
Preview

Data Models

In this chapter, you will learn:

� About data modeling and why data models are important

� About the basic data-modeling building blocks

� What business rules are and how they influence database design

� How the major data models evolved

� How data models can be classified by level of abstraction

This chapter examines data modeling. Data modeling is the first step in the database design

journey, serving as a bridge between real-world objects and the database that resides in the

computer.

One of the most vexing problems of database design is that designers, programmers, and

end users see data in different ways. Consequently, different views of the same data can lead

to database designs that do not reflect an organization’s actual operation, failing to meet

end-user needs and data efficiency requirements.To avoid such failures, database designers

must obtain a precise description of the nature of the data and of the many uses of that data

within the organization. Communication among database designers, programmers, and end

users should be frequent and clear. Data modeling clarifies such communication by reducing

the complexities of database design to more easily understood abstractions that define

entities and the relations among them.

First, you will learn what some of the basic data-modeling concepts are and how current

data models developed from earlier models. Tracing the development of those database

models will help you understand the database design and implementation issues that are

addressed in the rest of this book. Second, you will be introduced to the Entity Relationship

Diagram (ERD) as a data modeling tool. ER diagrams can be drawn using a variety of

notations.Within this chapter you will be introduced to the traditional Chen notation, the

more current Crows’ Foot notation, and the newer class diagram notation, which is part of

the Unified Modeling Language (UML). Finally, you will learn how various degrees of data

abstraction help reconcile varying views of the same data.

2
T

W
O

C6545_02 6/6/2007 9:18:3 Page 30

2.1 DATA MODELING AND DATA MODELS

Database design focuses on how the database structure will be used to store and manage end-user data. Data modeling,
the first step in designing a database, refers to the process of creating a specific data model for a determined problem
domain. (A problem domain is a clearly defined area within the real world environment, with well defined scope and
boundaries, that is to be systematically addressed.) A data model is a relatively simple representation, usually
graphical, of more complex real-world data structures. In general terms, a model is an abstraction of a more complex
real-world object or event. A model’s main function is to help you understand the complexities of the real-world
environment. Within the database environment, a data model represents data structures and their characteristics,
relations, constraints, transformations, and other constructs with the purpose of supporting a specific problem domain.

Data modeling is an iterative, progressive process. You start with a simple understanding of the problem domain, and
as your understanding of the problem domain increases, so does the level of detail of the data model. Done properly,
the final data model is in effect a “blueprint” containing all the instructions to build a database that will meet all end-user
requirements. This blueprint is narrative and graphical in nature, meaning that it contains both text descriptions in
plain, unambiguous language and clear, useful diagrams depicting the main data elements.

Traditionally, database designers relied on good judgment to help them develop a good data model. Unfortunately,
good judgment is often in the eye of the beholder, and it often develops after much trial and error. For example, if each
of the students in this class has to create a data model for a video store, it’s very likely that each of them will come
up with a different model. Which one would be the correct one? The simple answer is “the one that meets all the
end-user requirements,” and there may be more than one correct solution! Fortunately, database designers make use
of existing data modeling constructs and powerful database design tools that substantially diminish the potential for
errors in database modeling. In the following sections you will learn how existing data models are used to represent
real world data and how the different degrees of data abstraction facilitate data modeling. But first, you must
understand the importance of data models and their basic constructs.

2.2 THE IMPORTANCE OF DATA MODELS

Data models can facilitate interaction among the designer, the applications programmer, and the end user. A
well-developed data model can even foster improved understanding of the organization for which the database design
is developed. In short, data models are a communication tool. This important aspect of data modeling was summed
up neatly by a client whose reaction was as follows: “I created this business, I worked with this business for years, and
this is the first time I’ve really understood how all the pieces really fit together.”

Note

The terms data model and database model are often used interchangeably. In this book, the term database
model is used to refer to the implementation of a data model in a specific database system.

Note

An implementation-ready data model should contain at least the following components:

• A description of the data structure that will store the end-user data.

• A set of enforceable rules to guarantee the integrity of the data.

• A data manipulation methodology to support the real-world data transformations.

C6545_02 6/6/2007 8:54:29 Page 31

31D A T A M O D E L S

The importance of data modeling cannot be overstated. Data constitute the most basic information units employed by
a system. Applications are created to manage data and to help transform data into information. But data are viewed
in different ways by different people. For example, contrast the (data) view of a company manager with that of a
company clerk. Although the manager and the clerk both work for the same company, the manager is more likely to
have an enterprise-wide view of company data than the clerk.

Even different managers view data differently. For example, a company president is likely to take a universal view of
the data because he or she must be able to tie the company’s divisions to a common (database) vision. A purchasing
manager in the same company is likely to have a more restricted view of the data, as is the company’s inventory
manager. In effect, each department manager works with a subset of the company’s data. The inventory manager is
more concerned about inventory levels, while the purchasing manager is more concerned about the cost of items and
about personal/business relationships with the suppliers of those items.

Applications programmers have yet another view of data, being more concerned with data location, formatting, and
specific reporting requirements. Basically, applications programmers translate company policies and procedures from
a variety of sources into appropriate interfaces, reports, and query screens.

The different users and producers of data and information often reflect the “blind people and the elephant” analogy:
the blind person who felt the elephant’s trunk had quite a different view of the elephant from the one who felt the
elephant’s leg or tail. What is needed is a view of the whole elephant. Similarly, a house is not a random collection
of rooms; if someone is going to build a house, he or she should first have the overall view that is provided by
blueprints. Likewise, a sound data environment requires an overall database blueprint based on an appropriate
data model.

When a good database blueprint is available, it does not matter that an applications programmer’s view of the data is
different from that of the manager and/or the end user. Conversely, when a good database blueprint is not available,
problems are likely to ensue. For instance, an inventory management program or an order entry system may use
conflicting product numbering schemes, thereby costing the company thousands (or even millions) of dollars.

Keep in mind that a house blueprint is an abstraction; you cannot live in the blueprint. Similarly, the data model is an
abstraction; you cannot draw the required data out of the data model. Just as you are not likely to build a good house
without a blueprint, you are equally unlikely to create a good database without first creating an appropriate data model.

2.3 DATA MODEL BASIC BUILDING BLOCKS

The basic building blocks of all data models are entities, attributes, relationships, and constraints. An entity is anything
(a person, a place, a thing, or an event) about which data are to be collected and stored. An entity represents a
particular type of object in the real world. Because an entity represents a particular type of object, entities are
“distinguishable” that is, each entity occurrence is unique and distinct. For example, a CUSTOMER entity would have
many distinguishable customer occurrences, such as John Smith, Pedro Dinamita, Tom Strickland, etc. Entities may
be physical objects, such as customers or products, but entities may also be abstractions, such as flight routes or musical
concerts.

An attribute is a characteristic of an entity. For example, a CUSTOMER entity would be described by attributes such
as customer last name, customer first name, customer phone, customer address, and customer credit limit. Attributes
are the equivalent of fields in file systems.

A relationship describes an association among entities. For example, a relationship exists between customers and
agents that can be described as follows: an agent can serve many customers, and each customer may be served by one
agent. Data models use three types of relationships: one-to-many, many-to-many, and one-to-one. Database designers
usually use the shorthand notations 1:M or 1..*, M:N or *..*, and 1:1 or 1..1, respectively. (Although the M:N notation

C6545_02 6/6/2007 8:55:2 Page 32

32 C H A P T E R 2

is a standard label for the many-to-many relationship, the label M:M may also be used.) The following examples
illustrate the distinctions among the three.

� One-to-many (1:M or 1..*) relationship. A painter paints many different paintings, but each one of them
is painted by only one painter. Thus, the painter (the “one”) is related to the paintings (the “many”). Therefore,
database designers label the relationship “PAINTER paints PAINTING” as 1:M. (Note that entity names are
often capitalized as a convention so they are easily identified.) Similarly, a customer (the “one”) may generate
many invoices, but each invoice (the “many”) is generated by only a single customer. The “CUSTOMER
generates INVOICE” relationship would also be labeled 1:M.

� Many-to-many (M:N or *..*) relationship. An employee may learn many job skills, and each job skill may
be learned by many employees. Database designers label the relationship “EMPLOYEE learns SKILL” as M:N.
Similarly, a student can take many classes and each class can be taken by many students, thus yielding the M:N
relationship label for the relationship expressed by “STUDENT takes CLASS.”

� One-to-one (1:1 or 1..1) relationship. A retail company’s management structure may require that each of
its stores be managed by a single employee. In turn, each store manager, who is an employee, manages only
a single store. Therefore, the relationship “EMPLOYEE manages STORE” is labeled 1:1.

The preceding discussion identified each relationship in both directions; that is, relationships are bidirectional:

� One CUSTOMER can generate many INVOICEs.

� Each of the many INVOICEs is generated by only one CUSTOMER.

A constraint is a restriction placed on the data. Constraints are important because they help to ensure data integrity.
Constraints are normally expressed in the form of rules. For example:

� An employee’s salary must have values that are between 6,000 and 350,000.

� A student’s GPA must be between 0.00 and 4.00.

� Each class must have one and only one teacher.

How do you properly identify entities, attributes, relationships, and constraints? The first step is to clearly identify the
business rules for the problem domain you are modeling.

2.4 BUSINESS RULES

When database designers go about selecting or determining the entities, attributes, and relationships that will be used
to build a data model, they might start by gaining a thorough understanding of what types of data are in an
organization, how the data are used, and in what time frames they are used. But such data and information do not,
by themselves, yield the required understanding of the total business. From a database point of view, the collection of
data becomes meaningful only when it reflects properly defined business rules. A business rule is a brief, precise,
and unambiguous description of a policy, procedure, or principle within a specific organization. In a sense, business
rules are misnamed: they apply to any organization, large or small—a business, a government unit, a religious group,
or a research laboratory—that stores and uses data to generate information.

Business rules, derived from a detailed description of an organization’s operations, help to create and enforce actions
within that organization’s environment. Business rules must be rendered in writing and updated to reflect any change
in the organization’s operational environment.

Properly written business rules are used to define entities, attributes, relationships, and constraints. Any time you see
relationship statements such as “an agent can serve many customers, and each customer can be served by only one
agent,” you are seeing business rules at work. You will see the application of business rules throughout this book,
especially in the chapters devoted to data modeling and database design.

C6545_02 6/4/2007 15:32:25 Page 33

33D A T A M O D E L S

To be effective, business rules must be easy to understand and widely disseminated to ensure that every person in the
organization shares a common interpretation of the rules. Business rules describe, in simple language, the main and
distinguishing characteristics of the data as viewed by the company. Examples of business rules are as follows:

� A customer may generate many invoices.

� An invoice is generated by only one customer.

� A training session cannot be scheduled for fewer than 10 employees or for more than 30 employees.

Note that those business rules establish entities, relationships, and constraints. For example, the first two business rules
establish two entities (CUSTOMER and INVOICE) and a 1:M relationship between those two entities. The third
business rule establishes a constraint (no fewer than 10 people and no more than 30 people), two entities (EMPLOYEE
and TRAINING), and a relationship between EMPLOYEE and TRAINING.

2.4.1 Discovering Business Rules

The main sources of business rules are company managers, policy makers, department managers, and written
documentation such as a company’s procedures, standards, or operations manuals. A faster and more direct source
of business rules is direct interviews with end users. Unfortunately, because perceptions differ, end users sometimes are
a less reliable source when it comes to specifying business rules. For example, a maintenance department mechanic
might believe that any mechanic can initiate a maintenance procedure, when actually only mechanics with inspection
authorization can perform such a task. Such a distinction might seem trivial, but it can have major legal consequences.
Although end users are crucial contributors to the development of business rules, it pays to verify end-user
perceptions. Too often, interviews with several people who perform the same job yield very different perceptions of
what the job components are. While such a discovery may point to “management problems,” that general diagnosis
does not help the database designer. The database designer’s job is to reconcile such differences and verify the results
of the reconciliation to ensure that the business rules are appropriate and accurate.

The process of identifying and documenting business rules is essential to database design for several reasons:

� They help standardize the company’s view of data.

� They can be a communications tool between users and designers.

� They allow the designer to understand the nature, role, and scope of the data.

� They allow the designer to understand business processes.

� They allow the designer to develop appropriate relationship participation rules and constraints and to create
an accurate data model.

Of course, not all business rules can be modeled. For example, a business rule that specifies that “no pilot can fly more
than 10 hours within any 24-hour period” cannot be modeled. However, such a business rule can be enforced by
application software.

2.4.2 Translating Business Rules into Data Model Components

Business rules set the stage for the proper identification of entities, attributes, relationships, and constraints. In the real
world, names are used to identify objects. If the business environment wants to keep track of the objects, there will be
specific business rules for them. As a general rule, a noun in a business rule will translate into an entity in the model,
and a verb (active or passive) associating nouns will translate into a relationship among the entities. For example, the
business rule “a customer may generate many invoices” contains two nouns (customer and invoices) and a verb
(generate) that associates the nouns. From this business rule, you could deduct that:

� Customer and invoice are objects of interest for the environment and should be represented by their respective
entities.

� There is a “generate” relationship between customer and invoice.

C6545_02 6/4/2007 14:5:26 Page 34

34 C H A P T E R 2

To properly identify the type of relationship, you should consider that relationships are bidirectional; that is, they go
both ways. For example, the business rule “a customer may generate many invoices” is complemented by the business
rule “an invoice is generated by only one customer.” In that case, the relationship is one-to-many (1:M). Customer is
the “1” side, and invoice is the “many” side.

As a general rule, to properly identify the relationship type, you should ask two questions:

� How many instances of B are related to one instance of A?

� How many instances of A are related to one instance of B?

For example, you can assess the relationship between student and class by asking two questions:

� In how many classes can one student enroll? Answer: many classes.

� How many students can enroll in one class? Answer: many students.

Therefore, the relationship between student and class is many-to-many (M:N). You will have many opportunities to
determine the relationships between entities as you proceed through this book, and soon the process will become
second nature.

2.5 THE EVOLUTION OF DATA MODELS

The quest for better data management has led to several different models that attempt to resolve the file system’s
critical shortcomings. This section gives an overview of the major data models in roughly chronological order. You will
discover that many of the “new” database concepts and structures bear a remarkable resemblance to some of the “old”
data model concepts and structures. Table 2.1 traces the evolution of the major data models.

TABLE
2.1

Evolution of Major Data Models

GENERATION TIME MODEL EXAMPLES COMMENTS
First 1960s−1970s File System VMS/VSAM Used mainly on IBM mainframe

systems
Managed records, not relationships

Second 1970s Hierarchical
and Network
Data Model

IMS
ADABAS
IDS-II

Early database systems
Navigational access

Third Mid-1970s to
present

Relational
Data Model

DB2
Oracle
MS SQL-Server
MySQL

Conceptual simplicity
Entity Relationship (ER) modeling
and support for relational data
modeling

Fourth Mid-1980s to
present

Object-Oriented

Extended
Relational

Versant
FastObjects.Net
Objectivity/DB
DB/2 UDB
Oracle 10g

Support complex data
Extended relational products
support objects and data
warehousing

Web databases become common
Next
Generation

Present to
future

XML dbXML
Tamino
DB2 UDB
Oracle 10g
MS SQL Server

Organization and management of
unstructured data

Relational and object models add
support for XML documents

C6545_02 7/17/2007 10:51:17 Page 35

35D A T A M O D E L S

2.5.1 The Hierarchical Model

The hierarchical model was developed in the 1960s to manage large amounts of data for complex manufacturing
projects such as the Apollo rocket that landed on the moon in 1969. Its basic logical structure is represented by an
upside-down tree. The hierarchical structure contains levels, or segments. A segment is the equivalent of a file
system’s record type. Within the hierarchy, the top layer (the root) is perceived as the parent of the segment directly
beneath it. For example, in Figure 2.1, the root segment is the parent of the Level 1 segments, which, in turn, are
the parents of the Level 2 segments, etc. The segments below other segments are the children of the segment above.
In short, the hierarchical model depicts a set of one-to-many (1:M) relationships between a parent and its children
segments. (Each parent can have many children, but each child has only one parent.)

The hierarchical data model yielded many advantages over the file system model. In fact, many of the hierarchical data
model’s features formed the foundation for current data models. Many of its database application advantages are
replicated, albeit in a different form, in current database environments. The hierarchical database quickly became dominant
in the 1970s and generated a large installed base, which, in turn, created a pool of programmers who knew the systems
and who developed numerous tried-and-true business applications. However, the hierarchical model had limitations: it was
complex to implement, it was difficult to manage, and it lacked structural independence. Also, many common data
relationships do not conform to the 1:M form, and there were no standards for how to implement the model.

In the 1970s, database professionals convened a set of meetings that culminated in the publication of a set of database
standards that ultimately led to the development of alternative data models. The most prominent of those models is
the network model.

O n l i n e C o n t e n t

The hierarchical and network models are largely of historical interest, yet they do contain some elements and
features that interest current database professionals. The technical details of those two models are discussed in
detail in Appendixes K and L, respectively, in the Student Online Companion for this book. Appendix G is
devoted to the object-oriented (OO) model. However, given the dominant market presence of the relational
model, most of the book focuses on that model.

Root Segment Final Assembly

Component A Component CComponent B

Assembly A Assembly B Assembly C

Part A Part B Part C Part D Part E

Level 1 Segments
(Root Children)

Level 2 Segments
(Level 1 Children)

Level 3 Segments
(Level 2 Children)

FIGURE
2.1

A hierarchical structure

C6545_02 6/4/2007 15:32:44 Page 36

36 C H A P T E R 2

2.5.2 The Network Model

The network model was created to represent complex data relationships more effectively than the hierarchical
model, to improve database performance, and to impose a database standard. The lack of database standards was
troublesome to programmers and application designers because it made database designs and applications less
portable. Worse, the lack of even a standard set of database concepts impeded the search for better data models.
Disorganization seldom fosters progress.

To help establish database standards, the Conference on Data Systems Languages (CODASYL) created the
Database Task Group (DBTG) in the late 1960s. The DBTG was charged to define standard specifications for an
environment that would facilitate database creation and data manipulation. The final DBTG report contained
specifications for three crucial database components:

� The schema, which is the conceptual organization of the entire database as viewed by the database
administrator. The schema includes a definition of the database name, the record type for each record, and the
components that make up those records.

� The subschema, which defines the portion of the database “seen” by the application programs that actually
produce the desired information from the data contained within the database. The existence of subschema
definitions allows all application programs to simply invoke the subschema required to access the appropriate
database file(s).

� A data management language (DML) that defines the environment in which data can be managed. To
produce the desired standardization for each of the three components, the DBTG specified three distinct DML
components:

- A schema data definition language (DDL), which enables the database administrator to define the
schema components.

- A subschema DDL, which allows the application programs to define the database components that will be
used by the application.

- A data manipulation language to work with the data in the database.

In the network model, the user perceives the network database as a collection of records in 1:M relationships.
However, unlike the hierarchical model, the network model allows a record to have more than one parent. In network
database terminology, a relationship is called a set. Each set is composed of at least two record types: an owner record
and a member record. A set represents a 1:M relationship between the owner and the member. An example of such
a relationship is depicted in Figure 2.2.

FIGURE
2.2

A network data model

SALESREP

1:M

PAYMENT

CUSTOMER

PRODUCT INVOICE

INV_LINE

1:M1:M

1:M 1:M

Line setInventory set

Commission set Sales set Payment set

C6545_02 6/4/2007 15:57:17 Page 37

37D A T A M O D E L S

Figure 2.2 illustrates a network data model for a typical sales organization. In this model, CUSTOMER, SALESREP,
INVOICE, INV_LINE, PRODUCT, and PAYMENT represent record types. Note that INVOICE is “owned” by both
SALESREP and CUSTOMER. Similarly, INV_LINE has two owners, PRODUCT and INVOICE. Furthermore, the
network model can also include one-owner relationships, such as CUSTOMER makes PAYMENT.

As information needs grew and as more sophisticated databases and applications were required, the network model
became too cumbersome. The lack of ad hoc query capability put heavy pressure on programmers to generate the
code required to produce even the simplest reports. And although the existing databases provided limited data
independence, any structural change in the database still could produce havoc in all application programs that drew
data from the database. Because of the disadvantages of the hierarchical and network models, they were largely
replaced by the relational data model in the 1980s.

2.5.3 The Relational Model

The relational model was introduced in 1970 by E. F. Codd (of IBM) in his landmark paper “A Relational Model of
Data for Large Shared Databanks” (Communications of the ACM, June 1970, pp. 377−387). The relational model
represented a major breakthrough for both users and designers. To use an analogy, the relational model produced an
“automatic transmission” database to replace the “standard transmission” databases that preceded it. Its conceptual
simplicity set the stage for a genuine database revolution.

The relational model foundation is a mathematical concept known as a relation. To avoid the complexity of abstract
mathematical theory, you can think of a relation (sometimes called a table) as a matrix composed of intersecting rows
and columns. Each row in a relation is called a tuple. Each column represents an attribute. The relational model also
describes a precise set of data manipulation constructs based on advanced mathematical concepts.

In 1970, Codd’s work was considered ingenious but impractical. The relational model’s conceptual simplicity was
bought at the expense of computer overhead; computers at that time lacked the power to implement the relational
model. Fortunately, computer power grew exponentially, as did operating system efficiency. Better yet, the cost of
computers diminished rapidly as their power grew. Today even microcomputers, costing a fraction of what their
mainframe ancestors did, can run sophisticated relational database software such as Oracle, DB2, Microsoft SQL
Server, MySQL, and other mainframe relational software.

The relational data model is implemented through a very sophisticated relational database management system
(RDBMS). The RDBMS performs the same basic functions provided by the hierarchical and network DBMS systems,
in addition to a host of other functions that make the relational data model easier to understand and implement.

Arguably the most important advantage of the RDBMS is its ability to hide the complexities of the relational model from
the user. The RDBMS manages all of the physical details, while the user sees the relational database as a collection of tables
in which data are stored. The user can manipulate and query the data in a way that seems intuitive and logical.

Tables are related to each other through the sharing of a common attribute (value in a column). For example, the
CUSTOMER table in Figure 2.3 might contain a sales agent’s number that is also contained in the AGENT table.

The common link between the CUSTOMER and AGENT tables enables you to match the customer to his or her sales
agent even though the customer data are stored in one table and the sales representative data are stored in another table.
For example, you can easily determine that customer Dunne’s agent is Alex Alby because for customer Dunne, the
CUSTOMER table’s AGENT_CODE is 501, which matches the AGENT table’s AGENT_CODE for Alex Alby. Although

Note

The relational database model presented in this chapter is an introduction and an overview. A more detailed
discussion is in Chapter 3, The Relational Database Model. In fact, the relational model is so important that it
will serve as the basis for discussions in most of the remaining chapters.

C6545_02 7/17/2007 15:46:46 Page 38

38 C H A P T E R 2

the tables are independent of one another, you can easily associate the data between tables. The relational model provides
a minimum level of controlled redundancy to eliminate most of the redundancies commonly found in file systems.

The relationship type (1:1, 1:M, or M:N) is often shown in a relational schema, an example of which is shown in
Figure 2.4. A relational diagram is a representation of the relational database’s entities, the attributes within those
entities, and the relationships between those entities.

In Figure 2.4, the relational diagram shows the connect-
ing fields (in this case, AGENT_CODE) and the relation-
ship type, 1:M. Microsoft Access, the database software
application used to generate Figure 2.4, employs the �

(infinity) symbol to indicate the “many” side. In this
example, the CUSTOMER represents the “many” side
because an AGENT can have many CUSTOMERs. The
AGENT represents the “1” side because each CUS-
TOMER has only one AGENT.

A relational table stores a collection of related entities. In
this respect, the relational database table resembles a file.
But there is one crucial difference between a table and a
file: a table yields complete data and structural indepen-
dence because it is a purely logical structure. How the
data are physically stored in the database is of no concern
to the user or the designer; the perception is what counts.

Database name: Ch02_InsureCoTable name: AGENT (first six attributes)

Table name: CUSTOMER

Link through AGENT_CODE

FIGURE
2.3

Linking relational tables

O n l i n e C o n t e n t

This chapter’s databases can be found in the Student Online Companion. For example, the contents of the
AGENT and CUSTOMER tables shown in Figure 2.3 are found in the database named Ch02_InsureCo.

FIGURE
2.4

A relational diagram

C6545_02 6/4/2007 15:34:37 Page 39

39D A T A M O D E L S

And this property of the relational data model, explored in depth in the next chapter, became the source of a real
database revolution.

Another reason for the relational data model’s rise to dominance is its powerful and flexible query language. For most
relational database software, the query language is Structured Query Language (SQL), which allows the user to specify
what must be done without specifying how it must be done. The RDBMS uses SQL to translate user queries into
instructions for retrieving the requested data. SQL makes it possible to retrieve data with far less effort than any other
database or file environment.

From an end-user perspective, any SQL-based relational database application involves three parts: a user interface, a
set of tables stored in the database, and the SQL “engine.” Each of these parts is explained below.

� The end-user interface. Basically, the interface allows the end user to interact with the data (by auto-generating
SQL code). Each interface is a product of the software vendor’s idea of meaningful interaction with the data.
You can also design your own customized interface with the help of application generators that are now
standard fare in the database software arena.

� A collection of tables stored in the database. In a relational database, all data are perceived to be stored in
tables. The tables simply “present” the data to the end user in a way that is easy to understand. Each table is
independent from another. Rows in different tables are related based on common values in common attributes.

� SQL engine. Largely hidden from the end user, the SQL engine executes all queries, or data requests. Keep
in mind that the SQL engine is part of the DBMS software. The end user uses SQL to create table structures
and to perform data access and table maintenance. The SQL engine processes all user requests—largely
behind the scenes and without the end user’s knowledge. Hence, it’s said that SQL is a declarative language
that tells what must be done but not how it must be done. (You will learn more about the SQL engine in
Chapter 11, Database Performance Tuning and Query Optimization.)

Because the RDBMS performs the behind-the-scenes tasks, it is not necessary to focus on the physical aspects of the
database. Instead, the chapters that follow concentrate on the logical portion of the relational database and its design.
Furthermore, SQL is covered in detail in Chapter 7, Introduction to Structured Query Language (SQL), and in Chapter 8,
Advanced SQL.

2.5.4 The Entity Relationship Model

The conceptual simplicity of relational database technology triggered the demand for RDBMSs. In turn, the rapidly
increasing requirements for transaction and information created the need for more complex database implementation
structures, thus creating the need for more effective database design tools. (Building a skyscraper requires more detailed
design activities than building a doghouse, for example.)

Complex design activities require conceptual simplicity to yield successful results. Although the relational model was a
vast improvement over the hierarchical and network models, it still lacked the features that would make it an effective
database design tool. Because it is easier to examine structures graphically than to describe them in text, database
designers prefer to use a graphical tool in which entities and their relationships are pictured. Thus, the entity
relationship (ER) model, or ERM, has become a widely accepted standard for data modeling.

Peter Chen first introduced the ER data model in 1976; it was the graphical representation of entities and their
relationships in a database structure that quickly became popular because it complemented the relational data model
concepts. The relational data model and ERM combined to provide the foundation for tightly structured database
design. ER models are normally represented in an entity relationship diagram (ERD), which uses graphical
representations to model database components.

C6545_02 6/4/2007 15:35:1 Page 40

40 C H A P T E R 2

The ER model is based on the following components:

� Entity. Earlier in this chapter, an entity was defined as anything about which data are to be collected and
stored. An entity is represented in the ERD by a rectangle, also known as an entity box. The name of the entity,
a noun, is written in the center of the rectangle. The entity name is generally written in capital letters and is
written in the singular form: PAINTER rather than PAINTERS, and EMPLOYEE rather than EMPLOYEES.
Usually, when applying the ERD to the relational model, an entity is mapped to a relational table. Each row
in the relational table is known as an entity instance or entity occurrence in the ER model.

Each entity is described by a set of attributes that describes particular characteristics of the entity. For example,
the entity EMPLOYEE will have attributes such as a Social Security number, a last name, and a first name.
(Chapter 4 explains how attributes are included in the ERD.)

� Relationships. Relationships describe associations among data. Most relationships describe associations
between two entities. When the basic data model components were introduced, three types of relationships
among data were illustrated: one-to-many (1:M), many-to-many (M:N), and one-to-one (1:1). The ER model
uses the term connectivity to label the relationship types. The name of the relationship usually is an active
or passive verb. For example, a PAINTER paints many PAINTINGs; an EMPLOYEE learns many SKILLs; an
EMPLOYEE manages a STORE.

Figure 2.5 shows the different types of relationships using two ER notations: the original Chen notation and the more
current Crow’s Foot notation.

The left side of the ER diagram shows the Chen notation, based on Peter Chen’s landmark paper. In this notation, the
connectivities are written next to each entity box. Relationships are represented by a diamond connected to the related
entities through a relationship line. The relationship name is written inside the diamond.

The right side of Figure 2.5 illustrates the Crow’s Foot notation. The name “Crow’s Foot” is derived from the
three-pronged symbol used to represent the “many” side of the relationship. As you examine the basic Crow’s Foot
ERD in Figure 2.5, note that the connectivities are represented by symbols. For example, the “1” is represented by
a short line segment and the “M” is represented by the three-pronged “crow’s foot.” In this example the relationship
name is written above the relationship line.

In Figure 2.5, entities and relationships are shown in a horizontal format, but they also may be oriented vertically. The
entity location and the order in which the entities are presented are immaterial; just remember to read a 1:M
relationship from the “1” side to the “M” side.

Note

Because this chapter’s objective is to introduce data-modeling concepts, a simplified ERD is discussed in this
section. You will learn how to use ERDs to design databases in Chapter 4, Entity Relationship (ER) Modeling.

Note

A collection of like entities is known as an entity set. For example, you can think of the AGENT file in Figure 2.3
as a collection of three agents (entities) in the AGENT entity set. Technically speaking, the ERD depicts entity
sets. Unfortunately, ERD designers use the word entity as a substitute for entity set, and this book will conform
to that established practice when discussing any ERD and its components.

C6545_02 6/4/2007 15:57:40 Page 41

41D A T A M O D E L S

The Crow’s Foot notation is used as the design standard in this book. However, the Chen notation is used to illustrate
some of the ER modeling concepts whenever necessary. Most database modeling tools let you select the Crow’s Foot
notation. Microsoft Visio Professional software was used to generate the Crow’s Foot designs you will see in
subsequent chapters.

Its exceptional visual simplicity makes the ER model the dominant database modeling and design tool. Nevertheless,
the search for better data-modeling tools continues as the data environment continues to evolve.

FIGURE
2.5

The Chen and Crow’s Foot notations

Note

Many-to-many (M:N) relationships exist at a conceptual level, and you should know how to recognize them.
However, you will learn in Chapter 3 that M:N relationships are not appropriate in a relational model. For that
reason, Microsoft Visio does not support the M:N relationship. Therefore, to illustrate the existence of a M:N
relationship using Visio, two superimposed 1:M relationships have been used.

O n l i n e C o n t e n t

Aside from the Chen and Crow’s Foot notations, there are other ER model notations. For a summary of the
symbols used by several additional ER model notations, see Appendix D, Comparison of ER Model
Notations, in the Student Online Companion.

C6545_02 7/17/2007 10:52:35 Page 42

42 C H A P T E R 2

2.5.5 The Object-Oriented (OO) Model

Increasingly complex real-world problems demonstrated a need for a data model that more closely represented the real
world. In the object-oriented data model (OODM), both data and their relationships are contained in a single
structure known as an object. In turn, the OODM is the basis for the object-oriented database management
system (OODBMS).

An OODM reflects a very different way to define and use entities. Like the relational model’s entity, an object is
described by its factual content. But quite unlike an entity, an object includes information about relationships between
the facts within the object, as well as information about its relationships with other objects. Therefore, the facts within
the object are given greater meaning. The OODM is said to be a semantic data model because semantic indicates
meaning.

Subsequent OODM development has allowed an object also to contain all operations that can be performed on it, such
as changing its data values, finding a specific data value, and printing data values. Because objects include data, various
types of relationships, and operational procedures, the object becomes self-contained, thus making the object—at least
potentially—a basic building block for autonomous structures.

The OO data model is based on the following components:

� An object is an abstraction of a real-world entity. In general terms, an object may be considered equivalent to
an ER model’s entity. More precisely, an object represents only one occurrence of an entity. (The object’s
semantic content is defined through several of the items in this list.)

� Attributes describe the properties of an object. For example, a PERSON object includes the attributes Name,
Social Security Number, and Date of Birth.

� Objects that share similar characteristics are grouped in classes. A class is a collection of similar objects with
shared structure (attributes) and behavior (methods). In a general sense, a class resembles the ER model’s entity
set. However, a class is different from an entity set in that it contains a set of procedures known as methods.
A class’s method represents a real-world action such as finding a selected PERSON’s name, changing a
PERSON’s name, or printing a PERSON’s address. In other words, methods are the equivalent of procedures
in traditional programming languages. In OO terms, methods define an object’s behavior.

� Classes are organized in a class hierarchy. The class hierarchy resembles an upside-down tree in which each
class has only one parent. For example, the CUSTOMER class and the EMPLOYEE class share a parent
PERSON class. (Note the similarity to the hierarchical data model in this respect.)

� Inheritance is the ability of an object within the class hierarchy to inherit the attributes and methods of the
classes above it. For example, two classes, CUSTOMER and EMPLOYEE, can be created as subclasses from
the class PERSON. In this case, CUSTOMER and EMPLOYEE will inherit all attributes and methods from
PERSON.

Object-oriented data models are typically depicted using Unified Modeling Language (UML) class diagrams. Unified
Modeling Language (UML) is a language based on OO concepts that describes a set of diagrams and symbols that
can be used to graphically model a system. UML class diagrams are used to represent data and their relationships
within the larger UML object-oriented systems modeling language. For a more complete description of UML see
Appendix H, Unified Modeling Language (UML).

O n l i n e C o n t e n t

This chapter introduces only basic OO concepts. You’ll have a chance to examine object-orientation concepts
and principles in detail in Appendix G, Object-Oriented Databases, found in the Student Online
Companion for this book.

C6545_02 6/6/2007 9:19:4 Page 43

43D A T A M O D E L S

To illustrate the main concepts of the object-oriented data model, let’s use a simple invoicing problem. In this case,
invoices are generated by customers, each invoice references one or more lines, and each line represents an item
purchased by a customer. Figure 2.6 illustrates the object representation for this simple invoicing problem, as well as
the equivalent UML class diagram and ER model. The object representation is a simple way to visualize a single object
occurrence.

As you examine Figure 2.6, note that:

� The object representation of the INVOICE includes all related objects within the same object box. Note that
the connectivities (1 and M) indicate the relationship of the related objects to the INVOICE. For example, the
1 next to the CUSTOMER object indicates that each INVOICE is related to only one CUSTOMER. The M next
to the LINE object indicates that each INVOICE contains many LINEs.

� The UML class diagram uses three separate object classes (CUSTOMER, INVOICE, and LINE) and two
relationships to represent this simple invoicing problem. Note that the relationship connectivities are
represented by the 1..1, 0..* and 1..* symbols and that the relationships are named in both ends to represent
the different “roles” that the objects play in the relationship.

� The ER model also uses three separate entities and two relationships to represent this simple invoice problem.

2.5.6 The Convergence of Data Models

Another semantic data model was developed in response to the increasing complexity of applications—the extended
relational data model (ERDM). The ERDM, championed by many relational database researchers, constitutes the
relational model’s response to the OODM. This model includes many of the OO model’s best features within an
inherently simpler relational database structural environment. That’s why a DBMS based on the ERDM is often
described as an object/relational database management system (O/RDBMS).

With the huge installed base of the relational database and the emergence of the ERDM, the OODM faces an uphill
battle. Although the ERDM includes a strong semantic component, it is primarily based on the relational data model’s
concepts. In contrast, the OODM is wholly based on the OO and semantic data model concepts. The ERDM is
primarily geared to business applications, while the OODM tends to focus on very specialized engineering and scientific
applications. In the database arena, the most likely scenario appears to be an ever-increasing merging of OO and
relational data model concepts and procedures, with an increasing emphasis on data models that facilitate Internet-age
technologies.

FIGURE
2.6

A comparison of OO, UML, and ER models

INVOICE

INV_DATE
INV_NUMBER
INV_SHIP_DATE
INV_TOTAL

CUSTOMER

LINE

1

M

ER modelObject representation UML class diagram

CUSTOMER INVOICE

CUSTOMER

+INV_NUMBER : Integer
+INV_DATE : Date
+INV_SHIP_DATE : Date
+INV_TOTAL : Double

1..1 0..*

+generates +belongs to

1..1

1..* +belongs to

+generates

C6545_02 6/4/2007 15:47:2 Page 44

44 C H A P T E R 2

2.5.7 Database Models and the Internet

The use of the Internet as a prime business tool has drastically changed the role and scope of the database market.
In fact, the Internet’s impact on the database market has generated new database product strategies in which the
OODM and ERDM-O/RDM have taken a backseat to Internet-age database development. Therefore, instead of an
OODM vs. ERDM-O/RDM data-modeling duel occurring, vendors have been focusing their development efforts on
creating database products that interface efficiently and easily with the Internet. The focus on effective Internet
interfacing makes the underlying data model less important to the end user. If the database fits well into the Internet
picture, its precise modeling heritage is of relatively little consequence. That’s why the relational model has prospered
by incorporating components from other data models. For example, Oracle Corporation’s Oracle 10g database
contains OO components within a relational database structure, as does IBM’s current DB2 version. In any case, the
Internet trumps all other aspects of data storage and access. Therefore, the Internet environment forces a focus on
high levels of systems integration and development through new Internet-age technologies. Such technologies will be
examined in detail in Chapter 14, Database Connectivity and Web Technologies.

With the dominance of the World Wide Web, there is a growing need to manage unstructured data, such as the data found
in most of today’s documents and Web pages. In response to this need, current databases now support Internet-age
technologies such as Extensible Markup Language (XML). For example, extended relational databases such as Oracle 10g
and IBM’s DB2 support XML data types to store and manage unstructured data. Concurrently, native XML databases are
now on the market to address similar needs. The importance of XML support cannot be underestimated, as XML is also
the standard protocol for data exchange among different systems and Internet-based services (see Chapter 14).

2.5.8 Data Models: A Summary

The evolution of DBMSs has always been driven by the search for new ways of modeling increasingly complex
real-world data. A summary of the most commonly recognized data models is shown in Figure 2.7.

FIGURE
2.7

The development of data models

most

least

Semantics in
Data Model

Comments

Hierarchical

Network

Relational

Entity Relationship

Semantic

Object-Oriented Extended Relational
(Object/Relational)

• Difficult to represent M:N relationships
 (hierarchical only)
• Structural level dependency
• No ad hoc queries (record-at-a-time access)
• Access path predefined (navigational access)

• Conceptual simplicity (structual independence)
• Provides ad hoc queries (SQL)
• Set-oriented access

• Easy to understand (more semantics)
• Limited to conceptual modeling
 (no implementation component)

• More semantics in data model
• Support for complex objects
• Inheritance (class hierarchy)
• Behavior
• Unstructured data (XML)
• XML data exchanges

C6545_02 6/4/2007 14:34:22 Page 45

45D A T A M O D E L S

In the evolution of data models, there are some common characteristics that data models must have in order to be
widely accepted:

� A data model must show some degree of conceptual simplicity without compromising the semantic
completeness of the database. It does not make sense to have a data model that is more difficult to
conceptualize than the real world.

� A data model must represent the real world as closely as possible. This goal is more easily realized by adding
more semantics to the model’s data representation. (Semantics concern the dynamic data behavior, while data
representation constitutes the static aspect of the real-world scenario.)

� Representation of the real-world transformations (behavior) must be in compliance with the consistency and
integrity characteristics of any data model.

Each new data model capitalizes on the shortcomings of previous models. The network model replaced the hierarchical
model because the former made it much easier to represent complex (many-to-many) relationships. In turn, the
relational model offers several advantages over the hierarchical and network models through its simpler data
representation, superior data independence, and easy-to-use query language; the relational model also emerged as the
dominant data model for business applications. Although the OO and ERDM have gained a substantial foothold, their
attempts to dislodge the relational model have not been successful. And in the coming years, successful data models
will have to facilitate the development of database products that incorporate unstructured data as well as provide
support for easy data exchanges via XML.

It is important to note that not all data models are created equal; some data models are better suited than others for
some tasks. For example, conceptual models are better suited for high-level data modeling, while implementation
models are better for managing stored data for implementation purposes. The entity relationship model is an example
of a conceptual model, while the hierarchical and network models are examples of implementation models. At the
same time, some models, such as the relational model and the OODM, could be used as both conceptual and
implementation models. Table 2.2 summarizes the advantages and disadvantages of the various database models.

C6545_02 6/4/2007 14:56:12 Page 46

46 C H A P T E R 2

TA
BL

E
2.

2
Ad

va
nt

ag
es

an
d

D
is

ad
va

nt
ag

es
of

Va
ri

ou
s

D
at

ab
as

e
M

od
el

s

D
AT

A
M

O
D

EL
D

AT
A

IN
D

EP
EN

D
EN

C
E

ST
RU

C
TU

RA
L

IN
D

EP
EN

D
EN

C
E

AD
VA

N
TA

G
ES

D
IS

AD
VA

N
TA

G
ES

H
ie

ra
rc

hi
ca

l
Ye

s
N

o
1.

It
pr

om
ot

es
da

ta
sh

ar
in

g.
2.

Pa
re

nt
/C

hi
ld

re
la

tio
ns

hi
p

pr
om

ot
es

co
nc

ep
tu

al
sim

pl
ic

ity
.

3.
D

at
ab

as
e

se
cu

rit
y

is
pr

ov
id

ed
an

d
en

fo
rc

ed
by

D
BM

S.
4.

Pa
re

nt
/C

hi
ld

re
la

tio
ns

hi
p

pr
om

ot
es

da
ta

in
te

gr
ity

.
5.

It
is

ef
fic

ie
nt

w
ith

1:
M

re
la

tio
ns

hi
ps

.

1.
C

om
pl

ex
im

pl
em

en
ta

tio
n

re
qu

ire
s

kn
ow

le
dg

e
of

ph
ys

ic
al

da
ta

st
or

ag
e

ch
ar

ac
te

ris
tic

s.
2.

N
av

ig
at

io
na

ls
ys

te
m

yi
el

ds
co

m
pl

ex
ap

pl
ic

at
io

n
de

ve
lo

pm
en

t,
m

an
ag

em
en

t,
an

d
us

e;
re

qu
ire

s
kn

ow
le

dg
e

of
hi

er
ar

ch
ic

al
pa

th
.

3.
C

ha
ng

es
in

str
uc

tu
re

re
qu

ire
ch

an
ge

s
in

al
la

pp
lic

at
io

n
pr

og
ra

m
s.

4.
Th

er
e

ar
e

im
pl

em
en

ta
tio

n
lim

ita
tio

ns
(n

o
m

ul
tip

ar
en

to
rM

:N
re

la
tio

ns
hi

ps
).

5.
Th

er
e

is
no

da
ta

de
fin

iti
on

or
da

ta
m

an
ip

ul
at

io
n

la
ng

ua
ge

in
th

e
D

BM
S.

6.
Th

er
e

is
a

la
ck

of
sta

nd
ar

ds
.

N
et

w
or

k
Ye

s
N

o
1.

C
on

ce
pt

ua
ls

im
pl

ic
ity

is
at

le
as

te
qu

al
to

th
at

of
th

e
hi

er
ar

ch
ic

al
m

od
el

.
2.

It
ha

nd
le

s
m

or
e

re
la

tio
ns

hi
p

ty
pe

s,
su

ch
as

M
:N

an
d

m
ul

tip
ar

en
t.

3.
D

at
a

ac
ce

ss
is

m
or

e
fle

xi
bl

e
th

an
in

hi
er

ar
ch

ic
al

an
d

fil
e

sy
ste

m
m

od
el

s.
4.

D
at

a
O

w
ne

r/M
em

be
rr

el
at

io
ns

hi
p

pr
om

ot
es

da
ta

in
te

gr
ity

.
5.

Th
er

e
is

co
nf

or
m

an
ce

to
sta

nd
ar

ds
.

6.
It

in
cl

ud
es

da
ta

de
fin

iti
on

la
ng

ua
ge

(D
D

L)
an

d
da

ta
m

an
ip

ul
at

io
n

la
ng

ua
ge

(D
M

L)
in

D
BM

S.

1.
Sy

ste
m

co
m

pl
ex

ity
lim

its
ef

fic
ie

nc
y—

sti
ll

a
na

vi
ga

tio
na

ls
ys

te
m

.
2.

N
av

ig
at

io
na

ls
ys

te
m

yi
el

ds
co

m
pl

ex
im

pl
em

en
ta

tio
n,

ap
pl

ic
at

io
n

de
ve

lo
pm

en
t,

an
d

m
an

ag
em

en
t.

3.
St

ru
ct

ur
al

ch
an

ge
s

re
qu

ire
ch

an
ge

s
in

al
la

pp
lic

at
io

n
pr

og
ra

m
s.

Re
la

tio
na

l
Ye

s
Ye

s
1.

St
ru

ct
ur

al
in

de
pe

nd
en

ce
is

pr
om

ot
ed

by
th

e
us

e
of

in
de

pe
nd

en
t

ta
bl

es
.C

ha
ng

es
in

a
ta

bl
e’

s
str

uc
tu

re
do

no
ta

ffe
ct

da
ta

ac
ce

ss
or

ap
pl

ic
at

io
n

pr
og

ra
m

s.
2.

Ta
bu

la
rv

ie
w

su
bs

ta
nt

ia
lly

im
pr

ov
es

co
nc

ep
tu

al
sim

pl
ic

ity
,t

he
re

by
pr

om
ot

in
g

ea
sie

rd
at

ab
as

e
de

sig
n,

im
pl

em
en

ta
tio

n,
m

an
ag

em
en

t,
an

d
us

e.
3.

Ad
ho

c
qu

er
y

ca
pa

bi
lit

y
is

ba
se

d
on

SQ
L.

4.
Po

w
er

fu
lR

D
BM

S
iso

la
te

s
th

e
en

d
us

er
fro

m
ph

ys
ic

al
-le

ve
ld

et
ai

ls
an

d
im

pr
ov

es
im

pl
em

en
ta

tio
n

an
d

m
an

ag
em

en
ts

im
pl

ic
ity

.

1.
Th

e
RD

BM
S

re
qu

ire
s

su
bs

ta
nt

ia
lh

ar
dw

ar
e

an
d

sy
ste

m
so

ftw
ar

e
ov

er
he

ad
.

2.
C

on
ce

pt
ua

ls
im

pl
ic

ity
gi

ve
s

re
la

tiv
el

y
un

tra
in

ed
pe

op
le

th
e

to
ol

s
to

us
e

a
go

od
sy

ste
m

po
or

ly,
an

d
if

un
ch

ec
ke

d,
it

m
ay

pr
od

uc
e

th
e

sa
m

e
da

ta
an

om
al

ie
s

fo
un

d
in

fil
e

sy
ste

m
s.

3.
It

m
ay

pr
om

ot
e

“i
sla

nd
s

of
in

fo
rm

at
io

n”
pr

ob
le

m
s

as
in

di
vi

du
al

s
an

d
de

pa
rtm

en
ts

ca
n

ea
sil

y
de

ve
lo

p
th

ei
ro

w
n

ap
pl

ic
at

io
ns

.

En
tit

y
Re

la
tio

ns
hi

p
Ye

s
Ye

s
1.

Vi
su

al
m

od
el

in
g

yi
el

ds
ex

ce
pt

io
na

lc
on

ce
pt

ua
ls

im
pl

ic
ity

.
2.

Vi
su

al
re

pr
es

en
ta

tio
n

m
ak

es
it

an
ef

fe
ct

iv
e

co
m

m
un

ic
at

io
n

to
ol

.
3.

It
is

in
te

gr
at

ed
w

ith
do

m
in

an
tr

el
at

io
na

lm
od

el
.

1.
Th

er
e

is
lim

ite
d

co
ns

tra
in

tr
ep

re
se

nt
at

io
n.

2.
Th

er
e

is
lim

ite
d

re
la

tio
ns

hi
p

re
pr

es
en

ta
tio

n.
3.

Th
er

e
is

no
da

ta
m

an
ip

ul
at

io
n

la
ng

ua
ge

.
4.

Lo
ss

of
in

fo
rm

at
io

n
co

nt
en

to
cc

ur
s

w
he

n
at

tri
bu

te
s

ar
e

re
m

ov
ed

fro
m

en
tit

ie
s

to
av

oi
d

cr
ow

de
d

di
sp

la
ys

.(
Th

is
lim

ita
tio

n
ha

s
be

en
ad

dr
es

se
d

in
su

bs
eq

ue
nt

gr
ap

hi
ca

lv
er

sio
ns

.)

O
bj

ec
t-

O
rie

nt
ed

Ye
s

Ye
s

1.
Se

m
an

tic
co

nt
en

ti
s

ad
de

d.
2.

Vi
su

al
re

pr
es

en
ta

tio
n

in
cl

ud
es

se
m

an
tic

co
nt

en
t.

3.
In

he
rit

an
ce

pr
om

ot
es

da
ta

in
te

gr
ity

.

1.
Sl

ow
de

ve
lo

pm
en

to
fs

ta
nd

ar
ds

ca
us

ed
ve

nd
or

s
to

su
pp

ly
th

ei
r

ow
n

en
ha

nc
em

en
ts,

th
us

el
im

in
at

in
g

a
w

id
el

y
ac

ce
pt

ed
sta

nd
ar

d.
2.

It
is

a
co

m
pl

ex
na

vi
ga

tio
na

ls
ys

te
m

.
3.

Th
er

e
is

a
ste

ep
le

ar
ni

ng
cu

rv
e.

4.
H

ig
h

sy
ste

m
ov

er
he

ad
slo

w
s

tra
ns

ac
tio

ns
.

N
ot

e:
Al

ld
at

ab
as

es
as

su
m

e
th

e
us

e
of

a
co

m
m

on
da

ta
po

ol
w

ith
in

th
e

da
ta

ba
se

.T
he

re
fo

re
,

al
ld

at
ab

as
e

m
od

el
s

pr
om

ot
e

da
ta

sh
ar

in
g,

th
us

el
im

in
at

in
g

th
e

po
te

nt
ia

l
pr

ob
le

m
of

isl
an

ds
of

in
fo

rm
at

io
n.

C6545_02 7/17/2007 15:45:3 Page 47

47D A T A M O D E L S

Thus far, you have been introduced to the basic constructs of the more prominent data models. Each model uses such
constructs to capture the meaning of the real world data environment. Table 2.3 shows the basic terminology used by
the various data models.

TABLE
2.3

Data Model Basic Terminology Comparison

REAL
WORLD

EXAMPLE FILE
PROCESSING

HIERARCHICAL
MODEL

NETWORK
MODEL

RELATIONAL
MODEL

ER MODEL OO
MODEL

A group of
vendors

Vendor
file cabinet

File Segment type Record type Table Entity set Class

A single
vendor

Global
Supplies

Record Segment
occurrence

Current
record

Row (tuple) Entity
occurrence

Object
instance

The contact
name

Johnny
Ventura

Field Segment field Record field Table
attribute

Entity
attribute

Object
attribute

The vendor
identifier

G12987 Index Sequence field Record key Key Entity
identifier

Object
identifier

Note: For additional information about the terms used in this table please consult the corresponding chapters and online appendixes
accompanying this book. For example, if you want to know more about the OO model, refer to Appendix G, Object-Oriented
Databases.

2.6 DEGREES OF DATA ABSTRACTION

If you ask ten database designers what is a data model, you will end up with ten different answers—depending on the
degree of data abstraction. To illustrate the meaning of data abstraction, consider the example of automotive design.
A car designer begins by drawing the concept of the car that is to be produced. Next, engineers design the details that
help transfer the basic concept into a structure that can be produced. Finally, the engineering drawings are translated
into production specifications to be used on the factory floor. As you can see, the process of producing the car begins
at a high level of abstraction and proceeds to an ever-increasing level of detail. The factory floor process cannot
proceed unless the engineering details are properly specified, and the engineering details cannot exist without the basic
conceptual framework created by the designer. Designing a usable database follows the same basic process. That is,
a database designer starts with an abstract view of the overall data environment and adds details as the design comes
closer to implementation. Using levels of abstraction can also be very helpful in integrating multiple (and sometimes
conflicting) views of data as seen at different levels of an organization.

In the early 1970s, the American National Standards Institute (ANSI) Standards Planning and Requirements
Committee (SPARC) defined a framework for data modeling based on degrees of data abstraction. The ANSI/SPARC
architecture (as it is often referred to) defines three levels of data abstraction: external, conceptual, and internal. You
can use this framework to better understand database models, as shown in Figure 2.8. In the figure, the ANSI/SPARC
framework has been expanded with the addition of a physical model to explicitly address physical-level implementation
details of the internal model.

2.6.1 The External Model

The external model is the end users’ view of the data environment. The term end users refers to people who use
the application programs to manipulate the data and generate information. End users usually operate in an
environment in which an application has a specific business unit focus. Companies are generally divided into several
business units, such as sales, finance, and marketing. Each business unit is subject to specific constraints and
requirements, and each one uses a data subset of the overall data in the organization. Therefore, end users working
within those business units view their data subsets as separate from or external to other units within the organization.

C6545_02 7/17/2007 15:45:23 Page 48

48 C H A P T E R 2

Because data is being modeled, ER diagrams will be used to represent the external views. A specific representation of
an external view is known as an external schema. To illustrate the external model’s view, examine the data
environment of Tiny College. Figure 2.9 presents the external schemas for two Tiny College business units: student
registration and class scheduling. Each external schema includes the appropriate entities, relationships, processes, and
constraints imposed by the business unit. Also note that although the application views are isolated from each other,
each view shares a common entity with the other view. For example, the registration and scheduling external
schemas share the entities CLASS and COURSE.

Note the entity relationships represented in Figure 2.9. For example:

� A PROFESSOR may teach many CLASSes, and each CLASS is taught by only one PROFESSOR; that is,
there is a 1:M relationship between PROFESSOR and CLASS.

� A CLASS may ENROLL many students, and each student may ENROLL in many CLASSes, thus creating an
M:N relationship between STUDENT and CLASS. (You will learn about the precise nature of the ENROLL
entity in Chapter 4.)

� Each COURSE may generate many CLASSes, but each CLASS references a single COURSE. For example,
there may be several classes (sections) of a database course having a course code of CIS-420. One of those
classes might be offered on MWF from 8:00 a.m. to 8:50 a.m., another might be offered on MWF from 1:00
p.m. to 1:50 p.m., while a third might be offered on Thursdays from 6:00 p.m. to 8:40 p.m. Yet all three
classes have the course code CIS-420.

� Finally, a CLASS requires one ROOM, but a ROOM may be scheduled for many CLASSes. That is, each
classroom may be used for several classes: one at 9:00 a.m., one at 11:00 a.m., and one at 1 p.m., for
example. In other words, there is a 1:M relationship between ROOM and CLASS.

FIGURE
2.8

Data abstraction levels

End-User View End-User View

External
Model

External
Model

Conceptual
Model

Internal
Model

Physical
Model

Designer’s
View

DBMS
View

Physical independence

Logical independence

Degree of
Abstraction Characteristics

High ER

Relational

Network
HierarchicalLow

Medium

Hardware-independent
Software-independent

Hardware-independent
Software-dependent

Hardware-dependent
Software-dependent

Object-Oriented

C6545_02 6/4/2007 15:47:41 Page 49

49D A T A M O D E L S

The use of external views representing subsets of the database has some important advantages:

� It makes it easy to identify specific data required to support each business unit’s operations.

� It makes the designer’s job easy by providing feedback about the model’s adequacy. Specifically, the model can
be checked to ensure that it supports all processes as defined by their external models, as well as all operational
requirements and constraints.

� It helps to ensure security constraints in the database design. Damaging an entire database is more difficult
when each business unit works with only a subset of data.

� It makes application program development much simpler.

2.6.2 The Conceptual Model

Having identified the external views, a conceptual model is used, graphically represented by an ERD (as in Figure
2.10), to integrate all external views into a single view. The conceptual model represents a global view of the entire
database as viewed by the entire organization. That is, the conceptual model integrates all external views (entities,
relationships, constraints, and processes) into a single global view of the entire data in the enterprise. Also known as
a conceptual schema, it is the basis for the identification and high-level description of the main data objects (avoiding
any database model-specific details).

The most widely used conceptual model is the ER model. Remember that the ER model is illustrated with the help of
the ERD, which is, in effect, the basic database blueprint. The ERD is used to graphically represent the concep-
tual schema.

The conceptual model yields some very important advantages. First, it provides a relatively easily understood bird’s-eye
(macro level) view of the data environment. For example, you can get a summary of Tiny College’s data environment
by examining the conceptual model presented in Figure 2.10.

Second, the conceptual model is independent of both software and hardware. Software independence means that
the model does not depend on the DBMS software used to implement the model. Hardware independence means
that the model does not depend on the hardware used in the implementation of the model. Therefore, changes in

FIGURE
2.9

External models for Tiny College

C6545_02 6/4/2007 15:48:18 Page 50

50 C H A P T E R 2

either the hardware or the DBMS software will have no
effect on the database design at the conceptual level. Gen-
erally, the term logical design is used to refer to the task of
creating a conceptual data model that could be implemented
in any DBMS.

2.6.3 The Internal Model

Once a specific DBMS has been selected, the internal model
maps the conceptual model to the DBMS. The internal
model is the representation of the database as “seen” by the
DBMS. In other words, the internal model requires the
designer to match the conceptual model’s characteristics and
constraints to those of the selected implementation model.
An internal schema depicts a specific representation of an
internal model, using the database constructs supported by
the chosen database.

Because this book focuses on the relational model, a rela-
tional database was chosen to implement the internal model.

Therefore, the internal schema should map the conceptual model to the relational model constructs. In particular, the
entities in the conceptual model are mapped to tables in the relational model. Likewise, because a relational database
has been selected, the internal schema is expressed using SQL, the standard language for relational databases. In the
case of the conceptual model for Tiny College depicted in Figure 2.11, the internal model was implemented by
creating the tables PROFESSOR, COURSE, CLASS, STUDENT, ENROLL, and ROOM. A simplified version of the
internal model for Tiny College is shown in Figure 2.11.

FIGURE
2.10

Conceptual model for Tiny
College

FIGURE
2.11

An internal model for Tiny College

C6545_02 6/4/2007 15:48:49 Page 51

51D A T A M O D E L S

The development of a detailed internal model is especially important to database designers who work with hierarchical
or network models because those models require very precise specification of data storage location and data access
paths. In contrast, the relational model requires less detail in its internal model because most RDBMSs handle data
access path definition transparently; that is, the designer need not be aware of the data access path details.
Nevertheless, even relational database software usually requires data storage location specification, especially in a
mainframe environment. For example, DB2 requires that you specify the data storage group, the location of the
database within the storage group, and the location of the tables within the database.

Because the internal model depends on specific database software, it is said to be software-dependent. Therefore, a
change in the DBMS software requires that the internal model be changed to fit the characteristics and requirements
of the implementation database model. When you can change the internal model without affecting the conceptual
model, you have logical independence. However, the internal model is still hardware-independent because it is
unaffected by the choice of the computer on which the software is installed. Therefore, a change in storage devices
or even a change in operating systems will not affect the internal model.

2.6.4 The Physical Model

The physical model operates at the lowest level of abstraction, describing the way data are saved on storage media
such as disks or tapes. The physical model requires the definition of both the physical storage devices and the (physical)
access methods required to reach the data within those storage devices, making it both software- and hardware-
dependent. The storage structures used are dependent on the software (the DBMS and the operating system) and on
the type of storage devices that the computer can handle. The precision required in the physical model’s definition
demands that database designers who work at this level have a detailed knowledge of the hardware and software used
to implement the database design.

Early data models forced the database designer to take the details of the physical model’s data storage requirements
into account. However, the now-dominant relational model is aimed largely at the logical rather than the physical level;
therefore, it does not require the physical-level details common to its predecessors.

Although the relational model does not require the designer to be concerned about the data’s physical storage
characteristics, the implementation of a relational model may require physical-level fine-tuning for increased
performance. Fine-tuning is especially important when very large databases are installed in a mainframe environment.
Yet even such performance fine-tuning at the physical level does not require knowledge of physical data storage
characteristics.

As noted earlier, the physical model is dependent on the DBMS, methods of accessing files, and types of hardware
storage devices supported by the operating system. When you can change the physical model without affecting the
internal model, you have physical independence. Therefore, a change in storage devices or methods and even a
change in operating system will not affect the internal model.

A summary of the levels of data abstraction is given in Table 2.4.

TABLE
2.4

Levels of Data Abstraction

MODEL
DEGREE OF
ABSTRACTION FOCUS INDEPENDENT OF

External High End-user views Hardware and software
Conceptual Global view of data (database

model independent)
Hardware and software

Internal Specific database model Hardware

Physical Low Storage and access methods Neither hardware nor software

C6545_02 6/6/2007 9:8:43 Page 52

52 C H A P T E R 2

S u m m a r y

◗ A data model is an abstraction of a complex real-world data environment. Database designers use data models to
communicate with applications programmers and end users. The basic data-modeling components are entities,
attributes, relationships, and constraints. Business rules are used to identify and define the basic modeling
components within a specific real-world environment.

◗ The hierarchical and network data models were early data models that are no longer used, but some of the concepts
are found in current data models. The hierarchical model depicts a set of one-to-many (1:M) relationships between a
parent and its children segments. The network model uses sets to represent 1:M relationships between record types.

◗ The relational model is the current database implementation standard. In the relational model, the end user perceives
the data as being stored in tables. Tables are related to each other by means of common values in common attributes.
The entity relationship (ER) model is a popular graphical tool for data modeling that complements the relational model.
The ER model allows database designers to visually present different views of the data as seen by database designers,
programmers, and end users and to integrate the data into a common framework.

◗ The object-oriented data model (OODM) uses objects as the basic modeling structure. An object resembles an entity
in that it includes the facts that define it. But unlike an entity, the object also includes information about
relationships between the facts as well as relationships with other objects, thus giving its data more meaning.

◗ The relational model has adopted many object-oriented (OO) extensions to become the extended relational data model
(ERDM). At this point, the OODM is largely used in specialized engineering and scientific applications, while the ERDM
is primarily geared to business applications. Although the most likely future scenario is an increasing merger of OODM
and ERDM technologies, both are overshadowed by the need to develop Internet access strategies for databases.
Usually OO data models are depicted using Unified Modeling Language (UML) class diagrams.

◗ Data-modeling requirements are a function of different data views (global vs. local) and the level of data abstraction. The
American National Standards Institute Standards Planning and Requirements Committee (ANSI/SPARC) describes
three levels of data abstraction: external, conceptual, and internal. There is also a fourth level of data abstraction (the
physical level). This lowest level of data abstraction is concerned exclusively with physical storage methods.

C6545_02 7/17/2007 15:46:16 Page 53

53D A T A M O D E L S

K e y T e r m s

American National Standards
Institute (ANSI), 48

attribute, 32

business rule, 33

Chen notation, 41

class, 43

class diagram, 43

class hierarchy, 43

conceptual model, 50

conceptual schema, 50

Conference on Data Systems
Languages (CODASYL), 37

connectivity, 41

constraint, 33

Crow’s Foot notation, 41

data definition language (DDL), 37

data management language
(DML), 37

data model, 31

Database Task Group (DBTG), 37

entity, 32

entity instance, 41

entity occurrence, 41

entity relationship diagram
(ERD), 40

entity relationship (ER) model
(ERM), 40

entity set, 41

extended relational data model
(ERDM), 44

external model, 48

external schema, 49

hardware independence, 50

hierarchical model, 36

inheritance, 43

internal model, 51

internal schema, 51

logical design, 51

logical independence, 52

many-to-many (M:N or *..*)
relationship, 33

method, 43

network model, 37

object, 43

object-oriented data model
(OODM), 43

object-oriented database
management system
(OODBMS), 43

object/relational database
management system
(O/RDBMS), 38

one-to-many (1:M or 1..*)
relationship, 33

one-to-one (1:1 or 1..1)
relationship, 33

physical independence, 52

physical model, 52

relational database management
system (RDBMS), 38

relational model, 38

relational diagram, 39

relation, 38

relationship, 32

segment, 36

schema, 37

semantic data model, 43

software independence, 50

subschema, 37

table, 38

tuple, 38

Unified Modeling Language
(UML), 43

R e v i e w Q u e s t i o n s

1. Discuss the importance of data modeling.

2. What is a business rule, and what is its purpose in data modeling?

3. How do you translate business rules into data model components?

O n l i n e C o n t e n t

Answers to selected Review Questions and Problems for this chapter are contained in the Student Online
Companion for this book.

C6545_02 7/17/2007 15:47:11 Page 54

54 C H A P T E R 2

4. What does each of the following acronyms represent, and how is each one related to the birth of the network
data model?

a. CODASYL

b. SPARC

c. ANSI

d. DBTG

5. What three languages were adopted by the DBTG to standardize the basic network data model, and why was such
standardization important to users and designers?

6. Describe the basic features of the relational data model and discuss their importance to the end user and the
designer.

7. Explain how the entity relationship (ER) model helped produce a more structured relational database design
environment.

8. Use the scenario described by “A customer can make many payments, but each payment is made by only one
customer” as the basis for an entity relationship diagram (ERD) representation.

9. Why is an object said to have greater semantic content than an entity?

10. What is the difference between an object and a class in the object-oriented data model (OODM)?

11. How would you model Question 8 with an OODM? (Use Figure 2.7 as your guide.)

12. What is an ERDM, and what role does it play in the modern (production) database environment?

13. In terms of data and structural independence, compare file system data management with the five data models
discussed in this chapter.

14. What is a relationship, and what three types of relationships exist?

15. Give an example of each of the three types of relationships.

16. What is a table, and what role does it play in the relational model?

17. What is a relational diagram? Give an example.

18. What is logical independence?

19. What is physical independence?

20. What is connectivity? (Use a Crow’s Foot ERD to illustrate connectivity.)

P r o b l e m s

Use the contents of Figure 2.3 to work Problems 1−5.

1. Write the business rule(s) that govern the relationship between AGENT and CUSTOMER.

2. Given the business rule(s) you wrote in Problem 1, create the basic Crow’s Foot ERD.

3. If the relationship between AGENT and CUSTOMER were implemented in a hierarchical model, what would the
hierarchical structure look like? Label the structure fully, identifying the root segment and the Level 1 segment.

4. If the relationship between AGENT and CUSTOMER were implemented in a network model, what would the
network model look like? (Identify the record types and the set.)

5. Using the ERD you drew in Problem 2, create the equivalent Object representation and UML class diagram. (Use
Figure 2.7 as your guide.)

Using Figure P2.6 as your guide, work Problems 6–7. The DealCo relational diagram shows the initial entities and
attributes for the DealCo stores, located in two regions of the country.

C6545_02 7/17/2007 15:47:41 Page 55

55D A T A M O D E L S

6. Identify each relationship type and write all of the business rules.

7. Create the basic Crow’s Foot ERD for DealCo.

Using Figure P2.8 as your guide, work Problems 8−11. The Tiny College relational diagram shows the initial entities
and attributes for Tiny College.

8. Identify each relationship type and write all of the business rules.

9. Create the basic Crow’s Foot ERD for Tiny College.

10. Create the network model that reflects the entities and relationships you identified in the relational diagram.

11. Create the UML class diagram that reflects the entities and relationships you identified in the relational diagram.

12. Using the hierarchical representation shown in Figure P2.12, answer a, b, and c.

a. Identify the segment types.

b. Identify the components that are equivalent to the file system’s fields.

c. Describe the hierarchical path for the occurrence of the third PAINTING segment.

FIGURE
P2.6

The DealCo relational diagram

FIGURE
P2.8

The Tiny College relational diagram

C6545_02 7/17/2007 15:50:9 Page 56

56 C H A P T E R 2

FIGURE
P2.12

The hierarchical structure for the Artist database

25108

File Systems Folly

11987

Hierarchical Paths

PT_NUMBER
PT_NAME
PT_PHONE

10014

Josephine G. Artiste

615-999-8963

PTG_NUMBER
PTG_TITLE 21003

Database Sunshine

PAINTER

PAINTING

Attribute nameEntity name

FIGURE
P2.13

The hierarchical structure for the MedClinic database

3324538

23-Jan-2008

George G. Ochoba

1100234

Judy D. Johanssen

3241233

23-Jan-2008

Anne M. Moranski

122889

2 mg. each 8 hrs.

123214

1 tablet per meal

122531

10 ml. 3x per day

PATIENT
PAT_NUMBER
PAT_NAME

ORDER
ORD_NUMBER
ORD_DATE
ORD_DOCTOR

MEDICATION
MED_NUMBER
MED_DOSAGE

C6545_02 7/17/2007 15:50:32 Page 57

57D A T A M O D E L S

13. The hierarchical diagram shown in Figure P2.13 depicts a single record occurrence of a patient named Judy D.
Johanssen. Typically, a patient staying in a hospital receives medications that have been ordered by a particular
doctor. Because the patient often receives several medications per day, there is a 1:M relationship between
PATIENT and ORDER. Similarly, each order can include several medications, creating a 1:M relationship
between ORDER and MEDICATION.

Given the structure shown in Figure P2.13:

a. Identify the segment types.

b. Identify the business rules for PATIENT, ORDER, and MEDICATION.

14. Expand the model in Problem 13 to include a DOCTOR segment; then draw its hierarchical structure. (Identify
all segments.) (Hint: A patient can have several doctors assigned to his or her case, but the patient named Judy
D. Johanssen occurs only once in each of those doctors’ records.)

15. Suppose you want to write a report that shows:

a. All patients treated by each doctor.

b. All doctors who treated each patient.

Evaluate the hierarchical structure you drew in Problem 14 in terms of its search efficiency in producing the report.

16. The PYRAID company wants to track each PART used in each specific piece of EQUIPMENT; each PART is bought
from a specific SUPPLIER. Using that description, draw the network structure and identify the sets for the PYRAID
company database. (Hint: A piece of equipment is composed of many parts, but each part is used in only one
specific piece of equipment. A supplier can supply many parts, but each part is supplied by only one supplier.)

17. United Broke Artists (UBA) is a broker for not-so-famous painters. UBA maintains a small network database to track
painters, paintings, and galleries. Using PAINTER, PAINTING, and GALLERY, write the network structure and
identify appropriate sets within the UBA database. (Hint 1: A painting is painted by a particular artist, and that
painting is exhibited in a particular gallery. Hint 2: A gallery can exhibit many paintings, but each painting can
be exhibited in only one gallery. Similarly, a painting is painted by a single painter, but each painter can paint
many paintings.)

18. If you decide to convert the network database in Problem 17 to a relational database:

a. What tables would you create and what would the table components be?

b. How might the (independent) tables be related to one another?

19. Using a Crow’s Foot ERD, convert the network database model in Figure 2.2 into a design for a relational
database model. Show all entities and relationships.

20. Using the ERD from Problem 19, create the relational schema. (Create an appropriate collection of attributes for
each of the entities. Make sure you use the appropriate naming conventions to name the attributes.)

21. Convert the ERD from Problem 19 into the corresponding UML class diagram.

22. Describe the relationships (identify the business rules) depicted in the Crow’s Foot ERD shown in Figure P2.22.

FIGURE
P2.22

The Crow’s Foot
ERD for Problem 22

C6545_02 7/17/2007 15:51:37 Page 58

58 C H A P T E R 2

23. Create a Crow’s Foot ERD to include the following business rules for the ProdCo company:

a. Each sales representative writes many invoices.

b. Each invoice is written by one sales representative.

c. Each sales representative is assigned to one department.

d. Each department has many sales representatives.

e. Each customer can generate many invoices.

f. Each invoice is generated by one customer.

24. Write the business rules that are reflected in the ERD shown in Figure P2.24. (Note that the ERD reflects some
simplifying assumptions. For example, each book is written by only one author. Also, remember that the ERD
is always read from the “1” to the “M” side, regardless of the orientation of the ERD components.)

25. Create a Crow’s Foot ERD for each of the following descriptions.
(Note: The word many merely means “more than one” in the
database modeling environment.)

a. Each of the MegaCo Corporation’s divisions is composed of
many departments. Each department has many employees
assigned to it, but each employee works for only one department.
Each department is managed by one employee, and each of
those managers can manage only one department at a time.

b. During some period of time, a customer can rent many video-
tapes from the BigVid store. Each of the BigVid’s videotapes can
be rented to many customers during that period of time.

c. An airliner can be assigned to fly many flights, but each flight is
flown by only one airliner.

d. The KwikTite Corporation operates many factories. Each factory
is located in a region. Each region can be “home” to many of
KwikTite’s factories. Each factory employs many employees, but

each of those employees is employed by only one factory.

e. An employee may have earned many degrees, and each degree may have been earned by many employees.

FIGURE
P2.24

The Crow’s Foot
ERD for Problem 24

Note

Many-to-many (M:N) relationships exist at a conceptual level, and you should know how to recognize them.
However, you will learn in Chapter 3 that M:N relationships are not appropriate in a relational model. For that
reason, Microsoft Visio does not support the M:N relationship. Therefore, to illustrate the existence of a M:N
relationship using Visio, you must superimpose two 1:M relationships. (See Figure 2.5.)

C6545_02 7/17/2007 15:51:38 Page 59

59D A T A M O D E L S

