL protection, both the client and server must know that the

other side is using SSL. In general, there are three possibilities to address this

issue:

1. Use dedicated port numbers reserved by the Internet Assigned

Numbers Authority (IANA). In this case, a separate port number

must be assigned for every application protocol that uses SSL.

2. Use the normal port number for every application protocol, and to

negotiate security options as part of the (now slightly modified)

application protocol.

3. Use a TCP option to negotiate the use of a security protocol, such as

SSL, during the normal TCP connection establishment phase.

The application-specific negotiation of security options (i.e., the second

possibility) has the disadvantage of requiring each application protocol to be

modified to understand the negotiation process. Also, defining a TCP option

(i.e., the third possibility) would be a fine solution, but has not been

4. This attack requires the flooding of a TCP implementation with SYN messages.

5. This attack targets an endpoint of a TCP connection and tries to take over the connection.

156 SSL and TLS Protocols

TEAMFL
Y

Team-Fly®

seriously discussed so far. In practice, separate port numbers have been

reserved and assigned by the IANA for every application protocol that may

run on top of SSL or TLS (i.e., the first possibility).6 Note, however, that the

use of separate port numbers also has the disadvantage of requiring two TCP

connections if the client does not know what the server supports. First the

client must connect to the secure port, and then to the unsecure port, or vice

versa. It is very possible that future protocols will abandon this approach and

go for the second possibility. For example, the Simple Authentication and

Security Layer (SALS) defines a method for adding authentication support to

connection-based application protocols [1]. According to the SALS specifica-

tion, the use of authentication mechanisms is negotiable between the client

and server of a given application protocol. As of this writing, SALS is

primarily used to secure communications between IMAP4 clients and

servers. It is not clear at the moment whether SALS or similar mechanisms

will also be used to secure other application protocols.

The port numbers assigned by the IANA for application protocols that

run on top of SSL/TLS are summarized in Table 6.1 and partly illustrated in

Figure 6.1. Note that some acronyms for application protocols that run on

top of SSL/TLS have changed since publication of the first edition of this

book. Today, the ‘‘S’’ indicating the use of SSL is consistently appended

(postfixed) to the acronyms of the corresponding application protocols (in

some earlier terminologies, the S was inconsistently used and prepended

(prefixed) to some acronyms).

Table 6.1 Port Numbers Assigned for Application Protocols That Run on Top of

SSL/TLS

Keyword Port Description

nsiiops 261 IIOP name service over TLS/SSL

https 443 HTTP over TLS/SSL

smtps 465 SMTP over TLS/SSL (former ssmtp)

nntps 563 NNTP over TLS/SSL (former snntp)

ldaps 636 LDAP over TLS/SSL (former sldap)

ftps-data 989 FTP (data) over TLS/SSL

ftps 990 FTP (control) over TLS/SSL

telnets 992 TELNET over TLS/SSL

imaps 993 IMAP4 over TLS/SSL

ircs 994 IRC over TLS/SSL

pop3s 995 POP3 over TLS/SSL (former spop3)

6. http://www.isi.edu/in-notes/iana/assignments/port-numbers

6.1 SSL Protocol 157

In general, an SSL session is stateful and the SSL protocol must initialize

and maintain the state information on either side of the session. The

corresponding session state information elements, including a session ID,

a peer certificate, a compression method, a cipher spec, a master secret, and a

flag that indicates whether the session is resumable, are summarized in

Table 6.2. An SSL session can be used for several connections, and the

corresponding connection state information elements are summarized

in Table 6.3. They include cryptographic parameters, such as server and

client random byte sequences, server and client write MAC secrets, server

and client write keys, an initialization vector, and a sequence number. In

either case, it is important to note that communicating parties may use

multiple simultaneous SSL sessions and sessions with multiple simultaneous

connections.

As illustrated in Figure 6.1, the SSL protocol consists of two main parts,

the SSL Record Protocol and several SSL subprotocols layered on top of it:

Table 6.2 SSL Session State Information Elements

Element Description

Session ID Identifier chosen by the server to identify an active

or resumable session state

Peer certificate X.509 version 3 certificate of the peer entity

Compression method Algorithm used to compress data prior to encryption

Cipher spec Specification of the data encryption and MAC algorithms

Master secret 48-byte secret shared between the client and server

Is resumable Flag that indicates whether the session can be used

to initiate new connections

Table 6.3 SSL Connection State Information Elements

Element Description

Server and client random Byte sequences that are chosen by the server and client for

each connection

Server write MAC secret Secret used for MAC operations on data written by the server

Client write MAC secret Secret used for MAC operations on data written by the client

Server write key Key used for data encryption by the server and decryption

by the client

Client write key Key used for data encryption by the client and decryption

by the server

Initialization vector Initialization state for a block cipher in CBC mode. This field

is first initialized by the SSL Handshake Protocol

Thereafter, the final ciphertext block from each record is

preserved for use with the following record

Sequence number Each party maintains separate sequence numbers for

transmitted and received messages for each connection

158 SSL and TLS Protocols

w The SSL Record Protocol is layered on top of a connection-oriented and

reliable transport layer service, such as provided by TCP, and provides

message origin authentication, data confidentiality, and data integ-

rity services (including such things as replay protection).

w The SSL subprotocols are layered on top of the SSL Record Protocol to

provide support for SSL session and connection establishment

management.

The most important SSL subprotocol is the SSL Handshake Protocol. This

protocol, in turn, is an authentication and key exchange protocol that can be

used to negotiate, initialize, and synchronize security parameters and

corresponding state information located at either endpoint of an SSL session

or connection.

After the SSL Handshake Protocol has completed, application data can be

sent and received using the SSL Record Protocol and the negotiated security

parameters and state information elements. The SSL Record and Handshake

Protocols are overviewed next.

6.1.3 SSL Record Protocol

The SSL Record Protocol receives data from higher layer SSL subprotocols

and addresses data fragmentation, compression,7 authentication, and

encryption. More precisely, the protocol takes as input a data block of

arbitrary size, and produces as output a series of SSL data fragments (further

referred to as SSL records) of less than or equal to 214 � 1 ¼ 16; 383

bytes each.

The various steps of the SSL Record Protocol that lead from a raw data

fragment to an SSLPlaintext (fragmentation step), SSLCompressed (com-

pression step), and SSLCiphertext (encryption step) record are illustrated in

Figure 6.2. Finally, each SSL record contains the following information

fields:

w Content type;

w Protocol version number;

w Length;

7. Data compression as addressed by the SSL Record Protocol is not supported by the major SSL implementations

in use today.

6.1 SSL Protocol 159

w Data payload (optionally compressed and encrypted);

w MAC.

The content type defines the higher layer protocol that must be used to

subsequently process the SSL record data payload (after proper decompres-

sion and decryption). The protocol version number determines the SSL

version in use (typically 3.0). Each SSL record data payload is compressed

and encrypted according to the current compression method and cipher spec

defined for the SSL session. At the start of each SSL session, the compression

method and cipher spec are usually defined as null. They are both set during

the initial execution of the SSL Handshake Protocol. Finally, a MAC is

appended to each SSL record. It provides message origin authentication and

data integrity services. Similar to the encryption algorithm, the algorithm

that is used to compute and verify the MAC is defined in the cipher spec of

the current session state. By default, the SSL Record Protocol uses a MAC

construction that is similar but still different from the newer HMAC

construction specified in RFC 2104 [2]. There are three major differences

between the SSL MAC construction and the HMAC construction:

1. The SSL MAC construction includes a sequence number in the

message before hashing to protect against specific forms of replay

attacks.

2. The SSL MAC construction includes the record length.

3. The SSL MAC construction uses concatenation operators, whereas

the HMAC construction uses the addition modulo 2.

Figure 6.2 The SSL Record Protocol steps.

160 SSL and TLS Protocols

All these differences exist mainly because the SSL MAC construction

predates adoption of the HMAC construction in almost all Internet security

protocol specifications. The HMAC construction was also adopted for the

more recent TLS protocol specification.

As illustrated in Figure 6.1, several SSL subprotocols are layered on top

of the SSL Record Protocol. Each subprotocol may refer to specific types of

messages that are sent using the SSL Record Protocol. The SSL 3.0

specification defines the following three SSL protocols:

w Alert Protocol;

w Handshake Protocol;

w ChangeCipherSpec Protocol.

In short, the SSL Alert Protocol is used to transmit alerts (i.e., alert

messages) via the SSL Record Protocol. Each alert message consists of two

parts, an alert level and an alert description.

The SSL Handshake Protocol is the major SSL subprotocol. It is used to

mutually authenticate the client and the server and to exchange a session

key. As such, the SSL Handshake Protocol is overviewed and briefly

discussed in the following section.

Finally, the SSL ChangeCipherSpec Protocol is used to change between

one cipher spec and another. Although the cipher spec is normally changed

at the end of an SSL handshake, it can also be changed at any later point in

time.

In addition to these SSL subprotocols, an SSL Application Data Protocol

is used to directly pass application data to the SSL Record Protocol.

6.1.4 SSL Handshake Protocol

The SSL Handshake Protocol is the main SSL subprotocol that is layered on

top of the SSL Record Protocol. Consequently, SSL handshake messages are

supplied to the SSL record layer, where they are encapsulated within one or

more SSL records, which are processed and transmitted as specified by the

compression method and cipher spec of the current SSL session, and the

cryptographic keys of the corresponding SSL connection. The aim of the SSL

Handshake Protocol is to have a client and server establish and maintain

state information that is used to secure communications. More specifically,

the protocol is to have the client and server agree on a common SSL protocol

version, select the compression method and cipher spec, optionally

6.1 SSL Protocol 161

authenticate each other, and create a master secret from which the various

session keys for message authentication and encryption may be derived.

In short, an execution of the SSL Handshake Protocol between a client C

and a server S can be summarized as follows (the messages that are put in

square brackets are optional):

When the client C wants to connect to the server S, it establishes a TCP

connection to the HTTPS port (not included in the protocol description) and

sends a CLIENTHELLO message to the server in step 1 of the SSL Handshake

Protocol execution. The client can also send a CLIENTHELLO message in

response to a HELLOREQUEST message or on its own initiative to renegotiate

the security parameters of an existing connection. The CLIENTHELLO message

includes the following fields:

w The number of the highest SSL version understood by the client

(typically 3.0);

w A client-generated random structure that consists of a 32-bit

timestamp in standard UNIX format, and a 28-byte value generated

by a pseudorandom number generator;

w A session identity the client wishes to use for this connection;

w A list of cipher suites that the client supports;

w A list of compression methods that the client supports.

Note that the session identity field should be empty if no SSL session

currently exists or if the client wishes to generate new security

1 : C �! S : CLIENTHELLO

2 : S �! C : SERVERHELLO

[CERTIFICATE]

[SERVERKEYEXCHANGE]

[CERTIFICATEREQUEST]

SERVERHELLODONE

3 : C �! S : [CERTIFICATE]

CLIENTKEYEXCHANGE

[CERTIFICATEVERIFY]

CHANGECIPHERSPEC

FINISHED

4 : S �! C : CHANGECIPHERSPEC

FINISHED

162 SSL and TLS Protocols

parameters. In either case, a nonempty session identity field is to specify

an existing SSL session between the client and the server (i.e., a session

whose security parameters the client wishes to reuse). The session

identity may be from an earlier connection, this connection, or another

currently active connection. Also note that the list of supported cipher

suites, passed from the client to the server in the CLIENTHELLO message,

contains the combinations of cryptographic algorithms supported by the

client in order of preference. Each cipher suite defines both a key exchange

algorithm and a cipher spec. The server will select a cipher suite or, if no

acceptable choices are presented, return an error message and close the

connection accordingly. After having sent the CLIENTHELLO message, the

client waits for a SERVERHELLO message. Any other message returned by the

server except for a HELLOREQUEST message is treated as an error at this point

in time.

In step 2, the server processes the CLIENTHELLO message and responds

with either an error or SERVERHELLO message. Similar to the CLIENTHELLO

message, the SERVERHELLO message includes the following fields:

w A server version number that contains the lower version of that

suggested by the client in the CLIENTHELLO message and the highest

supported by the server;

w A server-generated random structure that also consists of a 32-bit

timestamp in standard UNIX format, and a 28-byte value generated

by a pseudorandom number generator;

w A session identity corresponding to this connection;

w A cipher suite selected by the server from the list of cipher suites

supported by the client;

w A compression method selected by the server from the list of

compression algorithms supported by the client.

If the session identity in the CLIENTHELLO message was nonempty, the

server looks in its session cache for a match. If a match is found and the

server is willing to establish the new connection using the corresponding

session state, the server responds with the same value as supplied by the

client. This indicates a resumed session and dictates that both parties must

proceed directly to the CHANGECIPHERSPEC and FINISHED messages as

addressed further below. Otherwise, this field contains a different value

identifying a new session. The server may also return an empty session

identity field to indicate that the session will not be cached and therefore

6.1 SSL Protocol 163

cannot be resumed later. Also note that in the SERVERHELLO message,

the server selects a cipher suite and a compression method from the lists

provided by the client in the CLIENTHELLO message. The key exchange,

authentication, encryption, and message authentication algorithms are

determined by the cipher suite selected by the server and revealed in the

SERVERHELLO message. The cipher suites that have been defined for the SSL

protocol are essentially the same as the ones that are specified for the TLS

protocol (as summarized in Tables 6.4 to 6.7).

In addition to the SERVERHELLO message, the server may also send other

messages to the client. For example, if the server is using certificate-based

authentication (which is currently almost always the case), the server sends

its site certificate to the client in a corresponding CERTIFICATE message. The

certificate must be appropriate for the selected cipher suite’s key exchange

algorithm, and is generally an X.509v3 certificate. The same message type

will be used later for the client’s response to the server’s CERTIFICATERequest

message. In the case of X.509v3 certificates, a certificate may actually refer

to an entire chain of certificates, ordered with the sender’s certificate first

followed by any CA certificates proceeding sequentially upward to a root CA

(that will be accepted by the client).

Next, the server may send a SERVERKEYEXCHANGE message to the client if

it has no certificate, a certificate that can be used only for verifying digital

signatures, or uses the FORTEZZA token-based key exchange algorithm

(KEA).8 Obviously, this message is not required if the site certificate

includes an RSA public key that can be used for encryption. Also, a

nonanonymous server can optionally request a personal certificate to

authenticate the client. It therefore sends a CERTIFICATERequest message to

the client. The message includes a list of the types of certificates requested,

sorted in order of the server’s preference, as well as a list of distinguished

names for acceptable CAs. At the end of step 2, the server sends a

SERVERHELLODone message to the client to indicate the end of the

SERVERHELLO and associated messages.

Upon receipt of the SERVERHELLO and associated messages, the client

verifies that the server site certificate (if provided) is valid,9 and checks that

the security parameters provided in the SERVERHELLO message are indeed

acceptable. If the server has requested client authentication, the client sends

8. Netscape Communications was paid a large amount of money by the NSA to include support for the

FORTEZZA KEA in the SSL protocol specification.

9. A server site certificate is considered to be valid if its server’s common name field entry matches the host part of

the URL the client wants to access.

164 SSL and TLS Protocols

a CERTIFICATE message that includes a personal certificate for the user’s

public key to the server in step 3. Next, the client sends a CLIENT-

KEYEXCHANGE message, whose format depends on the key exchange

algorithm selected by the server:

w If RSA is used for server authentication and key exchange, the client

generates a 48-byte premaster secret,10 encrypts it with the public

key found in the site certificate or the temporary RSA key from the

SERVERKEYEXCHANGE message, and sends the result back to the server

in the CLIENTKEYEXCHANGE message. The server, in turn, uses the

corresponding private key to decrypt the premaster secret. We will

return to this key exchange algorithm later in this section when we

talk about a specific attack.

w If FORTEZZA tokens are used for key exchange, the client derives a

token encryption key (TEK) using the KEA. The client’s KEA

calculation uses the public key from the server certificate along

with some private parameters in the client’s token. The client sends

public parameters needed for the server to also generate the TEK,

using its private parameters. It generates a premaster secret, wraps

it using the TEK, and sends the result together with some

initialization vectors to the server as part of the CLIENTKEYEXCHANGE

message. The server, in turn, can decrypt the premaster secret

accordingly. This key exchange algorithm is not widely used in

practice.

w If a Diffie-Hellman key exchange is performed, the server and client

exchange their public parameters as part of the SERVERKEYEXCHANGE

and CLIENTKEYEXCHANGE messages. Obviously, this is only required if

the Diffie-Hellman public parameters are not included in the site and

personal certificates. The negotiated Diffie-Hellman key can then be

used as premaster secret. Because a Diffie-Hellman key exchange

involves both parties in a key exchange, the resulting key exchange is

less vulnerable to weak pseudorandom number generators in client

software packages. Consequently, it is possible and very likely that

we will see more widespread use of the Diffie-Hellman key exchange

in the future.

10. The premaster secret is 48 bytes long and consists of 2 bytes specifying the protocol version and 46 bytes of

randomly generated data.

6.1 SSL Protocol 165

For the RSA, FORTEZZA, and Diffie-Hellman key exchanges, the same

algorithms are used to convert the premaster secret into a 48-byte master

secret (stored in the corresponding SSL session state), and to derive

session keys for encryption and message authentication from this master

secret. Nevertheless, some key exchange algorithms, such as the

FORTEZZA token-based key exchange, may also use their own procedures

for generating encryption keys. In this case, the master secret is only used

to derive keys for message authentication. The procedures to derive

master and session keys, as well as initialization vectors, are fully described

in the SSL protocol specification and are not further addressed in this

book.

If client authentication is required, the client also sends a CERTIFICATE-

VERIFY message to the server. This message is used to provide explicit

verification of the user’s identity based on the personal certificate. It is only

sent following a client certificate that has signing capability (all certificates

except those containing fixed Diffie-Hellman parameters). Finally, the client

finishes step 3 by sending a CHANGECIPHERSPEC message and a correspond-

ing FINISHED message to the server. The FINISHED message is always sent

immediately after the CHANGECIPHERSPEC message to verify that the key

exchange and authentication processes were successful. As a matter of fact,

the FINISHED message is the first message that is protected with the newly

negotiated algorithms and session keys. It can only be generated and

verified if these keys are properly installed on both sides. No acknowl-

edgment of the FINISHED message is required; parties may begin sending

encrypted data immediately after having sent the FINISHED message. The SSL

Handshake Protocol execution finishes up by also having the server send a

CHANGECIPHERSPEC message and a corresponding FINISHED message to the

client in step 4.

After the SSL handshake is complete, a secure connection is established

between the client and the server. This connection can now be used to send

application data that is encapsulated by the SSL Record Protocol. More

accurately, application data may be fragmented, compressed, encrypted, and

authenticated according to the SSL Record Protocol, as well as the session

and connection state information that is now established (according to the

execution of the SSL Handshake Protocol).

The SSL Handshake Protocol can be shortened if the client and server

decide to resume a previously established (and still cached) SSL session or

duplicate an existing SSL session. In this case, only three message flows and a

total of six messages are required. The corresponding message flows can be

summarized as follows:

166 SSL and TLS Protocols

TEAMFL
Y

Team-Fly®

In step 1, the client sends a CLIENTHELLO message to the server that

includes a session identity to be resumed. The server, in turn, checks its

session cache for a match. If a match is found, and the server is willing to

resume the connection under the specified session state, it returns a

SERVERHELLO message with the same session identity in step 2. At this point,

both the client and the server must send CHANGECIPHERSPEC and FINISHED

messages to each other in steps 2 and 3. Once the session reestablishment is

complete, the client and server can begin exchanging application data.

In summary, the SSL protocol can be used to establish secure TCP

connections between clients and servers. In particular, it can be used to

authenticate the server, to optionally authenticate the client, to perform a

key exchange, and to provide message authentication, as well as data

confidentiality and integrity services for arbitrary application protocols

layered on top of TCP. Although it may seem that not providing client

authentication goes against the principles that should be espoused by a

secure system, an argument can be made that the decision to optionally

support it helped SSL gain widespread use in the first place. Support for client

authentication requires public keys and personal certificates for each client,

and because SSL support for HTTP must be embedded in the corresponding

browser software, requiring client authentication would involve distributing

public keys and personal certificates to every user on the Internet. In the

short term, it was believed to be more crucial that consumers be aware of

with whom they are conducting business than to give the merchants the

same level of assurance. Furthermore, because the number of Internet

servers is much smaller than the number of clients, it is easier and more

practical to first outfit servers with the necessary-public keys and site

certificates. As of this writing, however, support for client-side public keys

and personal certificates is growing as people generally push the use of PKI

technologies.

6.1.5 Security analysis

A comprehensive security analysis of SSL 3.0 was performed by Bruce

Schneier and David Wagner in 1996 [3]. Except for some minor flaws and

1 : C �! S : CLIENTHELLO

2 : S �! C : SERVERHELLO

CHANGECIPHERSPEC

FINISHED

3 : S �! C : CHANGECIPHERSPEC

FINISHED

6.1 SSL Protocol 167

worrisome features that could be easily corrected without overhauling the

basic structure of the SSL protocol, they found no serious vulnerability or

security problem in their analysis. Consequently, they concluded that the

SSL protocol provides excellent security against eavesdropping and other

passive attacks, and that people implementing the protocol should be aware

of some sophisticated active attacks.

A few months later, however, Daniel Bleichenbacher from Bell

Laboratories found an adaptive chosen ciphertext attack against protocols

based on the public key cryptography standard (PKCS) #1 [4]. The attack was

published in 1998 [5]. In short, an RSA private key operation (a decryption

or digital signature operation) can be performed if the attacker has access to

an oracle that, for any chosen ciphertext, returns only 1 bit telling whether

the ciphertext corresponds to some unknown block of data encrypted using

PKCS #1.

To understand the Bleichenbacher attack, it is necessary to have a look at

PKCS #1. In fact, there are three block formats specified in PKCS #1: block

types 0 and 1 are used for RSA digital signatures, and block type 2 is used for

RSA encryption. Recall from our previous discussion that if the RSA algorithm

is used for server authentication and key exchange, the client randomly

generates a 46-byte premaster secret, prepends the two bytes 03 (the SSL

protocol version number) and 00 to the premaster secret, encrypts the result

using the public key of the server, and sends it in a CLIENTKEYEXCHANGE

message to the server. As such, the CLIENTKEYEXCHANGE message carrying

the encrypted premaster secret must conform to the format specified in

PKCS #1 block type 2. The format is illustrated in Figure 6.3.

Now, assume there is an attacker who can send an arbitrary number of

randomly looking messages to an SSL server, and the server responds for

each of these messages with a bit indicating whether a particular message is

correctly encrypted and encoded according to PKCS #1 (the server thus acts

as an oracle). Under this assumption, Bleichenbacher developed an attack to

illegitimately perform an RSA operation with the private key of the server

(either a decryption or a digital signature operation). When applied to

decrypt a premaster secret of a previously sent CLIENTKEYEXCHANGE message,

the attacker can rebuild the premaster secret and the session keys that are

Figure 6.3 PKCS #1 block format for encryption.

168 SSL and TLS Protocols

derived from it accordingly. Consequently, the attacker can then decrypt

the entire session (if he or she has monitored and stored the data stream of

that session).

The attack is primarily of theoretical interest. Note that experimental

results have shown that typically between 300,000 and 2 million chosen

ciphertexts are required to actually perform the (decryption or digital

signature) operation. To make things worse, the attack can only be launched

against an SSL server that is available on-line (since it must act as an oracle).

From the attacker’s point of view, it may be difficult to send this huge

number of chosen ciphertexts to the SSL server without causing the server

administrator to become suspicious.

There are several possibilities to protect against the Bleichenbacher

attack. First of all, it is not necessary for the server to respond with an error

message after having received a CLIENTKEYEXCHANGE message that does not

conform to PKCS #1. Another possibility is to change the PKCS #1 block

format for encryption and to remove the leading 00 and 02 bytes, as well as

the 00, 03, and 00 bytes in the middle of the message (as illustrated in

Figure 6.3). Finally, another possibility is to use plaintext-aware encryption

schemes, such as the one proposed by Mihir Bellare and Phillip Rogaway

[6], or any other public key cryptosystem that is provably secure against

adaptive chosen ciphertext attacks [7].11 For example, in the aftermath of

the publication of Bleichenbacher’s results, IBM launched a marketing

initiative to promote such a cryptosystem jointly developed by Ronald

Cramer and Victor Shoup [8].

Before Bleichbacher published his attack, he had been collaborating

with RSA Laboratories to update PKCS #1 and to specify a version 2 that is

secure against adaptive chosen ciphertext attacks [9]. Meanwhile, all major

vendors of SSL servers have incorporated and implemented PKCS #1 version

2 into their products. Unfortunately, PKCS #1 version 2 has also turned out

be be vulnerable against specific types of chosen ciphertext attacks [10].

6.1.6 Implementations

As of this writing, the SSL protocol is by far the most pervasive security

protocol for the Internet in general, and the WWW in particular. For

example, most banks that offer their services over the Internet have their

corresponding home banking client software based on SSL. This decision also

11. Note that plaintext awareness always implies security against chosen ciphertext attacks.

6.1 SSL Protocol 169

conforms to the strategic view of the European Committee for Banking

Standards (ECBS).12

There are many implementations of SSL.13 Examples include SSLref, a

reference implementation of SSL from Netscape Communications; SSLeay,

an internationally distributed implementation written by Eric Young in

Australia; and OpenSSL, an open source implementation of SSL.14 Last but

not least, there is an interesting software called Stunnel that can be used to

add SSL protection to existing TCP-based application servers in a UNIX

environment without requiring changes to the corresponding code. The

software can be invoked from the Internet daemon (i.e., inetd) as a

wrapper for any number of services or run standalone, accepting network

connections itself for a particular service. Refer to the Stunnel home page15

for further information about the software package.

In addition to these SSL implementations, most browsers and Web

servers have been modified to incorporate support for SSL. For example, the

Apache Web server has been modified to make use of SSLeay [11]. Typically,

Web servers that use SSL (or TLS) are called secure or commerce servers. Note,

however, that these servers are not necessarily more secure than any other

Web server; they just support SSL to secure the data traffic that is

transmitted between the client and the server. Most SSL-enabled products

support the RC4 algorithm for encryption and the MD2 and MD5 one-way

functions for hashing.

For obvious reasons, the use of SSL slows the speed of a browser

interacting with an HTTPS server. This performance degradation is in fact

noticeable by the user. It is primarily due to the public key encryption and

decryption operations that are required to initialize the SSL session and

connection state information elements. In practice, users experience an

additional pause of a few seconds between opening a connection to the

HTTPS server and retrieving the first HTML page from it. Because SSL is

designed to cache the master secret between subsequent sessions, this delay

affects only the first SSL connection between the browser and the server.

Compared with the session establishment, the additional overhead of

12. In May 1997, the ECBS published TR401 V1 entitled ‘‘Secure Banking over the Internet.’’ The document is

electronically available and can be downloaded from the home page of the ECBS at http://www.ecbs.org.

13. In the first edition of this book, the problem of using SSL- and TLS-enabled software products with limited

cryptographic strength was also addressed. Due to the liberalized U.S. export controls, this problem has become

obsolete in most parts of the world. Consequently, we are not going to repeat the discussion in this edition of

the book.

14. http://www.openssl.org

15. http://www.stunnel.org

170 SSL and TLS Protocols

encrypting and decrypting the data traffic using one of the supported

encryption algorithms, such as DES, RC2, or RC4, is practically insignificant

(and not necessarily noticeable by the user). Consequently, for users that

have a fast computer and a relatively slow network connection to an HTTPS

server, the overhead of SSL is insignificant, especially if a large amount of

data is sent afterward over the SSL session or over multiple SSL sessions that

use a shared master secret. However, administrators of very busy SSL servers

should consider getting either extremely fast computers or hardware

assistance for the public key operations.

6.2 TLS Protocol

Early in 1996, the IETF chartered a TLS WG within the security and transport

areas. The objective of the IETF TLS WG was to write Internet standards track

RFCs for a TLS protocol using the currently available specifications of SSL

(2.0 and 3.0), PCT (1.0), and SSH version 2 as a basis.16

Shortly before the IETF meeting in December 1996, a first TLS 1.0

document was released as an Internet-Draft. The document was essentially

the same as the SSL 3.0 specification. In fact, it was the explicit strategy of the

IETF TLS WG to have the TLS 1.0 specification be based on SSL 3.0, as

opposed to SSL 2.0, PCT 1.0, SSH version 2, or any other transport layer

security protocol proposal. At least three major modifications were suggested

for SSL 3.0 to be incorporated into TLS 1.0:

1. The HMAC construction developed in the IETF IPsec WG should be

adopted and consistently used in TLS 1.0.

2. The FORTEZZA token-based KEA should be removed from TLS

1.0, since it refers to a proprietary and unpublished technology.

Instead, a DSS-based key exchange mechanism should be included

in TLS 1.0.

3. The TLS Record Protocol and the TLS Handshake Protocol should be

separated out and specified more clearly in related documents.

After having adopted these modifications, the resulting TLS protocol was

specified in a series of Internet-Drafts. In January 1999, the TLS protocol

16. Note that at this point in time the SSH protocol had been investigated by the IETF TLS WG, and that the IETF

later chartered a SECSH WG to update and standardize the SSH protocol independently of the TLS protocol.

The SSH protocol is overviewed and discussed in Chapter 16.

6.2 TLS Protocol 171

version 1.0 was specified in RFC 2246 [12] and submitted to the Internet

standards track (as a Proposed Standard). The differences between TLS 1.0

and SSL 3.0 are not huge, but they are significant enough that TLS 1.0 and

SSL 3.0 do not easily interoperate. Nevertheless, TLS 1.0 does incorporate a

mechanism by which a TLS implementation can back down to SSL 3.0.

Similar to the SSL protocol, the TLS protocol is a layered protocol that

consists of a TLS Record Protocol and several TLS subprotocols layered on top

of it:

w On the lower layer, the TLS Record Protocol takes messages to be

transmitted, fragments them into manageable data blocks (so-called

TLS records), optionally compresses them, computes and appends a

MAC to each record, encrypts the result, and transmits it. Again,

similar to SSL, the resulting records are called TLSPlaintext,

TLSCompressed, and TLSCiphertext. A received TLSCiphertext

record, in turn, is decrypted, verified, decompressed, and reas-

sembled before it is delivered to the appropriate application protocol.

A TLS connection state is the operating environment of the TLS

Record Protocol. It specifies compression, encryption, and message

authentication algorithms, and determines parameters for these

algorithms, such as encryption and MAC keys and IVs for a

connection in both the read and write directions. There are always

four connection states in memory: the current read and write states

and the pending read and write states. All records are processed

under the current read and write states. The security parameters for

the pending states are set by the TLS Handshake Protocol, and the

handshake protocol selectively makes either of the pending states

current, in which case the appropriate current state is disposed of and

replaced with the pending state; the pending state is then reinitialized

to an empty state.

w On the higher layer, there are several TLS subprotocols layered on

top of the TLS Record Protocol. For example, the TLS Handshake

Protocol is used to negotiate session and connection information

elements that comprise a session identifier, a peer certificate, a

compression method, a cipher spec, a master key, and a flag whether

the session is resumable and can be used to initiate new connections.

These items are used to create security parameters for use by the TLS

Record Protocol when protecting application data. In addition, there

are a TLS Change Cipher Spec Protocol and a TLS Alert Protocol. Both are

similar to the corresponding SSL protocols (and are not further

addressed in this book).

172 SSL and TLS Protocols

After a TLS handshake has been performed, the client and server can

exchange application data messages. These messages are carried by the TLS

Record Protocol and fragmented, compressed, authenticated, and encrypted

accordingly. The messages are treated as transparent data to the TLS record

layer.

The cipher suites that are specified for TLS 1.0 are summarized in

Table 6.4.17 The key exchange and encryption mechanisms, as well as the

one-way hash function that are used in a particular cipher suite, are all encod-

ed in its name. For example, the cipher suite TLS RSA WITH RC4 128 MD5

uses RSA public key encryption for key exchange, RC4 with 128 bit session

keys for encryption, and MD5 for computing one-way hash function results.

Similarly, the cipher suite TLS DH DSS WITH 3DES EDE CBC SHA uses

Table 6.4 TLS 1.0 Cipher Suites As Specified in [12]

Cipher Suite

TLS_NULL_WITH_NULL_NULL

TLS_RSA_WITH_NULL_MD5

TLS_RSA_WITH_NULL_SHA

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

TLS_RSA_WITH_IDEA_CBC_SHA

TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_DSS_WITH_DES_CBC_SHA

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_RSA_WITH_DES_CBC_SHA

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_DSS_WITH_DES_CBC_SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

TLS_DHE_RSA_WITH_DES_CBC_SHA

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5

TLS_DH_anon_WITH_RC4_128_MD5

TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA

TLS_DH_anon_WITH_DES_CBC_SHA

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

17. More recently, the use of the AES has been specified in RFC 3268.

6.2 TLS Protocol 173

the Diffie-Hellman key exchange algorithm (DH) for key exchange, the digital

signature standard (DSS) to compute and verify digital signatures, Triple-DES

in CBC mode for encryption, and SHA-1 for computing one-way hash

function results. Consequently, a TLS cipher suite is always named

TLS X WITH Y Z, where X refers to the key exchange algorithm, Y to the

encryption algorithm, and Z to the one-way hash function that is being used.

The key exchange and encryption algorithms, as well as the one-way

hash functions that are specified in TLS 1.0, are itemized and further

explained in Tables 6.5 to 6.7. In Table 6.6, the type of a cipher indicates

whether it is a stream cipher or a block cipher running in CBC mode.

Similarly, the key length indicates the number of bytes that are used for

generating the encryption keys, whereas the expanded key length indicates

the number of bytes actually fed into the encryption algorithm. Finally, the

effective key bits measure how much entropy is in the key material being fed

into the encryption routine, and the IV size measures how much data needs

Table 6.5 TLS 1.0 Key Exchange Algorithms As Specified in [12]

Key Exchange Algorithm Description Key Size Limit

DHE_DSS Ephemeral DH with DSS signatures None

DHE_DSS_EXPORT Ephemeral DH with DSS signatures DH = 512 bits

DHE_RSA Ephemeral DH with RSA signatures None

DHE_RSA_EXPORT Ephemeral DH with RSA signatures DH = 512 bits

DH_anon Anonymous DH, no signatures None

DH_anon_EXPORT Anonymous DH, no signatures DH = 512 bits

DH_DSS DH with DSS-based certificates None

DH_DSS_EXPORT DH with DSS-based certificates DH = 512 bits

DH_RSA DH with RSA-based certificates None

DH_RSA_EXPORT DH with RSA-based certificates DH = 512 bits

NULL No key exchange N/A

RSA RSA key exchange None

RSA_EXPORT RSA key exchange RSA = 512 bits

Table 6.6 TLS 1.0 Encryption Algorithms As Specified in [12]

Cipher Type

Key

Length

Expanded

Key Length

Effective

Key Size [bits]

IV

Size

Block

Size

NULL Stream 0 0 0 0 N/A

IDEA_CBC Block 16 16 128 8 8

RC2_CBC_40 Block 5 16 40 8 8

RC4_40 Stream 5 16 40 0 N/A

RC4_128 Stream 16 16 128 0 N/A

DES40_CBC Block 5 8 40 8 8

DES_CBC Block 8 8 56 8 8

3DES_EDE_CBC Block 24 24 168 8 8

174 SSL and TLS Protocols

to be generated for the IV. All numbers except the effective key size are given

in bytes (i.e., 8 bits).

TLS 1.0 as specified in RFC 2246 [12] was submitted to the IESG for

consideration as a Proposed Standard for the Internet in January 1999.

Meanwhile, two other standards track RFC documents and have been

officially released by the IETF TLS WG:

w RFC 2712 specifies the addition of Kerberos Cipher Suites to TLS [14].

w RFC 2817 specifies how to upgrade to TLS Within HTTP/1.1 [15].

In addition, an informational RFC document specifies the use of HTTP

over TLS (i.e., HTTPS) [16]. Finally, there are various Internet-Drafts

specifying specific issues related to TLS or the use of TLS to secure TCP-based

application protocols. Refer to the home page of the IETF TLS WG for an

overview about the most recent developments and achievements.

6.3 SSL and TLS certificates

When Netscape Communications released its first version of Netscape

Navigator with SSL support, it was faced with a practical problem: the SSL

protocol required the existence of one or several CAs to make it work, but

there were no CAs offering their services to the general public. Conse-

quently, Netscape Communications turned to RSA Data Security, Inc.,

which had supplied the public key technology software on which Netscape

Navigator was actually based. For several years RSA Data Security, Inc. had

operated its own CA, called RSA Certification Services. The CA’s primary

reason for existence was to enable protocols that required certification

services. In 1995, RSA Data Security, Inc. spun off its certification services

division to a new company called VeriSign, Inc.18

Table 6.7 TLS 1.0 One-Way Hash Func-

tions As Specified in [13]

Hash Function Hash Size Padding Size

NULL 0 0

MD5 16 48

SHA 20 40

18. http://www.verisign.com

6.3 SSL and TLS certificates 175

Since then, each successive version of Netscape Navigator has added

technology to allow for creation of a marketplace for commercial CAs and

CA services. The first version contained a certificate for a single root CA. The

second version still came with support for only a single root CA, but allowed

other root CAs to be dynamically loaded with the user’s permission.

Netscape Navigator 3.0 came preloaded with certificates for 16 root CAs.

In addition, the browser also contained a user interface for viewing the

currently loaded certificates, deleting certificates, and adding more. The

number of preconfigured and loaded certificates has steadily increased in all

later releases of Netscape Navigator. This is equally true for all other

browsers, including, for example, Microsoft’s Internet Explorer and Opera.

In fact, certificate management becomes an inportant issue for the usability

of contemporary browsers.

For example, Figure 6.4 illustrates Microsoft Internet Explorer’s

Certificate Manager. There are basically four sets of certificates that can be

managed using the Certificate Manager:

Figure 6.4 Microsoft Internet Explorer’s Certificate Manager. (q 2002 Microsoft

Corporation.)

176 SSL and TLS Protocols

TEAMFL
Y

Team-Fly®

w Personal certificates;

w Other peoples’ certificates;

w Intermediate CAs’ certificates;

w Trusted root CAs’ certificates.

Personal certificates are certificates that belong to the current user of

the browser, whereas other peoples’ certificates belong to other people (as

the name suggests). Other peoples’ certificates are mainly used for secure

messaging (i.e., S/MIME). In addition, trusted root CAs’ and intermediate

CAs’ certificates are used to verify the certificates of both Web sites and

other people. Trusted root CAs’ certificates are implictly trusted by the user

because they come preloaded with the browser’s software distribution (i.e.,

the browser assumes that the user will trust these root CAs’ certificates,

without even asking him or her). This fact must be considered with care.

Other browsers use similar control panels and mechanisms to manage

personal and CA certificates. For example, Figure 6.5 illustrates Opera’s

Preferences panel. If a user presses the ‘‘Authorities...’’ button, he or she

comes to a screen where one can manage the certificates of trusted root CAs.

This screen is illustrated in Figure 6.6. Again, there is a long list of CAs that

Figure 6.5 The Preferences panel in the Opera 6.0 browser. (q 2002 Opera Software.)

6.3 SSL and TLS certificates 177

are configured to be trustworthy. The management of public key certificates

is further addressed in the following chapter.

6.4 Firewall traversal

As of this writing, SSL and TLS in general, and HTTPS in particular, are

widely used and deployed on the Internet and the WWW. Unfortunately,

the protocols do not easily interoperate with application gateways

(i.e., circuit-level gateways and application-level gateways). Note that an

SSL or TLS connection is always established on an end-to-end basis, and that

any application gateway or proxy server running at the firewall (between

the client and the origin server) must be considered to be a man-in-the-

middle. Also note that different protocols generally have different

Figure 6.6 The screen to manage CA certificates in the Opera 6.0 browser. (q 2002 Opera

Software.)

178 SSL and TLS Protocols

requirements for proxy servers. Consequently, firewall traversal represents

an important problem area for SSL and TLS.

In general, an application protocol can either be proxied or tunneled

through a proxy server:

w When we say that an application protocol is being proxied, we

actually mean that the corresponding proxy server is aware of the

specifics of the protocol and can understand what is happening on

the protocol level. This allows such things as protocol-level filtering,

access control, accounting, and logging. Examples of protocols that

are usually proxied include Telnet, FTP, and HTTP.

w Contrary to that, we say that an application protocol is being

tunneled when we actually mean that the corresponding proxy

server (which is basically acting as a circuit-level gateway) is not

aware of the specifics of the protocol and cannot understand what is

happening on the protocol level accordingly. It is simply relaying, or

tunneling, the data between the client and the server, and does not

necessarily understand the protocol being used. Consequently, it

cannot perform such things as protocol-level filtering, access control,

and logging to the same extent as is possible for a full-fledged proxy

server. Examples of protocols that are usually tunneled by proxy

servers or circuit-level gateways include SSL-enhanced protocols,

such as HTTPS, as well as the IIOP used in CORBA environments.

In an intranet environment, outbound SSL/TLS connections are often

tunneled, whereas inbound SSL/TLS connections are proxied most of the

times.

6.4.1 SSL/TLS tunneling

In an early attempt to address the problem of having SSL or HTTPS traffic

going through a proxy-based firewall, Ari Luotonen from Netscape

Communications proposed an SSL Tunneling Protocol that allows an HTTP

proxy server to act as a tunnel for SSL-enhanced protocols. The protocol

allows an SSL (or HTTPS) client to open a secure tunnel through an HTTP

proxy server that resides on a firewall. When tunneling SSL, the proxy server

must not have access to the data being transferred in either direction (for the

sake of confidentiality). The proxy server must merely know the source and

destination addresses (IP addresses and port numbers), and possibly, if the

proxy server supports user authentication, the name of the requesting user.

Consequently, there is a handshake between the browser and the proxy

6.4 Firewall traversal 179

server to establish the connection between the browser and the remote

server through the intermediate proxy server. To make the SSL tunneling

extension be backward compatible, the handshake must be in the same

format as normal HTTP/1.0 requests, so that proxy servers without support

for this feature can still determine the request as impossible for them to

service, and provide proper error notifications. As such, SSL tunneling is not

really SSL specific. It is rather a general way to have a third party establish a

connection between two endpoints, after which bytes are simply copied back

and forth by this intermediary.

The SSL Tunneling Protocol is simple and straightforward. It uses a

special HTTP method (i.e., CONNECT) and requires the browser to use this

method to connect to the remote server.19 More specifically, the browser

connects to the proxy server and uses the CONNECT method to specify the

hostname and the port number to connect to (the hostname and port

number are separated by a colon). The host:port part is then followed by a

space and a string specifying the HTTP version number (e.g., HTTP/1.0) and

the line terminator. After that, there is a series of zero or more HTTP request

header lines, followed by an empty line. Consequently, the first line of a

CONNECT request message may look as follows:

CONNECT www.esecurity.ch:443 HTTP/1.0

After having received this message, the proxy server ties to establish a

TCP connection to port 443 of www.esecurity.ch. If the server accepts the

connection, the proxy server acts as a relay between the browser and the

server. At this point in time, the browser and the server can start using SSL

or TLS to establish a secure connection between them.

The SSL tunneling handshake is freely extensible using arbitrary

HTTP/1.0 headers. For example, to enforce client authentication, the

proxy may use the 407 status code and the Proxy-authenticate response

header to ask the client to provide some authentication information to the

proxy. Consequently, the SSL tunneling sequence looks as follows:

HTTP/1.0 407 Proxy authentication required

Proxy-authenticate: ...

In this case, the client would send the required authentication

information in a message that looks as follows:

CONNECT www.esecurity.ch:443 HTTP/1.0

Proxy-authorization: ...

19. Meanwhile, the HTTP CONNECT method has become part of the HTTP specification.

180 SSL and TLS Protocols

Note that the CONNECT method provides a lower level function than

the other HTTP methods. Think of it as some kind of an escape mechanism

for saying that the proxy server should not interfere with the transaction, but

merely serve as a circuit-level gateway and forward the data stream. In fact,

the proxy server should not need to know the entire URL that is being

requested—only the information that is actually needed to serve the request,

such as the hostname and port number of the origin Web server.

Consequently, the proxy server cannot verify that the protocol being spoken

is really SSL, and the proxy server configuration should therefore explicitly

limit allowed (tunneled) connections to well-known SSL ports, such as 443

for HTTPS or 563 for NNTPS (the port numbers are assigned by the IANA). As

of this writing, SSL tunneling is supported by most HTTP proxy servers and

browsers that are commercially available, including Microsoft Internet

Explorer, Opera, and Netscape Navigator.

6.4.2 SSL/TLS proxy servers

As mentioned above, the primary use of SSL tunneling is to let internal

users within a corporate intranet access external HTTPS servers on the

Internet (in this case, it is seldom necessary to check the destination port

number, because outbound HTTP connections are allowed in most security

policies). Nevertheless, SSL tunneling can also be used in the opposite

direction, namely, to make internal HTTPS servers visible and accessible to

the outside world (to the users located on the Internet). In this case,

however, the proxy server acts as an inbound proxy20 for the SSL data

traffic. What this basically means is that HTTPS connections originating

from the outside world are simply relayed by the inbound proxy to the

internal HTTPS servers, where the requesting users should be strongly

authenticated. Therefore, the internal Web servers must implement the SSL

or TLS protocol. Unfortunately, this is not always the case and most internal

Web servers are still not SSL- or TLS-enabled (and do not represent HTTPS

servers accordingly). In this case, the inbound proxy must authenticate the

requesting clients and connect them to the appropriate internal Web

servers. To make this possible (and to make these servers visible to the

outside world), several SSL/TLS gateways or SSL/TLS proxy servers have

20. In the literature, inbound proxies are called reverse proxies most of the time. In this book, however, we use the

term inbound proxy, as there is no reverse functionality involved. In fact, a reverse proxy is doing nothing

differently than a normal proxy servers. The only difference is that it primarily serves inbound (instead of

outbound) connections.

6.4 Firewall traversal 181

been developed and are being marketed today. For example, a group of

researchers from the DEC Systems Research Center proposed the use of a

combination of SSL client authentication (at the inbound proxy) and URL

rewriting techniques in a technology called secure Web tunneling [16]. A

similar technology to access internal Web servers has been developed and

complemented with a one-time password system by a group of reseachrers

at AT&T Laboratories [17].21

A final word is necessary due to the fact that use of the SSL and TLS

protocols to secure (i.e., encrypt) HTTP data traffic also negatively influences

the usefulness of proxy servers for caching. If a resource is encrypted end-

to-end, it is encrypted in a way that is useful only for the server and one

particular client (i.e., the client that has requested the resource and holds

the corresponding session key). Consequently, there is no use in caching the

encrypted resource for other clients.

6.5 Conclusions

In this chapter, we focused on a pair of security protocols that have been

proposed for the transport layer. In particular, we overviewed and discussed

the SSL and TLS protocols. Given the current situation on the Internet

security market, it is possible and very likely that the TLS protocol will be

one of the most important security protocols for the Internet. This is

particularly true for the HTTP and the WWW. It is, however, also true for

other applications (protocols) layered on top of TCP. For example, one can

reasonably expect that future releases of software packages for Telnet,

FTP, SMTP, POP3, and IMAP4 will implement and support the TLS protocol

as well.

Both the SSL and the TLS protocols are layered on top of TCP. They

neither address nor meet the security requirements of applications and

application protocols that are layered on UDP. Unfortunately, there is an

increasingly large number of applications and application protocols layered

on UDP (e.g., protocols for real-time or multicast communications). For all

these applications and application protocols, the SSL and the TLS protocols

do not provide a viable solution. There are at least two conclusions one can

draw from this situation:

21. http://www.research.att.com/projects/absent

182 SSL and TLS Protocols

w There is room for further research to address the question of how

to secure UDP-based applications on the transport layer (e.g., a

preliminary study is done in [18]).

w There is room for security protocols that operate either below or

above the transport layer.

The second conclusion is particularly important, as it counters the

argument that all other security protocols have become obsolete with the

wide deployment of SSL/TLS. In the previous chapter, we overviewed and

discussed other secruity protocols that operate below or above the transport

layer.

References

[1] Myers, J., ‘‘Simple Authentication and Security Layer,’’ Request for

Comments 2222, October 1997.

[2] Krawczyk, H., M. Bellare, and R. Canetti, ‘‘HMAC: Keyed-Hashing for

Message Authentication,’’ Request for Comments 2104, February 1997.

[3] Wagner, D., and B. Schneier, ‘‘Analysis of the SSL 3.0 Protocol,’’ Proceedings of

2nd USENIX Workshop on Electronic Commerce, November 1996, pp. 29–40.

[4] Bleichenbacher, D., ‘‘Chosen Ciphertext Attacks Against Protocols Based on

the RSA Encryption Standard PKCS #1,’’ Proceedings of CRYPTO ’98, August

1998, pp. 1–12.

[5] RSA Data Security, Inc., PKCS #1: RSA Encryption Standard, Redwood City, CA,

November 1993.

[6] Bellare, M., and P. Rogaway, ‘‘Optimal Asymmetric Encryption,’’ Proceedings of

EUROCRYPT ’94, 1994, pp. 92–111.

[7] Bellare, M., et al., ‘‘Relations Among Notions of Security for Public-Key

Encryption Schemes,’’ Proceedings of CRYPTO ’98, August 1998.

[8] Cramer, R., and V. Shoup, ‘‘A Practical Public Key Cryptosystem Provably

Secure Against Adaptive Chosen Ciphertext Attack,’’ Proceedings of CRYPTO ’98,

August 1998, pp. 13–25.

[9] Kaliski, B., and J. Staddon, ‘‘PKCS #1: RSA Cryptography Specifications

Version 2.0,’’ Request for Comments 2437, October 1998.

[10] Manger, J., ‘‘A Chosen Ciphertext Attack on RSA Optimal Asymmetric

Encryption Padding (OAEP) as Standardized in PKCS#1 v2.0,’’ Proceedings of

CRYPTO ’01, August 2001, pp. 230–238.

6.5 Conclusions 183

[11] Laurie, B., and P. Lauried, Apache: The Definitive Guide, Sebastopol, CA: O’Reilly

& Associates, 1997.

[12] Dierks, T., and C. Allen, ‘‘The TLS Protocol Version 1.0,’’ Request for

Comments 2246, January 1999.

[13] Abadi, M., et al., ‘‘Secure Web Tunneling,’’ Proceedings of 7th International World

Wide Web Conference, April 1998, pp. 531–539.

[14] Medvinsky, A., and M. Hur, ‘‘Addition of Kerberos Cipher Suites to Transport

Layer Security (TLS),’’ Request for Comments 2712, October 1999.

[15] Khare, R., and S. Lawrence, ‘‘Upgrading to TLS Within HTTP/1.1,’’ Request for

Comments 2817, May 2000.

[16] Rescorla, E., ‘‘HTTP over TLS,’’ Request for Comments 2818, May 2000.

[17] Gilmore, C., D. Kormann, and A. D. Rubin, ‘‘Secure Remote Access to an

Internal Web Server,’’ Proceedings of ISOC Symposium on Network and Distributed

System Security, February 1999.

[18] Mittra, S., and T. Y. C. Woo, ‘‘A Flow-Based Approach to Datagram Security,’’

Proceedings of ACM SIGCOMM, September 1997.

184 SSL and TLS Protocols

Certificate Management
and Public Key Infrastructures

In Chapter 4, we introduced public key cryptography and the

notion of public key certificates. In Chapters 5 and 6, we then

used these certificates in cryptographic security protocols

without addressing the question on how to manage them and

how to establish and operate a public key infrastructure (PKI).

These questions are addressed in this chapter. More specifically,

we introduce the topic in Section 7.1, focus on public key cer-

tificates in Section 7.2, overview and discuss the work of the

relevant IETF Working Group (i.e., IETF PKIX WG) in Section

7.3, address certificate revocation in Section 7.4, elaborate on

certificates for the WWW in Section 7.5, and conclude with

some final remarks in Section 7.6. Further information about

the topic can be found in [1 – 3], Chapter 13 of [4], and Chapter

19 of [5]. Also, note that the topic is very dynamic and that you

are invited to use the sources for further information men-

tioned throughout the chapter to update yourself periodically.

7.1 Introduction

According to RFC 2828 [6], the term certificate refers to ‘‘a

document that attests to the truth of something or the

ownership of something.’’ Historically, the term was coined

and first used by Loren M. Kohnfelder to refer to a digitally

signed record holding a name and a public key [7]. As such, the

certificate attests to the legitimate ownership of a public key

185

C H A P T E R

7
Contents

7.1 Introduction1

7.2 Public key certificates3

7.3 IETF PKIX WG9

7.4 Certificate revocation12

7.5 Certificates for the WWW17

7.6 Conclusions21

References

and attributes a public key to a principal, such as a person, a hardware

device, or any other entity. As discussed in Chapter 4, the resulting

certificates are called public key certificates. They are used by many

cryptographic security protocols, such as IPsec and IKE, SSL/TLS, and

S/MIME. According to RFC 2828 [6], a public key certificate is a special type

of digital certificate, namely, one ‘‘that binds a system entity’s identity to a

public key value, and possibly to additional data items.’’ As such, it is a

digitally signed data structure that attests to the ownership of a public key.

More generally and in accordance with RFC 2828, a certificate can be

used not only to attest to the legitimate ownership of a public key (in the case

of a public key certificate), but also to attest to the truth of any property

attributable to a certificate owner. This more general class of certificates is

commonly referred to as attribute certificates and will be discussed in the

following chapter. In short, the major difference between a public key

certificate and an attribute certificate is that the former includes a public key

(i.e., the public key that is certified), whereas the latter includes a list of

attributes (i.e., the attributes that are certified). In either case, the

certificates are issued (and possibly revoked) by authorities that are

recognized and trusted by some community of users. In the case of public

key certificates, these authorities are called certification authorities (CAs).1 In

the case of attribute certificates, however, these authorities are called

attribute authorities (AAs).

In short, a PKI consists of one (or several) CA(s). According to RFC 2828

[6], a PKI is ‘‘a system of CAs that perform some set of certificate

management, archive management, key management, and token manage-

ment functions for a community of users’’ that employ public key

cryptography.2 Another way to look at a PKI is as an infrastructure that can

be used to issue, validate, and revoke public keys and public key certificates.

As such, a PKI comprises a set of agreed-upon standards, CAs, structures

among multiple CAs, methods to discover and validate certification paths,

operational and management protocols, interoperable tools, and supporting

legislation. In the past couple of years, PKIs have experienced a hype and

many companies and organizations have announced their intentions to

provide certification services to the general public. Unfortunately, only

1. In the past, CAs were often called trusted third parties (TTPs). This is particularly true for CAs that are operated

by government bodies.

2. The last part of the sentence is particularly important, because in the past many people felt like having to enter

the field of PKIs without having a legitimate reason to do so (if, for example, they are not using public key

cryptography in the first place).

186 Certificate Management and Public Key Infrastructures

TEAMFL
Y

Team-Fly®

a few of these companies and organizations have succeeded and actually

provide such services that can be taken seriously.

Many standardization bodies are working in the field of public key

certificates and PKIs. Most importantly, the Telecommunication Standardi-

zation Sector of the International Telecommunication Union (ITU-T) has

released and is periodically updating a recommendation that is commonly

referred to as ITU-T X.509 [8], or X.509 in short. Meanwhile, the ITU-T

recommendation X.509 has also been adopted by many other standardiza-

tion bodies, including, for example, the ISO/IEC JTC1 [9]. Furthermore,

many standardization bodies work in the field of profiling ITU-T X.509 for

specific application environments.3 For example, there is an IETF WG (i.e.,

the IETF PKIX WG) that is chartered to profile the use of ITU-T X.509 on the

Internet. Due to the existence of this IETF WG, the W3C is not actively

working in this field.

7.2 Public key certificates

There are several types and formats of public key certificates. All of them

contain at least the following three pieces of information:

w A public key;

w Some naming information;

w One or more digital signatures.

The public key is the raison d’êetre for the public key certificate in the first

place.

The naming information is used to identify the owner of the public key

certificate, such as his or her name. In the past, there has been some

confusion about the naming scheme that is appropriate for the global

Internet. For example, the ITU-T recommendation X.500 introduced the

notion of a distinguished name (DN) that can be used to uniquely identify

an entity (i.e., a public key certificate owner) in a globally unique

namespace. There are other examples of globally unique namespaces on

the Internet, the most prominent being the DNS. The existence and

usefulness of globally unique namespaces, however, has also been

3. To profile ITU-T X.509—or any general standard or recommendation—basically means to fix the details with

regard to a specific application environment. The result is a profile that elaborates on how to use and deploy

ITU-T X.509 in the environment.

7.2 Public key certificates 187

challenged in the past (e.g., [10]). Most important, the Simple Distributed

Security Infrastructure (SDSI) architecture and initiative [11] have evolved

from the argument that a globally unique namespace is not appropriate for

the global Internet, and that logically linked local namespaces provide a

simpler and more realistic model [12]. As such, work on SDSI inspired

establishment of a Simple Public Key Infrastructure (SPKI) WG within the

IETF. The WG was tasked with producing a certificate infrastructure and

operating procedure to meet the needs of the Internet community for trust

management in as easy, simple, and extensible a way as possible. It

published a pair of experimental RFC documents [13, 14] before its activities

were abandoned in 2001.

Finally, the digital signature(s) is (are) used to attest to the fact that the

other two items (i.e., the public key and the naming information) actually

belong together. This part of a public key certificate turns the certificate into

something useful.

As of this writing, there are two practically relevant formats for public

key certificates4: Certificates used for Pretty Good Privacy (PGP) or OpenPGP

(i.e., PGP certificates) and certificates that conform to the ITU-T recommen-

dation X.509 (i.e., X.509 certificates) and are used for many contemporary

security protocols and applications. They use different certificate formats and

trust models.5

7.2.1 PGP certificates

PGP is used and deployed for secure messaging on the Internet. It refers to

both a standard and a software package. As mentioned above, PGP uses a

special certificate format and a cumulative trust model.

The distinguishing feature of the PGP certificate format is that it allows

potentially multiple user identities (user IDs) and signatures per certificate.

What this basically means is that a PGP certificate is issued for a public key

and that multiple user IDs can be associated with this key. Furthermore,

multiple signatures can certify the fact that a specific user ID is associated

4. There are also other certificate formats, such as the format for certificates that conform to the Wireless

Transport Layer Security (WTLS) specifications that is used to secure the Wireless Application Protocol (WAP).

Due to the uncertain future of WAP and WTLS, we don’t look at these certificates in this book.

5. The term trust model refers to the set of rules a system or application uses to decide whether a certificate is valid.

In the direct trust model, for example, a user trusts a public key certificate because he or she knows where it

came from and considers this entity as trustworthy. In addition to the direct trust model, there is a cumulative

trust model (employed, for example, by PGP certificates) and a hierarchical trust model (employed, for

example, by ITU-T X.509 certificates).

188 Certificate Management and Public Key Infrastructures

with the public key. Consequently, there is a one-to-many relationship

between the public key of a PGP certificate and the user IDs associated with

it, and there is another one-to-many relationship for each of these user IDs

and the signatures that are associated with it. Contrary to that, we will see

below that the X.509 certificate format is much simpler. It allows only one

user ID associated with a public key and one signature that certifies this

association. The situation is illustrated in Figure 7.1. The left side illustrates

the structure of a PGP certificate, whereas the right side illustrates the

structure of an X.509 certificate.

Technically spoken, a PGP certificate is a data structure that includes the

following fields:

w Version number: This field is used to identify which version of PGP was

used to create the public key pair (of which the public key is

associated with the certificate).

w Public key: This field is used to hold the public key and a

corresponding algorithm identifier (i.e., RSA, Diffie-Hellman, or

DSS).

w Certificate owner information: This field is used to hold identity

information about the certificate owner and the holder of the

corresponding private key. As discussed above, it may include several

identities and signatures.

w Self-signature: This field is used to hold a self-signature for the

certificate. As its name suggests, a self-signature is generated by the

certificate owner using the private key that corresponds to the public

key associated with the certificate. Note that X.509 certificates

Figure 7.1 The structures of PGP and X.509 certificates.

7.2 Public key certificates 189

normally do not include self-signatures (they include self-signatures

only in the case of root CA certificates).

w Validity period: This field is used to determine the start and expiration

date and time of the certificate. As such, it specifies the certificate’s

validity period or lifetime.

w Preferred encryption algorithm: This field is used to identify the

encryption algorithm of choice for the certificate owner (e.g.,

CAST, IDEA, or 3DES).

One may think of a PGP certificate as a public key with one or more

labels attached to it. For example, several user identifiers (user IDs) may be

attached to a PGP certificate or public key, each of which contains different

means of identifying the certificate owner (e.g., the certificate owner’s name

and corporate e-mail address or the certificate owner’s first name and private

e-mail address). Typically, a user ID includes the name of the user and one of

his e-mail addresses put in angle brackets (< >), such as Rolf Oppliger

<rolf.oppliger@esecurity.ch>. Also, one or several photographs may be

attached to a PGP certificate or public key to simplify visual authentication

processes. Again, this is a feature that is not known and does not exist in

standard X.509 certificates.

In addition to their specific format, PGP certificates use a cumulative

trust model. This basically means that there is no central CA that is trusted by

every user, but that every user can decide for himself or herself whom to

trust. More specifically, the association of a user ID with a PGP certificate or

public key may be testified by one or several people, each of them generating

a digital signature that is attached to the corresponding user ID in the PGP

certificate. In fact, many people may sign a PGP certificate to attest to their

own assurance that the public key included in the certificate actually belongs

to the claimed user ID. The more people who sign a certificate, the more

likely it will be trusted by somebody else. The resulting certification and trust

infrastructure is highly distributed. It is sometimes also called a web of trust.

The PGP web of trust is discussed in many references and books, including,

for example, Chapter 8 of [4].

7.2.2 X.509 certificates

The ITU-T recommendation X.509 specifies both a certificate format and a

certificate distribution scheme [8]. It was first published in 1988 as part of the

X.500 directory recommendations. The X.509 version 1 (X.509v1) format

was extended in 1993 to incorporate two new fields, resulting in the X.509

190 Certificate Management and Public Key Infrastructures

version 2 (X.509v2) format. In addition, and as a result of attempting to

deploy certificates within the global Internet, X.509v2 was revised to allow

for additional extension fields. The resulting X.509 version 3 (X.509v3)

specification was officially released in June 1996. Meanwhile, the ITU-T

recommendation X.509 has been approved by the ISO/IEC JTC1 [9].

The format of an X.509v3 certificate is specified in abstract syntax

notation one (ASN.16) and the resulting certificates are encoded according to

specific encoding rules7 to produce a series of bits and bytes suitable for

transmission. Anyway, an X.509 public-key certificate contains the follow-

ing 10 data items:

1. A version number (identifying version 1, version 2, or version 3);

2. A serial number (i.e., a unique integer value assigned by the issuer);

3. An object identifier (OID) that specifies the signature algorithm that

is used to sign the public key certificate;

4. The DN of the issuer (i.e., the name of the CA that actually signed

the certificate);

5. A validity period that specifies an interval in which the certificate is

valid;

6. The DN of the subject (i.e., the owner of the certificate);

7. Information related to the public key of the subject (i.e., the key and

the OID of the algorithm);

8. Some optional information related to the issuer (defined for

versions 2 and 3 only);

9. Some optional information related to the subject (defined for

versions 2 and 3 only);

10. Some optional extensions (defined for version 3 only).

All three versions of X.509 certificates contain the items 1 through 7

listed. Only version 2 and version 3 certificates may additionally contain

items 8 and 9, whereas only version 3 may contain item 10.

6. ASN.1 is officially specified in ITU-T X.680 and ISO/IEC 8824.

7. There are three standardized encoding rules, namely the basic encoding rules (BER), the distinguished

encoding rules (DER), and the packet encoding rules (PER). Obviously, anybody can specify and use his or her

own set of encoding rules.

7.2 Public key certificates 191

The trust model employed by ITU-T X.509 is hierarchical.8 This basically

means that a user must define a number of root CAs and corresponding root

certificates (i.e., certificates that are trusted by default) from which trust may

extend. Typically, a root certificate is self-signed, meaning that the root CA

has issued its own certificate (i.e., the subject and issuer are identical). Note

that from a theoretical point of view, self-signed certificates are not

particularly useful. Anybody can claim something and issue a certificate

for this claim. Consequently, a self-signed certificate basically says here is my

public key; trust me.

Having established a number of root CAs and corresponding root

certificates, a user can try to find a certification path (or certification chain) that

leads from a root certificate to a leaf certificate (i.e., a certificate that is

issued for a user or system). Formally speaking, a certification path or chain

is defined in a tree or wood of CAs (root CAs and intermediate CAs) and

refers to a sequence of one or more certificates that lead from a root

certificate to a leaf certificate. Each certificate certifies the public key of its

successor. Finally, the leaf certificate is typically issued for a person or a

system. Let’s assume that CAroot is a root certificate and B is an entity for

which a certificate must be verified. In this case, a certification path or chain

with n intermediate CAs (i.e., CA1, CA2, . . ., CAn) would look as follows:

CAroot p CA1q

CA1 p CA2q

CA2 p CA3q

. . .

CAn�1 p CAnq

CAn p Bq

The simplest model one may think of is a certification hierarchy

representing a tree with a single root CA. However, more general structures

and graphs (including mutually certifying CAs, cross-certificates, and

multiple root CAs) are possible, as well. A PKI structure or graph among

multiple CAs generally provides one or more certification paths between two

entities.

8. Note, however, that ITU-T X.509 does not embody a hierarchic trust model. The existence of cross-certificates, as

well as forward and reverse certificates, makes the X.509 model a mesh, analogous in some ways to PGP’s web of

trust. The X.509 model is often erroneously characterized as a hierarchic trust model because it is usually mapped

to the directory information tree (DIT), which is hierarchic, more like name schemes.

192 Certificate Management and Public Key Infrastructures

ITU-T X.509 can be used in many ways. Consequently, every nontrivial

group of users who want to work with X.509 certificates has to produce a

profile that nails down the features that are left undefined in X.509. The

difference between a specification (i.e., ITU-T X.509) and a profile is that a

specification does not generally set any limitations on which combinations

can and cannot appear in various certificate types, whereas a profile sets

various limitations, for example, by requiring that signing and confidenti-

ality keys be different. Many profiling activities are currently going on with

regard to the legislation of digital and electronic signatures. We overview and

address the profiling activities of the IETF next.

7.3 IETF PKIX WG

In 1995, the IETF recognized the importance of public key certificates, and

chartered an IETF Public-Key Infrastructure X.509 (PKIX9) WG with the

intent of developing Internet Standards needed to support an X.509-based

PKI for the Internet community.10 In the past, the IETF PKIX WG has

initiated and stimulated a lot of standardization and profiling activities

within the IETF. It is closely aligned with the activities within the ITU-T.

The operational model of the IETF PKIX WG consists of end entities,11

CAs, and registration authorities (RAs).12 The functions that the RA may carry

out will vary from case to case but may include personal authentication,

token distribution, certificate revocation reporting, name assignment, key

generation, and key archival. In fact, a CA can delegate some of its

authorities (apart from certificate signing) to an RA. Consequently, RAs are

optional components that are transparent to the end entities. Finally, the

certificates generated by the CAs may be made available in on-line

directories and certificate repositories.13

9. http://www.ietf.org/html.charters/pkix-charter.html

10. In addition to the PKIX WG, the IETF also chartered another WG to address PKI issues. As mentioned above,

this WG was called IETF Simple Public Key Infrastructure (SPKI) WG and was abandoned in 2001.

11. In the specifications of the IETF PKIX WG, the term end entity is used rather than the term subject to avoid

confusion with the X.509v3 certificate field of the same name.

12. Other terms are used elsewhere for the functionality of an RA. For example, the term local registration agent

(LRA) is used in ANSI X9 standards, local registration authority (also with the acronym LRA) is used in [3],

organizational registration agent (ORA) is used in certain U.S. government specifications, and registration agent

(RA) has also been used elsewhere.

13. The term certificate repositories is often used in the RFC documents of the IETF PKIX WG. Therefore, it is also

used in this book.

7.3 IETF PKIX WG 193

According to this operational model, several informational, experimen-

tal, and standards track RFC documents in support of the original goals of

the IETF PKIX WG have been approved by the IESG:

w Standards track RFC 2459 [15] profiles the format and semantics of

X.509v3 certificates and X.509v2 certificate revocation lists (CRLs14)

for use on the Internet. As such, it describes in detail the X.509v3

certificate format and its standard and Internet-specific extension

fields, as well as the X.509v2 CRL format and a required extension

set. Finally, the RFC also describes an algorithm for X.509 certificate

path validation and provides ASN.1 specifications for all data

structures that are used in the profiles.

w Standards track RFC 2510 [16] describes the various certificate

management protocols that are supposed to be used in an X.509-

based PKI for the Internet.

w More specifically, standards track RFC 2511 [17] specifies the syntax

and semantics of the Internet X.509 certificate request message

format (CRMF) that is used to convey a request for a certificate to a

CA (possibly via an RA) for the purpose of X.509 certificate

production. The request typically includes a public key and some

related registration information.

w Informational RFC 2527 [18] presents a framework to assist writers of

certificate policies and certificate practice statements (CPS) for CAs

and PKIs. More specifically, the framework provides a comprehen-

sive list of topics that potentially need to be covered in a certificate

policy definition or CPS. Note that the framework needs to be

customized in a particular operational environment.

w Informational RFC 2528 [19] profiles the format and semantics of the

field in X.509v3 certificates containing cryptographic keys for the

Key Exchange Algorithm (KEA).15

w Standards track RFC 2559 [20] addresses requirements to provide

access to certificate repositories for the purpose of retrieving PKI

information and managing that information. The mechanism is based

14. The notion of a CRL will be introduced and discussed in Section 7.4.1.

15. The KEA is a key exchange algorithm that was originally proposed by NIST for use together with the Skipjack

encryption algorithm in Clipper and Fortezza chips. Refer to http://csrc.nist.gov/encryption/skipjack-

kea.html for specification of the Skipjack and KEA algorithms.

194 Certificate Management and Public Key Infrastructures

on the Lightweight Directory Access Protocol (LDAP) as specified in

RFC 1777 [21], defining a profile of LDAP for use within the X.509-

based PKI for the Internet. In addition, RFC 2587 [22] defines a

minimal schema to support PKIX in an LDAPv2 environment, as

defined in RFC 2559.

w Standards track RFC 2585 [23] specifies the conventions for using

FTP and HTTP to obtain certificates and CRLs from certificate

repositories.

w Standards track RFC 2560 [24] specifies an Online Certificate Status

Protocol (OCSP) that is useful in determining the current status of a

digital certificate.

w Standards track RFC 2797 [25] specifies a certificate management

protocol using the cryptographic message syntax (CMS). The

resulting protocol has the acronym CMC.

w Standards track RFC 2875 [26] specifies two methods for producing

an integrity check value from a Diffie-Hellman key pair.16

w Standards track RFC 3039 [27] forms a certificate profile for qualified

certificates,17 based on RFC 2459, for Internet use.

w The experimental RFC 3029 [28] describes a general data validation

and certification server (DVCS) and the protocols to be used when

communicating with it. In short, the DVCS is a TTP that can be used

as one component in building reliable nonrepudiation services. It is

designed to provide data validation services, asserting correctness of

digitally signed documents, validity of public key certificates, and

possession or existence of data. As a result of a validation process, the

DVCS generates a data validation certificate (DVC).

w Finally, standards track RFC 3039 [29] elaborates on a Time-Stamp

Protocol that can be used to provide a time stamping service. More

specifically, it specifies the format of a request sent to a Time

Stamping Authority (TSA) and of the response that is eventually

returned.

16. This behavior is needed for such operations as creating the signature of a PKCS #10 certification request. These

algorithms are designed to provide proof of possession rather than general-purpose signing.

17. The term qualified certificate is used to describe a certificate with a certain qualified status within applicable

governing law.

7.3 IETF PKIX WG 195

In summary, the RFC documents itemized above specify an X.509-based

PKI for the Internet community. This evolving PKI is sometimes also referred

to as Internet X.509 Public Key Infrastructure (IPKI). As of this writing, the RFC

documents that specify the IPKI refer to Proposed Standards.

The number of RFC documents that specify various aspects of the IPKI

will certainly grow in the future, since a lot of work is done to further refine

the IPKI and its operational protocols and procedures. In fact, the number of

RFC documents specifying the IPKI will certainly have increased by the time

you read this book. Refer to the IETF PKIX WG home page to get a complete

and more comprehensive overview about the RFC and Internet-Draft

documents that are currently available. The current trend in the industry is

to make commercial PKI products ‘‘PKIX compliant,’’ and this trend is likely

to continue in the future.

7.4 Certificate revocation

According to RFC 2828 [6], certificate revocation refers to ‘‘the event that

occurs when a CA declares that a previously valid digital certificate issued by

that CA has become invalid.’’ In practice, there are many reasons that may

require certificate revocation. For example, a user’s or a CA’s private key

may be compromised, or a user may no longer be registered and certified by a

particular CA.

In general, certification and revocation of certification involve three

different parties:

w The certificate-issuing authority, such as the CA or attribute

authority (AA);

w The certificate repository, such as a networked directory service

(which may be replicated several times);

w The users of certificates.

In this setting, the certificate-issuing authorities do not necessarily

provide on-line certificate status information about the certificates they have

issued to users. Instead, they may operate off-line and update the certificate

repositories only on a periodic basis. The certificate repositories, in turn, may

operate on-line to be permanently available and accessible to the users. In

general, it must be assumed that the certificate-issuing authorities are

trusted, whereas the certificate repository and the users may not be. A user

who contacts the certificate repository does not only want to retrieve

196 Certificate Management and Public Key Infrastructures

TEAMFL
Y

Team-Fly®

a certificate, but also may want to get some kind of proof of validity for the

certificates he or she retrieves.

From a theoretical point of view, there are four approaches to certificate

revocation:

1. Having certificates expire automatically after a certain amount of

time and requiring periodic renewals of certificates;

2. Listing all nonrevoked certificates in an on-line certificate reposi-

tory, and accepting only certificates that are found there;

3. Having all certificate-issuing authorities periodically issue lists that

itemize all certificates that have been revoked and should no longer

be used;

4. Providing an on-line certificate status checking mechanism that

informs users whether a specific certificate has been revoked.

Note that the approaches are not mutually exclusive, but can be

combined to develop more efficient or more effective certificate revocation

schemes. Also note that all approaches have advantages and disadvantages.

For example, the first approach has the advantage of not requiring explicit

certificate revocation (because the certificates expire after a certain amount

of time). The disadvantages of this approach are due to the fact that

certificate expiration only provides a slow revocation mechanism, and

that it depends on servers’ having accurate clocks. Someone who can trick

a server into turning back its local clock can still use expired certificates

(the security of the certificate revocation mechanism thus depends on the

security of the timing service). Similarly, the second approach has the

advantage that it is almost immediate, whereas the disadvantages are that

the availability of authentication is only as good as the availability of the

certificate repository, and that the security of the certificate revocation

mechanism as a whole is only as good as the security of the certificate

repository. Furthermore, users tend to cache certificates they have

retrieved from the directory service for performance reasons, and the use

of such a cache actually defeats the original purpose of the certificate

repository (i.e., to provide timely status information). The third approach

has the advantage that it is simple and straightforward, whereas the

disadvantages are that the lists must be retrieved and taken into account

and that the revocation of a certificate is enforced only after the publication

and distribution of the next list. Finally, the fourth approach is immediate

and provides a high level of security, but also reintroduces an on-line

component.

7.4 Certificate revocation 197

For all practical purposes, the first and second approaches are the ones

that are being followed for the revocation of attribute certificates, whereas

the third and fourth approaches are the ones that are being followed for the

revocation of public key certificates. For example, the ITU-T recommenda-

tion X.509 follows the third approach for the revocation of public key

certificates.18 More specifically, it recommends that each CA periodically

issue a certificate revocation list (CRL) that itemizes all certificates that have

been revoked and should no longer be used. The CRLs can be pushed or

pulled by the communicating peers:

w If a CRL is pushed, the initiating peer (e.g., the client) provides the

currently valid CRL to the responding peer (e.g., the server).

w Contrary to that, if a CRL is pulled, the responding peer retrieves the

CRL from the certificate-issuing authority.

Applications that use certificates can either use the push model, the pull

model, or both. For example, IKE, SSL/TLS, and S/MIME are all protocols

that can push CRLs rather than requiring CRL retrieval from a repository.

In addition to the use of CRLs as proposed in the ITU-T recommendation

X.509, the IETF PKIX WG is also following the fourth approach and has

specified an Online Certificate Status Protocol (OCSP) in standards track RFC

2560 [24] and a complementary DVCS in experimental RFC 3029 [28]. CRLs

and OCSP are further addressed in the rest of this section. Afterward, we

mention some alternative certificate revocation schemes that are primarily

of theoretical interest.

7.4.1 CRLs

The classical and simplest solution to the certificate revocation problem is the

use of CRLs. As mentioned above, this approach is followed in the ITU-T

recommendation X.509 [8] and ISO/IEC 9594-8 [9]. In this approach, a CA

periodically issues and digitally signs a message that lists all certificates that

have been revoked and should no longer be used. This message is called a

CRL and it is made available through the certificate repository. In addition to

the revoked certificates, a CRL generally indicates the date and time of the

next issue.

18. The X.509 CRL format is an ITU-T and ISO/IEC standard, first published in 1988 as version 1 (X.509v1 CRL).

Similar to the ITU-T X.509 certificate format, the X.509v1 CRL was subsequently modified to allow for

extension fields, resulting in the X.509 version 2 CRL (X.509v2 CRL) format.

198 Certificate Management and Public Key Infrastructures

Users who want to make sure that a particular certificate has not been

revoked must query the certificate repository and retrieve the latest CRL. If

the CRL does not include the certificate, the user can assume that the

certificate has not been revoked (at least since the time the CRL was issued

and digitally signed).

If a CRL is becoming too large, the use of delta CRLs may be appropriate.

In short, a delta CRL lists all certificates that have been revoked and should

no longer be used since the latest break point. Consequently, the set of all

revoked certificates at a given point in time consists of all certificates listed in

the most recent CRL plus all certificates listed in the delta CRLs that have

been published meanwhile. Furthermore, other mechanisms are included in

X.509 to allow a CA to split CRLs into multiple pieces (e.g., using CRL

distribution points).

The major advantage of using CRLs (together with delta CRLs) is

simplicity. A user of a certificate is required to retrieve the latest CRL from

the appropriate CA or the repository and check whether the certificate has

been revoked. Only if the certificate is not included in the CRL (and has not

been revoked accordingly) is the user authorized to accept and use the

certificate. Obviously, the consequence of this scheme is that the user has to

periodically retrieve the latest CRLs from all the CAs he or she uses and

accepts certificates from. This introduces some communication costs

between the CA and the certificate repository, and high communication

costs between the repository and the users (as CRLs may be very long).

Furthermore, even though the use of CRLs can improve the fineness of the

granularity with which certificates can be revoked, this granularity may still

be coarser than people want (e.g., it may be a week or month, rather than an

hour). In either case, a user does not receive succinct proof for the validity of

a particular certificate.

Finally, note that a CRL is a negative statement. It is the digital

equivalent of the little paper books of bad checks or bad credit cards that

were distributed to cashiers in the 1970s and before. These have been

replaced in the retail world by positive statements in the form of on-line

validation of a single check, ATM card, or credit card. The digital equivalent

to this on-line validation of a certificate is provided by the OCSP or a similar

protocol.

7.4.2 OCSP

Instead of, or as a supplement to, checking against periodically issued CRLs,

it may be necessary to obtain timely information regarding a certificate’s

current status. Examples include high-value funds transfer or large stock

7.4 Certificate revocation 199

trades. Consequently, the IETF PKIX WG specified and standardized an

OCSP in RFC 2560 [24]. In short, the OCSP enables a user to determine the

status of an identified certificate. An OCSP client issues a status request to an

OCSP responder and suspends acceptance of the certificate in question until

the responder provides a response (whether the certificate in question is

good, revoked, or is in an unknown state for the responder). A certificate-

issuing authority can either respond to OCSP requests directly or have one

(or several) delegated OCSP responder(s) providing OCSP responses to the

requesting entities on its behalf.

As of this writing, the OCSP is not yet widely deployed on the Internet.19

Nevertheless, it is possible and very likely that future CAs and certificate

repositories will provide support for both certificate revocation mechanisms

(i.e., CRLs and OCSP). It is equally possible and very likely that the value of

an e-commerce transaction will determine whether a check in a CRL is

sufficient, or whether an OCSP query must be invoked.

Finally, note that for financial transactions, the merchant often needs to

know not just whether a certificate is valid, but whether the charge to be made

against the account represented by the certificate is acceptable (e.g., because

of credit-limit concerns). Thus, in such circumstances, timeliness of certificate

status information may be irrelevant, because the merchant may need to

contact the site responsible for the account (e.g., a bank for a bank credit-card

charge), and that site would have very timely knowledge of certificate status

information, because it probably does not rely on CRLs and OCPS.

7.4.3 Alternative schemes

The use of CRLs introduces some communication costs between the CA and

the certificate repository, and high communication costs between the

repository and the users (as CRLs may be very long). Furthermore, by using

CRLs, a user does not receive succinct proof for the validity of a particular

certificate. Protocols, such as the OCSP, can be used to address the second

problem.

Some alternative certificate revocation schemes have been proposed that

try to address both problems. For example, there is Silvio Micali’s certificate

revocation system (CRS) [30], Paul Kocher’s certificate revocation trees

19. Note that browsers do not currently check the revocation status of any certificate at all. The only time a

browser knows that a site certificate has been revoked is when it eventually expires. It is possible and very

likely that this behavior will change in the future, and that certificate revocation checking will be adopted in

one way or another.

200 Certificate Management and Public Key Infrastructures

(CRT) [31], and a certificate revocation and update scheme proposed by Moni

Naor and Kobbi Nissim [32]. More recently, the design and optimization of

certificate revocation schemes has become an active area of research. The

results, however, are interesting mainly from a theoretical point of view (as of

this writing, they are not relevant for all practical purposes).

A final word is due about the notion of certificate suspension. In many

legislations for digital or electronic signatures, the user may suspend a

certificate (in addition to revoking it). This is interesting from a user’s point

of view, because it allows him or her to temporarily disable a certificate.

Note, however, that providing support for certificate suspension is also very

difficult to say the least. It requires that the entire history of a certificate (i.e.,

the validity intervals for the certificate) is maintained and properly managed

for a potentially very long period of time. While we are starting to

understand certificate revocation, certificate suspension and its implications

are still largely not understood today.

7.5 Certificates for the WWW

There are several types of certificates in use on the WWW. For example,

every CA that issues certificates must have a certificate. This certificate, in

turn, is either self-signed or signed by another CA. Next, every SSL/TLS-

enabled Web server must have a server or site certificate to authenticate itself

to browsers. Similarly, if certificate-based authentication is required by the

server, each user must have a personal certificate. Finally, many software

publishers use certificates to digitally sign code distributed over the Internet.

As discussed next, the four types of certificates are named differently by

different software vendors. For example, Figure 6.4 illustrates the Certificate

Manager of Micrsoft’s Internet Explorer. The Certificate Manager can be

used to manage certificates that belong to the actual user of the browser,

other people, intermediate CAs, and trusted CAs. In this terminology, the

former two classes of certificates refer to personal certificates, whereas the

latter two classes refer to CA certificates. As illustrated in Figures 6.5 and 6.6,

the Opera browser does only distinguish between personal and CA

certificates.

7.5.1 CA certificates

A CA certificate certifies that a public key actually belongs to a CA. As

mentioned above, such a certificate may either be self-signed or signed by

another CA.

7.5 Certificates for the WWW 201

w In the first case, the certificate is signed with the private key that

belongs to the public key that is certified and that is attributed to the

certificate owner (i.e., the CA). Note that every CA can issue a self-

signed certificate, and that the assurance such a certificate provides is

not very convincing (to say the least). In fact, a self-signed CA

certificate says something like ‘‘I am CA such and such. My public

key is such and such. Trust me.’’

w In the second case, the certificate is signed with the private key of

another CA. To verify the certificate, however, the public key of the

other CA is needed. To make sure that this key is in an authentic and

integer form, it should be provided as part of a public key certificate.

Again, this certificate can be self-signed or signed by another CA.

Consequently, the verification of such a CA certificate leads to a

recursion. The recursion continues until a root certificate is found

(i.e., a certificate that is trusted by default).

In practice, it is common to distribute software that makes use of CA

certificates with a preconfigured list of trusted root certificates. Assurance

then results from the way this list is managed by the software developer or

distributor. For example, in Microsoft’s Internet Explorer, the trusted root

certificates that are preconfigured and come along with the software

distribution can be found in the trusted root CA tab of the Certificate

Manager (as illustrated in Figure 6.4). The list includes several dozens of

commercially operating CAs. Similarly, in the Opera browser, the trusted

root certificates can be found in the ‘Certificate authorities’ panel (as

illustrated in Figures 6.5 and 6.6). In either case, it is possible to import,

export, and delete trusted root certificates.

The fact that browsers are packaged and shipped with lists of

preconfigured and trusted root certificates must be considered with care. A

user who does not alter this list in his or her browser will automatically and

implicitly trust all certificates that are issued by any CA from that list. This is

transparent to him or her. Sometimes this level of trust is appropriate, but

sometimes it is not. For example, if you go through the list of trusted root

certificates in your browser, you will see that there are some root certificates

you would not immediately trust if you were asked off hand. To make things

worse, trusted root certificates tend to have unreasonably long lifetimes.20

20. The long lifetimes are due to the fact that it is very uncomfortable to have trusted root certificates that expire.

This has motivated certification service providers to use root certificates with very long lifetimes.

202 Certificate Management and Public Key Infrastructures

Some of them will expire not before 2028 or 2036. The preferred way to

ship browsers would be to package them with empty lists and to have

users import certificates from the CAs they trust. Unfortunately, this is not

likely to happen anytime soon (mainly because it is uncomfortable for the

user).

7.5.2 Server or site certificates

In the previous chapter we saw that the SSL and TLS protocols require that a

server authenticates itself to a browser using a public key certificate. Such a

certificate is called a server or site certificate. Every SSL/TLS-enabled Web

server must be equipped with a server or site certificate, and there are many

companies that provide such certificates.21

If a Web server provides a certificate that is issued by a CA found in the

browser’s list of trusted CA certificates, the certificate is silently accepted. If,

however, a Web server provides a certificate that is issued by a CA not

found in the list, the user is prompted whether he wants to accept it and

proceed accordingly. For example, Figure 7.2 illustrates the Security Alert

panel that Microsoft’s Internet Explorer pops up when a server provides a

certificate that is not signed by a trusted CA. In this example, the server

certificate is valid (i.e., it has not expired yet) and the certificate matches

the server’s domain name. The only problem recognized by the browser is

the fact that the certificate is digitally signed by an unknown and untrusted

CA. In this situation, the user is asked whether or not he or she wants to

proceed, and whether he or she wants to view the certificate’s details,

respectively.

Unfortunately, users tend to click ‘Yes’ buttons whenever they appear

simply to continue their work as soon as possible. There is hardly any user

who carefully reads messages that appear in security alerts. Against this

background, any browser that automatically displays some relevant details

about server certificates is advantageous from a security point of view. For

example, the Opera browser does so and automatically displays information

about the server or site certificate, such as the certificate name and its issuer.

Consequently, the user is automatically confronted with some information

that may help to make more intelligent decisions about the validity of server

or site certificates.

21. Some of these companies are mentioned at the end of the chapter.

7.5 Certificates for the WWW 203

7.5.3 Personal certificates

Each user can have zero, one, or several personal certificate(s) to

authenticate himself or herself to SSL/TLS-enabled Web servers that require

client authentication. For example, in Microsoft’s Internet Explorer, the

Certificate Manager can be used to select a personal certificate.

As illustrated in Figure 7.3, this certificate can then be looked at in a

special panel. In this example, the certificate is issued by VeriSign for Rolf

Oppliger.22 The certificate expired on December 16, 2001. Further

information about the certificate is available by clicking at the Details

and Certification Path tabs (as illustrated in Figures 7.4 and 7.5).

The certificate’s details show the fields of the X.509 certificate, whereas

the certification path illustrates the certificate chain that is used to verify the

certificate. In this example, the certificate of Rolf Oppliger is issued by the

VeriSign Class 1 CA, and the certificate of this CA is issued by the VeriSign

Class 1 Public Primary CA.

22. The certificate used in this example is used only for illustrative purposes.

Figure 7.2 Microsoft Internet Explorer’s Security Alert panel, which is displayed if the

browser does not know or trust a server or site certificate. (q 2002 Microsoft Corporation.)

204 Certificate Management and Public Key Infrastructures

7.5.4 Software publisher certificates

As will be discussed in Chapter 10, code signing is getting increasingly

important to protect the authenticity and integrity of software distributed

over the Internet. A digital signature computed for and distributed with

software is sometimes also referred to as ‘‘digital shrink-wrap.’’ It provides a

feature similar to shrink-wrapped software packages (meaning that it is

difficult to modify the software without giving the recipient a possibility to

detect the modification).

Digitally shrink-wrapping software basically means that the software

publisher must compute a digital signature for the software, and that

Figure 7.3 Microsoft Internet Explorer’s Certificate panel. (q 2002 Microsoft Corporation.)

7.5 Certificates for the WWW 205

the software must be distributed together with the digital signature.

Anybody in possession of the corresponding public key can verify the digital

signature and authenticate the source of the software accordingly. Again, it

is important to distribute the public keys that are necessary to verify the

digital signatures in an authentic and integer form. This is where software

publisher certificates come into play. A software publisher certificate

basically certifies the authenticity and integrity of a software publisher’s

public key. Such certificates are typically issued by commercially operating

certification service providers.

Figure 7.4 The ‘Details’ tab of Microsoft Internet Explorer’s Certificate panel. (q 2002

Microsoft Corporation.)

206 Certificate Management and Public Key Infrastructures

TEAMFL
Y

Team-Fly®

7.6 Conclusions

Certificate management and PKIs are increasingly important topics for the

Internet. In fact, many organizations face the problem of how to get the

X.509v3 certificates they require for emerging technologies, such as IPsec,

SSL/TLS, and S/MIME. In general, there are two possibilities:

1. The organization can establish a PKI of its own;

2. The organization can outsource the services and buy X.509v3 certi-

ficates from one or several commercial certification service providers.

Figure 7.5 The Certification Path tab of Microsoft Internet Explorer’s Certificate panel.

(q 2002 Microsoft Corporation.)

7.6 Conclusions 207

If an organization wants to establish a PKI of its own, it can use one of

the many commercial PKI solutions and products that are available on the

market. Companies that offer PKI solutions and products include Entrust,23

Baltimore Technologies,24 and RSA Security.25 You may refer to the trade

press to get a more comprehensive and up-to-date overview about currently

available PKI solutions and products.

If a company or organization wants to outsource certification services, it

can buy corresponding X.509v3 certificates from one (or several) commer-

cial certification service provider(s). Exemplary providers are VeriSign, Inc.26

and Entrust.net.27 In fact, an increasingly large number of commercial

certification service providers are offering their services to the general public.

Again, this trend is strengthened by legislation initiatives for digital or

electronic signatures. Note, however, that the market for certification

services is far from being mature, and that there are many ongoing changes.

In addition to the two possibilities mentioned, there is a whole range of

intermediate possibilities. The general idea is to have the company or

organization act as RA for its users and make use of a commercial

certification service provider to actually issue certificates. This is interesting

mainly because it is simple for the company or organization to register and

authenticate its users, and also because almost everything can be batched

from the certification service provider’s point of view. A corresponding

architecture was proposed in [33]. A similar architecture has been

implemented and marketed in various offerings, such as VeriSign’s OnSite

Managed Trust Service.28

A more critical word should be said about the overall cost of public key

cryptography in general, and PKIs in particular. Note that one of the original

claims of public key cryptography was to minimize the initiation cost of a

secure communication path between parties that share no prior adminis-

trative relationship. It was assumed that this would be the major reason why

public key cryptography would dominate e-commerce applications in the

first place. Note, however, that with no shared administrative structure to

connect the parties, we must invent many things, such as certificate chaining,

certificate revocation, and certificate directory services. In other words,

23. http://www.entrust.com/entrust

24. http://www.baltimore.com

25. http://www.rsa.com

26. http://www.verisign.com

27. http://www.entrust.net

28. http://www.verisign.com/products/onsite

208 Certificate Management and Public Key Infrastructures

we have to invent the very thing that public key cryptography claimed not to

need, namely administrative overhead. This point was made by Aviel D.

Rubin, Daniel Geer, and Marcus J. Ranum in [34]. In fact, they do not argue

against public key cryptography in general, but they argue that much of the

implied cost savings of public key cryptography over secret key cryptography

is nothing more than an illusion. To further clarify the point, they argue that

the sum of the cost for cryptographic-key issuance and the cost for

cryptographic-key revocation is more or less constant (for both public key

cryptography and secret key cryptography). Note that this argument is only

an assertion and is not yet substantiated by any detailed analysis. Also note

that much of the initial motivation for use of public key cryptography was not

cost based, but rather security based. For example, the argument was made

that there are many more vulnerabilities associated with schemes that make

use of secret key cryptography only as compared with schemes that

selectively make use of public key cryptography, especially when one crosses

organizational boundaries. As an example, you may look at the Kerberos

authentication system, especially in the case of inter-realm authentication. In

spite of the fact that the argument is not substantiated by any detailed

analysis and that the initial motivation for the use of public key cryptography

and corresponding PKIs was security (not costs), the argument should still be

considered with care. Note, for example, the problems we face when we try to

establish and operate a PKI today. Some of the problems are caused by the

need to revoke certificates. This problem makes it necessary to have an on-

line component permanently available for an otherwise off-line CA. Ideally,

certificate revocation is handled by an on-line component that is physically

or logically separated from the off-line CA [35].

Finally, it should be kept in mind that the widespread use of public key

certificates that include (or are logically linked to) globally unique names,

such as DNs, may also provide the means to build a worldwide tracking

system for user transactions. If a user acquires multiple certificates, each of

which contains a different subject name with only local significance, he or

she will not be able to be tracked. If, however, he or she acquires only one

certificate and this certificate is used for multiple (or all) applications, he or

she can be tracked very easily. Consequently, the widespread use of a single

certificate per person may also contradict his or her privacy requirements.29

Against this background, Stefan A. Brands developed a technological

approach that can be used to replace X.509-based certificates [36]. The

resulting certificates can be used to authenticate and authorize their owners;

29. This is particularly true for electronic ID cards that use unique personal certificates.

7.6 Conclusions 209

they do not, however, reveal any information that is not necessary to the

certificate verifier. As such, the certificates may be called ‘‘minimum-

disclosure’’ certificates. They provide a first example of a privacy enhancing

technology (PET) in this area, and it is possible and very likely that we will

see other PETs being developed and deployed in the future. We will come

back to the notion of a PET in Chapter 12.

References

[1] Feghhi, J., J. Feghhi, and P. Williams, Digital Certificates: Applied Internet Security,

Reading, MA: Addison-Wesley, 1999.

[2] Adams, C., and S. Lloyd, Understanding the Public-Key Infrastructure, Indiana-

polis, IN: New Riders Publishing, 1999.

[3] Ford, W., and M. S. Baum, Secure Electronic Commerce: Building the Infrastructure

for Digital Signatures & Encryption, 2nd ed., Upper Saddle River, NJ: Prentice

Hall, 2000.

[4] Oppliger, R., Secure Messaging with PGP and S/MIME, Norwood, MA: Artech

House, 2001.

[5] Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA:

Artech House, 2002.

[6] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

[7] Kohnfelder, L. M., ‘‘Towards a Practical Public-Key Cryptosystem,’’ Bachelor’s

thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1978.

[8] ITU-T, Recommendation X.509: The Directory—Authentication Framework,

1988.

[9] ISO/IEC 9594-8, Information Technology—Open Systems Interconnection—The

Directory—Part 8: Authentication Framework, 1990.

[10] Ellison, C., ‘‘Establishing Identity Without Certification Authorities,’’ Proceed-

ings of USENIX Security Symposium, July 1996.

[11] Rivest, R. L., and B. Lampson, ‘‘SDSI—A Simple Distributed Security

Infrastructure,’’ April 1996.

[12] Abadi, M., ‘‘On SDSI’s Linked Local Name Spaces,’’ Proceedings of 10th IEEE

Computer Security Foundations Workshop, June 1997, pp. 98–108.

[13] Ellison, C., ‘‘SPKI R equirements,’’ Request for Comments 2692, September

1999.

[14] Ellison, C., et al., ‘‘SPKI Certificate Theory,’’ Request for Comments 2693,

September 1999.

210 Certificate Management and Public Key Infrastructures

[15] Housley, R., et al., ‘‘Internet X.509 Public Key Infrastructure Certificate and

CRL Profile,’’ Request for Comments 2459, January 1999.

[16] Adams, C., ‘‘Internet X.509 Public Key Infrastructure Certificate Management

Protocols,’’ Request for Comments 2510, March 1999.

[17] Myers, M., et al., ‘‘Internet X.509 Certificate Request Message Format,’’

Request for Comments 2511, March 1999.

[18] Chokhani, S., and W. Ford, ‘‘Internet X.509 Public Key Infrastructure

Certificate Policy and Certification Practices Framework,’’ Request for

Comments 2527, March 1999.

[19] Housley, R., and W. Polk, ‘‘Internet X.509 Public Key Infrastructure

Representation of Key Exchange Algorithm (KEA) Keys in Internet X.509

Public Key Infrastructure Certificates,’’ Request for Comments 2528, March

1999.

[20] Boeyen, S., T. Howes, and P. Richard, ‘‘Internet X.509 Public Key

Infrastructure Operational Protocols—LDAPv2,’’ Request for Comments

2559, April 1999.

[21] Yeong, Y., T. Howes, and S. Kille, ‘‘Lightweight Directory Access Protocol,’’

Request for Comments 1777, March 1995.

[22] Boeyen, S., T. Howes, and P. Richard, ‘‘Internet X.509 Public Key

Infrastructure LDAPv2 Schema,’’ Request for Comments 2587, June 1999.

[23] Housley, R., and P. Hoffman, ‘‘Internet X.509 Public Key Infrastructure

Operational Protocols: FTP and HTTP,’’ Request for Comments 2585, May

1999.

[24] Myers, M., et al., ‘‘X.509 Internet Public Key Infrastructure Online Certificate

Status Protocol—OCSP,’’ Request for Comments 2560, June 1999.

[25] Myers, M., et al., ‘‘Certificate Management Messages over CMS,’’ Request for

Comments 2797, April 2000.

[26] Prafullchandra H., and J. Schaad, ‘‘Diffie-Hellman Proof-of-Possession Algo-

rithms,’’ Request for Comments 2875, July 2000.

[27] Santesson, S., et al., ‘‘Internet X.509 Public Key Infrastructure Qualified

Certificates Profile,’’ Request for Comments 3039, January 2001.

[28] Adams, C., et al., ‘‘Internet X.509 Public Key Infrastructure Data Validation

and Certification Server Protocols,’’ Request for Comments 3029, February

2001.

[29] Adams, C., et al., ‘‘Internet X.509 Public Key Infrastructure Time-Stamp

Protocol (TSP),’’ Request for Comments 3161, August 2001.

[30] Micali, S., ‘‘Efficient Certificate Revocation,’’ Massachusetts Institute of

Technology (MIT), Technical Memo MIT/LCS/TM-542b, 1996.

[31] Kocher, P., ‘‘A Quick Introduction to Certificate Revocation Trees (CRTs).’’

7.6 Conclusions 211

[32] Naor, M., and K. Nissim, ‘‘Certificate Revocation and Certificate Update,’’

Proceedings of 7th USENIX Security Symposium, January 1998.

[33] Oppliger, R., A. Greulich, and P. Trachsel, ‘‘A Distributed Certificate Manage-

ment System (DCMS) Supporting Group-Based Access Controls,’’ Proceedings of

Annual Computer Security Applications Conference (ACSAC ’99), 1999, pp. 241–248.

[34] Rubin, A. D., D. Geer, and M. J. Ranum, Web Security Sourcebook, New York:

John Wiley & Sons, 1997.

[35] Lomas, M., ‘‘Untrusted Third Parties: Key Management for the Prudent,’’

Report on DIMACS Workshop on Trust Management, 1996.

[36] Brands, S. A., Rethinking Public Key Infrastructures and Digital Certificates: Building

in Privacy, Cambridge, MA: MIT Press, 2000

212 Certificate Management and Public Key Infrastructures

Authentication and Authorization
Infrastructures

In this chapter, we address the notion of an authentication

and authorization infrastructure (AAI) and discuss some

technologies to build and operate an AAI. More specifically, we

introduce the topic in Section 8.1, addresses Microsoft .NET

Passport in Section 8.2, and elaborate on Kerberos- and

PKI-based AAIs in Sections 8.3 and 8.4. Finally, we conclude

with some final remarks in Section 8.5.

8.1 Introduction

In a 1993 edition of The New Yorker, Peter Steiner published a

cartoon1 that showed a dog explaining to another dog the

major advantage of the Internet, namely that ‘‘on the Internet,

nobody knows you’re a dog.’’ In subsequent years, the cartoon

was used by many security companies as an argument that

e-commerce requires a PKI to be successful in the first place.

The statement was made that an Internet merchant must know

the identity of his or her customers, and that the merchant

would face a problem if he or she did not know that the,

customers were dogs.

213

C H A P T E R

8
Contents

8.1 Introduction1

8.2 Microsoft .Net Passport4

8.3 Kerberos-based AAIs16

8.4 PKI-based AAIs26

8.5 Conclusions30

References

1. The cartoon was published on page 61 of the July 5, 1993, issue of The New

Yorker (Vol. 69, No. 20). It is reproduced, for example, at http://

www.unc.edu/courses/jomc050/idog.html for academic discussion,

evaluation, and research.

One may argue whether this statement actually hits the point. Would an

Internet merchant really face a problem if he or she did not know that the

customers were dogs? To answer this question, it is helpful to have a look at

the real world and to ask whether a real merchant would face the same

problem. In the real world we would probably say yes. More interestingly,

however, we would say yes, not because the merchant dislikes dogs, but

because the probablity that the merchant would get money out of a dog is

negligible. Consequently, as a result of risk analysis considerations, the

merchant would typically refuse to serve a dog, out of fear of loosing money.

There are (at least) two conclusions to draw:

1. Everything we do is subject to risk analysis.

2. The merchant may not care about the identity (or breed) of his or

her customers if the risk of not getting paid is negligible.

This line of argumentation leads to the insight that e-commerce requires

authenticity only in the foreground, and that authorization is much more

important from a commercial point of view. More specifically, a merchant is

typically more interested in the authorization of his or her customers than in

their authenticity. This point was first made by Joan Feigenbaum in an

invited talk she gave at the 1998 USENIX Workshop on Electronic

Commerce [1]. It has led to many research and development activities that

are collectively referred to as trust management (e.g., [2–8]).

Trust management is a rather artificial term, and its use is greatly

overblown in the PKI industry. Following the line of argumentation

introduced in [9] and further explored in Chapter 15 of this book, one

may argue that trust management is not particularly important and that all

that matters is risk management:

Trust management is surely exciting, but like most exciting ideas it is

unimportant. What is important is risk management, the sister, the dual of

trust management. And because risk management makes money, it drives

the security world from here on out. [9]

To clarify the point, we consider the situation in which a customer wants

to order some goods from an on-line merchant. In this situation, there are

two possible questions a customer may ask:

1. Does he or she trust the merchant (to handle the order properly)?

2. Does he or she carry the risk of having the merchant not properly

handle the order?

214 Authentication and Authorization Infrastructures

Obviously, the first question is related to trust management, whereas the

second one is related to risk management. In many situations, it is much

simpler and more efficient to elaborate on risks than to discuss trust. In fact,

trust is difficult to address and even more difficult to quantify. In either case,

however, it is important to note that trust and risks are not independent, and

that the two things basically try to measure the same (or at least closely

related) things. For example, if we trust something we usually mean that the

risks involved using it are small or negligible. Similarly, if we assume high

risks we usually do not trust something or somebody.

If we agree that for all practical purposes authorization is more (or at

least equally) important than authentication, we may want to extend the

scope of a security infrastructure (e.g., a PKI) to address both authentication

and authorization. This is where AAIs come into play. Similar to a PKI, an

AAI may employ public key cryptography and public key certificates.

Contrary to a PKI, however, an AAI need not necessarily be based on public

key certificates. In fact, there is an increasingly large body of research and

development that elaborates on other or complementary technologies to

provide authentication and authorization services to communicating peers.

This body of research and development is overviewed and briefly discussed

in this chapter.

The simplest AAI one may think of is a password-based authentication

system that is provided by a trusted third party (TTP), and that leaves

authorization and access control decisions to participating server systems.

This is basically the service that Microsoft .NET Passport provides. One may

argue about the trustworthiness of Microsoft and the security properties of

Microsoft .NET Passport, but for participants who only require a low level of

security Microsoft .NET Passport provides a fairly simple and straightforward

approach and solution for their AAI requirements.

The rest of this chapter starts with a thorough overview and discussion of

Microsoft .NET Passport in Section 8.2. This discussion also takes into

account that Microsoft is promoting .NET Passport very aggressively as a key

technology for its user-centric application model and .NET initiative.

The design and development of authentication and key distribution

systems has a long history in network security [10], and many more or less

sophisticated authentication and key distribution systems are available in

theory and practice (some of them have expired and are no longer supported

by their original developers or vendors). One system that is particularly

widely deployed on the Internet is the Kerberos authentication system (as

briefly mentioned in Chapter 5). Kerberos may serve as a starting point to

design and develop an AAI. In fact, there are several Kerberos-based AAIs

that are overviewed and discussed in Section 8.3. Note that Microsoft .NET

8.1 Introduction 215

Passport and Kerberos are not mutually exclusive, and that Microsoft has

already announced that future releases of .NET Passport will also make use of

and support Kerberos.

Microsoft .NET Passport and Kerberos-based AAIs depend on passwords

that are selected by users. This basically means that the overall security of the

resulting system is bounded by the security of passwords. Unfortunately, all

statistical investigations reveal the fact that passwords selected by users have

bad security properties (meaning, for example, that they can be guessed

easily). Consequently, from a security point of view it is interesting to look

into technologies that don’t depend on users to select ‘‘good’’ secrets (for any

meaningful definition of ‘‘good’’) and use computer-generated secrets

instead. One such technology is public key crytography and public key

certificates. As mentioned in the previous chapter, public key certificates and

PKIs can be used to provide authentication infrastructures. Combined with

some complementary technologies, they can also serve as a starting-point to

additionally provide an authorization infrastructure and to come up with a

comprehensive AAI accordingly. Such technologies are addressed in Section

8.4. Finally, the various technologies that can be used to build and operate

an AAI are put into perspective in Section 8.5.

8.2 Microsoft .NET Passport

As part of its .NET initiative, Microsoft has introduced a set of XML-and

SOAP-based Web services that collectively support what Microsoft has

named a ‘‘user-centric’’ application model.2 In this model, it is the user and

not the hardware that needs to be authenticated and authorized to run the

software, so user authentication and authorization become the core

attributes.

As of this writing, Microsoft calls the services that implement the user-

centric application model .NET My Services.3 At the core of Microsoft .NET

My Services is a user authentication service named Microsoft .NET Passport

[11, 12]. The service was initially released in 1999 and is currently the most

widely used service of its kind on the Internet and WWW.4

2. This is in contrast to a machine-centric application model in which software is licensed to run on a specific

hardware device.

3. The services have formerly been code-named HailStorm.

4. As of July 2001, Microsoft claimed to have more than 165 million accounts. One reason for the large number is

that all Hotmail accounts were converted to the .NET Passport system. Furthermore, it is not possible to delete

an account once it is created (at least it is not obvious how one can delete it).

216 Authentication and Authorization Infrastructures

TEAMFL
Y

Team-Fly®

8.2.1 Overview

As mentioned in the introduction, Microsoft .NET Passport provides a

password-based authentication service that makes use of a TTP. The TTP, in

turn, is provided by Microsoft through its .NET Passport service, or via the

servers that provide the service.

Microsoft uses the term single sign-in (SSI) to refer to the service that

Microsoft .NET Passport provides. This is in contrast to the term single sign-on

(SSO) that is otherwise used in the literature. It is not clear to what extent

SSI differs from SSO in the terminology of Microsoft.5 In this book, we use

the terms SSI and SSO synonymously and interchangeably.

To make use of Microsoft .NET Passport and its service (i.e., the SSI

service), a user must create a .NET Passport account to store his or her

credentials. The credentials, in turn, must include his or her e-mail address

(or phone number) and password. A corresponding .NET Passport registra-

tion screen is illustrated in Figure 8.1. Note that it is possible and very likely

that the GUI will have changed when this book hits the shelves of the

bookstores. So this figure, and some of the following figures, only serve

illustrative purposes.

Each user may store additional, optional user profile information, such

as demographic or preference data (for example, gender, occupation, and ZIP

code) or their first and last name in his or her .NET Passport account. The

screen that is used to request this additional information is illustrated in

Figure 8.2. In addition, through .NET Passport express purchase service (as

discussed below), the user can store credit-card information and addresses in

his or her .NET Passport wallet and use this information to purchase products

and services on-line. The corresponding screen to enter the user’s payment

information is illustrated in Figure 8.3. In summary, the .NET Passport user

account can be used to store any information that is needed and must

eventually be provided at multiple sites.

In essence, Microsoft .NET Passport provides a SSI service by hosting a

central database that contains users’ accounts, as well as the registration

and sign-in/sign-out pages, that participating .NET Passport sites can

cobrand. Using this service, a user can easily move between participating

sites and services without the need to remember a specific set of credentials

for each of them (this is basically the idea of an SSI or SSO service).

Furthermore, there are several security levels that Microsoft .NET Passport

5. Note, for example, that the term SSO is used in the documentation that describes Microsoft’s Kerberos

implementation in Windows 2000 and XP.

8.2 Microsoft .NET Passport 217

may provide (i.e., standard sign-in, secure channel sign-in, and strong

credential sign-in). These security levels are described below.

Sites become participating .NET Passport sites by implementing the .NET

Passport SSI service. Participating .NET Passport sites rely on .NET Passport to

authenticate users rather than hosting and maintaining their own

authentication schemes. However, .NET Passport does not authorize or

deny a specific user’s access to individual participating sites. Web sites that

implement .NET Passport maintain control over permissions. As such, .NET

Passport provides an authentication system or infrastructure and does not

provide a complete and comprehensive AAI. This is similar to the Kerberos

Figure 8.1 The .NET Passport registration screen. (q 2002 Microsoft Corporation.)

218 Authentication and Authorization Infrastructures

system. Also similar to the Kerberos system, Microsoft .NET Passport can

easily be extended to provide an AAI.

8.2.2 .NET Passport user accounts

Each .NET Passport user account may include the following components:

w The .NET Passport Unique Identifier (PUID) that is a 64-bit numeric

value assigned by the .NET Passport service during the creation of the

account. For obvious reasons, this component is required for every

.NET Passport user account.

Figure 8.2 The .NET Passport screen to edit a user profile. (q 2002 Microsoft Corporation.)

8.2 Microsoft .NET Passport 219

w The .NET Passport user profile that may contain the following

components:

w The user’s e-mail address or phone number;

w The user’s first and last name;

w The user’s demographic information such as postal code, country,

and state or region.

The user’s e-mail address or phone number is the only required

profile information.

Figure 8.3 The .NET Passport screen to enter the user’s payment information. (q 2002

Microsoft Corporation.)

220 Authentication and Authorization Infrastructures

w The .NET Passport credentials that contain the following components:

w The standard .NET Passport credentials consist of the user’s e-mail

address or phone number stored in the .NET Passport user profile

and a password (or PIN) of at least six characters. An optional

secret question and answer may be used to reset the password. The

standard credentials are the minimum amount of information

required for a user to have a .NET Passport account and to use the

.NET Passport authentication service (i.e., for standard sign-in and

secure channel sign-in).

w An additional four-digit security key that is used when the user

accesses sites requiring strong credential sign-in. When created,

the security key requires three associated secret questions and

answers to reset it. The security key is created the first time the

user accesses a site requiring strong credential sign-in.

w The optional .NET Passport wallet, used by the .NET Passport express

purchase service. Each wallet may contain the following pieces of

information:

w The user’s credit-card numbers and the associated expiration dates,

billing address, and friendly names.

w The user’s shipping addresses and associated friendly names.

To operate the .NET Passport service, .NET Passport also stores some

operational data about the user account. This includes the version number,

whether the account contains a .NET Passport wallet, and so on.

Users create their account the first time they register for a .NET Passport.

There are several ways to register. The most direct way is to register at the

home page of .NET Passport6 or by using the Microsoft Windows XP

Registration Wizard. Also, a user may register by opening a Hotmail7 account

(i.e., Hotmail accounts are automatically registered as Passports) or he or she

may register at a participating site. Participating sites automatically redirect

users to a cobranded, centrally hosted .NET Passport registration page. In

either case, the amount of information the user is asked for when registering

for a Passport depends on the site where the user registers. For example,

users directly registering at the .NET Passport home page are asked only for

6. http://www.passport.com

7. http://www.hotmail.com

8.2 Microsoft .NET Passport 221

the minimum information needed to create a Passport (i.e., an e-mail

address and a password). If a participating site asks for additional, non-

Passport information during registration, an arrow icon indicates the

information that will be stored in the user’s .NET Passport account.

Information typed in fields not followed by this icon is not stored in the

user’s .NET Passport account (i.e., it is stored at the participating site only).

During Passport creation, users can choose what type of information

they want to share with participating sites during sign-in (i.e., e-mail

address, first and last names, all other .NET Passport user profile

information). The site users register from can store all the information the

site requested during Passport creation. Other participating .NET Passport

sites, however, receive only the information the user has decided to share

with participating .NET Passport sites. For example, users can decide not to

share their e-mail address and their user profile information. In this case,

when the user is authenticated, the participating Web sites receive only the

user PUID. Furthermore, .NET Passport wallet information is shared only

when users use the .NET Passport express purchase service.

We overview and briefly discuss the .NET Passport SSI and some

complementary services, such as the .NET Passport Express Purchase and

Kids .NET Passport services, next.

8.2.3 .NET Passport SSI service

The SSI service is the core service that .NET Passport provides. The service is

implemented by a protocol and the protocol’s message flows are illustrated in

Figure 8.4. When a registered .NET Passport user clicks the standard sign-in

link on a participating .NET Passport site, an initial HTTP request message is

sent to this site (i.e., message 1). The participating site, in turn, sends back an

HTTP redirect message for the cobranded .NET Passport sign-in page8 located

at the .NET Passport server (i.e., messages 2 and 3). From the user’s point of

view, the HTTP redirect for authentication is transparent.9 A unique site ID is

used to identify the participating site requesting the authentication.

Furthermore, a return URL (generally the same URL as the one the user

originally requested) is added to the .NET Passport URL in query string

parameters.

8. The current version of .NET Passport also allows participating sites, using JavaScript, to display the .NET

Passport sign-in module (called inline sign-in) within their own pages.

9. This transparency means that the user does not have to type in a new URL. The browser is automatically

redirected to the authentication server.

222 Authentication and Authorization Infrastructures

Before displaying the appropriate .NET Passport sign-in page, .NET

Passport checks the site ID and return URL. If they do not match an entry in

the list of participating .NET Passport sites, the authentication is rejected (this

ensures that only participating .NET Passport sites can request .NET Passport

user authentication). The .NET Passport server then displays a page with a

secure form that prompts the user to enter his or her .NET Passport

credentials (i.e., his or her e-mail address and password). Again, this page

might be cobranded by the participating site. In either case, the password is

not displayed in the clear. When the user clicks the .NET Passport sign-in

link, the credentials are transmitted to the .NET Passport server using the

HTTP POST method on top of SSL (i.e., HTTPS). Consequently, the

transmission of the user’s credentials are strongly encrypted and protected

against eavesdropping.

If the user’s credentials match an entry in the .NET Passport database, he

or she is authenticated. The PUID is extracted from the database along with

the .NET Passport user profile information that he or she has agreed to share

with participating sites at sign-in. The .NET Passport server then uses this

information to create the following three cookies:

1. The ticket cookie that includes the PUID and a time stamp;

2. The profile cookie that includes the user profile information;

3. The visited sites cookie that includes a list of the sites the user has

signed in to.

Cookies are encrypted using 3DES and a site encryption key that is

shared between the .NET Passport server and the participating site (the key is

Figure 8.4 The .NET Passport Protocol’s message flows.

8.2 Microsoft .NET Passport 223

identified through the site ID and must be distributed out-of-band). Using

the site encryption key, the .NET Passport server encrypts the ticket and

profile cookies, adds them as query string parameters to the return URL

provided in the authentication request, and presents this URL to the

user’s browser so that it gets redirected to the participating site (i.e., messages

4 and 5).

The participating site extracts the encrypted ticket and profile cookies

from the query string parameters and sends them to the .NET Passport

Manager object running locally. The .NET Passport Manager object, in turn,

decrypts the information and receives the PUID, the time stamp, and the

user’s profile information accordingly. The time stamp can be used to decide

whether the user must reauthenticate. If the site’s time window has expired,

it displays the cobranded .NET Passport sign-in page with the user’s e-mail

address and the prompt to enter the user’s password before proceeding. If

everything is fine, the user is authenticated and the participating site displays

the requested page (i.e., message 6). To personalize the user’s experience in

some way, the site might populate the page using information it has already

gathered from the user or extracted from the profile cookie. The site can also

use information from the profile cookie to create or upgrade its own database

entry for that particular user. In either case, the requested page includes a

sign-out link.

Note that there is no direct server-to-server communication of users’

authentication and profile information between the .NET Passport server

and the participating site. The information exchange always occurs through

the client’s browser using HTTP redirects and cookies. However, the Passport

Manager on the participating site does periodically download a centrally

hosted configuration file. This is an XML document that contains current

URLs for the .NET Passport servers and the current .NET Passport profile

configuration (or profile schema).

After signing in at one .NET Passport participating site, a user can sign in

to any other participating site simply by clicking the corresponding .NET

Passport sign-in link on that particular site. Again, the browser is silently

redirected to the .NET Passport server and the site ID and return URL are sent

for authentication. The .NET Passport server checks the validity of the site ID

and the ticket cookie (i.e., PUID and time stamp) and silently returns

encrypted ticket and profile cookies to the site to authenticate the user.

Again, these cookies are encrypted using a key that is shared between the

.NET Passport server and the participating site. In this way, after the first

sign-in to any participating site has occured, the user can be authenticated by

any other participating site with just one click. If, however, a participating

site wants to ensure a recent authentication for added security, it can ask the

224 Authentication and Authorization Infrastructures

.NET Passport server to force a new authentication. Obviously, this requires

the user to reenter his or her password regardless of the user’s authentication

state. Last but not least, users can also choose to be signed in automatically

by saving their .NET Passport sign-in name and password on a given

computer (i.e., the ‘‘sign-me in automatically’’ option). This option keeps a

consumer signed in to .NET Passport at all times on that computer, even if

the consumer disconnects from the Internet, closes the browser, or turns off

the computer. From a security point of view, this option should be

considered with care and is certainly not preferred.

Even though a user can use his or her .NET Passport account at multiple

sites, the password is stored only in the .NET Passport database and is shared

only with the .NET Passport servers that need it for authentication. If a

legitimate user (or someone else) makes several incorrect attempts during

sign-in, .NET Passport automatically blocks access to this users’s account for a

couple of minutes. This makes it significantly more difficult to launch a

password cracker (i.e., a password-cracking program) to gain illegitimate

access to a user’s .NET Passport account.

When a user signs out by clicking the sign-out link on any participating

site, the .NET Passport server checks the visited site’s cookie to learn all the

sites the user has signed in to during the session. For each of these sites, the

.NET Passport redirects the browser to the site10 and has the site locally

execute a script. The script, in turn, is to delete all cookies that have been

created at sign-in. Consequently, only the site that has created a cookie can

also delete it.

Furthermore, unless users choose the option to automatically sign in to

.NET Passport, all .NET Passport cookies are temporary cookies that are

deleted when the browser session is closed. Even if a user does not sign out of

.NET Passport or close his or her browser, .NET Passport cookies are time

sensitive, meaning that they expire after a time period specified by .NET

Passport or the participating site. This ensures that .NET Passport-related

information is never stored in the user’s computer system for an infinite

amount of time.

.NET Passport includes three security levels that Microsoft intends to

complement in future releases to support additional credential types (e.g.,

Kerberos tickets, public key certificates, and so on). Participating sites can

request the level of secure authentication they require based on the

sensitivity of the content or services they provide. In either case, the user’s

.NET Passport password is not sent to a participating site, and authentication

10. The URL for the script is provided by the site during the registration process.

8.2 Microsoft .NET Passport 225

and profile information is always sent encrypted using a key specific to the

site.

8.2.3.1 Standard sign-in

Using .NET Passport standard sign-in, SSL is used only to secure the

transmission of user credentials between the browser and the .NET Passport

service (i.e., SSL is not used between the browser and the participating site).

This is the security level described above. It is intended to be used by

participating sites that don’t require a high level of security. For example,

Microsoft’s Hotmail service employs .NET Passport standard sign-in.

8.2.3.2 Secure channel sign-in

.NET Passport standard sign-in is vulnerable to replay attacks because a

participating site receives the encrypted ticket and profile cookies over an

HTTP connection. The participating site then writes the cookies to the user’s

browser over the same connection. Consequently, an attacker listening to

network traffic (between the browser and the participating site) could

capture the encrypted tickets. The user’s credentials are not at risk because

the cookies are encrypted with a key that is known only to the .NET Passport

server or the participating site, respectively. However, the attacker could

replay the tickets against the participating site. He or she would then appear

to be the user for the lifetime of the tickets.

In general, there are at least three possibilities to address and counter this

vulnerability:

1. Limit the lifetime of a ticket;

2. Provide a possibility for an owner of a ticket to prove his or her

legitimate ownership;

3. Send and receive tickets only over secured channels.

The first approach is simple and straightforward. Each participating site

of .NET Passport can make use of this possibility by selecting sufficiently

short lifetimes for the tickets it issues. Obviously, the disadvantage is that

users are frequently requested to reenter their credentials, ensuring that

they are valid .NET Passport users. The second approach is not supported by

.NET Passport. It was chosen, for example, by the developers of the Kerberos

authentication system. In fact, Kerberos uses the notion of an authenticator

to prove legitimate ownership of a ticket (this mechanism is explained in the

next section). Finally, the third approach is supported by .NET Passport

226 Authentication and Authorization Infrastructures

TEAMFL
Y

Team-Fly®

secure channel sign-in. In this mode, all communication takes place over

secured channels (i.e., SSL or HTTPS channels) and are cryptographically

protected accordingly. With .NET Passport secure channel sign-in, an

attacker listening to the network traffic won’t be able to get the tickets

because the entire traffic is encrypted with a session key that is held only by

the legitimate participants. From the user’s point of view, the secure channel

sign-in interface is the same as the standard sign-in interface except that the

.NET Passport sign-in page is displayed using SSL.

8.2.3.3 Strong credential sign-in

As mentioned above, if a legitimate user makes several incorrect attempts

during sign-in, .NET Passport automatically blocks access to that users’s

account for a couple of minutes (mainly to make it more difficult to launch

password-cracking programs). In spite of this countermeasure, a determined

and long-term brute-force attack is still possible and represents a potential

risk. There are at least two approaches to addressing this problem:

1. Make the passwords stronger;

2. Block the account after a given number of unsuccessful attempts to

sign-in.

Both approaches have drawbacks. Making passwords stronger adversely

affects the usability of the .NET Passport service because of stringent

password requirements, such as a minimal length, password expiration, and

the requirement to use mixed-case, numeric, and symbol characters as part

of the passwords. Similarly, blocking an account could easily be exploited in

a denial-of-service attack.

Against this background, the designers of .NET Passport have chosen to

use a two-stage sign-in process for protecting participating sites with more

stringent security requirements. The first stage is identical to the secure

channel sign-in process described above. The second stage, however,

involves a second sign-in page that requires the user to enter a four-digit

security key, or PIN. This page is displayed only through an SSL connection

and incorporates a persistent failed-attempts counter for each user. The

counter is reset upon each successful sign-in. In the event that five

consecutive failed attempts are made, the user’s security key is disabled. The

user is still able to use the normal .NET Passport sign-in (i.e., standard sign-in

or secure channel sign-in), but he or she has to go through a process to reset

the security key. Since the security key is locked after five failed attempts to

8.2 Microsoft .NET Passport 227

sign in and then must be reset to restore access, it is not vulnerable to an

automated dictionary attack and therefore constitutes a strong credential.

Consequently, the resulting authentication scheme is named .NET Passport

strong credential sign-in.

.NET Passport strong credential sign-in is currently the highest level of

security participating sites can request and will be used by sites for which

preventing malicious access to a user’s account is more important than ease

of use.

8.2.4 Complementary services

There are two complementary services that can be provided in addition to

the basic .NET Passport SSI service: the .NET Passport Express Purchase

service and the Kids .NET Passport service. The two complementary services

are briefly overviewed next.

8.2.4.1 .NET Passport express purchase service

Using the .NET Passport Express Purchase service and the optional .NET

Passport wallet, a user can make use of his or her credit cards to purchase

products or services online. In fact, .NET Passport Express Purchase uses the

same redirection mechanism as described above. To post data, .NET Passport

Express Purchase uses labels that comply with the electronic commerce

modeling language (ECML).11 When users click the .NET Passport Express

Purchase link or button on a participating site’s check-out page, they are

redirected to their .NET Passport wallet page by means of a secure SSL

connection. The site ID and return URL, supplied to .NET Passport by the

participating site during registration for the .NET Passport Express Purchase

service, are passed to the .NET Passport Wallet server as query string

parameters during the redirection. Both the site ID and the return URL are

checked by the .NET Passport Wallet server to identify the site and verify that

it is a valid .NET Passport site (if the site is not valid, the request is rejected). If

authenticated, users can select the credit card, billing address, and shipping

address they want to use for the purchase.12 By clicking the Continue button

on the .NET Passport wallet page, they send their selected information to the

participating site. This information is returned to the calling site only over an

11. Further information about the ECML can be found at http://www.ecml.org.

12. When a user chooses a stored credit card in a .NET Passport wallet, the complete credit card number is never

displayed on the screen. The .NET Passport wallet pages display only the first six digits of the credit card

number to help the user identify it, while preventing others from seeing the card’s entire number.

228 Authentication and Authorization Infrastructures

SSL connection. Note that .NET Passport does not receive or track the

purchase price or product information when processing .NET Passport

Express Purchase transactions. Also, the .NET Passport Express Purchase

service is not itself a credit card or debit card service. Participating sites are

still required to process the transaction directly or through a third-party

service.

8.2.4.2 Kids .NET passport service

In the United States the Children’s Online Privacy Protection Act (COPPA)

went into effect on April 21, 2000. COPPA requires that operators of online

services or Web sites obtain parental consent prior to the collection, use,

disclosure, or display of personal information from children.

Against this background, the designers of .NET Passport have provided a

complementary service that makes the consent process easy for parents by

providing one location for them to give consent for all participating Kids

.NET Passport sites. The service has been named Kids .NET Passport.13

More specifically, .NET Passport users can register children under the age

of 13 for special Kids .NET Passports that let parents and guardians control

what information their children can share with participating Kids .NET

Passport sites, and what those sites can do with that information. As with

a standard .NET Passport account, a Kids .NET Passport account can store

personal information (e.g., name, date of birth, e-mail address) that can be

shared with participating sites. When a child with a Kids .NET Passport signs

in at a particular site, .NET Passport checks the birth-date field in the profile.

If the child is younger than 13, .NET Passport checks the account to

determine whether the parent or guardian has granted consent for that site,

and at what level (i.e., deny, limited, or full). The consent levels are

summarized in Table 8.1. If the child’s profile indicates that consent at one of

the three levels has been granted for that site, the child is allowed to proceed.

Table 8.1 Consent Levels Used by the Kids .NET Passport Service

Deny The site is not authorized to collect personal information from a child

Limited The site is authorized to collect, store, and use personal information from a child,

but it is not authorized to disclose it to a third party (unless it is necessary to operate the site)

Full The site is authorized to collect, store, and use personal information from a child,

and to disclose it to third parties

13. http://kids.passport.com

8.2 Microsoft .NET Passport 229

If, however, consent has not been granted, .NET Passport displays a

notification message that the child must request consent from a parent or

guardian before processing.

The Kids .NET Passport service works fine in theory. In practice,

however, it is very unlikely that a child will use its Kids .NET Passport instead

of simply requesting a normal .NET Passport. History has shown that kids

turn out to be very innovative and ingenious when it comes to

circumventing parental obstacles.

8.2.5 Security analysis

A short time after Microsoft launched the first version of its .NET Passport

service in 1999, David P. Kormann and Aviel D. Rubin published14 a paper

entitled ‘‘Risks of the Passport Single Sign-on Protocol’’ [13]. In this paper,

the AT&T researchers identified several risks and feasible attacks, and

revealed a flaw in the interaction of Passport and Netscape Navigator that

leaves a user logged in while informing him or her that he or she successfully

logged out. Most of the identified risks and feasible attacks are related to key

management. For example, most users don’t care about server-side

authenticity and don’t properly verify server certificates. Consequently,

various types of man-in-the-middle attacks are feasible. The same is true for

DNS spoofing. Furthermore, .NET Passport is designed to have each

participating site use one single key to generate cookies. This could be

generalized to have each participating site use client-specific keys. The

advantage of this would be that cookies are bound to clients and cannot be

used universally. Most importantly, .NET Passport is a centralized system

that has a single point of failure (i.e., the central database is an attractive

target, since its knowledge allows an attacker to spoof any user that has an

account in the system).

In their security analysis, Kormann and Rubin also argued that .NET

Passport is a ticketing system that lacks a basic component of many such

systems (e.g., Kerberos), namely, authenticators, to prove the legitimate

ownership of tickets. Instead of authenticators, .NET Passport employs SSL

connections to securely transfer tickets. It is too early to tell whether there

are any risks and feasible attacks that will result from this alternative

technology.

As mentioned previously, .NET Passport is one of the simplest

authentication service one can think of that is based on user-selected

14. The paper was first published on the Web and was later published in [13].

230 Authentication and Authorization Infrastructures

passwords. In the following section, we elaborate on alternative and more

sophisticated designs that are based on one of the oldest authentication

systems still in use today (i.e., Kerberos).

8.3 Kerberos-based AAIs

Microsoft .NET Passport implements a simple and straightforward approach

to provide password-based authentication. There is, however, another

authentication system that is also based on user passwords and that is in

widespread use (even in the Microsoft world). This system is called Kerberos

and it was briefly mentioned in Chapter 5. Kerberos can be used to provide a

starting point of an AAI. In fact, the Kerberos system is used in the Windows

2000 and XP operating systems for SSO.

8.3.1 Kerberos

The authentication and key distribution system Kerberos15 [10, 14 –16] was

originally developed at MIT to protect the emerging network services

provided by Athena Project [17–19]. The aim of the Kerberos system was to

extend the notion of authentication to the computing and networking

environment at MIT.

The first three versions of the Kerberos system were used only at MIT.

The first version that was made publicly available was Kerberos version 4

(Kerberos V4), and this version has achieved widespread use beyond MIT.16

Officially released in December 1992, MIT Kerberos V4 is in its final state.

In fact, MIT does not anticipate ever making a new Kerberos V4 software

release in the future.

Some sites require functionality that Kerberos V4 does not provide,

while others have a computing and networking environment or adminis-

trative procedures that differ from those at MIT. In addition, in 1990, Steven

Bellovin and Michael Merrit published a paper describing some short-

comings and limitations of Kerberos V4 [20]. Against this background, work

on Kerberos version 5 (V5) commenced also fueled by discussions with

Kerberos V4 users and administrators about their experience with the

Kerberos model in general, and the MIT reference implementation in

15. In Greek mythology, Kerberos is the name of the three-headed watchdog of Hades, whose duty it was to guard

the entrance of the underworld.

16. Outside the United States and Canada, the eBones distribution of Kerberos V4 is used and widely deployed.

The eBones distribution is available at http://www.pdc.kth.se/kth-krb.

8.3 Kerberos-based AAIs 231

particular. In September 1993, Kerberos V5 was officially specified in RFC

1510 [21], and as such it was submitted to the Internet standards track.

Again, MIT provided a publicly and freely available Kerberos V5 reference

implementation.

It should be noted that Kerberos V4 and V5, although conceptually

similar, are substantially different from one another, and are even competing

for dominance in the marketplace. In short, Kerberos V4 has a greater

installed base, is simpler, and has better performance than V5, but works

only with IP addresses; whereas Kerberos V5 has a smaller installed base, is

less simple and thus less efficient, but provides more functionality than V4.

For the purpose of this book, we simplify the Kerberos system and protocol

considerably. This simplified form of Kerberos is equally valid for Kerberos

V4 and V5. Further and more detailed information can be obtained from

Chapter 2 of [10] and [22]. Also, the Kerberos home pages at MIT17 and the

Information Sciences Institute (ISI)18 of the University of Southern

California provide good sources of information. In particular, there is a

document originally written by Bill Bryant in 1988. Entitled ‘‘Designing an

Authentication System: A Dialogue in Four Scenes,’’ the document

introduces and discusses the considerations and decisions that led to

Kerberos V4 design. The document is recommended reading and can be

downloaded from the MIT Kerberos home page19 and many other sites

related to network security.

Kerberos is based on authentication and key distribution protocols that

were originally proposed in [23, 24] and later modified to use time stamps

[25]. In the Kerberos model and terminology, an administration domain is

called a realm. It is assumed that every company or organization that runs

the Kerberos system establishes a realm that is uniquely identified by a

realm name. Also, Kerberos is based on the client-server model. Users,

clients, and servers implementing and providing specific network services

are considered principals, and each principal is uniquely identified by a

principal identifier.

The aim of Kerberos is to allow a client acting on behalf of a user to

authenticate (i.e., prove its identity) to a service (i.e., an application server)

without having to send authentication information in the clear across the

network. Also, user authentication should be empowered by passwords, but

the use of the passwords should be minimized (i.e., they should be used only

17. http://web.mit.edu/kerberos/www

18. http://nii.isi.edu/info/kerberos

19. http://web.mit.edu/kerberos/www/dialogue.html

232 Authentication and Authorization Infrastructures

once during the single sign-on processes). To achieve these goals, the

Kerberos system requires the existence of a TTP that acts as a key distribution

center (KDC). The KDC, in turn, consists of two logically separated

components:

w An authentication server (AS);

w A set of ticket-granting servers (TGSs).

Note that the AS and the TGSs are only logically separated components

and that they may be processes running on the same machines. Also note

that the machines that provide these services must be carefully protected and

located in physically secure environments. If an intruder is able to subvert

either the AS or any of the TGSs, he or she may compromise the entire

system at will.

The KDC maintains a database that includes an entry for every principal

registered in the Kerberos realm. The information a Kerberos KDC stores for

each principal P includes (but is not restricted to) the following two items:

w The principal identifier of P;

w The key Kp that is shared between P and the KDC (e.g., a password if

P is a user).

For obvious reasons, the confidentiality of the keys (i.e., Kp for each

principalP)mustbeprotected.TheKerberos system thereforeencrypts all keys

with a KDC master key. This encryption allows a system manager to remove

copies of the KDC database from the master server, and send copies thereof

to slave servers without going to extraordinary lengths to protect the privacy

of the copies. Slave servers are required in large realms to provide a highly

available Kerberos authentication service. Note that Kerberos does not store

the KDC master key in the same database, but manages that key separately.

In principle, Kerberos implements a ticketing system. This basically

means that a central authority (i.e., the KDC) issues tickets that clients and

servers can use to mutually authenticate themselves and to agree on a shared

secret. The shared secret, in turn, can then be used for subsequent data

authentication and encryption. In either case, a Kerberos ticket is a data record

that is issued by the Kerberos KDC. Among other things, the ticket contains

the following:

w The session key that will be used for authentication between the

client and the server;

8.3 Kerberos-based AAIs 233

w The name of the principal to whom the session key was issued;

w An expiration time after which the session key is no longer valid.

The ticket is not sent directly to the server, but instead sent to the client,

who forwards it to the server as part of an authentication exchange. A

Kerberos ticket is always encrypted with the server key, known only to the

AS and the intended server. Because of this encryption, it is not possible for

the client to modify the ticket without detection. There are two types of

tickets:

w Ticket-granting tickets (TGTs) are issued by the Kerberos AS and can be

used to request service tickets from a TGS;

w Service tickets, or tickets in short, in turn, are issued by a TGS and can be

used to authenticate to specific server systems.

During the duration of a typical session, a TGT is usually obtained first.

The TGT (instead of the user’s password) is then locally stored on the client

and used to request service tickets for each and every server system the client

must authenticate to.

Figure 8.5 illustrates the Kerberos system and the corresponding

protocol steps. The six steps can be be formalized as follows:

Figure 8.5 The Kerberos system and the corresponding protocol steps.

234 Authentication and Authorization Infrastructures

Furthermore, the six steps can be grouped in three exchanges:

w The AS exchange between the client and the AS (steps 1 and 2);

w The TGS exchange between the client and the TGS (steps 3 and 4);

w The AP exchange between the client and the application server (steps 5

and 6).

Obviously, the AS exchange must be performed only once during the

log-in process, whereas the TGS exchange and the AP exchange must be

performed for each server the client wants to access (if the server requires

authentication).

When a user U wants to sign on a Kerberos realm, he or she has a client C

send a KRB AS REQ (Kerberos authentication server request) message to

the AS of the Kerberos KDC in step 1. The message basically includes the

principal identifier for U, the identifier for a TGS, a desired lifetime L1 for the

TGT, and a randomly chosen nonce N1.

After having received the KRB AS REQ message, the AS looks up and

extracts the secret keys for both U and the TGS. If required, the AS

preauthenticates the request, and if preauthentication fails, a corresponding

error message is returned to C. Otherwise, the AS randomly selects a new

session key K, and returns a KRB AS REP (Kerberos authentication server

reply) message to C in step 2. The message includes U, a TGT

Tc;tgs ¼ fU;C; TGS;K; Tstart; TexpiregKtgs, and fTGS;K; Tstart; Texpire;N1gKU . The

TGT’s start and expiration times Tstart and Texpire are set in accordance with

the realm’s security policy in a way that fits the specified lifespan L1 of the

KRB AS REQ message.

After having received the KRB AS REP message in step 2, C applies a

well-known one-way hash function h to the user-provided password pwdU

to compute the user’s master key KU ¼ hðpwdU Þ.
20 Equipped with this key, C

can decrypt fTGS;K; Tstart; TexpiregKU , and extract TGS, K, Tstart, and Texpire

1 : C �! AS :KRB AS REQ(U;TGS;L1;N1)

2 : AS �! C :KRB AS REP(U; Tc;tgs; fTGS;K; Tstart ;Texpire;N1gKU)

3 : C �! TGS :KRB TGS REQ(S; L2;N2;Tc;tgs;Ac;tgs)

4 : TGS �! C :KRB TGS REP(U;Tc;s; fS;K
0;T 0

start ;T
0
expire;N2gK)

5 : C �! S :KRB AP REQ(Tc;s;Ac;s)

6 : S �! C :KRB AP REP(fT 0gK0)

20. Kerberos V4 did not prompt the user to enter the password until after C has received the KRB AS REP

message. This is because Kerberos V4 was serious in following the generally good security rule of having C

know the user’s password only for the minimum time possible. But waiting the few seconds to retrieve the

8.3 Kerberos-based AAIs 235

accordingly. C is now in the possession of a TGT that is valid from Tstart to

Texpire. It can use this TGT to request a service ticket from the TGS for every

registered server S in the realm. Note that in a TGT, a lifetime is used like a

password expiration time. Limiting the lifetime of a TGT thus limits the

amount of damage that can be caused by a compromise of the TGT. In

Kerberos, there is generally no possibility to revoke a TGT once it has been

issued. Thus, limiting the TGT lifetime implicitly sets a deadline after which

the TGT becomes obsolete.

Before initiating a TGS exchange, C must determine in which realm the

application server he or she will request a ticket for has been registered. If C

does not already possess a TGT for that realm, C must obtain one. This is first

attempted by requesting a TGT for the destination realm from the local

Kerberos server (using the KRB TGS REQ message recursively). The

Kerberos server may return a TGT for the desired realm, in which case C

can proceed. Alternatively, the Kerberos server may also return a TGT for a

realm which is closer to the desired realm, in which case this step must be

repeated with a Kerberos server in the realm specified in the returned TGT. If

neither is returned, the request must be retried with a Kerberos server for a

realm higher in the hierarchy. This request will itself require a TGT for the

higher realm, which must be obtained by recursively applying these

directions. Once the client obtains a TGT for the appropriate realm, it

determines which Kerberos servers serve that realm, and contacts one. The

list might be obtained through a configuration file or a corresponding

network service.

In step 3, C sends a KRB TGS REQ (Kerberos ticket-granting server

request) message to the TGS. The message includes the principal identifier S

for the server, a requested lifetime L2 for the service ticket, a nonce N2, the

TGT Tc;tgs, and an authenticator Ac;tgs to prove legitimate ownership of the

TGT. Ac;tgs can be regarded as the principal identifier of C and a time stamp,

both of them encrypted with the session key K: Ac;tgs ¼ fC; TgK. Note that

Tc;tgs can have a comparably long lifetime, and could be eavesdropped upon

and replayed. The purpose of the authenticator is thus to show that C holds

the secret key, and to thwart this kind of attack. Also note that the use of

authenticators generally requires that principals on the network keep

KRB AS REP message before asking the user for the password really does not enhance security significantly,

and in fact Kerberos V5 has the user enter the password before C sends the KRB AS REQ message. The reason

for the designers of Kerberos V5 to change the order was that V5 requires C to prove that it knows the user’s

password before the AS sends the KRB AS REP message, which makes it less easy to obtain a quantity with

which to launch an offline password guessing attack.

236 Authentication and Authorization Infrastructures

TEAMFL
Y

Team-Fly®

reasonably synchronized time. The times can be off by some amount. The

allowable time skew is independently set at each server, and therefore some

servers may be configured to be fussier than others about times being close.

The allowed time skew is usually set to be accurate within 5 minutes without

undue administrative burden. In practice, that assumption has turned out to

be more problematic than expected. Distributed time services, once

deployed, make much tighter synchronization possible.

The KRB TGS REQ message is processed in a manner similar to that of

the KRB AS REQ message, but there are some additional checks to be

performed. In step 4, the TGS returns a KRB TGS REP message (Kerberos

ticket-granting server reply) that shares its format with the KRB AS REP

message. It includes the principal identifier for the user, a ticket Tc; s for the

requested server S, and an expression (i.e., fS;K 0; T 0
start; T 0

expire;N2g) encrypted

with K. Again, the client can use K to decrypt the expression and to extract

the identifier for the server, the new session key K 0 (which the client uses to

talk to the server), a lifetime for the ticket, and the nonce N2.

When the KRB TGS REP is received by C, it is processed in the same

manner as the KRB AS REP processing described above. The primary

difference is that the ciphertext part of the response must be decrypted

with the session key that is shared with the TGS rather than with the user’s

master key.

It turns out that there is neither functionality nor security gained by

having Kerberos require an authenticator as part of the KRB TGS REQ

message. If someone who did not know the session key K transmitted Tc;tgs to

the TGS, the TGS would return a message encrypted with K, which would be

of no use to someone who did not know the session key. The reason the

designers of Kerberos did it this way is to make the protocol for talking to the

TGS be the same as for talking to the other servers. When talking to other

servers, the authenticator does indeed provide security, because it

authenticates the knowledge of the corresponding session key.

The AP exchange of the Kerberos V4 protocol is used by network

applications either to authenticate a client to a server, or to mutually

authenticate a client and a server to each other. The client must have already

acquired credentials for the server using the AS or TGS exchange.

In step 5, C sends a KRB AP REQ (Kerberos application request)

message to the server S. The message includes Tc; s, Ac; s ¼ fC; T 0gK 0, and some

additional bookkeeping information. Authentication is based on the server’s

current time of day, the ticket Tc; s, and the authenticator Ac; s.

To make sure that the KRB AP REQ message is not a replay of a request

recent enough to look current given the time skew, S should keep all time

stamps received within the maximum allowable time skew and check that

8.3 Kerberos-based AAIs 237

each received time stamp is different from any of the stored values. Any

authenticator older than the maximum allowable time skew would be

rejected anyway, so there is no need to remember values older than the

threshold value. Kerberos V4, however, does not bother saving time stamps.

Saving time stamps does not help if S is a replicated service in which all the

instances of the service use the same master key. The threat of an

eavesdropper replaying the authenticator C sent to one instance of S to a

different instance of S could have been avoided if Kerberos had done

something like put the network layer of the instance of S in the

authenticator, too.

If no error occurs, and if mutual authentication is required, S has to

return a KRB AP REP (Kerberos application reply) message to C in step 6.

Again, this message is encrypted with the session key K 0 that is shared

between C and S. Since this key was in the ticket encrypted with the server’s

secret key, possession of this key is proof that S is the intended principal.

More accurately, S has to increment the time stamp included in the

KRB AP REQ message authenticator and re-encrypt it with K 0.

As described thus far, Kerberos provides mutual authentication services

for the client and server. However, a by-product of the Kerberos

authentication protocol is the exchange of a session key K 0 that is shared

between the clients and the servers. This key can then be used by the

application to protect the confidentiality and integrity of communications.

Typically, communications between the client and server is transparently

encrypted and decrypted using the DES and the session key K 0.

There are at least two problems that should be considered with care

when it comes to large-scale deployment of the Kerberos system:

1. The fact that one part of the KRB AS REP message is encrypted

with KU can be used to launch a verifiable password guessing attack

against the user’s password. More accurately, it is possible to guess a

password candidate, derive a candidate KU from this value, and

decrypt the relevant part of the KRB AS REP message with this key.

It is then verifiable whether the password candidate was properly

guessed. There are several strategies to protect against this type of

attack, but unfortunately, all require the use of public key

cryptography or similar constructs.

2. The fact that the Kerberos KDC shares a secret key with each

prinicpal in the realm allows the administrator of the KDC to spoof

any principal. This is a consequence of the fact that the Kerberos

system uses only secret key cryptography.

238 Authentication and Authorization Infrastructures

Furthermore, every network application must be modified to make use

of the Kerberos system. The process of modifying a network application to

make use of Kerberos is commonly referred to as ‘‘Kerberizing’’ it. In

general, Kerberizing network applications is the most difficult part of

installing Kerberos. Fortunately, the MIT reference implementations of the

Kerberos system include Kerberized versions of some popular network

applications, such as Telnet and the Berkeley r-tools. Other applications have

been Kerberized by vendors and are included in their supported products.

The availability of Kerberized applications has improved with time, and is

expected to further improve in the future. However, a site would still

have to arrange itself to add Kerberos support to any application developed

in-house.

One of the commonly agreed upon design principles for authentication

and key distribution systems is the use of a standardized API, such as the

Generic Security Services API (GSS-API) specified by the IETF Common

Authentication Technology (CAT) WG. The use of the GSS-API for Kerberos

V5 is specified in RFC 1964 [26]. Also, more work is needed to standardize

and eventually simplify the GSS-API, such as demonstrated by GSS-API

version 2 [27] or the Simple Public-Key GSS-API Mechanism [28].

Note that the Kerberos system provides authentication, data confidenti-

ality, and data integrity services. By itself, it provides no information as to

whether or not the client is authorized to access the server and to use the

corresponding services. In general, there are three possibilities to address

authorization within the Kerberos model:

1. The Kerberos KDC could maintain authorization information for

each service and issue tickets to authorized users only.

2. A dedicated service could maintain authorization information by

keeping access lists for each service and allowing the client to obtain

sealed certification of list membership. The client would then

present the sealed certification in addition to a Kerberos ticket to the

requested service.

3. Each service could maintain its own authorization information,

with the optional help of a service that stores access lists and

provides certification of list membership.

The Kerberos model is based on the assumption that each service knows

best who its users should be and what form of authorization is appropriate

for them. Consequently, the third approach is employed in the Kerberos

system. Next we will see that the main difference between Kerberos and

8.3 Kerberos-based AAIs 239

Kerberos-based AAIs, such as SESAME and Windows 2000, is that the

former employs the second approach to address authorization.

8.3.2 SESAME

The Secure European System for Applications in a multivendor Environ-

ment (SESAME) was a European research-and-development project aimed

at developing an AAI and system for distributed computing and networking

environments [29–31]. It achieved this by including and combining an

extended Kerberos V5 authentication service and a privilege attribute service

that can be used to provide authorization and corresponding access control

services.

Recall that in the Kerberos system a client requests a TGT from the AS,

and that the client can use this TGT to request service tickets from the TGS.

In the SESAME system, a similar approach is used for authorization and

access control. If a client wants to use a service, he or she must not only be

authenticated by the AS, but also have his or her other privilege attributes

certified by an additional component, a so-called privilege attribute server

(PAS). In SESAME, the term privilege attribute certificate (PAC) is used to refer

to a certified set of privilege attributes. In principle, a PAC consists of both

the user’s privileges and corresponding control information. The user’s

privileges are data such as the user’s identity, role, organizational group,

and security clearance, whereas the control information says where and

when the PAC can be used and whether it can be delegated or not. Note that

a PAC is conceptually similar to an attribute certificate. In short, the client

and the PAS must exchange KRB PAS REQ and KRB PAS REP messages

between the AS exchange (using the KRB AS REQ and KRB AS REP

messages) and the TGS exchange (using the KRB TGS REQ and

KRB TGS REP messages). In these messages, the client is provided with a

PAC that is relevant for the user on whose behalf it is acting.

Refer to Chapter 6 of [10] or [31] to get a more comprehensive overview

and discussion of the SESAME system. With the deployment of similar

mechanisms in Windows 2000, interest in SESAME and SESAME-enabled

applications has disappeared in the past.

8.3.3 Windows 2000

More recently, Microsoft has implemented the Kerberos V5 authentication

service with extensions for public key authentication21 for the Windows

21. These extensions are specified by the IETF CAT WG under the acronym PKINT.

240 Authentication and Authorization Infrastructures

2000 operating system. The Kerberos KDC is integrated with other Windows

2000 security services running on the domain controller and uses the

domain’s active directory as its security account database.22

In addition to the functionality specified in [21], Windows 2000

implements an authorization mechanism in the Kerberos system in a specific

and unique way. When the Kerberos protocol is used for authentication, a

list of security identifiers (SID) identifying a principal and the principal’s

group memberships is transported to the client in the authorization data

field of a ticket. Authorization data, in turn, are gathered in two steps:

1. The first step takes place when the KDC in a Windows 2000 domain

prepares a TGT.

2. The second step is accomplished when the KDC prepares a service

ticket for the server in the domain.

When a user requests a TGT, the KDC in the user’s account domain

queries the domain’s active directory. The user’s account record includes the

user’s SID as well as SIDs for any security group to which the user belongs.

The list of SIDs returned by the KDC is placed in the authorization data field

of the TGT.23 In a multiple-domain environment, the KDC also queries the

Global Catalog for any universal groups that include the user or one of the

user’s domain security groups. If any are found, their SIDs are also added to

the list in the TGT’s authorization data field.

When a user requests a service ticket, the KDC in the server’s domain

copies the contents of the TGT’s authorization data field to the ticket’s

authorization data field. Furthermore, if the server’s domain is different from

the user’s account domain, the KDC queries the active directory to find out

whether any security groups in the local domain include the user or one of

the user’s security groups. If any are found, their SIDs are also added to the

list in the service ticket’s authorization data field.

8.4 PKI-based AAIs

In the previous chapter, we had a look at public key certificates and PKIs. We

also discussed why public key certificates that can be used to authenticate

22. For consistency, the Microsoft documentation uses the term ‘domain’ instead of ‘realm’. Furthermore, the

distinction between an AS and a TGS is not made. Both components are collectively referred to as a KDC.

23. Note that this use of the authorization data field to actually carry authorization information is consistent with

revisions to the Kerberos V5 protocol specification [21] submitted to the IETF.

8.4 PKI-based AAIs 241

users and customers solve only half of the problems related to e-commerce.

In addition to authentication, e-commerce providers must have an

opportunity to properly authorize users and customers. Consequently, an

e-commerce provider must have an opportunity to attain some authoriza-

tion information about his or her users and customers.

An X.509v3 public key certificate can convey authorization information

about its owner. The information can, for example, be encoded in one of

the X.509v3 standard or extension fields. Note, however, that there are at

least two reasons why caution should be taken in using X.509v3 public key

certificates for conveying authorization information:

1. The authority that is most appropriate for verifying the identity of a

person associated with a public key (i.e., a CA) may not be

appropriate for certifying the corresponding authorization informa-

tion. For example, in a company, the corporate security or human

resources departments may be the appropriate authorities for

verifying the identities of persons holding public keys, whereas

the corporate finance office may be the appropriate authority for

certifying permissions to sign on behalf of the company.

2. The dynamics of the two types of certificates may be fundamentally

different. For example, the persons authorized to perform a

particular function in a company may vary monthly, weekly, or

even daily. Contrary to that, public key certificates are typically

designed to be valid for a much longer period of time (e.g., one or

two years). If it becomes necessary to revoke and reissue public key

certificates frequently because of changing authorizations (which

are encoded into the public key certificates), this may have a severe

impact on the performance characteristics of the resulting certificate

management scheme.

Recognizing that public key certificates are not always the best vehicle to

carry authorization information, the U.S. American National Standards

Institute (ANSI) X9 committee developed an alternative approach known as

attribute certificates. Meanwhile, this approach has been incorporated into

both the ANSI X9.57 standard and the X.509-related standards and

recommendations of the ITU-T, ISO/IEC, and IETF.

According to RFC 2828 [32], an attribute certificate is ‘‘a digital

certificate that binds a set of descriptive data items, other than a public key,

either directly to a subject name or to the identifier of another certificate that

is a public-key certificate.’’ The latest version of the ITU-T recommendation

242 Authentication and Authorization Infrastructures

X.509 also specifies the format of an attribute certificate (currently in version

1). An X.509 attribute certificate also has a subject field, but the attribute

certificate is a separate data structure from that subject’s public key

certificate. A subject may have multiple attribute certificates associated

with each of its public key certificates, and an attribute certificate may be

issued by a different authority (i.e., the AA) than the authority that issued

the associated public key certificate (i.e., the CA).

In essence, an attribute certificate binds one or more pieces of additional

information to the certificate owner. As such, the attribute certificate may

contain group membership, role, clearance, or any other form of authoriza-

tion or access control-related information associated with its owner. In

conjunction with authentication services, attribute certificates may provide

the means to securely transport authorization information to applications

and application programs. Consequently, attribute certificates are particu-

larly well suited to control access to system resources, and to implement role-

based authorization and access controls accordingly [33]. Note that attribute

certificates are conceptually similar to PACs used in SESAME and Microsoft’s

Windows 2000 operating system.

Anyone can define and register attribute types and use them in attribute

certificates. The certificate is digitally signed and issued by an AA. AAs, in

turn, are assumed to be certified by CAs, so that a single point of trust—

namely, a trusted public key of a root CA—can eventually be used to validate

the certificates of AAs, other CAs, and end users.

An X.509 attribute certificate contains a sequence of data items and has a

digital signature that is computed from that sequence. In addition to the

digital signature, an attribute certificate contains the following nine pieces of

information:

1. A version number (typically specifying version 1);

2. A subject (either a DN or a serial number of an X.509 public key

certificate);

3. An issuer (i.e., the DN of the issuing AA);

4. An object identifier for the algorithm that is used to sign the

attribute certificate;

5. A serial number (i.e., a unique integer assigned by the issuer);

6. A validity period specified by a pair of time values (i.e., a start time

and an expiration time);

7. A sequence of attributes describing the subject;

8.4 PKI-based AAIs 243

8. An optional field that may be used to identify the issuer if a DN is

not sufficient;

9. An arbitrary number of optional extensions.

Apart from differences in content, an attribute certificate is managed

the same way as a public key certificate. For example, if an organization

already runs a directory service for public key certificates and related

status information, this service can also be used to distribute attribute

certificates.

Also similar to public key certificates, attribute certificates can be used in

either the push or pull model:

w In the push model, the certificates are pushed from the client to the

server.

w In the pull model, the certificates are pulled by the server from an on-

line network service (either the certificate issuer or a directory service

that is fed by the certificate issuer).

A PKI-based AAI that makes use of attribute certificate infrastructure

should support both models, because some applications work best when a

client pushes the certificates to the server, whereas for other applications it is

more convenient for the client simply to authenticate to the server and for

the server to request the client’s certificates from a corresponding network

service or certificate repository.

There exist a number of standards and standardized procedures to issue,

manage, and possibly revoke certificates. This is particularly true for public

key certificates, but is also becoming true for attribute certificates. With

regard to attribute certificates, however, most security protocols must be

modified to make use of them. For example, the SSL and TLS protocols are

able to handle public key certificates to address authentication and key

exchange; they are not yet able to handle attribute certificates to address

authorization. Nevertheless, it would be convenient to have an SSL/TLS

client submit a list of relevant attribute certificates to access an intranet

server. To make this happen, the SSL and TLS protocols must be extended24

and the extended protocols must be implemented and deployed. Conse-

quently, there is still a long way to go until we see attribute certificates

deployed in practice.

24. There are some preliminary work specifying the use of attribute certificates in the SSL and TLS protocols.

244 Authentication and Authorization Infrastructures

8.5 Conclusions

In this chapter, we addressed the notion of an AAI, and elaborated on some

technologies to build and operate such an infrastructure. In addition to the

technologies explained in this book, there is also work going on to have

middleware provide a comprehensive set of security services. Most impor-

tantly, CORBA security is a hot topic today; you may refer to [34] for a

corresponding overview and dicusssion from a developer’s point of view. All

technologies compete for market share and it is not at all clear what techno-

logy will be used in the future. What is urgently needed is more experience in

practical deployment and application integration, particularly in hetero-

geneous environments and on a large scale. As such, the field of designing and

implementing AAIs is open for further research and development.

There is some fear in the industry that Microsoft .NET Passport may be

successful in providing a viable alternative to PKI-based AAIs, especially in the

short term. Consequently, some competitors of Microsoft (e.g., Sun Micro-

systems, Cisco Systems, and RSA Security) have launched a Liberty Alliance

Project.25 The project refers to an organization that has been chartered ‘‘to

create an open, federated, single sign-on identity solution for the digital

economy via any device connected to the Internet.’’ Membership is open to all

commercial and noncommercial organizations. As of this writing, the Liberty

Alliance Project has provided only some press releases. Consequently, it is to

early too say whether the project will be successful, and whether its solution

will provide a viable alternative to Microsoft .NET Passport. It is also possible

and likely that we will see other projects and organizations be launched to

compete Microsoft .NET Passport and the Liberty Alliance Project.

References

[1] Feigenbaum, J., ‘‘Towards an Infrastructure for Authorization,’’ Position

paper, Proceedings of USENIX Workshop on Electronic Commerce—Invited Talks

Supplement, 1998, pp. 15–19.

[2] Maurer, U. M., and P. E. Schmid, ‘‘A Calculus for Secure Channel

Establishment in Open Networks,’’ Proceedings of European Symposium on

Research in Computer Security (ESORICS), 1994, pp. 175–192.

[3] Maurer, U. M., ‘‘Modelling a Public-Key Infrastructure,’’ Proceedings of

European Symposium on Research in Computer Security (ESORICS), 1996,

pp. 325–350.

25. www.projectliberty.org

8.5 Conclusions 245

[4] Kohlas, R., and U. M. Maurer, ‘‘Confidence Valuation in a Public-key

Infrastructure Based on Uncertain Evidence,’’ Proceedings of Public Key

Cryptography ’00, 2000, pp. 93–112.

[5] Kohlas, R., and U. M. Maurer, ‘‘Reasoning About Public-Key Certification: On

Bindings Between Entities and Public Keys,’’ IEEE Journal on Selected Areas in

Communication, Vol. 18, No. 4, 2000, pp. 591–600.

[6] Blaze, M., J. Feigenbaum, and J. Lacy, ‘‘Decentralized Trust Management,’’

Proceedings of IEEE Conference on Security and Privacy, 1996, pp. 164–173.

[7] Blaze, M., J. Feigenbaum, and M. Strauss, ‘‘Compliance-Checking in the

PolicyMaker Trust-Management System,’’ Proceedings of Financial Cryptography,

1998, pp. 251–265.

[8] Blaze, M., et al., ‘‘The KeyNote Trust-Management System Version 2,’’

Request for Comments 2704, September 1999.

[9] D. Geer, ‘‘Risk Management Is Where the Money Is,’’ Digital Commerce

Society of Boston, November 1998, at http://catless.ncl.ac.uk/Risks/

20.06.html#subj1.

[10] Oppliger, R., Authentication Systems for Secure Networks, Norwood, MA: Artech

House, 1996.

[11] Microsoft Corporation, Microsoft .NET Passport Technical Overview, White Paper,

September 2001.

[12] Microsoft Corporation, Microsoft .NET Passport Security and Privacy Overview,

White Paper, October 2001.

[13] Kormann, D. P., and A. D. Rubin, ‘‘Risks of the Passport Single Signon

Protocol,’’ Computer Networks, Vol. 33, 2000, pp. 51–58.

[14] Steiner, J. G., B. C. Neuman, and J. I. Schiller, ‘‘Kerberos: An Authentication

Service for Open Network Systems,’’ Proceedings of the USENIX UNIX Security

Symposium, August 1988.

[15] Kohl, J., and B. C. Neuman, ‘‘The Kerberos Network Authentication Service,’’

Cambridge, MA: Massachusetts Institute of Technology (MIT), December

1990.

[16] Schiller, J. I., ‘‘Secure Distributed Computing,’’ Scientific American, November

1994, pp. 72–76.

[17] Champine, G. A., D. E. Geer, and W. N. Ruh, ‘‘Project Athena as a Distributed

Computer System,’’ IEEE Computer, Vol. 23, September 1990, pp. 40–50.

[18] Champine, G. A., MIT Project Athena—A Model for Distributed Computing,

Burlington, MA: Digital Press, 1991.

[19] Miller, S. P., et al., ‘‘Kerberos Authentication and Authorization System,’’

Section E.2.1 of the Project Athena Technical Plan, Cambridge, MA:

Massachusetts Institute of Technology (MIT), December 1987.

246 Authentication and Authorization Infrastructures

TEAMFL
Y

Team-Fly®

[20] Bellovin, S. M., and M. Merritt, ‘‘Limitations of the Kerberos Authentication

System,’’ ACM Computer Communication Review, Vol. 20, 1990, pp. 119–132.

[21] Kohl, J., and B. C. Neuman, ‘‘The Kerberos Network Authentication Service

(V5),’’ Request for Comments 1510, September 1993.

[22] Tung, B., Kerberos: A Network Authentication System, Reading, MA: Addison-

Wesley, 1999.

[23] Needham, R. M., and M. D. Schroeder, ‘‘Using Encryption for Authentication

in Large Networks of Computers,’’ Communications of the ACM, Vol. 21,

December 1978, pp. 993–999.

[24] Needham, R. M., and M. D. Schroeder, ‘‘Authentication Revisited,’’ ACM

Operating Systems Review, Vol. 21, 1987, p. 7.

[25] Denning, D. E., and G. Sacco, ‘‘Timestamps in Key Distribution Protocols,’’

Communications of the ACM, Vol. 24, 1981, pp. 533–536.

[26] Linn, J., ‘‘The Kerberos Version 5 GSS-API Mechanism,’’ Request for

Comments 1964, June 1996.

[27] Linn, J., ‘‘Generic Security Services Application Program Interface, Version 2,’’

Request for Comments 2078, January 1997.

[28] Adams, C., ‘‘The Simple Public-Key GSS-API Mechanism,’’ Request for

Comments 2025, October 1996.

[29] Parker, T. A., ‘‘A Secure European System for Applications in a Multi-Vendor

Environment (The SESAME Project),’’ Proceedings of the 14th National Computer

Security Conference, 1991.

[30] McMahon, P. V., ‘‘SESAME V2 Public Key and Authorisation Extensions to

Kerberos,’’ Proceedings of the Internet Society Symposium on Network and Distributed

System Security, February 1995, pp. 114–131.

[31] Ashley, P., and M. Vandenwauver, Practical Intranet Security—Overview of the

State of the Art and Available Technologies, Norwell, MA: Kluwer Academic

Publishers, 1999.

[32] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

[33] Oppliger, R., G. Pernul, and C. Strauss, ‘‘Using Attribute Certificates to

Implement Role-Based Authorization and Access Control Models,’’ Proceedings

of 4. Fachtagung Sicherheit in Informationssystemen (SIS 2000), October 2000,

pp. 169–184.

[34] Lang, U., and R. Schreiner, Developing Secure Distributed Systems with CORBA,

Norwood, MA: Artech House, 2002.

8.5 Conclusions 247

Electronic Payment Systems

In this chapter, we overview and briefly discuss some

electronic payment systems that can be used in e-commerce

to transfer monetary value from one entity to another. After a

short introduction in Section 9.1, we elaborate on electronic

cash systems, electronic checks, electronic credit-card pay-

ments, and micropayment systems in Sections 9.2 to 9.5.

Finally, we draw some conclusions in Section 9.6.

Note that electronic payment systems are subject to

frequent changes and that it is not clear at the moment

where the market is heading to and what electronic payment

systems we will see in the future. Against this background, the

chapter is kept short on purpose and provides many references

to material that can be used for further study. More information

is also available, for example, in three complementary books

published in Artech House’s computer security series. More

specifically, [1] provides a comprehensive overview about the

electronic payment systems that dominate the marketplace

today, whereas [2] and [3] delve into the technical details of the

Java Card and the smart cards that conform to the specifications

developed by Europay, MasterCard, and Visa International (i.e.,

EMV cards). The books are recommended reading for anybody

working in the field.

9.1 Introduction

The exchange of goods conducted face-to-face between two or

more entities dates back to before the beginning of recorded

249

C H A P T E R

9
Contents

9.1 Introduction1

9.2 Electronic cash systems7

9.3 Electronic checks10

9.4 Electronic credit-card
payments11

9.5 Micropayment systems14

9.6 Conclusions15

References

history. Eventually, as trade became more complicated and inconvenient,

human beings invented some increasingly abstract forms of representation

for value. Consequently, we (or rather our predecessors) have experienced a

progression of value transfer systems, starting from barter arrangements,

through commodity money, coins and bank notes, payment orders, checks,

and credit cards. This development is likely to continue in the future.

More recently, the progression of value transfer systems has culminated

in electronic payment systems. In fact, the growing importance of electronic

commerce (e-commerce) and corresponding applications has resulted in the

introduction of a variety of different and partly competing electronic

payment systems (again, you may refer to [1] for a comprehensive overview

and discussion). Within currently available electronic payment systems,

payments are done electronically, but the mapping between the electronic

payments and the transfer of real value is still guaranteed by banks through

financial clearing systems. These clearing systems are built on the closed

networks of financial institutions (i.e., banks) that are considered

comparatively more secure than open networks, such as the Internet.

It is important to note that all abstract forms of representation for value

and corresponding value transfer systems suffer from well-known (and

probably also some unknown) security problems. For example, money can be

counterfeited, signatures on checks can be forged, and checks can be bounced.

Electronic payment systems retain the same or similar security problems and

may eventually pose additional risks. For example, unlike paper, digital data

(representing monetary value) can be copied perfectly and arbitrarily often,

digital signatures can be counterfeited perfectly by anybody who has access to

the private key, and a customer’s name can be associated with every payment,

effectively eliminating the anonymity of conventional cash. Thus, without

new security mechanisms and techniques being developed, implemented,

and deployed, widespread use of electronic payment systems and correspond-

ing e-commerce applications is not likely to take off.

All currently available electronic payment systems differ in details, but

have the same basic purpose of facilitating the transfer of monetary value

between multiple parties. In general, electronic payments involve a buyer

(the party that wants to use the money to buy goods or services) and a

merchant (the party that wants to sell goods or services and accepts money

accordingly). In the terminology of (electronic) payment systems, a buyer is

often called a payer, and a merchant is often called a payee. The two pairs of

terms are used synonymously and interchangeably in this book.

Theintentofanelectronicpaymentsystemistosafelyandsecurelytransfer

monetary value from the payer to the payee. The transfer is accomplished by

one (or several) electronic payment protocol(s). These protocols are general in

250 Electronic Payment Systems

nature and must not depend on the actual transport media in use. As a matter

of fact, a payment protocol may be implemented as part of a Web application

using HTTP, as part of an e-mail application using SMTP, or as part of any other

application protocol. Ineither case, itmustbeensured that thedata involved in

an electronic payment protocol execution is safe and secure, even if the

medium is not. In the case that the medium is attacked, nothing more than a

useless data stream must be obtained by the attacker. To provide this kind of

safety and security, most electronic payment systems make use of some more

or less sophisticated cryptographic techniques.

Note, however, that there is no obligation to use cryptographic

techniques. For example, it has been possible for a long time to make

credit-card payments without requiring the customer and merchant to be

colocated. Credit-card companies have allowed orders to be taken either by

post or telephone. These orders are collectively referred to as mail order/

telephone order (MOTO) transactions, and special rules have been imposed by

the credit-card companies on how these transactions are to be processed. In

fact, cardholders are asked to provide some additional information, such as

their names and addresses, that are used to verify their identity. Also, if

goods that require physical delivery are being ordered, they must be sent to

the address associated with the cardholder. Although there are many

possibilities for fraud and misuse associated with MOTO transactions, they

are still very popular today (for certain applications the benefits simply

outweigh the risks).

Using credit cards to make payments across computer networks (e.g., the

Internet) has similar associated risks as are experienced with MOTO

transactions. Attackers eavesdropping on network traffic may intercept

data and capture credit-card and associated verification information. What

makes the risks considerably higher than MOTO transactions is the open

nature of computer networks and the speed in which transactions can be

conducted in these networks.1

Against this background, there are only a few electronic payment

systems for the Internet that don’t make use of cryptographic techniques.

For example, one of the earliest credit-card-based payment system was

marketed by a company called First Virtual Holdings (FV).2 In October 1994,

the company commenced operation of a noncryptographic payment system

called the VirtualPIN. The goal of the VirtualPIN system was to allow the

1. The major security problems are still related to the way the credit-card information is handled on the client and

server sides.

2. The First Virtual Holdings, Inc., does not exist anymore.

9.1 Introduction 251

selling of low-value information goods across the Internet without the need

for special-purpose client hardware or software to be put in place.

In the VirtualPIN system, both the customers and merchants had to

register with FV before any transactions could take place.

w A customer registering with FV had to forward credit-card informa-

tion and an e-mail address to the FV server and in exchange received

a pass phrase, called a VirtualPIN. This initial part of the exchange

could take place across the Internet, with the user filling out a form

and inventing the first part of a pass phrase. The FV server

acknowledged this and added a suffix to the pass phrase to actually

form the VirtualPIN. The customer then made a telephone call to FV

to tender credit-card information. This allowed FV to establish a link

between the VirtualPIN and the pass phrase on the one hand and the

customer’s credit-card information on the other hand without ever

using this information on the Internet.

w Merchants had to go through a similar registration procedure in

which they gave bank account information to FV and then were

given a merchant VirtualPIN.

After a customer had properly registered with FV, he or she could browse

any Web site on which a FV merchant was selling goods. The customer

selected the item(s) he or she wished to purchase and was asked to enter the

VirtualPIN (representing his or her FV account identifier). The VirtualPIN

was then forwarded to the merchant, and the merchant checked that it was

valid by querying a corresponding FV server. If the customer’s VirtualPIN

was not blacklisted, the merchant delivered the information to the customer

and forwarded information about the transaction, including the customer’s

VirtualPIN, to the FV server. No payment was made at this point, since the

system was based on a try-before-you-buy philosophy. Consequently, the

next step was for the FV server to send an e-mail message to the customer

asking whether he or she accepted or rejected the goods. In addition, the

customer could also indicate that a fraud was going on (as a third option).

Upon receipt of this message, the FV server would immediately blacklist the

customer’s VirtualPIN. At the end of every 90 days, the customer’s credit-

card account was debited for the charges that had accumulated during the

time period, and the corresponding merchant’s checking account was

credited with payments for the items sold. FV performed the accounting for

both the customer and merchant, taking a percentage of each transaction as

a commission fee.

252 Electronic Payment Systems

It is obvious that if a VirtualPIN was compromised by an attacker

eavesdropping on network data traffic, bogus purchases could be made from

then until the VirtualPIN was blacklisted. Since payment authorization

requests were sent to the customer by e-mail, this time period could range

from a few minutes to perhaps a couple of days. Furthermore, degradation-

of-service and denial-of-service attacks on the e-mail system could be used to

prolong this period substantially. Consequently, the actual security of the FV

payment system was not based on the VirtualPIN and the pass phrase, but

rather on the customer’s ability to revoke each payment within a certain

period of time. In other words, there was no definite authorization during

payment. Until the end of the clearing period (typically 90 days as

mentioned above), the merchant had to take the entire risk.

A similar credit-card-based system has been developed and is being

marketed successfully by PayPal3. The system is, for example, used to settle

purchases made on Internet auction sites, such as eBay.4 Contrary to FV and

PayPal, however, most contemporary electronic payment systems are more

complex and use more sophisticated cryptographic techniques. Most of these

systems require at least one financial institution, such as a bank, that links

the data exchanged in the payment protocol to corresponding transfers of

monetary value. Typically, banks participate in electronic payment protocols

in two roles:

w As an issuer (interacting with the customer or payer);

w As an acquirer (interacting with the merchant or payee).

In addition, there may be some form of arbiter to settle disputes. In most

electronic payment systems, the presence of an arbiter is not explicit. Even if

the necessary pieces of evidence are produced, disputes must be handled

outside the actual payment systems. In many cases, dispute handling is not

even specified. This is about to change, since contemporary research in

electronic payment systems and the provision of nonrepudiation services

also addresses dispute handling.

In general, electronic payment systems are classified according to the

relationship between the time the payment initiator (i.e., the customer)

considers the purchase as finished and the time the corresponding monetary

value is actually taken from his or her account. Consequently, one can

distinguish between prepaid, pay-now, and pay-after payment systems:

3. http://www.paypal.com

4. http://www.ebay.com

9.1 Introduction 253

w In a prepaid payment system, a certain amount of money is taken away

from the customer (for example, by debiting his or her bank account)

before any purchase is made. This amount of money can afterward be

used for payments. Smart card-based electronic purses and wallets,

electronic cash, and certain bank checks (i.e., certified checks) fall

into this category.

w In a pay-now payment systems, the customer’s account is debited

exactly at the time of the purchase. Certain debit cards fall into this

category.5

w Finally, in a pay-after payment system, the merchant’s bank account is

credited the amount of the purchase before the customer’s account is

debited. Normal credit cards fall into this category.

Note that any prepaid payment system is conceptually similar to physical

cash. Consequently, they are sometimes also referred to as cashlike payment

systems. Also note that the later two payment systems (i.e., pay-now and

pay-after payment systems) are also similar in nature. In either case the

payer must have some sort of ‘‘account’’ with the bank, and a payment is

always done by sending some form, such as a check or credit-card slip, from

the customer to the merchant. Consequently, these two categories of

payment systems are sometimes collectively referred to as checklike payment

systems. Note that a key difference between cashlike and checklike payment

systems is also due to the fact that providing anonymity in a cashlike

payment system is possible and conceptually simple, whereas anonymity in

a checklike payment system is inherently more difficult to provide (this is

because the merchant must have some kind of guarantee that he or she will

actually receive his or her money anytime in the future).

In the field of electronic payment systems, the notions on-line and off-line

refer to a specific property of the corresponding payment protocol. Although

the payment protocol is functionally a protocol between two parties (i.e.,

the customer and the merchant) many payment systems require that the

merchant contact a TTP acting as a central authority (e.g., a bank, a credit-

card company, or an acquirer) before accepting a payment. If that is the

case, the system is called an on-line payment system. In this case, the

communication between the merchant and the central authority may be

5. For example, Switch debit cards are very common in the United Kingdom. They are issued by banks and are

used like credit cards, although the money is deducted from the customer’s bank account immediately. Further

information about Switch debit cards can be found at the home page of Switch Card Services Ltd. at

http://www.switch.co.uk/switch.htm.

254 Electronic Payment Systems

using any communication medium (not necessarily the Internet). If such a

contact with a TTP is not required during the payment protocol, the system

is called an offline payment system. In an offline payment system, merchants

are required to contact their acquirer on a regular basis for clearing all

received payments.

In general, on-line payment systems are more appropriate to adequately

secure the merchant and the bank against customer fraud, since every

payment must be approved. The primary disadvantage of on-line authoriza-

tion is the associated per-transaction cost, imposed by the requirement for a

highly reliable and efficient clearing system at the customer’s bank.

Consequently, offline payment systems have been designed (and still

continue to be designed) to lower the cost of transactions by delaying the

clearing to a batch process. Offline systems, however, suffer from the

potential of double spending, whereby the electronic currency is duplicated

and spent repeatedly. Thus, offline protocols concentrate on preventing or

detecting and limiting fraud, and in catching the fraudulent party in the

second case. Offline systems that detect and limit fraud are generally suitable

only for low-value transactions where accountability after the fact is

sufficient to deter abuse.

In the remaining part of this chapter, we overview and briefly discuss the

working principles of electronic cash systems, electronic checks, electronic

credit-card payments, and micropayment systems. For each category we

mention some exemplary systems by name.

9.2 Electronic cash systems

Almost all statistical investigations show that consumers make extensive use

of cash. Depending on the country involved, somewhere between 75% and

95% of all financial transactions are paid with cash, even though the value of

these transactions are for the most part quite low. As mentioned above,

prepaid or cashlike payment systems provide an electronic analog for

physical cash.

In short, a bank issues electronic cash (e-cash), and customers use e-cash

to purchase goods or services from merchants that accept this form of pay-

ment. Consequently, there are three parties involved in an e-cash system:

1. An e-cash issuing bank;

2. A customer (or payer);

3. A merchant (or payee).

9.2 Electronic cash systems 255

Typically, the customer and merchant have accounts with the same

bank. However, the customer and merchant may also have accounts with

different banks. In this case, the banks are referred to as the customer’s bank

or issuer and the merchant’s bank or acquirer.

Given this cast, an e-cash transaction typically takes place in three

distinct and independent phases:

1. In the first phase, the customer withdraws some e-cash. He or she

therefore requests his or her bank (i.e., the issuer) to transfer some

monetary value from his or her account to the e-cash issuing bank.

Following this value transfer, the bank issues6 and sends a corres-

ponding amount of e-cash to the customer. The customer, in turn,

storesthe e-cash locally (e.g., on his or her hard disk or smart card).

2. In the second phase, the customer uses the e-cash to purchase some

goods or services. In particular, he or she selects goods or services and

transfers the corresponding amount of e-cash to the merchant. The

merchant, in turn, delivers the goods or services to the customer.

3. In the third phase, the merchant redeems the e-cash he or she has

just received from the customer. He or she therefore transfers the

e-cash to the issuing bank. Alternatively, the merchant may also

transfer the e-cash to his or her bank (the merchant’s bank), and

this bank may, in turn, redeem the money from the e-cash issuing

bank. In this case, the issuing bank transfers money to the

merchant’s bank for crediting the merchant’s account.

It is commonly agreed that e-cash should satisfy some general properties.

For example, e-cash should be independent in the sense that its existence

must not depend on a particular system platform or location. Probably one of

the distinguishing features of physical cash (at least in the case of coins) is

anonymity, meaning that cash must not provide information that can be

used to trace previous owners. One can reasonably argue that e-cash must

also provide this form of anonymity. Consequently, e-cash should be

transferable from one person to another, and this transfer should occur

without leaving any trace of who has been in possession of the e-cash before.

In this case, however, it must be ensured that each owner can spend the

6. In general, e-cash is issued by having the bank mint digital coins. The digital coins, in turn, are minted by

digitally signing an item, such as a serial number for the coin, with a private key that is characteristic for the

actual denomination of the coin.

256 Electronic Payment Systems

TEAMFL
Y

Team-Fly®

e-cash only once and that double spending can be prevented or at least be

detected in one way or another. Furthermore, e-cash should be available in

several denominations and be divisible in a way similar to physical cash.

Finally, e-cash should be available in such a way that it can be securely

stored on various media, such as hard disks or smart cards.

Not all e-cash systems that have been proposed in the past satisfy all of

these properties. For example, the anonymity property is still very

controversial today, since it leads to the undesired possibility of illegal

money laundering, or hiding of black market and blackmail money. This has

led to development of fairly anonymous e-cash systems, in which the

customer’s anonymity may leak under certain conditions. The development

of fairly anonymous e-cash systems is an active area of research today.

There are many electronic cash systems developed in theory and

practice. Examples include David Chaum’s e-cash system [4–6],7 an

electronic cash system that was developed in a European research-and-

development project called Conditional Access for Europe (CAFE) [7, 8],

NetCash8 developed at the University of Southern California [9], the

Mondex electronic cash card,9 EMV cash cards [3], as well as cards that

conform to the Common Electronic Purse Specification (CEPS). All of these

systems and their corresponding protocols are overviewed and further

described in Chapter 6 of [1].

9.3 Electronic checks

Since the use of checks is widely deployed in the real world (at least in the

United States), electronic checks may also provide an interesting payment

scheme for e-commerce applications. A payment system for electronic

checks includes the following parties:

7. The system was originally marketed by a Dutch company called DigiCash. DigiCash was acquired by eCash

Technolgies, Inc. in August 1999, and eCash Technolgies, Inc. was acquired by InfoSpace, Inc. in February

2002. As of this writing, it is not clear if and in what form the e-cash system developed by Chaum will be

marketed in the future.

8. http://www.isi.edu/gost/info/netcash

9. The concept of the Mondex card was developed in 1990 at NatWest, a major banking organization in the

United Kingdom. After several field trials, a separate company, called Mondex International Ltd., was formed

in 1996 to promote the technology through a series of further trials in many different locations around the

world. Today, Mondex International is a subsidiary of MasterCard International. As of this writing, little is

publicly known about the security features used in the Mondex electronic cash cards. Consequently, the cards

have not been subject to public scrutiny.

9.3 Electronic checks 257

w A customer and a customer’s bank;

w A merchant and a merchant’s bank;

w A clearinghouse to process checks among different banks.

From a technical point of view, electronic checks are rather simple. An

electronic check may simply consist of a document that is digitally signed

with the customer’s private key. The receiver (the merchant or the

merchant’s bank) uses the customer’s public key to verify the digital

signature accordingly. More specifically, an electronic check transaction is

executed in three phases:

1. In the first phase, the customer purchases some goods or services

and sends a corresponding electronic check to the merchant. The

merchant, in turn, validates the check with his or her bank for

proper payment authorization. If the check is valid, the merchant

accomplishes the transaction with the customer (and delivers the

goods or services).

2. In the second phase, the merchant forwards the electronic check to

his or her bank for deposit. This action may take place at the

discretion of the merchant.

3. In the third phase, the merchant’s bank forwards the electronic

check to the clearinghouse for cashing it. The clearinghouse, in

turn, cooperates with the customer’s bank, clears the check, and

transfers the money to the merchant’s bank, which updates the

merchant’s account accordingly. The customer’s bank also updates

the customer with the corresponding withdrawal information.

Compared with paper checks and some other real-world payment

systems, electronic checks provide several advantages. For example,

electronic checks can be issued without needing to fill out, mail, or deliver

checks. They also save time in processing the checks. With paper checks, the

merchant typically collects all the checks and collectively deposits them at

the bank. With electronic checks, the merchant can instantly forward the

checks to the bank and get them credited to his or her account. As such,

electronic checks can greatly reduce the time from the moment a customer

writes a check to the time when the merchant receives the deposit. In

addition, electronic check systems can be designed in such a way that the

merchant gets proper authorization from the customer’s bank before

accepting a check. This is very similar to the concept of a cashier’s check.

258 Electronic Payment Systems

In the past, the research community has formulated some electronic

check systems for the Internet. Examples include NetBill developed at

Carnegie Mellon University [10, 11] and NetCheque, developed at the

University of Southern California [12, 13].10 More importantly, however,

the Financial Services Technology Consortium (FSTC11) has developed an

eCheck system12 that makes use of a financial services markup language

(FSML). Most parts of the system are covered by U.S. patents that have been

granted to the FSTC.13 It is possible and very likely that the FSTC eCheck

system will be the electronic check system of choice for all financial

institutions working in this area.

You may refer to Chapter 5 of [1] for further information regarding

NetBill, NetCheque, and the FSTC eCheck system.

9.4 Electronic credit-card payments

In the past, credit-card payment systems have become the payment

instrument of choice for Internet users and customers. There are several

security requirements that these systems must address. For example, a

mechanism must be provided to authenticate the various parties involved,

such as customers and merchants, as well as participating banks. Another

mechanism must be provided to protect the credit-card and payment

information during transmission over the Internet. Finally, a process must be

instituted to resolve credit-card payment disputes between the various

parties involved.

Several electronic credit-card payment systems have been designed to

address these requirements. Most of these schemes have additional proper-

ties. For example, in some schemes (including, for example, the SET scheme

as addressed below) the credit-card information can be prevented from

disclosure to the merchant, whereas the information about the products or

services purchased can be prevented from disclosure to the banks. Note that

10. http://www.isi.edu/gost/info/NetCheque

11. The FSTC is a group of American banks, research agencies, and government organizations that have come

together to assist in enhancing the competitiveness of the U.S. financial services industry. Further information

about the FSTC can be found at http://www.fstc.org.

12. The FSTC eCheck system is described in a white paper that is electronically available at http://

www.echeck.org/library/wp/ArchitectualOverview.pdf.

13. The relevant patents are U.S. 5677955 entitled ‘‘Electronic Funds Transfer Instruments,’’ U.S. 6021202 entitled

‘‘Method and System for Processing Electronic Documents,’’ and U.S. 6209095 entitled ‘‘Method and System

for Processing Electronic Documents.’’

9.4 Electronic credit-card payments 259

this property is not inherent in traditional credit-card systems. Conse-

quently, an electronic credit-card payment scheme may provide a higher

level of security than a traditional credit-card payment scheme. Also, an

electronic credit-card payment scheme can be designed to obtain almost

instant payments to the merchants from credit-card sales. For traditional

credit-card schemes, it takes a significant amount of time for the merchant to

deliver the credit-card receipts to the bank, and for the bank to settle the

payments (this advantage is similar to that of electronic checks).

There are five parties involved in a secure electronic credit-card payment

scheme:

w A credit-card holder;

w A merchant;

w A merchant’s bank;

w A certificate management center;

w A credit-card issuing bank.

The credit-card holder uses his or her credit-card to purchase products or

services from the merchant. The merchant, in turn, interacts with his or her

bank, called the merchant’s bank, the acquirer bank, or simply the acquirer.

In an electronic credit-card payment scheme, the acquirer typically refers to

a financial institution that has an account with a merchant and processes

credit-card authorizations and corresponding payments. In this setting, a

payment gateway is a device operated by the acquirer to handle merchant

payment messages. A very important party for a secure electronic credit-

card payment system is the certificate management center that issues and

revokes public key certificates to the parties involved.

There are usually two networks involved in an electronic credit-card

payment scheme:

w A public network (typically the Internet);

w A private network owned and operated by the banking community.

The basic assumption is that data transmissions across the private

network are sufficiently secure, whereas data transmissions across the public

network are inherently insecure and must be cryptographically protected.

Consequently, an electronic credit-card payment protocol mainly focuses on

the communications that take place over the Internet and does not address

communications that take place over the private network.

260 Electronic Payment Systems

In the recent past, several electronic credit-card payment schemes have

been designed, proposed, and implemented (most of them are overviewed

and discussed in Chapter 4 of [1]). Examples include the iKP (where i ¼

1; 2; or 3) family of Internet-keyed payments protocol developed by IBM in

the early 1990s [14], the Secure Electronic Payment Protocol (SEPP)

developed by a consortium chaired by MasterCard, the Secure Transaction

Technology (STT) developed by another consortium chaired by Visa

International and Microsoft, and—most importantly—a scheme and set of

protocols named Secure Electronic Transaction (SET) developed as an industry

standard in 1996 [15, 16]. In the second half of the 1990s, it was commonly

agreed and expected that SET would become the technology of choice for

electronic credit-card-based payments over the Internet. This expectation

has not become true and support for SET has never really took off in the

commercial world. One reason for this fact is that the SET protocols are

complex and difficult to implement. Furthermore, the deployment of SET

requires an existing and fully operational PKI (which is hard to achieve as

discussed in Chapter 7). Meanwhile, Visa International and MasterCard

have both started to work on alternative technologies that will eventually

replace SET. As a temporary and intermediate solution, Visa International

and MasterCard both use the last three digits of the number that is printed

on the back of each credit-card as a proof of physical ownership. Visa

International is using the term card verification code (CVC) to refer to this

number, whereas MasterCard is using the term card verification value (CVV).

Taking all the recent developments in account, it is not at all clear how the

market for electronic credit-card payments will evolve in the future.

9.5 Micropayment systems

An important factor in the evaluation of electronic payment systems is the

cost of the overhead involved in collecting payments as compared to the

actual amount of money being transferred. Apart from the overhead costs

incurred in the extra transactions required to implement the payment

protocol, there is also another set of costs that banks may charge for their

services. These bank service or transaction fees may be charged when an

account or credit-card is accessed and may contribute a large component to

the overall costs of a payment system.

Of the conventional payment instruments of cash, check, and credit

card, the one most suited for low-value transactions is cash. Nevertheless,

the use of cash is limited in that no transaction can involve less than the

value of the smallest coin (e.g., one cent). There are some e-commerce

9.5 Micropayment systems 261

applications where this limitation poses a serious problem. Examples include

obtaining a quotation of the current price of a share on the stock market or

making a single query in a database system. In conventional commerce, the

solution to this problem has been to use a subscription mode of payment,

where the customer pays in advance and can access the product or service for

a fixed period of time. While this ensures that the provider is paid, it seals off

what is in many cases a large customer base of people who may only wish to

use a service occasionally. To make things worse, it also restricts the ability of

people to simply try out a service.

Following this line of argument, it is clear that the subscription mode of

payment does not adequately solve all requirements for electronic payments

in e-commerce, and that there is need for payment systems that efficiently

transfer very small amounts of money, perhaps less than one cent, in a single

transaction. These payment systems are collectively referred to as micropay-

ment systems, and their design and optimization has attracted many

researchers in the past. To achieve the required efficiency, micropayment

systems must not involve computationally expensive cryptographic opera-

tions. The basic idea is to replace the use of public key cryptography with

keyed one-way hash functions. The main advantage of this replacement is

efficiency, whereas the main disadvantage is the inability to provide

nonrepudiation services. However, since micropayments typically do not

exceed a few cents, the merchant may carry the risk that a customer later

denies having committed to a payment.

Against this background, there are many micropayment systems that

have been designed and implemented in the past. Examples include

Millicent developed by Digital Equipment Corporation (DEC) [17, 18],

SubScrip developed at the University of Newcastle in Australia [19],

PayWord and MicroMint developed by Ronald L. Rivest and Adi Shamir

[20], Agora [21], and NetCents [22]. Most of these systems are overviewed

and discussed in Chapter 7 of [1]. None of these systems has become a

commercial success and is widely deployed on the Internet. This is not likely

to change anytime soon, because services continue to be paid with

advertisements and subscription fees.

9.6 Conclusions

In the recent past, the growing importance of e-commerce and e-commerce

applications has resulted in the design and development of many different

and partly incompatible electronic payment systems. In this chapter, we

262 Electronic Payment Systems

overviewed and briefly discussed some electronic cash systems, electronic

checks, electronic credit-card payments, and micropayment systems.

From an academic point of view, the design and development of

electronic payment systems is an interesting and challenging field of study.

That’s why we have a big variety of complementary or competing systems.

From an application developer’s point of view, however, this variety is very

uncomfortable, because it requires that a specific application supports many

systems. Furthermore, the application must be developed in a way that

allows future systems to be supported with an effort that is as small as

possible.

Against this background, one may hope that a certain degree of

convergence will occur in the industry (where systems that address the same

needs will compete and one will emerge as victor). As with any payment

system, a major factor in its success is consumer trust and acceptance. Any

system backed by big-name banking organizations or indeed the banking

industry as a whole will easily build this level of consumer trust and

acceptance. Consequently, it was hoped that SET would emerge as a

standard way of doing credit-card payments over the Internet. Unfortu-

nately, reality has shown a different story and SET is still not widely

deployed today. Contrary to SET, it is possible and very likely that the FSTC

eCheck system will be the electronic check system of choice in the financial

world. With regard to electronic cash systems and micropayment systems it

is very difficult to predict the future.

In addition to the electronic payment systems mentioned in this chapter,

there is also a trend in the industry to have payment systems depend on the

security features of some complementary networks. For example, mobile

networks are widely deployed in Europe. These networks generally

implement some strong authentication technologies. This is particularly

true for GSM networks. Consequently, GSM networks and their services—

such as the short messaging service (SMS)—provide an interesting

infrastructure to implement electronic payments and to charge GSM

subscribers accordingly. For example, the Paybox system14 works this way

and is widely deployed in Germany. Payment systems like Paybox are

particularly important for mobile commerce (m-commerce) and m-

commerce applications.

Last but not least, there are also some banking and other regulations

pertaining to handling electronic payments. For example, who is authorized

to issue electronic money? Can every bank issue its own currency and mint

14. http://www.paybox.de

9.6 Conclusions 263

its own digital coins? If so, how is fraud prevented, and who’s in charge of

monitoring the banking operations to protect the customers? Note that

conventional payment instruments have, in the past at least, been operated

by banks who are subject to regulation by their national central bank.

Typically, a bank must be licensed to operate, and in the course of obtaining

this license, will subject itself to scrutiny. As of this writing, it is not clear

what regulations should be imposed on electronic payment systems, and

how the above-mentioned concerns should be addressed.

References

[1] O’Mahony, D., M. Peirce, and H. Tewari, Electronic Payment Systems for

E-Commerce, Second Edition, Norwood, MA: Artech House, 2001.

[2] Hassler, V., et al., Java Card for E-Payment Applications, Norwood, MA: Artech

House, 2002.

[3] Radu, C., Deploying Electronic Payment Systems, Norwood, MA: Artech House,

2002.

[4] Chaum, D., ‘‘Blind Signatures for Untraceable Payments,’’ Proceedings of

CRYPTO ’82, August 1982, pp. 199–203.

[5] Chaum, D., ‘‘Security without Identification: Transaction Systems To Make

Big Brother Obsolete,’’ Communications of the ACM, Vol. 28, No. 10, October

1985, pp. 1030–1044.

[6] Chaum, D., ‘‘Achieving Electronic Privacy,’’ Scientific American, August 1992,

pp. 96–101.

[7] Chaum, D., A. Fiat, and M. Naor, ‘‘Untraceable Electronic Cash,’’ Proceedings of

CRYPTO ’88, August 1988, pp. 319–327.

[8] Chaum, D., and T. Pedersen, ‘‘Wallet Databases with Observers,’’ Proceedings of

CRYPTO ’92, August 1992, pp. 89–105.

[9] Medvinsky, G., and B. C. Neuman, ‘‘NetCash: A Design for Practical Electronic

Currency on the Internet,’’ Proceedings of ACM Conference on Computer and

Communications Security, 1993.

[10] Cox, B., J. D. Tygar, and M. Sirbu, ‘‘NetBill Security and Transaction

Protocol,’’ Proceedings of USENIX Workshop on Electronic Commerce, July 1995.

[11] Sirbu, M., and J. D. Tygar, ‘‘NetBill: An Internet Commerce System Optimized

for Network Delivered Services,’’ IEEE Personal Communications, August 1995,

pp. 6–11.

[12] Neuman, B. C., and G. Medvinsky, ‘‘Requirements for Network Payment: The

NetCheque Perspective,’’ Proceedings of IEEE Compcon, March 1995.

264 Electronic Payment Systems

[13] Neuman, B. C., and G. Medvinsky, ‘‘Internet Payment Services,’’ Proceedings of

MIT Workshop on Internet Economics, March 1995, pp. 401–415.

[14] Bellare, M., et al., ‘‘iKP — A Family of Secure Electronic Payment Protocols,’’

Proceedings of USENIX Workshop on Electronic Commerce, July 1995.

[15] Loeb, L., Secure Electronic Transactions: Introduction and Technical Reference,

Norwood, MA: Artech House, 1998.

[16] Merkow, M. S., and J. Breithaupt, Building SET Appliactions for Secure

Transactions, New York: John Wiley & Sons, 1998.

[17] Manasse, M., ‘‘The Millicent Protocols for Electronic Commerce,’’ Proceedings of

the 1st USENIX Workshop on Electronic Commerce, July 1995.

[18] Glassman, S., et al., ‘‘The Millicent Protocol for Inexpensive Electronic

Commerce,’’ Proceedings of 4th International World Wide Web Conference,

December 1995, pp. 603–618.

[19] Furche, A., and G. Wrightson, ‘‘SubScrip — An Efficient Protocol for Pay-Per-

View Payments on the Internet,’’ Proceedings of International Conference on

Computer, Communications and Networks (ICCCN ’96), October 1996, pp. 603–

618.

[20] Rivest, R. L., and A. Shamir, ‘‘PayWord and MicroMint,’’ RSA Laboratories’

CryptoBytes, Vol. 2, No. 1, Spring 1996, pp. 7–11.

[21] Gabber, E., and A. Silberschatz, ‘‘Agora: A Minimal Distributed Protocol for

Electronic Commerce,’’ Proceedings of the 2nd USENIX Workshop on Electronic

Commerce, 1996.

[22] Poutanen, T., H. Hinton, and M. Stumm, ‘‘NetCents: A Lightweight Protocol

for Secure Micropayments,’’ Proceedings of the 3rd USENIX Workshop on

Electronic Commerce, August 1998.

9.6 Conclusions 265

TEAMFL
Y

Team-Fly®

Client-side Security

In this chapter, we focus on client-side security in general, and

the security implications of executable (or active) content in

particular. After a brief introduction in Section 10.1, we

elaborate on binary mail attachments in Section 10.2, helper

applications and plug-ins in Section 10.3, scripting languages in

Section 10.4, Java applets in Section 10.5, and ActiveX controls

in Section 10.6. In Section 10.7, we elaborate on security zones

as implemented, for example, in Microsoft Internet Explorer. In

Section 10.8, we discuss the implications of executable content

for firewalls, and in Section 10.9, we draw some conclusions.

It is reasonable to expect that client-side security problems

as outlined in this chapter will become a more and more

important topic in the future.

10.1 Introduction

One of the most dangerous things that can be done with a

computer system connected to a network (e.g., the Internet) is

to download an arbitrary piece of software and execute it

locally. This is because many operating systems place no limits

on what a program can do once it starts running. Consequently,

when a user downloads an arbitrary piece of software and

executes it locally, the user places himself or herself entirely in

the hands of the corresponding programmer or software

developer (note, however, that this is true not only for down-

loaded programs, but also for any program that is executed

locally).

267

C H A P T E R

10
Contents

10.1 Introduction1

10.2 Binary mail attachments5

10.3 Helper applications and
plug-ins7

10.4 Scripting languages9

10.5 Java applets12

10.6 ActiveX controls18

10.7 Security zones22

10.8 Implications for firewalls24

10.9 Conclusions 26

References

In practice, most programs that are downloaded behave as expected. But

the point is that they don’t have to and some don’t. Some programs have

bugs and programming errors that cause computer systems to crash. Other

programs have bugs that may be exploited by hackers. Still other programs

are malicious and may do damaging things, such as erasing hard disks or

transmitting confidential data to some arbitrary locations on the Internet.

In general, the ultimate goal of a (software) attacker is to be able to

execute a program of his or her choice on a computer system of his or her

choice without the corresponding victim’s knowledge. Once this ability is

achieved, any other attack is usually feasible and may be mounted. The

easiest way for an attacker to accomplish this goal is to provide a user of the

computer system with some program code to execute with his or her

privileges.

One would think that an easy way to protect a computer system against

this type of attack is to inspect all downloaded programs to see if they contain

malicious software. Unfortunately, it’s impossible to determine what a

computer program will do without actually running it. What’s possibly even

more worrisome is the fact that it’s often impossible to determine what a

program is doing while or after it is running. Programs may have many ways

of hiding the functions they actually implement.

Even sophisticated operating systems with memory protection and other

security features, such as the Windows or Linux operating systems, offer

users little protection against malicious programs that they download and

execute locally. That’s because once the program is running, it typically

inherits all the privileges and corresponding access rights from the user who

invoked it. No commercially deployed operating system allows users to create

a restricted area in which potentially malicious programs can be executed

(similar to the Java sandbox addressed below). To make things worse,

Internet users have been told for years to download various programs and

execute them locally without asking any further questions. For example,

browsers as well as helper applications and plug-ins are typically distributed

by having users download, execute, and install particular software modules.

The same is true for bug-fixes, patches, and system upgrades. This user

behavior automatically leads to security problems.

In general, executable or active content embraces a large collection of

technologies that make the Internet (including the WWW) more interesting

and interactive, but also more dangerous. In short, executable or active

content is downloaded into client software where it is executed locally.

Sometimes the local execution requires a user initiative, but sometimes it

doesn’t. Examples of executable or active content include binary mail

attachments, data files for word processors and other office automation

268 Client-side Security

programs, Java applets, ActiveX controls, as well as programs written in

scripting languages, such as JavaScript or VBScript.

Well-written executable or active content may enhance Internet sites

and corresponding Web pages with animations, interactive games, and

serious applications, such as database browsers or groupware applications. In

fact, the entire idea of network computing was centered around the idea of

well-written (and well-intended) executable or active content. However,

one question that arises immediately is how to decide whether executable or

active content is well-written (and well-intended). If the content is buggy or

not well-written, it may contain security holes that may compromise the

user’s privacy or the integrity of the data stored on the computer system.

Even more worrisome, executable or active content written for malicious

purposes may attempt to damage the computer system or seek to gain

illegitimate access to the local network. Unfortunately, it has been shown

that deciding whether an arbitrary piece of software is malicious or includes

malicious code is difficult (to say the least) [1].

From a theoretical point of view, the security problems related to

executable or active content occur because there is no fundamental

difference between a program (representing an active component) and

data (representing a passive component) with regard to its internal

representation within a computer system. In fact, they are both internally

represented as a series of zeros and ones. Furthermore, in the traditional

approach to designing and building computer systems,1 programs and data

are treated equally and stored in the same memory.2 This allows a program

to modify both data and programs (eventually modifying itself). For

example, most computer viruses take advantage of the fact that they can

manipulate and directly modify program code. But in spite of these

theoretical considerations, we have become accustomed to the clear

distinction between active programs and passive data. Unfortunately, this

distinction has been blurred in the recent past. Things that we used to

assume are safe, such as data files for word processors, can now contain and

use a macro virus to attack our systems. As a matter of fact, macro viruses

that infect data files (or rather, the macro programming features of these data

1. This approach is generally attributed to John von Neumann. You may refer to the URL http://www-groups.

dcs.st-andrews.ac.uk/history/Mathematicians/Von_Neumann.html to get a comprehensive overview about

John von Neumann’s work.

2. Note that this approach applies to Von Neumann architecture machines, but it does not necessarily apply to other

machines. For example, in a Harvard architecture machine, programs and data are stored in separate memories.

The reason for this separation is efficiency; it has, however, also a positive side effect on security.

10.1 Introduction 269

files) are spreading very rapidly throughout the Internet and the WWW. To

make things worse, Web pages can contain executable or active content that

is entirely transparent and invisible to Web users.

The WWW in general, and the deployment of executable or active

content in particular, have also changed the way software is being

distributed and sold globally. Instead of having users physically walk into

trusted neighborhood retail stores and buy shrink-wrapped software

packages, they download the software they want from corresponding Web

sites (i.e., Web-based software distributors). The point that must be kept in

mind is that there are all kinds of distributors. Some of them are good and

distribute software that is perfectly secure and safe, whereas others are not so

good and distribute software that is either not secure and safe (because it

contains, for example, bugs and programming errors) or—even worse—

malicious (because it contains, for example, a Trojan horse). The point is that

it is hard to tell the difference without actually running the software (it may

even be difficult to tell the difference after the software has run). To make

matter worse, there is hardly any traceability or accountability in the Web-

based software distribution model. This makes liability issues very difficult to

address and resolve.

Against this background, it is important to note that the WWW and its

possibility to distribute executable or active coolent has shifted the main

security problem from protecting the server against potentially malicious

clients to protecting the client against potentially malicious servers. One

way to protect the client is to use secure software distribution systems

that provide something conceptually similar to a digital shrink-wrap. For

example, a group of researchers at Bell Communications Research (Bellcore)

developed and ran a secure software distribution system called Bellcore’s

Trusted Software Integrity System (BETSI) in the early 1990s [2, 3]. BETSI

used PGP and distinguished between authors and users:

w Authors were people or companies (e.g., Microsoft) who wished to

securely distribute software on the Internet (i.e., software publishers).

w Users were people who wished to download software that has

authenticity and integrity guarantees.

Authors had to register with BETSI in advance. Once they were regis-

tered, they could communicate securely with a BETSI server because they

shared authentic and valid copies of one another’s PGP public keys. If an

author had a file (e.g., a software package) he or she wanted to securely

distribute, he or she created an integrity certificate request for it. The request

contained information, such as the author’s name, the file’s name, and

270 Client-side Security

the MD5 hash value of the file. The author then digitally signed the request

with his or her private PGP key and sent the result to the BETSI server. The

BETSI server, in turn, verified the message and its PGP signature. If the

message was valid, BETSI sent back to the author an integrity certificate that

was digitally signed. The integrity certificate basically claimed that the named

author was registered and that he or she had properly requested a certificate

linking a certain hash value to a specific file (or filename). The author then

verified the integrity certificate and was free to make it publicly available

(e.g., together with the file).

On the other side, each BETSI user was required to have PGP, an

implementation of MD5, and an authentic PGP public key from the BETSI

server. When he or she downloaded a file, he or she also got an integrity

certificate for this file. He or she could then verify that the file had not

been (intentionally or unintentionally) modified, by verifying the integrity

certificate with BETSI’s public key and computing the hash value of the

corresponding file. If the integrity certificate was valid, the user could be sure

that the file was authentic and had not been modified.

Unfortunately, the use of BETSI or any other secure software

distribution system has never really taken off in the commercial world.

This is slowly beginning to change with the use and deployment of code

signing technologies and systems (as discussed later in this chapter). These

technologies and systems are conceptually similar to BETSI.3

In the following sections, we overview and briefly discuss the potential

problems related to the various classes of executable or active content. In

particular, we elaborate on binary mail attachments, helper applications and

plug-ins, scripting languages, Java applets, and ActiveX controls.

10.2 Binary mail attachments

A binary mail attachment is an attachment to an e-mail message that contains

some binary data. The binary data, in turn, may encode anything, such as

random data, structured data (e.g., data for a word processing program), or

even executable code. As such, binary mail attachments encoding

executable code represent the simplest class of executable or active content.

The sender of an e-mail message simply attaches a program respresenting

executable code to a message, and the recipient—manually or automati-

cally—executes the program upon reception.

3. This is the reason why BETSI is discussed in the first place.

10.2 Binary mail attachments 271

It is common practice today to use binary mail attachments to distribute

simple animation programs over the Internet. In general, these programs are

executed on the recipients’ side without thinking about security implica-

tions. For example, it would be a fairly simple exercise for a software

developer to write a program that automatically deletes all files a user

running the program has access to and is authorized to delete. In fact, several

programs that illustrate this possibility have already been demonstrated on

the Internet. In theory, these programs are well suited to increase the

awareness of the problem of binary mail attachments to e-mail users. In

practice, however, these programs are not very effective and users continue

to redistribute binary mail attachments they like to their colleagues and

friends. This is worrisome, to say the least.

More recently, many Internet security incidents reported in the media

have been caused by malicious software (e.g., Internet worms) that is able to

replicate itself. You may remember the Love Letter worm that hit the

Internet in 2000.4 Since then, many Internet worms have employed binary

mail attachments that are sent to arbitrary e-mail addresses found in

electronic address books. If a recipient of such a mail open the attachment, it

is usually executed by some preconfigured program.5 Sometimes it is not

even necessary that the recipient open the attachment because his or her

user agent is configured in a way that invokes a program that matches the

MIME type of the message and automatically displays (i.e., previews) it. This

possibility should be kept in mind when configuring a user agent to preview

incoming messages.

In summary, the use of a binary mail attachment should be considered

with care. Every user should understand that the attachment he or she

receives must not originate from the claimed source, and that it is executed

with his or her privileges. As such, it can do anything he or she is authorized

to do (including, for example, the deletion of data files). Once this is

understood, it is possible and likely that users will get more concerned about

the security implications of binary mail attachments, and that they will

actually try to avoid them.

10.3 Helper applications and plug-ins

In the early days of the WWW, most browsers could only render and display

ASCII and HTML text, as well as images in either the GIF or the JPEG format.

4. http://www.cert.org/advisories/CA-2000-04.html

5. The program is preconfigured to be used for a specific MIME type.

272 Client-side Security

While these four data types provided a good basis and starting point for

the Web to emerge, there were many kinds of types that couldn’t be

translated into these data types. Consequently, Web developers had to think

about possibilities to extend the ability of browsers to understand, render,

and display other data types.

An obvious possibility is the use of so-called helper applications (also

known as external viewers). In short, a helper application is an application

program that is run automatically by the Web browser if a data type other

than ASCII, HTML, GIF, or JPEG is received.6 The important thing to note is

that the helper application is an application program of its own that also

runs in its own address space. As such, helper applications provide a flexible

and extensible way through which practically any kind of information can

be downloaded, rendered, and displayed.

Motivated by the work that had been done in the field of helper

applications, Netscape Communications developed a similar system called

plug-ins.7 In short, a plug-in is a software module that is loaded directly into

the address space of the Web browser and is automatically run when a

document of a particular data type is downloaded. One of the simplest uses

for plug-ins is to replace helper applications. Instead of requiring that data

be specially downloaded, saved in a file, and processed by a helper ap-

plication, the data can be loaded directly into the browser’s memory

space and processed by the appropriate plug-in. As of this writing, most

popular helper applications have been rewritten as plug-ins, including, for

example, the Adobe Acrobat reader to display PDF files, the RealAudio

player to play sound files, or the Macromedia Shockwave player to play

animated video sequences. In either case, plug-ins are manually down-

loaded by users and usually stored in a specific directory called Plugins.8

The browser scans the Plugins directory when it starts up to discover what

plug-ins are available.

In spite of their advantages in terms of functionality and browser

extensibility, helper applications and plug-ins can also be the source of

security problems. For example, if a user downloads a helper application or

plug-in, he or she should make sure that the software is authentic and has

6. Parts of this section also apply to user agents for e-mail. In fact, many user agents can be configured to run an

application program if data of a specific MIME type is received.

7. Plug-ins have been developed by Netscape Communications. Although Microsoft Internet Explorer can also

run plug-ins, they are deprecated in favor of ActiveX controls.

8. Most installations of Microsoft Internet Explorer have an empty Plugins directory, mainly because plug-ins are

deprecated in favor of ActiveX controls.

10.3 Helper applications and plug-ins 273

not been tampered with. Consequently, a secure software distribution

system, such as BETSI or something conceptually similar, is urgently needed.

Also, if a user downloads data that is locally executed by a helper application

or plug-in, he or she must make sure that the data is not malicious and does

not try to exploit a vulnerability in the execution environment. This is

difficult to achieve (to say the least). In general, the more powerful a helper

application or plug-in is, the more possibilities an attacker usually has to find

and exploit vulnerabilities (and to eventually attack the browser accord-

ingly).

One of the most powerful application programs is an interpreter for a

general-purpose programming language. Given the appropriate input, an

interpreter can typically open, read, modify, or delete any file on a computer

system. To make things worse, many programming languages allow

programs to open network connections, enabling them to scan for

vulnerabilities and security loopholes on other computers. Because they

are so powerful, interpreters for general-purpose programming languages

should never be used or configured as helper applications.9 This includes

Microsoft Word and Excel (unless the macros feature is turned off), since

they are both equipped with the Visual Basic scripting language.

Against this background, the following programs should never be used

or configured as helper applications:

w Any other program that includes Microsoft’s Visual Basic scripting

language;

w Many other scripting languages, such as Perl, Python, and Tcl/Tk;

w UNIX shells, such as sh, csh, tcsh;

w The DOS command shell COMMAND.COM;

w Any PostScript interpreter other than GhostView.10

If somebody configures a browser to automatically run one of these

programs as a helper application when a document of a certain MIME

type is downloaded, he or she is implicitly trusting the authors of the

corresponding Web pages to be friendly with his or her computer. This

9. Obviously, the same is true for the use and configuration of interpreters for general-purpose programming

languages as plug-ins. This is, however, less dangerous because the interpreters would have to be provided as

plug-ins.

10. Note that there are PostScript commands to open, read, and delete files, as well as to execute arbitrary

commands. However, these commands are disabled by default when GhostView is run in safe mode.

274 Client-side Security

level of trust may not always be justified and is very dangerous (to say the

least).

In 1996, a group of researchers at the University of California at Berkeley

developed and piloted a technology to limit the risks of untrusted helper

applications in the Solaris operating system [4]. The basic idea is to limit the

access that a helper application has to the system calls at the operating

system level. They used the term sandboxing to represent the idea that a

program can play around in its own confined area, without having access to

anything outside. As such, the approach is conceptually similar to the

sandbox approach used to secure the execution environment for Java

applets (as addressed in Section 10.5).

10.4 Scripting languages

There are many possibilities to extend the functionality or interactivity of a

browser. In the previous section, we saw that helper applications and plug-

ins provide an immediate solution. Similarly, there are some full-fledged

programming languages that can be used to implement programs that are

executed on the client side. The most important programming language in

use today is Java. It can be used to implement Java applets that are

executed in a browser’s Java virtual machine (JVM). Unfortunately, the

capabilities of most programming languages can only be exploited by

technically skilled programmers. The creation of Java applets from scratch,

for example, is beyond the capabilities of many Webmasters. Also, a full-

blown Java applet is overkill for most applications. If a Webmaster only

needs to verify that the value typed in by a user is a syntactically correct

telephone number, it would be overkill to develop an applet for this

purpose (it would also be overkill to make use of a helper application or

plug-in). In this situation, the use of a scripting language provides a simple

solution.

There is an increasingly large set of scripting languages available today.

Some of these languages primarily address the server side,11 whereas

others primarily address the client side. Among the second class, the most

widely used and deployed scripting languages are JavaScript,12 JScript,13

11. Server-side scripting languages and their security implications are addressed in Chapter 11.

12 JavaScript is a simple scripting language that Netscape Communications developed to make animation and

other forms of interaction more convenient. It was first named LifeScript.

13. JScript is the Microsoft version of JavaScript. It has been available in Microsoft Internet Explorer since version

3.0.

10.4 Scripting languages 275

and VBScript.14 Not all scripting languages are supported by all browsers.

For example, VBScript only runs on Microsoft Internet Explorer.

Scripting languages are most often used to control and modify the

appearance of a browser. For example, they can make visual elements of

browsers appear or disappear, or they can make messages appear in the

status lines of browsers. In fact, some of the earliest JavaScript applications

displayed moving banners across the browser’s status line. Also, scripting

languages can be used to create new windows, check or fill out fields in

forms, jump to new URLs, process image maps locally, change the content

of an HTML file, compute mathematical results, or perform other

functions.

The security of a scripting language primarily depends on the power of

its commands or methods. For example, if a language has no method to

access a file, there is no possibility to maliciously (mis)use code to

manipulate a file. Similarly, if the language has no method to establish a

network connection to a remote site, there is no possibility to maliciously

(mis)use code to export a file. Both of these statements are true for

JavaScript. Consequently, JavaScript can be considered a comparably secure

scripting language. Unfortunately (from a security point of view), JavaScript

is changing rapidly, and Netscape Communications has developed a

capabilities-based system that relies on digital signatures to determine

which privileges JavaScript code should have. In this system, the security

implications are similar to the ones related to Java applets and ActiveX

controls (as discussed below).

The most serious threats of scripting languages are related to DoS attacks

and privacy violations:

w As mentioned above, scripting languages can be used to do many

things that are computationally expensive (e.g., create new windows,

compute mathematical functions). Consequently, these languages

can be (mis)used to mount DoS attacks against browsers and

corresponding clients.15

w Because scripting language code runs inside a browser, it potentially

has access to the same information that is available to the browser.

If the code—maliciously or not—leaks parts of this information,

14. VBScript is a dialect of Visual Basic and draws on the popularity of that programming language in Microsoft

Windows environments.

15. Similar attacks can also be mounted against e-mail user agents that support scripting languages.

276 Client-side Security

TEAMFL
Y

Team-Fly®

privacy violations may occur. Many examples of such privacy

violations have been reported in the media, and it is possible and

very likely that more privacy violations will be found and reported in

the future.

More worrisome, scripting languages can be used to mount electronic

versions of social engineering attacks.

w For example, the following JavaScript code segment can be used to

pop up a window and prompt the user to reenter his or her dial-up

password:

<SCRIPT LANGUAGE="JavaScript">

password = prompt("You have lost your dial-up connection.\n

Please reenter your password","");

</SCRIPT>

It is possible and very likely that many users type in their passwords if

such a window pops up on the screen.

w Similarly, the status line of a browser normally displays the URL that

will be retrieved if the user clicks on an HTML link. By using

JavaScript, a user can also be made to believe that one URL actually

points someplace else. For example, the following HTML link will

display http://www.realshop.com when the mouse is moved over

the link, but clicking on the link will actually have the browser jump

to the Web site located at http://www.fakedshop.com:

Click <A href="http://www.fakedshop.com"

onMouseover="window.status=’http://www.realshop.com’;

return true">here to enter the real shop.

Obviously, the two technologies (and many others) can be combined to

maliciously mislead users at will.

In summary, one must say that scripting languages, such as JavaScript,

JScript, and VBScript, provide interesting possibilities to attack client

systems (or the users of these systems), and that these systems should

therefore be configured in a way that these languages are disabled.

Unfortunately, this is not always possible and an increasingly large number

of applications requires support for these languages. Against this back-

ground, the use and deployment of code and object signing technologies to

authenticate code written in scripting languages is getting more and more

important.

10.4 Scripting languages 277

10.5 Java applets

Java is an object-oriented, general-purpose programming language16 that

has a syntax similar to Cþþ, dynamic binding, garbage collection, and a

simple inheritance model [5]. The language was designed and developed by

Sun Microsystems in the early 1990s. The original intent was to use the

programming language in the world of consumer electronics. More speci-

fically, it was assumed that it would become important in the future to have

consumer electronics devices that could download software over a computer

network, that this software had to be written in a specific programming

language, and that Java would be an appropriate choice to do so. Instead of

being compiled for a specific microprocessor, Java is designed to be compiled

into a processor-independent bytecode and this bytecode is then interpreted

in a Java virtual machine (JVM). This approach (i.e., the use of bytecode)

would allow a manufacturer of consumer electronics to change the micro-

processor(s) without losing compatibility with the existing software base.

After its initial release in the world of consumer electronics, it was

recognized that Java ideally matched the requirements of a programming

language for the emerging WWW. In fact, Java could be used to write a

program that could be compiled into a platform-independent bytecode, and

this bytecode could then be interpreted in a JVM. The JVM, in turn, could be

embedded inside either the operating system or the browser. The second

possibility was demonstrated in 1995, when Sun Microsystems released the

first version of its Java-capable browser (i.e., HotJava) and Netscape

Communications licensed Java to include a JVM in Netscape Navigator. A

Java bytecode segment that is downloaded over a computer network and

interpreted in a JVM on the browser is called a Java applet. Sometimes, it

makes sense to compile the Java bytecode into the native machine code of

the particular platform on which the JVM is running. In this case, a just-in-

time (JIT) compiler is used.

The notion of software that can be dynamically downloaded over a

computer network, if needed, gave birth to a new paradigm in the computer

industry. The new paradigm was named network computing and most vendors

launched press releases about the importance and future plans to support

network computing and to build network computers (based on Java or any

other network-capable programming language). Sometimes, network

computers were also called thin clients and this term is still in use today.

Meanwhile, network computing and network computers have disappeared,

16. The programming language was originally called Oak.

278 Client-side Security

but the programming language that originally started the hype (i.e., Java)

has remained and is likely to stay in the future.

It is commonly agreed today that Java is a programming language that

has ‘‘good’’ characteristics related to security and safety, meaning that Java

programs typically contain fewer bugs and programming errors than

programs written in other general-purpose programming languages, such

as C or Cþþ. This is because Java provides automatic memory management

(including, for example, garbage collection), exception handling, and built-

in bounds checking on all strings and arrays. Furthermore, Java doesn’t have

pointers, only has single inheritance, and is strongly typed. All of these

features are important for a programming language that is used to write

secure and safe code.

10.5.1 Security architecture

First of all, it is important to note that Java was not originally designed to be

a secure and safe programming language. Instead, it was designed to be a

programming language for consumer electronics devices, and it was

assumed that Java programs would be downloaded from device manu-

facturers and approved content providers. But when Java was repositioned

for the WWW, security immediately became a concern. By design, the Web

allows any user to download anything from any site, whether it is from an

approved content provider or not. If Web users can download and run a

program by simply clicking on a hypertext link on a Web page, then there

needs to be some mechanisms for protecting users and their computer

systems against buggy, hostile, or malicious code.17 Against this back-

ground, the developers of Java came up with a security architecture that

includes a sandbox, a security manager, a bytecode verifier, and a class

loader.

Sandbox: In the computer security literature, a runtime environment that

is restricted and does not provide support for potentially dangerous things,

such directly calling operating system functions or establishing network

connections, is sometimes called a sandbox. Most browsers in use today

provide sandboxes for the execution of Java applets. The first browsers

17. For example, a group of researchers at Princeton University found a number of security problems in the Java

programming language in 1996. The team christened themselves the Secure Internet Programming (SIP) group

and has published several bulletins informing users of the problems they found. Further information is

available at http://www.cs.princeton.edu/sip.

10.5 Java applets 279

implemented sandboxes that were very restrictive and didn’t allow browsers

to do useful things (e.g., reading or writing configuration files). In the recent

past, however, software vendors have come up with browsers that allow

Java applets to temporarily step out of their sandbox to provide more

functionality under controlled circumstances. If, for example, a Java applet

is digitally signed and originates from a trusted software developer, it may

be authorized to step out of the sandbox and access the local file system or

establish network connections to remote sites. This is where code signing

technologies and systems come into play (refer to Section 5.3).

Security Manager: The sandbox of a browser is typically controlled by a

security manager object (i.e., an instance of the SecurityManager class).

Consequently, each browser may have a security manager of its own.18 The

security manager is called before any potentially dangerous operation is

executed. It must determine whether the operation is allowed or not.

Class Loader: Because most of the security checks in the Java program-

ming environment are written in the Java language itself, it’s important to

ensure that a malicious piece of code can’t disable these checks. For

example, one way to launch such an attack would be to have a malicious

Java program disable the standard SecurityManager class or replace it with

a more permissive version. Such an attack could be carried out by a

downloaded piece of machine code or a Java applet that exploited a bug in

the Java runtime system. To prevent these types of attack, the Java class

loader examines classes to make sure that they do not violate the runtime

system.

Bytecode Verifier: To further protect the Java runtime environment, Java

employs a bytecode verifier. The verifier is to ensure that downloaded

bytecode could only have been created by compiling a valid Java program.

For example, it is supposed to assure that a downloaded program doesn’t

violate access restrictions or object types, and doesn’t forge pointers. The

bytecode verifier is implemented as a series of ad hoc checks.

The Java sandbox, security manager, bytecode verifier, and class loader

are further addressed in [6] and many other references on Java security.

They collectively implement a security policy.

18. In practice, however, most browsers have the same or very similar security managers.

280 Client-side Security

10.5.2 Security policy

The Java security policy is complicated by the fact that the Java

programming language is dual-use:

w On the one hand, Java is a general-purpose programming language

for creating any application software.

w On the other hand, Java is also a programming language for creating

applets that perform some particular tasks on the user’s machine.

Obviously, these different purposes require fundamentally different

security policies. For example, Java’s original implementors envisioned

three different security policies that could be enforced by browsers:

1. Do not run Java programs at all.

2. Run Java programs with different privileges depending on their

actual sources. For example, Java applets downloaded from remote

Web sites would run with severe restrictions, whereas Java

programs loaded off the local file system would be considered

trustworthy and would have no such restrictions (they would have

full access to all the system resources).

3. Run Java programs with no restrictions at all.

All three policies were implemented in Sun Microsystems’ HotJava

browser, and the choice was left to the user. Most users chose the second

policy. All browsers in use today allow the user to enable or disable Java, and

to more severely restrict Java applets that are downloaded from remote sites

than applets that are loaded from the local file system.

10.5.3 Code signing

The basic idea of code signing is that a software developer, publisher, or

distributor digitally signs a software module, and that a user—or a client

software acting on behalf of the user—verifies the digital signature before it

actually executes the software module. The digital signature verifies the

claimed source of the software module and the identity of the software

developer, publisher, or distributor that is responsible and may be held

accountable for its behavior accordingly. The use of digital signatures to

verify the claimed source of software is conceptually similar to the use of

10.5 Java applets 281

shrink-wraps for physical software packages. Consequently, people some-

times use the term digital shrink-wrap to refer to them. In the introduction,

we saw that BETSI provided a simple code signing system that worked that

way. Since then, many vendors have developed code signing technologies

and systems of their own. They all work similarly but use different terms.

For example, Netscape Communications uses the term object signing system to

refer to its code signing system, whereas Microsoft Corporation uses the

term Authenticode. In fact, Authenticode describes a series of file formats for

signing Microsoft 32-bit .exe, .cab, .dll, and .ocx files.19 A digitally signed

file contains the original unsigned file, the digital signature, and an X.509v3

digital certificate for the public key needed to verify the Authenticode

signature.

Obviously, code signing technologies and systems can be used by

browsers to have Java applets step out of their sandboxes under controlled

circumstances. In fact, most code signing technologies and systems in use

today allow users to dynamically assign specific sets of privileges to Java

applets. The sets of privileges primarily depend on the trustworthiness of the

corresponding software developers, publishers, or distributors. This basically

means that not all software developers, publishers, and distributors are

equally trustworthy and that there is some heuristic to determine and

actually measure their trustworthiness. This heuristic must be provided by

the user.

Code signing is an important building block of the security of browsers

that support Java applets. As mentioned above, its implementation occurs in

two phases:

1. In the first phase, code signing was implemented in a way that is

conceptually similar to BETSI. The aim was to allow a user to

determine and verify the claimed source of a Java applet. If the

source was trustworthy, the applet would step out of the sandbox

and have full access to the computer system and its local resources

(similar to a Java application). If, however, the source was not

trustworthy, the applet would still run in the sandbox. In this case,

the trustworthiness of a software publisher was a binary decision

(i.e., it was either trustworthy or not) and depended on the software

publisher’s certificate. This basically meant that the user could

determine a set of certificates he or she was willing to accept and

to consider as trustworthy. If a Java applet was digitally signed by

19. Authenticode cannot be used to sign Windows .com files or 16-bit .exe files.

282 Client-side Security

a software publisher that had such as certificate, it was allowed to

step out of the sandbox and fully access the computer system and its

local resources. This phase was implemented in Microsoft Internet

Explorer 3.0 and Netscape Navigator 4.0.

2. In the second phase, however, more granularity was added to the

code signing systems employed for Java applets. More specifically, it

was allowed that a Java applet could step out of the sandbox and

access the computer system and its resources in some predefined

way (i.e., the applet did not necessarily have full access to the

computer system and its local resources). Giving applets capabilities

in this way satisfies the ‘‘principle of least privilege,’’ meaning that

an applet can be given exactly the privileges it needs to perform its

task, but nothing more. All major browsers support this phase in

their latest releases. From a security point of view, this is

advantageous and good news. Unfortunately, however, the config-

uration and proper use of a highly granular code signing system has

also turned out to be difficult in practice.

All code signing systems in use today employ X.509v3 software

publisher certificates20 issued by (commercial or noncommercial) certifica-

tion service providers such as, for example, VeriSign, Inc.

10.6 ActiveX controls

Unlike Java, which is a programming language of its own, the term ActiveX

was coined by Microsoft to refer to a repackaging of some existing

technologies. More specifically, ActiveX is a stripped-down version of

Microsoft’s object linking and embedding (OLE) and component object

model (COM) architectures, two highly successful Windows programming

components that allow multiple programs to interact, exchange data, and

share each other’s windows. As such, ActiveX is a system and a

corresponding API for downloading executable code over the Internet.

The code is bundled into a single file called ActiveX control. In general, a file

carrying an ActiveX control has the extension .ocx.

ActiveX controls are small programs that can be written in any

programming language, including, for example, C, Cþþ, Visual Basic,

20. Netscape Communications uses the term object signing certificate to refer to a software publisher certificate.

10.6 ActiveX controls 283

or Java. They are automatically downloaded and installed as needed, then

automatically deleted when no longer needed. Consequently, an ActiveX

control is conceptually similar to a plug-in (as discussed in Section 10.3). In

spite of the conceptual similarities, there are, however, also two funda-

mental differences between ActiveX controls and plug-ins:

1. Plug-ins are usually used to extend a browser so that it can

accommodate a new document type, whereas most ActiveX controls

used to date have brought a new functionality to a specific Web site.

2. Plug-ins must be manually installed, whereas ActiveX controls are

downloaded and run automatically.

Both differences lead to a situation in which ActiveX controls behave

like Java applets from a user’s point of view (although the technologies are

completely different).

The syntax for incorporating an ActiveX control into an HTML

document is similar to that for incorporating a Java applet. In fact, the

<OBJECT> tag is used to identify the name of the ActiveX control, the URL of

the directory that contains it, an ID attribute that contains a unique

hexadecimal serial number, and some other parameters. The serial number

allows an ActiveX control to be downloaded automatically from one of

several ActiveX control archives and repositories that are located anywhere

on the Internet. Like inline images and Java applets, ActiveX controls

developed and maintained at one site can be incorporated into HTML

documents on another site. Also like Java applets, the ActiveX control is

passed as runtime information in a series of <PARAM> tags. This allows the

developer to customize the behavior of an ActiveX control.

In general, there are two kinds of ActiveX controls: the ones that

contain native machine code and the ones that contain Java bytecode. The

first kind are written in programming languages, such as C, Cþþ, or Visual

Basic. The control’s source code is compiled into an executable that is

downloaded to the browser and executed on the client machine. Contrary

to that, the second kind are written in Java or any other programming

language that can be compiled into Java bytecode. These controls are

downloaded to the browser and executed in the browser’s JVM. Note that

the two different kinds of ActiveX controls have fundamentally different

security implications.

1. The ActiveX technology is simply a means to download and

run native machine code on the client machine. It is up to the

programmer to decide whether to follow the ActiveX APIs, whether

284 Client-side Security

to use the operating system APIs, or whether to attempt direct

manipulation of the computer system’s resources. In general, there

is no way to properly audit the ActiveX control functions on

contemporary operating systems.

2. ActiveX controls that are downloaded as Java bytecode can be

subject to all of the same restrictions that normally apply to Java

applets. Consequently, these controls can be run by the browser

within a sandbox. Alternatively, a browser can grant these controls

specific privileges, such as the ability to read and write within a

specific directory or to initiate network connections to specific IP

addresses. Perhaps most importantly, the actions of such an ActiveX

control can be properly audited (if the Java runtime environment

allows such auditing).

In spite of the fact that ActiveX support has been ported to a variety of

platforms (in addition to Microsoft Windows), ActiveX controls that are

downloaded as machine code are processor and operating system dependent.

These controls are typically compiled for a particular processor and with a

particular set of APIs. Contrary to that, ActiveX controls that are written in

Java can be processor and operating system independent.

In practice, ActiveX controls that are downloaded as machine code are

predominant. From the point of view of software developers and Web users,

they have three important advantages:

1. Developers can use the programming languages and compilers with

which they are familiar.

2. Developers can draw on their existing repository of application

programs, OLE components, and libraries, allowing them to bring

ActiveX controls to market faster.

3. ActiveX controls can do anything (meaning that they are not

restricted by a sandbox).

Obviously, the third point illustrates that ActiveX controls are risky from

a security point of view. If the ActiveX controls can do anything, they can

also trash files (or entire file systems), reformat hard disks, probe firewalls,

install viruses, or do anything an attacker may dream of. Once an ActiveX

control is running on a system, it has the ability to do anything that any

other full-fledged program can do. While this makes ActiveX controls

powerful, it also makes them potentially very dangerous. An ActiveX control

10.6 ActiveX controls 285

written for malicious purposes may compromise the users’ privacy or

damage computer systems in overt or subtle ways.

The inherent risks of ActiveX controls have been demonstrated on

several occasions. The most prominent demonstration occurred in February

1997, when Lutz Donnerhacke, a member the German Chaos Computer

Club (CCC), demonstrated an ActiveX control that could initiate electronic

funds transfers using the European version of the Quicken software for home

banking. With this version of Quicken, it is possible to initiate a transfer

directly from one bank account to another. Donnerhacke’s ActiveX control

started up a copy of Quicken on the user’s computer and recorded an

electronic funds transfer in the user’s checking account ledger. Written in

Visual Basic as a demonstration tool for a German television station, the

ActiveX control did not attempt to hide its actions. Consequently, it is possible

and very likely that sooner or later similar ActiveX controls will occur that are

made more stealthy. Again, it will be important to decide whether an ActiveX

control is authentic and has not been tampered with. And again, this is where

code signing technologies and systems come into play.

As mentioned above, Authenticode is a code signing technology and

system developed and marketed by Microsoft. The system can be used to

let users verify the identity of the author of a particular ActiveX control, and

to let them determine whether the control has been modified since the

first time it was distributed. ActiveX controls can be digitally signed and

controlled using Authenticode. Microsoft Internet Explorer, for example,

can be configured to disregard any ActiveX control that isn’t properly signed,

to run only ActiveX controls that have been signed by specific software

publishers, or to accept ActiveX controls signed by any registered software

publisher.

Authenticode signatures can be used for different purposes depending

on whether the ActiveX control is distributed in binary machine code or JVM

bytecode:

w For ActiveX controls distributed in binary machine code, an

Authenticode signature can be used to enforce a simple decision:

either download the control or not.

w For ActiveX controls distributed in JVM bytecode, an Authenticode

signature can additionally be used to determine which access

permissions are given to the Java bytecode when it is running in

the JVM.

If an ActiveX control mixes binary machine code and JVM bytecode, or

if both binary machine code and JVM bytecode controls are resident on

286 Client-side Security

TEAMFL
Y

Team-Fly®

the same Web page, the capabilities-controlled access permitted by the Java

system is disabled. Also, Authenticode signatures are only verified when a

control is downloaded from the Internet. If the control resides on the local

file system, it is assumed to be trustworthy and safe to run. In this case, the

ActiveX control is given unrestricted access to the system.

Obviously, code signing as implemented by the Authenticode technol-

ogy is an important tool for certifying the authenticity and integrity of an

ActiveX control. However, code signing does not provide safety as is implied

by Microsoft Internet Explorer’s control panel (see Figure 10.2). It is

important to note that code signing does not provide users with a safe

environment where they can run their program code. Instead, it provides

users with some audit trail, so that if a program misbehaves, it should be

possible to interrogate the signed program code and decide whom to sue.

Unfortunately, security through code signing is not that simple and has three

shortcomings.

1. The damage that an ActiveX control does may not be immediately

visible. In fact, an ActiveX control may be used to install a trapdoor

(a hidden access to secret data or services).

2. The Authenticode technology does not protect a user against bugs

and malicious software (e.g., computer viruses and Trojan horses).

3. The Authenticode software (and its validation routines), as well as

the audit trails, are vulnerable in the sense that once a signed

ActiveX control is running, it may erase the audit trail that would

allow the user to identify the author (unless the prompt option had

been chosen, where the user would be told beforehand who had

signed it).

Earlier in this chapter, we said that the aim of code signing technologies

is to trace back a malicious piece of software downloaded into a browser to its

original publisher, who may be held accountable and be subject to litigation.

We should mention that the degree to which a user of maliciously signed

code can litigate against a software vendor heavily depends on the

supporting legal structure, the type of certificate the vendor used to digitally

sign the code, and a number of other factors. For example, on June 17, 1997,

Fred McLain released an ActiveX control called Exploder Control on one of

his personal Web pages.21 When downloaded to a computer that has a power

21. http://www.halcyon.com/mclain/ActiveX/welcome.html

10.6 ActiveX controls 287

conservation BIOS, the Exploder Control shuts down Windows 95, and

turns off the computer. Later, McLain obtained an Individual Software

Publisher Digital ID from VeriSign, signed his ActiveX control, and reposted

it on the Web page. McLain was soon to lose his certificate. Because he

violated his contractual agreements associated with his software publisher

certificate when he used it to sign malicious code, VeriSign unilaterally

revoked the software publisher certificate. Note, however, that this was a

futile act since very few people bother to retrieve and actually check CRLs at

all. Consequently, hardly anyone knew that McLain’s software publisher

certificate was revoked. Also note that McLain’s Exploder Control incited a

flurry of controversy about the usefulness and effectiveness of code and

object signing technologies and systems. In either case, it showed that

without certificate revocation checking, these technologies and systems are

almost always without any value.

10.7 Security zones

As mentioned above, Microsoft Internet Explorer (since version 4.0)

implements and makes use of a highly granular code signing technology

and system (i.e., Authenticode) to extend privileges to executable or active

content (e.g., Java applets, ActiveX controls). We also mentioned previously

that a highly granular code signing system has the disadvantage that the

configuration and proper use of it is difficult in practice.

Against this background, Microsoft developed and implemented a model

that allows a user to divide the Internet into security zones and to configure

each security zone individually. In this model, the term security zone refers to

a group of Web sites in which a user has the same level of trust. Some zones

may be trustworthy (e.g., the intranet zone), whereas some other zones

may not be trustworthy at all (e.g., the Internet zone). In either case, the

trustworthiness of a zone directly influences its security configuration (i.e.,

the more trustworthy a zone is, the more things will typically be allowed).

The aim of security zones is to simplify the configuration and proper use of a

security-related system (e.g., a code signing system).

As illustrated in Figure 10.1, Microsoft Internet Explorer comes along

with four security or Web content zones that can be configured

individually:

1. The Internet zone contains all Web sites that are not assigned to any

other security zone.

288 Client-side Security

2. The local intranet zone contains all Web sites that are located on the

intranet. As such, it is assumed that these sites are protected by a

firewall and that they can be assigned far-going access privileges

accordingly.

3. The trusted sites zone contains Web sites that are located on the

Internet, but can still be considered to be trustworthy. The Web sites

of partner companies and customers are good candidates for trusted

sites. Similar to the sites from the local intranet zone, these sites can

be assigned far-going access privileges.

4. Contrary to that, the restricted sites zone contains Web sites that are

not considered trustworthy. In fact, this zone represents the ‘‘black

Figure 10.1 Microsoft Internet Explorer’s Security menu to configure security zones.

(q 2002 Microsoft Corporation.)

10.7 Security zones 289

list.’’ Consequently, these sites must be severly restricted in terms of

access privileges assigned to them.

As also illustrated in Figure 10.1, a security level must be assigned to each

of these four zones individually. Either one of the four predefined levels can

be chosen using the slider, or the detailed behavior for the level must be

customized pressing the Custom Level. . . button. For example, Figure 10.2

illustrates the Security Settings menu that pops up if the user presses the

Custom Level. . . button for the Internet zone. Again, there is a possibility to

make use of some default values and to reset the custom settings to High,

Medium, Medium-low, or Low. If the user wants to individually define his or

her custom setting for the Internet zone, he or she can do so by clicking the

corresponding checkboxes. Figure 10.2 illustrates some checkboxes to

configure the use of signed and unsigned ActiveX controls. There are many

Figure 10.2 Microsoft Internet Explorer’s Security Settings menu to configure the Internet

zone. (q 2002 Microsoft Corporation.)

290 Client-side Security

other questions that must be answered if one wants to define a custom setting

from scratch. This is not something that average Web users want to do.

In either case, the idea of defining and using security zones to simplify

the configuration and proper use of a browsers’ security settings is something

useful. It is possible and likely that future browsers (and other client software

packages) will make use of it. It is, however, an open question, whether four

security zones (as implemented, for example, in Microsoft Internet Explorer)

is an optimal choice.

10.8 Implications for firewalls

As discussed in this chapter, executable or active content is potentially

dangerous and should be avoided in the first place. Unfortunately, this is not

always possible and an increasingly large number of Web sites are making

use of executable or active content. If these sites are located on the Internet,

the corresponding HTTP request messages must pass the (corporate) firewall.

Consequently, one may think about strategies and technologies to block

executable or active content at the firewall.

Against this background, it is important to note that executable or active

content has changed the firewall’s role and importance in the overall

security landscape (security architecture). The role of a firewall has been to

logically separate the insiders (i.e., the ‘‘good’’ guys) from the outsiders (i.e.,

the ‘‘bad’’ guys). With the use of executable or active content, this logical

separation is difficult, because insiders running executable or active content

may effectively become inside assistants for outsiders. In fact, insiders may

not even know that they are being (mis)used by outsiders to attack computer

systems from the inside.

In the past, several strategies and technologies to block executable or

active content at the firewall have been developed, implemented, and partly

deployed. For example, in the case of a proxy-based firewall, response content

filtering may be used [7]. In response content filtering, the proxy server

looks into the content of an HTTP response message. Typically, content

filters are designed specifically for a certain type of executable content, and

are invoked only if the MIME content type matches one of the content types

for which the filter has been configured.

The following examples illustrate some possible response blocking and

content filtering mechanisms:

w Java applet blocking mechanisms prevent Java applets from being

downloaded to computer systems located behind the firewall.

10.8 Implications for firewalls 291

A simple strategy takes advantage of the fact that all Java class files

begin with the 4-byte hex signature CA, FE, BA, and BE (according to

the JVM specification). The strategy is to prevent all inbound files

beginning with this signature from being forwarded by the firewall.

By proxying protocols, such as HTTP and FTP, such transfers can be

detected and blocked. Another commonly suggested strategy is to

reject all browser requests via HTTP and FTP for files with names

ending in .class. This strategy once enjoyed most of the advantages

of the previous strategy, even though there was never any

requirement in the JVM specification that class files actually have

the suffix .class. Unfortunately, both strategies cannot block other

executable or active content, such as JavaScript code or ActiveX

controls. Because of JavaScript’s inline nature, blocking JavaScript

code at the firewall turns out to be difficult.

w HTML tag filtering mechanisms allow certain HTML tags to be removed

from HTML documents (applicable for documents of MIME type

text/html). This is used in the same way as other filtering

mechanisms to prevent the exploitation of known security holes

and bugs. For example, it is possible to filter out embedded objects

from HTML documents, such as Java applets, ActiveX controls, or

JavaScript code. In the case of Java applets, for example, it is possible

to scan the HTML documents for <APPLET> tags and rewrite them in a

more benign form. The firewall toolkit originally developed by

Trusted Information Systems, Inc. (TIS) has been extended accord-

ingly [8]. Similarly, it is possible to scan the HTML documents for tags

that are used to incorporate JavaScript code and ActiveX controls.

w Virus scanning allows downloaded programs to be scanned for known

computer viruses (applicable for documents of MIME type applica-

tion/octet-stream). By restricting the application of this technol-

ogy, HTML and ASCII text transfer performance remains unaffected

by computer virus scanning.

w Similar to virus scanning, various forms of code scanning allow

specialized analysis of executable content, such as Java applets and

ActiveX controls, inspecting which function calls are made and

determining whether they are allowed or not. For example, a

software called SurfinGate (developed by Finjan Software22)

22. http://www.finjan.com

292 Client-side Security

performs this sophisticated type of filtering. Unfortunately, it is not

easily decidable whether a specific code segment is malicious or not

(we have already mentioned this fact at several places throughout

the book).

All mechanisms require use of an application-level gateway or proxy

server (i.e., they can not be implemented with a packet filter alone). For

example, httpf is a widely deployed open source implementation of a

filtering proxy server that is licensed under the GNU General Public License

(GPL).23 Obviously, a filtering proxy server is not able to protect a client

system against malicious code that is already located on the system.

Last but not least, it is important to note that encrypted data streams

cannot be parsed or scanned by an application-level gateway or proxy server.

This poses some interesting problems with regard to the simultaneous use of

cryptographic security protocols, such as IPsec or SSL/TLS, and scanning and

filtering technologies. It is certainly a good practice to scan all data streams

that are not encrypted. Consequently, we see complementary virus scanners

running at firewalls, mail exchange servers, and end systems. This plurality

has a positive effect on the overall protection against malicious code.

10.9 Conclusions

In this chapter, we focused on client-side security in general, and the security

implications and risks of executable (or active) content in particular.

Fortunately, although the cost of malicious code has been estimated in the

billions of dollars, the attacks that have occurred are much less serious than

what has been (and is) possible. In fact, a variety of hostile and malicious

Java applets and ActiveX controls have been demonstrated, but only a few

serious attacks have actually occured.24 This will probably change as

knowledge on programming executable or active content becomes more

common and widespread.

Most incidents that have occurred in practice have launched DoS

attacks. Note that any programming or scripting language or environment

that allows systemwide resources to be allocated, and then places no

limitations on the allocation of these resources, is subject to these types of

23. Further information about httpf is available at http://httpf.sourceforge.net.

24. Note, however, that this is only an assumption, and that it may be the case that attacks have occured and

nobody has recognized them.

10.9 Conclusions 293

attacks. But the languages addressed in this chapter seem to be especially

suitable for DoS attacks, apparently because their authors have not

considered these attacks to be serious threats, and because it is very difficult

(if not impossible) to protect against them. There is a programming language

for mobile code (i.e., Telescript) that controls the use of systemwide

resources by giving each process a limited supply of funds (so-called

teleclicks), and requiring a process to expend a certain quantity of teleclicks

in order to accomplish specific results, such as spawning new copies of itself.

This approach can at least be used to protect against certain DoS attacks. It is

conceptually similar to the use of a micropayment system (i.e., teleclicks

represent the currency). However, the languages addressed in this chapter

do not make use of this (or a similar) concept. In fact, code segments written

in these languages can easily clog large amounts of system resources, and

there are only a few possibilities for a user who is under attack to regain

control of his or her system. To make things worse, there is nothing even

resembling process control within most Web browser environments. The

only way to interrupt a running piece of code is generally to kill and shut

down the browser.

In summary, client-side security is unsatisfactory and the design,

implementation, deployment, and use of security technologies that can be

used to better protect against malicious executable or active content must be

left for further study. Unfortunately, the problem is hard and it is possible

and very likely that appropriate solutions will not be found anytime soon. In

the meantime, users who care about security are well advised to disable

executable or active content in their browsers (if possible and appropriate).

References

[1] Thompson, K., ‘‘Reflections on Trusting Trust,’’ Communications of the ACM,

Vol. 27, No. 8, August 1984, pp. 761–763.

[2] Rubin, A. D., ‘‘Location-Independent Data/Software Integrity Protocol,’’

Request for Comments 1805, June 1995.

[3] Rubin, A. D., ‘‘Trusted Distribution of Software Over the Internet,’’ Proceedings

of Internet Society Symposium on Network and Distributed System Security, February

1995, pp. 47–53.

[4] Goldberg, I., et al., ‘‘A Secure Environment for Untrusted Helper Applica-

tions,’’ Proceedings of USENIX Security Symposium, July 1996, pp. 1–13.

[5] Flanagan, D., Java in a Nutshell, Second Edition, Sebastopol, CA: O’Reilly &

Associates, 1997.

294 Client-side Security

[6] Oaks, S., Java Security, Sebastopol, CA: O’Reilly & Associates, 1998.

[7] Luotonen, A., Web Proxy Servers, Upper Saddle River, NJ: Prentice Hall, 1998.

[8] Martin, D. M., S. Rajagopalan, and A. D. Rubin, ‘‘Blocking Java Applets at the

Firewall,’’ Proceedings of Internet Society Symposium on Network and Distributed

System Security (SNDSS ’97), February 1997.

10.9 Conclusions 295

TEAMFL
Y

Team-Fly®

Server-side Security

After having looked at client-side security issues in the

previous chapter, we now elaborate on security issues

related to the server side. Remember from the Preface that most

server-side security problems and corresponding exploits that

make press headlines are due to software bugs and flawed

configurations of Web servers. Consequently, if one really cares

about the security of the server side, one has to start with a

proper installation and configuration of the Web server

software. Because there are many books and manuals that

give step-by-step instructions about how to properly install and

securely configure a specific Web server, we are not going to

repeat them in this book. For example, you may refer to [1, 2]

for a general overview, or [3, 4] for more specific information

about the Apache Web server.

In the recent past, it has become popular to design and

build multitier Web-based applications to make the user’s

experience more interesting and interactive. In fact, there is an

increasingly large number of acronyms that refer to the same

idea but use slightly different technologies. The aim of this

chapter is to put these technologies into perspective, and to

discuss their security implications. After a short introduction in

Section 11.1, we elaborate on CGI, server APIs, FastCGI, SSIs,

ASP, and JSP in Sections 11.2 to 11.7 (the acronyms are

explained in the corresponding sections). We conclude with

some final remarks in Section 11.8.

297

C H A P T E R

11
Contents

11.1 Introduction2

11.2 CGI4

11.3 Server APIs11

11.4 FastCGI11

11.5 Server-side includes12

11.6 ASP14

11.7 JSP14

11.8 Conclusions15

References

11.1 Introduction

As already mentioned in the introductory chapter of this book, HTTP is a very

simple request/response protocol that can be used by a client (i.e., browser)

to retrieve some information from a Web server. The requested information,

in turn, is represented by static or dynamically created Web pages (written,

for example, in HTML or XML).

w If the information is represented by static Web pages, the situation is

comparatively simple and the Web pages can be directly retrieved

from the server’s document tree.

w If, however, the information is represented by dynamically created

Web pages, the situation is more complicated and the pages must be

generated by a specific application program in response to an

incoming HTTP request message. In this case, the application

program must be invoked by or communicate somehow with the

Web server.

Obviously, the second possibility is much more powerful and is at the

core of a multitier Web-based application architecture as illustrated in

Figure 11.1. In this architecture, a user employs a browser to access a Web

server (sometimes also called a Web frontend) and to request specific

funtionality. The Web server, in turn, interacts with an application server to

provide this funtionality. The browser and the Web server usually employ

HTTP or HTTPS to communicate, whereas the Web server and the

application server may employ any application protocol to communicate.1

In a typical setting, the browser would be located on the Internet, the Web

server would be located on a firewall’s DMZ, and the application server

would be located on the intranet.

The major advantage of a multitier Web-based application architecture is

that normal browsers can be used on the client side. This is in contrast to

Figure 11.1 A multitier Web-based application architecture.

1. Following the current trend in industry, the application server is likely to have a Web services interface. In this

case, the Web server and the application server may also use HTTP and HTTPS to communicate.

298 Server-side Security

traditional client/server applications that require (a) clients and servers to

use a specific application protocol, and (b) specific client software to be

distributed, installed, configured, and maintained. In practice, requirement

(b) is particularly challenging and difficult to address on a large scale.

Unfortunately, there are also some security problems and challenges

related to multitier Web-based application architectures. For example, in the

typical setting mentioned above, it is usually difficult to design and properly

implement a firewall that is able to proxy the application protocol between

the Web server and the application server in a sufficiently secure way. Most

of the security problems and challenges, however, are due to the fact that the

Web server (together with the application server) may be misused to do

things other than what it was originally designed for. Because the Web

server provides more functionality (than to simply return static Web pages),

this functionality can also be attacked. The probablity that this functionality

is vulnerable and may be exploited primarily depends on the technology in

use to dynamically create the Web pages.

Historically, the first technology to dynamically create Web pages was

the Common Gateway Interface (CGI) and programming or scripting

languages that made use of it. CGI was first implemented in the NCSA

server and has many benefits, such as simplicity, language and architecture

independence, process isolation, and the fact that it is specified as an open

standard. From a security point of view, process isolation is particularly

important, because it means that applications run in separate processes, and

that buggy application server software may not crash the entire Web server

or access the server’s internal state information. CGI, however, also has some

significant drawbacks and problems. One of the more important problems is

performance. Since a new process is created for every HTTP request message

and thrown away when the request is served, efficiency is fairly poor.

In response to the performance problem of CGI, some vendors designed

and developed proprietary application programming interfaces (APIs) for

their Web server software. In fact, the most important server APIs are NSAPI

from Netscape Communications, ISAPI from Microsoft, and the Apache Web

server API.2

Applications linked into a server API may run significantly faster than

CGI scripts. In fact, the CGI initialization problem is improved, because the

application runs in the server process and is persistent across requests. On

the other side, however, Web server APIs also sacrifice many benefits of CGI.

2. Further information about the Apache Web server is available at http://www.apache.org. Its API is, for

example, overviewed in Chapter 14 of [4].

11.1 Introduction 299

In fact, they are more complex, proprietary, tied into the server architecture,

and programs must be written in a language supported by the API. Most

importantly, Web server APIs do not provide process isolation (as discussed

above). Since the applications run in the server’s address space, buggy or

maliciously written application program code may compromise the security

of the Web server as a whole. This can also be used to attack other application

programs.

Given the advantages and disadvantages of both CGI and vendor-specific

APIs, the FastCGI interface was developed and proposed as a viable solution.

Contrary to CGI, FastCGI processes are persistent and the Web server may

use TCP connections to communicate with the FastCGI script (instead of

environment variables and a mechanism for interprocess communication).

Furthermore, there are many other technologies that have been designed,

developed and marketed in the past. For example, Server-Side Includes

(SSIs) are directives that are directly executed by the Web server. Similarly,

Microsoft is pushing a technology called Active Server Pages (ASP) and Sun

Microsystems is pushing a similar but more open technology called

JavaServer Pages (JSP). All of these technologies work in similar ways and

have similar security problems. They are overviewed, briefly discussed, and

put into perspective next.

11.2 CGI

Having Figure 11.1 in mind, CGI refers to the interface between the Web

server and the program running on the application server. This application

program is usually called a CGI script.3 Roughly speaking, CGI processing

works as follows:

1. A Web server receives an HTTP request message that invokes a CGI

script.

2. The Web server creates a new server-side process to take care of this

request.

3. The server-side process takes the input provided by the browser and

passes it to the appropriate application program or CGI script.

4. The CGI script computes the output and returns it back to the

server-side process.

3. The term script is used because most of these programs are written in a simple scripting language, such as Perl.

300 Server-side Security

5. The server-side process returns the CGI script’s output to the client.

6. The server-side process exits and the Web server waits for new

incoming HTTP request messages.

Information is exchanged between the server-side process and the CGI

script using environment variables that are sent and received using a

mechanism for inter-process communication (e.g., pipes in a UNIX

environment). Consequently, a CGI script must be able to read from

standard input (i.e., stdin) and write to standard output (i.e., stdout).

As long as this requirement is fullfilled, it can be written in any

programming or scripting language. Consequently, most CGI scripts are

written in interpreted scripting languages that are supposed to be fast and

easy to use. Examples include Perl,4 the Tool Control Language (Tcl), Java,

or Python.5 As of this writing, Perl is by far the most popular and widely

deployed language for CGI programming or scripting.

The most important environment variables used for CGI programming

are summarized in Table 11.1. Note that not all environment variables are set

Table 11.1 CGI Environment Variables (in Alphabetical Order)

Environment Variable Meaning

AUTH_TYPE User authentication method used

CONTENT_LENGTH Length of input data

CONTENT_TYPE Internet media type of input data

GATEWAY_INTERFACE CGI version

HTTP_ACCEPT List of MIME types accepted by the client

HTTP_USER_AGENT Software and version of browser

HTTP_REFERER URL of referring document

MOD_PERL Defined if running under mod_perl

PATH_INFO URL part after the script identifier

PATH_TRANSLATED PATH_INFO translated into filesystem

QUERY_STRING Query string from URL (if present)

REMOTE_ADDR IP address of the client

REMOTE_HOST DNS name of the client

REMOTE_IDENT Remote user identification (unreliable)

REMOTE_USER Name of the authenticated user

REQUEST_METHOD HTTP request method (e.g., GET)

SCRIPT_NAME Virtual path of the script

SERVER_NAME DNS name of the server

SERVER_PORT Port number of the server

SERVER_PROTOCOL Name and version of the protocol

SERVER_SOFTWARE Server software name and version

4. http://www.perl.com

5. http://www.python.org

11.2 CGI 301

for all HTTP request messages, and that a browser may also send new HTTP

headers. If a browser sent a new HTTP header to the Web server, the server

(or the server-side process) would package the header into a new CGI

environment variable. The environment variable, in turn, would be prefixed

with ‘‘HTTP ’’ and any dash character (-) would be changed to an underscore

character (_). The Web server (or the server-side process) need not handle all

possible HTTP headers.

In addition to the environment variables summarized in Table 11.1,

some SSL/TLS-enabled Web servers also set additional environment

variables when SSL or TLS is used. For example, Table 11.2 summarizes

the additional environment variables set by an SSL/TLS-enabled Apache

Web server (i.e., Apache-SSL or Apache with mod ssl). Other SSL/TLS-

enabled Web servers may set other environment variables. In either case, the

environment variables may be used by the CGI scripts to provide security

services. For example, a CGI script that provides access to a database with

confidential material may abort, unless a certain type of cipher suite is used.

According to Table 11.1, the server-side process running on the Web

server may provide to the CGI script some information that is encoded in the

QUERY STRING environment variable. This information is usually provided

by the user and is the user’s sole means for passing input data to the CGI

script. It may contain, for example, a list of keywords for a search engine or

an SQL expression for use by a database gateway.

In either case, a browser may send a query string to a Web server (or CGI

script, respectively) in two different ways:

Table 11.2 Some Additonal Environment Variables for SSL/TLS (in Alphabetical

Order)

Environment Variable Meaning

HTTPS Set if HTTPS is being used

HTTPS_CIPHER SSL/TLS cipherspec

HTTPS_KEYSIZE Number of bits in the session key

HTTPS_SECRETKEYSIZE Number of bits in the secret key

SSL_CIPHER The same as HTTPS_CIPHER

SSL_CLIENT_DN Distinguished name in client’s certificate

SSL_CLIENT_<x509> Component of client’s distinguished name

SSL_CLIENT_I_DN Distinguished name of issuer of client’s certificate

SSL_CLIENT_I_<x509> Component of client’s issuer’s distinguished name

SSL_PROTOCOL_VERSION SSL protocol version

SSL_SERVER_DN Distinguished name in server’s certificate

SSL_SERVER_<x509> Component of server’s distinguished name

SSL_SERVER_I_DN Distinguished name of issuer of server’s certificate

SSL_SERVER_I_<x509> Component of server’s issuer’s distinguished name

SSL_SSLEAY_VERSION Version of the SSLeay library

302 Server-side Security

w The browser can append the query string to the CGI script’s URL. For

example, a resulting URL may look as follows:6

http://www.esecurity.ch/cgi-bin/

do_search?search=eSECURITY+Technologies

This example assumes that the CGI script do_search is installed in the

cgi-bin directory of the Web server hosting www.esecurity.ch. In

this case, the query string refers to the substring search=eSECUR-

ITY+Technologies. Because it is part of the URL, it has to follow the

URL syntax rules, such as replacing spaces with the plus character (+).

The CGI script, in turn, must reconstruct the query string by

examining the environment variable QUERY STRING. This way of

sending query strings to CGI scripts uses the standard HTTP GET

method and is typically used by older CGI scripts.

w The browser can send the query string using the HTTP POST method.

This method is usually called in response to the user filling out and

submitting an HTML form. For example, a simple code segment that

includes an HTML form may look as follows:

<FORM ACTION="/cgi-bin/do_search" METHOD=POST>

Search string: <INPUT TYPE="text" NAME="search"><P>

<INPUT TYPE="submit" VALUE="Search">

</FORM>

When this HTML code segment is received by the browser, a

corresponding fill-out form is displayed. Figure 11.2 illustrates how

this form is displayed using, for example, the Opera browser. If the

user typed in the search string ‘‘eSECURITY Technologies’’ and

pressed the Search button, the browser would use the HTTP POST

method (as indicated by the form’s METHOD attribute) to submit the

contents of the form to the Web server. The Web server, in turn,

would write the following query string to the process it just started:

search=eSECURITY+Technologies

The CGI script /cgi-bin/do_search can now read the query string

from standard input and process it accordingly.

6. Note that this URL is a fictitious example only.

11.2 CGI 303

From a security point of view, the HTTP POST method is preferred

because the query string does not appear in the requested URL. Note,

however, that a determined attacker can still eavesdrop on the data traffic

and extract any information he or she wants.

In addition, there are many concerns related to the security of CGI

scripts. For example, many CGI scripts that had been distributed with Web

server software packages in the past were later found to be flawed or buggy.

The corresponding security flaws or software bugs could be exploited to

attack the machines that hosted the CGI scripts. Fortunately, this problem is

no longer relevant, because most Web server software packages are

distributed either without CGI scripts or with CGI scripts that are not

executable by default (i.e., they are configured with read privileges only). In

either case, if a CGI script is found to be flawed or buggy, it must be removed

from the Web server as soon as possible (it can also be corrected or replaced

with a more secure script that provides the same or a similar functionality).

The adiministrator of a Web server has to make several decisions with

regard to the installation and secure configuration of CGI scripts:

w First, he or she has to carefully design the user account used to run

the Web server and to implement the principle of least privilege. Note

that whatever restrictions apply to a Web server also apply to the CGI

Figure 11.2 A simple HTML fill-out form displayed using the Opera browser. (q 2002

Opera Software.)

304 Server-side Security

scripts. For example, if a Web server runs as root on a UNIX system it

can potentially leak the password files. This can be changed, for

example, by using a shadowed password file and to run the Web

server as a user with only a few privileges (e.g., a user called nobody).

w Second, he or she has to decide whether the server uses script-aliased

CGI or non-script-aliased CGI.

w Using script-aliased CGI means that a CGI script can only be

executed if it is installed in an explicitly configured directory,

typically the subdirectory cgi-bin in the root directory of the Web

server.

w Using non-script-aliased CGI means that a CGI scripts can be

executed if its filename extension corresponds to the one defined

in the server’s configuration settings. In this case, it does not really

matter where a CGI script is installed and it can also be located in a

user’s directory.

Having only one directory to look for CGI scripts is better and less

error prone. Consequently, script-aliased CGI should be the preferred

option (if possible and appropriate).

w Third, he or she has to decide what CGI scripts to install. Obviously,

he or she should only install CGI scripts that are needed by at least

one legitimate user. CGI scripts that are not used by anybody only

represent a potential vulnerability to the security of the Web server

and should be removed.

In either case, interpreters, shells, and other scripting engines must

never be installed in a directory where they may be invoked by a request

with user-supplied input data. This is particularly true for the directory that

hosts the CGI scripts (i.e., the cgi-bin directory). Unfortunately, there are

examples in which software vendors have shipped Web servers with a Perl

interpreter installed in the CGI directory (mainly to make it simpler to

install and configure CGI scripts written in Perl). This is very dangerous.

Imagine, for example, what happens if a Perl interpreter perl.exe and a

Perl script search.pl are installed in the CGI directory of the Web site

www.victim.com. In this case, any user can invoke the script by simply

requesting the following URL:

http://www.victim.com/cgi-bin/perl.exe?search.pl

This is convenient. This configuration, however, does not only allow the

Perl script search.pl to be executed, but to run arbitrary Perl commands on

11.2 CGI 305

the Web server. For example, anybody can request the following URL from

the Web server:

http://www.victim.com/cgi-bin/perl.exe?-e+%27unlink+%3C*%3E%27

Following the rules for unescaping URLs, the Web server transforms this

expression into the shell command perl -e unlink ’<*>’, which represents

a Perl command to delete all files in the current directory. Whether the

command is successful depends on whether the server’s user permissions

allow it to make the delete operations.

In practice, many security problems occur simply because the Web

server administrators and CGI script programmers assume that users behave

properly and play by the rules. This means that they often assume that

users type in only valid input data, that file names only contain legal

characters, that users don’t peek at secret CGI parameters contained inside

hidden form fields, and similar things. There are, however, many ways in

which users may not play by the rules and try to exploit weaknesses or

vulnerabilities. An example is given above. Another example crops up in

Perl scripts designed to send an e-mail message to an address entered in a

fill-out form. In UNIX, it’s comparably easy to do this by opening a pipe to

the mail command and printing the body of the e-mail message to this pipe.

Assuming that param is a function that extracts named fields from the CGI

query string, a Perl script segment may look as follows (the example is taken

from [1]):

$address = param(’address’);

$subject = param(’subject’);

$message = param(’message’);

open(MAIL,"| /bin/mail -s ’$subject’ $address");

print MAIL $message;

close MAIL;

The script segment first uses param to recover the e-mail address, subject

line, and body of the message. It then opens a pipe to the mail command,

using the -s flag to specify a subject line and passing the recipient’s e-mail

address on the command line. The script prints the body of the message to

the pipe and closes it. When the pipe is closed, the mail command delivers

the message. The script is intended to be called from a fill-out form that may

look as follows:

<FORM ACTION="/cgi-bin/handle_mail" METHOD=POST>

To: <INPUT TYPE="text" NAME="address"> <P>

Subject: <INPUT TYPE="text" NAME="subject"> <P>

Message: <TEXTAREA NAME="message" ROWS=5></TEXTAREA> <P>

306 Server-side Security

TEAMFL
Y

Team-Fly®

<INPUT TYPE="submit" VALUE="Send Mail">

</FORM>

If the user typed rolf.oppliger@esecurity.ch into the ‘‘To:’’ field, and

Test into the ‘‘Subject:’’ field, the CGI script would run the following

command:

/bin/mail -s ’Test’ rolf.oppliger@esecurity.ch

In this case, everything works as anticipated and the e-mail message is

sent to rolf.oppliger@esecurity.ch. Unfortunately, the script has a

problem: it blindly trusts that the e-mail address and subject line supplied

by the user are valid. Now consider what happens when a malicious user

types the string rolf.oppliger@esecurity.ch; cat /etc/passwd into the

e-mail address field. In this case, the shell command the script now executes

looks as follows:7

/bin/mail -s ’Test’ rolf.oppliger@esecurity.ch; cat /etc/passwd

The effect of this is to run the anticipated mail command and then

execute cat/etc/passwd. This command prints the content of the password

file to standard output, which is transferred to the requesting browser. Of

course, there’s no reason that the same or a similar technique couldn’t be

used to read the contents of any file on the server host, including HTML

documents that are normally protected by access control mechanisms and

encrypted in transmit through the SSL or TLS protocol. In fact, variants of

this exploit can be used to do many (malicious) things on the Web server.

Consequently, the most important thing to do from a security point of view

is to validate user-supplied input data, and to perform some pattern-

matching checks accordingly. If something suspicious if found, the input

data must be modified or refused.

Simson Garfinkel and Eugene H. Spafford compiled a list of general

principles and rules for safe CGI programming [5]. The principles and rules

are summarized in Table 11.3; they should be kept in mind when designing

and implementing CGI scripts. In the same book, the authors also provide

rules for C, Perl, and Hypertext Proprocessor (PHP) programmers. These

rules are not summarized here.

Last but not least, it is important to note that on some platforms and

systems a wrapper may be used to more securely run CGI scripts.

Historically, the term wrapper was first coined by Wietse Venema for a

7. On UNIX systems, the semicolon is a metacharacter used to separate multiple commands.

11.2 CGI 307

tool he named TCP wrapper.8 The tool is heavily used on UNIX platforms. It

provides some level of access control based on the source and destination of

a TCP connection request and logging for successful and unsuccessful

connections. More specifically, the TCP wrapper starts a filter program

before the requested server process is started, assuming that the connection

request is permitted by the access control lists. All messages about

connections and connection attempts are logged via the syslog daemon

(i.e., syslogd). Similar to the TCP wrapper, a wrapper may be used to more

securely run another program (e.g., a CGI script). The execution of the

other program can be made more secure because the wrapper can be

configured in a way that fully controls it and changes its permissions

Table 11.3 General Principles and Rules for Safe CGI Programming*

No. Principle or Rule

1 Carefully design the program before you start.

2 Show the specification to another person.

3 Write and test small sections at a time.

4 Check all values provided by the user.

5 Check arguments that you pass to operating system functions.

6 Check all return codes from system calls.

7 Have internal consistency-checking code.

8 Include lots of logging.

9 Some information should not be logged.

10 Make the critical portion of your program as small and as simple as possible.

11 Read through your code.

12 Always use full pathnames for any filename argument, for both

commands and data files.

13 Rather than depending on the current directory, set it yourself.

14 Test your completed program thoroughly.

15 Be aware of race conditions.

16 Don’t have your program dump core except during your testing.

17 Do not create files in world-writable directories.

18 Don’t place undue reliance on the source IP address in the packets of connections

you receive.

19 Include some form of load shedding or load limiting in your server to handle

cases of excessive load.

20 Put reasonable time-outs on the real time used by your CGI script while it is running.

21 Put reasonable limits on the CPU time used by your CGI script while it is running.

22 Do not require the user to send a reusable password in plaintext over the network

connection to authenticate herself.

23 Have your code reviewed by another competent programmer (or two, or more).

24 Whenever possible, reuse code.

*According to [5].

8. The tool can be downloaded from ftp://ftp.porcupine.org/pub/security.

308 Server-side Security

accordingly. For example, the suEXEC wrapper can be used on UNIX

systems running the Apache Web server (since version 1.2). The wrapper

provides the ability to run CGI script under user IDs different from the user

ID of the calling Web server (normally, when a CGI script executes, it runs

as the same user who is running the Web server). Further information

about the suEXEC wrapper is available at http://httpd.apache.org/docs/

suexec.html. Also, its installation and configuration is further addressed

in [4].

11.3 Server APIs

As mentioned above, some vendors of Web server software packages have

tried to overcome the performance problems of CGI scripts by compiling and

linking application programs directly into the Web server software via

proprietary APIs (i.e., NSAPI, ISAPI, and Apache Web server API). As a

result, the application programs have access to the Web server’s internal data

structures and functions. This makes them faster and more powerful than

CGI scripts. Unfortunately, it also gives them the ability to crash the Web

server if they are not properly written (unlike CGI programs, user data is sent

to the server directly in memory structures rather than through environ-

ment variables and mechanisms for interprocess communication). Conse-

quently, compiling and linking application programs directly into a Web

server is mostly about avoiding the cost of restarting a CGI script over and

over again. It saves the overhead of process invocation at the cost of some

reprogramming.

From a security point of view, it is important to note that an application

program that is compiled and linked into the Web server software inherits

the privileges and access rights of the Web server. This is in contrast to a

CGI script that may be configured to run with less privileges and access

rights. Consequently, server API scripts must be very carefully designed

and implemented. According to [1], compiling and linking application

programs into the a Web server is like roping mountain climbers together. If

everyone is competent, it saves much. If anyone on the rope is a fool, all

perish.

In summary, the use of server API scripts is a bad idea from a security

point of view. If one has a choice, one should use CGI scripts (rather than

server API scripts). Most of the time, however, one won’t have a choice

because a Web server must be optimized for performance. In this case,

principles and rules for safe programming are even more important than

for CGI.

11.3 Server APIs 309

11.4 FastCGI

Given the advantages and disadvantages of both CGI and vendor-specific

server APIs, the FastCGI interface was designed and developed as an

alternative solution.9 FastCGI is conceptually similar to CGI, but there are

two major differences:

1. The server-side processes that invoke FastCGI scripts are persistent.

This basically means that after finishing a request, a server-side

process waits for a new request instead of exiting.

2. In addition to environment variables and pipes, TCP connections

may be used between a Web server and a FastCGI script. This allows

FastCGI scripts to run locally (i.e., on the same machine as the Web

server) using a pipe, or remotely (i.e., on another machine) using a

TCP connection.

FastCGI’s ability to run applications remotely (over TCP connections)

provides some major benefits as compared to CGI. For example, it is possible

to have a Web server located on a DMZ of a firewall configuration using

remote FastCGI to dynamically retrieve information from an internal

database application server. Furthermore, it is possible to employ FastCGI

to build Web servers that provide load balancing for their related application

servers.

From a security point of view, remote FastCGI is particularly challenging

because a FastCGI script that is invoked must make sure that it is connected

to the right Web server. Otherwise it may be made to provide potentially

sensitive information to a remote system (note that this is not the case with

CGI scripts because CGI scripts are assumed to run locally). Consequently,

server authentication is a major issue for FastCGI. In currently available

FastCGI implementations, server authenticity is provided through the

servers’ IP addresses. This is certainly not the preferred choice and more

recent FastCGI implementations employ the provision of server authenticity

in the SSL/TLS protocol. Due to the interest in newer server-side

technologies, such as ASP and JSP, it is not likely that FastCGI will be

widely deployed on the WWW anytime soon.

9. Further information about FastCGI is available at http://www.fastcgi.com.

310 Server-side Security

11.5 Server-side includes

Server-side includes (SSIs) are directives that are written into HTML files, and

that are executed by the Web server when the corresponding HTML files are

delivered. For performance reasons, a Web server must be told whether it

has to look for SSIs or not. This is usually done in the configuration settings

of the Web server.

In general, an SSI may look as follows (the operator and arguments are

summarized in Table 11.4):

<!-#operator arg1="x" arg2="y"... ->

For exampple, the SSI <!-#fsize arg1="/etc/passwd"-> would return

the bytesize of the password file.

From a security point of view, most SSI operators look innocent and are

not dangerous to use. For example, the echo operator can only be used to

provide information about the current date and time, or about the current

file. Similarly, the fsize operator returns specific information (i.e., the

bytesize) of a file. There is, however, one dangerous operator: exec. Note

that this operator can take a string argument and pass it to the operating

system for execution. Consequently, it can be (mis)used in many ways. For

example, an insider can use the exec operator to invoke any operating

system command. Also, there may be situations in which an outsider can

provide input that is passed to the exec operator. In fact, one can easily

imagine a situation in which an outsider is asked to enter a user name and

Table 11.4 Operators and Arguments for SSIs

Operator Arguments (meaning)

echo $DOCUMENT_ NAME (echoes current filename)

$DOCUMENT_ PATH (echoes path to the current filename)

$DATE_ LOCAL (echoes current date and time on local host)

$DATE_ GMT (echoes current date and time in Greenwich time)

$LAST_ MODIFIED (echoes lastmod data on current filename)

plus all the variables that are available to CGI scripts

include virtual /x/y (includes file /x/y relative to document root)

file /x/y (includes file /x/y relative to current directory)

fsize x (echoes bytesize of file x)

flastmod x (echoes last mod date of file x)

cong errmsg (configures generic error message for SSI failure)

sizefmt (configures fsize format)

timefmt (configures time format)

exec cgi (string treated as path to a CGI script)

cmd (string passed to /bin/sh and executed directly)

11.5 Server-side includes 311

this user name is passed as an environment variable to an operating system

command for execution. For example, the following SSI uses the finger

command on a UNIX system to display some information about the user

specified in the $QUERY_STRING environment variable [6]:

<!-#exec cmd="finger $QUERY_STRING"->

In this example, an arbitrary command can be encoded by an outsider

entering a user name by adding a semicolon and the command after the user

name. If, for example, the outsider entered oppliger; ls -al in the HTML

form requesting the user name, the SSI would execute finger oppliger

and ls -al. Obviously, there are many similar examples one may think of.

There are, at least, two recommendations to make:

1. Once again, it is very important to validate user-supplied input data.

2. If possible, access to the exec operator should be denied.

An Apache Web server is usually configured to enable SSI by putting in

the server options the directive Options Includes. By replacing Options

Includes with Options IncludesNOEXEC, one can enable SSIs but deny

access to the exec operator.

Due to the fact that SSIs are still rarely used today, there are only a

few studies and investigations about the security implications of SSIs

(e.g., [7]). This is unfortunate and will likely change, if SSIs are more

widely deployed.

11.6 ASP

The term Active Server Pages (ASPs) refers to a proprietary server-side

scripting technology used by Microsoft to dynamically create Web pages.

Roughly speaking, an ASP page is an HTML page that contains some server-

side scripts that are processed by the Web server before the HTTP response

message is sent back to the browser. As such, the ASP technology is

conceptually similar to the use of SSIs.

More specifically, when a browser requests an ASP file (i.e., a file with

the extension .asp) from a Web server, the server processes the ASP file

from top to bottom and executes any server-side script it finds in the file.

The scripts, in turn, can be written in either the VBScript or JScript

scripting languages. The server then formats a standard Web page (e.g., an

HTML or XML page) and returns it to the browser. Consequently,

312 Server-side Security

anybody familar with VBScript or JScript programming is potentially able

to create ASP files.

In the past, ASP has been involved in many security problems. Most of

these security problems, however, have been due to the fact that ASP is

deeply interwined with the Microsoft Windows operating systems and Web

servers (i.e., Microsoft IIS and Personal Web Server). Consequently,

attackers usually employ ASP pages to exploit vulnerabilities and bugs

either in the operating system or the Web server software. If they did not use

ASP pages, they would search and eventually find other possibilities to

exploit the same vulnerabilities and bugs. Nevertheless, it is arguably correct

to say that VBScript and JScript are powerful scripting languages that

simplify the attacker’s job considerably.

11.7 JSP

Similar to ASP, Sun Microsystems developed a technology called JavaServer

Pages (JSP10) to be used in the Java world.11 Again, the aim of JSP is to

provide support for the design and implementation of multi-tier Web-based

applications. Contrary to ASP, however, JSP relies on the Java program-

ming language and inherits its ability to run on multiple platforms

accordingly. Most importantly, JSP runs on most Web servers in use

today, including, for example, Apache and Micrsoft IIS.

More specifically, JSP is implemented as a Java API that is part of the

Java 2 Platform, Enterprise Edition (J2EE). Readers familiar with servlets12

will notice that JSP does not provide anything conceptually new, and that

everything that can be done with a JSP page can also be done by writing a

servlet. In fact, servlets have access to exactly the same set of Java APIs as

JSP, and JSP pages are compiled into servlets.

JSP can be used to separate the static content of a Web page from the

logic to generate the dynamic parts of it. Consequently, Web publishers can

use familiar tools to create and edit Web pages, and simply embed calls to the

necessary application components where needed. All they need to know is

how to invoke the logic. A JSP programmer can then build and maintain the

logic components.

11.7 JSP

10. http://java.sun.com/products/jsp/

11. The JSP technology is implemented, for example, as part of the Jakarta project at the Apache Software

Foundation. The resulting Tomcat implementation is free and open-source. It also implements servlets. Further

information about Tomcat can be found at http://jakarta.apache.org/tomcat.

12. http://java.sun.com/products/servlet

11.7 JSP 313

11.8 Conclusions

In this chapter, we overviewed and discussed the security implications of

some technologies that can be used to design and build multitier Web-based

applications (i.e., CGI, server APIs, FastCGI, SSIs, ASP, and JSP). Since the

current trend to build Web-based applications and services is likely to

continue, we will see many other server-side technologies being created and

aggressively marketed in the future. This is unfortunate, because many

server-side technologies do the same or at least very similar things. Note that

most things we said for CGI scripts also apply for server APIs, ASP, and JSP.

Most importantly, an application developer must never trust any string the

user types in.

From a security point of view, the most dangerous thing about

technologies that can be used to design and build multitier Web-based

applications is that they all provide additional functionalities to Web servers,

and that these additional functionalities can be attacked directly or (mis)used

to indirectly attack other things. Several examples were given in this

chapter. It is possible and very likely that many other examples will be

reported in the future. Consequently, it is very important that Web-based

applications and services are designed, implemented, and deployed with

security in mind and in a way that security requirements are properly met.

This is mainly a design issue and the designers of Web-based applications and

services should be educated in security or collaborate with security

professionals or engineers. There are simply too many things that can go

wrong. This is particularly true if Web-based applications and services are

provided on the Internet (using, for example, reverse proxy mechanisms).

Last but not least, it is important to note that software engineering principles

are becoming more and more important for Web-based applications and

services.

References

[1] Stein, L. D., Web Security: A Step-by-Step Reference, Reading, MA: Addison-

Wesley, 1998.

[2] Larson, E., and B. Stephens, Administrating Web Servers, Security, & Maintenance

Interactive Workbook, Upper Saddle River, NJ: Prentice Hall, 1999.

[3] Aulds, C., Linux Apache Web Server Administration, Alameda, CA: Sybex, 2000.

[4] Laurie, B., and P. Laurie, Apache: The Definitive Guide, Second Edition, Sebastopol,

CA: O’Reilly & Associates, 1999.

314 Server-side Security

[5] Garfinkel, S., with E. H. Spafford, Web Security, Privacy & Commerce, Second

Edition, Sebastopol, CA: O’Reilly & Associates, 2001.

[6] Rubin, A. D., D. Geer, and M.J. Ranum, Web Security Sourcebook, New York:

John Wiley & Sons, Inc., 1997.

[7] Karro, J., and J. Wang, ‘‘Protecting Web Servers from Security Holes in Server-

Side Includes,’’ Proceedings of Annual Computer Security Applications Conference

(ACSAC ’98), December 1998, pp. 103–111.

11.8 Conclusions 315

TEAMFL
Y

Team-Fly®

Privacy Protection
and Anonymity Services

In this chapter, we focus on the increasingly important field of

privacy protection and anonymity services for the WWW.

More specifically, we introduce the topic in Section 12.1,

elaborate on some early work (mainly in the field of providing

anonymity services for electronic mail) in Section 12.2, discuss

cookies and their privacy implications in Section 12.3, address

technologies to anonymously browse and anonymously pub-

lish on the Web in Sections 12.4 and 12.5,1 elaborate on

voluntary privacy standards in Section 12.6, and draw some

conclusions in Section 12.7. Note that parts of this chapter are

taken from [1]. Also note that many countries have data

privacy or data protection laws that must be considered and

taken into account when personal data are stored, processed, or

transmitted. These laws and their implications are not

addressed in this book. You may refer to [2] to get some

further information about the legal situation in your country.

Last but not least, [3] provides another source of information.

12.1 Introduction

Many users think that browsing the Web is an anonymous

activity. This is because it is not immediately visible to them

317

C H A P T E R

12
Contents

12.1 Introduction1

12.2 Early work4

12.3 Cookies8

12.4 Anonymous browsing11

12.5 Anonymous publishing19

12.6 Voluntary privacy
standards23

12.7 Conclusions26

References

1. In some literature, these technologies are also referred to as privacy

enhancing technologies (PETs).

that there are many computer systems behind the scences that busily collect

information about or related to them. For example, each Web server has a

log file that is usually configured to add an entry for every single HTTP

request message that is received and processed. For example, a fictitious

entry may look as follows:

proxy.esecurity.ch - - [13/May/2002:15:04:31 +0200]

"GET /esecurity.html HTTP/1.0"

200 1369"http://www.esecurity.ch/"

"Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)"

In this example, a client machine with DNS name proxy.esecurity.ch

anonymously2 requested the resource http://www.esecurity.ch/esecur-

ity.html using HTTP version 1.0 in the afternoon of May 13, 2002. The

Web server accepted the request (indicated by status code 200) and sent

back the 1369 bytes long HTML file esecurity.html. In addition to the

information needed to serve the request, the client also sent to the server

and the server logged some information related to the client platform and

software in use. In this example, the client was running Windows 2000 and

Microsoft Internet Explorer version 5.5.

Any interested reader may refer to the analyzing service of Privacy.net3

to learn about the information his or her browser provides when it connects

to a Web server.4 For example, Figure 12.1 illustrates a corresponding Web

page rendered by the Opera browser. In this example, the server correctly

recognizes that the client is running an Opera browser version 6.0 (english

version) running on a Windows NT 4.0 platform. Also, the server learns

about the browser settings related to JavaScript, cookies, plug-ins, and many

other features that are not even illustrated in Figure 12.1. Note, for example,

that the browser reveals the fact that it is running the Shockwave Flash plug-

in version 5.0. From a security point of view, this fact reveals that the

browser may be attacked using a vulnerability and corresponding exploit

related to this specific version of the Shockwave Flash plug-in. From a

privacy point of view, this fact also reveals that the browser is also used to

display animated Web sites.

2. The fact that the request was anonymous is represented by the empty user name that would follow the client

name in the log file.

3. http://privacy.net/analyze

4. German speaking readers may also refer to http://www.datenschutz.ch for an analysis of the browser’s privacy

settings.

318 Privacy Protection and Anonymity Services

Even more information is available to local network administrators and

Internet service providers (ISPs). Their internetworking devices are usually

configured to log relevant information. Most importantly, their HTTP proxy

servers keep track of every Web site and URL that is requested by a user.

Consequently, the local network administrators and ISPs are the ones that

are most likely able to establish user profiles. These profiles may threat

the privacy of users and it is an ongoing (legal) discussion about how far they

can go.

The mechanism of choice to establish user profiles is traffic analysis.

According to RFC 2828 [4], the term traffic analysis refers to the ‘‘inference

of information from observable characteristics of data flow(s), even when

the data is encrypted or otherwise not directly available. Such characteristics

include the identities and locations of the source(s) and destination(s), and

the presence, amount, frequency, and duration of occurrence.’’ Outside the

military, the threat of traffic analysis has largely been ignored. But traffic

analysis is becoming a significant threat to the privacy of Web users, and the

browsing behavior of Web users is increasingly subject to observation. As

Web-based applications and services become more prevalent, this behavior

Figure 12.1 Privacy.net’s dynamically created Web page to illustrate the client-side

settings rendered by the Opera browser. (q 2002 Opera Software.)

12.1 Introduction 319

includes the shopping habits and spending patterns of individual users, as

well as other personal data that have traditionally been considered private.

Similarly, the Web is becoming an important source for information and

intelligence gathering. In a competitive environment, a company may wish

to protect its current research topics. However, monitoring HTTP data traffic

may reveal the company’s primary focus. By keeping Web browsing

characteristics private, the company’s interests are adequately protected.

We saw in Chapter 9 that some electronic payment systems (e.g.,

anonymous electronic cash systems) allow secure financial transactions

over the Internet while preserving the untraceability and anonymity that

normal cash allows. However, if electronic cash is transmitted over a channel

that identifies both the payer and the payee, the transaction may no longer

stay anonymous.

Unfortunately, traffic analysis is a threat that is very difficult to protect

against, given the architecture of the Internet and WWW.5 For example,

simply encrypting IP packets between a browser and a Web server (e.g.,

using the SSL/TLS protocol) does not protect against traffic analysis (i.e., the

analysis still reveals that the browser and the Web server are sending IP

packets forth and back). Consequently, other security mechanisms are

required to protect communicating peers against traffic analysis and to

provide corresponding anonymity services.

According to [5], there are three types of anonymous communication

properties that can be provided individually or in combination:

1. Sender anonymity;

2. Receiver anonymity;

3. Unlinkability of sender and receiver (i.e., connection anonymity).

In short, sender anonymity means that the identity of the party who sent

a particular message is hidden, while its receiver and the message itself

might not be. Similarly, receiver anonymity means that the identity of the

receiver is hidden, while its sender and the message itself might not be.

Finally, unlinkability of sender and receiver (also referred to as connection

anonymity) means that though the sender and receiver can each be

identified individually as participating in some communication, they cannot

be identified as communicating with each other.

5. In leased lines and circuit-switched networks, traffic padding may be used to protect against traffic analysis.

320 Privacy Protection and Anonymity Services

All three types of anonymous communication properties may be

relevant for the WWW. For example, sender anonymity is relevant if

somebody wants to publish anonmyously on the Web. Refer to Section 12.5

for corresponding technologies. Similarly, receiver anonymity is relevant if

somebody wants to browse anonymously through the Web. Refer to Section

12.4 for corresponding technologies. Last but not least, connection

anonymity is relevant if somebody wants to hide the fact that he or she is

participating in some Web traffic. In Section 12.4.4, we will learn about a

technology called onion routing that can be used to implement anonymous

connections.

12.2 Early work

There is some early work in providing anonymity services for electronic mail

(e-mail). For example, anon.penet.fi was a simple and easy-to-use

anonymous e-mail forwarding service (a so-called anonymous remailer)

that was operated by Johan Helsingius in Finland.6 In short, the

anon.penet.fi anonymous remailer was provided by a simple SMTP

proxy server that stripped off all header information of incoming e-mail

messages before forwarding them toward their destination. In addition, if

not already assigned, an alias (i.e., a pseudonym) for the sender of an e-mail

message was created. In the outgoing message, the real e-mail address of the

sender was replaced by the alias that allowed the recipient(s) of the message

to reply to the sender without knowing his or her real identity or e-mail

address.

In essence, anon.penet.fi provided sender anonymity by simply

keeping the mapping between real e-mail addresses and their aliases secret.

The downside of this simple approach was that any user of anon.penet.fi

had to trust the service provider not to reveal his or her real identity or

e-mail address. This level of trust may or may not be justified.7 In either

case, it is difficult for a user to decide whether this level of trust is

appropriate for any given service provider. Today, there are several

anonymous remailers available for public use on the Internet.8

6. According to a press release on February 20, 1995, over 7,000 messages were forwarded daily, and the alias

database contained more than 200,000 entries.

7. On February 8, 1995, based on a burglary report filed with the Los Angeles police, transmitted by Interpol, the

Finish police presented Helsingius a warrant for search and seizure. Bound by law, he complied, thereby

revealing the real e-mail address of a single user.

8. A list of currently available anonymous remailers is maintained, for example, at http://anon.efga.org/

Remailers.

12.2 Early work 321

A more sophisticated approach to provide anonymity services for e-mail

was developed and proposed by David Chaum in the early 1980s [6]. In fact,

Chaum introduced the notion of a Chaum mixing network that—as its name

suggests—is a network consisting of a set of Chaum mixes (or mixes). Each

Chaum mix is an anonymous remailer that has a public key pair and is able

to decrypt messages with its private key accordingly. In addition to

forwarding incoming e-mail messages, a Chaum mix may also try to hide

the relationship between incoming and outgoing messages by reordering,

delaying, and eventually padding them to disable or at least complicate

traffic analysis.

When a user wants to send a message in a Chaum mixing network, he or

she must first choose a route through a series of Chaum mixes M1; . . . ;Mn to

the intended recipient, and then prepare a layered message for delivery. In

fact, the first layer includes the name of the recipient and the message

encrypted with the public key of the recipient. The second layer includes Mn

and the first layer encrypted with the public key of Mn. The third layer

includes Mn�1 and the second layer encrypted with the public key of Mn�1.

This continues until the last layer includes M1 and the last but one layer

encrypted with the public key of M1. This last layer represents the message

that is actually sent out. For example, if n ¼ 3 and the recipient is B, the

message that is sent out may look as follows:

M1; fM2; fM3; fB; fmessagegkBgkM3
gkM2

gkM1
ð12:1Þ

If this message reaches M1, the Chaum mix uses its private key (i.e.,

k�1
M1

) to decrypt fM2; fM3; fB; fmessagegkBgkM3
gkM2

gkM1
. The result is split into

two parts (i.e., M2 and fM3; fB; fmessagegkBgkM3
gkM2

) and the first part is used

to route the second part to M2. Similar to M1, M2 uses its private key (i.e.,

k�1
M2

) to decrypt fM3; fB; fmessagegkBgkM3
gkM2

. Again, the result is split into two

parts (i.e., M3 and fB; fmessagegkBgkM3
) and the first part is used to route the

second part to M3. M3, in turn, decrypts fB; fmessagegkBgkM3
using its private

key (i.e., k�1
M3

). The result is B and fmessagegkB and as such it can be

forwarded to B. Finally, B uses his or her private key (i.e., k�1
B) to decrypt

the message.

If a Chaum mixing network were used to transmit e-mail messages only

through one single Chaum mix, this mix would have to be trusted not to

reveal the senders’ and receivers’ identities (since it sees both of them). In

this case, the situation would be comparable to the service provided by

anon.penet.fi. Consequently, most people would prefer to forward e-

mail messages through two or more Chaum mixes in an attempt to

protect themselves against a single mix that may see both the sender and

322 Privacy Protection and Anonymity Services

the receiver identities of a particular message. In other words, using two or

more mixes keeps the sender anonymous to every mix but the first and the

receiver anonymous to every mix but the last. Also, a user’s identity is best

hidden if he runs his own Chaum mix and directs all of his outgoing e-mail

messages through it.

If one were worried about an adversary powerful enough to monitor

several Chaum mixes in a network simultaneously, one would also have to

worry about timing and other correlation attacks. In an extreme case,

consider the situation in which a Chaum mixing network is idle until a

message is sent out and forwarded to its recipient. Then even though an

adversary can’t decrypt the layered encryption, he or she can still locate the

route just by watching the active parts of the network and analyzing the data

traffic accordingly. Chaum mixing networks have been designed to resist

such attacks using queues to batch, reorder, and process incoming messages.

In fact, each mix may keep quiet—absorbing incoming messages but not

retransmitting them—until its outbound buffer overflows, at which point

the mix emits a randomly chosen message to its next hop. However, due to

the real-time constraints of some applications, the batching, reordering, and

processing of data messages in queues is not always possible. As discussed

below, this is particularly true for the WWW.

One question arises immediately with regard to the use of anonymous

remailers and corresponding services: how can the recipient of an

(anonymous) e-mail message reply to the sender? The answer is that the

recipient can’t unless explicitly told how to do so. A simple technique is to

tell the recipient to send a reply to a certain newsgroup, such as

alt.anonymous.messages, with a specific subject field, such as 12345exam-

ple. The reply can then be grabbed by the sender from the appropriate

newsgroup. This approach of replying is yet untraceable but also expensive

and unreliable. A more sophisticated technique uses the knowledge of how

to build an untraceable forward route from the sender to the recipient, to

build an inverse untraceable backward route from the recipient to the

sender. In general, the forward and backward routes are independent (they

can be completely identical, partially identical, or completely disjunct).

According to this technique, the sender computes a block of information

that is used to anonymously return a response message from the recipient to

the sender. This additional block of information is sometimes also referred to

as a return path information (RPI) block. The RPI block must be sent with the

original message and some padding data from the sender to the recipient. It

is then used by the recipient to build a corresponding backward route or

return path. This technique was prototyped by IBM Research in a system

called BABEL [7].

12.2 Early work 323

Anonymous remailers are fairly well understood today. Unfortunately,

the lessons leart cannot be directly applied to the WWW, because the

characteristics of e-mail and the WWW are inherently different:

w First, the WWW is an interactive medium, while e-mail is store-and-

forward. This basically means that a delay of several hours is

acceptable for e-mail (most of the time).

w Second, e-mail is a push technology, meaning that the sender of an

e-mail message initiates a data transfer, possibly without the

knowledge or consent of the recipient (the existence of e-mail

bombing attacks illustrates this point fairly well). By contrast, the

WWW is a pull technology, meaning that the recipient must

explicitly request data being transferred from the sender.

The first difference implies that full featured Chaum mixing networks are

unacceptable (or at least difficult to use) for HTTP data traffic. Nevertheless,

the second difference also offers some possibilities to improve security (in

terms of anonymity). For obvious reasons, the security of an anonymity-

providing system, such as a Chaum mixing network, increases as the number

of available and publicly accessible cooperating nodes (i.e., Chaum mixes)

increases. In the realm of e-mail, operators of anonymous remailers have

often come under fire when their services were abused by people sending

threatening letters or unacceptable spam (refer to anon.penet.fi discussed

earlier in this chapter). In fact, the undesirability of handling irate users

causes the number of anonymous remailers to stay considerably low,

potentially impacting the anonymity of the overall system. By contrast, a

Web server can’t initiate a connection with an unwilling browser and send

it data when no request was made. This consensual nature of the Web

should cause fewer potential node administrators to become discouraged,

and therefore lead to corresponding increases in cooperating nodes.

Last but not least, it is important to note that Web proxy servers are often

well suited to implement anonymity services because of their caching

capabilities (to improve network performance). The very fact that data is

being cached at some proxy servers makes it less likely that requests are

forwarded all the way to the destination server. This makes traffic analysis

more complicated, and harder to accomplish.

12.3 Cookies

The customization of Web-based applications and services requires the

availability of state information related to users and their browsing habits

324 Privacy Protection and Anonymity Services

and behaviors. Unfortunately, HTTP is stateless and neither provides support

for sessions, nor it knows what HTTP request and response messages actually

‘‘belong’’ to the same user. Consequently, one approach to make state

information available to a Web-based application or service would be to

authenticate the user for each request and to store information for this

particular user on the server side (e.g., in a database). Note, however, that

there are at least two disadvantages related to this approach:

1. User must authenticate himself or herself for every request.

2. The Web server must store a lot of information and host a huge

database accordingly.

Alternatively, one can download state information to the browser and

have the browser resubmit the information when it returns to the same Web

server. In this case, the state information is stored and managed in a highly

decentralized way. This is basically the way the HTTP state management

mechanism specified in RFC 2965 [8] works. The mechanism has a long

history (in Internet time) and has gone through numerous discussions

related to privacy. The interested reader is referred to [9] for a corresponding

overview and discussion.

In short, the HTTP state management mechanism uses cookies that are

sent forth and back between the Web server and the browser. In fact, the

Web server provides cookies and the browser stores and resubmits these

cookies. More specifically, RFC 2965 [8] introduces two new HTTP headers

(i.e., the Cookie and the Set-Cookie header) that can be used to carry

cookies and corresponding state information from one session to another.

In fact, the Set-Cookie header is used by the Web server to send a cookie to

the browser, and the Cookie header is used by the browser to return the

cookie to the Web server when it reconnects to it. The syntax and semantics

of the headers are fully specified in [8]. For example, a simple Set-Cookie

response header may look as follows:

Set-Cookie: USER_NAME=Rolf; path=/; expires=Saturday, 18-May-02

23:12

The Web server sets a cookie that holds a user name in a corresponding

variable (i.e., USER_NAME), and the browser stores the cookie locally. If the

browser requested a resource in path ‘‘/’’ on the same server (before May

18, 2002), it would send the following Cookie request header to the Web

server:

Cookie: USER_NAME=Rolf

12.3 Cookies 325

At this point in time, the Web server knows that the requesting user has

been previously assigned the name Rolf. If there were other attributes stored

in the cookie, the server could customize its behavior for this particular user

accordingly. Consequently, cookies can be long and encode a lot of

information. Furthermore, cookies can be encrypted. In this case, the key

needed to encrypt and decrypt the cookies must be known only be the Web

server. This simplifies key management considerably.

In either case, cookies can be used to track the path of a user when he or

she browses through a Web site (they have been designed for this purpose)

or a collection of Web sites.9 Users may object to this behavior as an intrusive

accumulation of private information, even if their identities may not be

evident.10 Consequently, a user should be able to enable or disable the HTTP

state management mechanism, and to either reject or refuse the use of

cookies accordingly. This is possible in all major browsers in use today. For

example, Figure 12.2 illustrates the Microsoft Internet Explorer’s Security

Settings menu that can be used to enable or disable cookies. There is made a

distinction between persistent cookies (i.e., cookies that are stored in a

specific file) and transient cookies (i.e., cookies that only live for the ongoing

session and that are not stored in a file). This distinction is not necessarily

made by all browsers. In Figure 12.2, both types of cookies are enabled by the

current user. Similarly, Figure 12.3 illustrates the Preferences menu of the

Opera browser. In the Privacy section of this menu, there is a Cookies panel

that can be used to customize the use of cookies.

If a browser does not allow a user to disable cookies, it is always possible

to periodically delete the file in which the cookies are stored. For example,

on a UNIX system, the browser can be prevented from storing and saving

cookies by replacing the cookies file with a link to /dev/null. Similarly, on

Windows and Macintosh systems, there are commercial programs that

promise to sweep cookie files clear.

Note that the HTTP state management mechanism and the correspond-

ing cookies are designed to maintain state information between two

endpoints of an HTTP session (i.e., a browser and a Web server). They

cannot be used for storing state information between the browser and a

proxy server, or between different proxy servers in a proxy chain.11

9. In the second case, a third-party tracking service must be used. Such services are provides by companies like

DoubleClick, Inc. (http://www.doubleclick.com).

10. Identities may be evident if users fill out forms that contain identifying information.

11. Note that a common way to use (or misuse) cookies is to store authentication information so that a

reauthentication does not have to occur every time in future requests, but the appropriate authentication

information is directly available in a corresponding cookie. To prevent spoofing attacks in this setting, it is

326 Privacy Protection and Anonymity Services

TEAMFL
Y

Team-Fly®

Also note that there are other technologies that may compromise the

privacy of users (in addition to cookies). For example, Web bugs12 are very

small images placed on Web pages or e-mail messages to facilitate third-

party tracking of users and collection of statistics. In fact, a typical Web bug

consists of a 1-pixel-by-1-pixel transparent GIF image. To detect it, one

Figure 12.2 Microsoft Internet Explorer’s Security Settings menu to enable or disable

cookies. (q 2002 Microsoft Corporation.)

12. The term Web bugs was coined by the Privacy Foundation (http://www.privacyfoundation.org) that released

a corresponding report in September 2000.

common practice to encode, not just the username into the cookie, but also the IP address where the first

request came from. Now consider the case in which the route to the server is dynamically changing in a way

that a request is not guaranteed to come from the same IP address (of the proxy server) as the earlier request.

In this case, the cookie may be rendered invalid. In this situation, a feature to support proxy cookies would be

useful [10]. Such a feature will hopefully emerge at some later point in time (obviously, the more secure

approach is not to store any static authentication information in a cache in the first place).

12.3 Cookies 327

must view the source of the Web page or e-mail message. Note what

happens if the following HTML statement is included in a Web page or

e-mail message:

<img src="http://www.esecurity.ch/tracking.gif"

width=1 height=1 border=0>

If a browser renders the Web page or an HTML-enabled user agent

displays the e-mail message, the image tracking.gif is retrieved from

http://www.esecurity.ch and is displayed in a pixel. As such, the image is

invisible to the unassisted eye and it usually goes unnoticed (unless one

looks at the source). Because the browser or user agent retrieves the image

from http://www.esecurity.ch, the Web server writes a corresponding

entry in its log file. Consequently, the Web server’s log file reveals who and

from where the image file was retrieved.

12.4 Anonymous browsing

In this section, we overview and discuss some technologies that can be used

to protect the privacy of Web users and to provide support for anonymous

browsing accordingly. In particular, we overview and briefly discuss

anonymizing HTTP proxy servers, JAP, Crowds, onion routing, and the

Freedom Network.

Figure 12.3 Opera’s Preferences menu to configure the use of cookies. (q 2002 Opera

Software).

328 Privacy Protection and Anonymity Services

12.4.1 Anonymizing HTTP proxy servers

In short, an anonymizing HTTP proxy server is an HTTP proxy server that

removes all parts of an HTTP request message that—directly or indirectly—

reveals information about the browser, but are not really required by the

Web server to serve the request and to respond appropriately. Most

importantly, an anonymizing HTTP proxy server can hide the browser’s IP

address. If the Web server sends back the requested resource, it can be

forwarded by the anonymizing HTTP proxy server to the browser. Similarly,

the Web server need not learn anything about the client platform and

browser in use.

Most anonymizing HTTP proxy servers work with nested URLs.13 A

nested URL is an URL in which the document part refers to another URL. For

example, in a nested URL of the form

http://proxy.../http://www.esecurity.ch

the document part (i.e., http://www.esecurity.ch) refers to another URL.

By retrieving the nested URL, the browser first connects to the HTTP proxy

server running at proxy..., and this proxy server connects to the Web

server at http://www.esecurity.ch. Similar to anonymous remailers, the

use of anonymizing HTTP proxy servers can also be chained and a cascade

of corresponding servers may be used. This is important if there is no single

proxy server a user is willing to trust.

The following example illustrates a nested URL that is forwarded by two

proxy servers (i.e., proxy1... and proxy2...) before it is finally delivered to

the Web server:

http://proxy1.../http://proxy2.../http://www.esecurity.ch

Obviously, each proxy server in the chain removes its part of the nested

URLs. This means that the Web server finally sees only the resource that is

requested and the IP address of the last proxy server in the chain. There is no

possibility for the Web server to determine what browser originally

requested the resource, or on what proxy chain the request message was

delivered. Each proxy server, however, holds some local state information

about the established connections (on either side of the proxy). Conse-

quently, any response message from the Web server can be sent back to the

browser using exactly the same proxy chain (in reverse order).

If an anonymizing HTTP proxy server is not chained, it can be

complemented by the SSL/TLS protocol to improve its ability to provide

13. Most existing HTTP proxy servers (e.g., Apache) provide support for nested URLs.

12.4 Anonymous browsing 329

anonymity services to its users. In fact, the anonymizing HTTP proxy server

can either tunnel or proxy the SSL/TLS-protected data traffic between the

browser and the Web server. In the second case, the connection between the

proxy server and the Web server may or may not be protected using the SSL/

TLS protocol (in addition to the use of the SSL/TLS protocol between the

browser and the proxy server).

There is an increasingly large number of companies and organizations

that operate anonymizing HTTP proxy servers and provide corresponding

anonymity services for Web users. Two examples include Anon-

ymizer.com14 and IDzap, LLC.15 Most of these services have versions in

which they support the SSL/TLS protocol in one way or another.

12.4.2 JAP

A group of researchers at the University of Technology Dresden adapted the

notion of a Chaum mixing network for the WWW and designed and

developed a corresponding system that can be used to anonymoulsy browse

through the Web. The system is named JAP and its open source software is

entirely written in the Java programming language.16

In essence, the JAP system implements a Chaum mixing network for

HTTP. Each Chaum mix is represented by a piece of software (i.e., an

anonymizing HTTP proxy server) that a JAP user must install and configure

locally. This software acts as a local JAP proxy server to the browser.

When the user wants to anonymoulsy request a resource from a Web

server using the JAP system, the browser must forward the request to

the local JAP proxy server. The JAP proxy server, in turn, must encrypt the

request message multiple times (once for every JAP proxy server on the

request message’s delivery path to the Web server). The encrypted message is

then sent through the defined chain of intermediate JAP proxy servers to the

Web server, and the Web server sends back the requested resource. The

procedure is identical to the one described in Section 12.2 for the delivery of

anonymous messages in a Chaum mixing network.

12.4.3 Crowds

In the late 1990s, a group of researchers at AT&T Research designed and

prototyped a sophisticated system to provide anonymity services for Web

14. http://www.anonymizer.com

15. http://www.idzap.com

16. http://anon.inf.tu-dresden.de

330 Privacy Protection and Anonymity Services

users [11, 12]. The system was named Crowds. This is because the system

operates by grouping users into a large and geographically diverse group

(a so-called crowd). The basic idea of Crowds is to probabilistically chain

multiple anonymizing HTTP proxy servers, and to encrypt all data that is

sent forth and back between the proxy servers. The fact that the chaining is

probabilistical differentiates Crowds from many other systems, including,

for example, the JAP system mentioned above.

In the Crowds systems, each user is represented by a process—a so-called

jondo17—that runs on his or her system. When this process is started, it

contacts a server called the blender to request admittance to the crowd. If

admitted, the blender reports to the jondo the current membership status of

the crowd and information that enables the jondo to actually participate in

the system. The user, in turn, must configure the jondo to serve as proxy

server by specifying its hostname and port number in his or her browser as

the proxy for all services (i.e., Gopher, HTTP, and SSL). Afterwards, any

request originating from the browser is sent directly to its jondo. Upon

receiving the first request, the jondo establishes a random path of jondos to

and from the Web server. More precisely, the jondo picks a jondo from the

crowd (possibly itself) at random, and forwards the request to it. When this

jondo receives the request, it flips a biased coin to determine whether or not

to forward the request to another jondo. If the result is to forward, then the

jondo selects a random jondo and forwards the request to it. Otherwise the

jondo submits the result to the Web server for which the request was

destined originally. Consequently, each request travels from the user’s

browser, through a number of jondos, and finally to the Web server.

Subsequent requests initiated at the same jondo follow the same path

(except perhaps going to a different Web server), and server response

messages traverse the same path as the request messages, only in reverse.

All communications between any two jondos is encrypted using a key

known only to the two jondos. Encryption keys are established as jondos join

the crowd. Therefore, some group membership procedures must be defined

and put in place. These procedures determine who can join the crowd and

when they can join, and inform members of the crowd membership

accordingly. In fact, there are many schemes and corresponding group

membership protocols that can potentially be used to manage crowd

memberships. While providing robust and reliable distributed solutions,

many of these schemes have the disadvantage of incurring significant

overhead and providing semantics that are arguably too strong for the

17. The term jondo is pronounced ‘‘John Doe.’’ It refers to the image of a faceless participant of the system.

12.4 Anonymous browsing 331

application at hand. In the Crowds system, a simpler and centralized solution

is used. As mentioned above, membership in a crowd is controlled and

reported to crowd members by the blender. To make use of the blender (and

thus the crowd), the user must establish an account with the blender (i.e., an

account name and password that the blender stores). When the user starts a

jondo, the jondo and the blender use this shared secret (the password) to

authenticate each other’s communication. As a result of this communica-

tion, the blender may accept the jondo into the crowd, add the new jondo

(i.e., its IP address, port number, and account name) to its list of current

members, and report this list back to the jondo. In addition, the blender may

also generate and report back a list of shared keys, each of which can be used

to authenticate another member of the crowd. The blender then sends one

key of the new jondo to each other jondo that is intended to share it

(encrypted under the account password for that jondo) and informs the

other jondos of the new member. At this point all members are equipped

with the data they need for the new member to participate in the crowd.

Each member maintains its own list of crowd members. This list is

initialized to that received from the blender when the jondo joins the crowd,

and is updated when the jondo receives notices of new or deleted members

from the blender. The jondo can also (autonomously) remove jondos from

its list of crowd members, if it detects that the corresponding jondos have

failed. This allows for each jondo’s list to diverge from others’ lists if different

jondos have detected different failures in the crowd.

Obviously, a major disadvantage of this centralized approach to group

membership management is that the blender is a TTP for the purposes of key

distribution and membership reporting. Techniques exist for distributing

trust in such a TTP among many replicas, in a way that the corruption of

some fraction of the replicas can be tolerated [13]. In its present,

nonreplicated form, however, the blender is best executed on a trusted

computer system (e.g., with log-in access available only at the console).

Note, however, that even though the blender is a TTP for some functions,

HTTP traffic is not generally routed through the blender, and thus a passive

attack on the blender does not immediately break Web transaction security.

Moreover, the failure of the blender does not interfere with ongoing

transactions. It is planned that in future versions of Crowds, jondos

will establish mutually shared keys using the Diffie-Hellman key

exchange, where the blender serves only to authenticate and distribute

the Diffie-Hellman public values of the Crowds members. This will eliminate

the present reliance on the blender for key generation. Another possibility

would be the use of Kerberos or any other authentication and key

distribution system.

332 Privacy Protection and Anonymity Services

In practice, firewalls present a problem for the deployment of Crowds.

Remember from the description given above that jondos are identified by

their IP addresses and port numbers. Most corporate firewalls do not allow

incoming connections on ports other than a few well-known ones. Thus, a

firewall will generally prevent a jondo outside the firewall from connecting

to another jondo inside the firewall. It is conceivable that if Crowds becomes

widespread, and there is demand for a special reserved port, that firewalls

will open this port and allow jondos to communicate accordingly. Until then,

Crowds will be most useful across academic institutions, as a service provided

by ISPs to private subscribers, and within very large organizations (because

they traditionally do not use firewalls).

Crowds 1.0 is implemented in Perl 5.0. According to their developers,

Perl was chosen for its rapid prototyping capabilities and its portability across

UNIX and Microsoft platforms. Obviously, the performance of Crowds could

be improved by implementing the system in a compiled language, such as C

or Cþþ.18 Further information and the corresponding software can be

obtained from the Crowds home page.19

12.4.4 Onion routing

Also in the late 1990s, a group of researchers at the U.S. Naval Research

Laboratory (NRL) adapted the idea of using a Chaum mixing network to

provide anonymous connections20 in a system called onion routing [14, 15].21

The onion routing system is conceptually different from the JAP system.

While onion routing works at the network layer and is independent from

the application protocol in use, the JAP system is specifically designed for

HTTP.

In onion routing, the term onion refers to a layered encrypted message,

whereas the term onion router refers to a Chaum mix that acts as a node in a

corresponding onion routing network. Instead of making TCP connections

18. Note, however, that another bottleneck of the system is the communication that must take place. This

bottleneck cannot be resolved using a compiled language.

19. http://www.research.att.com/projects/crowds

20. Anonymous connections are similar to TCP connections, but they are also resistant against passive and active

attacks (including traffic analysis). Anonymous connections are bidirectional, have small latency, and can be

used anywhere a TCP connection can be used. Note that a connection may be anonymous, although

communication need not be (e.g., if the data stream is not encrypted).

21. Note that the onion routing system is conceptually similar to the PipeNet proposal that was posted by Wei Dai

to the Cypherpunks mailing list in February 1995. Contrary to the onion routing system, however, the PipeNet

proposal has not been implemented so far.

12.4 Anonymous browsing 333

directly to a responding machine (the so-called responder), an initiating

application (the so-called initiator) makes an anonymous connection

through a sequence of onion routers. Contrary to normal routers, onion

routers are connected by longstanding and permanent TCP connections.

Although the technology is called onion routing, the routing that occurs

does so at the application layer (and not at the Internet layer). More

specifically, the system relies upon IP routing to route data through

longstanding TCP connections. Therefore, although the series of onion

routers in an anonymous connection is fixed for the lifetime of that

connection, the route that data actually travels between individual onion

routers is determined by the underlying IP network. Consequently, onion

routing is conceptually similar to loose source routing with IP. Anonymous

connections are multiplexed over longstanding connections. For any

anonymous connection, the sequence of onion routers in a route is strictly

defined at connection setup, and each onion router can only identify the

previous and next hops along the route. Data passed along the anonymous

connection appears different at each onion router, so data cannot be tracked

en route and compromised onion routers cannot cooperate.

In onion routing, an application does not directly talk to a router nor to

an onion router. Instead, there must be proxies that interface between the

applications and the onion routing network. For example, to access a Web

site through an onion routing network, one has to set the browser’s HTTP

proxy to an onion network entry point (a so-called application proxy). In

fact, the initiator establishes a TCP connection to an application proxy. This

proxy defines a (perhaps random) route through the onion routing network

by constructing a layered data structure (an onion) and sending that onion

through the network. Similar to a Chaum mixing network, each layer of the

onion is encrypted with the public key of the intended onion and defines the

next hop in the route. An onion’s size is fixed, so each onion router adds

some random padding data to replace the removed layer. The last onion

router forwards data to the responder’s application proxy, whose job is to

pass data between the onion routing network and the responder. In addition

to carrying the next hop information, each onion layer also contains seed

material from which cryptographic keys will actually be derived (for

encrypting or decrypting data sent forward or backward on the anonymous

connection).

After sending the onion, the initiator’s application proxy starts sending

data through the established anonymous connection. As data moves

through the anonymous connection, each onion router removes one

layer of encryption, so it finally arrives as plain text. Obviously, the

layering occurs in the reverse order for data moving backward from the

334 Privacy Protection and Anonymity Services

receiver to the initiator. Stream ciphers are used for data encryption and

decryption. Similar to the original idea of a Chaum mixing network,

onion routers may also randomly reorder data items they receive before

forwarding them (but preserve the order of data in each anonymous

connection).

As mentioned previously and contrary to the original intent of a

Chaum mixing network, the batching technique is out of the question for

the support of interactive applications, such as HTTP. This means that

coordinated observation of the network links connecting onion routers

could eventually reveal an anonymous connection’s route and leak the

source and destination IP addresses accordingly. Therefore, it’s important

to ensure that the links between the onion routers can’t be simultaneously

eavesdropped upon. The easiest way to achieve this is to put onion routers

on different network segments in different buildings with different

administrators—ones who would be unlikely to collude. Also note that

by layering cryptographic operations in the way described above, an

advantage is gained over conventional-style link layer encryption. Even

though the total cryptographic overhead for passing data is the same as for

link layer encryption, the protection is better. In link layer encryption, the

chain is as strong as the weakest link, and one compromised node can

reveal everything. In onion routing, however, the chain is as strong as its

strongest link, and one honest onion router is enough to maintain the

anonymity of the connection. Even if link layer encryption were used

together with end-to-end encryption, compromised nodes could still

cooperate to reveal route information. This is not possible in an onion

routing network, since data always appears differently to each onion

router.

For TCP-based application protocols that are proxy aware, such as HTTP,

Telnet, and SMTP, there are application proxies for Sun Solaris. Interest-

ingly, for certain application protocols that are not proxy aware, most

notably rlogin, it has been possible to design interface proxies as well. In

either case, the best protection results from having a connection between an

application proxy and an onion router that is trusted one way or another. For

example, one possibility is to place an onion router on the firewall of a

corporate intranet. In this case, the onion router would serve as an interface

between the machines behind the firewall and the external network (most

notably the Internet).

In summary, onion routing is a technology that deserves further study

and wider deployment. Unfortunately, the onion router prototype network

went off-line in January 2000, so it is not likely that we will see the

technology widely deployed on the Internet or WWW anytime soon. Further

12.4 Anonymous browsing 335

information about onion routing and the onion router prototype network is

available at the onion routing home page.22

12.4.5 Freedom network

More recently, a Canadian company called Zero-Knowledge Systems23 has

developed and is marketing a technology that is conceptually similar to

onion routing. In fact, Zero-Knowledge Systems has coined the term Freedom

network to refer to its Chaum mixing network, and the term Freedom server to

refer to a Chaum mix. The Freedom Network is designed so that each packet

is sent through at least three separate Freedom servers, each one operated

by a different orgnaizations. It will be interesting to see how successful the

Freedom Network will be deployed on the global Internet or WWW.

12.5 Anonymous publishing

The technologies overviewed and discussed so far address the problem of

how to protect the privacy of Web users, and how to provide support for

anonymous browsing. In this section, we address the problem of how to

anonymously publish on the Web. The current WWW architecture provides

little support for anonymous publishing. In fact, the architecture fundamen-

tally includes identification information in the URL that is used to locate

resources, and it seems difficult to avoid revealing this information (at least if

it is required that resources published anonymously be accessible from

standard Web browsers without the need of specialized client software or

anonymity tools). Also note that the browser privacy problem is orthogonal

to the anonymous publishing problem, and that the two problems compose

well: if full anonymity is needed, techniques for anonymous browsing

must work in tandem with an infrastructure supporting anonymous

publishing.

12.5.1 JANUS and the rewebber service

JANUS was a joint research project of the Forschungsinstitut für Tele-

kommunikation (FTK) of Dortmund, Hagen, and Wuppertal in Germany.

One of the major results of the project was an anonymous publishing service

that was first provided by the Fernuniversität Hagen and later taken over by

22. http://www.onion-router.net

23. http://www.zeroknowledge.com

336 Privacy Protection and Anonymity Services

TEAMFL
Y

Team-Fly®

a spin-off company called ISL Internet Sicherheitslösungen GmbH. More

recently, the service name was changed from JANUS to Rewebber.24

In its current form, the Rewebber service provides anonymity services

for both browsers and Web publishers (or Web servers, respectively):

w In order to provide anonymity services for a browser, the Rewebber

service acts as an anonymizing HTTP proxy server. It accepts requests

from arbitrary browsers, removes all data that may reveal informa-

tion about the requesting user, and forwards the requests to the Web

servers. Similarly, the servers’ responses are relayed back to the

appropriate browsers. Furthermore, the Rewebber service supports

the SSL/TLS protocol.

w In order to provide anonymity services for a Web publisher and to

support anonymous publishing accordingly, the Rewebber service

makes use of encrypted URLs that are part of nested URLs. This is

explained in more detail below.

In Section 12.4.1, we elaborated on anonymizing HTTP proxy servers

and their ability to process nested URLs. It is important to note at this point

that not all parts of a nested URL must be unencrypted. In fact, it is possible

to encrypt parts of a nested URL in a way that they can be decryted by the

anonymizing HTTP proxy server that processes the nested URL. For

example, imagine what happens if the document part in http://

proxy.../http://www.esecurity.ch would be encrypted. In this case,

the document part would look like random data and the resulting nested

URL would look like http://proxy.../url_encrypted/rez73529j63... In

this example, the prefix url_encrypted indicates that the string that follows

(i.e., rez73529j63...) actually refers to an encrypted URL. The anonymiz-

ing HTTP proxy server (serving the request) would then take the

appropriate cryptographic key to decrypt the relavant parts of the encrypted

URL and retrieve the corresponding resource from the Web server,

accordingly. In our example, the anonymizing HTTP proxy server would

decrypt rez73529j63... and retrieve the requested resource from http://

www.esecurity.ch. If the resource contained some URLs, these URLs would

also have to be encrypted before the response is returned back to the

browser. Obviously, URL rewriting techniques can be used at this point.

Note that URL decryption must only be possible for the anonymizing

HTTP proxy server, whereas URL encryption needs to be possible for

24. The service is currently available at www.rewebber.com.

12.5 Anonymous publishing 337

everybody. Consequently, URL encryption and decryption look like a

suitable application for public key cryptography.25 Consequently, the

Rewebber service holds an RSA public key pair that is used to encrypt and

decrypt URLs. The public key is published and documented, for example, in

the Rewebber service’s FAQ document.

In some literature, anonymizing HTTP proxy servers holding a public

key pair that can also be used to transparently encrypt and decrypt URLs are

also called rewebbers. Similarly, the encrypted parts of URLs are called

locators. These terms are also used in the remaining part of this chapter.

In summary, rewebbers (like, for example, the one provided by the

Rewebber service) provide a simple but efficient way to provide support for

anonymous publishing on the Web. There are, however, at least three

limitations and shortcomings that should be kept in mind when one

considers the use of this technology:

1. A rewebber provider must be trusted not to reveal unencryted or

decrypted URLs.

2. Web publishers must make available and somehow publish

encrypted URLs (i.e., URLs that are encrypted with the public key

of the Rewebber service).

3. Users must enter encrypted URLs.

These limitations and shortcomings are addressed in a more sophisti-

cated technology that is overviewed and briefly discussed next.

12.5.2 TAZ servers and the rewebber network

Two researchers at the University of California at Berkeley generalized the

use of rewebbers and developed a technology that employs rewebber chains

in a so-called rewebber network and a mechanism to resolve logical names of

resources into encrypted URLs to anonymously publish on the Web [16].

Let us assume that there is a rewebber network (i.e., a network

consisting of rewebbers), and that the public keys of the rewebbers are

publicly available in some certified form. Let’s further assume that—in order

to make traffic analysis more difficult—the rewebbers transparently encrypt

25. Note, however, that URL encryption need not be possible for everybody. One could also think about a system

in which URLs are sent over an SSL/TLS connection to a server that dynamically encrypts them. In this case,

URL encryption and decryption could also be implemented with secret key cryptography.

338 Privacy Protection and Anonymity Services

and decrypt files using a secret key cryptosystem. In the prototype

implementation, a DES version called DESX26 is used.

If a Web publisher wants to anonymously publish a resource (e.g., an

HTML file) on the Web, he or she randomly selects a chain of rewebbers

R1;R2; . . . ;Rn leading from the browser to the Web server that holds and

makes available the file, as well as a set of n DESX keys. He or she then uses

the DESX keys and the rewebbers’ public keys to constructs a nested URL.

Formally speaking, the nested URLs may look as follows:

http : ==R1=fKR1
; http : ==R2=fKR2

; . . .http : ==Rn=fKRn
;URLgkRn

. . .gkR2
gkR1

ð12:2Þ

In this formula, each Ri ð1 < i < nÞ refers to a rewebber. According to the

last layer, the nested URL is sent to the first rewebber (i.e., R1). This rewebber

uses its private key (i.e., k�1
R1

) to decrypt fKR1
; http : ==R2=fKR2

; . . .http :

==Rn=fKRn
; URLgkRn

. . .gkR2
g and the result is split into two parts.

w The first part (i.e., KR1
) is stored to later decrypt any data that is sent

back from the Web server.

w The second part (i.e., http : ==R2=fKR2
; . . .http : ==Rn=fKRn

;URLg

kRn
. . .gkR2

) is sent to the next rewebber in the chain (i.e., R2).

Similar to R1, R2 decrypts the message with its private key (i.e., k�1
R2

) and

splits the result into two parts. The first part (i.e., KR2
) is stored to later

decrypt any data that is sent back from the Web server, and the second part is

sent to the next rewebber in the chain. This continues until Rn finally

decrypts KRn
and URL. Once more, KRn

is stored to later decrypt any data that

is sent back from the Web server, and the resource referenced with URL is

retrieved from this Web server. On the reverse path from the Web server

back to the requesting browser, the multiple-encrypted resource is decrypted

with each KRi
ð1 < i < nÞ by the corresponding rewebber.

Rewebber chains and networks have the advantage that they don’t

make it necessary that there be a single rewebber that is ultimatively trusted.

Instead, in a rewebber chain only the rewebber closest to the browser ever

sees the decrypted data, and only the rewebber closest to the server knows

from where it is really getting data. In order to link the two, the cooperation

of every rewebber in the chain would be necessary. This avoids the existence

26. The DESX encryption algorithm refers to a technique intended to extend the strength of DES that was

originally proposed by Ronald L. Rivest.

12.5 Anonymous publishing 339

of a single point of failure, and allows the distribution of trust throughout a

network.

Since a rewebber network makes heavy use of URL encryption and

locators, the above-mentioned problems of how to publish encrypted URLs

and how to make users type them in correctly occur immediately. One

possible solution to these problems is the creation of a logical namespace

combined with a machanism to automatically resolve a logical name into an

encrypted URL. The resolution mechanisms can be implemented by special

servers. In [16], the logical namespace is represented by a new top level

domain .taz (TAZ standing for ‘‘temporary autonomous zone’’) and the

servers are called TAZ servers. Consequently, the function of a TAZ server is

to offer publishers an easy way to point potential readers to their material,

as well as offering readers an easy way to access it. A TAZ server consists

essentially of a public database mapping virtual hostnames ending in .taz

to locators for rewebbers. The emphasis on public is to stress that nothing in

this database must be kept secret. Unlike an anonymous remailer like

anon.penet.fi (which associates an alias e-mail address with a real one),

TAZ servers merely associate .taz addresses with locators. Most impor-

tantly, the TAZ server administrator cannot decrypt the locators that are

stored in the database. These facts are essential to building trust.

12.5.3 Publius

More recently, a group of researchers from AT&T Research and New York

University designed and developed a ‘‘robust, tamper-evident and censor-

ship-resistant’’ Web publishing system named Publius27 [17].

In short, the Publius system consists of Web publishers (people who

want to anonymously publish static content28 on the Web), Web servers that

host random-looking content, and retrievers who browse the Publius

system. There is a static, system-wide list of available servers.

Any content published with the Publius system is encrypted by the

publisher and spread over some Web servers. More specifically, the publisher

randomly chooses a key K from a secret key cryptosystem and encrypts the

content with this key. In addition, he or she splits the key K into n shares,

27. Publius was the pen name used by the authors of the Federalist Papers, Alexander Hamilton, John Jay, and

James Madison. This collection of 85 articles, published pseudonymously in New York State newspapers form

October 1787 through May 1788, was influential in convincing New York voters to ratify the proposed United

States constitution.

28. In its current form, the Publius system does not provide support for dynamicaly created content.

340 Privacy Protection and Anonymity Services

such that any k of them can reproduce the original key K, but k � 1 give no

hints as to the key. There are cryptographic schemes known as secret-sharing

schemes that can be used for this purpose (e.g., [18]). Each selected Web

server then receives the encrypted Publius content and one of the shares. At

this point, the server has no idea what it is hosting; it simply stores some

random looking data. To browse content, a retriever must get the encrypted

Publius content from some server and k of the shares. This retrieval step is

also supported by the Publius system in a way that is transparent to the user.

More information about the system is available at http://cs1.cs.nyu.edu/

~waldman/publius.html.

12.6 Voluntary privacy standards

Given the current situation on the Internet and WWW, many people have

the feeling that their privacy is silently going away. In this situation, there

are two classes of people:

w On the one hand, there are people who argue that government

regulation is needed.

w On the other hand, there are people who argue that industry-

regulated privacy standards are needed (mainly because government

regulation tends to be too rigid, too costly to implement, and more

difficult to repeal).

Industry-regulated privacy standards look particularly promising. With-

out government regulation, however, these privacy standards will always be

voluntary. The most important voluntary privacy standards refer to privacy

seals and P3P. They are briefly overviewed and discussed next.

12.6.1 Privacy seals

In short, the idea of a privacy seal is to have an independent organization or

company act as a trusted party that looks at the privacy practices of a Web

site and decides whether the site conforms to a given set of criteria. Only if

the site conforms to the criteria, is it allowed to display the correspond-

ing privacy seal. The criteria differ in details. Most of them, however,

require that a privacy policy be posted, and that—according to this

policy—consumers be informed about the personal information that is

being collected and how it will be used. As of this writing, there are two

privacy seals that are widely deployed on the WWW: BBBOnLine and

12.6 Voluntary privacy standards 341

TRUSTe. In addition, there is an increasingly large number of privacy seals

and programs that compete for market share.29

12.6.1.1 BBBOnLine

In the U.S., the Council of Better Business Bureaus has a long tradition

serving as a standard-bearer for reliability and as a vehicle for consumer

complaints. More recently, the Council of Better Business Bureaus founded

a subsidiary named BBBOnLine30 to promote trust and confidence on the

Internet. BBBOnline, in turn, launched the BBBOnline Privacy seal and the

corresponding privacy program.

12.6.1.2 TRUSTe

According to its Web site,31 TRUSTe is an independent, nonprofit

organization dedicated to establishing a trusting environment where users

can feel comfortable dealing with companies on the Internet. The

organization was founded in 1997 by the Electronic Frontier Foundation

(EFF32) and the CommerceNet Consortium.33

The privacy seal of TRUSTe is also known as trustmark [19]. It is awarded

to Web sites that adhere to established privacy principles and agree to comply

with TRUSTe’s oversight and consumer resolution process. A displayed

trustmark signifies to online users ‘‘that the Web site will openly share, at a

minimum, what personal information is being gathered, how it will be used,

with whom it will be shared, and whether the user has an option to control

its dissemination.’’ Based on such disclosure, users can make informed

decisions about whether or not to release their personally identifiable

information (e.g. credit-card numbers) to the Web site.

12.6.2 P3P

In addition to the increasingly large numer of privacy seals, the W3C

launched the Platform for Privacy Preferences Project (P3P34) to provide a

platform for trusted and informed online interactions [20]. The idea is that a

29. Two examples are the Gold Privacy Seal (http://www.goldprivacyseal.com) and the site Guardian Privacy

Seal (http://www.siteguardian.org/guardian.nsf/sealinfo!OpenPage).

30. http://www.bbbonline.com

31. http://www.truste.org

32. http://www.eff.org

33. http://www.commercenet.com

34. http://www.w3.org/P3P

342 Privacy Protection and Anonymity Services

Web site may publish and make available a privacy statement in a format

that is readable and understandable by a browser. The browser, in turn, can

be configured to automatically decide whether it agrees with the privacy

statement, and whether it wants to provide information to the Web site

accordingly. To make this possible, P3P provides a formal language that the

browser and Web site can use to talk to each another. As such, P3P is

conceptually similar to PICS as discussed in Section 14.3. (in fact, P3P can

also be seen as an outgrowth of PICS). There is some industry support for

P3P. Most importantly, Microsoft Internet Explorer version 6.0 provides

limited support for P3P.35

In spite of the fact that P3P provides an interesting technology that is also

being adapted by the industry, it remains a voluntary privacy standard that is

difficult to enforce. How do you, for example, enforce that all Web sites

publish P3P statements, that the sites play by the rules, and that the P3P

statements they publish correspond to the truth? Note that anybody can

claim (in a P3P statement or using another language) that he or she plays by

the rules. The difficult question is to decide whether this claim is justified.

P3P is not particularly helpful in making this decision.

12.7 Conclusions

In this chapter, we addressed the increasingly important field of privacy

protection and anonymity services. More specifically, we overviewed and

discussed some privacy enhancing technologies (PETs) that can be used to

anonymously browse through the Web and/or anonymously publish on the

Web, as well as some voluntary privacy standards (i.e., privacy seals and

P3P). Unfortunately, it is not clear what technologies and/or standards will

be used and widely deployed in the future. In fact, the handling of personal

information is a hotly debated topic. The need to maximize users’ privacy is

at odds at a fundamental level with businesses’ need to minimize fraud. The

first goal seeks to maximize users’ anonymity, whereas the second goal

requires users to be strongly and unequivocally identified and authenti-

cated. Somehow, a compromise must be struck for this dilemma. As of this

writing, this compromise has not been found yet.

Last but not least, it’s important to note that many countries have data

privacy or data protection laws that make it a legal obligation for people

35. Microsoft Internet Explorer’s P3P implementation is controlled through the Privacy tab of the Internet Options

control panel. Support is limited, because it mainly addresses the use of cookies.

12.7 Conclusions 343

storing, processing, and transmitting personal data to adequately protect

the privacy of the data. This is particularly true for European countries. In

fact, the European Commission’s Directive on Data Protection went into

effect in October 1998, and prohibits the transfer of personal data to non-

European Union nations that do not meet the European adequacy standard

for privacy protection. While the U.S. and the European Union share the

goal of enhancing privacy protection for their citizens, the United States

takes a different approach to privacy from that taken by the European

Union. The United States uses a sectoral approach that relies on a mix of

legislation, regulation, and self-regulation. The European Union, however,

relies on comprehensive legislation that, for example, requires creation of

government data protection agencies, registration of databases with those

agencies, and in some instances prior approval before personal data

processing may begin. As a result of these different privacy approaches,

the Directive could have significantly hampered the ability of U.S.

companies to engage in many trans-Atlantic transactions. In order to bridge

these different privacy approaches and provide a streamlined means for U.S.

organizations to comply with the Directive, the U.S. Department of

Commerce (DoC) in consultation with the European Commission developed

a safe harbor framework. The framework is an important way for U.S.

companies to avoid experiencing interruptions in their business dealings

with the EU or facing prosecution by European authorities under European

privacy laws. As of this writing, it is too early to tell whether the safe harbor

framework will be successfully deployed on the marketplace.

References

[1] Oppliger, R., ‘‘Privacy Protection and Anonymity Services for the World Wide

Web (WWW),’’ Future Generation Computer Systems (FGCS), Vol. 16, Issue 4,

February 2000, pp. 379–391.

[2] Rotenberg, M., The Privacy Law Sourcebook 2001: United States Law, International

Law, and Recent Developments, Electronic Privacy Information Center (EPIC),

2001.

[3] Garfinkel, S., and D. Russell, Database Nation: The Death of Privacy in the 21st

Century, Sebastopol, CA: O’Reilly & Associates, 2001.

[4] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

[5] Pfitzmann, A., and M. Waidner, ‘‘Networks Without User Observability,’’

Computers & Security, Vol. 2, No. 6, pp. 158–166.

344 Privacy Protection and Anonymity Services

[6] Chaum, D., ‘‘Untraceable Electronic Mail, Return Addresses and Digital

Pseudonyms,’’ Communications of the ACM, Vol. 24, No. 2, February 1981, pp.

84–88.

[7] Cülcü, C., and G. Tsudik, ‘‘Mixing Emails with BABEL,’’ Proceedings of ISOC

Symposium on Network and Distributed System Security, February 1996, pp. 2–16.

[8] Kristol, D. M., and L. Montulli, HTTP State Management Mechanism, Request for

Comments (RFC) 2965, October 2000.

[9] Kristol, D. M., ‘‘HTTP Cookies: Standards, Privacy, and Politics,’’ ACM Transactions

on Internet Technology, Vol. 1, No. 2, November 2001, pp. 151–198.

[10] Luotonen, A., Web Proxy Servers, Upper Saddle River, NJ: Prentice Hall, 1998.

[11] Reiter, M. K., and A. D. Rubin, ‘‘Crowds: Anonymity for Web Transactions,’’

ACM Transactions on Information and System Security, Vol. 1, No. 1, 1998.

[12] Reiter, M. K., and A. D. Rubin, ‘‘Anonymous Web Transactions with Crowds,’’

Communications of the ACM, Vol. 42, No. 2, February 1999, pp. 32–38.

[13] Reiter, M. K., ‘‘Distributing Trust with the Rampart Toolkit,’’ Communications of

the ACM, Vol. 39, No. 4, April 1996, pp. 71–74.

[14] Syverson, P. F., M. G. Reed, and D. M. Goldschlag, ‘‘Private Web Browsing,’’

Journal of Computer Security, Special Issue on Web Security, Vol. 5, No. 3, 1997, pp.

237–248.

[15] Goldschlag, D. M., M. G. Reed, and P. F. Syverson, ‘‘Onion Routing for

Anonymous and Private Internet Connections,’’ Communications of the ACM,

Vol. 42, No. 2, 1999, pp. 39–41.

[16] Goldberg, I., and D. Wagner, ‘‘TAZ Servers and the Rewebber Network:

Enabling Anonymous Publishing on the World Wide Web,’’ First Monday

(electronic journal), Vol. 3, No 4, available online at http://www.rstmonday.

dk/issues/issue3_4/goldberg/index.html.

[17] Waldman, M., A. D. Rubin, and L. F. Cranor, ‘‘Publius, A Robust, Tamper-

Evident and Censorship-Resistant Web Publishing System,’’ Proceedings of 9th

USENIX Security Symposium, August 2000.

[18] Shamir, A., ‘‘How To Share a Secret,’’ Communications of the ACM, Vol. 22,

1979, pp. 612–613.

[19] Benassi, P., ‘‘TRUSTe: An Online Privacy Seal Program,’’ Communications of the

ACM, Vol. 42, No. 2, February 1999, pp. 56–59.

[20] Reagle, J., and L. F. Cranor, ‘‘The Platform for Privacy Preferences,’’

Communications of the ACM, Vol. 42, No. 2, February 1999, pp. 48–55.

12.7 Conclusions 345

TEAMFL
Y

Team-Fly®

Intellectual Property
Protection

In the digital world we live in today, intellectual copyright

protection is becoming an increasingly important topic. This

is because digital data is particularly simple to copy and

redistribute (or resell) without any loss of quality. In this

chapter, we address intellectual copyright protection. More

specifically, we introduce the topic in Section 13.1, elaborate on

usage control and digital copyright labeling techniques in

Section 13.2 and 13.3, overview and briefly discuss the U.S.

Digital Millennium Copyright Act (DMCA) in Section 13.4, and

draw some conclusions in Section 13.5. Note that this chapter

only provides a brief introduction and overview about the topic,

and that additional and complementary resources are necessary

to work in this area.

13.1 Introduction

Intellectual property protection is a legitimate goal. The need

for intellectual copyright protection has been around since the

creation of technologies that allow anybody to make copies of

specific content [1]. Three examples from the analog world

illustrate this point:

1. The invention of the printing press was followed by

concerns regarding the need for intellectual copyright

protection. Note that the printing press provided

347

C H A P T E R

13
Contents

13.1 Introduction1

13.2 Usage control3

13.3 Digital copyright
labeling5

13.4 Digital Millenium
Copyright Act10

13.5 Conclusions11

References

the ability to produce multiple copies of a document at relatively

low cost (as compared to the value of the document being copied).

Fortunately, piracy of documents by way of printing press could

easily be stopped because of the effort that was required, the special

equipment that was needed, and the fact that the resulting copies

were not exactly the same as the original documents.

2. The invention of various recording technologies for audio and video

streams was followed by concerns regarding the need for

intellectual copyright protection. In the case of vinyl records,

making copies also required special equipment, and copies were not

as good as the original records (sometimes this argument was also

used to promote special editions). With the advent of magnetic tape

(for both audio and video recording), however, the piracy potential

increased tremendously, mainly because the copying effort was

small and the equipment was ubiquitous. Fortunately (at least from

the content provider’s point of view), the barrier to widespread

piracy of such content is the progressively degraded quality of the

content with each generation of copies. A copy of a copy of a copy of

an original item contains all the noise and defects introduced and

amplified at each step.

3. The possibility to make photostatic copies of paper documents has

also caused some concerns regarding the need for copyright

protection. Again, even the highest-quality copy of a document is

degraded, or at least changed, because in some cases photocopiers

make things more readable, increase contrast, or introduce other

improvements that are nonetheless changes from the original

document.

Today, the same thing happens to technologies that allow anybody to

make copies of digital data. Digital data, in turn, may encode anything (e.g.,

text, graphics, images, audio, video, or software) and the technologies to

copy the data remain the same in either case. In fact, the digital

representation and distribution of data has increased the potential for

misuse and theft, and has significantly intensified the problems associated

with copyright protection and enforcing these rights. The problems are

rooted from the intrinsic characteristics of digital data, namely that making

and distributing a copy is easy, inexpensive, and fast, and that each copy is

identical to the original.

The market for digital data is expected to grow very rapidly. Today, we

see digital photographs, MP3 music files, DVD movies, pay TV, electronic

348 Intellectual Property Protection

books (e-books), and many other things that are marketed and deployed on

a global scale. In the future, it is expected that anything that carries

information will be digitized and sold in digital form. According to [2], the

market for digital media is projected to be in the billions of dollars per year.

This number may not be precise, but it may give a feeling about the scale.

Against this background, content providers and distributors of digital

data are afraid of online services, and they are looking for technical

approaches to address the challenge of intellectual copyright protection and

enforcing these rights. In fact, intellectual copyright protection has found

increased attention on electronic marketplaces, such as the WWW.

There are basically two technical approaches to address the challenge of

intellectual copyright protection:

1. Usage control requires some hardware or software that is able to

control the usage of the protected material. More specifically, it

means that any usage of the protected material, such as viewing,

playing, or printing, must be controlled and approved by authorized

rendering hardware or software.

2. Digital watermarking techniques embed digital marks into protected

material to designate copyright-related information, such as origin,

owner, content, or recipient. These marks can then be used to

identify the legitimate owner of the intellectual property, and to

enforce his or her copyrights.

The two approaches are not mutually exclusive and complement each

other. They are overviewed and briefly discussed next. Of course, they both

require a legal framework that makes it an offence to circumvent (or try to

circumvent) any technology put in place. This is particularly true for digital

watermarking technologies. Also, this is where the DMCA comes into play.

13.2 Usage control

As mentioned above, usage control requires some hardware or software that

is able to control and approve the usage of the protected material. In the past,

the computer and software industries have developed and deployed many

technologies that are based on usage control. For example, we all remember

the ongoing competition between software vendors trying to protect their

software products with new and innovative protection schemes on the one

hand, and software pirates trying to bypass or circumvent the schemes on

13.2 Usage control 349

the other. A similar competition is going on between pay TV companies that

scramble or encrypt data streams and pirates trying to illegitimately

descramble or decrypt the data streams. More recently, the DVD industry

has developed, implemented, and deployed a Contents Scramble System

(CSS) that allows them to protect films distributed on DVDs. In 1999, the 15-

year-old Jon Johansen created the DeCSS program so that he could view

CSS-protected DVDs on a Linux machine. In fact, DeCSS was published as

part of an open source development project to build Linux DVD players

called LiViD, or Linux Video. More recently, several CSS Descramblers have

become available and you may refer to http://www.cs.cmu.edu/~dst/

DeCSS/Gallery for a corresponding overview.

All of these examples suggest that usage control is seldom successful and

even more seldom successfully deployed on the large scale.1 Nevertheless,

many people intuitively think that usage control is a powerful technology

that can be very strong and made difficult to bypass or circumvent. For

example, usage control was also recommended by the Working Group on

Intellectual Property Rights for the U.S. National Information Infrastructure

in 1995 [3]. Unfortunately, usage control has many (legal and practical)

problems, and most of these problems are related to the restrictive nature of

usage control.

In theory, there are many possibilities to design, implement, and deploy

technologies for usage control on the WWW. For example, a technology

could use a PICS-like rating scheme specifically designed for intellectual

property protection. As of this writing, however, there is neither such a

scheme available, nor any publicly announced plans to standardize such a

scheme. Another technology could use proprietary software modules that

implement usage control. For example, a few years ago a group of IBM

researchers developed a usage control scheme that was intended to be used

to sell copyrighted material on the WWW [4]. The material would be

packaged in a so-called cryptolope, and this cryptolope could only be opened

by a helper application that controls operations, such as save, print, copy,

and view. Similar work is reported in [5]. Unfortunately, such technologies

make it difficult to use commercial off-the-shelf software on the user side.

Against this background, it is not likely that we will see usage control on the

WWW widely deployed anytime soon.

1. Many other examples can be found in Bruce Schneier’s monthly newsletter Crypto-Gram (http://

www.counterpane.com/crypto-gram.html).

350 Intellectual Property Protection

13.3 Digital copyright labeling

Instead of trying to restrict and control the usage of some copyright protected

material, one may also allow its unlimited copying and use, but make sure

that some copyright-related information is available to anybody who cares

and who is interested in the legitimate ownership of the intellectual

property. This is where digital copyright labeling techniques or digital

watermarking technologies come into play.

13.3.1 Introduction

In the real world, the term watermarking refers to a technique that can be

used to impress into paper a specific text or image mark (called a watermark).

From daily life, we are all familiar with watermarks of varying degrees of

visibility that may be added to presentation media as a guarantee of

authenticity, quality, and ownership.

Similarly, in the digital world, the term digital watermarking refers to a

technique that can be used to impress into digital data a specific text image

mark or label. Quite naturally, such a mark or label is called a digital

watermark. The aim of a digital watermark is to embed a digital mark into

protected material to designate copyright-related information, such as

origin, owner, content, or recipient. Unlike usage control, digital copyright

labeling does not limit the number of copies allowed, but may deter people

from illegal copying by allowing the determination of the legitimate owner

of the protected material and the corresponding copyright (in the case

of ownership labeling), or by allowing an illegitimately redistributed copy

to be traced back to its original recipient (in the case of recipient labeling).

Consequently, digital copyright labels may provide evidence for copyright

infringements after the event. They may also serve as a kind of deterrent to

illicit copying and dissemination by making the misuse of protected material

traceable and providing evidence of illegal acts accordingly. Note that

the use of digital copyright labeling techniques also requires a legal system

that allows the copyright holders to sue people who breach their rights.

Also note that the use of digital copyright labeling techniques is not contrary

to usage control; it is, rather, complementary by providing another defense

against misbehavior on the protected material that may have escaped from

the domain of usage control. More specifically, digital copyright labeling

techniques may also be used by sophisticated usage control technologies to

encode control information into the digital data streams.

In general, there are two types of labels for identifying and protecting

copyrights as related to multimedia documents:

13.3 Digital copyright labeling 351

1. A document can be marked with a label that uniquely identifies the

copyright holder (ownership labeling).

2. A document can be marked in a manner that allows its distribution

to be uniquely traced (recipient labeling).

In the literature, ownership labels are often referred to as

watermarks, whereas recipient labels are often referred to as fingerprints.

Consequently, fingerprinting a document means introducing individual

marks into each copy sold or distributed that make the copy unique. This is

similar to the way fingerprints make people unique [6]. Once an illegal

copy turns up, the content provider can see from the fingerprint which of

the original copies was illegally redistributed. Consequently, the corre-

sponding party can be sued for having illegitimately redistributed his or her

copy.

Although digital copyright labeling is relatively new as a means of

protecting intellectual property rights, the theories and techniques behind it

have been around for quite a long time. Refer to [7, 8] for a comprehensive

overview about the theories and techniques that can be used for digital

watermarking. By applying multiplexing techniques as in data communica-

tions, some digital watermarking techniques can also be used to embed

multiple marks (watermarks or fingerprints) and extract them separately.

This feature will be important for identifying ownership and other

intellectual property rights in works composed of many copyright assets,

such as multimedia documents and presentations, as well as groupware and

workflow documents.

The specific requirements of each watermarking technique may vary

with the application, and there is no universal watermarking technique that

satisfies all requirements for all applications. Consequently, each water-

marking technique has to be designed within the context of the entire

system in which it is being deployed. There are several parameters that are

used to categorize watermarking techniques. The resulting categories are

briefly overviewed next.

13.3.2 Categories of watermarking techniques

In this subsection we briefly overview some categories of watermarking

techniques that apply for images. Other forms of multimedia documents,

such as audio or video, generally require watermarking techniques that can

be categorized according to slightly different criteria.

352 Intellectual Property Protection

13.3.2.1 Visible and invisible watermarks

A digital watermark can be visible or invisible:

w A visible digital watermark is intended to be perceptible by the user. As

such, it typically contains a visual message or a company logo

indicating ownership of the image.

w Contrary to that, an invisible digital watermark is intended to be

imperceptible but is detected or extracted by an appropriate piece of

software. Consequently, an invisibly watermarked image is similar

but not identical to the original unmarked image.

Users prefer to have a watermarked document behave no differently and

suffer no perceptible quality degradation from the original. Consequently,

users generally prefer invisibly watermarked images.

13.3.2.2 Fragile and robust watermarks

A digital watermark can be fragile or robust:

w A fragile digital watermark is generally corrupted by any (image-

processing) transformation. For example, watermarks for image

integrity checks, in which a change must be detected or spatially

localized, are necessarily fragile.

w Contrary to that, a robust digital watermark resists common (image-

processing) transformations. More precisely, the watermark that is

embedded in the data must be recoverable despite intentional or

unintentional modifications of the image. For example, a watermark

technique for images should be robust against such image-processing

operations as filtering, requantization, dithering, scaling, and crop-

ping.

Robustness is a key requirement often imposed by applications. For

example, watermarks that are used for ownership assertion should be robust.

Unfortunately, the requirements of truly robust watermarks are difficult to

meet in practice, and the development of robust watermarking techniques is

a difficult problem. In fact, a single technique satisfying all requirements

imposed on robust watermarking is quite difficult to achieve and is the

subject of current research and development.

13.3 Digital copyright labeling 353

13.3.2.3 Public and private watermarks

A digital watermark can be public or private:

w A public digital watermark can be detected and read by anyone not

having access to certain secret information. All the user needs is an

appropriate detector software.

w Contrary to that, a private digital watermark can only be detected and

read by someone who has access to an appropriate detector software

and certain secret information, such as a pass phrase, a pseudoran-

dom number generator seed, or the original image.

Obviously, private digital watermarking techniques are superior, from a

security point of view. The secret information improves security but also

renders detection of the watermark difficult or impossible without the secret

information. This information must be communicated and distributed to a

user or third party via secure channels if the watermark detection process is

not always carried out by the image owner. Thus, a private watermarking

scheme cannot be used for annotation or to inform a potential user of its

proprietary status; only the content owner has the secret information that is

required to detect the watermark. With a private scheme, the watermark can

be used only to demonstrate ownership of content once its owner discovers

its illicit use. Contrary to that, public watermarking techniques are attractive

for many applications. For example, if we want to detect copyright violations

in an image archive or in images published on the Web, we can use mobile

agents, such as Webcrawlers, to perform identity checks for as many images

as we can locate. Private watermarking techniques that require the original

or a reference image in the watermarking detection procedure are less

suitable for such applications (they require the mobile agents to locally store

images).

Depending on whether secret or public keys are used for private digital

watermarking, secret key and public key watermarking techniques may be

distinguished (similar to secret and public key cryptography):

w A secret key digital watermarking technique uses the same user key for

watermark insertion and extraction or detection. Consequently,

secret key digital watermarking schemes require secure communica-

tion channels between the image owner and the image receiver, or

user, to pass the keying information.

w Contrary to that, a public key digital watermarking technique uses

separate keys for watermark insertion and extraction or detection. A

354 Intellectual Property Protection

private key is known only by the image owner and is typically used

for watermark insertion, whereas a public key is known to everybody

and is typically used for watermark extraction or detection.

Public key digital watermarking techniques are particularly important

for digital fingerprinting and traitor tracing for broadcast encryption [9 – 11].

13.3.3 Attacks

The proponents of digital copyright labeling have made broad claims

regarding the security of their watermarking techniques, often without

specifying which attacks they are expected to survive. Many of these claims

have been disproved. In fact, some recent analytical results show that for

many watermarking techniques, removal is not a difficult problem [12].

Consequently, it is required that a terminology similar to the one used in

cryptanalysis is developed for the analysis of watermarking techniques.

According to [13], there are four classes of possible attacks against

watermarking techniques:

1. Robustness attacks aim to diminish or remove the presence of a mark

in a watermarked image without harming the image beyond

rendering it useless. Typical signal-processing attacks revolve

around commonly used operations, such as data compression,

filtering, resizing, printing, and scanning. An example is the

collusion attack, in which differently watermarked versions of the

same image are combined to generate a new image, thereby

reducing the overall strength of the watermark.

2. Presentation attacks are slightly different from robustness attacks in

the sense that they don’t necessarily remove the mark from the

watermarked image. Instead, the image is manipulated so that the

detector can’t find the mark anymore. An exemplary presentation

attack was developed at Cambridge University to foil automated

Webcrawlers. The attack involves chopping a watermarked image

into small parts that are then reassembled on a Web page with

appropriate HTML tags. A Webcrawler sees only the individual

image blocks, which are too small to contain any watermark.

Obviously, this attack causes no image quality degradation, as the

pixel values are preserved.

3. In some watermarking schemes, the mark’s detected presence can

have multiple interpretations. Consequently, an attacker can

13.3 Digital copyright labeling 355

engineer a situation that neutralizes the strength of any evidence of

ownership presented. Against this background, interpretation attacks

aim to forge invalid or multiple interpretations from watermark

evidence. For example, an attacker can attempt to introduce another

watermark in an already watermarked image, thereby creating an

ownership deadlock. Typically, such an attack requires in-depth

analysis of the specific watermarking technique under attack.

4. Finally, legal attacks go beyond the technical merits or scientific

evidence presented by watermarking techniques. As such, they

make use of existing and future legislation on copyright laws and

digital information ownership, the different interpretations of the

law in various jurisdictions, the credibility of the owner and of

the attacker, and the ability of an attacker to cast doubt on the

watermarking scheme in the courtroom.

Understanding these attacks may help propose watermarking techni-

ques that are more robust not only in the strength of their marks but also in

their ability to guard against possible attacks. In either case, it is not known

today whether the design and implementation of digital watermarks that are

sufficiently robust against attacks is feasible at all.

13.4 Digital Millinium Copyright Act

Usage control and digital watermarking techniques do not provide a

complete solution to the problems of intellectual property protection in

the digital world. Consequently, many content providers and vendors

started to lobby Congress for protective legislation during the 1990s. The

effort resulted in the Digital Millennium Copyright Act (DMCA) that passed

the Congress on October 12, 1998.2 Two weeks later, the President of the

United States signed the Act into law.3

The DMCA was originally designed to implement the Copyright Treaty4

that was signed in December 1996 at a World Intellectual Property

Organization (WIPO) conference held in Geneva. However, the DMCA

goes far beyond the requirements of the WIPO, and adds criminal and civil

provisions against the development, sale, trafficking, or even discussion of

2. http://www.loc.gov/copyright/legislation/hr2281.pdf

3. The DMCA was signed by the former President Clinton.

4. The text of the WIPO Copyright Treaty is available, for example, at http://www.gseis.ucla.edu/iclp/

wipo1.html.

356 Intellectual Property Protection

TEAMFL
Y

Team-Fly®

methods and tools to reverse-engineer or circumvent any technology used to

protect copyright. As an effect on the DMCA, it is no longer possible in the

academic community to openly study and discuss usage control and digital

watermarking technologies.

As of this writing, the DMCA is under legal challenge in several U.S.

courts. Grounds for the challenges include the claim that it imposes prior

restraint on speech and writing, which is a violation of the First Amendment

to the U.S. Constitution. Nevertheless, the DMCA has strong influence on

other countries, and many governments are trying to put in place similar

legislation.

13.5 Conclusions

With the ongoing digitization of data and data streams on the WWW,

intellectual property protection is becoming an increasingly important topic

and field of study. In this chapter, we overviewed and briefly discussed usage

control and digital copyright labeling. Both technological approaches are not

complete in the sense that they solve all problems related to intellectual

property protection. Consequently, there is room for alternative or

complementary technologies and the entire field is open for research and

development.

As of this writing, digital copyright labeling techniques and digital

watermarks look particularly promising. Though commercial use has begun,

there are still some barriers preventing digital copyright labeling techniques

and digital watermarks from becoming effective and widespread. The major

technical challenge is to develop a foolproof protection system while keeping

the copyright labels hidden. Absolute robustness is impossible, but there is

much room for improvement. None of the existing systems can claim that

their labels will survive all major signal-processing operations and

transformations. Like cryptography, this technology will be useful as long

as it makes tampering with or removing labels a time-consuming and costly

task. Just as DNA tests did in order to be accepted as legal evidence in court,

digital copyright labeling techniques must establish their status in the legal

system in order to fulfill their mission. As of this writing, the legal status of

digital watermarking is still untested, and therefore unresolved. It took more

than 20 years for the digital signature to establish itself as common

commercial practice and inspire legislative action after the concept was first

published, so there may be a long way to go. In fact, the question of how long

we have to wait for digital watermarks and fingerprints to be adopted legally

and socially remains to be answered [14].

13.5 Conclusions 357

References

[1] Acken, J. M., ‘‘How Watermarking Adds Value to Digital Content,’’

Communications of the ACM, Vol. 41, No. 7, July 1998, pp. 75–77.

[2] Garfinkel, S., with E. H. Spafford, Web Security, Privacy & Commerce, Second

Edition, Sebastopol, CA: O’Reilly & Associates, 2001.

[3] Lehman, B. A., and R. H. Brown, Intellectual Property and the National

Information Infrastructure, Report of the Working Group on Intellectual

Property Rights, Section C, Part II, 1995.

[4] Lotspiech, J., U. Kohl, and M. A. Kaplan, ‘‘Cryptographic Envelopes and

Digital Library,’’ IBM Research Report RJ 10069, 1997.

[5] von Faber, E., E. Hammelrath, and F. P. Heider, ‘‘The Secure Distribution of

Digital Contents,’’ Proceedings of Annual Computer Security Applications Conference

(ACSAC ’97), December 1997, pp. 16–22.

[6] Wagner, N. R., ‘‘Fingerprinting,’’ Proceedings of the IEEE Symposium on Security

and Privacy, 1983, pp. 18–22.

[7] Petitcolas, F., and S. Katzenbeisser (Eds.), Information Hiding Techniques for

Steganography and Digital Watermarking, Norwood, MA: Artech House, 2000.

[8] Bloom, J., M. Miller, and I. Cox, Digital Watermarking, San Francisco, CN:

Morgan Kaufmann Publishers, 2001.

[9] Pfitzmann, B., and M. Schunter, ‘‘Asymmetric Fingerprinting,’’ Proceedings of

EUROCRYPT ’96, pp. 84–95.

[10] Chor, B., A. Fiat, and M. Naor, ‘‘Tracing Traitors,’’ Proceedings of EUROCRYPT

’94, pp. 257–270.

[11] Pfitzmann, B., ‘‘Trials of Traced Traitors,’’ Proceedings of Workshop on Information

Hiding, 1996, pp. 49–64.

[12] Craver, S., et al., ‘‘Resolving Rightful Ownership with Invisible Watermarking

Techniques: Limitations, Attacks, and Implications,’’ IEEE Journal on Selected

Areas in Communications, Vol. 16, No. 4, May 1998, pp. 573–586.

[13] Craver, S., B.-L. Yeo, and M. Yeung, ‘‘Technical Trials and Legal Tribulations,’’

Communications of the ACM, Vol. 41, No. 7, July 1998, pp. 45–54.

[14] Zhao, J., E. Koch, and C. Luo, ‘‘In Business Today and Tomorrow,’’

Communications of the ACM, Vol. 41, No. 7, July 1998, pp. 67–72.

358 Intellectual Property Protection

Censorship on the WWW

In this chapter, we address censorship on the Internet and

WWW. In particular, we introduce the topic in Section 14.1,

address two technical approaches—content blocking as well as

content rating and self-determination—in Sections 14.2 and

Section 14.3, and draw some conclusions in Section 14.4. By

doing so, we are going to stay on the technical side and not

delve into the (sometimes heated) discussions about the

political and legal justification for censorship on the Internet

and WWW. These discussions are going on in almost every

country that is connected (or is about to connect) to the

Internet. You may refer to [1, 2] for a discussion about the legal

considerations and implications of censorship.

14.1 Introduction

Nowadays, the Internet in general, and the WWW in parti-

cular, is often criticized for providing an information infra-

structure that can also be (mis)used for the distribution of

content that is illegal or offensive, such as propagandistic

material from the radical left or right-wing, child-pornographic

images and video sequences, instructions to build bombs or

make drugs, and information for terrorists. Most people agree

that the Internet should not provide support for the distribu-

tion of such content, and several proposals have been made to

prevent the Internet from being (mis)used for these purposes.

The proposals fall into two categories: on the one hand, there

359

C H A P T E R

14
Contents

14.1 Introduction1

14.2 Content blocking2

14.3 Content rating and
self-determination7

14.4 Conclusions11

References

is content blocking, and on the other hand, there is content rating and

self-determination.

w The idea of content blocking is to make ISPs ultimatively responsible for

the content they provide or make available and accessible to their

subscribers.

w Contrary to that, the idea of content rating and self-determination is to

make ISP subscribers responsible for the content they access. To make

it possible for them to decide whether they want to access specific

content, this content must be rated according to some known rating

scheme.

In the case of content blocking, ISPs must find ways to cut off Internet

and Web sites that provide or make available and accessible to their

subscribers dubious content. Contrary to that, ISPs have no obligations in the

case of content rating and self-determination. In this case, it is up to the

content providers to have their content rated, and it is up to the Internet

users and ISP subscribers to behave accordingly (e.g., to configure their

browsers in a way that dubious content is not rendered). Consequently, the

idea of content blocking is driven by the service providers, whereas the idea

of content rating and self-determination is driven by the content providers

and ISP subscribers.

In the following two sections we address the technologies that are

used to implement content blocking as well as content rating and

self-determination.

14.2 Content blocking

In the recent past, several approaches have been proposed to block content

identified by some parties as illegal or offensive. According to a report

published by the Australian government in 1998 [3], such content can

either be blocked at the packet or application level (as further explained in

Chapter 3):

w In short, blocking content at the packet level requires (screening)

routers to examine the source IP address of an incoming IP packet,

compare it with a black list, and either forward (if the IP address isn’t

itemized in the black list) or drop (if the IP address is itemized in the

black list) the packet.

360 Censorship on the WWW

w Blocking content at the application level requires application-level

gateways and proxy servers that examine resources or resource

information in order to decide whether the corresponding application

protocol request, such as an HTTP GET method invocation, should be

served or not. For example, a common approach for blocking content

at the application level is to specify URLs that should not be served

and place them in corresponding black lists that are distributed and

installed on proxy servers. Before serving an HTTP request, a proxy

server would then make sure that the requested URL is not itemized

in the black list. Obviously, the granularity of such blocking decisions

can be made much finer than in the case of blocking content at the

packet level.

According to this brief description, packet-level blocking is sometimes

also referred to as IP address blocking, whereas application-level blocking is

also called URL blocking. Both technologies as well as their advantages and

disadvantages are overviewed and briefly discussed next.

14.2.1 IP address blocking

The technologies used to implement IP address- or packet-level blocking are

similar to the ones discussed in Chapter 3, when we elaborated on packet

filtering and stateful inspection technologies. In short, any kind of access

control list (ACL) must be specified in order to distinguish packets that

should be forwarded and packets that should be dropped. This distinction is

mainly based on the information that is usually found in IP packet headers,

such as source and destination IP addresses.

In general, IP address- or packet-level blocking could be carried out by

any ISP. In practice, however, it is more efficient to have IP address- or

packet-level blocking carried out by the relatively small number of

Internet backbone service providers (BSPs). Since packet-level blocking

involves a comparison of each IP packets source address with a supplied

black list of IP addresses (the ones that are blocked), it can easily be

implemented using ACL features of the screening routers operated by the

BSPs.

As of this writing, the effectiveness of IP address- or packet-level

blocking is a hotly debated topic. The proponents of the technology claim

that it is a possible way to effectively block illegal or offensive content on the

Internet or WWW. Contrary to that, the opponents of the technology refer to

the four following technical issues that collectively limit its effectiveness:

14.2 Content blocking 361

1. IP address- or packet-level blocking is indiscriminate in the sense

that the decision to block an IP address actually means that all

(virtual) Web sites configured to use this address are blocked and

made invisible to Internet users and ISP subscribers. This poses

some practical and legal problems for companies that host virtual

Web sites. Positively speaking, it would also be an incentive for

them to remove the offensive material.

2. IP address- or packet-level blocking may also affect other TCP/IP

services than HTTP. Note that a decision to block a particular Internet

or Web site because of some illegal or offensive content generally

means that all other services, such as FTP, SMTP, or NNTP, will also be

blocked. The reason for that is that IP address- or packet-level

blocking decisions are mainly based on IP addresses. Although it is

possible to include port numbers (that specify services) in the decision

rules, this is seldom done (mainly because it negatively influences the

performance of the screening routers). Also, if it were done, the port

numbers could be changed even more easily than IP addresses.

3. IP address- or packet-level blocking devices can often be bypassed

and circumvented. For example, it is possible for an Internet or Web

site to regularly change its IP address, thereby bypassing the access

control enforced by a black list entirely. Similarly, specific network

technologies, such as IP tunneling, can be used to circumvent any IP

address or packet-level blocking device.

4. IP address- or packet-level blocking requires some computational

power on the routing (and filtering) devices. Consequently, routers

may need to be upgraded to implement IP address- or packet-level

blocking. Note that a top-of-the-line router from Cisco, appro-

priately configured, can carry out packet-level blocking at line

speeds, whereas some older style routers may need to be replaced or

upgraded to meet the requirements of contemporary internet

working performance.

In either case, support for IP address- or packet-level blocking

complicates the packet filtering rules that are implemented and enforced

by a firewall. Finally, there are also some nontechnical issues to consider. For

example, not all Internet traffic passes through a BSP. Many multinational

organizations have TCP/IP networks (i.e., intranets) that use leased lines.

The employees of these organizations would not be subject to IP address- or

packet-level blocking as enforced by BSPs. Also, there are increased

362 Censorship on the WWW

operational costs associated with the creation, maintenance, and distribution

of black lists, as well as the configuration of the corresponding screening

routers’ ACLs. As of this writing, there are only a few statistics available

about these costs.

14.2.2 URL blocking

URL- or application-level blocking requires the existence of application-

level gateways and HTTP proxy servers that examine resources or resource

information to decide whether a specific request should be served or not.

Consequently, ISPs prevent their clients from accessing the Internet

directly for some application protocols, such as HTTP, by forcing them to

access the Internet through a proxy server, which performs blocking and

may store (or rather cache) frequently accessed material. This actually

requires the user to configure his or her browser to make use of the ISP’s

proxy server (as discussed in Chapter 3). The proxy server can then

compare requests from the browser with a supplied black list of Internet

and Web sites.

As of this writing, URL- or application-level blocking is most commonly

used in corporate intranets to control access to specific Web sites, such as

www.playboy.com or www.penthouse.com. There are only a few countries

that try to enforce URL- or application-level blocking technologies for their

citizens.

Again, the discussion about the effectiveness of URL or application-level

blocking is controversial. Proponents of the technology claim that it is a

possible way to effectively block illegal or offensive content on the WWW,

whereas opponents of the technology refer to the following technical issues

that collectively limit the effectiveness of the technology:

w First, URL- or application-level blocking can be bypassed or

circumvented in many ways.

w For example, a user can access an Internet or Web site by

specifying its descriptive DNS name, or its equivalent IP address. A

black list that only checks DNS names can therefore be bypassed

unless it also includes the equivalent IP address(es), which double

(or multiply) the size of the corresponding black list.

w Similarly, it is possible to regularly change the IP address or DNS

name of the computer system that hosts the Web server, or run

several Web servers on a specific computer system and change the

port number periodically.

14.2 Content blocking 363

All of these and similar changes will cause a URL- or application-level

blocking strategy to fail (since the URLs change). The changes can be

made explicit and communicated to the users, or they can be made

implicit by having corresponding URL translation services run on

server machines. The latter approach is conceptually similar to the

TAZ network introduced in Chapter 12 with regard to anonymous

publishing on the WWW.

w Second, push technologies bypass URL- or application-level blocking

entirely, since content is delivered to users without specifically being

requested. Note that a proxy server that implements URL- or

application-level blocking generally filters requests for specific

content. If the content is delivered without a corresponding request,

it will not be blocked by the proxy server.

w Third, the policy of forcing users to access the Internet through a

single proxy server (that implements URL- or application-level

blocking) reduces the reliability and decreases performance of

Internet connectivity, as it introduces a single point of failure and

bottleneck. There are also some application protocols that have

problems working through a proxy server at all. For example, we saw

in Chapter 3 that UDP-based application protocols are inherently

difficult to handle with proxy servers (because they don’t use

connections in the first place).

Similar to IP address- or packet-level blocking, URL- or application-level

blocking generally complicates the configuration of firewalls and causes

some additional costs. Many ISPs, Web site hosting organizations, and

educational institutions (e.g., universities) do not employ proxy servers at

all, and a requirement to do so may be a financial burden for some of them.

In addition to the hardware costs, there are the ongoing costs of maintaining

and administering the proxy servers, and supporting the clients that are

forced to use them. Finally, there is the enormous and expensive task of

creating, updating, and distributing the black lists. In addition, the following

two nontechnical issues must also be considered with care:

1. ISPs may be placed in a dilemma. Note that if an ISP is asked to adopt

the role of a moral arbiter, it will be placed in a difficult position by its

subscribers for either going too far or not going far enough.

2. A black list is a valuable commodity in its own right and black lists

should be maintained in secure environments accordingly. Note

364 Censorship on the WWW

that a black list is a valuable target for a hacker, and once uncovered

will be published on the Internet, thereby creating a ‘‘must see’’ list

for curious users. This may have the negative side effect of

publicizing the sites on black lists more widely than if the black

lists did not exist at all.

An alternative to blocking content is deleting content. Blocking prevents

an Internet or Web site from being accessed, whereas deletion refers to the

physical removal of a resource after it has been published on the Web. The

deletion of a resource (or a set of resources) can only be carried out by its

(their) owner(s) or the corresponding Web site administrator(s) or law

enforcement officers. Note, however, that after a resource has been deleted,

it may still exist on the following locations:

w Personal computers that have originally downloaded the resource

and saved it;

w Proxy servers that have served the download operation and have

cached the corresponding resource;

w Mirror sites that have downloaded the resource for further

distribution.

In summary, both IP address- or packet-level blocking and URL- or

application-level blocking are technically possible, but can easily be

circumvented. Also, as mentioned above, mandating their use may result

in black lists (either for IP addresses or URLs) becoming hot properties, with

the net result and effect that the blacklisted Internet and Web sites may even

become more popular than if they were not blacklisted at all. Note, however,

that this is more a psychological problem than a technical one. Also note that

the same argument can also be used to argue against content rating and self-

determination (and to promote law enforcement as being the only practical

solution).

14.3 Content rating and self-determination

Rather than censoring what content is being distributed and made

accessible on the Internet and WWW, the idea of content rating and self-

determination is to enable users to judge the content of a Web site based on

some objective criteria and to control access to the content accordingly. This

idea actually conforms to the general argument of human beings’ being

ultimatively responsible for their own behaviors and activities.

14.3 Content rating and self-determination 365

Content rating is not something conceptually new. For some media,

such as cinema movies, we are already accustomed to content rating,

whereas for other media, such as television and the Web, the effectiveness

and efficiency of content rating and self-determination schemes remain to be

shown.1 In either case, it must be ensured that content rating schemes can

neither be circumvented nor manipulated. For all practical purposes, this

turns out to be difficult.

The Platform for Internet Content Selection (PICS) is an initiative created by

the industry to promote content rating and self-determination [4, 5].

Coordinated by the W3C, PICS aims at providing an infrastructure for

associating labels with content.2 It is value neutral in the sense that it does

not specify the content of labels. It only specifies a label format and describes

how the corresponding labels may be transmitted. As such, it is a platform

on which content rating services and filtering software packages can

actually be built. Computer systems can process PICS labels in the

background, automatically shielding users from undesirable content or

directing their attention to sites of particular interest.

The PICS specification provides the means to implement a content rating

service. It consists of the following components:

w A syntax for describing a content rating service, so that computer

programs can present the service and its labels to the users.

w A syntax for labels, so that computer programs can automatically

process them. A label describes either a single document or a group of

documents (provided by an Internet or Web site). A label may

include a cryptographic hash value of the associated document or

may even be digitally signed.

w An embedding of labels (or lists of labels) into the RFC 822

transmission and HTML document formats. In the first case, RFC

822-style headers are used, whereas in the second case, the HTML

META tag is used for embedding one or more labels in the header of

an HTML document.

w An extension of HTTP, so that clients can request labels to be

transmitted with a document.

1. Note that in many countries (e.g., Australia) television shows have ratings.

2. http://www.w3.org/PICS

366 Censorship on the WWW

TEAMFL
Y

Team-Fly®

w A query-syntax for an online database of labels (a label bureau as

discussed below).

There are products that implement the PICS specifications, and the W3C

maintains a list of PICS-compatible filtering products and services (i.e., client

software, HTTP servers, proxy servers, label bureaus, and rating services).

In general, PICS can be used and provides support for both self-labeling

(by an autonomous content provider or on-line publisher) and third-party

labeling (by a label bureau):

w A content provider or on-line publisher who wants to label his or her

content must first choose which rating vocabulary to use. The W3C

recommends the use of a vocabulary already used by others, to make

it easy for Internet users to understand the corresponding labels.

Again, a list of self-rating vocabularies is available, but W3C does not

endorse any particular vocabulary. Typically, the content provider or

on-line publisher chooses a self-labeling service, connects to the

corresponding Web site, and describes the resource to be published

by filling out an online questionnaire. After completing the

questionnaire, the service gives the content provider or online

publisher a text label in a special format, which is then inserted into

the corresponding HTML file.

w In addition to the self-labeling service, an independent rating agency

need not get cooperation from every content provider or Web

publisher whose material it labels. As with self-labeling described

above, the independent labeler first needs to invent or adopt a

vocabulary. The rater then uses a software tool to create labels that

describe particular URLs. Instead of pasting those labels into

documents, the independent rater distributes the labels through a

separate server, which is called a label bureau. Filtering software will

know to check at that label bureau to find the labels, much as

consumers know to read particular magazines for reviews of

appliances or automobiles.

Several PICS-compliant rating services are in operation today, allowing

content providers and Web publishers to self-label their content.3 The

most important rating scheme and service is RSACi, developed by

3. Contrary to that, there are hardly any independent label bureaus in operation today.

14.3 Content rating and self-determination 367

the Recreational Software Advisory Council (RSAC).4 According to the

information found on its Web site, RSAC ‘‘is an independent, nonprofit

organization based in Washington, D.C, that empowers the public, especially

parents, to make informed decisions about electronic media by means of an

open, objective, content advisory system.’’

The RSACi system provides consumers with digitally signed information

about the level (ranging from 0 up to 4) of violence, nudity, sex, and

offensive language in software games and Web sites. The corresponding

RSACi levels are summarized in Table 14.1. Most importantly, RSACi is

supported by Microsoft Internet Explorer. As illustrated in Figure 14.1, the

corresponding Content Advisor can be enabled on the ‘‘Content’’ tab of the

Internet Options menu. If it is enabled, the user is prompted to enter a

supervisor password (as illustrated in Figure 14.2). The aim of the supervisor

password is to prevent children from changing the settings of the Content

Advisor.

The Content Advisor panel is illustrated in Figure 14.3. For all criteria of

the RSACi system (i.e., violence, nudity, sex, language), the user can specify

a maximum level that is acceptable. The Ratings tab, as illustrated in Figure

14.3, can be used for this purpose. In addition, there are other tabs that can

be used to customize the Content Advisor.

There are several points to consider with care regarding the use of

content rating and self-determination technologies, such as employed by

PICS and RSACi:

Table 14.1 The RSACi Levels for Violence, Nudity, Sex, and Language

Level Violence Rating Nudity Rating Sex Rating Language Rating

Descriptor Descriptor Descriptor Descriptor

4 Rape or wanton, Frontal nudity Explicit sexual acts Crude, vulgar

gratuitous violence (qualified as or sex crimes language or extreme

provocative display) hate speech

3 Aggressive Frontal nudity Nonexplicit sexual Strong language or

violence or death acts hate speech

to humans

2 Destruction of Partial nudity Clothed sexual Moderate expletives

realistic objects touching or profanity

1 Injury to human Revealing attire Passionate kissing Mild expletives

being

0 None of the above None of the above None of the above None of the above

or sports related or innocent kissing;

romance

4. http://www.rsac.org

368 Censorship on the WWW

1. Not every label is trustworthy. For example, the creator of a

computer virus can very easily distribute a misleading label claiming

that the software is safe. Checking for labels merely converts the

question of whether to trust a piece of software to where to trust the

label that is associated with it (and since both can be provided by

the same person, they can be identical). One obvious solution is to

use copyright protection labeling or cryptographic techniques to

determine whether a document has been changed since its label

was created and to ensure that the label is the work of its purported

author.

2. Mandatory self-labeling need not lead to censorship, so long as

individuals can decide which labels to ignore. Unfortunately, people

Figure 14.1 Microsoft Internet Explorer’s Content tab of the Internet Options menu. (q

2002 Microsoft Corporation.)

14.3 Content rating and self-determination 369

may not always have the choice. As mentioned above, Singapore

and China are experimenting with national firewalls that are going

to implement some content blocking strategies. Nevertheless, it is

fair to say that improved individual controls remove one rationale

for central control but do not prevent its imposition.

3. Any content rating system, no matter how well conceived and

executed, will tend to stifle noncommercial communication. Rating

requires human time and energy; many sites of limited interest will

therefore probably go unrated. Because of safety concerns, some

people will block access to materials that are unrated or whose

labels are untrusted. For such people, the Internet will function

more like broadcasting, providing access only to sites with sufficient

mass-market appeal to merit the cost of labeling.

As an added inducement to content rating, it is worthwhile to mention

that some future applications may use labels for searching as well as filtering.

Thus, rating a Web site’s documents will make it easier both for some

audiences to avoid the documents and for others to intentionally find them.

Consequently, content rating is another example of a dual-use technology.

As of this writing, it is too early to say whether content rating and self-

determination will be successful and successfully deployed on the market-

place. PICS and RSACi are supported by Microsoft Internet Explorer. There

is, however, less strong support by other software vendors and content

providers. In fact, there is hardly any Web site that has its content rated

according to any scheme (not necessarily RSACi). Consequently, it is

Figure 14.2 Microsoft Internet Explorer’s Create Supervisor Password panel. (q 2002

Microsoft Corporation.)

370 Censorship on the WWW

possible and more likely than not that the notion of content rating and self-

determination will silently disappear in the future.

14.4 Conclusions

In general, censorship refers to the official suppression of information as

published in specific media, such as newspapers, films, and books. In the

past, many states have developed a highly refined system of censorship.

Although most information is allowed to flow freely, certain kinds

of information are censored nationwide. In particular, we mentioned

Figure 14.3 Microsoft Internet Explorer’s Content Advisor panel. (q 2002 Microsoft

Corporation.)

14.4 Conclusions 371

propagandistic material from the radical left or right-wing and child-

pornographic images or video sequences as examples.

More recently, the question has arisen whether there is need for

censorship on the Internet and the WWW. If this question is answered with a

yes, the next question to ask is about technologies that can eventually be

used to enforce censorship on the Internet and the WWW. This question was

addressed in this chapter. In fact, we addressed two technologies, namely

content blocking as well as content rating and self-determination.5

The issue of content blocking is a difficult and, at times, emotional issue.

Based on a thorough analysis of content blocking technologies, the

previously mentioned Australian report concluded that content blocking

implemented purely by technological means will be ineffective, and neither

of the two approaches (IP address- or packet-level blocking and URL- or

application-level blocking) should be mandated [3]. Instead, the report

argues that ISPs could be encouraged to offer differentiated services to their

subscribers, based on access to the Internet through a proxy server. The

following two services may be considered:

1. A clean service for which the proxy server includes a list of

permitted URLs. Requests for URLs found on the list should be

served, whereas requests for URLs outside the list should be refused.

2. A best-effort service for which the proxy server includes a list of

refused URLs. Requests for URLs found on the list should be

refused, whereas requests for URLs outside the list should be served.

Obviously, the distinction between a clean service and a best-effort

service is similar to the distinction between the two stances of a firewall

policy (what is not explicitly allowed is refused and what is not explicitly

refused is allowed). In either case, ISPs may incur some costs in setting up

differentiated services. These costs could either be passed on to clients in

increased fees, or an ISP may see some competitive advantage in providing

such an environment to clients. Alternatively, the governments may

consider providing some incentives to ISPs to offer such differentiated

services.

5. Note that the proponents of content rating and self-determination technologies often argue that their

technologies do not enforce censorship (but, rather, some more sophisticated access control). In either case

(and whatever the claims of the corresponding proponents are), content rating and self-determination

technologies are being designed for building censorship software, and, as such, represent technologies that can

be used to enforce censorship.

372 Censorship on the WWW

In either case, international cooperation is needed to determine

jurisdiction. Locally hosted content that is either illegal or considered to be

offensive is best handled by a direct approach to the ISP or the organization

that hosts the material, requesting that the ISP or hosting organization take

appropriate action. However, most content on the Internet resides on foreign

servers. In fact, the content in question may be entirely legal in the

jurisdiction in which it is being hosted, as a result of differences in

international regulation. Consequently, the authors of [3] propose interna-

tional forums to create the necessary infrastructure, so that organizations

that host content could determine the jurisdiction of the client software

making the request. Having determined the jurisdiction, the server could

find out whether the requested content was legal in the client’s jurisdiction.

Finally, at the time of this writing it is not clear whether any form of

censorship on the Internet or WWW—either content blocking or content

rating and self-determination—will be accepted by Internet users at all.

Statistical investigations will have to clarify this point. Also, statistical

investigations must be done to quantify the costs that are involved in any

censorship technology.

References

[1] Foerstel, H. N., (ed.), Banned in the Media: A Reference Guide to Censorship in the

Press, Motion Pictures, Broadcasting, and the Internet, Westport, CT: Greenwood

Publishing Group, 1998.

[2] Price, M. E., (ed.), The V-Chip Debate: Content Filtering from Television to the

Internet, Mahwah, NJ: Lawrence Erlbaum Associates, 1998.

[3] McCrea, P., B. Smart, and M. Andrews, ‘‘Blocking Content on the Internet: A

Technical Perspective,’’ Report prepared for the Australian National Office for

the Information Economy, available online at http://www.cmis.csiro.au/

Reports/blocking.pdf, June 1998, .

[4] Resnick, P., ‘‘Filtering Information on the Internet,’’ Scientific American, March

1997, pp. 106–108.

[5] Resnick, P., and J. Miller, ‘‘PICS: Internet Access Controls Without Censor-

ship,’’ Communications of the ACM, Vol. 39, No. 10, October 1996, pp. 87–93.

14.4 Conclusions 373

Risk Management

In this chapter, we summarize some general remarks about

risk management and how the Internet and the WWW have

changed (or are about to change) the way we think about it.

More specifically, we introduce the topic in Section 15.1,

elaborate on formal risk analysis in Section 15.2, address some

alternative approaches and technologies for risk management

in Section 15.3 and draw some conclusions in Section 15.4.

Some parts of this chapter are taken from Chapter 21 of [1].

15.1 Introduction

In practice, it is often important to know the risks one faces

when adopting a new technology. This is particularly true for

the Internet and the WWW. A company or organization that

considers establishing a presence on the Web is very likely (and

well advised) to question the vulnerabilities, threats, and

related risks.

According to RFC 2828 [2], these terms (and some related

terms) can be defined as follows:

w A vulnerability is a flaw or weakness in a system’s design,

implementation, or operation and management that

could be exploited to violate the system’s security

policy.1

375

C H A P T E R

15
Contents

6.1 Introduction1

6.2 Formal risk analysis3

6.3 Alternative approaches
and technologies5

6.4 Conclusions8

References

1. According to this definition, one could argue that a system without a

security policy is not vulnerable because there is nothing that could be

w A threat is a potential for violation of security, which exists when

there is a circumstance, capability, action, or event that could breach

security and cause harm.

w A risk is an expectation of loss expressed as the probability that a

particular threat will exploit a particular vulnerability with a

particular harmful result.

w Risk analysis (or risk assessment) is a process that systematically

identifies valuable system resources and threats to those resources,

quantifies loss exposures (i.e., loss potential) based on estimated

frequencies and costs of occurrence, and (optionally) recommends

how to allocate resources to countermeasures so as to minimize total

exposure.

w Last but not least, risk management is a process of identifying,

controlling, and eliminating or minimizing uncertain events that

may affect system resources.

The individual steps in a risk management process are illustrated in

Figure 15.1. On the left side, a vulnerabilities analysis must be performed.

This analysis has to reveal the vulnerabilities that are relevant for a given

situation (i.e., a given IT environment). On the right side, a threats analysis

must be performed. A threats analysis, in turn, requires an explicit threat

model; that is, a model that elaborates on who is capable and motivated to

attack the system in question. In the absence of such a model, one cannot

hope to estimate the threats and the corresponding risks. Note that it is

something completely different to secure a corporate intranet against foreign

intelligence services than it is to secure a corporate intranet against casual

attacks. Based on the results of a vulnerabilities analysis and a threats

analysis, a risk analysis can be performed. The risk analysis quantifies loss

exposures based on estimated frequencies and costs of occurrence.

From a more general point of view, everything we do in daily life—

either professionally or privately—is driven by risk management considera-

tions. If there is no vulnerability or threat (and, consequently, no risk), we

generally do not spend any time or money in security and safety. If,

however, there are risks and these risks are severe or appear severe to us in

terms of expected losses, we are generally willing to spend large amounts of

exploited to violate the policy. On the other hand, one could also argue that there is a

policy for every system, even if it exists only in the owner’s mind.

376 Risk Management

TEAMFL
Y

Team-Fly®

time or money in security and safety. The point is that we are not always

aware that some risk management considerations are being performed in our

brains. For example, if somebody tells you to jump from a building, the

expected loss (i.e., the loss of life) is generally too high to be tolerable.

Consequently, you are not going to jump (at least we hope so). If, however,

someone asks you for the current time, there is no loss to expect.2

Consequently, you would tell this person the current time. All these risk

management considerations are done subconsciously (as a learned beha-

viour) and we may not even be aware of them. Also, the same risks are

perceived differently by different people. Consequently, risk perception is

also an important topic that complements risk management.

In the IT world, we are not yet fully accustomed to making risk

management considerations. This is because the field is still new,

dynamically changing, and not well understood. Also, there are hardly

any statistical investigations we can use to make some long-term claims

about relevant risks. Consequently, we have to deliberately consider each

Figure 15.1 The individual steps in a risk management process.

2. There may still be a loss to expect, namely, if the questioner for the current time only wants to distract you so

you can be robbed more easily.

15.1 Introduction 377

risk individually. If this is done, it is usually done in a labor-intensive process

called formal risk analysis.

15.2 Formal risk analysis

In the past, several frameworks, models, methods, and methodologies to

formally perform risk analyses have been developed and proposed [3, 4]. For

example, the British Central Computer and Telecommunications Agency

(CCTA) came up with a methodology called CCTA Risk Analysis and

Management Methodology (CRAMM) and a tool of the same name. The tool

is being marketed by a company called Logica.3 Similarly, a methodology

called MARION—an acronym derived from the French term m�ethodologie

d’analyse des risques informatiques et d’optimation par niveau—was developed

by the French club de la se�curite� informatique francais (CLUSIF4).

Unfortunately, the performance of a formal risk analysis has turned out

to be difficult in practice. There are mainly two reasons:

1. A formal risk analysis process requires the establishment of an

inventory for all assets (e.g., to decide whether they are valuable).

Unfortunately, this is a very difficult and labor-intensive task. To

make things worse, the inventory is a moving target that changes

continually and must be periodically updated.

2. A formal risk analysis always requires the quantification of loss

exposures based on estimated frequencies and costs of occurrence.

Either value—the estimated frequencies and the costs of occur-

rence—is hard to quantify (i.e., it requires a lot of knowledge and

skills).

– How do you, for example, quantify the estimated frequency for a

system being hacked? Does this value depend on the operating

system in use? Does it depend on the actual configuration? Does

it depend on software patches being installed or not installed?

– Similarly, how do you quantify the costs of occurrence? Note that

no system or network resource need be damaged during the system

hack. Nevertheless, the loss of reputation as well as the owner’s

or investors’ confidence may still be large and worrisome.

3. http://www.logica.com

4. https://www.clusif.asso.fr

378 Risk Management

Against this background, one may argue that probability theory is

currently an inappropriate approach to quantify loss exposures in the IT

world. This may change once we have enough data to make probability-

based assessments of the overall risk. In either case, we do not have an

alternative approach so far.

Because of these difficulties, it is common today to perform only

qualitative risk analyses. A qualitative risk analysis, in turn, differs from a

quantitative or formal risk analysis in the quantification step. Infact, a

qualitative risk analysis only addresses risks that are existent (independent

from potential loss exposures). For example, if a Web site is connected to the

Internet, a qualitative risk analysis would only identify the risk of being

hacked (possibly specifying the risk to below, medium, or high), whereas a

quantitative or formal risk analysis would additionally try to quantify the

estimated frequency and the costs of occurrence to eventually compute a

quantitative value for the risk under consideration. In either case, risk

analysis must start with an analysis of vulnerabilities and threats.

In many companies and organizations it is not even possible to perform a

qualitative risk analysis, and some simpler risk management approaches and

technologies must be used instead. Some alternative approaches and

technologies are addressed next.

15.3 Alternative approaches and technologies

Given the difficulties of performing formal risk analyses, IT security

professionals are looking into alternative approaches and technologies to

manage the relevant risks. The two most promising approaches and

technologies are security scanning to perform vulnerability analyses, and

intrusion detection to identify and respond to potentially malicious

activities. One major difference between security scanning and intrusion

detection is related to their temporal use. A security scanner is running in

real time when it is started (i.e., it is rarely run all of the time). Contrary to

that, intrusion detection tools and products are designed to run in real time

and to constantly monitor systems and networks for possible attacks [5].

Security scanning and intrusion detection are hot topics today. They are

overviewed and briefly discussed next.

15.3.1 Security scanning

The term security scanning refers to the process of performing vulnerability

analyses, and the term security scanner refers to a tool that can be used to

15.3 Alternative approaches and technologies 379

automatically perform such analyses. In essence, a security scanner holds a

database that includes known vulnerabilities5 of operating systems and

corresponding configurations. Each system can be probed and tested to

detect and identify the vulnerabilities that are relevant.

Security scanning tools and security scanners can be partitioned into

host-based scanners and network-based scanners:

w A host-based scanner runs on a system and looks into the configuration

of the system from the inside. For example, a host-based scanner can

check whether files that contain user authentication information

(e.g., user passwords) can be read by nonprivileged processes.

w Contrary to that, a network-based scanner runs on a system and looks

into the configurations of other systems from the outside. For

example, a network-based scanner can check which systems are

accessible and which services are running on the ports of these

systems.

Ideally, a scanner is host-based and network-based, meaning that it can

investigate on and take into account information that is available on either

side. As of this writing, there are many security scanners commercially or

freely available on the Internet. The most widely used and deployed security

scanners on the Internet are developed and marketed by Internet Security

Systems, Inc.6 In addition, there are many security scanners publicly and

freely available on the Internet. Examples include the Computer Oracle and

Password System (COPS7) and the Security Administrator Tool for Analyzing

Networks (SATAN8). Also, the Nessus security scanner was developed in an

open source project of the same name.9

More recently, Microsoft Corporation has launched the Strategic

Technology Protection Program (STPP). As part of the STPP, the Microsoft

Baseline Security Analyzer (MBSA) has been designed and developed as a

tool to assess one or more Windows-based computer systems for known

vulnerabilities and to determine whether or not they are up-to-date with the

latest security-related patches and hotfixes. The tool is publicly and freely

5. Note that known vulnerabilities are vulnerabilities that have been found by experience on other systems, and

that there is no list of known vulnerabilities that is guaranteed to be complete.

6. http://www.iss.net

7. http://www.sh.com/cops

8. http://www.sh.com/satan

9. http://www.nessus.org

380 Risk Management

available. Having software providers provide tools like the MBSA is certainly

the right way to go. The disadvantage is that attackers can use the same tools

to discover breakable computer systems.

15.3.2 Intrusion detection

According to [6], an intrusion refers to ‘‘a sequence of related actions by a

malicious adversary that results in the occurrence of unauthorized security

threats to a target computing or networking domain,’’ and the term intrusion

detection refers to the process of identifying and responding to intrusions.

There are many tools that can be used to automate intrusion detection.

These tools are commonly referred to as intrusion detection systems (IDSs).

Although the research community has been actively designing, developing,

and testing IDSs for more than a decade, corresponding products have only

recently received wider market interest. Furthermore, the IETF has

chartered an Intrusion Detection Exchange Format (IDWG) WG ‘‘to define

data formats and exchange procedures for sharing information of interest to

intrusion detection and response systems, and to management systems

which may need to interact with them.’’ Refer to the IDWG’s home page10

to get more information about the relevant Internet-Drafts and RFC

documents.

There are basically two technologies that can be used to implement an

IDS: attack signature recognition and anomaly detection.

1. Using attack signature recognition, an IDS uses a database with

known attack patterns (also known as attack signatures) and an

engine that uses this database to detect and recognize attacks. The

database can either be local or remote and the engine can either

work in real time or not. In either case, the quality of the IDS is as

good as the database and its attack patterns as well as the engine

that makes use of this database. The situation is similar and quite

comparable to the antivirus software (i.e., the database must be

updated on a regular basis).

2. Using anomaly detection, an IDS uses a database with a formal

representation of ‘‘normal’’ (or ‘‘normal looking’’) user activities

and an engine that makes use of this database to detect and recognize

attacks. For example, if a user almost always starts up his or her

10. http://www.ietf.org/html.charters/idwg-charter.html

15.3 Alternative approaches and technologies 381

e-mail user agent after having successfully logged onto a system, the

IDSs’ engine may get suspicious if he or she starts a Telnet session to

a trusted host first. The reason for this activity may be an attacker

misusing the account to gain illegitimate access to a remote system.

Again, the database can be either local or remote, and the quality of

the IDS is as good as the database and its statistical material.

Again, it is possible to combine both technologies in an IDS. More

information about intrusion detection technologies and IDSs that employ

these technologies and are commercially available can be found in many

books (e.g., [5–10]).

15.4 Conclusions

Security engineers and professionals often elaborate on and argue about the

importance, usefulness, and suitability of specific security technologies

without having the relevant vulnerabilities, threats, and corresponding risks

in mind. For example, using a secure messaging scheme, such as PGP or

S/MIME, is almost useless if you have nothing to lose and all you want to do

is forward electronic versions of the latest jokes to a friend. The use of a

secure messaging scheme, however, is very useful if you want to transfer an

electronic order to an e-commerce service provider. Consequently, all we do

in terms of security should be driven by risk management considerations.

Historically, the usual way to manage risks in the IT world started with a

formal risk analysis. This has changed and we start seeing two trends:

1. Formal risk analyses are being replaced or complemented with

alternative approaches and technologies (e.g., security scanners and

IDSs).

2. Preventive security mechanisms are being complemented by

detective and reactive security mechanisms.

The first trend occurs simply because formal risk analyses are difficult

and labor-intensive and because they poorly scale to large IT environments.

Contrary to that, the second trend occurs because preventive security

mechanisms, such as firewalls and the use of cryptographic security

protocols, have turned out to be incomplete, meaning that they do not

patch all vulnerabilities and do not protect against all possible threats. As a

first order approximation you may think of all systems and applications to be

382 Risk Management

vulnerable and exploitable by specific attacks. This is true even if the systems

and applications use some sophisticated preventive security mechanisms. In

fact, it is possible and likely that security breaches and vulnerability exploits

will always occur and compromise the security of our systems and

applications. The role of the preventive security mechanisms is only to

lower the likelihood that a serious exploit will happen.

Against this background, we have to think about detection and response.

How do you, for example, make sure that exploits and attacks are detected in

the first place? Note that, contrary to the real world, a victim may not

necessarily be aware of the fact that he or she has become a victim in the

digital world. Data can be copied electronically without leaving any traces.

Similarly, what do you do if an exploit or attack is actually detected? How do

you respond to exploits and attacks? In either case, you need detective and

reactive security mechanisms. One may argue that detective and reactive

security mechanisms are becoming more important because of the

incomplete nature of the preventive security mechanisms we have in

place today.

More recently, Bruce Schneier provided some arguments for the

importance of detection and response and why they are important in the

insecure IT world in which we live today [11]. Anybody who is in charge of

designing security for an intranet environment should carefully think about

the role of detection and response in that environment. These components

are becoming increasingly important these days.

References

[1] Oppliger, R., Internet and Intranet Security, Second Edition, Norwood, MA: Artech

House, 2002.

[2] Shirey, R., ‘‘Internet Security Glossary,’’ Request for Comments 2828, May

2000.

[3] Parker, D. B., Fighting Computer Crime: A New Framework for Protecting

Information, New York: John Wiley & Sons, 1998.

[4] Peltier, T. R., Information Security Risk Analysis, Boca Raton, FL: CRC Press,

2001.

[5] Escamilla, T., Intrusion Detection: Network Security Beyond the Firewall, New York:

John Wiley & Sons, 1998.

[6] Amoroso, E., Intrusion Detection: An Introduction to Internet Surveillance,

Correlation, Trace Back, Traps, and Response, Sparta, NJ: Intrusion.net Books,

1999.

15.4 Conclusions 383

[7] Northcutt, S., D. McLachlan, and J. Novak, Network Intrusion Detection: An

Analyst’s Handbook, 2nd ed., Indianapolis, IN: New Riders Publishing, 2000.

[8] Cooper, M., et al., Intrusion Signatures and Analysis, Indianapolis, IN: New

Riders Publishing, 2001.

[9] Proctor, P. E., Practical Intrusion Detection Handbook, Englewood Cliffs, NJ:

Prentice Hall, 2000.

[10] Bace, R. G., Intrusion Detection, Indianapolis, IN: New Riders Publishing, 1999.

[11] Schneier, B., Secrets and Lies: Digital Security in a Networked World, New York:

John Wiley & Sons, 2000.

384 Risk Management

Conclusions and Outlook

In this book, we have addressed many technologies, mechan-

isms, and services that are available and that can be used to

secure the WWW and its applications. Some of these

technologies, mechanisms, and services are in widespread use

today (e.g., the SSL/TLS protocol), whereas others are still on

the drawing boards of security professionals and architects. For

example, the questions of how to properly secure Web services

are still being studied and will (hopefully) emerge into a

comprehensive set of security-related standards.1

Taking into account the security technologies, mechan-

isms, and services that are available and that can be used to

secure the WWW and its applications, one may argue that the

security problems of the WWW will soon go away. This is an

optimistic point of view. There is, however, also a pessimistic

point of view. The pessimistic point of view basically argues

that—in spite of the many security technologies, mechanisms,

and services that are available today—the security problems of

the WWW won’t go away and may even get worse.

In fact, there are two natural enemies of security, and both

apply to the WWW:

1. Complexity;

2. Speed.

385

C H A P T E R

16

1. As briefly mentioned in Chapter 5, there is a WS-Security specification that

is the first in a series of security standards related to Web services.

The more complex a system is, the more difficult it generally is to keep it

secure. This rule of thumb certainly applies to IT. Consequently, the mere

fact that operating systems and application software are getting more and

more complex implies that, they are also getting more and more difficult to

secure. This is a very uncomfortable fact of life, and the only countermeasure

is to simplify software considerably. Against this background, Web services

look promising. It is, however, too early to tell whether Web services will be

successfully deployed in the marketplace.

Similarly, the faster a system is designed, implemented, and deployed,

the more likely it contains design flaws, vulnerabilities, bugs, and

programming errors that may be exploited by a determined attack. Again,

this is an uncomfortable fact of life, and the only countermeasure is to slow

down the software development processes. Unfortunately, there is currently

no sign that the computer and communications industries will ever attempt

to slow down the software development processes. In fact, we see product

development cycles being shortened, presales software testing being

replaced with postsales software testing using beta versions, and security

considerations being postphoned to later versions of software products. In

addition, the speed of information dissemination, news, and people

exploiting bugs are also getting faster and faster. The net effect of all these

trends is that software is released and shipped that has bad quality and

questionable security properties.

Given this background, it is possible and very likely that future software

used on the WWW will also be buggy and vulnerable, and that, exploits will

therefore continue to occur. Once again, this is a strong argument for

detection and response (as addressed in Chapter 15).

The question that arises immediately is, what can be done to increase the

overall security of existing and future Web applications and services. The

first line of defense is education. Protocol and application designers, software

developers, programmers and users who are educated in security matters are

more likely to make reasonable and intelligent decisions with regard to the

security of their computer systems and networks. In fact, it must be

understood that security requires more than simply going through the

bullets of a checklist.2 It requires a proper understanding of the technologies,

vulnerabilities, threats, risks and possible countermeasures. There is always

a trade-off to make, and this trade-off can only be made if the situation and

its implications are properly understood.

2. This is the reason this book does not include checklists.

386 Conclusions and Outlook

TEAMFL
Y

Team-Fly®

As mentioned above, many protocol or software developers postpone

security considerations to some later version. This is dangerous. For

example, when Tim Berners-Lee defined the first version of HTTP, he gave

little thought to security. In fact, he argued that the aim of the WWW built

on top of HTTP was to publish information for the public. So why bother

about security in the first place? According to this line of argumentation,

HTTP included only a few security features that were known to be weak,

such as the HTTP basic authentication scheme. When people started to use

HTTP to build intranet and e-commerce solutions, however, it was realized

that it is important to strongly authenticate users, to control access to data, to

protect the confidentiality and integrity of data in transmission, and to

provide nonrepudiation services to the parties involved. Consequently,

several extensions to HTTP have been proposed, including, for example, the

HTTP digest authentication scheme, the S-HTTP, as well as the SSL and TLS

protocols. Unfortunately, the use and deployment of these secondary

technologies has turned out to be slow (as compared to the primary

technology, HTTP).

Consequently, some basic security features should always be incorpo-

rated into a first version of a protocol or software product. This is where

security professionals and engineers come into play. Security engineering is

a relatively young discipline that is inherently difficult and error-prone. In

fact, there are many examples of flawed security features that are built into

protocols and products by engineers who are not security experts. Building a

highly secure system or protocol is indeed a hard problem. Also note that

security engineering is different from any other type of engineering. Most

engineering looks at making things work in the presence of natural forces

and accidents. Security engineering has to make things work, not only in the

presence of natural forces and accidents, but despite the most ingenious

attempts by malicious attackers to prevent the system from working. The fact

that contemporary e-commerce applications involve multiple parties and

multiple protocols further increases the complexity of the security problem.

The field is wide open for research and development.

Conclusions and Outlook 387

Abbreviations and Acronyms

AA attribute authority

AC attribute certificate

ACL access control list

AES advanced encryption standard

AFS Andrew file system

AFT authenticated firewall traversal

AH authentication header

ANSI American National Standards Institute

AOL America Online

API application programming interface

ARPA Advanced Research Projects Agency

AS authentication server

ASCII American Standard Code for Information

Interchange

ASN.1 abstract syntax notation 1

ASP Active Server Pages

ATM asynchronous transfer mode; automated teller

machine

389

BCP best current practice

Bellcore Bell Communications Research

BER basic encoding rules

BITS Bump-in-the-stack

BITW Bump-in-the-wire

BSP backbone service provider

CA certification authority

CAFE Conditional Access for Europe

CAT common authentication technology

CBC cipher block chaining

CC common criteria

CCC Chaos Computer Club

CCP compression control protocol

CCTA Central Computer and Telecommunications Agency

CD compact disk; committee draft

CDP certificate discovery protocol

CEC Commission of the European Communities

CEPS Common Electronic Purse Specification

CERIAS Centre for Education and Research on Information

Assurance and Security

CERN European Laboratory for Particle Physics1

CERT computer emergency response team

CERT/CC CERT coordination center

CFB cipher feedback

CGI common gateway interface

CHAP challenge-response handshake authentication protocol

1. The acronym is taken from the French name of the laboratory

390 Abbreviations and Acronyms

CLI command line interface

CMS cryptographic message syntax

COCOM coordinating committee for multilateral

export controls

COM component object model

COPPA Children’s Online Privacy Protection Act

COPS Computer Oracle and Password System

CPS certificate practice statement

CRAMM CCTA Risk Analysis and Management Methodology

CRC cyclic redundancy checksum

CRHF collision resistant hash function

CRL certificate revocation list

CRMF certificate request message format

CRS certificate revocation system

CRT certificate revocation tree

CSI Computer Security Institute

CSS Contents Scramble System

CUG closed user group

CV control value

CVC card verification code

CVV card verification value

DAC discretionary access control

DAP directory access protocol

DARPA Defense Advanced Research Projects Agency

DCA Defense Communications Agency

DCE distributed computing environment

DCMA Digital Millennium Copyright Act

DDoS distributed denial of service

Abbreviations and Acronyms 391

DER distinguished encoding rules

DES data encryption standard

DFA differential fault analysis

DISA Defense Information Systems Agency

DIT directory information tree

DMV Department of Motor Vehicles

DMZ demilitarized zone

DN distinguished name

DNA deoxyribonucleic acid

DNS domain name system

DNSsec domain name system security

DoC U.S. Department of Commerce

DoD U.S. Department of Defense

DoS U.S. Department of State

DOI domain of interpretation

DOS disk operating system

denial of service

DPA differential power analysis

DSA digital signature algorithm

DSS digital signature standard

DVCS data validation and certification server

E-cash electronic cash

ECB electronic code book

ECC elliptic curve cryptosystem

ECML Electronic Commerce Modeling Language

E-commerce electronic commerce

ECP encryption control protocol

EDI electronic data interchange

392 Abbreviations and Acronyms

EFF Electronic Frontier Foundation

EFT electronic funds transfer

EGP exterior gateway protocol

EIT Enterprise Integration Technologies

E-mail electronic mail

ESM encrypted session manager

ESP encapsulating security payload

EU European Union

FAQ frequently asked questions

FDDI fiber distributed data interface

FIPS Federal Information Processing Standard

FIRST Forum of Incident Response and Security Teams

FNC Federal Networking Council

FSML Financial Services Markup Language

FSTC Financial Services Technology Consortium

FSUIT Federal Strategy Unit for Information Technology

FTP File Transfer Protocol

FV First Virtual

FYI for your information

GII global information infrastructure

GISA German Information Security Agency

GPL General Public License

GRE generic routing encapsulation

GSS-API generic security service API

GUI graphical user interface

HTML hypertext markup language

HTTP Hypertext Transfer Protocol

Abbreviations and Acronyms 393

IAB Internet Architecture Board

IANA Internet Assigned Numbers Authority

IBM International Business Machines Corporation

ICMP Internet Control Message Protocol

IDEA international data encryption algorithm

IDS intrusion detection system

IEC International Electrotechnical Committee

IEEE Institute of Electrical and Electronic Engineers

IESG Internet Engineering Steering Group

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IIOP Internet Inter-ORB Protocol

IIS Internet Information Server

IKE Internet key exchange

IKMP Internet Key Management Protocol

IMAP Internet Message Access Protocol

IP Internet Protocol

IPC interprocess communications facility

IPKI Internet X.509 public key infrastructure

IPng IP next generation

IPPCP IP Payload Compression Protocol

IPRA Internet Policy Registration Authority

IPsec IP security

IPSP IP Security Protocol

IPST IP Secure Tunnel Protocol

IRSG Internet Research Steering Group

IRTF Internet Research Task Force

394 Abbreviations and Acronyms

ISAKMP Internet Security Association and Key Management

Protocol

ISAPI Internet server API

ISDN integrated services digital network

ISI Information Sciences Institute

ISO International Organization for Standardization

ISOC Internet Society

ISP Internet service provider

IT information technology

ITSEC information technology security evaluation criteria

ITU-T International Telecommunication Union—Tele-

communication Standardization Sector

IV initialization vector

J2EE Java 2 Platform, Enterprise Edition

JIT just-in-time

JSP JavaServer Pages

JTC1 Joint Technical Committee 1

JVM Java virtual machine

kbps kilobit per second

KDC key distribution center

KDS key distribution server

KEA key exchange algorithm

KEK key encryption key

KTC key translation center

LAN local-area network

LDAP lightweight directory access protocol

LLC logical link control

LRA local registration agent; local registration authority

Abbreviations and Acronyms 395

LSB least significant bit

L2F layer 2 forwarding

L2TP Layer 2 Tunneling Protocol

MAC message authentication code

MAN metropolitan area network

MBone multicast backbone

MBSA Microsoft Baseline Security Analyzer

MD message digest

MDC modification detection code

MIB management information base

MIC message integrity check

MIME multipurpose Internet mail extensions

MIT Massachusetts Institute of Technology

MKMP Modular Key Management Protocol

MPPE Microsoft point-to-point encryption

MS-PPTP Microsoft PPTP

MTA message transfer agent

NAS network access server

NASA National Aeronautics and Space Agency

NAT network address translation

NBS National Bureau of Standards

NCP Network Control Protocol

NCSA National Center for Supercomputer Application

NCSC National Computer Security Center

NetSP network security program

NII national information infrastructure

NIST National Institute of Standards and Technology

396 Abbreviations and Acronyms

TEAMFL
Y

Team-Fly®

NLSP Network Layer Security Protocol

NMS network management station

NNTP Network News Transfer Protocol

NRL U.S. Naval Research Laboratory

NSA National Security Agency

NSAPI Netscape server API

NTP Network Time Protocol

OCSP Online Certificate Status Protocol

OECD Organization for Economic Cooperation and

Development

OFB output feedback

OLE object linking and embedding

ORA organizational registration agent

ORB object request broker

OSF Open Software Foundation

OSI open systems interconnection

OWHF one-way hash function

PAC proxy auto-config

PAP Password Authentication Protocol

PARC Palo Alto Research Center

PC personal computer

PDA personal digital assistant

PDU protocol data unit

PEM privacy enhanced mail

PEP Protocol Extension Protocol

PER packet encoding rules

PET privacy enhancing technology

PFS perfect forward secrecy

Abbreviations and Acronyms 397

PGP pretty good privacy

PHP hypertext proprocessor

PICS platform for Internet content selection

PIN personal identification number

PKCS public key cryptography standard

PKI public key infrastructure

PKIX public key infrastructure X.509

POP Post Office Protocol; point of presence

PPP Point-to-Point Protocol

PPPEXT PPP extensions

PPTP Point-to-Point Tunneling Protocol

PSRG Privacy and Security Research Group

PSTN public switched telephone network

P3P platform for privacy preferences

PUID Passport Unique Identifier

QoS quality of service

RA registration agent; registration authority

RACF resource access control facility

RADIUS remote authentication dial-in user service

RFC Request for Comment

RIP Routing Information Protocol

ROM read-only memory

RPC remote procedure call

RPI return path information

RSA Rivest, Shamir, and Adleman

RSAC Recreational Software Advisory Council

RSACi RSAC rating service

398 Abbreviations and Acronyms

SA security association

SAID secure association identifier

SALS simple authentication and security layer

SATAN Security Administrator Tool for Analyzing Networks

SDNS secure data network system

SDSI simple distributed security infrastructure

SECSH Secure shell

SEPP secure electronic payment protocol

SESAME secure European system for applications in a

multi-vendor environment

SET secure electronic transaction

SHA-1 secure hash algorithm 1

SHS secure hash standard

S-HTTP secure HTTP

SigG Signaturgesetz (in Germany)

SigV Signaturverordnung (in Germany)

SILS standards for interoperable LAN/MAN security

SIP secure Internet programming

SKIP simple key-management for Internet protocols

SLIP serial line IP

S/MIME Secure MIME

SMS service management system; short messaging service

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SPKAC signed public key and challenge

SPKI simple public key infrastructure

SP3 Security Protocol 3

Abbreviations and Acronyms 399

SP4 Security Protocol 4

SPI security parameters index

SPKI simple public key infrastructure

SRA secure RPC authentication

SRI Stanford Research Institute

SSH secure shell; site security handbook

SSI server-side include; single sign-in

SSL secure sockets layer

SSO single sign-on

SSR secure socket relay

STD Internet standard

STPP Strategic Technology Protection Program

STS station-to-station

S/WAN secure wide-area network

TACACS terminal access controller access control system

TAN transaction authentication number

TAZ temporary autonomous zone

TCB trusted computing base

TCP Transport Control Protocol

TCSEC trusted computer system evaluation criteria

TEK token enryption key

TESS the exponential security system

TIS Trusted Information Systems

TLI transport layer interface

TLS transport layer security

TLSP Transport Layer Security Protocol

TNI trusted network interpretation

400 Abbreviations and Acronyms

TSA Time Stamping Authority

TSP Time-Stamp Protocol

TTP trusted third party

UC University of California

UCB University of California at Berkeley

UDDI Universal Description Discovery and Integration

UID user identification

UPP universal payment preamble

URI uniform resource identifier

URL uniform resource locator

URN uniform resource name

VPN virtual private network

VTP Virtual Tunneling Protocol

WAP Wireless Application Protocol

WG working group

WIPO World Intellectual Property Organization

WSDL Web services markup language

WSIL Web services inspection language

WTLS wireless transport layer security

WWW World Wide Web

W3C World Wide Web Consortium

XML extensible markup language

XTACACS extended TACACS

Abbreviations and Acronyms 401

About the Author

Rolf Oppliger received his M.Sc. and Ph.D. degrees in computer science

from the University of Berne, Switzerland, in 1991 and 1993, respec-

tively. After spending one year as a postdoctoral researcher at the

International Computer Science Institute (ICSI) in Berkeley, California, he

joined the Swiss Federal Strategy Unit for Information Technology (FSUIT)

in 1995, and continued his research and teaching activities at several

universities and polytechnics in Switzerland and Germany. In 1999, he

received the venia legendi from the University of Zürich, Switzerland, became

the Artech House series editor for computer security, and founded

eSECURITY Technologies Rolf Oppliger (http://www.esecurity.ch) to

provide scientific and state-of-the-art consulting, education, and engineer-

ing services related to information technology security. He has published

numerous scientific papers, articles, and books, mainly on security-related

topics. He is a member of the Association for Computing Machinery (ACM),

the IEEE Computer Society, and the International Federation for Informa-

tion Processing (IFIP) Technical Committee 11 (TC11) Working Group 4

(WG4) on network security.

403

Index

A
Abstract syntax notation one, 191

Accept header, 24

Accept-language header, 24

Access control, 14–15, 26–28

Access control list, 361

Acquirer, 253, 260

Active content, 267–72

Active server page, 22, 300, 310, 312–13

ActiveX control, 283–88

Address information restriction, 27–28

Adobe Acrobat Reader, 273

Advanced encryption standard, 96, 136

Aggressive mode exchange, 140

Alert Protocol, 161, 172

American National Standards

Committee, 242

Andrew file system, 144

Anomaly detection, 381–82

Anonymizing HTTP proxy server, 329–30,

337–38

Anonymous browsing, 328–36

Anonymous communication, 320–21,

334–35

Anonymous electronic cash system, 257, 320

Anonymous publishing, 336–41

Anonymous remailer, 321–23

Apache server, 42, 170, 302, 309, 312

Apache server application programming

interface, 299

AP exchange, 235, 237–38

Application gateway, 52, 64–68, 76, 77

Application-layer security, 143–46

Application-level blocking, 363–65

Application-level gateway, 64–68, 77, 293,

361, 363

Application programming interface, 22, 142,

239, 299

Application proxy, 334

Apply action, 131

Arbiter, 253

Asymmetric cryptography. See Public key

cryptography

Attack signature recognition, 381

Attribute authority, 186, 196, 243

Attribute certificate, 186, 242–44

Authenticated Firewall Traversal Working

Group, 61

Authentication and authorization

infrastructure, 145, 213–16

Kerberos-based, 34, 231–41

PKI-based, 241–44

Authentication and key distribution system,

144–45, 215–16

Authentication exchange, 15, 140

Authentication header, 128, 131–35

Authentication server, 233–35, 240

Authentication server exchange, 235

Authentication service, 14

Authenticode, 282, 286–87

Author, BETSI, 270–71

Authorization header, 31, 38

405

B
Babel system, 323

Backbone service provider, 361, 362

Banking software, 169–70

Base-64 encoding, 32–33, 40

Basic authentication, 29–34, 42–45

Basic encoding rules, 191

Bastion host, 64, 69–73

BBBOnLine, 342

Bellcore trusted software integrity system,

270–71

Best current practice, 75

Binary mail attachment, 271–72

Bind command, 61

Binding framework, 100

Binding information, 8

Black list, 363–65

Bleichenbacher attack, 168–69

Blender server, 331–32

Block cipher, 93, 174

Blowfish algorithm, 95

Browser, 6–7, 76–80, 272–73

Brute force attack, 40, 227

BSD Sockets, 143

Bump-in-the-stack, 141, 142

Bump-in-the-wire, 141–42

Buyer, 250

Bypass action, 131

Bytecode verifier, 280

C
Caching, 26, 34, 39, 170, 182, 197, 324

Card verification code, 261

Card verification value, 261

Cashlike payment system, 254

CAST-128, 95

CCTA risk analysis and management

methodology, 378

Censorship, 359–60

content blocking, 360–65

content rating, 360, 365–71

CERIAS, 53

Certificate, 100, 175–78, 185–86

Certificate authority certificate, 201–3

Certificate-based authentication, 41–42

Certificate message, 164

Certificate owner information field, 189

Certificate practice statement, 194

Certificate repository, 193, 195, 196–97

Certificate request message, 164–65, 194

Certificate revocation, 196–201

Certificate revocation list, 194, 198–99, 288

Certificate revocation system, 200

Certificate revocation tree, 200–1

Certificate verify message, 166

Certification authority, 97, 100, 111, 164,

175–78, 186, 192, 193, 242

Certification path (certification chain), 192

Challenge handshake authentication

protocol, 123

Change Cipher Spec Protocol, 161, 163, 166,

167, 172

Chaum mixing network, 322–23, 324, 330, 334

Checklike payment system, 254

Children’s Online Privacy Protection Act, 229

Chosen ciphertext attack, 168–69

Cipher block chaining, 94, 174

Cipher feedback, 94

Cipher suite, 302

Circuit-level gateway, 58–64, 77

Class loader, 280

Client hello message, 162–63, 167

Client key exchange message, 165, 168–69

Client-side security, 267–71

Client software customization, 65

Closed user group, 124

CLUSIF, 378

Code scanning, 292–93

Code signing, 281–83, 286–88

Collision resistant hash function, 91

Collusion attack, 355

Commerce server, 170

Common criteria, 13

Common electronic purse specification, 257

Common gateway interface, 22, 299–309

Common gateway interface directory, 305–6

Common gateway interface script,

300–1, 304–9

Common Object Request Broker Architecture,

63, 179

Communication security, 15, 62

Component object model, 283

Compression control protocol, 123

Computational security, 88–90

Computer emergency response team, 3

406 Index

TEAMFL
Y

Team-Fly®

Computer emergency response team/

coordination center, 3

Computer oracle and password system, 380

Conditional Access for Europe, 257

Connect command, 61

Connection anonymity, 320–21

Connectionless Network Protocol, 125

Connect method, 180–81

Content blocking, 360–65

Content rating and self-determination,

360, 365–71

Contents scramble system, 350

Cookie, 139, 223–28, 324–28

Cookie header, 325

Countermeasure, 9

Crowds system, 331–33

Cryptographic algorithm, 88

Cryptographic file system, 144

Cryptographic hash function, 91–92

Cryptographic key protection, 105–6

Cryptographic message syntax, 195

Cryptographic Protocol, 88

Cryptography, 87–90, 111–13

Cryptolope, 350

Cumulative trust model, 190

Customization, 65

D
Data confidentiality, 14, 62, 135, 156

Data encryption standard, 93–95, 108, 135,

171, 339

Data integrity, 14, 15, 62, 98, 156

Data validation and certification server, 195

Data validation certificate, 195

Decentralized firewall, 53

Delta certificate revocation list, 199

Demilitarized zone, 73, 298, 310

Denial-of-service attack, 3, 4, 276

Deoxyribonucleic acid computer, 90–91

Destination Internet protocol address, 54, 55

Destination port number, 55, 56

DESX protocol, 339

Dial-up client, 120

Differential fault analysis, 9

Differential power analysis, 9

Diffie-Hellman algorithm, 101–2, 137,

139–40, 165–66, 173, 195, 332–33

Digest access authentication, 34–41,

45–46, 387

Digital coin, 256

Digital copyright labeling, 349, 351–56

Digital envelope, 103–5

Digital Millennium Copyright Act, 356–57

Digital shrink-wrap, 205–6, 282

Digital signature, 15, 98–99, 100, 101,

146, 188, 205–6, 281–82

legislation, 110–11

Digital signature giving message recovery,

98–99

Digital signature standard, 98, 102,

140, 173–74

Digital signature with appendix, 99

Digital watermarking, 349, 351–56

Directory information tree, 192

Disable routing/forwarding, 69

Discard action, 131

Distinguished encoding rules, 191

Distinguished name, 187, 191

Distributed computing environment, 145

Domain name system, 23, 27–28, 63, 187, 363

Domain name system security, 144

Domain of interpretation, 138

Donnerhacke’s ActiveX control, 286

Dual-homed firewall, 69–71

Dynamic packet filtering, 52, 57–58

E
Electronic cash system, 255–57, 320

Electronic check, 257–59

Electronic codebook, 94

Electronic commerce modeling language, 228

Electronic credit-card payment, 259–61

Electronic payment system, 249–55, 320

Electronic signature legislation, 110–11

Electronic Signatures in Global and National

Commerce Act, 110

ElGamal algorithm, 102

Elliptic curve cryptography, 102–3

E-mail, 324

E-mail bombing attack, 3, 324

EMV cash card, 257

Encapsulating security payload, 128, 130–36

Encapsulation, 119, 121–23, 126–26, 130–36

Encipherment, 15

Index 407

Encrypted session manager, 143

Encryption, 105–6

End entity, 193

Environmental variable, 301–2

Ethernet, 118

Europe, 108, 110, 170, 344

Event detection, 15

Excel, 274

Executable content, 267–72

Expired certificate, 197–98

Exploder Control, 287–88

Exponential security system, 145

Express purchase service, 228–29

Extended terminal access controller access

control system, 68

Extensible markup language, 7, 21–22, 145–46

Extensible markup language digital

signature, 146

Extensible markup language encryption, 146

F
Fast common gateway interface, 22, 300, 310

Federal information processing standard, 93

Fiber distributed data interface, 118

File permission, 105, 106

File Transfer Protocol, 7, 57–58, 64, 75–76,

155, 179

Financial services markup language, 259

Financial Services Technology Consortium, 259

Fingerprint, 352

Finished message, 166, 167

FIPS 96, 197

Firewall

advantages/disadvantages, 53, 81–83

client-side security, 291–93

crowds system, 333

defined, 50–54

dual-homed, 69–71

network address translation, 76

screened host, 71–72

screened subnet, 72–74

transparent, 66

Firewall traversal, SSL/TLS, 178–82

Formal risk analysis, 378–79

Fortezza key exchange algorithm, 164, 165,

166, 171

Fragile digital watermark, 353

Freedom network, 336

Freedom server, 336

G
Gateway, 25

General public license, 293

Generic routing encapsulation, 123

Generic security model, 10–17

Generic security services API, 62, 239

Get message, 5–6, 64, 361

Global information infrastructure, 4

Group-based authorization, 42

Group file, 43, 43–44, 46

H
Hamiltonian path problem, 89–90

Handheld device, 7

Handshake Protocol

secure sockets layer, 161–67, 179–80

transport layer security, 171–73, 179–80

Hash function, 90–92

one-way, 35, 36, 40, 91–92, 106–7, 134,

170, 174–75, 262

Header

Hypertext Transfer Protocol, 24–25

Internet Protocol, 132–33

packet-filtering rules, 55–56

Helper application, 273–75

Hidden uniform resource locator, 26, 27

Hierarchical trust model, 192

HMAC construction, 134–35, 160–61, 171

Host-based scanner, 380

Host header, 24

Hostname access restriction, 27–28

Host-oriented keying, 130–31

Host security, 13, 50, 52–53

Htpasswd utility, 42, 44–45

HTTPS Protocol, 171, 175, 179, 181, 227, 298

Hybrid cryptography scheme, 103–5

Hypertext markup language, 6

Hypertext markup language tag filtering, 292

Hypertext proprocessor, 307

Hypertext Transfer Protocol, 5–6, 21–26, 166,

179, 298–99, 303–4, 325, 335, 387

Hypertext Transfer Protocol proxy server, 329–30

Hypertext Transfer Protocol state management,

325, 327, 328

408 Index

I
Inbound connection, 51, 55–58

Information Technology Security Evaluation

Criteria, 13

Initialization vector, 130, 172, 174

Initiator, 334

Inner network segment, 70

Insider attack, 53

Institute of Electrical and Electronic

Engineers, 118

Integrated Network Layer Security Protocol, 126

Integrated services digital network, 118, 121

Integrity certificate, 271

Intellectual property protection, 347–49

Intermediary, Hypertext Transfer Protocol,

25–26

Intermediate certificate, 177

Intermediate certificate authority, 192

Intermediate system, 50

International data encryption algorithm, 95

International Electrotechnical Committee,

187, 198, 242

International Organization for Standardization,

125, 143, 187, 198, 242

International Standard 15408, 13

International Telecommunication Union

Telecommunication Standardization,

187, 198, 242

Internet, 1–5, 117, 169

Internet Architecture Board, 4

Internet Assigned Numbers Authority,

133, 156, 157

Internet Engineering Steering Group, 175

Internet Engineering Task Force, 61, 76, 122,

127, 128, 137, 138, 142–44, 146, 171, 175,

187, 188, 242, 381

Common Authentication Technology

Working Group, 239

Public-Key Infrastructure Working Group,

185, 187, 193–96, 198, 200

Internet Explorer, 7, 77–78, 154, 176, 181, 201,

202–5, 207, 273, 275, 286–89, 326, 327,

343, 368–71

Internet Inter-ORB Protocol, 63, 179

Internet-Keyed Payments Protocol, 261

Internet key exchange, 128–29, 136–41

security association, 139–40

Internet Key Management Protocol, 127–28

Internet layer security

architecture, 128–31

IKE Protocol, 136–41

implementations, 141–42

IPsec Protocols, 131–36

overview, 125–28

Internet message access protocol, 155, 157

Internet Protocol, 119

address blocking, 361–63

Secure Tunnel Protocol, 137

version 4, 63, 74, 127

version 6, 63, 74, 76, 127

Internet Protocol security, 124

implementations, 141–42

protocols, 128, 131–36

security architecture, 128–31

security association, 140–41

Internet Protocol security protocol, 127

Internet Protocol Security Working Group,

127, 128, 137, 142

Internet Security Association and Key

Management Protocol, 128, 137, 138

Internet server application programming

interface, 299, 309

Internet service provider, 319, 360, 364

Internet Worm, 3, 272

Internet X.509 public key infrastructure, 196

Internet zone, 288

Interpretation attack, 356

Interpreter application, 274

Interprocess communications facility, 143

Intranet, 50

Intranet firewall, 53

Intrusion detection, 381

Intrusion Detection Exchange Format Working

Group, 381

Intrusion detection systems, 379, 381–82

Invisible digital watermark, 353

IPX protocol, 119

IRC protocol, 155

Issuer, 253

J
Janus, 336–37

Japan, 108

JAP system, 330

Java, 275–77, 284, 301, 330

Java 2 Platform, Enterprise Edition, 313

Index 409

Java applet, 278–85

blocking, 291–92

Java application programming interface, 313

JavaScript, 275–77

Java Server Pages, 22, 300, 310, 313

Java virtual machine, 275, 278, 286

Jondo process, 331–33

JScript, 275, 277, 312–13

Just-in-time compiler, 278

K
Kerberized network, 239

Kerberos, 34, 45, 145, 146, 215–16, 226, 231–40

version 4, 231–32, 238

version 5, 231–32

Key distribution, 34, 144–45

Key distribution center, 92–93, 233, 238, 241

Key exchange algorithm, 164, 165, 166, 194

Kids .NET passport service, 229–30

L
Label bureau, 367–70

Layer 2 Forwarding Protocol, 121

Layer 2 Funneling Protocol, 120–21, 124

Layer 2 Tunneling Protocol access concentrator,

120–23

Layer 2 Tunneling Protocol network server,

121–23

Layered Security Protocol, 145–46

Leaf certificate, 192

Legal attack, 356

Legal issues, 107–11

Legal security, 17

Lightweight Directory Access Protocol, 195

Link layer encryption, 335

Local-area network, 118

Local intranet zone, 289

Local registration agent, 193

Local registration authority, 193

Locator, 338

Lucifer algorithm, 108

M
Macro virus, 4

Mail order/telephone order, 251

Main mode exchange, 140

Man-in-the-middle attack, 230

MARION, 378

Merchant, 250

Message authentication code, 91, 156, 158,

160, 172

Message authenticity, 98

Message digest, 91

Message digest, 2, 92, 170

Message digest, 4, 92

Message digest, 5, 35, 92, 134, 170, 270–71

Messaging, Web-based, 7

Metropolitan-area network, 118

MicroMint, 262

Micropayment system, 261–62

Microsoft baseline security analyzer,

380–81

Microsoft challenge handshake authentication

protocol, 123

Microsoft .NET Passport, 215–31

Microsoft point-to-point encryption, 123

Microsoft Point-to-Point Tunneling Protocol,

123–24

Microsoft Word, 274

Millicent Protocol, 262

Modular Key Management Protocol, 137

Mosaic browser, 6, 154

Mozilla browser, 6

Multicast traffic, 127

Multihomed host, 69

Multiprotocol label switching, 124–25

Multipurpose Internet mail extension,

6, 272, 274, 292

Multitier Web-base application, 298–300

Must-revalidate cache-control directive, 39

N
National Center for Supercomputer

Application, 154

National Computer Security Center, 13

National information infrastructure, 2, 4

National Institute of Science and

Technology, 125

National Institute of Standards and

Technology, 93

National Security Agency, 13, 125

NetBill, 259

NetCash, 257

NetCents, 262

NetCheque, 259

410 Index

Netscape Navigator, 7, 78–79, 154, 175–76,

181, 230, 278

Netscape Server application programming

interface, 22, 299, 309

Network access layer security, 118–25

Network access server, 67, 121

Network address translation, 74–76

Network-based scanner, 380

Network computer, 278

Network computing, 278

Network interface packet-filtering rules, 56

Network layer security, 125–26

Network Layer Security Protocol, 125–26

Network News Transfer Protocol, 181

Network security, 13–16, 52–53

Network security program, 145

Nonce parameter, 37

Non-repudiation service, 14

Non-script-aliased common gateway

interface, 305

Notarization, 15

Notation, cryptography, 111–13

NSIIOP, 155

O
OAKLEY Key Determination Protocol,

128, 137–38

Object identifier, 191

Object linking and embedding, 283, 285

Object signing system, 282

Offline payment system, 255

One-way hash function, 35, 36, 40, 91–92,

106–7, 134, 170, 174–75, 262

Onion, 334

Onion routing, 333–36

Online certificate repository, 193, 195, 196–97

Online Certificate Status Protocol, 195,

198, 199–200

Online payment system, 254–55

Open Group, 145

Open Pretty Good Privacy, 188

OpenSSL, 170

Open systems interconnection, 14–15, 98, 118

Opera browser, 7, 79–80, 154, 176–78, 181,

202–3, 318–19, 327

Orange Book, 13

Organizational registration agent, 193

Organizational security, 16–17

Other people’s certificate, 177

Outbound connection, 51, 55, 56

Outer network segment, 70

Outer pad value, 134

Output feedback, 94

Ownership labeling, 352

P
Packet encoding rules, 191

Packet filter, 52

dynamic, 52, 57–58

static, 52, 54–57

Packet-level blocking, 361–63

Packet logging, 57

Parallel dual-homed firewall, 71

Passive eavesdropping, 33, 168

Passive File Transfer Protocol, 58

Passphrase, 105–6

Passport credentials, 221

Passport unique identifier, 219–20, 224

Passport user profile, 220

Passport wallet, 221

Password cracker, 225

Password file, 42–46

Password security, 216, 227, 232–33

Password sniffing, 3, 4, 8

Patent claims, 108–9

Pay-after payment system, 254

Payee, 250, 255

Payer, 250, 255

Pay-now payment system, 254

PayPal, 253

PayWord, 262

PCMCI card, 106

Perfect forward secrecy, 141

Perl language, 301, 305–6, 333

Personal certificate, 177, 204–5

Personal digital assistant, 7

Personal firewall, 53

Pervasive security mechanism, 15

Photuris Key Management Protocol, 137

Photuris Plus, 137

Physical security, 90

Platform for Internet content selection, 343,

366–67, 370

Platform for privacy preferences project,

342–43

Plug-in application, 273–75, 284

Index 411

Point of Presence 3 Protocol, 155

Point-to-Point Protocol, 118–19, 123

Point-to-Point Protocol extension, 122

Point-to-Point Tunneling Protocol, 122–24

Post method, 223, 303–4

Preferred encryption algorithm, 190

Preimage resistant hash function, 91–92

Prepaid payment system, 254

Presentation attack, 355

Pretty Good Privacy, 270–71

Pretty Good Privacy certificate, 188–90

Principal, 232

Privacy enhancing technology, 317, 343

Privacy protection, 317–24, 341–44

Privacy seal, 341–42

Private communication technology, 154

Private digital watermark, 354

Private key, 97, 105, 106, 202, 258, 322

Privilege attribute certificate, 240

Privilege attribute server, 240

Profile cookie, 223

Protocol data unit, 118, 123

Protocol number, 55

Proxied Application Protocol, 179

Proxy auto-configuration, 78–80, 243

Proxy cache, 39

Proxy-connection header, 24

Proxy server, 25, 39, 59, 68, 77, 179, 181–82,

291, 293, 324, 330, 361, 363

Pseudorandom bit sequence, 107

Pseudorandom nonce, 140–41

Public cache-control directive, 39

Public database mapping, 340

Public digital watermark, 354

Public key, 96, 322

Public key certificate, 34, 41, 100, 186

overview, 187–88

Pretty Good Privacy, 188–90

X.509, 190–93

Public key cryptography

overview, 96–100, 103

provable security, 89

types, 100–3

Public key cryptography standard 1, 168–69

Public key digital watermarking, 354–55

Public key field, 189

Public key infrastructure, 167, 186–87, 192,

196, 215, 261

Public key infrastructure authentication and

authorization infrastructure, 241–44

Public-Key Infrastructure Working Group,

185, 187, 193–96

Public switched telephone network, 2, 118, 121

Publius, 340–41

Pull model, 244

Push model, 244, 324, 364

Python language, 301

Q
Qualified certificate, 195

Qualitative risk analysis, 379

Quantitative risk analysis, 378–79

Quantum cryptography, 90

Query string, 302–3

Quicken software, 286

Quick mode exchange, 140–41

R
Randomness, 107

RC2/RC4/RC5/RC6, 95–96, 170–71

Realm, 232

Realm parameter, 37, 40–41

Receiver anonymity, 320–21

Recipient labeling, 352

Record Protocol, 159–61, 171–72

Recreational Software Advisory Council rating

service, 367–70

Registration agent, 193

Registration authority, 193

Regulations, cryptography, 109–10

Remote access server, 118

Remote authentication dial-in user service,

67–68

Remote system, 120–21

Removable media, 106

Request for comment 822, 366

Request for comment 1851, 135–36

Request for comment 1918, 75

Request for comment 1945, 6

Request for comment 2104, 160

Request for comment 2246, 172, 175

Request for comment 2341, 121

Request for comment 2402, 133

Request for comment 2405, 135

Request for comment 2406, 135

412 Index

Request for comment 2407, 138

Request for comment 2459, 194

Request for comment 2510, 194

Request for comment 2511, 194

Request for comment 2527, 194

Request for comment 2528, 194

Request for comment 2559, 194

Request for comment 2560, 195, 198, 200

Request for comment 2585, 195

Request for comment 2587, 195

Request for comment 2616, 6, 22, 28

Request for comment 2617, 28

Request for comment 2661, 124

Request for comment 2712, 175

Request for comment 2797, 195

Request for comment 2817, 175

Request for comment 2828, 124, 185, 186,

196, 242, 319

Request for comment 2875, 195

Request for comment 2965, 325

Request for comment 3029, 195, 198

Request for comment 3039, 195

Request message, 22–24, 30–33, 298

Responder, 334

Response content filtering, 291

Response message, 24–25, 30, 36–38

Response value validity, 38–39

Restricted sites zone, 289

Return path information, 323

Return uniform resource locator, 222, 228

Rewebber, 338–40

RIPEMD, 92

RIPEMD-160, 92

Risk, 376

Risk analysis (risk assessment), 376, 378–82

Risk management, 376–77

Rivest, Shamir, and Adleman, 100–1, 140,

164, 165, 166, 168, 173

Robust digital watermark, 353

Robustness attack, 355

Root certificate, 192, 202–3

Router, 54–55, 57

Routing control, 15

S
SAFER K-64/K-128, 95

Salt mechanism, 43

Sandbox, 275, 279–80, 282–83

Screened host firewall, 71–72

Screened subnet firewall, 72–74

Screening router, 54–55

Script-aliased common gateway interface, 305

Scripting language, 275–77

Secondary authentication, 68

Second-preimage resistant hash function, 91

Secret key cryptography, 92–96, 103

Secret key digital watermarking, 354

Secret-sharing scheme, 341

Secure channel, 90

Secure channel sign-in, 226–27

Secure data network system, 125, 143

Secured channel, 90

Secure Electronic Payment Protocol, 261

Secure electronic transaction, 259, 261

Secure hash algorithm 1, 92, 134

Secure Hypertext Transfer Protocol,

153–54, 387

Secure Internet Programming Group, 279

Secure messaging, 145–46

Secure server, 170

Secure shell, 144, 171

Secure sockets layer, 41, 143, 146, 226,

230, 244, 302, 310, 330, 337, 387

architecture, 155–59

certificates, 175–78

Handshake Protocol, 161–67

history, 153–55

implementations, 169–71

Record Protocol, 158–61

security analysis, 167–69

version 1/version 2, 154

version 3, 154–55, 171, 172

Secure transaction technology, 261

Secure Web tunneling, 182

Security administrator tool for analyzing

networks, 380

Security association, 124, 129–30, 133,

138–41

Security association bundle, 130, 138–39

Security association database, 129

Security audit trail, 15

Security engineering, 387

Security-Enhanced Application Protocol, 144

Security gateway. See Firewall

Security Hypertext Transfer Protocol, 144

Index 413

Security identifier, 241

Security Internet gateway. See Firewall

Security label, 15

Security level, 290

Security manager, 280

Security mechanism, 14–15

Security parameters index, 129

Security policy, 10–13, 51, 52, 281, 375

Security policy database, 129, 131, 138

Security Protocol 3, 125

Security Protocol 4, 143

Security Protocol identifier, 129

Security recovery, 15

Security scanner, 379–81

Security service, 14

Security zone, 288–91

Self-labeling, 367, 369–70

Self-signature field, 189

Sender anonymity, 320–21

Sequence number guessing attack, 3, 4

Serial line dial-up, 118

Serial Line Internet Protocol, 118

Server application programming interface, 309

Server configuration, 42–46

Server hello message, 163–64, 167

Server key exchange message, 164

Server-side include, 300, 311–12

Server-side security, 297–300

Server (site) certificate, 203–4

Service ticket, 234–36

SESAME, 145, 240

Session hijacking attack, 156

Session identity field, 162–63

Session key, 105, 107

Session-unique keying, 130–31

Set-cookie header, 325

Simple authentication and security

layer, 157

Simple distributed security infrastructure, 188

Simple key management for Internet protocols,

137, 138

Simple Mail Transfer Protocol, 55, 321, 335

Simple Object Access Protocol, 7–8, 146

Simple Object Access Protocol envelope, 8

Simple public key infrastructure, 188

Single sign-in, 217, 222–28

Single sign-on, 217

SKEME, 137

Smart card, 106, 111

SOCKS, 59–65

Socksified client/stack, 60, 61, 65

Software publisher certificate, 205–7

Source Internet Protocol address, 54, 55

Source port number, 55, 56

Specific security mechanism, 14–15

Spoofing attack, 230, 328

SPX Protocol, 145

SSLeay Protocol, 170

SSLref Protocol, 170

Standardization bodies, 187

Standards for interoperable LAN/MAN

security, 118

Standard sign-in, 226

Stateful inspection, 58

Stateless packet filter, 56–57, 58

Static packet filtering, 52, 54–57

Station-to-Station Protocol, 137

Status code, 25, 30

Strategic technology protection program, 380

Stream cipher, 93, 174

Strong collision resistant hash function, 91

Strong credential sign-in, 227–28

Stunnel software, 170

SubScrip Protocol, 262

Swipe Protocol, 126

Switch debit card, 254

Symmetric key cryptography. See Secret key

cryptography

System administration, 50

T
TAZ network, 340, 364

Telnet, 55, 56, 66–67, 155, 179, 335

Terminal access controller access control

system, 67–68

Thin client, 278

Threat, 9, 376

Threat analysis, 376–77

Three-key triple data encryption standard, 95

Ticket cookie, 223

Ticket-granting server, 233–37

Ticket-granting ticket, 234–36, 240–41

Time stamping authority, 195

Time-Stamp Protocol, 195

Timing attack, 9

Token bus, 118

414 Index

Token encryption key, 165

Token Ring, 118

Tool control language, 301

Traffic analysis attack, 156, 319–32

Traffic padding, 15

Transparent application gateway, 76

Transparent firewall, 66

Transport Control Protocol, 5, 54, 57–58, 59,

62, 64, 300, 308

Transport Control Protocol connection flag, 55

Transport Control Protocol/Internet Protocol,

60, 71, 117

Transport Control Protocol SYN flooding, 3, 156

Transport layer interface, 143

Transport layer security, 244, 302, 310,

330, 337, 387

Transport Layer Security Protocol, 41, 143,

144, 146

certificates, 175–78

Handshake Protocol, 171–73

overview, 171–75

Record Protocol, 171–72

Transport Layer Security Working Group, 143,

171, 175

Transport mode, 132

Trapdoor, 287

Triple data encryption standard, 94–95, 136,

174, 223

TRUSTe, 342

Trusted Computer Security Evaluation Criteria, 13

Trusted functionality, 15

Trusted root certificate, 177

Trusted sites zone, 289

Trusted third party, 98, 100, 186, 195, 215,

217, 233, 332

Trust management, 214, 214–16

Trustmark, 342

Tunnel, 26

Tunneling Protocol, 119–20, 122–24, 127,

179–81

Tunnel mode, 132, 133, 136

Two-key triple data encryption standard, 95

U
Unconditional security, 88–89

Uniform resource identifier, 23

Uniform resource locator, 23, 26–27, 222,

228, 337–40

Uniform resource locator blocking, 361, 363–65

Uniform resource locator rewriting, 337

Uniform resource name, 23

Universal description discovery and integration, 8

Universal serial bus card, 106, 111

UNIX password encryption, 42–43

Unlinkability of sender and receiver, 320–21

Unwanted communication, 52

Usage control, 349–50

User, BETSI, 270–71

User-agent header, 24

User authentication, 14, 28, 52, 62

basic, 29–34

digest access, 34–41

Kerberos, 232–33

Telnet server, 67–68

User authorization, 28, 42

User Datagram Protocol, 54, 63, 121

User Datagram Protocol associate request, 63

Username, 28

User-oriented keying, 130–31

User password file, 40–41

User procedures customization, 65

V
Validity period field, 190

Value exchange, 140

VBScript, 275, 277, 312–13

Version number field, 189

VirtualPIN, 251–53

Virtual private network, 119, 122, 124–25

Virtual Tunneling Protocol, 119

Virus scanning, 292, 293

Visible digital watermark, 353

Visited sites cookie, 223

Von Neumann architecture, 269

Vulnerability, 8–9, 375

W
Watermarking, 351

Weak collision resistant hash function, 91

Weak one-way hash function, 91

Web bug, 328

Webjacking, 4

Web of trust, 190, 192

Web services, 7–8

Web services inspection language, 8

Index 415

Web services markup language, 7, 146

Web Transaction Security Working Group, 144

Windows 2000, 240–41

Wireless Application Protocol, 106, 188

Wireless transport layer security, 188

World Intellectual Property

Organization, 356

World Wide Web, 5–8, 117, 169, 269–71,

324, 385–87

World Wide Web certificate, 201–7

World Wide Web Consortium, 7, 8, 145–46,

187, 366, 367

Wrapper, 307–9

WS-Security specification, 146

X
X.500 standard, 187, 190

X.509 certificate, 146, 164, 187, 189, 190–93,

242–44, 282–83

X.509 certificate revocation list, 198–99

416 Index

TEAMFL
Y

Team-Fly®

	Cover
	Contents
	Preface
	Introduction
	1.1 Internet
	1.2 WWW
	1.3 Vulnerabilities, threats, and countermeasures
	1.4 Generic security model
	1.4.1 Security policy
	1.4.2 Host security
	1.4.3 Network security
	1.4.4 Organizational security
	1.4.5 Legal security

	HTTP Security
	2.1 HTTP
	2.2 User authentication, authorization, and access control
	2.3 Basic authentication
	2.4 Digest access authentication
	2.5 Certificate- based authentication
	2.6 Server configuration
	2.6.1 Configuring HTTP basic authentication
	2.6.2 Configuring HTTP digest access authentication

	2.7 Conclusions

	Proxy Servers and Firewalls
	3.1 Introduction
	3.2 Static packet filtering
	3.3 Dynamic packet filtering or stateful inspection
	3.4 Circuit- level gateways
	3.5 Application- level gateways
	3.6 Firewall configurations
	3.6.1 Dual- homed firewall
	3.6.2 Screened host firewall
	3.6.3 Screened subnet firewall

	3.7 Network address translation
	3.8 Configuring the browser
	3.9 Conclusions

	Cryptographic Techniques
	4.1 Introduction
	4.2 Cryptographic hash functions
	4.3 Secret key cryptography
	4.3.1 DES
	4.3.2 Triple- DES
	4.3.3 IDEA
	4.3.4 SAFER
	4.3.5 Blowfish
	4.3.6 CAST- 128
	4.3.7 RC2, RC4, RC5, and RC6
	4.3.8 AES

	4.4 Public key cryptography
	4.4.1 RSA
	4.4.2 Diffie- Hellman
	4.4.3 ElGamal
	4.4.4 DSS
	4.4.5 ECC

	4.5 Digital envelopes
	4.6 Protection of cryptographic keys
	4.7 Generation of pseudorandom bit sequences
	4.8 Legal issues
	4.8.1 Patent claims
	4.8.2 Regulations
	4.8.3 Electronic and digital signature legislation

	4.9 Notation

	Internet Security Protocols
	5.1 Introduction
	5.2 Network access layer security protocols
	5.2.1 Layer 2 Forwarding Protocol
	5.2.2 Point- to- Point Tunneling Protocol
	5.2.3 Layer 2 Tunneling Protocol
	5.2.4 Virtual private networking

	5.3 Internet layer security protocols
	5.3.1 IP security architecture
	5.3.2 IPsec protocols
	5.3.3 IKE Protocol
	5.3.4 Implementations

	5.4 Transport layer security protocols
	5.5 Application layer security protocols
	5.5.1 Security- enhanced application protocols
	5.5.2 Authentication and key distribution systems
	5.5.3 Layering security protocols above the application layer

	5.6 Conclusions

	SSL and TLS Protocols
	6.1 SSL Protocol
	6.1.1 History
	6.1.2 Architecture
	6.1.3 SSL Record Protocol
	6.1.4 SSL Handshake Protocol
	6.1.5 Security analysis
	6.1.6 Implementations

	6.2 TLS Protocol
	6.3 SSL and TLS certificates
	6.4 Firewall traversal
	6.4.1 SSL/ TLS tunneling
	6.4.2 SSL/ TLS proxy servers

	6.5 Conclusions

	Certificate Management
	7.1 Introduction
	7.2 Public key certificates
	7.2.1 PGP certificates
	7.2.2 X. 509 certificates

	7.3 IETF PKIX WG
	7.4 Certificate revocation
	7.4.1 CRLs
	7.4.2 OCSP
	7.4.3 Alternative schemes

	7.5 Certificates for the WWW
	7.5.1 CA certificates
	7.5.2 Server or site certificates
	7.5.3 Personal certificates
	7.5.4 Software publisher certificates

	7.6 Conclusions

	Authentication and Authorization
	8.1 Introduction
	8.2 Microsoft .NET Passport
	8.2.1 Overview
	8.2.2 .NET Passport user accounts
	8.2.3 .NET Passport SSI service
	8.2.4 Complementary services
	8.2.5 Security analysis

	8.3 Kerberos- based AAIs
	8.3.1 Kerberos
	8.3.2 SESAME
	8.3.3 Windows 2000

	8.4 PKI- based AAIs
	8.5 Conclusions

	Electronic Payment Systems
	9.1 Introduction
	9.2 Electronic cash systems
	9.3 Electronic checks
	9.4 Electronic credit- card payments
	9.5 Micropayment systems
	9.6 Conclusions

	Client- side Security
	10.1 Introduction
	10.2 Binary mail attachments
	10.3 Helper applications and plug- ins
	10.4 Scripting languages
	10.5 Java applets
	10.5.1 Security architecture
	10.5.2 Security policy
	10.5.3 Code signing

	10.6 ActiveX controls
	10.7 Security zones
	10.8 Implications for firewalls
	10.9 Conclusions

	Server- side Security
	11.1 Introduction
	11.2 CGI
	11.3 Server APIs
	11.4 FastCGI
	11.5 Server- side includes
	11.6 ASP
	11.7 JSP
	11.7 JSP
	11.8 Conclusions

	Privacy Protection
	12.1 Introduction
	12.2 Early work
	12.3 Cookies
	12.4 Anonymous browsing
	12.4.1 Anonymizing HTTP proxy servers
	12.4.2 JAP
	12.4.3 Crowds
	12.4.4 Onion routing
	12.4.5 Freedom network

	12.5 Anonymous publishing
	12.5.1 JANUS and the rewebber service
	12.5.2 TAZ servers and the rewebber network
	12.5.3 Publius

	12.6 Voluntary privacy standards
	12.6.1 Privacy seals
	12.6.2 P3P

	12.7 Conclusions

	Intellectual Property
	13.1 Introduction
	13.2 Usage control
	13.3 Digital copyright labeling
	13.3.1 Introduction
	13.3.2 Categories of watermarking techniques
	13.3.3 Attacks

	13.4 Digital Millinium Copyright Act
	13.5 Conclusions

	Censorship on the WWW
	14.1 Introduction
	14.2 Content blocking
	14.2.1 IP address blocking
	14.2.2 URL blocking

	14.3 Content rating and self- determination
	14.4 Conclusions

	Risk Management
	15.1 Introduction
	15.2 Formal risk analysis
	15.3 Alternative approaches and technologies
	15.3.1 Security scanning
	15.3.2 Intrusion detection

	15.4 Conclusions

	Conclusions and Outlook
	Abbreviations and Acronyms
	About the Author
	Index

