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1. INTRODUCTION

What is the Fourier Transform, anyway? And how does a nasty integral find its way
into the electronics world? These questions bothered me greatly. Quite possibly, these
same questions are bothering you, too.

2. BACKGROUND

If you needed to know the relative strength of a signal in a certain frequency range,
you could build a filter and measure the power that passes through. But what if you
wanted to analyze more than one frequency band? Would you build hundreds of filters
and hope that the components are accurate enough to get the signals you want? An easier
method of decomposing a signal into its components involves using a modification of the
work of a mathematician named Fourier. Fourier’s work is to an electrical signal what an
optical prism is to light.

In general, the Fourier transform is used to move a function from amplitude as a
function of time to amplitude as a function of frequency. Looking at a function which
describes amplitude in terms of frequency can reveal the signal strength in a particular
range of frequencies.

As it stands, the Fourier Transform is a bit hard to do with discrete data. The equa-
tion

X( f ) =
∞

−∞
∫ x(t)e− j2� ft dt

applies best to continuous functions. (In this equation,x(t) is the function in time, and
X( f ) is the corresponding frequency function. ft is the frequency to analyze.)

It was reasoned that someone would have to come up with a discrete transform to
deal with signals sampled at discrete intervals. They dev elop theDFT, and this serves the
needs of all two people who worked with discrete data at that early time in history. It has
but one drawback: it is slow. The transform essentially multiplies each sample by a sine
wave and a cosine wav e(a sine wav e90° out of phase) for each frequency to be ana-
lyzed.

So, some junior programmers at IBM decide that they hav e too much time, and
they proceed to develop a faster method. Nobody at their lab (the Thomas J. Watson
Research Park) had shown them their official projects, so they decided to have some
mathematical fun. Their work paid off, and the FFT most commonly used is named in
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their honor (the Cooley-Tukey algorithm).

3. DETAILS

3.1. TheDFT

The reason that compelled Cooley and Tukey to take such drastic action is that a
DFT has inherent redundancies. In the DFT, you have a set of discrete samples. Let’s say,
for purposes of explanation, that it has 1024 points, and that pointn is denoted byf (n).
You then pick a frequency to analyze against the sample. (There are certain restrictions,
mentioned below, that apply to the selected frequency.) You would then generate a sine
wave at that frequency, and a cosine (sine + 90 degrees phase shift) wav e. Call thems(n)

andc(n), respectively. You then calculate:X(m) =
1

n

n−1

k=0
Σ x(k)W mk whereW = e

− j2�
n . Rais-

ing e to complex powers gets hairy, howev er. It will be shown later that the whole mess

is almost equivalent to
1

n √ 


n

i=1
Σ f (n)s(n)



2

+ 


n

i=1
Σ f (n)c(n)



2

. The multiplication corre-

sponds to modulation of signals, which is used in AM radio for both transmission (multi-
plying a carrier by an audio signal) and for receiving (when the local oscillator wants to
generate sum and difference wav es to filter out the carrier).

The preceding equation, in English, means that you calculate the sum of all the
products of the function at pointn and the sine wav eat pointn. Then, you calculate the
sum of the function at pointn and the cosine wav eat pointn. You square both sums, add
the resulting numbers, and take the square root of that. (Wow. I’m glad that a computer
usually does all that...) You now hav ea relative frequency strength for f . After all, in
many cases, all you are interested in is the magnitude of the complex number (denoted
X( f ) above) that the transform returns. The relative strength of frequency f is whatX( f )
is meant to denote, and the angle thatX( f ) forms in the complex plane is the phase shift
that a sine wav ewould go through were it to reconstruct the original sampled wav e.

The problem is that this is an “orderN 2” operation, meaning that there are two
variables involved (number of frequencies to analyze and number of samples) and the
computation time is proportional to the product of these two variables.

3.2. TheFFT

3.2.1. TheAlgorithm

Cooley and Tukey noticed that if you do this for a number of frequencies, you get
many redundancies in the points which you calculate. First of all, the sine and cosine
waves are the same wav es at different positions. One could get away with calculating just
the sine wav e, and shifting the phase to get the cosine wav e. Also, one can use the sym-
metry of the wav es to even further reduce calculation time. Plus, the wav es, as the fre-
qency being checked increases, overlap more and more. They devised a method which
involves very little computation, and runs approximately 200 times faster than a DFT on
the same sample wav e. This is an “orderN log2 N ” operation, meaning that for large
numbers of samples or frequencies to analyze, the computation time rises nearly linearly
(as opposed to skyrocketing with a straight DFT).
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In the complex-number variation of the equation, there is a term known as “W”. It
is computed as follows:

W = e
− j2�

n

In each of the circles in the tier diagram, there is a number, p. This is the power to which
the “W” term must be raised. Your math book probably usesi, but i represents current in
electronics. W is calculated using Euler’s formula, which says that
e− jx = cos(x) + jsin(x). (see the Math Review at the end). The dashed line in the tier dia-
gram indicates thex value for the first term of the following equation, and the solid line
indicates thex for the second term. Here is the operation which happens in each circle:
x(m2) + W p x(m2)

3.2.2. TheResults

Given n input points, the FFT returnsn frequency components, of which the first
n

2
are valid. (The other components are mirror images of the firstn and are considered
invalid since the frequencies they represent do not satisfy the Nyquist Theorem below.)

They start with the DC component, and are spaced apart by a frequency of
1

n∆t
. The

magnitude of the complex number returned is the frequency’s relative strength.

3.2.3. Caveats

The Nyquist Theorem specifies that you must sample at a frequency over twice the
maximum frequency you want to analyze. That means that for each cycle of the input
wave, the average number of samples must be over two. This theorem explains why com-
pact discs are recorded with a 44 KHz sampling frequency even though the human ear
can only hear sounds up to about 20 KHz (your mileage may vary). If the Nyquist Theo-
rem’s conditions are not satisfied, a phenomenon known as aliasing occurs. In the case of
a CD, there would not be enough samples to fully define each wav eform at a high funda-
mental frequency, and the sound would be much lower than expected.
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4. Math Review

The justification behind the expansion of theex term is as follows. Most transcen-
dental functions (including sine, cosine andex) can be represented as an infinite sum of
polynomial terms.The derivation can be found in any reputable Calculus text under the
heading of “Taylor Polynomials”. These sums work when complex numbers are involved.
For instance:

ex = 1 + x +
x2
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Letting x = i
�
, Euler’s formula becomes obvious to the most casual observer:
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which looks surprisingly like

ei� = cos(
�
) + i sin(

�
)
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