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1
Linear Equations in
Linear Algebra

WEB

INTRODUCTORY EXAMPLE

Linear Models in Economics
and Engineering

It was late summer in 1949. Harvard Professor Wassily

Leontief was carefully feeding the last of his punched

cards into the university’s Mark II computer. The cards

contained economic information about the U.S. economy

and represented a summary of more than 250,000 pieces

of information produced by the U.S. Bureau of Labor

Statistics after two years of intensive work. Leontief had

divided the U.S. economy into 500 “sectors,” such as the

coal industry, the automotive industry, communications,

and so on. For each sector, he had written a linear equa-

tion that described how the sector distributed its output to

the other sectors of the economy. Because the Mark II,

one of the largest computers of its day, could not handle

the resulting system of 500 equations in 500 unknowns,

Leontief had distilled the problem into a system of 42

equations in 42 unknowns.

Programming the Mark II computer for Leontief’s 42

equations had required several months of effort, and he

was anxious to see how long the computer would take to

solve the problem. The Mark II hummed and blinked for

56 hours before finally producing a solution. We will

discuss the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize in

Economic Science, opened the door to a new era in mathe-

matical modeling in economics. His efforts at Harvard in

1949 marked one of the first significant uses of computers

to analyze what was then a large-scale mathematical mod-

el. Since that time, researchers in many other fields have

employed computers to analyze mathematical models.

Because of the massive amounts of data involved, the

models are usually linear; that is, they are described by

systems of linear equations.

The importance of linear algebra for applications has

risen in direct proportion to the increase in computing

power, with each new generation of hardware and soft-

ware triggering a demand for even greater capabilities.
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Computer science is thus intricately linked with linear

algebra through the explosive growth of parallel proc-

essing and large-scale computations.

Scientists and engineers now work on problems far

more complex than even dreamed possible a few decades

ago. Today, linear algebra has more potential value for

students in many scientific and business fields than any

other undergraduate mathematics subject! The material in

this text provides the foundation for further work in many

interesting areas. Here are a few possibilities; others will

be described later.

• Oil exploration. When a ship searches for offshore oil

deposits, its computers solve thousands of separate

systems of linear equations every day. The seismic

data for the equations are obtained from underwater

shock waves created by explosions from air guns.

The waves bounce off subsurface rocks and are

measured by geophones attached to mile-long cables

behind the ship.

• Linear programming. Many important management

decisions today are made on the basis of linear pro-

gramming models that utilize hundreds of variables.

The airline industry, for instance, employs linear

programs that schedule flight crews, monitor the

locations of aircraft, or plan the varied schedules of

support services such as maintenance and terminal

operations.

• Electrical networks. Engineers use simulation soft-

ware to design electrical circuits and microchips

involving millions of transistors. Such software relies

on linear algebra techniques and systems of linear

equations.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses
them to introduce some of the central concepts of linear algebra in a simple and
concrete setting. Sections 1.1 and 1.2 present a systematic method for solving

systems of linear equations. This algorithm will be used for computations throughout
the text. Sections 1.3 and 1.4 show how a system of linear equations is equivalent to
a vector equation and to a matrix equation. This equivalence will reduce problems
involving linear combinations of vectors to questions about systems of linear equations.
The fundamental concepts of spanning, linear independence, and linear transformations,
studied in the second half of the chapter, will play an essential role throughout the text
as we explore the beauty and power of linear algebra.

1.1 SYSTEMS OF LINEAR EQUATIONS
A linear equation in the variables x1, . . . , xn is an equation that can be written in the
form

a1x1 + a2x2 + · · · + anxn = b (1)

where b and the coefficients a1, . . . , an are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.
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The equations

4x1 − 5x2 + 2 = x1 and x2 = 2
(√

6 − x1
)

+ x3

are both linear because they can be rearranged algebraically as in equation (1):

3x1 − 5x2 = −2 and 2x1 + x2 − x3 = 2
√

6

The equations

4x1 − 5x2 = x1x2 and x2 = 2
√
x1 − 6

are not linear because of the presence of x1x2 in the first equation and
√
x1 in the second.

A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, x1, . . . , xn. An example is

2x1 − x2 + 1.5x3 = 8

x1 − 4x3 = −7
(2)

A solution of the system is a list (s1, s2, . . . , sn) of numbers that makes each equation a
true statement when the values s1, . . . , sn are substituted for x1, . . . , xn, respectively. For
instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted
in (2) for x1, x2, x3, respectively, the equations simplify to 8 = 8 and −7 = −7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

x1 − 2x2 = −1

−x1 + 3x2 = 3

The graphs of these equations are lines, which we denote by 
1 and 
2. A pair of numbers
(x1, x2) satisfies both equations in the system if and only if the point (x1, x2) lies on both

1 and 
2. In the system above, the solution is the single point (3, 2), as you can easily
verify. See Fig. 1.

2

3

x2

x1

l1

l2

FIGURE 1 Exactly one solution.
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Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(a) x1 − 2x2 = −1 (b) x1 − 2x2 = −1

−x1 + 2x2 = 3 −x1 + 2x2 = 1

2

3

x2

x1

l1
l2

(a)

2

3

x2

x1

l1

(b)

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.

A system of linear equations has either

1. no solution, or

2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

(3)

with the coefficients of each variable aligned in columns, the matrix
 1 −2 1

0 2 −8
−4 5 9



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is called the coefficient matrix (or matrix of coefficients) of the system (3), and
 1 −2 1 0

0 2 −8 8
−4 5 9 −9


 (4)

is called the augmented matrix of the system. (The second row here contains a zero
because the second equation could be written as 0·x1 + 2x2 − 8x3 = 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the right sides of the equations.

The size of a matrix tells how many rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3×4 (read “3 by 4”) matrix. If m

and n are positive integers, an m×n matrix is a rectangular array of numbers with m

rows and n columns. (The number of rows always comes first.) Matrix notation will
simplify the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x1 term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x2 term in the second equation to eliminate
the x2 terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.

EXAMPLE 1 Solve system (3).

Solution The elimination procedure is shown here with and without matrix notation,
and the results are placed side by side for comparison:

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9


 1 −2 1 0

0 2 −8 8
−4 5 9 −9




Keep x1 in the first equation and eliminate it from the other equations. To do so, add 4
times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

4·[equation 1]:
+ [equation 3]:

[new equation 3]:

4x1 − 8x2 + 4x3 = 0

−4x1 + 5x2 + 9x3 = −9

− 3x2 + 13x3 = −9
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The result of this calculation is written in place of the original third equation:

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

− 3x2 + 13x3 = −9


 1 −2 1 0

0 2 −8 8
0 −3 13 −9




Now, multiply equation 2 by 1/2 in order to obtain 1 as the coefficient for x2. (This
calculation will simplify the arithmetic in the next step.)

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

− 3x2 + 13x3 = −9


 1 −2 1 0

0 1 −4 4
0 −3 13 −9




Use the x2 in equation 2 to eliminate the −3x2 in equation 3. The “mental” computation
is

3·[equation 2]: 3x2 − 12x3 = 12

+ [equation 3]: −3x2 + 13x3 = −9

[new equation 3]: x3 = 3

The new system has a triangular form:1

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

x3 = 3


 1 −2 1 0

0 1 −4 4
0 0 1 3




Eventually, you want to eliminate the −2x2 term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the −4x3 and +x3 terms in equations 2 and 1.
The two “mental” calculations are

4·[eq. 3]:
+ [eq. 2]:

[new eq. 2]:

4x3 = 12

x2 − 4x3 = 4

x2 = 16

−1·[eq. 3]:
+ [eq. 1]:

[new eq. 1]:

− x3 = −3

x1 − 2x2 + x3 = 0

x1 − 2x2 = −3

It is convenient to combine the results of these two operations:

x1 − 2x2 = −3

x2 = 16

x3 = 3


 1 −2 0 −3

0 1 0 16
0 0 1 3




Now, having cleaned out the column above the x3 in equation 3, move back to the x2 in
equation 2 and use it to eliminate the −2x2 above it. Because of the previous work with
x3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation 1

1The intuitive term triangular will be replaced by a precise term in the next section.
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and obtain the system:

x1 = 29

x2 = 16

x3 = 3


 1 0 0 29

0 1 0 16
0 0 1 3




The work is essentially done. It shows that the only solution of the original system is
(29, 16, 3). However, since there are so many calculations involved, it is a good practice
to check the work. To verify that (29, 16, 3) is a solution, substitute these values into
the left side of the original system, and compute:

(29) − 2(16) + (3) = 29 − 32 + 3 = 0
2(16) − 8(3) = 32 − 24 = 8

−4(29) + 5(16) + 9(3) = −116 + 80 + 27 = −9

The results agree with the right side of the original system, so (29, 16, 3) is a solution
of the system.

(29, 16, 3)

Each of the original equations
determines a plane in three-
dimensional space. The point
(29, 16, 3) lies in all three planes.

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.2

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. We say two matrices are row equivalent if there
is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a
row is scaled by a nonzero constant c, then multiplying the new row by 1/c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row 2.
To “reverse” this operation, add −c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 29–32 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.

2A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following fact.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy to
perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions

In Section 1.2, we’ll see why a solution set for a linear system contains either no solution,
one solution, or infinitely many solutions. To determine which possibility is true for a
particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. In this
section and the next, we show how to answer these questions via row operations on the
augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

Solution This is the system from Example 1. Suppose that we have performed the row
operations necessary to obtain the triangular form

x1 − 2x2 + x3 = 0

x2 − 4x3 = 4

x3 = 3


 1 −2 1 0

0 1 −4 4
0 0 1 3




At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x2 and hence could determine x1 from equation 1. So a solution exists;
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the system is consistent. (In fact, x2 is uniquely determined by equation 2 since x3 has
only one possible value, and x1 is therefore uniquely determined by equation 1. So the
solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

x2 − 4x3 = 8

2x1 − 3x2 + 2x3 = 1

5x1 − 8x2 + 7x3 = 1

(5)

Solution The augmented matrix is
 0 1 −4 8

2 −3 2 1
5 −8 7 1




To obtain an x1 in the first equation, interchange rows 1 and 2:
 2 −3 2 1

0 1 −4 8
5 −8 7 1




To eliminate the 5x1 term in the third equation, add −5/2 times row 1 to row 3:
 2 −3 2 1

0 1 −4 8
0 −1/2 2 −3/2


 (6)

Next, use the x2 term in the second equation to eliminate the −(1/2)x2 term from the
third equation. Add 1/2 times row 2 to row 3:

 2 −3 2 1
0 1 −4 8
0 0 0 5/2


 (7)

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 − 3x2 + 2x3 = 1

x2 − 4x3 = 8

0 = 5/2

(8)

The equation 0 = 5/2 is a short form of 0x1 + 0x2 + 0x3 = 5/2. This system in trian-
gular form obviously has a built-in contradiction. There are no values of x1, x2, x3 that
satisfy (8) because the equation 0 = 5/2 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (i.e., has no solution).

This system is inconsistent
because there is no point that
lies in all three planes.

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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NU M E R I CA L NOT E

In real-world problems, systems of linear equations are solved by a computer. For
a square coefficient matrix, computer programs nearly always use the elimination
algorithm given here and in Section 1.2, modified slightly for improved accuracy.

The vast majority of linear algebra problems in business and industry are solved
with programs that use floating point arithmetic. Numbers are represented as decimals
±.d1 · · · dp×10r , where r is an integer and the number p of digits to the right of the
decimal point is usually between 8 and 16. Arithmetic with such numbers typically
is inexact, because the result must be rounded (or truncated) to the number of digits
stored. “Roundoff error” is also introduced when a number such as 1/3 is entered
into the computer, since its decimal representation must be approximated by a finite
number of digits. Fortunately, inaccuracies in floating point arithmetic seldom cause
problems. The numerical notes in this book will occasionally warn of issues that you
may need to consider later in your career.

P R A C T I C E P R O B L E M S

Throughout the text, practice problems should be attempted before working the exercises.
Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]

a. x1 + 4x2 − 2x3 + 8x4 = 12

x2 − 7x3 + 2x4 = −4

5x3 − x4 = 7

x3 + 3x4 = −5

b. x1 − 3x2 + 5x3 − 2x4 = 0

x2 + 8x3 = −4

2x3 = 3

x4 = 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.

 1 5 2 −6
0 4 −7 2
0 0 5 0




3. Is (3, 4,−2) a solution of the following system?

5x1 − x2 + 2x3 = 7

−2x1 + 6x2 + 9x3 = 0

−7x1 + 5x2 − 3x3 = −7

4. For what values of h and k is the following system consistent?

2x1 − x2 = h

−6x1 + 3x2 = k
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1.1 EXERCISES
Solve each system in Exercises 1–4 by using elementary row op-
erations on the equations or on the augmented matrix. Follow the
systematic elimination procedure described in this section.

1. x1 + 5x2 = 7

−2x1 − 7x2 = −5

2. 2x1 + 4x2 = −4

5x1 + 7x2 = 11

3. Find the point (x1, x2) that lies on the line x1 + 5x2 = 7 and
on the line x1 − 2x2 = −2. See the figure.

x2

x1

x1 + 5x2 = 7
x1 – 2x2 = –2

4. Find the point of intersection of the lines x1 − 5x2 = 1 and
3x1 − 7x2 = 5.

Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

5.




1 −4 5 0 7
0 1 −3 0 6
0 0 1 0 2
0 0 0 1 −5




6.




1 −6 4 0 −1
0 2 −7 0 4
0 0 1 2 −3
0 0 3 1 6




In Exercises 7–10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

7.




1 7 3 −4
0 1 −1 3
0 0 0 1
0 0 1 −2


 8.


 1 −4 9 0

0 1 7 0
0 0 2 0




9.




1 −1 0 0 −4
0 1 −3 0 −7
0 0 1 −3 −1
0 0 0 2 4




10.




1 −2 0 3 −2
0 1 0 −4 7
0 0 1 0 6
0 0 0 1 −3




Solve the systems in Exercises 11–14.

11. x2 + 4x3 = −5

x1 + 3x2 + 5x3 = −2

3x1 + 7x2 + 7x3 = 6

12. x1 − 3x2 + 4x3 = −4

3x1 − 7x2 + 7x3 = −8

−4x1 + 6x2 − x3 = 7

13. x1 − 3x3 = 8

2x1 + 2x2 + 9x3 = 7

x2 + 5x3 = −2

14. x1 − 3x2 = 5

−x1 + x2 + 5x3 = 2

x2 + x3 = 0

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.

15. x1 + 3x3 = 2

x2 − 3x4 = 3

− 2x2 + 3x3 + 2x4 = 1

3x1 + 7x4 = −5

16. x1 − 2x4 = −3

2x2 + 2x3 = 0

x3 + 3x4 = 1

−2x1 + 3x2 + 2x3 + x4 = 5

17. Do the three lines x1 − 4x2 = 1, 2x1 − x2 = −3, and
−x1 − 3x2 = 4 have a common point of intersection? Ex-
plain.

18. Do the three planes x1 + 2x2 + x3 = 4, x2 − x3 = 1, and
x1 + 3x2 = 0 have at least one common point of intersection?
Explain.

In Exercises 19–22, determine the value(s) ofh such that the matrix
is the augmented matrix of a consistent linear system.
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19.
[

1 h 4
3 6 8

]
20.

[
1 h −3

−2 4 6

]

21.
[

1 3 −2
−4 h 8

]
22.

[
2 −3 h

−6 9 5

]

In Exercises 23 and 24, key statements from this section are either
quoted directly, restated slightly (but still true), or altered in some
way that makes them false in some cases. Mark each statement
True or False, and justify your answer. (If true, give the approx-
imate location where a similar statement appears, or refer to a
definition or theorem. If false, give the location of a statement that
has been quoted or used incorrectly, or cite an example that shows
the statement is not true in all cases.) Similar true/false questions
will appear in many sections of the text.

23. a. Every elementary row operation is reversible.

b. A 5×6 matrix has six rows.

c. The solution set of a linear system involving variables
x1, . . . , xn is a list of numbers (s1, . . . , sn) that makes each
equation in the system a true statement when the values
s1, . . . , sn are substituted for x1, . . . , xn, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Elementary row operations on an augmented matrix never
change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same
number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same
solution set.

25. Find an equation involving g, h, and k that makes
this augmented matrix correspond to a consistent system:

 1 −4 7 g

0 3 −5 h

−2 5 −9 k




26. Construct three different augmented matrices for linear sys-
tems whose solution set is x1 = −2, x2 = 1, x3 = 0.

27. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients c and d?
Justify your answer.

x1 + 3x2 = f

cx1 + dx2 = g

28. Suppose a, b, c, and d are constants such that a is not zero
and the system below is consistent for all possible values of

f and g. What can you say about the numbers a, b, c, and d?
Justify your answer.

ax1 + bx2 = f

cx1 + dx2 = g

In Exercises 29–32, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

29.


 0 −2 5

1 4 −7
3 −1 6


 ,


 1 4 −7

0 −2 5
3 −1 6




30.


 1 3 −4

0 −2 6
0 −5 9


 ,


 1 3 −4

0 1 −3
0 −5 9




31.


 1 −2 1 0

0 5 −2 8
4 −1 3 −6


 ,


 1 −2 1 0

0 5 −2 8
0 7 −1 −6




32.


 1 2 −5 0

0 1 −3 −2
0 −3 9 5


 ,


 1 2 −5 0

0 1 −3 −2
0 0 0 −1




An important concern in the study of heat transfer is to deter-
mine the steady-state temperature distribution of a thin plate when
the temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam, with
negligible heat flow in the direction perpendicular to the plate. Let
T1, . . . , T4 denote the temperatures at the four interior nodes of the
mesh in the figure. The temperature at a node is approximately
equal to the average of the four nearest nodes—to the left, above,
to the right, and below.3 For instance,

T1 = (10 + 20 + T2 + T4)/4, or 4T1 − T2 − T4 = 30

10°

10°

40°

40°

20° 20°

30° 30°

1 2

4 3

3See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145–149.
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33. Write a system of four equations whose solution gives esti-
mates for the temperatures T1, . . . , T4.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4
by its sum with −1/5 times row 3. (In any case, do not use the x2 in equa-
tion 2 to eliminate the 4x2 in equation 1. Wait until a triangular form has been
reached and the x3 terms and x4 terms have been eliminated from the first two
equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate step
now is to add 2 times equation 4 to equation 1. (After that, move up to equation
3, multiply it by 1/2, and then use the equation to eliminate the x3 terms above
it.)

2. The system corresponding to the augmented matrix is

x1 + 5x2 + 2x3 = −6

4x2 − 7x3 = 2

5x3 = 0

The third equation makes x3 = 0, which is certainly an allowable value for x3. After
eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x2 and x1. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

(3, 4, –2)

Since (3, 4,−2) satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since (3, 4,−2) does not
satisfy all three equations, it does
not lie on all three planes.

3. It is easy to check if a specific list of numbers is a solution. Set x1 = 3, x2 = 4, and
x3 = −2, and find that

5(3) − (4) + 2(−2) = 15 − 4 − 4 = 7

−2(3) + 6(4) + 9(−2) = −6 + 24 − 18 = 0

−7(3) + 5(4) − 3(−2) = −21 + 20 + 6 = 5

Although the first two equations are satisfied, the third is not, so (3, 4,−2) is not a
solution to the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2x1 − x2 = h

0 = k + 3h

If k + 3h is nonzero, the system has no solution. The system is consistent for any
values of h and k that make k + 3h = 0.
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1.2 ROW REDUCTION AND ECHELON FORMS
In this section, we refine the method of Section 1.1 into a row reduction algorithm that
will enable us to analyze any system of linear equations.1 By using only the first part
of the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an
arbitrary rectangular matrix. We begin by introducing two important classes of matrices
that include the “triangular” matrices of Section 1.1. In the definitions that follow, a
nonzero row or column in a matrix means a row or column that contains at least one
nonzero entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero
row).

DEF IN I T I ON A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:

1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as
 2 −3 2 1

0 1 −4 8
0 0 0 5/2


 and


 1 0 0 29

0 1 0 16
0 0 1 3




1Our algorithm is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 b.c. The process was
unknown in Western culture until the nineteenth century, when a famous German mathematician, Carl
Friedrich Gauss, discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an
1888 text on geodesy.
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are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries ( ) may
have any nonzero value; the starred entries (∗) may have any values (including zero).




∗ ∗ ∗
0 ∗ ∗
0 0 0 0
0 0 0 0


 ,




0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗




The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.




1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0


 ,




0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗




Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique.
The following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U , we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities
use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row)
echelon form.]

Pivot Positions

When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.
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DEF IN I T I ON A pivot position in a matrix A is a location in A that corresponds to a leading 1 in
the reduced echelon form of A. A pivot column is a column of A that contains a
pivot position.

In Example 1, the squares ( ) identify the pivot positions. Many fundamental con-
cepts in the first four chapters will be connected in one way or another with pivot positions
in a matrix.

EXAMPLE 2 Row reduce the matrix A below to echelon form, and locate the pivot
columns of A.

A =




0 −3 −6 4 9
−1 −2 −1 3 1
−2 −3 0 3 −1

1 4 5 −9 −7




Solution Use the same basic strategy as in Section 1.1. The top of the leftmost nonzero
column is the first pivot position. Anonzero entry, or pivot, must be placed in this position.
A good choice is to interchange rows 1 and 4 (because the mental computations in the
next step will not involve fractions).




1
Pivot

✛ 4 5 −9 −7
−1 −2 −1 3 1
−2 −3 0 3 −1

Pivot column✲

0 −3 −6 4 9




Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left as
possible—namely, in the second column. We’ll choose the 2 in this position as the next
pivot.




1 4 5 −9 −7
0 2

Pivot

✛ 4 −6 −6
0 5 10 −15 −15

Next pivot column✲

0 −3 −6 4 9


 (1)

Add −5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.


1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 0 0
0 0 0 −5 0


 (2)
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The matrix in (2) is different from any encountered in Section 1.1. There is no way
to create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.




1 4 5 −9 −7
0 2 4 −6 −6
0 0 0 −5

Pivot

✛ 0

Pivot columns✲
0

✲

0 0

✲

0 0


 General form:




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗
0 0 0 0 0




The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot
columns.

A =




0

Pivot positions
✛−3 −6 4 9

−1 −2✛−1 3 1
−2 −3 0 3✛−1

Pivot columns✲
1

✲

4 5

✲

−9 −7


 (3)

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and −5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3). In fact, a different sequence of row operations
might involve a different set of pivots. Also, a pivot will not be visible in the echelon
form if the row is scaled to change the pivot to a leading 1 (which is often convenient
for hand computations).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of the procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm

The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form. We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix first
into echelon form and then into reduced echelon form:

 0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15



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Solution

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot posi-
tion is at the top.


 0 3 −6 6 4 −5

3 −7 8 −5 8 9
3

Pivot column✲

−9 12 −9 6 15




STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)


 3

Pivot
✛−9 12 −9 6 15

3 −7 8 −5 8 9
0 3 −6 6 4 −5




STEP 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add −1 times row 1 to row 2.


 3

Pivot
✛−9 12 −9 6 15

0 2 −4 4 2 −6
0 3 −6 6 4 −5




STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1–3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
we’ll select as a pivot the “top” entry in that column.
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
 3 −9 12 −9 6 15

0 2

Pivot

✛−4 4 2 −6
0 3

New pivot column✲

−6 6 4 −5




For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add −3/2 times the “top” row to the row below. This produces


 3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1 4




When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:


 3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1

Pivot

✛ 4




Steps 1–3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3 to rows 2 and 1.


 3 −9 12 −9 0 −9

0 2 −4 4 0 −14
0 0 0 0 1 4




✛Row 1 + (−6)·row 3
✛Row 2 + (−2)·row 3

The next pivot is in row 2. Scale this row, dividing by the pivot.
 3 −9 12 −9 0 −9

0 1 −2 2 0 −7
0 0 0 0 1 4


 ✛Row scaled by 1

2

Create a zero in column 2 by adding 9 times row 2 to row 1.
 3 0 −6 9 0 −72

0 1 −2 2 0 −7
0 0 0 0 1 4




✛Row 1 + (9)·row 2
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Finally, scale row 1, dividing by the pivot, 3.
 1 0 −2 3 0 −24

0 1 −2 2 0 −7
0 0 0 0 1 4




✛Row scaled by 1
3

This is the reduced echelon form of the original matrix.

The combination of steps 1–4 is called the forward phase of the row reduction
algorithm. Step 5, which produces the unique reduced echelon form, is called the
backward phase.

NU M E R I CA L NOT E

In step 2 above, a computer program usually selects as a pivot the entry in a column
having the largest absolute value. This strategy, called partial pivoting, is used
because it reduces roundoff errors in the calculations.

Solutions of Linear Systems

The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been changed
into the equivalent reduced echelon form

 1 0 −5 1
0 1 1 4
0 0 0 0




There are three variables because the augmented matrix has four columns. The
associated system of equations is

x1 − 5x3 = 1

x2 + x3 = 4

0 = 0

(4)

The variables x1 and x2 corresponding to pivot columns in the matrix are called basic
variables.2 The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described explicitly
by solving the reduced system of equations for the basic variables in terms of the free

2Some texts use the term leading variables because they correspond to the columns containing leading
entries.
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variables. This operation is possible because the reduced echelon form places each basic
variable in one and only one equation. In (4), we can solve the first equation for x1 and
the second for x2. (The third equation is ignored; it offers no restriction on the variables.)



x1 = 1 + 5x3

x2 = 4 − x3

x3 is free

(5)

By saying that x3 is “free,” we mean that we are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x1 and x2. For instance, when
x3 = 0, the solution is (1, 4, 0); when x3 = 1, the solution is (6, 3, 1). Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

The solution in (5) is called a general solution of the system because it gives an
explicit description of all solutions.

EXAMPLE 4 Find the general solution of the linear system whose augmented matrix
has been reduced to 

 1 6 2 −5 −2 −4
0 0 2 −8 −1 3
0 0 0 0 1 7




Solution The matrix is in echelon form, but we want the reduced echelon form before
solving for the basic variables. The row reduction is completed next. The symbol ∼
before a matrix indicates that the matrix is row equivalent to the preceding matrix.


 1 6 2 −5 −2 −4

0 0 2 −8 −1 3
0 0 0 0 1 7


 ∼


 1 6 2 −5 0 10

0 0 2 −8 0 10
0 0 0 0 1 7




∼

 1 6 2 −5 0 10

0 0 1 −4 0 5
0 0 0 0 1 7


 ∼


 1 6 0 3 0 0

0 0 1 −4 0 5
0 0 0 0 1 7




There are five variables because the augmented matrix has six columns. The associated
system now is

x1 + 6x2 + 3x4 = 0

x3 − 4x4 = 5

x5 = 7

(6)

The pivot columns of the matrix are 1, 3, and 5, so the basic variables are x1, x3, and
x5. The remaining variables, x2 and x4, must be free. Solving for the basic variables,
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we obtain the general solution: 


x1 = −6x2 − 3x4

x2 is free

x3 = 5 + 4x4

x4 is free

x5 = 7

(7)

Note that the value of x5 is already fixed by the third equation in system (6).

Parametric Descriptions of Solution Sets

The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

x1 + 5x2 = 21

x2 + x3 = 4

We could treat x2 as a parameter and solve for x1 and x3 in terms of x2, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution

Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

x1 − 7x2 + 2x3 − 5x4 + 8x5 = 10

x2 − 3x3 + 3x4 + x5 = −5

x4 − x5 = 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x2,
and then substitute the expressions for x2 and x4 into equation 1 and solve for x1.

Our matrix format for the backward phase of row reduction, which produces the
reduced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors
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during hand computations. I strongly recommend that you use only the reduced echelon
form to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

NU M E R I CA L NOT E

In general, the forward phase of row reduction takes much longer than the backward
phase. An algorithm for solving a system is usually measured in flops (or floating
point operations). A flop is one arithmetic operation (+,−, ∗, / ) on two real floating
point numbers.3 For an n×(n + 1) matrix, the reduction to echelon form can take
2n3/3 + n2/2 − 7n/6 flops (which is approximately 2n3/3 flops whenn is moderately
large—say, n ≥ 30). In contrast, further reduction to reduced echelon form needs at
most n2 flops.

Existence and Uniqueness Questions

Although a nonreduced echelon form is a poor tool for solving a system, this form is just
the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3x2 − 6x3 + 6x4 + 4x5 = −5

3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 15

Solution The augmented matrix of this system was row reduced in Example 3 to
 3 −9 12 −9 6 15

0 2 −4 4 2 −6
0 0 0 0 1 4


 (8)

The basic variables are x1, x2, and x5; the free variables are x3 and x4. There is no
equation such as 0 = 1 that would create an inconsistent system, so we could use back-
substitution to find a solution. But the existence of a solution is already clear in (8).
Also, the solution is not unique because there are free variables. Each different choice of
x3 and x4 determines a different solution. Thus the system has infinitely many solutions.

3Traditionally, a flop was only a multiplication or division, because addition and subtraction took much
less time and could be ignored. The definition of flop given here is preferred now, as a result of ad-
vances in computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore:
The Johns Hopkins Press, 1989), pp. 19–20.
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When a system is in echelon form and contains no equation of the form 0 = b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the aug-
mented matrix has no row of the form

[ 0 · · · 0 b ] with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM

1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.

4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is ex-
pressed in terms of any free variables appearing in the equation.

P R A C T I C E P R O B L E M S

1. Find the general solution of the linear system whose augmented matrix is[
1 −3 −5 0
0 1 1 3

]
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2. Find the general solution of the system

x1 − 2x2 − x3 + 3x4 = 0

−2x1 + 4x2 + 5x3 − 5x4 = 3

3x1 − 6x2 − 6x3 + 8x4 = 2

1.2 EXERCISES
In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

1. a.


 1 0 0 0

0 1 0 0
0 0 1 1


 b.


 1 0 1 0

0 1 1 0
0 0 0 1




c.




1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1




d.




1 1 0 1 1
0 2 0 2 2
0 0 0 3 3
0 0 0 0 4




2. a.


 1 1 0 1

0 0 1 1
0 0 0 0


 b.


 1 1 0 0

0 1 1 0
0 0 1 1




c.




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1




d.




0 1 1 1 1
0 0 2 2 2
0 0 0 0 3
0 0 0 0 0




Row reduce the matrices in Exercises 3 and 4 to reduced eche-
lon form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

3.


 1 2 3 4

4 5 6 7
6 7 8 9


 4.


 1 3 5 7

3 5 7 9
5 7 9 1




5. Describe the possible echelon forms of a nonzero 2×2 matrix.
Use the symbols , ∗, and 0, as in the first part of Example 1.

6. Repeat Exercise 5 for a nonzero 3×2 matrix.

Find the general solutions of the systems whose augmented matri-
ces are given in Exercises 7–14.

7.
[

1 3 4 7
3 9 7 6

]
8.

[
1 4 0 7
2 7 0 10

]

9.
[

0 1 −6 5
1 −2 7 −6

]
10.

[
1 −2 −1 3
3 −6 −2 2

]

11.


 3 −4 2 0

−9 12 −6 0
−6 8 −4 0




12.


 1 −7 0 6 5

0 0 1 −2 −3
−1 7 −4 2 7




13.




1 −3 0 −1 0 −2
0 1 0 0 −4 1
0 0 0 1 9 4
0 0 0 0 0 0




14.




1 2 −5 −6 0 −5
0 1 −6 −3 0 2
0 0 0 0 1 0
0 0 0 0 0 0




Exercises 15 and 16 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

15. a.


 ∗ ∗ ∗

0 ∗ ∗
0 0 0




b.


 0 ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 0



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16. a.


 ∗ ∗

0 ∗
0 0 0




b.


 ∗ ∗ ∗ ∗

0 0 ∗ ∗
0 0 0 ∗




In Exercises 17 and 18, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

17.
[

2 3 h

4 6 7

]
18.

[
1 −3 −2
5 h −7

]

In Exercises 19 and 20, choose h and k such that the system has (a)
no solution, (b) a unique solution, and (c) many solutions. Give
separate answers for each part.

19. x1 + hx2 = 2

4x1 + 8x2 = k

20. x1 + 3x2 = 2

3x1 + hx2 = k

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.4

21. a. In some cases, a matrix may be row reduced to more than
one matrix in reduced echelon form, using different se-
quences of row operations.

b. The row reduction algorithm applies only to augmented
matrices for a linear system.

c. A basic variable in a linear system is a variable that corre-
sponds to a pivot column in the coefficient matrix.

d. Finding a parametric description of the solution set of a
linear system is the same as solving the system.

e. If one row in an echelon form of an augmented matrix
is [ 0 0 0 5 0 ], then the associated linear system is
inconsistent.

22. a. The echelon form of a matrix is unique.

b. The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

c. Reducing a matrix to echelon form is called the forward
phase of the row reduction process.

4True/false questions of this type will appear in many sections. Methods
for justifying your answers were described before Exercises 23 and 24 in
Section 1.1.

d. Whenever a system has free variables, the solution set con-
tains many solutions.

e. A general solution of a system is an explicit description of
all solutions of the system.

23. Suppose a 3×5 coefficient matrix for a system has three pivot
columns. Is the system consistent? Why or why not?

24. Suppose a system of linear equations has a 3×5 augmented
matrix whose fifth column is a pivot column. Is the system
consistent? Why (or why not)?

25. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

26. Suppose the coefficient matrix of a linear system of three equa-
tions in three variables has a pivot in each column. Explain
why the system has a unique solution.

27. Restate the last sentence in Theorem 2 using the concept of
pivot columns: “If a linear system is consistent, then the so-
lution is unique if and only if .”

28. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

29. A system of linear equations with fewer equations than un-
knowns is sometimes called an underdetermined system. Sup-
pose that such a system happens to be consistent. Explain why
there must be an infinite number of solutions.

30. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

31. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

32. Suppose an n×(n + 1) matrix is row reduced to reduced ech-
elon form. Approximately what fraction of the total number
of operations (flops) is involved in the backward phase of the
reduction when n = 30? when n = 300?

Suppose experimental data are represented by a set of points in
the plane. An interpolating polynomial for the data is a polyno-
mial whose graph passes through every point. In scientific work,
such a polynomial can be used, for example, to estimate values
between the known data points. Another use is to create curves for
graphical images on a computer screen. One method for finding an
interpolating polynomial is to solve a system of linear equations.

WEB
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33. Find the interpolating polynomial p(t) = a0 + a1t + a2t
2 for

the data (1, 12), (2, 15), (3, 16). That is, find a0, a1, and a2

such that

a0 + a1(1) + a2(1)2 = 12

a0 + a1(2) + a2(2)2 = 15

a0 + a1(3) + a2(3)2 = 16

34. [M] In a wind tunnel experiment, the force on a projectile
due to air resistance was measured at different velocities:

Velocity (100 ft/sec) 0 2 4 6 8 10
Force (100 lb) 0 2.90 14.8 39.6 74.3 119

Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is traveling
at 750 ft/sec. Use p(t) = a0 + a1t + a2t

2 + a3t
3 + a4t

4 + a5t
5.

What happens if you try to use a polynomial of degree less
than 5? (Try a cubic polynomial, for instance.)5

5Exercises marked with the symbol [M] are designed to be worked with
the aid of a “Matrix program” (a computer program, such as MATLAB,
Maple, Mathematica, MathCad, or Derive, or a programmable calculator
with matrix capabilities, such as those manufactured by Texas Instru-
ments or Hewlett-Packard).

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The reduced echelon form of the augmented matrix and the corresponding system
are [

1 0 −2 9
0 1 1 3

]
and

x1 − 2x3 = 9

x2 + x3 = 3

The basic variables are x1 and x2, and the general solution is


x1 = 9 + 2x3

x2 = 3 − x3

x3 is free

Note: It is essential that the general solution describe each variable, with any param-
eters clearly identified. The following statement does not describe the solution:



x1 = 9 + 2x3

x2 = 3 − x3

x3 = 3 − x2 Incorrect solution

This description implies that x2 and x3 are both free, which certainly is not the case.

The general solution to the
system of equations is the
line of intersection of the
two planes.

2. Row reduce the system’s augmented matrix:

 1 −2 −1 3 0

−2 4 5 −5 3
3 −6 −6 8 2


 ∼


 1 −2 −1 3 0

0 0 3 1 3
0 0 −3 −1 2




∼

 1 −2 −1 3 0

0 0 3 1 3
0 0 0 0 5



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This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

1.3 VECTOR EQUATIONS
Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, we will use vector to
mean a list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in 2

A matrix with only one column is called a column vector, or simply a vector. Examples
of vectors with two entries are

u =
[

3
−1

]
, v =

[
.2
.3

]
, w =

[
w1

w2

]

where w1 and w2 are any real numbers. The set of all vectors with two entries is denoted
by R

2 (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that the vectors each contain two entries.1

Two vectors in R
2 are equal if and only if their corresponding entries are equal.

Thus

[
4
7

]
and

[
7
4

]
are not equal. We say that vectors in R

2 are ordered pairs of real

numbers.
Given two vectors u and v in R

2, their sum is the vector u + v obtained by adding
corresponding entries of u and v. For example,[

1
−2

]
+

[
2
5

]
=

[
1 + 2

−2 + 5

]
=

[
3
3

]

Given a vector u and a real number c, the scalar multiple of u by c is the vector cu
obtained by multiplying each entry in u by c. For instance,

if u =
[

3
−1

]
and c = 5, then cu = 5

[
3

−1

]
=

[
15
−5

]

1Most of the text concerns vectors and matrices that have only real entries. However, all definitions
and theorems in Chapters 1–5, and in most of the rest of the text, remain valid if the entries are com-
plex numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and
physics.
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The number c in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Given u =
[

1
−2

]
and v =

[
2

−5

]
, find 4u, (−3)v, and 4u + (−3)v.

Solution

4u =
[

4
−8

]
, (−3)v =

[ −6
15

]

and

4u + (−3)v =
[

4
−8

]
+

[ −6
15

]
=

[ −2
7

]

Sometimes, for convenience (and also to save space), we write a column vector

such as

[
3

−1

]
in the form (3,−1). In this case, we use parentheses and a comma to

distinguish the vector (3,−1) from the 1×2 row matrix [ 3 −1 ], written with brackets
and no comma. Thus [

3
−1

]

= [ 3 −1 ]

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of 2

Consider a rectangular coordinate system in the plane. Because each point in the plane
is determined by an ordered pair of numbers, we can identify a geometric point (a, b)

with the column vector

[
a

b

]
. So we may regard R

2 as the set of all points in the plane.

See Fig. 1.

x2

x1

(2, 2)

(3, –1)(–2, –1)

FIGURE 1
Vectors as points.

The geometric visualization of a vector such as

[
3

−1

]
is often aided by including

an arrow (directed line segment) from the origin (0, 0) to the point (3,−1), as in Fig. 2.
In this case, the individual points along the arrow itself have no special significance.2

x2

x1

(2, 2)

(3, –1)(–2, –1)

FIGURE 2
Vectors with arrows.

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

2In physics, arrows can represent forces and usually are free to move about in space. This interpretation
of vectors will be discussed in Section 4.1.
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PARALLELOGRAM RULE FOR ADDITION

If u and v in R
2 are represented as points in the plane, then u + v corresponds to

the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Fig. 3.

v

u

x2

x1

u

v

u + v

0

FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectors u =
[

2
2

]
, v =

[ −6
1

]
, and u + v =

[ −4
3

]
are displayed in

Fig. 4.

x2

x1

u

v

u + v

2–6

3

FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, (0, 0).

EXAMPLE 3 Let u =
[

3
−1

]
. Display the vectors u, 2u, and − 2

3 u on a graph.

Solution See Fig. 5, where u, 2u =
[

6
−2

]
, and − 2

3 u =
[ −2

2/3

]
are displayed. The

arrow for 2u is twice as long as the arrow for u, and the arrows point in the same direction.
The arrow for − 2

3 u is two-thirds the length of the arrow for u, and the arrows point in
opposite directions. In general, the length of the arrow for cu is |c| times the length
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of the arrow for u. [Recall that the length of the line segment from (0, 0) to (a, b) is√
a2 + b2. We shall discuss this further in Chapter 6.]

x2

x1

u

x2

x1

u

0u

2u

u

The set of all multiples of uTypical multiples of u

2
3

– –

FIGURE 5

Vectors in 3

Vectors in R
3 are 3×1 column matrices with three entries. They are represented geomet-

rically by points in a three-dimensional coordinate space, with arrows from the origin

sometimes included for visual clarity. The vectors a =

 2

3
4


 and 2a are displayed in

Fig. 6.

2a

a

x2x1

x3

FIGURE 6
Scalar multiples in R

3.

Vectors in n

If n is a positive integer, R
n (read “r-n”) denotes the collection of all lists (or ordered

n-tuples) of n real numbers, usually written as n×1 column matrices, such as

u =



u1

u2
...

un




The vector whose entries are all zero is called the zero vector and is denoted by 0.
(The number of entries in 0 will be clear from the context.)

Equality of vectors in R
n and the operations of scalar multiplication and vector

addition in R
n are defined entry by entry just as in R

2. These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 33 and 34 at the end
of this section.
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ALGEBRAIC PROPERTIES OF R
n

For all u, v,w in R
n and all scalars c and d:

(i) u + v = v + u (v) c(u + v) = cu + cv
(ii) (u + v) + w = u + (v + w) (vi) (c + d)u = cu + du

(iii) u + 0 = 0 + u = u (vii) c(du) = (cd)(u)
(iv) u + (−u) = −u + u = 0, (viii) 1u = u

where −u denotes (−1)u

For simplicity of notation, we also use “vector subtraction” and write u − v in place
of u + (−1)v. Figure 7 shows u − v as the sum of u and −v.

x1

x2

v

u

–v

u – v

FIGURE 7
Vector subtraction.

Linear Combinations

Given vectors v1, v2, . . . , vp in R
n and given scalars c1, c2, . . . , cp, the vector y defined

by

y = c1v1 + · · · + cpvp

is called a linear combination of v1, . . . , vp with weights c1, . . . , cp. Property (ii)
above permits us to omit parentheses when forming such a linear combination. The
weights in a linear combination can be any real numbers, including zero. For example,
some linear combinations of vectors v1 and v2 are

√
3v1 + v2,

1
2 v1 (= 1

2 v1 + 0v2), and 0 (= 0v1 + 0v2)

EXAMPLE 4 Figure 8 identifies selected linear combinations of v1 =
[ −1

1

]
and v2 =[

2
1

]
. (Note that sets of parallel grid lines are drawn through integer multiples of v1 and

v2.) Estimate the linear combinations of v1 and v2 that generate the vectors u and w.

3v2

2v22v1

–2v1
–2v2

v1 – v2 –2v1 + v2

3v1

v1

–v1–v2

w
u

v2

v1 + v2 3v2

3
2
–

0

FIGURE 8 Linear combinations of v1 and v2.
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Solution The parallelogram rule shows that u is the sum of 3v1 and −2v2; that is,

u = 3v1 − 2v2

This expression for u can be interpreted as instructions for traveling from the origin to u
along two straight paths. First, travel 3 units in the v1 direction to 3v1, and then, travel
−2 units in the v2 direction (parallel to the line through v2 and 0). Next, although the
vector w is not on a grid line, w appears to be about halfway between two pairs of grid
lines, at the vertex of a parallelogram determined by (5/2)v1 and (−1/2)v2. (See Fig. 9.)
Thus

w = 5
2 v1 − 1

2 v2

v1

w

–v2

2v1

3v1

0

FIGURE 9
The next example connects a problem about linear combinations to the fundamental

existence question studied in Sections 1.1 and 1.2.

EXAMPLE 5 Let a1 =

 1

−2
−5


, a2 =


 2

5
6


, and b =


 7

4
−3


. Determine whether b

can be generated (or written) as a linear combination of a1 and a2. That is, determine
whether weights x1 and x2 exist such that

x1a1 + x2a2 = b (1)

If the vector equation (1) has a solution, find it.

Solution Use the definitions of scalar multiplication and vector addition to rewrite the
vector equation

x1


 1

−2
−5


+ x2


 2

5
6


 =


 7

4
−3




✲ ✲ ✲

a1 a2 b

which is the same as 
 x1

−2x1

−5x1


 +


 2x2

5x2

6x2


 =


 7

4
−3




and 
 x1 + 2x2

−2x1 + 5x2

−5x1 + 6x2


 =


 7

4
−3


 (2)

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x1 and x2 make the vector equation (1) true if and only
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if x1 and x2 satisfy the system

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3

(3)

We solve this system by row reducing the augmented matrix of the system as fol-
lows:3

 1 2 7
−2 5 4
−5 6 −3


 ∼


 1 2 7

0 9 18
0 16 32


 ∼


 1 2 7

0 1 2
0 16 32


 ∼


 1 0 3

0 1 2
0 0 0




The solution of (3) is x1 = 3 and x2 = 2. Hence b is a linear combination of a1 and a2,
with weights x1 = 3 and x2 = 2. That is,

3


 1

−2
−5


 + 2


 2

5
6


 =


 7

4
−3




Observe in Example 5 that the original vectors a1, a2, and b are the columns of the
augmented matrix that we row reduced:

 1 2 7
−2 5 4
−5 6 −3




✲ ✲ ✲

a1 a2 b

Let us write this matrix in a way that calls attention to its columns—namely,

[ a1 a2 b ] (4)

It is clear how to write the augmented matrix immediately from the vector equation (1),
without going through the intermediate steps of Example 5. Simply take the vectors in
the order in which they appear in (1) and put them into the columns of a matrix as in (4).

The discussion above is easily modified to establish the following fundamental fact.

A vector equation

x1a1 + x2a2 + · · · + xnan = b

has the same solution set as the linear system whose augmented matrix is

[ a1 a2 · · · an b ] (5)

In particular, b can be generated by a linear combination of a1, . . . , an if and only
if there exists a solution to the linear system corresponding to (5).

3The symbol ∼ between matrices denotes row equivalence (Section 1.2).
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One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set {v1, . . . , vp} of vectors.

DEF IN I T I ON If v1, . . . , vp are in R
n, then the set of all linear combinations of v1, . . . , vp is de-

noted by Span {v1, . . . , vp} and is called the subset of R
n spanned (or generated)

by v1, . . . , vp. That is, Span {v1, . . . , vp} is the collection of all vectors that can
be written in the form

c1v1 + c2v2 + · · · + cpvp

with c1, . . . , cp scalars.

Asking whether a vector b is in Span {v1, . . . , vp} amounts to asking whether the
vector equation

x1v1 + x2v2 + · · · + xpvp = b

has a solution, or, equivalently, asking whether the linear system with augmented matrix
[ v1 · · · vp b ] has a solution.

Note that Span {v1, . . . , vp} contains every scalar multiple of v1 (for example), since
cv1 = cv1 + 0v2 + · · · + 0vp. In particular, the zero vector must be in Span {v1, . . . , vp}.

A Geometric Description of Span{v} and Span{u, v}
Let v be a nonzero vector in R

3. Then Span {v} is the set of all scalar multiples of v, and
we visualize it as the set of points on the line in R

3 through v and 0. See Fig. 10.
If u and v are nonzero vectors in R

3, with v not a multiple of u, then Span {u, v} is
the plane in R

3 that contains u, v, and 0. In particular, Span {u, v} contains the line in
R

3 through u and 0 and the line through v and 0. See Fig. 11.

x3

x1

Span{v}

x2

v

FIGURE 10 Span {v} as a line through
the origin.

x1

x3

x2

3u

3v2vv

u

5u

FIGURE 11 Span {u, v} as a
plane through the origin.
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EXAMPLE 6 Let a1 =

 1

−2
3


, a2 =


 5

−13
−3


, and b =


 −3

8
1


. Then Span {a1, a2}

is a plane through the origin in R
3. Is b in that plane?

Solution Does the equation x1a1 + x2a2 = b have a solution? To answer this, row
reduce the augmented matrix [ a1 a2 b ]:

 1 5 −3
−2 −13 8

3 −3 1


 ∼


 1 5 −3

0 −3 2
0 −18 10


 ∼


 1 5 −3

0 −3 2
0 0 −2




The third equation is 0x2 = −2, which shows that the system has no solution. The vector
equation x1a1 + x2a2 = b has no solution, and so b is not in Span {a1, a2}.

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per
unit is known: {

number
of units

}
·
{

cost
per unit

}
=

{
total
cost

}

EXAMPLE 7 A company manufactures two products. For $1.00 worth of product B,
the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For $1.00
worth of product C, the company spends $.40 on materials, $.30 on labor, and $.15 on
overhead. Let

b =

 .45
.25
.15


 and c =


 .40
.30
.15




Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x1 dollars worth of product B and
x2 dollars worth of product C. Give a vector that describes the various costs the
company will have (for materials, labor, and overhead).

Solution

a. We have

100b = 100


 .45
.25
.15


 =


 45

25
15




The vector 100b lists the various costs for producing $100 worth of product B—
namely, $45 for materials, $25 for labor, and $15 for overhead.
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b. The costs of manufacturing x1 dollars worth of B are given by the vector x1b, and
the costs of manufacturing x2 dollars worth of C are given by x2c. Hence the total
costs for both products are given by the vector x1b + x2c.

P R A C T I C E P R O B L E M S

1. Prove that u + v = v + u for any u and v in R
n.

2. For what value(s) of h will y be in Span{v1, v2, v3} if

v1 =

 1

−1
−2


 , v2 =


 5

−4
−7


 , v3 =


 −3

1
0


 , and y =


 −4

3
h




1.3 EXERCISES
In Exercises 1 and 2, compute u + v and u − 2v.

1. u =
[ −1

2

]
, v =

[ −3
−1

]
2. u =

[
3
2

]
, v =

[
2

−1

]

In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, −v, −2v, u + v, u − v, and u − 2v. Notice
that u − v is the vertex of a parallelogram whose other vertices are
u, 0, and −v.

3. u and v as in Exercise 1 4. u and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent
to the given vector equation.

5. x1


 6

−1
5


+ x2


 −3

4
0


 =


 1

−7
−5




6. x1

[ −2
3

]
+ x2

[
8
5

]
+ x3

[
1

−6

]
=

[
0
0

]

Use the accompanying figure to write each vector listed in Exer-
cises 7 and 8 as a linear combination of u and v. Is every vector
in R

2 a linear combination of u and v?

w

x

v

u

a
c

d

2v
b

z

y
–2v –u

–v
0

7. Vectors a, b, c, and d 8. Vectors w, x, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to
the given system of equations.

9. x2 + 5x3 = 0

4x1 + 6x2 − x3 = 0

−x1 + 3x2 − 8x3 = 0

10. 4x1 + x2 + 3x3 = 9

x1 − 7x2 − 2x3 = 2

8x1 + 6x2 − 5x3 = 15

In Exercises 11 and 12, determine if b is a linear combination of
a1, a2, and a3.
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11. a1 =

 1

−2
0


 , a2 =


 0

1
2


 , a3 =


 5

−6
8


 ,b =


 2

−1
6




12. a1 =

 1

−2
2


 , a2 =


 0

5
5


 , a3 =


 2

0
8


 ,b =


 −5

11
−7




In Exercises 13 and 14, determine if b is a linear combination of
the vectors formed from the columns of the matrix A.

13. A =

 1 −4 2

0 3 5
−2 8 −4


 ,b =


 3

−7
−3




14. A =

 1 −2 −6

0 3 7
1 −2 5


 ,b =


 11

−5
9




In Exercises 15 and 16, list five vectors in Span {v1, v2}. For each
vector, show the weights on v1 and v2 used to generate the vector
and list the three entries of the vector. Do not make a sketch.

15. v1 =

 7

1
−6


 , v2 =


 −5

3
0




16. v1 =

 3

0
2


 , v2 =


 −2

0
3




17. Let a1 =

 1

4
−2


, a2 =


 −2

−3
7


, and b =


 4

1
h


. For what

value(s) of h is b in the plane spanned by a1 and a2?

18. Let v1 =

 1

0
−2


, v2 =


 −3

1
8


, and y =


 h

−5
−3


. For what

value(s) of h is y in the plane generated by v1 and v2?

19. Give a geometric description of Span {v1, v2} for the vectors

v1 =

 8

2
−6


 and v2 =


 12

3
−9


.

20. Give a geometric description of Span {v1, v2} for the vectors
in Exercise 16.

21. Let u =
[

2
−1

]
and v =

[
2
1

]
. Show that

[
h

k

]
is in

Span {u, v} for all h and k.

22. Construct a 3×3 matrix A, with nonzero entries, and a vector
b in R

3 such that b is not in the set spanned by the columns
of A.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. Another notation for the vector

[ −4
3

]
is [ −4 3 ].

b. The points in the plane corresponding to

[ −2
5

]
and

[ −5
2

]

lie on a line through the origin.

c. An example of a linear combination of vectors v1 and v2

is the vector 1
2 v1.

d. The solution set of the linear system whose augmented
matrix is [ a1 a2 a3 b ] is the same as the solution set
of the equation x1a1 + x2a2 + x3a3 = b.

e. The set Span {u, v} is always visualized as a plane
through the origin.

24. a. Any list of five real numbers is a vector in R
5.

b. The vector u results when a vector u − v is added to the
vector v.

c. The weights c1, . . . , cp in a linear combination
c1v1 + · · · + cpvp cannot all be zero.

d. When u and v are nonzero vectors, Span {u, v} contains
the line through u and the origin.

e. Asking whether the linear system corresponding to an aug-
mented matrix [ a1 a2 a3 b ] has a solution amounts
to asking whether b is in Span {a1, a2, a3}.

25. Let A =

 1 0 −4

0 3 −2
−2 6 3


 and b =


 4

1
−4


. Denote the

columns of A by a1, a2, a3, and let W = Span {a1, a2, a3}.
a. Is b in {a1, a2, a3}? How many vectors are in {a1, a2, a3}?
b. Is b in W? How many vectors are in W?

c. Show that a1 is in W . [Hint: Row operations are unnec-
essary.]

26. Let A =

 2 0 6

−1 8 5
1 −2 1


, let b =


 10

3
3


, and let W be the

set of all linear combinations of the columns of A.

a. Is b in W?

b. Show that the third column of A is in W .

27. A mining company has two mines. One day’s operation at
mine #1 produces ore that contains 20 metric tons of copper



May 10, 2005 10:46 l57-ch01 Sheet number 39 Page number 39 cyan magenta yellow black

1.3 Vector Equations 39

and 550 kilograms of silver, while one day’s operation at mine
#2 produces ore that contains 30 metric tons of copper and 500

kilograms of silver. Let v1 =
[

20
550

]
and v2 =

[
30

500

]
. Then

v1 and v2 represent the “output per day” of mine #1 and mine
#2, respectively.

a. What physical interpretation can be given to the vector
5v1?

b. Suppose the company operates mine #1 for x1 days and
mine #2 for x2 days. Write a vector equation whose solu-
tion gives the number of days each mine should operate in
order to produce 150 tons of copper and 2825 kilograms
of silver. Do not solve the equation.

c. [M] Solve the equation in (b).

28. A steam plant burns two types of coal: anthracite (A) and bitu-
minous (B). For each ton of A burned, the plant produces 27.6
million Btu of heat, 3100 grams (g) of sulfur dioxide, and 250
g of particulate matter (solid-particle pollutants). For each ton
of B burned, the plant produces 30.2 million Btu, 6400 g of
sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it burns
x1 tons of A and x2 tons of B?

b. Suppose the output of the steam plant is described by a
vector that lists the amounts of heat, sulfur dioxide, and
particulate matter. Express this output as a linear com-
bination of two vectors, assuming that the plant burns x1

tons of A and x2 tons of B.

c. [M] Over a certain time period, the steam plant produced
162 million Btu of heat, 23,610 g of sulfur dioxide, and
1623 g of particulate matter. Determine how many tons
of each type of coal the steam plant must have burned.
Include a vector equation as part of your solution.

29. Let v1, . . . , vk be points in R
3 and suppose that for

j = 1, . . . , k an object with mass mj is located at point vj .
Physicists call such objects point masses. The total mass of
the system of point masses is

m = m1 + · · · + mk

The center of gravity (or center of mass) of the system is

v = 1

m
[m1v1 + · · · + mkvk]

Compute the center of gravity of the system consisting of the
following point masses (see the figure):

Point Mass

v1 = (5,−4, 3) 2 g
v2 = (4, 3,−2) 5 g
v3 = (−4,−3,−1) 2 g
v4 = (−9, 8, 6) 1 g

x3
v4

x2

v2

v3x1

v1

30. Let v be the center of mass of a system of point masses located
at v1, . . . , vk as in Exercise 29. Is v in Span {v1, . . . , vk}? Ex-
plain.

31. A thin triangular plate of uniform density and thickness has
vertices at v1 = (0, 1), v2 = (8, 1), and v3 = (2, 4), as in the
figure below, and the mass of the plate is 3 g.

v2

v3

v1

x1

4

8

x2

a. Find the (x, y)-coordinates of the center of mass of the
plate. This “balance point” of the plate coincides with the
center of mass of a system consisting of three 1-gram point
masses located at the vertices of the plate.

b. Determine how to distribute an additional mass of 6 g
at the three vertices of the plate to move the balance
point of the plate to (2, 2). [Hint: Let w1, w2, and w3

denote the masses added at the three vertices, so that
w1 + w2 + w3 = 6.]
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32. Consider the vectors v1, v2, v3 and b in R
2, shown in the figure.

Does the equation x1v1 + x2v2 + x3v3 = b have a solution? Is
the solution unique? Use the figure to explain your answers.

0
v1

v2

v3

b

33. Use the vectors u = (u1, . . . , un), v = (v1, . . . , vn), and
w = (w1, . . . , wn) to verify the following algebraic proper-
ties of R

n.

a. (u + v) + w = u + (v + w)

b. c(u + v) = cu + cv for each scalar c

34. Use the vector u = (u1, . . . , un) to verify the following alge-
braic properties of R

n.

a. u + (−u) = (−u) + u = 0

b. c(du) = (cd)u for all scalars c and d

S O L U T I O N S T O P R A C T I C E P R O B L E M S

v3

v2

v1

Span{v1, v2, v3}

The points


 −4

3
h


 lie on a line

that intersects the plane when
h = 5.

1. Take arbitrary vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in R
n, and compute

u + v = (u1 + v1, . . . , un + vn) Definition of vector addition

= (v1 + u1, . . . , vn + un) Commutativity of addition in R

= v + u Definition of vector addition

2. The vector y belongs to Span {v1, v2, v3} if and only if there exist scalars x1, x2, x3

such that

x1


 1

−1
−2


+ x2


 5

−4
−7


+ x3


 −3

1
0


 =


 −4

3
h




This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that
 1 5 −3 −4

−1 −4 1 3
−2 −7 0 h


 ∼


 1 5 −3 −4

0 1 −2 −1
0 3 −6 h − 8


 ∼


 1 5 −3 −4

0 1 −2 −1
0 0 0 h − 5




The system is consistent if and only if there is no pivot in the fourth column. That is,
h − 5 must be 0. So y is in Span {v1, v2, v3} if and only if h = 5.

Remember: The presence of a free variable in a system does not guarantee that the
system is consistent.

1.4 THE MATRIX EQUATION Ax = b
A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.
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DEF IN I T I ON IfA is anm×nmatrix, with columns a1, . . . , an, and if x is in R
n, then the product

of A and x, denoted by Ax, is the linear combination of the columns of A using
the corresponding entries in x as weights; that is,

Ax = [ a1 a2 · · · an ]



x1
...

xn


= x1a1 + x2a2 + · · · + xnan

Note that Ax is defined only if the number of columns of A equals the number of entries
in x.

EXAMPLE 1

a.

[
1 2 −1
0 −5 3

]
 4

3
7


 = 4

[
1
0

]
+ 3

[
2

−5

]
+ 7

[ −1
3

]

=
[

4
0

]
+

[
6

−15

]
+

[ −7
21

]
=

[
3
6

]

b.


 2 −3

8 0
−5 2



[

4
7

]
= 4


 2

8
−5


 + 7


 −3

0
2


 =


 8

32
−20


 +


 −21

0
14


 =


 −13

32
−6




EXAMPLE 2 For v1, v2, v3 in R
m, write the linear combination 3v1 − 5v2 + 7v3 as a

matrix times a vector.

Solution Place v1, v2, v3 into the columns of a matrix A and place the weights 3, −5,
and 7 into a vector x. That is,

3v1 − 5v2 + 7v3 = [ v1 v2 v3 ]


 3

−5
7


 = Ax

In Section 1.3, we learned how to write a system of linear equations as a vector
equation involving a linear combination of vectors. For example, we know that the
system

x1 + 2x2 − x3 = 4

−5x2 + 3x3 = 1 (1)

is equivalent to

x1

[
1
0

]
+ x2

[
2

−5

]
+ x3

[ −1
3

]
=

[
4
1

]
(2)
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As in Example 2, we can write the linear combination on the left side as a matrix times
a vector, so that (2) becomes

[
1 2 −1
0 −5 3

]
 x1

x2

x3


 =

[
4
1

]
(3)

Equation (3) has the form Ax = b, and we shall call such an equation a matrix
equation, to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax = b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.

THEOREM 3 If A is an m×n matrix, with columns a1, . . . , an, and if b is in R
m, the matrix

equation

Ax = b (4)

has the same solution set as the vector equation

x1a1 + x2a2 + · · · + xnan = b (5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is

[ a1 a2 · · · an b ] (6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra because we can now view a system of linear equations in three different but
equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. When we construct a mathematical model of a problem in real life, we are
free to choose whichever viewpoint is most natural. Then we may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation, the vector equation, and the system of equations are all solved in the same
way—by row reducing the augmented matrix (6). Other methods of solution will be
discussed later.

Existence of Solutions

The definition of Ax leads directly to the following useful fact.

The equation Ax = b has a solution if and only if b is a linear combination of the
columns of A.
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In Section 1.3, we considered the existence question, “Is b in Span {a1, . . . , an}?”
Equivalently, “Is Ax = b consistent?” A harder existence problem is to determine
whether the equation Ax = b is consistent for all possible b.

EXAMPLE 3 Let A =

 1 3 4

−4 2 −6
−3 −2 −7


 and b =


 b1

b2

b3


. Is the equation Ax = b con-

sistent for all possible b1, b2, b3?

Solution Row reduce the augmented matrix for Ax = b:
 1 3 4 b1

−4 2 −6 b2

−3 −2 −7 b3


 ∼


 1 3 4 b1

0 14 10 b2 + 4b1

0 7 5 b3 + 3b1




∼

 1 3 4 b1

0 14 10 b2 + 4b1

0 0 0 b3 + 3b1 − 1
2 (b2 + 4b1)




The third entry in the augmented column is b1 − 1
2b2 + b3. The equation Ax = b is not

consistent for every b because some choices of b can make b1 − 1
2b2 + b3 nonzero.

The reduced matrix in Example 3 provides a description of all b for which the
equation Ax = b is consistent: The entries in b must satisfy

b1 − 1
2b2 + b3 = 0

This is the equation of a plane through the origin in R
3. The plane is the set of all linear

combinations of the three columns of A. See Fig. 1.

x3

x1
x2

0

Span{a1
, a2

, a3
}

FIGURE 1
The columns of A= [ a1 a2 a3 ]
span a plane through 0. The equationAx = b in Example 3 fails to be consistent for all b because the echelon

form of A has a row of zeros. If A had a pivot in all three rows, we would not care about
the calculations in the augmented column because in this case an echelon form of the
augmented matrix could not have a row such as [ 0 0 0 1 ].

In the next theorem, when we say that the columns of A span R
m, we mean that

every b in R
m is a linear combination of the columns of A. In general, a set of vectors

{v1, . . . , vp} in R
m spans (or generates) R

m if every vector in R
m is a linear combination

of v1, . . . , vp, that is, if Span {v1, . . . , vp} = R
m.

THEOREM 4 Let A be an m×n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.

a. For each b in R
m, the equation Ax = b has a solution.

b. Each b in R
m is a linear combination of the columns of A.

c. The columns of A span R
m.

d. A has a pivot position in every row.
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Theorem 4 is one of the most useful theorems of this chapter. Statements (a), (b), and
(c) are equivalent because of the definition of Ax and what it means for a set of vectors
to span R

m. The discussion after Example 3 suggests why (a) and (d) are equivalent;
a proof is given at the end of the section. The exercises will provide examples of how
Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [A b ] has a pivot position in every row, then the equation Ax = b
may or may not be consistent.

Computation of Ax

The calculations in Example 1 were based on the definition of the product of a matrix A

and a vector x. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

EXAMPLE 4 Compute Ax, where A =

 2 3 4

−1 5 −3
6 −2 8


 and x =


 x1

x2

x3


.

Solution From the definition,
 2 3 4

−1 5 −3
6 −2 8




 x1

x2

x3


 = x1


 2

−1
6


+ x2


 3

5
−2


+ x3


 4

−3
8




=

 2x1

−x1

6x1


 +


 3x2

5x2

−2x2


 +


 4x3

−3x3

8x3


 (7)

=

 2x1 + 3x2 + 4x3

−x1 + 5x2 − 3x3

6x1 − 2x2 + 8x3




The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,

 2 3 4



 x1

x2

x3


 =


 2x1 + 3x2 + 4x3




This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at
once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:

 −1 5 −3




 x1

x2

x3


 =


 −x1 + 5x2 − 3x3



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Likewise, the third entry in Ax can be calculated from the third row of A and the entries
in x.

ROW–VECTOR RULE FOR COMPUTING Ax

If the product Ax is defined, then the ith entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.

EXAMPLE 5

a.

[
1 2 −1
0 −5 3

]
 4

3
7


 =

[
1·4 + 2·3 + (−1)·7
0·4 + (−5)·3 + 3·7

]
=

[
3
6

]

b.


 2 −3

8 0
−5 2



[

4
7

]
=


 2·4 + (−3)·7

8·4 + 0·7
(−5)·4 + 2·7


 =


 −13

32
−6




c.


 1 0 0

0 1 0
0 0 1




 r

s

t


 =


 1·r + 0·s + 0·t

0·r + 1·s + 0·t
0·r + 0·s + 1·t


 =


 r

s

t




By definition, the matrix in Example 5(c) with 1’s on the diagonal and 0’s elsewhere
is called an identity matrix and is denoted by I . The calculation in part (c) shows that
Ix = x for every x in R

3. There is an analogous n×n identity matrix, sometimes written
as In. As in part (c), Inx = x for every x in R

n.

Properties of the Matrix–Vector Product Ax

The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of R

n.

THEOREM 5 If A is an m×n matrix, u and v are vectors in R
n, and c is a scalar, then:

a. A(u + v) = Au + Av;

b. A(cu) = c(Au).

PROOF For simplicity, take n = 3, A = [ a1 a2 a3 ], and u, v in R
3. (The proof of

the general case is similar.) For i = 1, 2, 3, let ui and vi be the ith entries in u and v,
respectively. To prove statement (a), compute A(u + v) as a linear combination of the
columns of A using the entries in u + v as weights.
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A(u + v) = [ a1 a2 a3 ]


 u1 + v1

u2 + v2

u3 + v3




Entries in u + v✲ ✲ ✲
= (u1 + v1)a1 + (u2 + v2)a2 + (u3 + v3)a3

Columns of A✲ ✲ ✲

= (u1a1 + u2a2 + u3a3) + (v1a1 + v2a2 + v3a3)

= Au + Av

To prove statement (b), compute A(cu) as a linear combination of the columns of A

using the entries in cu as weights.

A(cu) = [ a1 a2 a3 ]


 cu1

cu2

cu3


 = (cu1)a1 + (cu2)a2 + (cu3)a3

= c(u1a1) + c(u2a2) + c(u3a3)

= c(u1a1 + u2a2 + u3a3)

= c(Au) �

NU M E R I CA L NOT E

To optimize a computer algorithm to computeAx, the sequence of calculations should
involve data stored in contiguous memory locations. The most widely used profes-
sional algorithms for matrix computations are written in Fortran, a language that stores
a matrix as a set of columns. Such algorithms compute Ax as a linear combination
of the columns of A. In contrast, if a program is written in the popular language C,
which stores matrices by rows, Ax should be computed via the alternative rule that
uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. That will tie all four statements together.

Let U be an echelon form of A. Given b in R
m, we can row reduce the augmented

matrix [A b ] to an augmented matrix [U d ] for some d in R
m:

[A b ] ∼ · · · ∼ [U d ]

If statement (d) is true, then each row of U contains a pivot position and there can be no
pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true. If
(d) is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry.
Then [U d ] represents an inconsistent system. Since row operations are reversible,
[U d ] can be transformed into the form [A b ]. The new system Ax = b is also
inconsistent, and (a) is false. �
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P R A C T I C E P R O B L E M S

1. Let A =

 1 5 −2 0

−3 1 9 −5
4 −8 −1 7


, p =




3
−2

0
−4


, and b =


 −7

9
0


. It can be shown that

p is a solution of Ax = b. Use this fact to exhibit b as a specific linear combination
of the columns of A.

2. Let A =
[

2 5
3 1

]
, u =

[
4

−1

]
, and v =

[ −3
5

]
. Verify Theorem 5(a) in this case

by computing A(u + v) and Au + Av.

1.4 EXERCISES
Compute the products in Exercises 1–4 using (a) the definition, as
in Example 1, and (b) the row–vector rule for computing Ax. If a
product is undefined, explain why.

1.


 −4 2

1 6
0 1




 3

−2
7


 2.


 2

6
−1



[

5
−1

]

3.


 6 5

−4 −3
7 6



[

2
−3

]
4.

[
8 3 −4
5 1 2

]
 1

1
1




In Exercises 5–8, use the definition of Ax to write the matrix equa-
tion as a vector equation, or vice versa.

5.
[

5 1 −8 4
−2 −7 3 −5

]



5
−1

3
−2


 =

[ −8
16

]

6.




7 −3
2 1
9 −6

−3 2



[ −2

−5

]
=




1
−9
12
−4




7. x1




4
−1

7
−4


 + x2




−5
3

−5
1


 + x3




7
−8

0
2


 =




6
−8

0
−7




8. z1

[
4

−2

]
+ z2

[ −4
5

]
+ z3

[ −5
4

]
+ z4

[
3
0

]
=

[
4

13

]

In Exercises 9 and 10, write the system first as a vector equation
and then as a matrix equation.

9. 3x1 + x2 − 5x3 = 9

x2 + 4x3 = 0

10. 8x1 − x2 = 4

5x1 + 4x2 = 1

x1 − 3x2 = 2

Given A and b in Exercises 11 and 12, write the augmented ma-
trix for the linear system that corresponds to the matrix equation
Ax = b. Then solve the system and write the solution as a vector.

11. A =

 1 2 4

0 1 5
−2 −4 −3


, b =


 −2

2
9




12. A =

 1 2 1

−3 −1 2
0 5 3


, b =


 0

1
−1




13. Let u =

 0

4
4


 and A =


 3 −5

−2 6
1 1


. Is u in the plane in R

3

spanned by the columns of A? (See the figure.) Why or why
not?

u?u?

u?

Where is u?
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14. Let u =

 2

−3
2


 and A =


 5 8 7

0 1 −1
1 3 0


. Is u in the subset

of R
3 spanned by the columns of A? Why or why not?

15. Let A =
[

2 −1
−6 3

]
and b =

[
b1

b2

]
. Show that the equation

Ax = b does not have a solution for all possible b, and de-
scribe the set of all b for which Ax = b does have a solution.

16. Repeat Exercise 15: A =

 1 −3 −4

−3 2 6
5 −1 −8


, b =


 b1

b2

b3


.

Exercises 17–20 refer to the matrices A and B below. Make ap-
propriate calculations that justify your answers and mention an
appropriate theorem.

A =




1 3 0 3
−1 −1 −1 1

0 −4 2 −8
2 0 3 −1


 B =




1 3 −2 2
0 1 1 −5
1 2 −3 7

−2 −8 2 −1




17. How many rows of A contain a pivot position? Does the
equation Ax = b have a solution for each b in R

4?

18. Do the columns of B span R
4? Does the equation Bx = y

have a solution for each y in R
4?

19. Can each vector in R
4 be written as a linear combination of

the columns of the matrix A above? Do the columns of A

span R
4?

20. Can every vector in R
4 be written as a linear combination of

the columns of the matrix B above? Do the columns of B

span R
3?

21. Let v1 =




1
0

−1
0


, v2 =




0
−1

0
1


, v3 =




1
0
0

−1


.

Does {v1, v2, v3} span R
4? Why or why not?

22. Let v1 =

 0

0
−2


, v2 =


 0

−3
8


, v3 =


 4

−1
−5


.

Does {v1, v2, v3} span R
3? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. The equation Ax = b is referred to as a vector equation.

b. A vector b is a linear combination of the columns of a ma-
trix A if and only if the equation Ax = b has at least one
solution.

c. The equation Ax = b is consistent if the augmented matrix
[A b ] has a pivot position in every row.

d. The first entry in the product Ax is a sum of products.

e. If the columns of an m×n matrix A span R
m, then the

equation Ax = b is consistent for each b in R
m.

f. If A is an m×n matrix and if the equation Ax = b is in-
consistent for some b in R

m, then A cannot have a pivot
position in every row.

24. a. Every matrix equation Ax = b corresponds to a vector
equation with the same solution set.

b. Any linear combination of vectors can always be written
in the form Ax for a suitable matrix A and vector x.

c. The solution set of a linear system whose augmented ma-
trix is [ a1 a2 a3 b ] is the same as the solution set of
Ax = b, if A = [ a1 a2 a3 ].

d. If the equation Ax = b is inconsistent, then b is not in the
set spanned by the columns of A.

e. If the augmented matrix [A b ] has a pivot position in
every row, then the equation Ax = b is inconsistent.

f. If A is an m×n matrix whose columns do not span R
m,

then the equation Ax = b is inconsistent for some b in R
m.

25. Note that


 4 −3 1

5 −2 5
−6 2 −3




 −3

−1
2


 =


 −7

−3
10


. Use this fact

(and no row operations) to find scalars c1, c2, c3 such that
 −7

−3
10


 = c1


 4

5
−6


 + c2


 −3

−2
2


 + c3


 1

5
−3


.

26. Let u =

 7

2
5


, v =


 3

1
3


, and w =


 6

1
0


.

It can be shown that 3u − 5v − w = 0. Use this fact (and
no row operations) to find x1 and x2 that satisfy the equation
 7 3

2 1
5 3



[
x1

x2

]
=


 6

1
0


.

27. Let q1, q2, q3, and v represent vectors in R
5, and let x1, x2,

and x3 denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

x1q1 + x2q2 + x3q3 = v

28. Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols v1, v2, . . . for the
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vectors and c1, c2, . . . for scalars. Define what each symbol
represents, using the data given in the matrix equation.

[ −3 5 −4 9 7
5 8 1 −2 −4

]



−3
2
4

−1
2


 =

[
8

−1

]

29. Construct a 3×3 matrix, not in echelon form, whose columns
span R

3. Show that the matrix you construct has the desired
property.

30. Construct a 3×3 matrix, not in echelon form, whose columns
do not span R

3. Show that the matrix you construct has the
desired property.

31. LetA be a 3×2 matrix. Explain why the equationAx = b can-
not be consistent for all b in R

3. Generalize your argument to
the case of an arbitrary A with more rows than columns.

32. Could a set of three vectors in R
4 span all of R

4? Explain.
What about n vectors in R

m when n is less than m?

33. Suppose A is a 4×3 matrix and b is a vector in R
4 with the

property that Ax = b has a unique solution. What can you say
about the reduced echelon form of A? Justify your answer.

34. Suppose A is a 3×3 matrix and b is a vector in R
3 with the

property that Ax = b has a unique solution. Explain why the
columns of A must span R

3.

35. Let A be a 3×4 matrix, let y1 and y2 be vectors in R
3, and let

w = y1 + y2. Suppose y1 = Ax1 and y2 = Ax2 for some vec-

tors x1 and x2 in R
4. What fact allows you to conclude that

the system Ax = w is consistent? (Note: x1 and x2 denote
vectors, not scalar entries in vectors.)

36. Let A be a 5×3 matrix, let y be a vector in R
3, and let z be

a vector in R
5. Suppose Ay = z. What fact allows you to

conclude that the system Ax = 4z is consistent?

[M] In Exercises 37–40, determine if the columns of the matrix
span R

4.

37.




7 2 −5 8
−5 −3 4 −9

6 10 −2 7
−7 9 2 15


 38.




5 −7 −4 9
6 −8 −7 5
4 −4 −9 −9

−9 11 16 7




39.




12 −7 11 −9 5
−9 4 −8 7 −3
−6 11 −7 3 −9

4 −6 10 −5 12




40.




8 11 −6 −7 13
−7 −8 5 6 −9
11 7 −7 −9 −6
−3 4 1 8 7




41. [M] Find a column of the matrix in Exercise 39 that can be
deleted and yet have the remaining matrix columns still span
R

4.

42. [M] Find a column of the matrix in Exercise 40 that can be
deleted and yet have the remaining matrix columns still span
R

4. Can you delete more than one column?

SG Mastering Linear Algebra Concepts: Span 1–19 CD Solving Ax = b

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The matrix equation


 1 5 −2 0

−3 1 9 −5
4 −8 −1 7






3
−2

0
−4


 =


 −7

9
0




is equivalent to the vector equation

3


 1

−3
4


− 2


 5

1
−8


+ 0


 −2

9
−1


− 4


 0

−5
7


 =


 −7

9
0




which expresses b as a linear combination of the columns of A.
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2. u + v =
[

4
−1

]
+

[ −3
5

]
=

[
1
4

]

A(u + v) =
[

2 5
3 1

][
1
4

]
=

[
2 + 20
3 + 4

]
=

[
22

7

]

Au + Av =
[

2 5
3 1

][
4

−1

]
+

[
2 5
3 1

] [ −3
5

]

=
[

3
11

]
+

[
19
−4

]
=

[
22

7

]

1.5 SOLUTION SETS OF LINEAR SYSTEMS
Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.

Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the
form Ax = 0, where A is an m×n matrix and 0 is the zero vector in R

m. Such a system
Ax = 0 always has at least one solution, namely, x = 0 (the zero vector in R

n). This zero
solution is usually called the trivial solution. For a given equationAx = 0, the important
question is whether there exists a nontrivial solution, that is, a nonzero vector x that
satisfies Ax = 0. The Existence and Uniqueness Theorem in Section 1.2 (Theorem 2)
leads immediately to the following fact.

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial solu-
tion. Then describe the solution set.

3x1 + 5x2 − 4x3 = 0

−3x1 − 2x2 + 4x3 = 0

6x1 + x2 − 8x3 = 0

Solution Let A be the matrix of coefficients of the system and row reduce the aug-
mented matrix [A 0 ] to echelon form:

 3 5 −4 0
−3 −2 4 0

6 1 −8 0


 ∼


 3 5 −4 0

0 3 0 0
0 −9 0 0


 ∼


 3 5 −4 0

0 3 0 0
0 0 0 0



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Since x3 is a free variable, Ax = 0 has nontrivial solutions (one for each choice of x3).
To describe the solution set, continue the row reduction of [A 0 ] to reduced echelon
form: 

 1 0 − 4
3 0

0 1 0 0
0 0 0 0


 x1 − 4

3x3 = 0

x2 = 0

0 = 0

Solve for the basic variables x1 and x2 and obtain x1 = 4
3x3, x2 = 0, with x3 free. As a

vector, the general solution of Ax = 0 has the form

x =

 x1

x2

x3


 =




4
3x3

0
x3


 = x3




4
3
0
1


 = x3v, where v =




4
3
0
1




Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax = 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 = 0. Geometrically, the solution set is a line through 0 in R

3.
See Fig. 1.

Span{v}

0

x3

x1

x2

v

FIGURE 1

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of equa-
tions. Describe all solutions of the homogeneous “system”

10x1 − 3x2 − 2x3 = 0 (1)

Solution There is no need for matrix notation. Solve for the basic variable x1 in terms
of the free variables. The general solution is x1 = .3x2 + .2x3, with x2 and x3 free. As a
vector, the general solution is

x =

 x1

x2

x3


 =


 .3x2 + .2x3

x2

x3


 =


 .3x2

x2

0


 +


 .2x3

0
x3




= x2


 .3

1
0


 + x3


 .2

0
1


 (with x2, x3 free) (2)

✲ ✲u v

This calculation shows that every solution of (1) is a linear combination of the vectors
u and v, shown in (2). That is, the solution set is Span {u, v}. Since neither u nor v is a
scalar multiple of the other, the solution set is a plane through the origin. See Fig. 2.

u

x3

x1

x2

v

FIGURE 2

Examples 1 and 2, along with the exercises, illustrate the fact that the solution set of a
homogeneous equation Ax = 0 can always be expressed explicitly as Span {v1, . . . , vp}
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for suitable vectors v1, . . . , vp. If the only solution is the zero vector, then the solution
set is Span {0}. If the equation Ax = 0 has only one free variable, the solution set is a
line through the origin, as in Fig. 1. A plane through the origin, as in Fig. 2, provides
a good mental image for the solution set of Ax = 0 when there are two or more free
variables. Note, however, that a similar figure can be used to visualize Span {u, v} even
when u and v do not arise as solutions of Ax = 0. See Fig. 11 in Section 1.3.

Parametric Vector Form

The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

x = su + tv (s, t in R)

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
x = x3v (with x3 free), or x = tv (with t in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems

When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3 Describe all solutions of Ax = b, where

A =

 3 5 −4

−3 −2 4
6 1 −8


 and b =


 7

−1
−4




Solution Here A is the matrix of coefficients from Example 1. Row operations on
[A b ] produce

 3 5 −4 7
−3 −2 4 −1

6 1 −8 −4


 ∼


 1 0 − 4

3 −1
0 1 0 2
0 0 0 0


 ,

x1 − 4
3x3 = −1

x2 = 2
0 = 0

Thus x1 = −1 + 4
3x3, x2 = 2, and x3 is free. As a vector, the general solution of Ax = b

has the form

x =

 x1

x2

x3


 =


 −1 + 4

3x3

2
x3


 =


 −1

2
0


 +




4
3x3

0
x3


 =


 −1

2
0




✲

p

+ x3




4
3
0
1




✲

v
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The equation x = p + x3v, or, writing t as a general parameter,

x = p + tv (t in R) (3)

describes the solution set of Ax = b in parametric vector form. Recall from Example 1
that the solution set of Ax = 0 has the parametric vector equation

x = tv (t in R) (4)

[with the same v that appears in (3)]. Thus the solutions of Ax = b are obtained by
adding the vector p to the solutions of Ax = 0. The vector p itself is just one particular
solution of Ax = b [corresponding to t = 0 in (3)].

To describe the solution set of Ax = b geometrically, we can think of vector addition
as a translation. Given v and p in R

2 or R
3, the effect of adding p to v is to move v in a

direction parallel to the line through p and 0. We say that v is translated by p to v + p.
See Fig. 3. If each point on a line L in R

2 or R
3 is translated by a vector p, the result is

a line parallel to L. See Fig. 4.

p

v

v + p

FIGURE 3
Adding p to v translates v to v + p.

L + p

L

FIGURE 4
Translated line.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on
the line (3). We call (3) the equation of the line through p parallel to v. Thus the
solution set of Ax = b is a line through p parallel to the solution set of Ax = 0. Figure
5 illustrates this case.

p

v tv

p + tv

Ax = b

Ax = 0

FIGURE 5 Parallel solution sets of Ax = b and
Ax = 0.

The relation between the solution sets of Ax = b and Ax = 0 shown in Fig. 5
generalizes to any consistent equation Ax = b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 25 for a proof.

THEOREM 6 Suppose the equationAx = b is consistent for some given b, and let p be a solution.
Then the solution set of Ax = b is the set of all vectors of the form w = p + vh,
where vh is any solution of the homogeneous equation Ax = 0.

Theorem 6 says that if Ax = b has a solution, then the solution set is obtained by
translating the solution set of Ax = 0, using any particular solution p of Ax = b for the
translation. Figure 6 illustrates the case when there are two free variables. Even when
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n > 3, our mental image of the solution set of a consistent system Ax = b (with b 
= 0)
is either a single nonzero point or a line or plane not passing through the origin.

Ax = b

Ax = 0p

FIGURE 6 Parallel solution sets of
Ax = b and Ax = 0.

Warning: Theorem 6 and Fig. 6 apply only to an equation Ax = b that has at least
one nonzero solution p. When Ax = b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1, 2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free variables,
if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

P R A C T I C E P R O B L E M S

1. Each of the following equations determines a plane in R
3. Do the two planes intersect?

If so, describe their intersection.

x1 + 4x2 − 5x3 = 0

2x1 − x2 + 8x3 = 9

2. Write the general solution of 10x1 − 3x2 − 2x3 = 7 in parametric vector form, and
relate the solution set to the one found in Example 2.
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1.5 EXERCISES
In Exercises 1–4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.

1. 2x1 − 5x2 + 8x3 = 0

−2x1 − 7x2 + x3 = 0

4x1 + 2x2 + 7x3 = 0

2. x1 − 3x2 + 7x3 = 0

−2x1 + x2 − 4x3 = 0

x1 + 2x2 + 9x3 = 0

3. −3x1 + 5x2 − 7x3 = 0

−6x1 + 7x2 + x3 = 0

4. −5x1 + 7x2 + 9x3 = 0

x1 − 2x2 + 6x3 = 0

In Exercises 5 and 6, follow the method of Examples 1 and 2 to
write the solution set of the given homogeneous system in para-
metric vector form.

5. x1 + 3x2 + x3 = 0

−4x1 − 9x2 + 2x3 = 0

− 3x2 − 6x3 = 0

6. x1 + 3x2 − 5x3 = 0

x1 + 4x2 − 8x3 = 0

−3x1 − 7x2 + 9x3 = 0

In Exercises 7–12, describe all solutions of Ax = 0 in parametric
vector form, where A is row equivalent to the given matrix.

7.
[

1 3 −3 7
0 1 −4 5

]
8.

[
1 −2 −9 5
0 1 2 −6

]

9.
[

3 −9 6
−1 3 −2

]
10.

[
1 3 0 −4
2 6 0 −8

]

11.




1 −4 −2 0 3 −5
0 0 1 0 0 −1
0 0 0 0 1 −4
0 0 0 0 0 0




12.




1 5 2 −6 9 0
0 0 1 −7 4 −8
0 0 0 0 0 1
0 0 0 0 0 0




13. Suppose the solution set of a certain system of linear equa-
tions can be described as x1 = 5 + 4x3, x2 = −2 − 7x3, with
x3 free. Use vectors to describe this set as a line in R

3.

14. Suppose the solution set of a certain system of linear equations
can be described as x1 = 3x4, x2 = 8 + x4, x3 = 2 − 5x4, with
x4 free. Use vectors to describe this set as a “line” in R

4.

15. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

x1 + 3x2 + x3 = 1

−4x1 − 9x2 + 2x3 = −1

− 3x2 − 6x3 = −3

16. As in Exercise 15, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

x1 + 3x2 − 5x3 = 4

x1 + 4x2 − 8x3 = 7

−3x1 − 7x2 + 9x3 = −6

17. Describe and compare the solution sets of x1 + 9x2 − 4x3 = 0
and x1 + 9x2 − 4x3 = −2.

18. Describe and compare the solution sets of x1 − 3x2 + 5x3 = 0
and x1 − 3x2 + 5x3 = 4.

In Exercises 19 and 20, find the parametric equation of the line
through a parallel to b.

19. a =
[ −2

0

]
, b =

[ −5
3

]
20. a =

[
3

−4

]
, b =

[ −7
8

]

In Exercises 21 and 22, find a parametric equation of the line M

through p and q. [Hint: M is parallel to the vector q − p. See the
figure below.]

21. p =
[

2
−5

]
, q =

[ −3
1

]
22. p =

[ −6
3

]
, q =

[
0

−4

]

x1

x2

M
q – p

–pq

p

The line through p and q.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A homogeneous equation is always consistent.

b. The equation Ax = 0 gives an explicit description of its
solution set.
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c. The homogeneous equation Ax = 0 has the trivial solution
if and only if the equation has at least one free variable.

d. The equation x = p + tv describes a line through v parallel
to p.

e. The solution set of Ax = b is the set of all vectors of the
form w = p + vh, where vh is any solution of the equation
Ax = 0.

24. a. If x is a nontrivial solution of Ax = 0, then every entry in
x is nonzero.

b. The equation x = x2u + x3v, with x2 and x3 free (and nei-
ther u nor v a multiple of the other), describes a plane
through the origin.

c. The equation Ax = b is homogeneous if the zero vector is
a solution.

d. The effect of adding p to a vector is to move the vector in
a direction parallel to p.

e. The solution set of Ax = b is obtained by translating the
solution set of Ax = 0.

25. Prove Theorem 6:
a. Suppose p is a solution of Ax = b, so that Ap = b. Let vh

be any solution of the homogeneous equation Ax = 0, and
let w = p + vh. Show that w is a solution of Ax = b.

b. Let w be any solution of Ax = b, and define vh = w − p.
Show that vh is a solution of Ax = 0. This shows that ev-
ery solution of Ax = b has the form w = p + vh, with p a
particular solution of Ax = b and vh a solution of Ax = 0.

26. Suppose Ax = b has a solution. Explain why the solution is
unique precisely when Ax = 0 has only the trivial solution.

27. Suppose A is the 3×3 zero matrix (with all zero entries).
Describe the solution set of the equation Ax = 0.

28. If b 
= 0, can the solution set of Ax = b be a plane through the
origin? Explain.

In Exercises 29–32, (a) does the equation Ax = 0 have a nontriv-
ial solution and (b) does the equation Ax = b have at least one
solution for every possible b?

29. A is a 3×3 matrix with three pivot positions.

30. A is a 3×3 matrix with two pivot positions.

31. A is a 3×2 matrix with two pivot positions.

32. A is a 2×4 matrix with two pivot positions.

33. Given A =

 −2 −6

7 21
−3 −9


, find one nontrivial solution of

Ax = 0 by inspection. [Hint: Think of the equation Ax = 0
written as a vector equation.]

34. Given A =

 4 −6

−8 12
6 −9


, find one nontrivial solution of

Ax = 0 by inspection.

35. Construct a 3×3 nonzero matrix A such that the vector


 1

1
1




is a solution of Ax = 0.

36. Construct a 3×3 nonzero matrixA such that the vector


 1

−2
1




is a solution of Ax = 0.

37. Construct a 2×2 matrix A such that the solution set of the
equation Ax = 0 is the line in R

2 through (4, 1) and the ori-
gin. Then, find a vector b in R

2 such that the solution set of
Ax = b is not a line in R

2 parallel to the solution set ofAx = 0.
Why does this not contradict Theorem 6?

38. SupposeA is a 3×3 matrix and y is a vector in R
3 such that the

equation Ax = y does not have a solution. Does there exist
a vector z in R

3 such that the equation Ax = z has a unique
solution? Discuss.

39. Let A be an m×n matrix and let u be a vector in R
n that satis-

fies the equationAx = 0. Show that for any scalar c, the vector
cu also satisfies Ax = 0. [That is, show that A(cu) = 0.]

40. Let A be an m×n matrix, and let u and v be vectors in R
n with

the property that Au = 0 and Av = 0. Explain why A(u + v)
must be the zero vector. Then explain why A(cu + dv) = 0
for each pair of scalars c and d.

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Row reduce the augmented matrix:[
1 4 −5 0
2 −1 8 9

]
∼

[
1 4 −5 0
0 −9 18 9

]
∼

[
1 0 3 4
0 1 −2 −1

]
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x1 + 3x3 = 4

x2 − 2x3 = −1

Thus x1 = 4 − 3x3, x2 = −1 + 2x3, with x3 free. The general solution in parametric
vector form is 

 x1

x2

x3


 =


 4 − 3x3

−1 + 2x3

x3


 =


 4

−1
0


 + x3


 −3

2
1




✲ ✲

p v

The intersection of the two planes is the line through p in the direction of v.

2. The augmented matrix
[

10 −3 −2 7
]

is row equivalent to
[

1 −.3 −.2 .7
]
,

and the general solution is x1 = .7 + .3x2 + .2x3, with x2 and x3 free. That is,

x =

 x1

x2

x3


 =


 .7 + .3x2 + .2x3

x2

x3


 =


 .7

0
0


 + x2


 .3

1
0


 + x3


 .2

0
1




= p + x2u + x3v

The solution set of the nonhomogeneous equation Ax = b is the translated plane
p + Span {u, v}, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

1.6 APPLICATIONS OF LINEAR SYSTEMS
You might expect that a real-life problem involving linear algebra would have only one
solution, or perhaps no solution. The purpose of this section is to show how linear systems
with many solutions can arise naturally. The applications here come from economics,
chemistry, and network flow.

WEB

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input–output” (or “production”) model.1 Section 2.6
will examine this model in more detail, when we have more theory and better notation
available. For now, we look at a simpler “exchange model,” also due to Leontief.

Suppose a nation’s economy is divided into many sectors, such as various manu-
facturing, communication, entertainment, and service industries. Suppose that for each
sector we know its total output for one year and we know exactly how this output is di-
vided or “exchanged” among the other sectors of the economy. Let the total dollar value
of a sector’s output be called the price of that output. Leontief proved the following
result.

1See Wassily W. Leontief, “Input–Output Economics,” Scientific American, October 1951, pp. 15–21.
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There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as in
Table 1, where the entries in a column represent the fractional parts of a sector’s total
output.

The second column of Table 1, for instance, says that the total output of the Electric
sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining 10% to
Electric. (Electric treats this 10% as an expense it incurs in order to operate its business.)
Since all output must be taken into account, the decimal fractions in each column must
sum to 1.

Denote the prices (i.e., dollar values) of the total annual outputs of the Coal, Electric,
and Steel sectors by pC, pE, and pS, respectively. If possible, find equilibrium prices
that make each sector’s income match its expenditures.Electric

Steel

.1

.2

.2 .5

Coal

.4

.4

.6

.6

TABLE 1 A Simple Economy

Distribution of Output from:

Coal Electric Steel Purchased by:

.0 .4 .6 Coal

.6 .1 .2 Electric

.4 .5 .2 Steel

Solution Asector looks down a column to see where its output goes, and it looks across
a row to see what it needs as inputs. For instance, the first row of Table 1 says that Coal
receives (and pays for) 40% of the Electric output and 60% of the Steel output. Since
the respective values of the total outputs are pE and pS, Coal must spend .4pE dollars for
its share of Electric’s output and .6pS for its share of Steel’s output. Thus Coal’s total
expenses are .4pE + .6pS. To make Coal’s income, pC, equal to its expenses, we want

pC = .4pE + .6pS (1)

The second row of the exchange table shows that the Electric sector spends .6pC

for coal, .1pE for electricity, and .2pS for steel. Hence the income/expense requirement
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for Electric is

pE = .6pC + .1pE + .2pS (2)

Finally, the third row of the exchange table leads to the final requirement:

pS = .4pC + .5pE + .2pS (3)

To solve the system of equations (1), (2), and (3), move all the unknowns to the left
sides of the equations and combine like terms. [For instance, on the left of (2) write
pE − .1pE as .9pE.]

pC − .4pE − .6pS = 0
−.6pC + .9pE − .2pS = 0
−.4pC − .5pE + .8pS = 0

Row reduction is next. For simplicity here, decimals are rounded to two places.
 1 −.4 −.6 0

−.6 .9 −.2 0
−.4 −.5 .8 0


 ∼


 1 −.4 −.6 0

0 .66 −.56 0
0 −.66 .56 0


 ∼


 1 −.4 −.6 0

0 .66 −.56 0
0 0 0 0




∼

 1 −.4 −.6 0

0 1 −.85 0
0 0 0 0


 ∼


 1 0 −.94 0

0 1 −.85 0
0 0 0 0




The general solution is pC = .94pS, pE = .85pS, and pS is free. The equilibrium price
vector for the economy has the form

p =

 pC

pE

pS


 =


 .94pS

.85pS

pS


 = pS


 .94
.85
1




Any (nonnegative) choice for pS results in a choice of equilibrium prices. For instance,
if we take pS to be 100 (or $100 million), then pC = 94 and pE = 85. The incomes and
expenditures of each sector will be equal if the output of Coal is priced at $94 million,
that of Electric at $85 million, and that of Steel at $100 million.

Balancing Chemical Equations

Chemical equations describe the quantities of substances consumed and produced by
chemical reactions. For instance, when propane gas burns, the propane (C3H8) combines
with oxygen (O2) to form carbon dioxide (CO2) and water (H2O), according to an
equation of the form

(x1)C3H8 + (x2)O2 → (x3)CO2 + (x4)H2O (4)

To “balance” this equation, a chemist must find whole numbers x1, . . . , x4 such that the
total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the
corresponding numbers of atoms on the right (because atoms are neither destroyed nor
created in the reaction).



May 10, 2005 10:46 l57-ch01 Sheet number 60 Page number 60 cyan magenta yellow black

60 CHAPTER 1 Linear Equations in Linear Algebra

A systematic method for balancing chemical equations is to set up a vector equation
that describes the numbers of atoms of each type present in a reaction. Since equation
(4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in
R

3 for each reactant and product in (4) that lists the numbers of “atoms per molecule,”
as follows:

C3H8:

 3

8
0


, O2:


 0

0
2


, CO2:


 1

0
2


, H2O:


 0

2
1




✛Carbon
✛Hydrogen
✛Oxygen

To balance equation (4), the coefficients x1, . . . , x4 must satisfy

x1


 3

8
0


 + x2


 0

0
2


 = x3


 1

0
2


 + x4


 0

2
1




To solve, move all the terms to the left (changing the signs in the third and fourth vectors):

x1


 3

8
0


 + x2


 0

0
2


 + x3


 −1

0
−2


 + x4


 0

−2
−1


 =


 0

0
0




Row reduction of the augmented matrix for this equation leads to the general solution

x1 = 1
4x4, x2 = 5

4x4, x3 = 3
4x4, with x4 free

Since the coefficients in a chemical equation must be integers, take x4 = 4, in which
case, x1 = 1, x2 = 5, and x3 = 3. The balanced equation is

C3H8 + 5O2 → 3CO2 + 4H2O

The equation would also be balanced if, for example, each coefficient were doubled. For
most purposes, however, chemists prefer to use a balanced equation whose coefficients
are the smallest possible whole numbers.

Network Flow

Systems of linear equations arise naturally when scientists, engineers, or economists
study the flow of some quantity through a network. For instance, urban planners and
traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical
engineers calculate current flow through electrical circuits. And economists analyze
the distribution of products from manufacturers to consumers through a network of
wholesalers and retailers. For many networks, the systems of equations involve hundreds
or even thousands of variables and equations.

A network consists of a set of points called junctions, or nodes, with lines or arcs
called branches connecting some or all of the junctions. The direction of flow in each
branch is indicated, and the flow amount (or rate) is either shown or is denoted by a
variable.
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The basic assumption of network flow is that the total flow into the network equals
the total flow out of the network and that the total flow into a junction equals the total
flow out of the junction. For example, Fig. 1 shows 30 units flowing into a junction
through one branch, with x1 and x2 denoting the flows out of the junction through other
branches. Since the flow is “conserved” at each junction, we must have x1 + x2 = 30. In
a similar fashion, the flow at each junction is described by a linear equation. The problem
of network analysis is to determine the flow in each branch when partial information
(such as the input to the network) is known.

30

x1

x2

FIGURE 1
A junction, or node.

EXAMPLE 2 The network in Fig. 2 shows the traffic flow (in vehicles per hour) over
several one-way streets in downtown Baltimore during a typical early afternoon. Deter-
mine the general flow pattern for the network.

300

300

400

600

500

A

B

D

C

x1

x4

x2 x5

x3 100

Calvert St. South St.

Lombard St.

Pratt St.

N

FIGURE 2 Baltimore streets.

Solution Write equations that describe the flow, and then find the general solution
of the system. Label the street intersections (junctions) and the unknown flows in the
branches, as shown in Fig. 2. At each intersection, set the flow in equal to the flow out.

Intersection Flow in Flow out

A 300 + 500 = x1 + x2

B x2 + x4 = 300 + x3

C 100 + 400 = x4 + x5

D x1 + x5 = 600

Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow out of
the network (300 + x3 + 600), which simplifies to x3 = 400. Combine this equation with



May 10, 2005 10:46 l57-ch01 Sheet number 62 Page number 62 cyan magenta yellow black

62 CHAPTER 1 Linear Equations in Linear Algebra

a rearrangement of the first four equations to obtain the following system of equations:

x1 + x2 = 800

x2 − x3 + x4 = 300

x4 + x5 = 500

x1 + x5 = 600

x3 = 400

Row reduction of the associated augmented matrix leads to

x1 + x5 = 600

x2 − x5 = 200

x3 = 400

x4 + x5 = 500

The general flow pattern for the network is described by



x1 = 600 − x5

x2 = 200 + x5

x3 = 400

x4 = 500 − x5

x5 is free

A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one-way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 ≤ 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2.

P R A C T I C E P R O B L E M S

1. Suppose an economy has three sectors, Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x1 and x2. [Hint: The example showed that x5 ≤ 500. What does this
imply about x1 and x2? Also, use the fact that x5 ≥ 0.]
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1.6 EXERCISES
1. Suppose an economy has only two sectors, Goods and Ser-

vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

Goods Services

.7

.8

.2 .3

2. Find another set of equilibrium prices for the economy in Ex-
ample 1. Suppose the same economy used Japanese yen in-
stead of dollars to measure the value of the various sectors’
outputs. Would this change the problem in any way? Discuss.

3. Consider an economy with three sectors, Chemicals & Met-
als, Fuels & Power, and Machinery. Chemicals sells 30% of
its output to Fuels and 50% to Machinery and retains the rest.
Fuels sells 80% of its output to Chemicals and 10% to Machin-
ery and retains the rest. Machinery sells 40% to Chemicals
and 40% to Fuels and retains the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at which
each sector’s income matches its expenses. Then write the
augmented matrix that can be row reduced to find these
prices.

c. [M] Find a set of equilibrium prices when the price for
the Machinery output is 100 units.

4. Suppose an economy has four sectors, Agriculture (A), En-
ergy (E), Manufacturing (M), and Transportation (T). Sector
A sells 10% of its output to E and 25% to M and retains the
rest. Sector E sells 30% of its output to A, 35% to M, and 25%
to T and retains the rest. Sector M sells 30% of its output to
A, 15% to E, and 40% to T and retains the rest. Sector T sells
20% of its output to A, 10% to E, and 30% to M and retains
the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy.

Balance the chemical equations in Exercises 5–10 using the vector
equation approach discussed in this section.

5. Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The un-
balanced equation is

B2S3 + H2O → H3BO3 + H2S

[For each compound, construct a vector that lists the numbers
of atoms of boron, sulfur, hydrogen, and oxygen.]

6. When solutions of sodium phosphate and barium nitrate are
mixed, the result is barium phosphate (as a precipitate) and
sodium nitrate. The unbalanced equation is

Na3PO4 + Ba(NO3)2 → Ba3(PO4)2 + NaNO3

[For each compound, construct a vector that lists the num-
bers of atoms of sodium (Na), phosphorus, oxygen, barium,
and nitrogen. For instance, barium nitrate corresponds to
(0, 0, 6, 1, 2).]

7. Alka-Seltzer contains sodium bicarbonate (NaHCO3) and cit-
ric acid (H3C6H5O7). When a tablet is dissolved in water, the
following reaction produces sodium citrate, water, and carbon
dioxide (gas):

NaHCO3 + H3C6H5O7 → Na3C6H5O7 + H2O + CO2

8. The following reaction between potassium permanganate
(KMnO4) and manganese sulfate in water produces man-
ganese dioxide, potassium sulfate, and sulfuric acid:

KMnO4 + MnSO4 + H2O → MnO2 + K2SO4 + H2SO4

[For each compound, construct a vector that lists the numbers
of atoms of potassium (K), manganese, oxygen, sulfur, and
hydrogen.]

9. [M] If possible, use exact arithmetic or rational format for
calculations in balancing the following chemical reaction:

PbN6 + CrMn2O8 → Pb3O4 + Cr2O3 + MnO2 + NO

10. [M] The chemical reaction below can be used in some indus-
trial processes, such as the production of arsene (AsH3). Use
exact arithmetic or rational format for calculations to balance
this equation.

MnS + As2Cr10O35 + H2SO4

→ HMnO4 + AsH3 + CrS3O12 + H2O
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11. Find the general flow pattern of the network shown in the fig-
ure. Assuming that the flows are all nonnegative, what is the
largest possible value for x3?

20

80

x1

x2

x3

x4

A

C

B

12. a. Find the general traffic pattern in the freeway network
shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose
flow is x4 is closed.

c. When x4 = 0, what is the minimum value of x1?

40

x1 x2

x3

200

100

60

x4 x5

A

B

C

D

13. a. Find the general flow pattern in the network shown in the
figure.

b. Assuming that the flow must be in the directions indicated,
find the minimum flows in the branches denoted by x2, x3,
x4, and x5.

60

80

90

100
x1 x6

x2

x3

x5

x4

20 40

30 40

A

E

C

D

B

14. Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the gen-
eral solution of the network flow. Find the smallest possible
value for x6.

100

50

x3

80

100

120 150

x2

x1

x6

x5
x4

A

B E

F

C D

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from:

Agriculture Mining Manufacturing Purchased by:

.65 .20 .20 Agriculture

.05 .10 .30 Mining

.30 .70 .50 Manufacturing
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2. Since x1 ≤ 500, the equations for x1 and x2 imply that x1 ≥ 100 and x2 ≤ 700.
The fact that x5 ≥ 0 implies that x1 ≤ 600 and x2 ≥ 200. So, 100 ≤ x1 ≤ 600, and
200 ≤ x2 ≤ 700.

1.7 LINEAR INDEPENDENCE
The homogeneous equations of Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax = 0 to the vectors that appear in the vector equations.

For instance, consider the equation

x1


 1

2
3


+ x2


 4

5
6


+ x3


 2

1
0


 =


 0

0
0


 (1)

This equation has a trivial solution, of course, where x1 = x2 = x3 = 0. As in Section
1.5, the main issue is whether the trivial solution is the only one.

DEF IN I T I ON An indexed set of vectors {v1, . . . , vp} in R
n is said to be linearly independent if

the vector equation

x1v1 + x2v2 + · · · + xpvp = 0

has only the trivial solution. The set {v1, . . . , vp} is said to be linearly dependent
if there exist weights c1, . . . , cp, not all zero, such that

c1v1 + c2v2 + · · · + cpvp = 0 (2)

Equation (2) is called a linear dependence relation among v1, . . . , vp when the
weights are not all zero. An indexed set is linearly dependent if and only if it is not linearly
independent. For brevity, we may say that v1, . . . , vp are linearly dependent when we
mean that {v1, . . . , vp} is a linearly dependent set. We use analogous terminology for
linearly independent sets.

EXAMPLE 1 Let v1 =

 1

2
3


, v2 =


 4

5
6


, v3 =


 2

1
0


.

a. Determine if the set {v1, v2, v3} is linearly independent.

b. If possible, find a linear dependence relation among v1, v2, v3.



May 10, 2005 10:46 l57-ch01 Sheet number 66 Page number 66 cyan magenta yellow black

66 CHAPTER 1 Linear Equations in Linear Algebra

Solution

a. We must determine if there is a nontrivial solution of equation (1) above. Row oper-
ations on the associated augmented matrix show that

 1 4 2 0
2 5 1 0
3 6 0 0


 ∼


 1 4 2 0

0 −3 −3 0
0 0 0 0




Clearly, x1 and x2 are basic variables, and x3 is free. Each nonzero value of x3

determines a nontrivial solution of (1). Hence v1, v2, v3 are linearly dependent (and
not linearly independent).

b. To find a linear dependence relation among v1, v2, v3, completely row reduce the
augmented matrix and write the new system:


 1 0 −2 0

0 1 1 0
0 0 0 0




x1 − 2x3 = 0

x2 + x3 = 0

0 = 0

Thus x1 = 2x3, x2 = −x3, and x3 is free. Choose any nonzero value for x3—say,
x3 = 5. Then x1 = 10, and x2 = −5. Substitute these values into (1) and obtain

10v1 − 5v2 + 5v3 = 0

This is one (out of infinitely many) possible linear dependence relations among v1,
v2, and v3.

Linear Independence of Matrix Columns

Suppose that we begin with a matrix A = [ a1 · · · an ] instead of a set of vectors. The
matrix equation Ax = 0 can be written as

x1a1 + x2a2 + · · · + xnan = 0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation
Ax = 0 has only the trivial solution. (3)

EXAMPLE 2 Determine if the columns of the matrix A =

 0 1 4

1 2 −1
5 8 0


 are linearly

independent.
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Solution To study Ax = 0, row reduce the augmented matrix:
 0 1 4 0

1 2 −1 0
5 8 0 0


 ∼


 1 2 −1 0

0 1 4 0
0 −2 5 0


 ∼


 1 2 −1 0

0 1 4 0
0 0 13 0




At this point, it is clear that there are three basic variables and no free variables. So
the equation Ax = 0 has only the trivial solution, and the columns of A are linearly
independent.

Sets of One or Two Vectors

A set containing only one vector—say, v—is linearly independent if and only if v is not
the zero vector. This is because the vector equation x1v = 0 has only the trivial solution
when v 
= 0. The zero vector is linearly dependent because x10 = 0 has many nontrivial
solutions.

The next example will explain the nature of a linearly dependent set of two vectors.

EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

a. v1 =
[

3
1

]
, v2 =

[
6
2

]
b. v1 =

[
3
2

]
, v2 =

[
6
2

]

Solution

a. Notice that v2 is a multiple of v1, namely, v2 = 2v1. Hence −2v1 + v2 = 0, which
shows that {v1, v2} is linearly dependent.

b. The vectors v1 and v2 are certainly not multiples of one another. Could they be
linearly dependent? Suppose c and d satisfy

cv1 + dv2 = 0

If c 
= 0, then we can solve for v1 in terms of v2, namely, v1 = (−d/c)v2. This result
is impossible because v1 is not a multiple of v2. So c must be zero. Similarly, d must
also be zero. Thus {v1, v2} is a linearly independent set.

The arguments in Example 3 show that you can always decide by inspection when a
set of two vectors is linearly dependent. Row operations are unnecessary. Simply check
whether at least one of the vectors is a scalar times the other. (The test applies only to
sets of two vectors.)

A set of two vectors {v1, v2} is linearly dependent if at least one of the vectors is a
multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the
same line through the origin. Figure 1 shows the vectors from Example 3.

x1

x2

Linearly dependent

(3, 1)

(6, 2)

x1

x2

Linearly independent

(3, 2) (6, 2)

FIGURE 1
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Sets of Two or More Vectors

The proof of the next theorem is similar to the solution of Example 3. Details are given
at the end of this section.

THEOREM 7 Characterization of Linearly Dependent Sets

An indexed set S = {v1, . . . , vp} of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact, if S is linearly dependent and v1 
= 0, then some vj (with j > 1) is a linear
combination of the preceding vectors, v1, . . . , vj−1.

Warning: Theorem 7 does not say that every vector in a linearly dependent set is
a linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. See Practice Problem 3.

EXAMPLE 4 Let u =

 3

1
0


 and v =


 1

6
0


. Describe the set spanned by u and v, and

explain why a vector w is in Span {u, v} if and only if {u, v,w} is linearly dependent.

Solution The vectors u and v are linearly independent because neither vector is a
multiple of the other, and so they span a plane in R

3. (See Section 1.3.) In fact,
Span {u, v} is the x1x2-plane (with x3 = 0). If w is a linear combination of u and v,
then {u, v,w} is linearly dependent, by Theorem 7. Conversely, suppose that {u, v,w}
is linearly dependent. By Theorem 7, some vector in {u, v,w} is a linear combination
of the preceding vectors (since u 
= 0). That vector must be w, since v is not a multiple
of u. So w is in Span {u, v}. See Fig. 2.

x1

x2

x3

v
wu

Linearly dependent,
w in Span{u, v}

x1

x2

x3

v

w

u

Linearly independent,
w not in Span{u, v}

FIGURE 2 Linear dependence in R
3.

Example 4 generalizes to any set {u, v,w} in R
3 with u and v linearly independent.

The set {u, v,w} will be linearly dependent if and only if w is in the plane spanned by
u and v.

The next two theorems describe special cases in which the linear dependence of a
set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.
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THEOREM 8 If a set contains more vectors than there are entries in each vector, then the set
is linearly dependent. That is, any set {v1, . . . , vp} in R

n is linearly dependent if
p > n.

*
*
*

*
*
*

*
p

n *
*

*
*
*

*
*
*

FIGURE 3
If p > n, the columns are linearly
dependent.

PROOF LetA = [ v1 · · · vp ]. ThenA isn×p, and the equationAx = 0 corresponds
to a system of n equations in p unknowns. If p > n, there are more variables than
equations, so there must be a free variable. Hence Ax = 0 has a nontrivial solution, and
the columns of A are linearly dependent. See Fig. 3 for a matrix version of this theorem.

�

Warning: Theorem 8 says nothing about the case when the number of vectors in
the set does not exceed the number of entries in each vector.

x1

x2

(2, 1)

(4, –1)

(–2, 2)

FIGURE 4
A linearly dependent set in R

2.

EXAMPLE 5 The vectors

[
2
1

]
,

[
4

−1

]
,

[ −2
2

]
are linearly dependent by Theorem 8,

because there are three vectors in the set and there are only two entries in each vector.
Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Fig. 4.

THEOREM 9 If a set S = {v1, . . . , vp} in R
n contains the zero vector, then the set is linearly

dependent.

PROOF By renumbering the vectors, we may suppose v1 = 0. Then the equation
1v1 + 0v2 + · · · + 0vp = 0 shows that S is linearly dependent. �

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

a.


 1

7
6


,


 2

0
9


,


 3

1
5


,


 4

1
8


 b.


 2

3
5


,


 0

0
0


,


 1

1
8


 c.




−2
4
6

10


,




3
−6
−9
15




Solution

a. The set contains four vectors, each of which has only three entries. So the set is
linearly dependent by Theorem 8.

b. Theorem 8 does not apply here because the number of vectors does not exceed the
number of entries in each vector. Since the zero vector is in the set, the set is linearly
dependent by Theorem 9.

c. Compare the corresponding entries of the two vectors. The second vector seems to
be −3/2 times the first vector. This relation holds for the first three pairs of entries,
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but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent.

In general, you should read a section thoroughly several times to absorb an importantSG Mastering: Linear
Independence 1–33 concept such as linear independence. The notes in the Study Guide for this section will

help you learn to form mental images of key ideas in linear algebra. For instance, the
following proof is worth reading carefully because it shows how the definition of linear
independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets) If some vj in S

equals a linear combination of the other vectors, then vj can be subtracted from both sides
of the equation, producing a linear dependence relation with a nonzero weight (−1) on
vj . [For instance, if v1 = c2v2 + c3v3, then 0 = (−1)v1 + c2v2 + c3v3 + 0v4 + · · · + 0vp.]
Thus S is linearly dependent.

Conversely, suppose S is linearly dependent. If v1 is zero, then it is a (trivial)
linear combination of the other vectors in S. Otherwise, v1 
= 0, and there exist weights
c1, . . . , cp, not all zero, such that

c1v1 + c2v2 + · · · + cpvp = 0

Let j be the largest subscript for which cj 
= 0. If j = 1, then c1v1 = 0, which is impos-
sible because v1 
= 0. So j > 1, and

c1v1 + · · · + cjvj + 0vj+1 + · · · + 0vp = 0

cjvj = −c1v1 − · · · − cj−1vj−1

vj =
(

− c1

cj

)
v1 + · · · +

(
−cj−1

cj

)
vj−1 �

P R A C T I C E P R O B L E M S

Let u =

 3

2
−4


, v =


 −6

1
7


, w =


 0

−5
2


, and z =


 3

7
−5


.

1. Are the sets {u, v}, {u,w}, {u, z}, {v,w}, {v, z}, and {w, z} each linearly independent?
Why or why not?

2. Does the answer to Problem 1 imply that {u, v,w, z} is linearly independent?

3. To determine if {u, v,w, z} is linearly dependent, is it wise to check if, say, w is a
linear combination of u, v, and z?

4. Is {u, v,w, z} linearly dependent?
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1.7 EXERCISES
In Exercises 1–4, determine if the vectors are linearly independent.
Justify each answer.

1.


 5

0
0


,


 7

2
−6


,


 9

4
−8


 2.


 0

0
2


,


 0

5
−8


,


 −3

4
1




3.
[

1
−3

]
,

[ −3
9

]
4.

[ −1
4

]
,

[ −2
−8

]

In Exercises 5–8, determine if the columns of the matrix form a
linearly independent set. Justify each answer.

5.




0 −8 5
3 −7 4

−1 5 −4
1 −3 2


 6.




−4 −3 0
0 −1 4
1 0 3
5 4 6




7.


 1 4 −3 0

−2 −7 5 1
−4 −5 7 5


 8.


 1 −3 3 −2

−3 7 −1 2
0 1 −4 3




In Exercises 9 and 10, (a) for what values ofh is v3 in Span {v1, v2},
and (b) for what values of h is {v1, v2, v3} linearly dependent? Jus-
tify each answer.

9. v1 =

 1

−3
2


, v2 =


 −3

9
−6


, v3 =


 5

−7
h




10. v1 =

 1

−5
−3


, v2 =


 −2

10
6


, v3 =


 2

−9
h




In Exercises 11–14, find the value(s) of h for which the vectors are
linearly dependent. Justify each answer.

11.


 1

−1
4


,


 3

−5
7


,


 −1

5
h


 12.


 2

−4
1


,


 −6

7
−3


,


 8
h

4




13.


 1

5
−3


,


 −2

−9
6


,


 3

h

−9


 14.


 1

−1
−3


,


 −5

7
8


,


 1

1
h




Determine by inspection whether the vectors in Exercises 15–20
are linearly independent. Justify each answer.

15.
[

5
1

]
,

[
2
8

]
,

[
1
3

]
,

[ −1
7

]
16.


 4

−2
6


 ,


 6

−3
9




17.


 3

5
−1


 ,


 0

0
0


 ,


 −6

5
4


 18.

[
4
4

]
,

[ −1
3

]
,

[
2
5

]
,

[
8
1

]

19.


 −8

12
−4


 ,


 2

−3
−1


 20.


 1

4
−7


 ,


 −2

5
3


 ,


 0

0
0




In Exercises 21 and 22, mark each statement True or False. Justify
each answer on the basis of a careful reading of the text.

21. a. The columns of a matrix A are linearly independent if the
equation Ax = 0 has the trivial solution.

b. If S is a linearly dependent set, then each vector is a linear
combination of the other vectors in S.

c. The columns of any 4×5 matrix are linearly dependent.

d. If x and y are linearly independent, and if {x, y, z} is lin-
early dependent, then z is in Span {x, y}.

22. a. Two vectors are linearly dependent if and only if they lie
on a line through the origin.

b. If a set contains fewer vectors than there are entries in the
vectors, then the set is linearly independent.

c. If x and y are linearly independent, and if z is in Span {x, y},
then {x, y, z} is linearly dependent.

d. If a set in R
n is linearly dependent, then the set contains

more vectors than there are entries in each vector.

In Exercises 23–26, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

23. A is a 3×3 matrix with linearly independent columns.

24. A is a 2×2 matrix with linearly dependent columns.

25. A is a 4×2 matrix, A = [a1 a2], and a2 is not a multiple of
a1.

26. A is a 4×3 matrix, A = [a1 a2 a3], such that {a1, a2} is
linearly independent and a3 is not in Span {a1, a2}.

27. How many pivot columns must a 7×5 matrix have if its
columns are linearly independent? Why?

28. How many pivot columns must a 5×7 matrix have if its
columns span R

5? Why?

29. Construct 3×2 matrices A and B such that Ax = 0 has only
the trivial solution and Bx = 0 has a nontrivial solution.



May 10, 2005 10:46 l57-ch01 Sheet number 72 Page number 72 cyan magenta yellow black

72 CHAPTER 1 Linear Equations in Linear Algebra

30. a. Fill in the blank in the following statement: “If A is an
m×n matrix, then the columns of A are linearly indepen-
dent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row
operations. [Hint: Write Ax = 0 as a vector equation.]

31. Given A =




2 3 5
−5 1 −4
−3 −1 −4

1 0 1


, observe that the third column

is the sum of the first two columns. Find a nontrivial solution
of Ax = 0.

32. Given A =

 4 1 6

−7 5 3
9 −3 3


, observe that the first column

plus twice the second column equals the third column. Find
a nontrivial solution of Ax = 0.

Each statement in Exercises 33–38 is either true (in all cases) or
false (for at least one example). If false, construct a specific exam-
ple to show that the statement is not always true. Such an example
is called a counterexample to the statement. If a statement is true,
give a justification. (One specific example cannot explain why a
statement is always true. You will have to do more work here than
in Exercises 21 and 22.)

33. If v1, . . . , v4 are in R
4 and v3 = 2v1 + v2, then {v1, v2, v3, v4}

is linearly dependent.

34. If v1, . . . , v4 are in R
4 and v3 = 0, then {v1, v2, v3, v4} is lin-

early dependent.

35. If v1 and v2 are in R
4 and v2 is not a scalar multiple of v1, then

{v1, v2} is linearly independent.

36. If v1, . . . , v4 are in R
4 and v3 is not a linear combination of

v1, v2, v4, then {v1, v2, v3, v4} is linearly independent.

37. If v1, . . . , v4 are in R
4 and {v1, v2, v3} is linearly dependent,

then {v1, v2, v3, v4} is also linearly dependent.

38. If v1, . . . , v4 are linearly independent vectors in R
4, then

{v1, v2, v3} is also linearly independent. [Hint: Think about
x1v1 + x2v2 + x3v3 + 0·v4 = 0.]

39. Suppose A is an m×n matrix with the property that for all b
in R

m the equation Ax = b has at most one solution. Use the
definition of linear independence to explain why the columns
of A must be linearly independent.

40. Suppose an m×n matrix A has n pivot columns. Explain why
for each b in R

m the equation Ax = b has at most one solu-
tion. [Hint: Explain why Ax = b cannot have infinitely many
solutions.]

[M] In Exercises 41 and 42, use as many columns of A as possible
to construct a matrix B with the property that the equation Bx = 0
has only the trivial solution. Solve Bx = 0 to verify your work.

41. A =




8 −3 0 −7 2
−9 4 5 11 −7

6 −2 2 −4 4
5 −1 7 0 10




42. A =




12 10 −6 −3 7 10
−7 −6 4 7 −9 5

9 9 −9 −5 5 −1
−4 −3 1 6 −8 9

8 7 −5 −9 11 −8




43. [M] With A and B as in Exercise 41, select a column v of A
that was not used in the construction of B and determine if
v is in the set spanned by the columns of B. (Describe your
calculations.)

44. [M] Repeat Exercise 43 with the matrices A and B from Ex-
ercise 42. Then give an explanation for what you discover,
assuming that B was constructed as specified.

Span{u, v, z}

w

x3

x1 x2

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Yes. In each case, neither vector is a multiple of the other. Thus each set is linearly
independent.

2. No. The observation in Practice Problem 1, by itself, says nothing about the linear
independence of {u, v,w, z}.

3. No. When testing for linear independence, it is usually a poor idea to check if one
selected vector is a linear combination of the others. It may happen that the selected
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vector is not a linear combination of the others and yet the whole set of vectors is
linearly dependent. In this practice problem, w is not a linear combination of u, v,
and z.

4. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS
The difference between a matrix equation Ax = b and the associated vector equation
x1a1 + · · · + xnan = b is merely a matter of notation. However, a matrix equationAx = b
can arise in linear algebra (and in applications such as computer graphics and signal
processing) in a way that is not directly connected with linear combinations of vectors.
This happens when we think of the matrix A as an object that “acts” on a vector x by
multiplication to produce a new vector called Ax.

For instance, the equations

[
4 −3 1 3
2 0 5 1

]



1
1
1
1


 =

[
5
8

]
and

[
4 −3 1 3
2 0 5 1

]



1
4

−1
3


 =

[
0
0

]

✲ ✲ ✲ ✲ ✲ ✲

A x b A u 0

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Fig. 1.

0

multiplication

by A

multiplication

by Ax

0

u 0

b

4 2
�

�

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax = b amounts to finding all
vectors x in R

4 that are transformed into the vector b in R
2 under the “action” of

multiplication by A.
The correspondence from x to Ax is a function from one set of vectors to another.

This concept generalizes the common notion of a function as a rule that transforms one
real number into another.

A transformation (or function or mapping) T from R
n to R

m is a rule that assigns
to each vector x in R

n a vector T (x) in R
m. The set R

n is called the domain of T , and
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R
m is called the codomain of T . The notation T : R

n → R
m indicates that the domain

of T is R
n and the codomain is R

m. For x in R
n, the vector T (x) in R

m is called the
image of x (under the action of T ). The set of all images T (x) is called the range of T .
See Fig. 2.

�m
�

n

x

Domain Codomain

T(x)
T

Range

FIGURE 2 Domain, codomain, and range of
T : R

n → R
m.

The new terminology in this section is important because a dynamic view of matrix–
vector multiplication is the key to understanding several ideas in linear algebra and to
building mathematical models of physical systems that evolve over time. Such dynam-
ical systems will be discussed in Sections 1.10, 4.8, and 4.9 and throughout Chapter 5.

Matrix Transformations

The rest of this section focuses on mappings associated with matrix multiplication. For
each x in R

n, T (x) is computed as Ax, where A is an m×n matrix. For simplicity, we
sometimes denote such a matrix transformation by x �→Ax. Observe that the domain
of T is R

n when A has n columns and the codomain of T is R
m when each column of

A has m entries. The range of T is the set of all linear combinations of the columns of
A, because each image T (x) is of the form Ax.

T(u) =
5
1

–9









x2

x3

T

x1

x2

x1

u = 2
–1







EXAMPLE 1 Let A =

 1 −3

3 5
−1 7


, u =

[
2

−1

]
, b =


 3

2
−5


, c =


 3

2
5


, and define a

transformation T : R
2 → R

3 by T (x) = Ax, so that

T (x) = Ax =

 1 −3

3 5
−1 7



[
x1

x2

]
=


 x1 − 3x2

3x1 + 5x2

−x1 + 7x2




a. Find T (u), the image of u under the transformation T .

b. Find an x in R
2 whose image under T is b.

c. Is there more than one x whose image under T is b?

d. Determine if c is in the range of the transformation T .
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Solution

a. Compute

T (u) = Au =

 1 −3

3 5
−1 7



[

2
−1

]
=


 5

1
−9




b. Solve T (x) = b for x. That is, solve Ax = b, or

 1 −3

3 5
−1 7



[
x1

x2

]
=


 3

2
−5


 (1)

Using the method of Section 1.4, row reduce the augmented matrix:

 1 −3 3

3 5 2
−1 7 −5


 ∼


 1 −3 3

0 14 −7
0 4 −2


 ∼


 1 −3 3

0 1 −.5
0 0 0


 ∼


 1 0 1.5

0 1 −.5
0 0 0


 (2)

Hence x1 = 1.5, x2 = −.5, and x =
[

1.5
−.5

]
. The image of this x under T is the given

vector b.

c. Any x whose image under T is b must satisfy (1). From (2), it is clear that equation
(1) has a unique solution. So there is exactly one x whose image is b.

d. The vector c is in the range of T if c is the image of some x in R
2, that is, if c = T (x)

for some x. This is just another way of asking if the system Ax = c is consistent. To
find the answer, row reduce the augmented matrix:


 1 −3 3

3 5 2
−1 7 5


 ∼


 1 −3 3

0 14 −7
0 4 8


 ∼


 1 −3 3

0 1 2
0 14 −7


 ∼


 1 −3 3

0 1 2
0 0 −35




The third equation, 0 = −35, shows that the system is inconsistent. So c is not in the
range of T .

The question in Example 1(c) is a uniqueness problem for a system of linear equa-
tions, translated here into the language of matrix transformations: Is b the image of a
unique x in R

n? Similarly, Example 1(d) is an existence problem: Does there exist an x
whose image is c?

The next two matrix transformations can be viewed geometrically. They reinforce
the dynamic view of a matrix as something that transforms vectors into other vectors.
Section 2.7 contains other interesting examples connected with computer graphics.
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EXAMPLE 2 If A =

 1 0 0

0 1 0
0 0 0


, then the transformation x �→Ax projects points

in R
3 onto the x1x2-plane because

 x1

x2

x3


 �→


 1 0 0

0 1 0
0 0 0




 x1

x2

x3


 =


 x1

x2

0




See Fig. 3.

x1

x2

x3

0

FIGURE 3
A projection transformation. EXAMPLE 3 Let A =

[
1 3
0 1

]
. The transformation T : R

2 → R
2 defined by

T (x) = Ax is called a shear transformation. It can be shown that if T acts on each
point in the 2×2 square shown in Fig. 4, then the set of images forms the shaded par-
allelogram. The key idea is to show that T maps line segments onto line segments
(as shown in Exercise 27) and then to check that the corners of the square map onto

the vertices of the parallelogram. For instance, the image of the point u =
[

0
2

]
is

T (u) =
[

1 3
0 1

][
0
2

]
=

[
6
2

]
, and the image of

[
2
2

]
is

[
1 3
0 1

][
2
2

]
=

[
8
2

]
. T de-

forms the square as if the top of the square were pushed to the right while the base is held
fixed. Shear transformations appear in physics, geology, and crystallography.

sheep

sheared sheep

8

T

x1
2

2

x2

x1
2

2

x2

FIGURE 4 A shear transformation.

Linear Transformations

Theorem 5 in Section 1.4 shows that if A is m×n, then the transformation x �→ Ax has
the properties

A(u + v) = Au + Av and A(cu) = cAu

for all u, v in R
n and all scalars c. These properties, written in function notation, identify

the most important class of transformations in linear algebra.
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DEF IN I T I ON A transformation (or mapping) T is linear if:

(i) T (u + v) = T (u) + T (v) for all u, v in the domain of T ;

(ii) T (cu) = cT (u) for all u and all scalars c.

Every matrix transformation is a linear transformation. Important examples of linear
transformations that are not matrix transformations will be discussed in Chapters 4 and 5.

Linear transformations preserve the operations of vector addition and scalar mul-
tiplication. Property (i) says that the result T (u + v) of first adding u and v in R

n and
then applying T is the same as first applying T to u and to v and then adding T (u) and
T (v) in R

m. These two properties lead easily to the following useful facts.

If T is a linear transformation, then

T (0) = 0 (3)

and

T (cu + dv) = cT (u) + dT (v) (4)

for all vectors u, v in the domain of T and all scalars c, d.

Property (3) follows from (ii), because T (0) = T (0u) = 0T (u) = 0. Property (4)
requires both (i) and (ii):

T (cu + dv) = T (cu) + T (dv) = cT (u) + dT (v)

Observe that if a transformation satisfies (4) for all u, v and c, d, it must be linear.
(Set c = d = 1 for preservation of addition, and set d = 0 for preservation of scalar
multiplication.) Repeated application of (4) produces a useful generalization:

T (c1v1 + · · · + cpvp) = c1T (v1) + · · · + cpT (vp) (5)

In engineering and physics, (5) is referred to as a superposition principle. Think
of v1, . . . , vp as signals that go into a system and T (v1), . . . , T (vp) as the responses of
that system to the signals. The system satisfies the superposition principle if whenever
an input is expressed as a linear combination of such signals, the system’s response is
the same linear combination of the responses to the individual signals. We will return to
this idea in Chapter 4.

EXAMPLE 4 Given a scalar r , define T : R
2 → R

2 by T (x) = rx. T is called a con-
traction when 0 ≤ r ≤ 1 and a dilation when r > 1. Let r = 3, and show that T is a
linear transformation.
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Solution Let u, v be in R
2 and let c, d be scalars. Then

T (cu + dv) = 3(cu + dv) Definition of T

= 3cu + 3dv

= c(3u) + d(3v)

}
Vector arithmetic

= cT (u) + dT (v)

Thus T is a linear transformation because it satisfies (4). See Fig. 5.

T(u)

x1

x2

x1

T

u

x2

FIGURE 5 A dilation transformation.

EXAMPLE 5 Define a linear transformation T : R
2 → R

2 by

T (x) =
[

0 −1
1 0

][
x1

x2

]
=

[ −x2

x1

]

Find the images under T of u =
[

4
1

]
, v =

[
2
3

]
, and u + v =

[
6
4

]
.

Solution

T (u) =
[

0 −1
1 0

][
4
1

]
=

[ −1
4

]
, T (v) =

[
0 −1
1 0

][
2
3

]
=

[ −3
2

]
,

T (u + v) =
[

0 −1
1 0

][
6
4

]
=

[ −4
6

]

Note thatT (u + v) is obviously equal toT (u) + T (v). It appears from Fig. 6 thatT rotates
u, v, and u + v counterclockwise about the origin through 90◦. In fact, T transforms the
entire parallelogram determined by u and v into the one determined by T (u) and T (v).
(See Exercise 28.)

T

x1

x2

v

u

T(u + v)

T(u)

T(v)

u + v

FIGURE 6 A rotation transformation.
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The final example is not geometrical; instead, it shows how a linear mapping can
transform one type of data into another.

EXAMPLE 6 A company manufactures two products, B and C. Using data from Ex-
ample 7 in Section 1.3, we construct a “unit cost” matrix, U = [ b c ], whose columns
describe the “costs per dollar of output” for the products:

U =

Product
B C

 .45 .40
.25 .35
.15 .15


 Materials

Labor
Overhead

Let x = (x1, x2) be a “production” vector, corresponding to x1 dollars of product B and
x2 dollars of product C, and define T : R

2 → R
3 by

T (x) = Ux = x1


 .45
.25
.15


 + x2


 .40
.35
.15


 =


 Total cost of materials

Total cost of labor
Total cost of overhead




The mapping T transforms a list of production quantities (measured in dollars) into a
list of total costs. The linearity of this mapping is reflected in two ways:

1. If production is increased by a factor of, say, 4, from x to 4x, then the costs will
increase by the same factor, from T (x) to 4T (x).

2. If x and y are production vectors, then the total cost vector associated with the
combined production x + y is precisely the sum of the cost vectors T (x) and T (y).

P R A C T I C E P R O B L E M S

1. Suppose T : R
5 → R

2 and T (x) = Ax for some matrix A and for each x in R
5. How

many rows and columns does A have?

2. Let A =
[

1 0
0 −1

]
. Give a geometric description of the transformation x �→ Ax.

3. The line segment from 0 to a vector u is the set of points of the form tu, where
0 ≤ t ≤ 1. Show that a linear transformation T maps this segment into the segment
between 0 and T (u).

1.8 EXERCISES

1. Let A =
[

2 0
0 2

]
, and define T : R

2 → R
2 by T (x) = Ax.

Find the images under T of u =
[

1
−3

]
and v =

[
a

b

]
.

2. Let A =

 .5 0 0

0 .5 0
0 0 .5


, u =


 1

0
−4


, and v =


 a

b

c


. De-

fine T : R
3 → R

3 by T (x) = Ax. Find T (u) and T (v).
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In Exercises 3–6, with T defined by T (x) = Ax, find a vector x
whose image under T is b, and determine whether x is unique.

3. A =

 1 0 −2

−2 1 6
3 −2 −5


, b =


 −1

7
−3




4. A =

 1 −3 2

0 1 −4
3 −5 −9


, b =


 6

−7
−9




5. A =
[

1 −5 −7
−3 7 5

]
, b =

[ −2
−2

]

6. A =




1 −2 1
3 −4 5
0 1 1

−3 5 −4


, b =




1
9
3

−6




7. Let A be a 6×5 matrix. What must a and b be in order to
define T : R

a → R
b by T (x) = Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R

4 into R
5 by the rule T (x) = Ax?

For Exercises 9 and 10, find all x in R
4 that are mapped into the

zero vector by the transformation x �→Ax for the given matrix A.

9. A =

 1 −4 7 −5

0 1 −4 3
2 −6 6 −4




10. A =




1 3 9 2
1 0 3 −4
0 1 2 3

−2 3 0 5




11. Let b =

 −1

1
0


, and let A be the matrix in Exercise 9. Is b in

the range of the linear transformation x �→Ax? Why or why
not?

12. Let b =




−1
3

−1
4


, and let A be the matrix in Exercise 10. Is

b in the range of the linear transformation x �→Ax? Why or
why not?

In Exercises 13–16, use a rectangular coordinate system to plot

u =
[

5
2

]
, v =

[ −2
4

]
, and their images under the given transfor-

mation T . (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what T does to each vector x
in R

2.

13. T (x) =
[ −1 0

0 −1

][
x1

x2

]

14. T (x) =
[
.5 0
0 .5

][
x1

x2

]

15. T (x) =
[

0 0
0 1

][
x1

x2

]

16. T (x) =
[

0 1
1 0

][
x1

x2

]

17. Let T : R
2 → R

2 be a linear transformation that maps

u =
[

5
2

]
into

[
2
1

]
and maps v =

[
1
3

]
into

[ −1
3

]
. Use the

fact that T is linear to find the images under T of 3u, 2v, and
3u + 2v.

18. The figure shows vectors u, v, and w, along with the images
T (u) and T (v) under the action of a linear transformation
T : R

2 → R
2. Copy this figure carefully, and draw the image

T (w) as accurately as possible. [Hint: First, write w as a
linear combination of u and v.]

uw

v

T(v)

T(u)

x2 x2

x1x1

19. Let e1 =
[

1
0

]
, e2 =

[
0
1

]
, y1 =

[
2
5

]
, and y2 =

[ −1
6

]
, and

let T : R
2 → R

2 be a linear transformation that maps e1 into

y1 and maps e2 into y2. Find the images of

[
5

−3

]
and

[
x1

x2

]
.

20. Let x =
[
x1

x2

]
, v1 =

[ −2
5

]
, and v2 =

[
7

−3

]
, and let

T : R
2 → R

2 be a linear transformation that maps x into
x1v1 + x2v2. Find a matrix A such that T (x) is Ax for each x.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21. a. A linear transformation is a special type of function.

b. If A is a 3×5 matrix and T is a transformation defined by
T (x) = Ax, then the domain of T is R

3.

c. IfA is anm×nmatrix, then the range of the transformation
x �→Ax is R

m.

d. Every linear transformation is a matrix transformation.
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e. A transformation T is linear if and only if T (c1v1+
c2v2) = c1T (v1) + c2T (v2) for all v1 and v2 in the domain
of T and for all scalars c1 and c2.

22. a. Every matrix transformation is a linear transformation.

b. The codomain of the transformation x �→Ax is the set of
all linear combinations of the columns of A.

c. If T : R
n → R

m is a linear transformation and if c is in
R

m, then a uniqueness question is “Is c in the range of T ?”

d. A linear transformation preserves the operations of vector
addition and scalar multiplication.

e. The superposition principle is a physical description of a
linear transformation.

23. Let T : R
2 → R

2 be the linear transformation that reflects
each point through the x1-axis. (See Practice Problem 2.)
Make two sketches similar to Fig. 6 that illustrate properties
(i) and (ii) of a linear transformation.

24. Suppose vectors v1, . . . , vp span R
n, and let T : R

n → R
n be

a linear transformation. Suppose T (vi ) = 0 for i = 1, . . . , p.
Show that T is the zero transformation. That is, show that if
x is any vector in R

n, then T (x) = 0.

25. Given v 
= 0 and p in R
n, the line through p in the direction of

v has the parametric equation x = p + tv. Show that a linear
transformation T : R

n → R
n maps this line onto another line

or onto a single point (a degenerate line).

26. Let u and v be linearly independent vectors in R
3, and let P be

the plane through u, v, and 0. The parametric equation of P is
x = su + tv (with s, t in R). Show that a linear transformation
T : R

3 → R
3 maps P onto a plane through 0, or onto a line

through 0, or onto just the origin in R
3. What must be true

about T (u) and T (v) in order for the image of the plane P to
be a plane?

27. a. Show that the line through vectors p and q in R
n may be

written in the parametric form x = (1 − t)p + tq. (Refer
to the figure with Exercises 21 and 22 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form (1 − t)p + tq for 0 ≤ t ≤ 1 (as shown in the figure
below). Show that a linear transformation T maps this line
segment onto a line segment or onto a single point.

(t = 1) q (1 – t)p + tq
x

(t = 0) p

28. Let u and v be vectors in R
n. It can be shown that the set P of

all points in the parallelogram determined by u and v has the
form au + bv, for 0 ≤ a ≤ 1, 0 ≤ b ≤ 1. Let T : R

n → R
m

be a linear transformation. Explain why the image of a point
in P under the transformation T lies in the parallelogram de-
termined by T (u) and T (v).

29. Define f : R → R by f (x) = mx + b.

a. Show that f is a linear transformation when b = 0.

b. Find a property of a linear transformation that is violated
when b 
= 0.

c. Why is f called a linear function?

30. An affine transformation T : R
n → R

m has the form T (x)=
Ax + b, with A an m×n matrix and b in R

m. Show that T is
not a linear transformation when b 
= 0. (Affine transforma-
tions are important in computer graphics.)

31. Let T : R
n → R

m be a linear transformation, and let
{v1, v2, v3} be a linearly dependent set in R

n. Explain why
the set {T (v1), T (v2), T (v3)} is linearly dependent.

In Exercises 32–36, column vectors are written as rows, such as
x = (x1, x2), and T (x) is written as T (x1, x2).

32. Show that the transformation T defined by T (x1, x2)=
(4x1 − 2x2, 3|x2|) is not linear.

33. Show that the transformation T defined by T (x1, x2)=
(2x1 − 3x2, x1 + 4, 5x2) is not linear.

34. Let T : R
n → R

m be a linear transformation. Show that
if T maps two linearly independent vectors onto a linearly
dependent set, then the equation T (x) = 0 has a nontrivial
solution. [Hint: Suppose u and v in R

n are linearly inde-
pendent and yet T (u) and T (v) are linearly dependent. Then
c1T (u) + c2T (v) = 0 for some weights c1 and c2, not both
zero. Use this equation.]

35. Let T : R
3 → R

3 be the transformation that reflects each vec-
tor x = (x1, x2, x3) through the plane x3 = 0 onto T (x)=
(x1, x2,−x3). Show that T is a linear transformation. [See
Example 4 for ideas.]

36. Let T : R
3 → R

3 be the transformation that projects each
vector x = (x1, x2, x3) onto the plane x2 = 0, so T (x)=
(x1, 0, x3). Show that T is a linear transformation.

[M] In Exercises 37 and 38, the given matrix determines a linear
transformation T . Find all x such that T (x) = 0.

37.




4 −2 5 −5
−9 7 −8 0
−6 4 5 3

5 −3 8 −4


 38.




−9 −4 −9 4
5 −8 −7 6
7 11 16 −9
9 −7 −4 5



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39. [M] Let b =




7
5
9
7


 and let A be the matrix in Exercise 37. Is

b in the range of the transformation x �→Ax? If so, find an x
whose image under the transformation is b.

40. [M] Let b =




−7
−7
13
−5


 and let A be the matrix in Exercise 38.

Is b in the range of the transformation x �→Ax? If so, find an
x whose image under the transformation is b.

SG Mastering: Linear Transformations 1–37

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. A must have five columns for Ax to be defined. A must have two rows for the
codomain of T to be R

2.

2. Plot some random points (vectors) on graph paper to see what happens. A point such
as (4, 1) maps into (4,−1). The transformation x �→Ax reflects points through the
x-axis (or x1-axis).

Au

u

x2

x1

Av

v

Ax

x

The transformation x �→Ax.
3. Let x = tu for some t such that 0 ≤ t ≤ 1. Since T is linear, T (tu) = t T (u), which

is a point on the line segment between 0 and T (u).

1.9 THE MATRIX OF A LINEAR TRANSFORMATION
Whenever a linear transformation T arises geometrically or is described in words, we
usually want a “formula” for T (x). The discussion that follows shows that every linear
transformation from R

n to R
m is actually a matrix transformation x �→Ax and that

important properties of T are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns
of the n×n identity matrix In.

x1

x2

e2 = 0
1







e1 = 1
0







EXAMPLE 1 The columns of I2 =
[

1 0
0 1

]
are e1 =

[
1
0

]
and e2 =

[
0
1

]
. Suppose

T is a linear transformation from R
2 into R

3 such that

T (e1) =

 5

−7
2


 and T (e2) =


 −3

8
0




With no additional information, find a formula for the image of an arbitrary x in R
2.

Solution Write

x =
[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
= x1e1 + x2e2 (1)
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Since T is a linear transformation,

T (x) = x1T (e1) + x2T (e2) (2)

= x1


 5

−7
2


+ x2


 −3

8
0


 =


 5x1 − 3x2

−7x1 + 8x2

2x1 + 0




The step from (1) to (2) explains why knowledge of T (e1) and T (e2) is sufficient to
determine T (x) for any x. Moreover, since (2) expresses T (x) as a linear combination
of vectors, we can put these vectors into the columns of a matrix A and write (2) as

T (x) = [ T (e1) T (e2) ]

[
x1

x2

]
= Ax

THEOREM 10 Let T : R
n → R

m be a linear transformation. Then there exists a unique matrix A

such that

T (x) = Ax for all x in R
n

In fact, A is the m×n matrix whose j th column is the vector T (ej ), where ej is
the j th column of the identity matrix in R

n:

A = [ T (e1) · · · T (en) ] (3)

PROOF Write x = Inx = [ e1 · · · en ] x = x1e1 + · · · + xnen, and use the linearity of
T to compute

T (x) = T (x1e1 + · · · + xnen) = x1T (e1) + · · · + xnT (en)

= [ T (e1) · · · T (en) ]



x1
...

xn


 = Ax

The uniqueness of A is treated in Exercise 33. �

The matrix A in (3) is called the standard matrix for the linear transformation T .
We know now that every linear transformation from R

n to R
m is a matrix trans-

formation, and vice versa. The term linear transformation focuses on a property of a
mapping, while matrix transformation describes how such a mapping is implemented,
as the next examples illustrate.

EXAMPLE 2 Find the standard matrix A for the dilation transformation T (x) = 3x,
for x in R

2.
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Solution Write

T (e1) = 3e1 =
[

3
0 ✲

]
and T (e2) = 3e2 =

[
0
3✲

]

A=
[

3 0
0 3

]

EXAMPLE 3 Let T : R
2 → R

2 be the transformation that rotates each point in R
2

about the origin through an angle ϕ, with counterclockwise rotation for a positive angle.
We could show geometrically that such a transformation is linear. (See Fig. 6 in Section
1.8.) Find the standard matrix A of this transformation.

Solution

[
1
0

]
rotates into

[
cosϕ
sin ϕ

]
, and

[
0
1

]
rotates into

[ − sin ϕ

cosϕ

]
. See Fig. 1. By

Theorem 10,

A =
[

cosϕ − sin ϕ

sin ϕ cosϕ

]

Example 5 in Section 1.8 is a special case of this transformation, with ϕ = π/2.

(– sin ϕ, cos ϕ)

(cos ϕ, sin ϕ)

(1, 0)

(0, 1)

ϕ

ϕ x1

x2

FIGURE 1 A rotation transformation.

x1

x2

 
 

  

0
1

 
 

  

1
0

FIGURE 2
The unit square.

Geometric Linear Transformations of 2

Examples 2 and 3 illustrate linear transformations that are described geometrically. Ta-
bles 1–4 illustrate other common geometric linear transformations of the plane. Because
the transformations are linear, they are determined completely by what they do to the
columns of I2. Instead of showing only the images of e1 and e2, the tables show what a
transformation does to the unit square (Fig. 2).

Other transformations can be constructed from those listed in Tables 1–4 by applying
one transformation after another. For instance, a horizontal shear could be followed by
a reflection in the x2-axis. Section 2.1 will show that such a composition of linear
transformations is linear. (Also, see Exercise 36.)

Existence and Uniqueness Questions

The concept of a linear transformation provides a new way to understand the existence
and uniqueness questions asked earlier. The two definitions following Tables 1–4 give
the appropriate terminology for transformations.
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TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix

Reflection through
the x1-axis

x1

x2




  


0
–1




  

1
0

[
1 0
0 −1

]

Reflection through
the x2-axis

x1

x2




  

–1

0




  

0
1

[ −1 0
0 1

]

Reflection through
the line x2 = x1

x1

x2

x2 =  x1




  

1
0




  

0
1

[
0 1
1 0

]

Reflection through
the line x2 = −x1

x1

x2 = –x1

x2




  

–1

0




  


0
–1

[
0 −1

−1 0

]

Reflection through
the origin

x1

x2




  

–1

0




  


0
–1

[ −1 0
0 −1

]
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix

Horizontal
contraction
and expansion

x1

x2




  

0
1




  

k
0

k > 1

x1

x2




  

0
1




  

k
0

0 < k < 1

[
k 0
0 1

]

Vertical
contraction
and expansion




  

1
0




  

0
k

x1

x2




  

1
0




  

0
k

x1

x2

k > 10 < k < 1

[
1 0
0 k

]

TABLE 3 Shears

Transformation Image of the Unit Square Standard Matrix

Horizontal
shear

x1

x2

k < 0

k
x1

x2

k > 0

k

k
1

k
1

1
0

1
0

[
1 k

0 1

]

Vertical shear




  

0
1




  

0
1




  

1
k




  

1
k

x1

x2

x1

x2

k < 0 k > 0

k

k

[
1 0
k 1

]
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TABLE 4 Projections

Transformation Image of the Unit Square Standard Matrix

Projection onto
the x1-axis




  

0
0




  

1
0

x1

x2
[

1 0
0 0

]

Projection onto
the x2-axis




  

0
0




  

0
1

x1

x2
[

0 0
0 1

]

DEF IN I T I ON A mapping T : R
n → R

m is said to be onto R
m if each b in R

m is the image of at
least one x in R

n.

Equivalently, T is onto R
m when the range of T is all of the codomain R

m. That is,
T maps R

n onto R
m if, for each b in the codomain R

m, there exists at least one solution
of T (x) = b. “Does T map R

n onto R
m?” is an existence question. The mapping T is

not onto when there is some b in R
m for which the equation T (x) = b has no solution.

See Fig. 3.

�m

Domain Range
T T

�
n

�
n

Domain

�m

Range

T is not onto �m T is onto �m

FIGURE 3 Is the range of T all of R
m?

DEF IN I T I ON A mapping T : R
n → R

m is said to be one-to-one if each b in R
m is the image of

at most one x in R
n.
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Equivalently, T is one-to-one if, for each b in R
m, the equation T (x) = b has either

a unique solution or none at all. “Is T one-to-one?” is a uniqueness question. The
mapping T is not one-to-one when some b in R

m is the image of more than one vector
in R

n. If there is no such b, then T is one-to-one. See Fig. 4.

Domain
Range

Domain
Range

0

T

T is not one-to-one

0 0

T is one-to-one

T

0

�
n

�
n�m �m

FIGURE 4 Is every b the image of at most one vector?

The projection transformations shown in Table 4 are not one-to-one and do not map

SG Mastering: Existence
and Uniqueness 1–42

R
2 onto R

2. The transformations in Tables 1, 2, and 3 are one-to-one and do map R
2

onto R
2. Other possibilities are shown in the two examples below.

Example 4 and the theorems that follow show how the function properties of being
one-to-one and mapping onto are related to important concepts studied earlier in the
chapter.

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

A =

 1 −4 8 1

0 2 −1 3
0 0 0 5




Does T map R
4 onto R

3? Is T a one-to-one mapping?

Solution Since A happens to be in echelon form, we can see at once that A has a pivot
position in each row. By Theorem 4 in Section 1.4, for each b in R

3, the equation Ax = b
is consistent. In other words, the linear transformation T maps R

4 (its domain) onto R
3.

However, since the equation Ax = b has a free variable (because there are four variables
and only three basic variables), each b is the image of more than one x. That is, T is not
one-to-one.

THEOREM 11 Let T : R
n → R

m be a linear transformation. Then T is one-to-one if and only if
the equation T (x) = 0 has only the trivial solution.

PROOF Since T is linear, T (0) = 0. If T is one-to-one, then the equation T (x) = 0
has at most one solution and hence only the trivial solution. If T is not one-to-one, then
there is a b that is the image of at least two different vectors in R

n—say, u and v. That
is, T (u) = b and T (v) = b. But then, since T is linear,

T (u − v) = T (u) − T (v) = b − b = 0
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The vector u − v is not zero, since u 
= v. Hence the equation T (x) = 0 has more than
one solution. So, either the two conditions in the theorem are both true or they are both
false. �

THEOREM 12 Let T : R
n → R

m be a linear transformation and let A be the standard matrix for
T . Then:

a. T maps R
n onto R

m if and only if the columns of A span R
m;

b. T is one-to-one if and only if the columns of A are linearly independent.

PROOF

a. By Theorem 4 in Section 1.4, the columns of A span R
m if and only if for each b

the equation Ax = b is consistent—in other words, if and only if for every b, the
equation T (x) = b has at least one solution. This is true if and only if T maps R

n

onto R
m.

b. The equationsT (x) = 0 andAx = 0 are the same except for notation. So, by Theorem
11, T is one-to-one if and only if Ax = 0 has only the trivial solution. This happens
if and only if the columns of A are linearly independent, as was already noted in the
boxed statement (3) in Section 1.7. �

Statement (a) in Theorem 12 is equivalent to the statement “T maps R
n onto R

m

if and only if every vector in R
m is a linear combination of the columns of A.” See

Theorem 4 in Section 1.4.
In the next example and in some exercises that follow, column vectors are written in

rows, such as x = (x1, x2), and T (x) is written as T (x1, x2) instead of the more formal
T ((x1, x2)).

EXAMPLE 5 Let T (x1, x2) = (3x1 + x2, 5x1 + 7x2, x1 + 3x2). Show that T is a one-
to-one linear transformation. Does T map R

2 onto R
3?

T
T

e2

e1

x3

x1

x1

x2

a2

a1

Span{a1, a2}

The transformation T is not
onto R

3.

Solution When x and T (x) are written as column vectors, you can determine the
standard matrix of T by inspection, visualizing the row–vector computation of each
entry in Ax.

T (x) =

 3x1 + x2

5x1 + 7x2

x1 + 3x2


 =


 ? ?

? ?
? ?




A

[
x1

x2

]
=


 3 1

5 7
1 3



[
x1

x2

]
(4)

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. By Theorem
12(b), T is one-to-one. To decide if T is onto R

3, examine the span of the columns of
A. Since A is 3×2, the columns of A span R

3 if and only if A has 3 pivot positions, by
Theorem 4. This is impossible, since A has only 2 columns. So the columns of A do
not span R

3, and the associated linear transformation is not onto R
3.
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P R A C T I C E P R O B L E M

Let T : R
2 → R

2 be the transformation that first performs a horizontal shear that maps e2

into e2 − .5e1 (but leaves e1 unchanged) and then reflects the result through the x2-axis.
Assuming that T is linear, find its standard matrix. [Hint: Determine the final location
of the images of e1 and e2.]

1.9 EXERCISES
In Exercises 1–10, assume that T is a linear transformation. Find
the standard matrix of T .

1. T : R
2 → R

4, T (e1) = (3, 1, 3, 1) and T (e2) = (−5, 2, 0, 0),
where e1 = (1, 0) and e2 = (0, 1).

2. T : R
3 → R

2, T (e1) = (1, 3), T (e2) = (4,−7), and T (e3)=
(−5, 4), where e1, e2, e3 are the columns of the 3×3 identity
matrix.

3. T : R
2 → R

2 rotates points (about the origin) through 3π/2
radians (counterclockwise).

4. T : R
2 → R

2 rotates points (about the origin) through −π/4
radians (clockwise). [Hint: T (e1) = (1/

√
2,−1/

√
2).]

5. T : R
2 → R

2 is a vertical shear transformation that maps e1

into e1 − 2e2 but leaves the vector e2 unchanged.

6. T : R
2 → R

2 is a horizontal shear transformation that leaves
e1 unchanged and maps e2 into e2 + 3e1.

7. T : R
2 → R

2 first rotates points through −3π/4 radian
(clockwise) and then reflects points through the horizontal
x1-axis. [Hint: T (e1) = (−1/

√
2, 1/

√
2).]

8. T : R
2 → R

2 first reflects points through the horizontal x1-
axis and then reflects points through the line x2 = x1.

9. T : R
2 → R

2 first performs a horizontal shear that transforms
e2 into e2 − 2e1 (leaving e1 unchanged) and then reflects points
through the line x2 = −x1.

10. T : R
2 → R

2 first reflects points through the vertical x2-axis
and then rotates points π/2 radians.

11. A linear transformation T : R
2 → R

2 first reflects points
through the x1-axis and then reflects points through the x2-
axis. Show that T can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

12. Show that the transformation in Exercise 8 is merely a rotation
about the origin. What is the angle of the rotation?

13. Let T : R
2 → R

2 be the linear transformation such that T (e1)

andT (e2) are the vectors shown in the figure. Using the figure,
sketch the vector T (2, 1).

T(e1) T(e2)

x1

x2

14. Let T : R
2 → R

2 be a linear transformation with standard ma-
trix A = [a1 a2], where a1 and a2 are shown in the figure.

Using the figure, draw the image of

[ −1
3

]
under the trans-

formation T .

x1

x2

a2

a1

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

15.


 ? ? ?

? ? ?
? ? ?




 x1

x2

x3


 =


 3x1 − 2x3

4x1

x1 − x2 + x3




16.


 ? ?

? ?
? ?



[
x1

x2

]
=


 x1 − x2

−2x1 + x2

x1



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In Exercises 17–20, show that T is a linear transformation by find-
ing a matrix that implements the mapping. Note that x1, x2, . . .

are not vectors but are entries in vectors.

17. T (x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4)

18. T (x1, x2) = (2x2 − 3x1, x1 − 4x2, 0, x2)

19. T (x1, x2, x3) = (x1 − 5x2 + 4x3, x2 − 6x3)

20. T (x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R
4 → R)

21. Let T : R
2 → R

2 be a linear transformation such that
T (x1, x2) = (x1 + x2, 4x1 + 5x2). Find x such that T (x)=
(3, 8).

22. Let T : R
2 → R

3 be a linear transformation such that
T (x1, x2) = (x1 − 2x2,−x1 + 3x2, 3x1 − 2x2). Find x such
that T (x) = (−1, 4, 9).

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A linear transformation T : R
n → R

m is completely de-
termined by its effect on the columns of the n×n identity
matrix.

b. If T : R
2 → R

2 rotates vectors about the origin through
an angle ϕ, then T is a linear transformation.

c. When two linear transformations are performed one after
another, the combined effect may not always be a linear
transformation.

d. A mapping T : R
n → R

m is onto R
m if every vector x in

R
n maps onto some vector in R

m.

e. If A is a 3×2 matrix, then the transformation x �→Ax
cannot be one-to-one.

24. a. Not every linear transformation from R
n to R

m is a matrix
transformation.

b. The columns of the standard matrix for a linear transfor-
mation from R

n to R
m are the images of the columns of

the n×n identity matrix.

c. The standard matrix of a linear transformation from R
2

to R
2 that reflects points through the horizontal axis, the

vertical axis, or the origin has the form

[
a 0
0 d

]
, where

a and d are ±1.

d. A mapping T : R
n → R

m is one-to-one if each vector in
R

n maps onto a unique vector in R
m.

e. If A is a 3×2 matrix, then the transformation x �→ Ax
cannot map R

2 onto R
3.

In Exercises 25–28, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

25. The transformation in Exercise 17

26. The transformation in Exercise 2

27. The transformation in Exercise 19

28. The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the
standard matrix for a linear transformation T . Use the notation of
Example 1 in Section 1.2.

29. T : R
3 → R

4 is one-to-one.

30. T : R
4 → R

3 is onto.

31. Let T : R
n → R

m be a linear transformation, with A its stan-
dard matrix. Complete the following statement to make it true:
“T is one-to-one if and only ifA has pivot columns.” Ex-
plain why the statement is true. [Hint: Look in the exercises
for Section 1.7.]

32. Let T : R
n → R

m be a linear transformation, with A its stan-
dard matrix. Complete the following statement to make it true:
“T maps R

n onto R
m if and only ifA has pivot columns.”

Find some theorems that explain why the statement is true.

33. Verify the uniqueness of A in Theorem 10. Let T : R
n → R

m

be a linear transformation such that T (x) = Bx for somem×n

matrix B. Show that if A is the standard matrix for T , then
A = B. [Hint: Show that A and B have the same columns.]

34. Why is the question “Is the linear transformation T onto?” an
existence question?

35. If a linear transformation T : R
n → R

m maps R
n onto R

m,
can you give a relation between m and n? If T is one-to-one,
what can you say about m and n?

36. Let S : R
p → R

n and T : R
n → R

m be linear transforma-
tions. Show that the mapping x �→ T (S(x)) is a linear trans-
formation (from R

p to R
m). [Hint: Compute T (S(cu + dv))

for u, v in R
p and scalars c and d. Justify each step of the com-

putation, and explain why this computation gives the desired
conclusion.]

[M] In Exercises 37–40, let T be the linear transformation whose
standard matrix is given. In Exercises 37 and 38, decide if T is a
one-to-one mapping. In Exercises 39 and 40, decide if T maps R

5

onto R
5. Justify your answers.

37.




−5 10 −5 4
8 3 −4 7
4 −9 5 −3

−3 −2 5 4


 38.




7 5 4 −9
10 6 16 −4
12 8 12 7
−8 −6 −2 5



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39.




4 −7 3 7 5
6 −8 5 12 −8

−7 10 −8 −9 14
3 −5 4 2 −6

−5 6 −6 −7 3


 40.




9 13 5 6 −1
14 15 −7 −6 4
−8 −9 12 −5 −9
−5 −6 −8 9 8
13 14 15 2 11




S O L U T I O N T O P R A C T I C E P R O B L E M

Follow what happens to e1 and e2. See Fig. 5. First, e1 is unaffected by the shear and
CD Visualizing Linear

Transformations

then is reflected into −e1. So T (e1) = −e1. Second, e2 goes to e2 − .5e1 by the shear
transformation. Since reflection through the x2-axis changes e1 into −e1 and leaves
e2 unchanged, the vector e2 − .5e1 goes to e2 + .5e1. So T (e2) = e2 + .5e1. Thus the
standard matrix of T is

[ T (e1) T (e2) ] = [ −e1 e2 + .5e1 ] =
[ −1 .5

0 1

]




  


x1

x2

x1

x2

x1

x2

0
1

  





1
0




  

1
0




  

.5
1




  

–.5

1




  

–1

0

Shear transformation Reflection through the x2-axis

FIGURE 5 The composition of two transformations.

1.10 LINEAR MODELS IN BUSINESS, SCIENCE, AND ENGINEERING
The mathematical models in this section are all linear; that is, each describes a prob-
lem by means of a linear equation, usually in vector or matrix form. The first model
concerns nutrition but actually is representative of a general technique in linear program-
ming problems. The second model comes from electrical engineering. The third model
introduces the concept of a linear difference equation, a powerful mathematical tool for
studying dynamic processes in a wide variety of fields such as engineering, ecology,
economics, telecommunications, and the management sciences. Linear models are im-
portant because natural phenomena are often linear or nearly linear when the variables
involved are held within reasonable bounds. Also, linear models are more easily adapted
for computer calculation than are complex nonlinear models.

WEB

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.
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Constructing a Nutritious Weight-Loss Diet

WEB The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this diet at
Cambridge University after more than eight years of clinical work with obese patients.1

The very low-calorie powdered formula diet combines a precise balance of carbohy-
drate, high-quality protein, and fat, together with vitamins, minerals, trace elements,
and electrolytes. Millions of persons have used the diet to achieve rapid and substantial
weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk
was a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate. . . .

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.2

TABLE 1

Amounts (g) Supplied
per 100 g of Ingredient

Nonfat Soy
Nutrient milk flour Whey

Amounts (g) Supplied
by the Cambridge
Diet in One Day

Protein 36 51 13 33
Carbohydrate 52 34 74 45
Fat 0 7 1.1 3

EXAMPLE 1 If possible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in
one day (Table 1).

Solution Let x1, x2, and x3, respectively, denote the number of units (100 g) of these
foodstuffs. One approach to the problem is to derive equations for each nutrient sepa-
rately. For instance, the product{

x1 units of
nonfat milk

}
·
{

protein per unit
of nonfat milk

}

1The first announcement of this rapid weight-loss regimen was given in the International Journal of
Obesity (1978) 2, 321–332.
2Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural Hand-
books No. 8-1 and 8-6, 1976.
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gives the amount of protein supplied by x1 units of nonfat milk. To this amount, we
would then add similar products for soy flour and whey and set the resulting sum equal
to the amount of protein we need. Analogous calculations would have to be made for
each nutrient.

A more efficient method, and one that is conceptually simpler, is to consider a
“nutrient vector” for each foodstuff and build just one vector equation. The amount of
nutrients supplied by x1 units of nonfat milk is the scalar multiple

Scalar Vector{
x1 units of
nonfat milk

}
·
{

nutrients per unit
of nonfat milk

}
= x1a1 (1)

where a1 is the first column in Table 1. Let a2 and a3 be the corresponding vectors
for soy flour and whey, respectively, and let b be the vector that lists the total nutrients
required (the last column of the table). Then x2a2 and x3a3 give the nutrients supplied
by x2 units of soy flour and x3 units of whey, respectively. So the equation we want is

x1a1 + x2a2 + x3a3 = b (2)

Row reduction of the augmented matrix for the corresponding system of equations shows
that 

 36 51 13 33
52 34 74 45

0 7 1.1 3


 ∼ · · · ∼


 1 0 0 .277

0 1 0 .392
0 0 1 .233




To three significant digits, the diet requires .277 units of nonfat milk, .392 units of
soy flour, and .233 units of whey in order to provide the desired amounts of protein,
carbohydrate, and fat.

It is important that the values of x1, x2, and x3 found above are nonnegative. This is
necessary for the solution to be physically feasible. (How could you use −.233 units of
whey, for instance?) With a large number of nutrient requirements, it may be necessary
to use a larger number of foodstuffs in order to produce a system of equations with a
“nonnegative” solution. Thus many, many different combinations of foodstuffs may
need to be examined in order to find a system of equations with such a solution. In
fact, the manufacturer of the Cambridge Diet was able to supply 31 nutrients in precise
amounts using only 33 ingredients.

The diet construction problem leads to the linear equation (2) because the amount
of nutrients supplied by each foodstuff can be written as a scalar multiple of a vector, as
in (1). That is, the nutrients supplied by a foodstuff are proportional to the amount of
the foodstuff added to the diet mixture. Also, each nutrient in the mixture is the sum of
the amounts from each foodstuff.

Problems of formulating specialized diets for humans and livestock occur frequently.
Usually they are treated by linear programming techniques. Our method of constructing
vector equations often simplifies the task of formulating such problems.
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Linear Equations and Electrical Networks

WEB Current flow in a simple electrical network can be described by a system of linear
equations. A voltage source such as a battery forces a current of electrons to flow
through the network. When the current passes through a resistor (such as a lightbulb or
motor), some of the voltage is “used up”; by Ohm’s law, this “voltage drop” across a
resistor is given by

V = RI

where the voltage V is measured in volts, the resistance R in ohms (denoted by +), and
the current flow I in amperes (amps, for short).

The network in Fig. 1 contains three closed loops. The currents flowing in loops 1,
2, and 3 are denoted by I1, I2, and I3, respectively. The designated directions of such
loop currents are arbitrary. If a current turns out to be negative, then the actual direction
of current flow is opposite to that chosen in the figure. If the current direction shown is
away from the positive (longer) side of a battery ( ) around to the negative (shorter)
side, the voltage is positive; otherwise, the voltage is negative.

1 Ω1 Ω

1 Ω1 Ω

4 Ω4 Ω

DC

BA

1 Ω

3 Ω

5 volts

20 volts

30 volts

I2

I1

I3

FIGURE 1

Current flow in a loop is governed by the following rule.

KIRCHHOFF’S VOLTAGE LAW

The algebraic sum of the RI voltage drops in one direction around a loop equals
the algebraic sum of the voltage sources in the same direction around the loop.

EXAMPLE 2 Determine the loop currents in the network in Fig. 1.

Solution For loop 1, the current I1 flows through three resistors, and the sum of the
RI voltage drops is

4I1 + 4I1 + 3I1 = (4 + 4 + 3)I1 = 11I1

Current from loop 2 also flows in part of loop 1, through the short branch between A

and B. The associated RI drop there is 3I2 volts. However, the current direction for the
branch AB in loop 1 is opposite to that chosen for the flow in loop 2, so the algebraic
sum of all RI drops for loop 1 is 11I1 − 3I2. Since the voltage in loop 1 is +30 volts,
Kirchhoff’s voltage law implies that

11I1 − 3I2 = 30

The equation for loop 2 is

−3I1 + 6I2 − I3 = 5

The term −3I1 comes from the flow of the loop-1 current through the branch AB (with
a negative voltage drop because the current flow there is opposite to the flow in loop 2).
The term 6I2 is the sum of all resistances in loop 2, multiplied by the loop current. The
term −I3 = −1·I3 comes from the loop-3 current flowing through the 1-ohm resistor in
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branch CD, in the direction opposite to the flow in loop 2. The loop-3 equation is

−I2 + 3I3 = −25

Note that the 5-volt battery in branch CD is counted as part of both loop 2 and loop 3,
but it is −5 volts for loop 3 because of the direction chosen for the current in loop 3.
The 20-volt battery is negative for the same reason.

The loop currents are found by solving the system

11I1 − 3I2 = 30

−3I1 + 6I2 − I3 = 5

− I2 + 3I3 = −25

(3)

Row operations on the augmented matrix lead to the solution: I1 = 3 amps, I2 = 1 amp,
and I3 = −8 amps. The negative value of I3 indicates that the actual current in loop 3
flows in the direction opposite to that shown in Fig. 1.

It is instructive to look at system (3) as a vector equation:

I1


 11

−3
0




✲

r1

+ I2


 −3

6
−1




✲

r2

+ I3


 0

−1
3




✲
r3

=

 30

5
−25




✲

v

(4)

The first entry of each vector concerns the first loop, and similarly for the second and
third entries. The first resistor vector r1 lists the resistance in the various loops through
which current I1 flows. A resistance is written negatively when I1 flows against the flow
direction in another loop. Examine Fig. 1 and see how to compute the entries in r1; then
do the same for r2 and r3. The matrix form of (4),

Ri = v, where R = [ r1 r2 r3 ] and i =

 I1

I2

I3




provides a matrix version of Ohm’s law. If all loop currents are chosen in the same
direction (say, counterclockwise), then all entries off the main diagonal of R will be
negative.

The matrix equation Ri = v makes the linearity of this model easy to see at a glance.
For instance, if the voltage vector is doubled, then the current vector must double. Also,
a superposition principle holds. That is, the solution of equation (4) is the sum of the
solutions of the equations

Ri =

 30

0
0


 , Ri =


 0

5
0


 , and Ri =


 0

0
−25




Each equation here corresponds to the circuit with only one voltage source (the other
sources being replaced by wires that close each loop). The model for current flow is
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linear precisely because Ohm’s law and Kirchhoff’s law are linear: The voltage drop
across a resistor is proportional to the current flowing through it (Ohm), and the sum of
the voltage drops in a loop equals the sum of the voltage sources in the loop (Kirchhoff).

Loop currents in a network can be used to determine the current in any branch of
the network. If only one loop current passes through a branch, such as from B to D in
Fig. 1, the branch current equals the loop current. If more than one loop current passes
through a branch, such as from A to B, the branch current is the algebraic sum of the
loop currents in the branch (Kirchhoff’s current law). For instance, the current in branch
AB is I1 − I2 = 3 − 1 = 2 amps, in the direction of I1. The current in branch CD is
I2 + I3 = 9 amps.

Difference Equations

In many fields such as ecology, economics, and engineering, a need arises to model
mathematically a dynamic system that changes over time. Several features of the system
are each measured at discrete time intervals, producing a sequence of vectors x0, x1,
x2, . . . . The entries in xk provide information about the state of the system at the time
of the kth measurement.

If there is a matrix A such that x1 = Ax0, x2 = Ax1, and, in general,

xk+1 = Axk for k = 0, 1, 2, . . . (5)

then (5) is called a linear difference equation (or recurrence relation). Given such
an equation, one can compute x1, x2, and so on, provided x0 is known. Sections 4.8
and 4.9, and several sections in Chapter 5, will develop formulas for xk and describe
what can happen to xk as k increases indefinitely. The discussion below illustrates how
a difference equation might arise.

A subject of interest to demographers is the movement of populations or groups of
people from one region to another. We consider here a simple model of the changes in
the population of a certain city and its surrounding suburbs over a period of years.

Fix an initial year—say, 2000—and denote the populations of the city and suburbs
that year by r0 and s0, respectively. Let x0 be the population vector

x0 =
[
r0

s0

]
City population, 2000
Suburban population, 2000

For 2001 and subsequent years, denote the population of the city and suburbs by the
vectors

x1 =
[
r1

s1

]
, x2 =

[
r2

s2

]
, x3 =

[
r3

s3

]
, . . .

Our goal is to describe mathematically how these vectors might be related.
Suppose demographic studies show that each year about 5% of the city’s population

moves to the suburbs (and 95% remains in the city), while 3% of the suburban population
moves to the city (and 97% remains in the suburbs). See Fig. 2.

After 1 year, the original r0 persons in the city are now distributed between city and
suburbs as
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City Suburbs

.03

.05

.95 .97

FIGURE 2 Annual percentage migration between city and suburbs.

[
.95r0

.05r0

]
= r0

[
.95
.05

]
Remain in city
Move to suburbs

(6)

The s0 persons in the suburbs in 2000 are distributed 1 year later as

s0

[
.03
.97

]
Move to city
Remain in suburbs

(7)

The vectors in (6) and (7) account for all of the population in 2001.3 Thus[
r1

s1

]
= r0

[
.95
.05

]
+ s0

[
.03
.97

]
=

[
.95 .03
.05 .97

][
r0

s0

]

That is,

x1 = Mx0 (8)

where M is the migration matrix determined by the following table:

From:
City Suburbs To:[
.95
.05

.03

.97

]
City
Suburbs

Equation (8) describes how the population changes from 2000 to 2001. If the migration
percentages remain constant, then the change from 2001 to 2002 is given by

x2 = Mx1

and similarly for 2002 to 2003 and subsequent years. In general,

xk+1 = Mxk for k = 0, 1, 2, . . . (9)

The sequence of vectors {x0, x1, x2, . . .} describes the population of the city/suburban
region over a period of years.

3For simplicity, we ignore other influences on the population such as births, deaths, and migration into
and out of the city/suburban region.
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EXAMPLE 3 Compute the population of the region just described for the years 2001
and 2002, given that the population in 2000 was 600,000 in the city and 400,000 in the
suburbs.

Solution The initial population in 2000 is x0 =
[

600,000
400,000

]
. For 2001,

x1 =
[
.95 .03
.05 .97

][
600,000
400,000

]
=

[
582,000
418,000

]

For 2002,

x2 = Mx1 =
[
.95 .03
.05 .97

][
582,000
418,000

]
=

[
565,440
434,560

]

The model for population movement in (9) is linear because the correspondence
xk �→ xk+1 is a linear transformation. The linearity depends on two facts: the number
of people who chose to move from one area to another is proportional to the number of
people in that area, as shown in (6) and (7), and the cumulative effect of these choices
is found by adding the movement of people from the different areas.

P R A C T I C E P R O B L E M

Find a matrix A and vectors x and b such that the problem in Example 1 amounts to
solving the equation Ax = b.

1.10 EXERCISES
1. The container of a breakfast cereal usually lists the number

of calories and the amounts of protein, carbohydrate, and fat
contained in one serving of the cereal. The amounts for two
common cereals are given at right.

Suppose a mixture of these two cereals is to be prepared
that contains exactly 295 calories, 9 g of protein, 48 g of car-
bohydrate, and 8 g of fat.

a. Set up a vector equation for this problem. Include a state-
ment that says what your variables in the equation repre-
sent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information
per Serving

General Quaker
Mills 100% Natural

Nutrient Cheerios Cereal

Calories 110 130
Protein (g) 4 3
Carbohydrate (g) 20 18
Fat (g) 2 5
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2. One serving (28 g) of Kellogg’s Cracklin’ Oat Bran supplies
110 calories, 3 g of protein, 21 g of carbohydrate, and 3 g of
fat. One serving of Kellogg’s Crispix supplies 110 calories,
2 g of protein, 25 g of carbohydrate, and .4 g of fat.

a. Set up a matrix B and a vector u such that Bu gives the
amounts of calories, protein, carbohydrate, and fat con-
tained in a mixture of three servings of Cracklin’ Oat Bran
and two servings of Crispix.

b. [M] Suppose that you want a cereal with more protein
than Crispix but less fat than Cracklin’ Oat Bran. Is it
possible for a mixture of the two cereals to supply 110
calories, 2.25 g of protein, 24 g of carbohydrate, and 1 g
of fat? If so, what is the mixture?

3. The Cambridge Diet supplies .8 g of calcium per day, in ad-
dition to the nutrients listed in Table 1. The amounts of cal-
cium supplied by one unit (100 g) of the three ingredients in
the Cambridge Diet are as follows: 1.26 g from nonfat milk,
.19 g from soy flour, and .8 g from whey. Another ingredi-
ent in the diet mixture is isolated soy protein, which provides
the following nutrients in one unit: 80 g of protein, 0 g of
carbohydrate, 3.4 g of fat, and .18 g of calcium.

a. Set up a matrix equation whose solution determines the
amounts of nonfat milk, soy flour, whey, and isolated soy
protein necessary to supply the precise amounts of pro-
tein, carbohydrate, fat, and calcium in the Cambridge Diet.
State what the variables in the equation represent.

b. [M] Solve the equation in (a) and discuss your answer.

4. A dietician is planning a meal that supplies certain quantities
of vitamin C, calcium, and magnesium. Three foods will be
used, their quantities measured in appropriate units. The nu-
trients supplied by these foods and the dietary requirements
are given here.

Milligrams (mg) of Nutrients
per Unit of Food

Nutrient Food 1 Food 2 Food 3

Total Nutrients
Required

(mg)

Vitamin C 10 20 20 100
Calcium 50 40 10 300
Magnesium 30 10 40 200

Write a vector equation for this problem. State what the vari-
ables represent, and then solve the equation.

In Exercises 5–8, write a matrix equation that determines the loop
currents. [M] If MATLAB or another matrix program is available,
solve the system for the loop currents.

5.

3 Ω3 Ω

5 Ω5 Ω

1 Ω1 Ω

3 Ω

2 Ω

15 V

I2

I1

I3

I4

1 Ω25 V

15 V

7 Ω7 Ω

4 Ω 5 V

7 Ω5 V

6.

1 Ω

3 Ω30 V

20 V

10 V

40 V

5 Ω

7 Ω

2 Ω

3 Ω

2 Ω

I4

I3

I2

I1

2 Ω

1 Ω

2 Ω

7.

10 VI4I1

I3I2
3 Ω

5 Ω

1 Ω

7 Ω

6 Ω

2 Ω 20 V

40 V

30 V

4 Ω

4 Ω

8.

1 Ω

5 Ω5 Ω

5 Ω

40 V 10 V

5 Ω

20 V30 V

2 Ω

I2

I4

3 Ω

3 Ω

4 Ω

4 Ω

1 Ω

2 ΩI3

I5

I1
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9. In a certain region, about 5% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2000, there were
600,000 residents in the city and 400,000 in the suburbs. Set
up a difference equation that describes this situation, where x0

is the initial population in 2000. Then estimate the population
in the city and in the suburbs two years later, in 2002. (Ignore
other factors that might influence the population sizes.)

10. In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 3% of the
suburban population moves into the city. In 2000, there were
800,000 residents in the city and 500,000 in the suburbs. Set
up a difference equation that describes this situation, where x0

is the initial population in 2000. Then estimate the population
in the city and in the suburbs two years later, in 2002.

11. At the beginning of 1990, the population of California was
29,716,000, and the population living in the United States
but outside California was 218,994,000. During the year,
509,500 persons moved from California to elsewhere in the
United States, while 564,100 persons moved into California
from elsewhere in the United States.4

a. Set up the migration matrix for this situation, using five
decimal places for the migration rates into and out of Cali-
fornia. Let your work show how you produced the migra-
tion matrix.

b. [M] Compute the projected populations in the year 2000
for California and elsewhere in the United States, assum-
ing that the migration rates did not change during the 10-
year period. (These calculations do not take into account
births, deaths, or the substantial migration of persons into
California and other states from outside the United States.)

12. [M] Budget Rent A Car in Wichita, Kansas, has a fleet of
about 450 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to each location are shown in the
matrix below. Suppose that on Monday, there are 304 cars

4Migration data supplied by the Demographic Research Unit of the
California State Department of Finance.

at the airport (or rented from there), 48 cars at the east side
office, and 98 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:
Airport East West Returned To:
 .97
.00
.03

.05

.90

.05

.10

.05

.85


 Airport

East
West

13. [M] Let M and x0 be as in Example 3.

a. Compute the population vectors xk for k=1, . . . , 20. Dis-
cuss what you find.

b. Repeat (a) with an initial population of 350,000 in the city
and 650,000 in the suburbs. What do you find?

14. [M] Study how changes in boundary temperatures on a steel
plate affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures T1, T2, T3, T4 at each
of the sets of four points on the steel plate shown in the
figure. In each case, the value of Tk is approximated by the
average of the temperatures at the four closest points. See
Exercises 33 and 34 in Section 1.1, where the values (in
degrees) turn out to be (20, 27.5, 30, 22.5). How is this
list of values related to your results for the points in set (a)
and set (b)?

b. Without making any computations, guess the interior tem-
peratures in (a) when the boundary temperatures are all
multipled by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

0°

0°

0°

0°

20° 20°

20° 20°

1 2

4 3

(a)

10°

10°

40°

40°

0° 0°

10° 10°

1 2

4 3

(b)

S O L U T I O N T O P R A C T I C E P R O B L E M

A =

 36 51 13

52 34 74
0 7 1.1


 , x =


 x1

x2

x3


 , b =


 33

45
3



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CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If
true, cite appropriate facts or theorems. If false, explain why
or give a counterexample that shows why the statement is not
true in every case.

a. Every matrix is row equivalent to a unique matrix in ech-
elon form.

b. Any system of n linear equations in n variables has at
most n solutions.

c. If a system of linear equations has two different solutions,
it must have infinitely many solutions.

d. If a system of linear equations has no free variables, then
it has a unique solution.

e. If an augmented matrix [A b ] is transformed into
[C d ] by elementary row operations, then the equa-
tions Ax = b and Cx = d have exactly the same solution
sets.

f. If a system Ax = b has more than one solution, then so
does the system Ax = 0.

g. If A is an m×n matrix and the equation Ax = b is con-
sistent for some b, then the columns of A span R

m.

h. If an augmented matrix [A b ] can be transformed by el-
ementary row operations into reduced echelon form, then
the equation Ax = b is consistent.

i. If matrices A and B are row equivalent, they have the
same reduced echelon form.

j. The equation Ax = 0 has the trivial solution if and only
if there are no free variables.

k. If A is an m×n matrix and the equation Ax = b is con-
sistent for every b in R

m, then A has m pivot columns.

l. If an m×n matrix A has a pivot position in every row,
then the equation Ax has a unique solution for each b in
R

m.

m. If ann×nmatrixA hasn pivot positions, then the reduced
echelon form of A is the n×n identity matrix.

n. If 3×3 matrices A and B each have three pivot positions,
then A can be transformed into B by elementary row op-
erations.

o. If A is an m×n matrix, if the equation Ax = b has at least
two different solutions, and if the equation Ax = c is con-
sistent, then the equation Ax = c has many solutions.

p. If A and B are row equivalent m×n matrices and if the
columns of A span R

m, then so do the columns of B.

q. If none of the vectors in the set S = {v1, v2, v3} in R
3 is

a multiple of one of the other vectors, then S is linearly
independent.

r. If {u, v,w} is linearly independent, then u, v, and w are
not in R

2.

s. In some cases, it is possible for four vectors to span R
5.

t. If u and v are in R
m, then −u is in Span{u, v}.

u. If u, v, and w are nonzero vectors in R
2, then w is a linear

combination of u and v.

v. If w is a linear combination of u and v in R
n, then u is a

linear combination of v and w.

w. Suppose that v1, v2, and v3 are in R
5, v2 is not a multiple

of v1, and v3 is not a linear combination of v1 and v2.
Then {v1, v2, v3} is linearly independent.

x. A linear transformation is a function.

y. If A is a 6×5 matrix, the linear transformation x �→ Ax
cannot map R

5 onto R
6.

z. If A is an m×n matrix with m pivot columns, then the
linear transformation x �→ Ax is a one-to-one mapping.

2. Let a and b represent real numbers. Describe the possible so-
lution sets of the (linear) equation ax =b. [Hint: The number
of solutions depends upon a and b.]

3. The solutions (x, y, z) of a single linear equation

ax + by + cz = d

form a plane in R
3 when a, b, and c are not all zero. Con-

struct sets of three linear equations whose graphs (a) intersect
in a single line, (b) intersect in a single point, and (c) have no
points in common. Typical graphs are illustrated in the figure.

Three planes intersecting
in a line

(a)

Three planes intersecting
in a point

(b)
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Three planes with no
intersection

(c)

Three planes with no
intersection

(c')

4. Suppose the coefficient matrix of a linear system of three equa-
tions in three variables has a pivot position in each column.
Explain why the system has a unique solution.

5. Determine h and k such that the solution set of the system
(i) is empty, (ii) contains a unique solution, and (iii) contains
infinitely many solutions.

a. x1 + 3x2 = k

4x1 + hx2 = 8

b. −2x1 + hx2 = 1

6x1 + kx2 = −2

6. Consider the problem of determining whether the following
system of equations is consistent:

4x1 − 2x2 + 7x3 = −5

8x1 − 3x2 + 10x3 = −3

a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

b. Define an appropriate matrix, and restate the problem us-
ing the phrase “columns of A.”

c. Define an appropriate linear transformation T using the
matrix in (b), and restate the problem in terms of T .

7. Consider the problem of determining whether the following
system of equations is consistent for all b1, b2, b3:

2x1 − 4x2 − 2x3 = b1

−5x1 + x2 + x3 = b2

7x1 − 5x2 − 3x3 = b3

a. Define appropriate vectors, and restate the problem in
terms of Span {v1, v2, v3}. Then solve that problem.

b. Define an appropriate matrix, and restate the problem us-
ing the phrase “columns of A.”

c. Define an appropriate linear transformation T using the
matrix in (b), and restate the problem in terms of T .

8. Describe the possible echelon forms of the matrix A. Use the
notation of Example 1 in Section 1.2.

a. A is a 2×3 matrix whose columns span R
2.

b. A is a 3×3 matrix whose columns span R
3.

9. Write the vector

[
5
6

]
as the sum of two vectors, one on the

line {(x, y) : y = 2x} and one on the line {(x, y) : y = x/2}.
10. Let a1, a2, and b be the vectors in R

2 shown in the figure, and
let A = [a1 a2]. Does the equation Ax = b have a solution?
If so, is the solution unique? Explain.

a2

a1

b

x1

x2

11. Construct a 2×3 matrix A, not in echelon form, such that the
solution of Ax = 0 is a line in R

3.

12. Construct a 2×3 matrix A, not in echelon form, such that the
solution of Ax = 0 is a plane in R

3.

13. Write the reduced echelon form of a 3×3 matrix A such
that the first two columns of A are pivot columns and

A


 3

−2
1


 =


 0

0
0


.

14. Determine the value(s) of a such that

{[
1
a

]
,

[
a

a + 2

]}
is

linearly independent.

15. In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers a, . . . , f ? Justify your
answers. [Hint: Use a theorem for (b).]

a.


 a

0
0


,


 b

c

0


,


 d

e

f


 b.



a

1
0
0


,



b

c

1
0


,




d

e

f

1




16. Use Theorem 7 in Section 1.7 to explain why the columns of
the matrix A are linearly independent.

A =




1 0 0 0
2 5 0 0
3 6 8 0
4 7 9 10




17. Explain why a set {v1, v2, v3, v4} in R
5 must be linearly in-

dependent when {v1, v2, v3} is linearly independent and v4 is
not in Span {v1, v2, v3}.
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18. Suppose {v1, v2} is a linearly independent set in R
n. Show

that {v1, v1 + v2} is also linearly independent.

19. Suppose v1, v2, v3 are distinct points on one line in R
3. The

line need not pass through the origin. Show that {v1, v2, v3}
is linearly dependent.

20. Let T : R
n → R

m be a linear transformation, and suppose
T (u) = v. Show that T (−u) = −v.

21. Let T : R
3 → R

3 be the linear transformation that reflects
each vector through the plane x2 = 0. That is, T (x1, x2, x3)=
(x1,−x2, x3). Find the standard matrix of T .

22. Let A be a 3×3 matrix with the property that the linear trans-
formation x �→ Ax maps R

3 onto R
3. Explain why the trans-

formation must be one-to-one.

23. A Givens rotation is a linear transformation from R
n to R

n

used in computer programs to create a zero entry in a vec-
tor (usually a column of a matrix). The standard matrix of a
Givens rotation in R

2 has the form[
a −b

b a

]
, a2 + b2 = 1

Find a and b such that

[
4
3

]
is rotated into

[
5
0

]
.

(4, 3)

(5, 0)
x1

x2

A Givens rotation in R
2.

24. The following equation describes a Givens rotation in R
3.

Find a and b.
 a 0 −b

0 1 0
b 0 a




 2

3
4


 =


 2

√
5

3
0


 , a2 + b2 = 1

25. A large apartment building is to be built using modular con-
struction techniques. The arrangement of apartments on any
particular floor is to be chosen from one of three basic floor
plans. Plan A has 18 apartments on one floor, including
3 three-bedroom units, 7 two-bedroom units, and 8 one-
bedroom units. Each floor of plan B includes 4 three-bedroom
units, 4 two-bedroom units, and 8 one-bedroom units. Each
floor of plan C includes 5 three-bedroom units, 3 two-bedroom
units, and 9 one-bedroom units. Suppose the building contains
a total of x1 floors of plan A, x2 floors of plan B, and x3 floors
of plan C.

a. What interpretation can be given to the vector x1


 3

7
8


?

b. Write a formal linear combination of vectors that expresses
the total numbers of three-, two-, and one-bedroom apart-
ments contained in the building.

c. [M] Is it possible to design the building with exactly 66
three-bedroom units, 74 two-bedroom units, and 136 one-
bedroom units? If so, is there more than one way to do it?
Explain your answer.

CD Getting Started with MATLAB® CD Introduction to Mathematica®

CD Rounding Errors and Partial Pivoting CD Essentials for the TI-83+, TI-86, and TI-89

CD Introduction to Linear Algebra with Maple® CD Introduction to the HP-48G


