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2
Matrix Algebra

WEB

INTRODUCTORY EXAMPLE

Computer Models
in Aircraft Design

To design the next generation of commercial and military

aircraft, engineers at Boeing’s Phantom Works use 3D

modeling and computational fluid dynamics (CFD). They

study the airflow around a virtual airplane to answer

important design questions before physical models are

created. This has drastically reduced design cycle times

and cost—and linear algebra plays a crucial role in the

process.

The virtual airplane begins as a mathematical “wire-

frame” model that exists only in computer memory and on

graphics display terminals. (A model of a Boeing 777 is

shown.) This mathematical model organizes and

influences each step of the design and manufacture of the

airplane—both the exterior and interior. The CFD analysis

concerns the exterior surface.

Although the finished skin of a plane may seem

smooth, the geometry of the surface is complicated. In

addition to wings and a fuselage, an aircraft has nacelles,

stabilizers, slats, flaps, and ailerons. The way air flows

around these structures determines how the plane moves

through the sky. Equations that describe the airflow are

complicated, and they must account for engine intake,

engine exhaust, and the wakes left by the wings of the

plane. To study the airflow, engineers need a highly re-

fined description of the plane’s surface.

A computer creates a model of the surface by first

superimposing a three-dimensional grid of “boxes” on the

original wire-frame model. Boxes in this grid lie either

completely inside or completely outside the plane, or they

intersect the surface of the plane. The computer selects the

boxes that intersect the surface and subdivides them, re-

taining only the smaller boxes that still intersect the sur-

face. The subdividing process is repeated until the grid is

extremely fine. A typical grid can include over 400,000

boxes.

The process for finding the airflow around the plane

involves repeatedly solving a system of linear equations
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Ax = b that may involve up to 2 million equations and

variables. The vector b changes each time, based on data

from the grid and solutions of previous equations. Using

the fastest computers available commercially, a Phantom

Works team can spend from a few hours to several days

setting up and solving a single airflow problem. After the

team analyzes the solution, they may make small changes

to the airplane surface and begin the whole process again.

Thousands of CFD runs may be required.

This chapter presents two important concepts that

assist in the solution of such massive systems of equations:

• Partitioned matrices: A typical CFD system of equa-

tions has a “sparse” coefficient matrix with mostly

zero entries. Grouping the variables correctly leads to

a partitioned matrix with many zero blocks. Section

2.4 introduces such matrices and describes some of

their applications.

• Matrix factorizations: Even when written with

partitioned matrices, the system of equations is

complicated. To further simplify the computations,

the CFD software at Boeing uses what is called an LU

factorization of the coefficient matrix. Section 2.5

discusses LU and other useful matrix factorizations.

Further details about factorizations appear at several

points later in the text.

To analyze a solution of an airflow system, engineers

want to visualize the airflow over the surface of the plane.

Modern CFD has revolutionized wing design. The Boeing
Blended Wing Body is in design for the year 2020 or sooner.

They use computer graphics, and linear algebra provides

the engine for the graphics. The wire-frame model of the

plane’s surface is stored as data in many matrices. Once

the image has been rendered on a computer screen, engin-

eers can change its scale, zoom in or out of small regions,

and rotate the image to see parts that may be hidden from

view. Each of these operations is accomplished by ap-

propriate matrix multiplications. Section 2.7 explains the

basic ideas.

Our ability to analyze and solve equations will be greatly enhanced when we
can perform algebraic operations with matrices. Furthermore, the definitions
and theorems in this chapter provide some basic tools for handling the many

applications of linear algebra that involve two or more matrices. For square matrices, the
Invertible Matrix Theorem in Section 2.3 ties together most of the concepts treated earlier
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in the text. Sections 2.4 and 2.5 examine partitioned matrices and matrix factorizations,
which appear in most modern uses of linear algebra. Sections 2.6 and 2.7 describe two
interesting applications of matrix algebra, to economics and to computer graphics.

2.1 MATRIX OPERATIONS
If A is an m×n matrix—that is, a matrix with m rows and n columns—then the scalar
entry in the ith row and j th column of A is denoted by aij and is called the (i, j)-entry
of A. See Fig. 1. For instance, the (3, 2)-entry is the number a32 in the third row, second
column. The columns of A are vectors in R

m and are denoted by (boldface) a1, . . . , an.
We focus attention on these columns when we write

A = [ a1 a2 · · · an ]

Observe that the number aij is the ith entry (from the top) of the j th column vector aj .

a11

am1

a1n

amn

ai1 ain

a1 j

Column
j

am j

a1 a na j

ai jRow i = A

FIGURE 1 Matrix notation.

The diagonal entries in an m×n matrix A = [ aij ] are a11, a22, a33, . . . , and they
form the main diagonal of A. A diagonal matrix is a square matrix whose nondiagonal
entries are zero. An example is the n×n identity matrix, In. An m×n matrix whose
entries are all zero is a zero matrix and is written as 0. The size of a zero matrix is
usually clear from the context.

Sums and Scalar Multiples

The arithmetic for vectors described earlier has a natural extension to matrices. We
say that two matrices are equal if they have the same size (i.e., the same number of
rows and the same number of columns) and if their corresponding columns are equal,
which amounts to saying that their corresponding entries are equal. If A and B are
m×n matrices, then the sum A + B is the m×n matrix whose columns are the sums of
the corresponding columns in A and B. Since vector addition of the columns is done
entrywise, each entry in A + B is the sum of the corresponding entries in A and B. The
sum A + B is defined only when A and B are the same size.
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EXAMPLE 1 Let

A =
[

4 0 5
−1 3 2

]
, B =

[
1 1 1
3 5 7

]
, C =

[
2 −3
0 1

]
Then

A + B =
[

5 1 6
2 8 9

]
but A + C is not defined because A and C have different sizes.

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose
columns are r times the corresponding columns in A. As with vectors, we define −A to
mean (−1)A, and we write A − B in place of A + (−1)B.

EXAMPLE 2 If A and B are the matrices in Example 1, then

2B = 2

[
1 1 1
3 5 7

]
=

[
2 2 2
6 10 14

]

A − 2B =
[

4 0 5
−1 3 2

]
−

[
2 2 2
6 10 14

]
=

[
2 −2 3

−7 −7 −12

]

It was unnecessary in Example 2 to compute A − 2B as A + (−1)2B because the
usual rules of algebra apply to sums and scalar multiples of matrices, as we see in the
following theorem.

THEOREM 1 Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A + B = B + A d. r(A + B) = rA + rB

b. (A + B) + C = A + (B + C) e. (r + s)A = rA + sA

c. A + 0 = A f. r(sA) = (rs)A

Each equality in Theorem 1 is verified by showing that the matrix on the left side has
the same size as the matrix on the right and that corresponding columns are equal. Size
is no problem because A, B, and C are equal in size. The equality of columns follows
immediately from analogous properties of vectors. For instance, if the j th columns of
A, B, and C are aj , bj , and cj , respectively, then the j th columns of (A + B) + C and
A + (B + C) are

(aj + bj ) + cj and aj + (bj + cj )

respectively. Since these two vector sums are equal for each j , property (b) is verified.
Because of the associative property of addition, we can simply write A + B + C for

the sum, which can be computed either as (A + B) + C or as A + (B + C). The same
applies to sums of four or more matrices.
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Matrix Multiplication

When a matrix B multiplies a vector x, it transforms x into the vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A(Bx). See Fig. 2.

x

Multiplication

by B

Bx

Multiplication

by A

A(Bx)

FIGURE 2 Multiplication by B and then A.

Thus A(Bx) is produced from x by a composition of mappings—the linear transfor-
mations studied in Section 1.8. Our goal is to represent this composite mapping as
multiplication by a single matrix, denoted by AB, so that

A(Bx) = (AB)x (1)

See Fig. 3.

Multiplication

by AB

Bx

Multiplication

by B
x

Multiplication

by A
A(Bx)

FIGURE 3 Multiplication by AB.

If A is m×n, B is n×p, and x is in R
p, denote the columns of B by b1, . . . ,bp and

the entries in x by x1, . . . , xp. Then

Bx = x1b1 + · · · + xpbp

By the linearity of multiplication by A,

A(Bx) = A(x1b1) + · · · + A(xpbp)

= x1Ab1 + · · · + xpAbp

The vector A(Bx) is a linear combination of the vectors Ab1, . . . , Abp, using the entries
in x as weights. If we rewrite these vectors as the columns of a matrix, we have

A(Bx) = [Ab1 Ab2 · · · Abp ] x

Thus multiplication by [Ab1 Ab2 · · · Abp ] transforms x into A(Bx). We have
found the matrix we sought!
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DEF IN I T I ON If A is an m×n matrix, and if B is an n×p matrix with columns b1, . . . ,bp, then
the product AB is the m×p matrix whose columns are Ab1, . . . , Abp. That is,

AB = A [ b1 b2 · · · bp ] = [Ab1 Ab2 · · · Abp ]

This definition makes (1) true for all x in R
p. Equation (1) proves that the com-

posite mapping in Fig. 3 is a linear transformation and that its standard matrix is AB.
Multiplication of matrices corresponds to composition of linear transformations.

EXAMPLE 3 Compute AB, where A =
[

2 3
1 −5

]
and B =

[
4 3 6
1 −2 3

]
.

Solution Write B = [ b1 b2 b3 ], and compute:

Ab1 =
[

2 3
1 −5

][
4
1

]
, Ab2 =

[
2 3
1 −5

][
3

−2

]
, Ab3 =

[
2 3
1 −5

][
6
3

]

=
[

11
−1

]
=

[
0

13

]
=

[
21
−9

]

✲ ✲

Then ✲

AB = A [ b1 b2 b3 ] =
[

11 0 21
−1 13 −9

]
✲ ✲✲

Ab1 Ab2 Ab3

Notice that since the first column of AB is Ab1, this column is a linear combination
of the columns of A using the entries in b1 as weights. A similar statement is true for
each column of AB.

Each column of AB is a linear combination of the columns of A using weights
from the corresponding column of B.

Obviously, the number of columns of A must match the number of rows in B in or-
der for a linear combination such as Ab1 to be defined. Also, the definition of AB shows
that AB has the same number of rows as A and the same number of columns as B.

EXAMPLE 4 If A is a 3×5 matrix and B is a 5×2 matrix, what are the sizes of AB
and BA, if they are defined?
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Solution Since A has 5 columns and B has 5 rows, the product AB is defined and is a
3×2 matrix:

A B AB[ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

] 


∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗




=
[ ∗ ∗

∗ ∗
∗ ∗

]

3×5 5×2 3×2

✲ ✲Match✲ ✲

Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows of A.

The definition of AB is important for theoretical work and applications, but the
following rule provides a more efficient method for calculating the individual entries in
AB when working small problems by hand.

ROW–COLUMN RULE FOR COMPUTING AB

If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of corresponding entries from row i of A and column j of B.
If (AB)ij denotes the (i, j)-entry in AB, and if A is an m×n matrix, then

(AB)ij = ai1b1j + ai2b2j + · · · + ainbnj

To verify this rule, let B = [ b1 · · · bp ]. Column j of AB is Abj , and we can
compute Abj by the row–vector rule for computing Ax from Section 1.4. The ith entry
in Abj is the sum of the products of corresponding entries from row i of A and the
vector bj , which is precisely the computation described in the rule for computing the
(i, j)-entry of AB.

EXAMPLE 5 Use the row–column rule to compute two of the entries in AB for the
matrices in Example 3. An inspection of the numbers involved will make it clear how
the two methods for calculating AB produce the same matrix.

Solution To find the entry in row 1 and column 3 of AB, consider row 1 of A and
column 3 of B. Multiply corresponding entries and add the results, as shown below:

AB = ✲

✲[
2 3
1 −5

][
4 3 6
1 −2 3

]
=

[
� � 2(6) + 3(3)
� � �

]
=

[
� � 21
� � �

]
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For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B:

✲

✲[
2 3
1 −5

][
4 3 6
1 −2 3

]
=

[
� � 21
� 1(3) + −5(−2) �

]
=

[
� � 21
� 13 �

]

EXAMPLE 6 Find the entries in the second row of AB, where

A =




2 −5 0
−1 3 −4

6 −8 −7
−3 0 9


 , B =


 4 −6

7 1
3 2




Solution By the row–column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

✲




2 −5 0
− 1 3 −4

6 −8 −7
−3 0 9




✲ ✲
 4 −6

7 1
3 2




=




� �
− 4 + 21 − 12 6 + 3 − 8
� �
� �


 =




� �
5 1
� �
� �




Notice that since Example 6 requested only the second row of AB, we could have
written just the second row of A to the left of B and computed

[ −1 3 −4
] 4 −6

7 1
3 2


 = [

5 1
]

This observation about rows of AB is true in general and follows from the row–column
rule. Let rowi (A) denote the ith row of a matrix A. Then

rowi (AB) = rowi (A)·B (1)

Properties of Matrix Multiplication

The following theorem lists the standard properties of matrix multiplication. Recall that
Im represents the m×m identity matrix and Imx = x for all x in R

m.
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THEOREM 2 Let A be an m×n matrix, and let B and C have sizes for which the indicated sums
and products are defined.

a. A(BC) = (AB)C (associative law of multiplication)

b. A(B + C) = AB + AC (left distributive law)

c. (B + C)A = BA + CA (right distributive law)

d. r(AB) = (rA)B = A(rB)

for any scalar r

e. ImA = A = AIn (identity for matrix multiplication)

PROOF Properties (b)–(e) are considered in the exercises. Property (a) follows from
the fact that matrix multiplication corresponds to composition of linear transformations
(which are functions), and it is known (or easy to check) that the composition of functions
is associative. Here is another proof of (a) that rests on the “column definition” of the
product of two matrices. Let

C = [ c1 · · · cp ]

By the definition of matrix multiplication,

BC = [Bc1 · · · Bcp ]

A(BC) = [A(Bc1) · · · A(Bcp) ]

Recall from (1) that the definition of AB makes A(Bx) = (AB)x for all x, so

A(BC) = [ (AB)c1 · · · (AB)cp ] = (AB)C �

The associative and distributive laws in Theorems 1 and 2 say essentially that pairs
of parentheses in matrix expressions can be inserted and deleted in the same way as in the
algebra of real numbers. In particular, we can write ABC for the product, which can be
computed either as A(BC) or as (AB)C.1 Similarly, a product ABCD of four matrices
can be computed asA(BCD) or (ABC)D orA(BC)D, and so on. It does not matter how
we group the matrices when computing the product, so long as the left-to-right order of
the matrices is preserved.

The left-to-right order in products is critical because AB and BA are usually not
the same. This is not surprising, because the columns of AB are linear combinations
of the columns of A, whereas the columns of BA are constructed from the columns of
B. The position of the factors in the product AB is emphasized by saying that A is
right-multiplied by B or that B is left-multiplied by A. If AB = BA, we say that A and
B commute with one another.

1When B is square and C has fewer columns than A has rows, it is more efficient to compute A(BC)

instead of (AB)C.
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EXAMPLE 7 Let A =
[

5 1
3 −2

]
and B =

[
2 0
4 3

]
. Show that these matrices do not

commute. That is, verify that AB �=BA.

Solution

AB =
[

5 1
3 −2

][
2 0
4 3

]
=

[
14 3
−2 −6

]

BA =
[

2 0
4 3

][
5 1
3 −2

]
=

[
10 2
29 −2

]
For emphasis, we include the remark about commutativity with the following list

of important differences between matrix algebra and ordinary algebra of real numbers.
See Exercises 9–12 for examples of these situations.

Warnings:

1. In general, AB �=BA.

2. The cancellation laws do not hold for matrix multiplication. That is, ifAB = AC,
then it is not true in general that B = C. (See Exercise 10.)

3. If a product AB is the zero matrix, you cannot conclude in general that either
A = 0 or B = 0. (See Exercise 12.)

Powers of a Matrix

WEB If A is an n×n matrix and if k is a positive integer, then Ak denotes the product of k
copies of A:

Ak = A · · ·A︸ ︷︷ ︸
k

If A is nonzero and if x is in R
n, then Akx is the result of left-multiplying x by A

repeatedly k times. If k = 0, then A0x should be x itself. Thus A0 is interpreted as the
identity matrix. Matrix powers are useful in both theory and applications (Sections 2.6,
4.9, and later in the text).

The Transpose of a Matrix

Given an m×n matrix A, the transpose of A is the n×m matrix, denoted by AT , whose
columns are formed from the corresponding rows of A.

EXAMPLE 8 Let

A =
[
a b

c d

]
, B =


 −5 2

1 −3
0 4


 , C =

[
1 1 1 1

−3 5 −2 7

]



April 12, 2005 11:10 l57-ch02 Sheet number 11 Page number 115 cyan magenta yellow black

2.1 Matrix Operations 115

Then

AT =
[
a c

b d

]
, BT =

[ −5 1 0
2 −3 4

]
, CT =




1 −3
1 5
1 −2
1 7




THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
and products.

a. (AT )T = A

b. (A + B)T = AT + BT

c. For any scalar r , (rA)T = rAT

d. (AB)T = BTAT

Proofs of (a)–(c) are straightforward and are omitted. For (d), see Exercise 33.
Usually, (AB)T is not equal to ATBT, even when A and B have sizes such that the
product ATBT is defined.

The generalization of Theorem 3(d) to products of more than two factors can be
stated in words as follows:

The transpose of a product of matrices equals the product of their transposes in the
reverse order.

The exercises contain numerical examples that illustrate properties of transposes.

NU M E R I CA L NOT E S

1. The fastest way to obtain AB on a computer depends on the way in which
the computer stores matrices in its memory. The standard high-performance
algorithms, such as in LAPACK, calculate AB by columns, as in our definition
of the product. (A version of LAPACK written in C++ calculates AB by rows.)

2. The definition of AB lends itself well to parallel processing on a computer. The
columns of B are assigned individually or in groups to different processors,
which independently and hence simultaneously compute the corresponding
columns of AB.
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P R A C T I C E P R O B L E M S

1. Since vectors in R
n may be regarded as n×1 matrices, the properties of transposes

in Theorem 3 apply to vectors, too. Let

A =
[

1 −3
−2 4

]
and x =

[
5
3

]
Compute (Ax)T , xTAT , xxT , and xTx. Is ATxT defined?

2. Let A be a 4×4 matrix and let x be a vector in R
4. What is the fastest way to compute

A2x? Count the multiplications.

2.1 EXERCISES
In Exercises 1 and 2, compute each matrix sum or product if it is
defined. If an expression is undefined, explain why. Let

A =
[

2 0 −1
4 −5 2

]
, B =

[
7 −5 1
1 −4 −3

]
,

C =
[

1 2
−2 1

]
, D =

[
3 5

−1 4

]
, E =

[ −5
3

]

1. −2A, B − 2A, AC, CD

2. A + 2B, 3C − E, CB, EB

In the rest of this exercise set and in those to follow, you should
assume that each matrix expression is defined. That is, the sizes
of the matrices (and vectors) involved “match” appropriately.

3. Let A =
[

4 −1
5 −2

]
. Compute 3I2 − A and (3I2)A.

4. Compute A − 5I3 and (5I3)A, when

A =

 9 −1 3

−8 7 −6
−4 1 8


 .

In Exercises 5 and 6, compute the product AB in two ways: (a) by
the definition, where Ab1 and Ab2 are computed separately, and
(b) by the row–column rule for computing AB.

5. A =

 −1 2

5 4
2 −3


 , B =

[
3 −2

−2 1

]

6. A =

 4 −2

−3 0
3 5


 , B =

[
1 3
2 −1

]

7. If a matrix A is 5×3 and the product AB is 5×7, what is the
size of B?

8. How many rows does B have if BC is a 3×4 matrix?

9. Let A =
[

2 5
−3 1

]
and B =

[
4 −5
3 k

]
. What value(s) of

k, if any, will make AB = BA?

10. Let A =
[

2 −3
−4 6

]
, B =

[
8 4
5 5

]
, and C =

[
5 −2
3 1

]
.

Verify that AB = AC and yet B �=C.

11. LetA=

 1 1 1

1 2 3
1 4 5


 andD=


 2 0 0

0 3 0
0 0 5


. Compute

AD and DA. Explain how the columns or rows of A change
when A is multiplied by D on the right or on the left. Find
a 3×3 matrix B, not the identity matrix or the zero matrix,
such that AB = BA.

12. Let A =
[

3 −6
−1 2

]
. Construct a 2×2 matrix B such that

AB is the zero matrix. Use two different nonzero columns for
B.

13. Let r1, . . . , rp be vectors in R
n, and let Q be an m×n ma-

trix. Write the matrix [Qr1 · · · Qrp ] as a product of two
matrices (neither of which is an identity matrix).

14. Let U be the 3×2 cost matrix described in Example 6 of Sec-
tion 1.8. The first column of U lists the costs per dollar of
output for manufacturing product B, and the second column
lists the costs per dollar of output for productC. (The costs are
categorized as materials, labor, and overhead.) Let q1 be a vec-
tor in R

2 that lists the output (measured in dollars) of products
B and C manufactured during the first quarter of the year, and
let q2,q3, and q4 be the analogous vectors that list the amounts
of products B and C manufactured in the second, third, and
fourth quarters, respectively. Give an economic description
of the data in the matrix UQ, where Q = [q1 q2 q3 q4].
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Exercises 15 and 16 concern arbitrary matrices A, B, and C for
which the indicated sums and products are defined. Mark each
statement True or False. Justify each answer.

15. a. If A and B are 2×2 with columns a1, a2, and b1, b2, re-
spectively, then AB = [ a1b1 a2b2 ].

b. Each column ofAB is a linear combination of the columns
of B using weights from the corresponding column of A.

c. AB + AC = A(B + C)

d. AT + BT = (A + B)T

e. The transpose of a product of matrices equals the product
of their transposes in the same order.

16. a. If A and B are 3×3 and B = [ b1 b2 b3 ], then AB=
[Ab1 + Ab2 + Ab3].

b. The second row of AB is the second row of A multiplied
on the right by B.

c. (AB)C = (AC)B

d. (AB)T = ATBT

e. The transpose of a sum of matrices equals the sum of their
transposes.

17. If A =
[

1 −2
−2 5

]
and AB =

[ −1 2 −1
6 −9 3

]
, determine

the first and second columns of B.

18. Suppose the first two columns, b1 and b2, ofB are equal. What
can you say about the columns ofAB (ifAB is defined)? Why?

19. Suppose the third column of B is the sum of the first two
columns. What can you say about the third column of AB?
Why?

20. Suppose the second column of B is all zeros. What can you
say about the second column of AB?

21. Suppose the last column of AB is entirely zero but B itself has
no column of zeros. What can you say about the columns of
A?

22. Show that if the columns of B are linearly dependent, then so
are the columns of AB.

23. Suppose CA = In (the n×n identity matrix). Show that the
equation Ax = 0 has only the trivial solution. Explain why A

cannot have more columns than rows.

24. Suppose AD = Im (the m×m identity matrix). Show that
for any b in R

m, the equation Ax = b has a solution. [Hint:
Think about the equation ADb = b.] Explain why A cannot
have more rows than columns.

25. Suppose A is an m×n matrix and there exist n×m matrices
C and D such that CA = In and AD = Im. Prove that m = n

and C = D. [Hint: Think about the product CAD.]

26. Suppose A is a 3×n matrix whose columns span R
3. Explain

how to construct an n×3 matrix D such that AD = I3.

In Exercises 27 and 28, view vectors in R
n as n×1 matrices. For

u and v in R
n, the matrix product uTv is a 1×1 matrix, called the

scalar product, or inner product, of u and v. It is usually writ-
ten as a single real number without brackets. The matrix product
uvT is an n×n matrix, called the outer product of u and v. The
products uTv and uvT will appear later in the text.

27. Let u =

 −2

3
−4


 and v =


 a

b

c


. Compute uTv, vTu, uvT , and

vuT .

28. If u and v are in R
n, how are uTv and vTu related? How are

uvT and vuT related?

29. Prove Theorem 2(b) and 2(c). Use the row–column rule. The
(i, j)-entry in A(B + C) can be written as

ai1(b1j + c1j ) + · · · + ain(bnj + cnj ) or
n∑

k=1

aik(bkj + ckj )

30. Prove Theorem 2(d). [Hint: The (i, j)-entry in (rA)B is
(rai1)b1j + · · · + (rain)bnj .]

31. Show that ImA = A when A is an m×n matrix. You can
assume Imx = x for all x in R

m.

32. Show that AIn = A when A is an m×n matrix. [Hint: Use
the (column) definition of AIn.]

33. Prove Theorem 3(d). [Hint: Consider the j th row of (AB)T .]

34. Give a formula for (ABx)T , where x is a vector and A and B

are matrices of appropriate sizes.

35. [M] Read the documentation for your matrix program, and
write the commands that will produce the following matrices
(without keying in each entry of the matrix).

a. A 5×6 matrix of zeros

b. A 3×5 matrix of ones

c. The 6×6 identity matrix

d. A 5×5 diagonal matrix, with diagonal entries 3, 5, 7, 2, 4

A useful way to test new ideas in matrix algebra, or to make con-
jectures, is to make calculations with matrices selected at random.
Checking a property for a few matrices does not prove that the
property holds in general, but it makes the property more believ-
able. Also, if the property is actually false, you may discover this
when you make a few calculations.

36. [M] Write the command(s) that will create a 6×4 matrix with
random entries. In what range of numbers do the entries lie?
Tell how to create a 3×3 matrix with random integer entries
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between −9 and 9. [Hint: If x is a random number such that
0 < x < 1, then −9.5 < 19(x − .5) < 9.5.]

37. [M] Construct a random 4×4 matrix A and test whether
(A + I )(A − I ) = A2 − I . The best way to do this is to com-
pute (A + I )(A − I ) − (A2 − I ) and verify that this differ-
ence is the zero matrix. Do this for three random matrices.
Then test (A + B)(A − B) = A2 − B2 the same way for three
pairs of random 4×4 matrices. Report your conclusions.

38. [M] Use at least three pairs of random 4×4 matrices
A and B to test the equalities (A + B)T = AT + BT and
(AB)T = ATBT . (See Exercise 37.) Report your conclusions.
[Note: Most matrix programs use A′ for AT .]

39. [M] Let

S =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




Compute Sk for k = 2, . . . , 6.

40. [M] Describe in words what happens when you compute A5,
A10, A20, and A30 for

A =

 1/6 1/2 1/3

1/2 1/4 1/4
1/3 1/4 5/12




S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Ax =
[

1 −3
−2 4

][
5
3

]
=

[ −4
2

]
. So (Ax)T = [ −4 2

]
. Also, xTAT =

[
5 3

][ 1 −2
−3 4

]
= [ −4 2

]
. The quantities (Ax)T and xTAT are equal, as

we expect from Theorem 3(d). Next,

xxT =
[

5
3

][
5 3

] =
[

25 15
15 9

]

xTx = [
5 3

][ 5
3

]
= [ 25 + 9 ] = 34

A 1×1 matrix such as xTx is usually written without the brackets. Finally, ATxT is
not defined, because xT does not have two rows to match the two columns of AT .

2. The fastest way to compute A2x is to compute A(Ax). The product Ax requires
16 multiplications, 4 for each entry, and A(Ax) requires 16 more. In contrast, the
product A2 requires 64 multiplications, 4 for each of the 16 entries in A2. After that,
A2x takes 16 more multiplications, for a total of 80.

2.2 THE INVERSE OF A MATRIX
Matrix algebra provides tools for manipulating matrix equations and creating various
useful formulas in ways similar to doing ordinary algebra with real numbers. This section
investigates the matrix analogue of the reciprocal, or multiplicative inverse, of a nonzero
number.

Recall that the multiplicative inverse of a number such as 5 is 1/5 or 5−1. This
inverse satisfies the equations

5−1 ·5 = 1 and 5·5−1 = 1
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The matrix generalization requires both equations and avoids the slanted-line notation
(for division) because matrix multiplication is not commutative. Furthermore, a full
generalization is possible only if the matrices involved are square.1

An n×n matrix A is said to be invertible if there is an n×n matrix C such that

CA = I and AC = I

where I = In, the n×n identity matrix. In this case, C is an inverse of A. In fact, C
is uniquely determined by A, because if B were another inverse of A, then B = BI=
B(AC) = (BA)C = IC = C. This unique inverse is denoted by A−1, so that

A−1A = I and AA−1 = I

A matrix that is not invertible is sometimes called a singular matrix, and an invertible
matrix is called a nonsingular matrix.

EXAMPLE 1 If A =
[

2 5
−3 −7

]
and C =

[ −7 −5
3 2

]
, then

AC =
[

2 5
−3 −7

][ −7 −5
3 2

]
=

[
1 0
0 1

]
and

CA =
[ −7 −5

3 2

][
2 5

−3 −7

]
=

[
1 0
0 1

]
Thus C = A−1.

Here is a simple formula for the inverse of a 2×2 matrix, along with a test to tell if
the inverse exists.

THEOREM 4
Let A =

[
a b

c d

]
. If ad − bc �= 0, then A is invertible and

A−1 = 1

ad − bc

[
d −b

−c a

]
If ad − bc = 0, then A is not invertible.

The simple proof of Theorem 4 is outlined in Exercises 25 and 26. The quantity
ad − bc is called the determinant of A, and we write

det A = ad − bc

Theorem 4 says that a 2×2 matrix A is invertible if and only if det A �= 0.

1One could say that an m×n matrix A is invertible if there exist n×m matrices C and D such that
CA = In and AD = Im. However, these equations imply that A is square and C=D. Thus A is invertible
as defined above. See Exercises 23–25 in Section 2.1.
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EXAMPLE 2 Find the inverse of A =
[

3 4
5 6

]
.

Solution Since det A = 3(6) − 4(5) = −2 �= 0, A is invertible, and

A−1 = 1

−2

[
6 −4

−5 3

]
=

[
6/(−2) −4/(−2)

−5/(−2) 3/(−2)

]
=

[ −3 2
5/2 −3/2

]

Invertible matrices are indispensable in linear algebra—mainly for algebraic calcu-
lations and formula derivations, as in the next theorem. There are also occasions when
an inverse matrix provides insight into a mathematical model of a real-life situation, as
in Example 3, below.

THEOREM 5 If A is an invertible n×n matrix, then for each b in R
n, the equation Ax = b has

the unique solution x = A−1b.

PROOF Take any b in R
n. A solution exists because if A−1b is substituted for x, then

Ax = A(A−1b) = (AA−1)b = Ib = b. So A−1b is a solution. To prove that the solution
is unique, show that if u is any solution, then u, in fact, must beA−1b. Indeed, ifAu = b,
we can multiply both sides by A−1 and obtain

A−1Au = A−1b, Iu = A−1b, and u = A−1b �

EXAMPLE 3 A horizontal elastic beam is supported at each end and is subjected to
forces at points 1, 2, 3, as shown in Fig. 1. Let f in R

3 list the forces at these points, and
let y in R

3 list the amounts of deflection (that is, movement) of the beam at the three
points. Using Hooke’s law from physics, it can be shown that

y = Df

where D is a flexibility matrix. Its inverse is called the stiffness matrix. Describe the
physical significance of the columns of D and D−1.













#1 #2 #3

y1 y2
y3

f3f2
f1

FIGURE 1 Deflection of an elastic beam.

Solution Write I3 = [e1 e2 e3] and observe that

D = DI3 = [De1 De2 De3]
Interpret the vector e1 = (1, 0, 0) as a unit force applied downward at point 1 on the
beam (with zero force at the other two points). Then De1, the first column of D, lists the
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beam deflections due to a unit force at point 1. Similar descriptions apply to the second
and third columns of D.

To study the stiffness matrix D−1, observe that the equation f = D−1y computes a
force vector f when a deflection vector y is given. Write

D−1 = D−1I3 = [D−1e1 D−1e2 D−1e3]
Now interpret e1 as a deflection vector. Then D−1e1 lists the forces that create the
deflection. That is, the first column of D−1 lists the forces that must be applied at the
three points to produce a unit deflection at point 1 and zero deflections at the other points.
Similarly, columns 2 and 3 of D−1 list the forces required to produce unit deflections at
points 2 and 3, respectively. In each column, one or two of the forces must be negative
(point upward) to produce a unit deflection at the desired point and zero deflections at
the other two points. If the flexibility is measured, for example, in inches of deflection
per pound of load, then the stiffness matrix entries are given in pounds of load per inch
of deflection.

The formula of Theorem 5 is seldom used to solve an equation Ax = b numerically
because row reduction of [A b ] is nearly always faster. (Row reduction is usually
more accurate, too, when computations involve rounding off numbers.) One possible
exception is the 2×2 case. In this case, mental computations to solve Ax = b are
sometimes easier using the formula for A−1, as in the next example.

EXAMPLE 4 Use the inverse of the matrix A in Example 2 to solve the system

3x1 + 4x2 = 3

5x1 + 6x2 = 7

Solution This system is equivalent to Ax = b, so

x = A−1b =
[ −3 2

5/2 −3/2

][
3
7

]
=

[
5

−3

]

The next theorem provides three useful facts about invertible matrices.

THEOREM 6 a. If A is an invertible matrix, then A−1 is invertible and

(A−1)−1 = A

b. If A and B are n×n invertible matrices, then so is AB, and the inverse of AB
is the product of the inverses of A and B in the reverse order. That is,

(AB)−1 = B−1A−1

c. IfA is an invertible matrix, then so isAT , and the inverse ofAT is the transpose
of A−1. That is,

(AT )−1 = (A−1)T
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PROOF To verify (a), we must find a matrix C such that

A−1C = I and CA−1 = I

However, we already know that these equations are satisfied withA in place ofC. Hence
A−1 is invertible, and A is its inverse. Next, to prove (b), we compute:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

A similar calculation shows that (B−1A−1)(AB) = I . For (c), use Theorem 3(d), read
from right to left, (A−1)T AT = (AA−1)T = I T = I . Similarly, AT (A−1)T = I T = I .
Hence AT is invertible, and its inverse is (A−1)T . �

The following generalization of Theorem 6(b) is needed later.

The product of n×n invertible matrices is invertible, and the inverse is the product
of their inverses in the reverse order.

There is an important connection between invertible matrices and row operations
that leads to a method for computing inverses. As we shall see, an invertible matrix A is
row equivalent to an identity matrix, and we can find A−1 by watching the row reduction
of A to I .

Elementary Matrices

An elementary matrix is one that is obtained by performing a single elementary row op-
eration on an identity matrix. The next example illustrates the three kinds of elementary
matrices.

EXAMPLE 5 Let

E1 =

 1 0 0

0 1 0
−4 0 1


 , E2 =


 0 1 0

1 0 0
0 0 1


 , E3 =


 1 0 0

0 1 0
0 0 5


 ,

A =

 a b c

d e f

g h i




Compute E1A, E2A, and E3A, and describe how these products can be obtained by
elementary row operations on A.

Solution We have

E1A =

 a b c

d e f

g − 4a h − 4b i − 4c


 , E2A =


 d e f

a b c

g h i


 ,
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E3A =

 a b c

d e f

5g 5h 5i




Addition of −4 times row 1 of A to row 3 produces E1A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E2A, and multiplication of
row 3 of A by 5 produces E3A.

Left-multiplication (that is, multiplication on the left) by E1 in Example 5 has the
same effect on any 3×n matrix. It adds −4 times row 1 to row 3. In particular, since
E1 ·I = E1, we see that E1 itself is produced by this same row operation on the identity.
Thus Example 5 illustrates the following general fact about elementary matrices. See
Exercises 27 and 28.

If an elementary row operation is performed on an m×n matrix A, the resulting
matrix can be written as EA, where the m×m matrix E is created by performing
the same row operation on Im.

Since row operations are reversible, as we showed in Section 1.1, elementary ma-
trices are invertible, for if E is produced by a row operation on I , then there is another
row operation of the same type that changes E back into I . Hence there is an elementary
matrix F such that FE = I . Since E and F correspond to reverse operations, EF = I ,
too.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix
of the same type that transforms E back into I .

EXAMPLE 6 Find the inverse of E1 =

 1 0 0

0 1 0
−4 0 1


.

Solution To transform E1 into I , add +4 times row 1 to row 3. The elementary matrix
that does this is

E−1
1 =


 1 0 0

0 1 0
+4 0 1




The following theorem provides the best way to “visualize” an invertible matrix,
and the theorem leads immediately to a method for finding the inverse of a matrix.

THEOREM 7 An n×n matrix A is invertible if and only if A is row equivalent to In, and in
this case, any sequence of elementary row operations that reduces A to In also
transforms In into A−1.
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PROOF Suppose that A is invertible. Then, since the equation Ax = b has a solution
for each b (Theorem 5), A has a pivot position in every row (Theorem 4 in Section 1.4).
Because A is square, the n pivot positions must be on the diagonal, which implies that
the reduced echelon form of A is In. That is, A ∼ In.

Now suppose, conversely, that A ∼ In. Then, since each step of the row reduction
of A corresponds to left-multiplication by an elementary matrix, there exist elementary
matrices E1, . . . , Ep such that

A ∼ E1A ∼ E2(E1A) ∼ · · · ∼ Ep(Ep−1 · · ·E1A) = In

That is,

Ep · · ·E1A = In (1)

Since the product Ep · · ·E1 of invertible matrices is invertible, (1) leads to

(Ep · · ·E1)
−1(Ep · · ·E1)A = (Ep · · ·E1)

−1In

A = (Ep · · ·E1)
−1

Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,

A−1 = [ (Ep · · ·E1)
−1 ]−1 = Ep · · ·E1

Then A−1 = Ep · · ·E1 ·In, which says that A−1 results from applying E1, . . . , Ep suc-
cessively to In. This is the same sequence in (1) that reduced A to In. �

An Algorithm for Finding A−1

If we place A and I side-by-side to form an augmented matrix [A I ], then row
operations on this matrix produce identical operations on A and on I . By Theorem 7,
either there are row operations that transform A to In and In to A−1 or else A is not
invertible.

ALGORITHM FOR FINDING A−1

Row reduce the augmented matrix [A I ]. If A is row equivalent to I , then
[A I ] is row equivalent to [ I A−1 ]. Otherwise, A does not have an inverse.

EXAMPLE 7 Find the inverse of the matrix A =

 0 1 2

1 0 3
4 −3 8


, if it exists.

Solution

[A I ] =

 0 1 2 1 0 0

1 0 3 0 1 0
4 −3 8 0 0 1


 ∼


 1 0 3 0 1 0

0 1 2 1 0 0
4 −3 8 0 0 1




∼

 1 0 3 0 1 0

0 1 2 1 0 0
0 −3 −4 0 −4 1


 ∼


 1 0 3 0 1 0

0 1 2 1 0 0
0 0 2 3 −4 1



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∼

 1 0 3 0 1 0

0 1 2 1 0 0
0 0 1 3/2 −2 1/2




∼

 1 0 0 −9/2 7 −3/2

0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2




Since A ∼ I , we conclude that A is invertible by Theorem 7, and

A−1 =

 −9/2 7 −3/2

−2 4 −1
3/2 −2 1/2




It is a good idea to check the final answer:

AA−1 =

 0 1 2

1 0 3
4 −3 8




 −9/2 7 −3/2

−2 4 −1
3/2 −2 1/2


 =


 1 0 0

0 1 0
0 0 1




It is not necessary to check that A−1A = I since A is invertible.

Another View of Matrix Inversion

Denote the columns of In by e1, . . . , en. Then row reduction of [A I ] to [ I A−1 ]
can be viewed as the simultaneous solution of the n systems

Ax = e1, Ax = e2, . . . , Ax = en (2)

where the “augmented columns” of these systems have all been placed next to A to
form [A e1 e2 · · · en ] = [A I ]. The equation AA−1 = I and the definition of
matrix multiplication show that the columns of A−1 are precisely the solutions of the
systems in (2). This observation is useful because some applied problems may require
finding only one or two columns of A−1. In this case, only the corresponding systems
in (2) need be solved.

CD Exploring Properties
of Inverses

NU M E R I CA L NOT E

In practical work, A−1 is seldom computed, unless the entries of A−1 are needed.
Computing bothA−1 andA−1b takes about three times as many arithmetic operations
as solving Ax = b by row reduction, and row reduction may be more accurate.

P R A C T I C E P R O B L E M S

1. Use determinants to determine which of the following matrices are invertible.

a.

[
3 −9
2 6

]
b.

[
4 −9
0 5

]
c.

[
6 −9

−4 6

]

2. Find the inverse of the matrix A =

 1 −2 −1

−1 5 6
5 −4 5


, if it exists.
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2.2 EXERCISES
Find the inverses of the matrices in Exercises 1–4.

1.
[

8 6
5 4

]
2.

[
3 2
7 4

]

3.
[

8 5
−7 −5

]
4.

[
3 −4
7 −8

]
5. Use the inverse found in Exercise 1 to solve the system

8x1 + 6x2 = 2

5x1 + 4x2 = −1

6. Use the inverse found in Exercise 3 to solve the system

8x1 + 5x2 = −9

−7x1 − 5x2 = 11

7. Let A =
[

1 2
5 12

]
, b1 =

[ −1
3

]
, b2 =

[
1

−5

]
, b3 =

[
2
6

]
,

and b4 =
[

3
5

]
.

a. Find A−1, and use it to solve the four equations
Ax = b1, Ax = b2, Ax = b3, Ax = b4

b. The four equations in part (a) can be solved by the same set
of row operations, since the coefficient matrix is the same
in each case. Solve the four equations in part (a) by row
reducing the augmented matrix [A b1 b2 b3 b4 ].

8. Use matrix algebra to show that if A is invertible and D sat-
isfies AD = I, then D = A−1.

In Exercises 9 and 10, mark each statement True or False. Justify
each answer.

9. a. In order for a matrix B to be the inverse of A, both equa-
tions AB = I and BA = I must be true.

b. If A and B are n×n and invertible, then A−1B−1 is the
inverse of AB.

c. If A =
[
a b

c d

]
and ab − cd �= 0, then A is invertible.

d. IfA is an invertible n×nmatrix, then the equationAx = b
is consistent for each b in R

n.

e. Each elementary matrix is invertible.

10. a. A product of invertible n×n matrices is invertible, and the
inverse of the product is the product of their inverses in
the same order.

b. If A is invertible, then the inverse of A−1 is A itself.

c. If A =
[
a b

c d

]
and ad = bc, then A is not invertible.

d. IfA can be row reduced to the identity matrix, thenAmust
be invertible.

e. If A is invertible, then elementary row operations that re-
duce A to the identity In also reduce A−1 to In.

11. Let A be an invertible n×n matrix, and let B be an n×p ma-
trix. Show that the equation AX = B has a unique solution
A−1B.

12. Let A be an invertible n×n matrix, and let B be an n×p ma-
trix. Explain why A−1B can be computed by row reduction:

If [A B] ∼ · · · ∼ [I X], then X = A−1B.

IfA is larger than 2×2, then row reduction of [A B] is much
faster than computing both A−1 and A−1B.

13. Suppose AB = AC, where B and C are n×p matrices and A

is invertible. Show that B = C. Is this true, in general, when
A is not invertible?

14. Suppose (B − C)D = 0, where B and C are m×n matrices
and D is invertible. Show that B = C.

15. Suppose A, B, and C are invertible n×n matrices. Show
that ABC is also invertible by producing a matrix D such that
(ABC)D = I and D(ABC) = I .

16. Suppose A and B are n×n, B is invertible, and AB is invert-
ible. Show that A is invertible. [Hint: Let C = AB, and solve
this equation for A.]

17. Solve the equation AB = BC for A, assuming that A, B, and
C are square and B is invertible.

18. SupposeP is invertible andA = PBP−1. Solve forB in terms
of A.

19. If A,B, and C are n×n invertible matrices, does the equation
C−1(A + X)B−1 = In have a solution, X? If so, find it.

20. Suppose A,B, and X are n×n matrices with A,X, and
A − AX invertible, and suppose

(A − AX)−1 = X−1B (3)

a. Explain why B is invertible.

b. Solve (3) for X. If you need to invert a matrix, explain
why that matrix is invertible.

21. Explain why the columns of an n×n matrix A are linearly
independent when A is invertible.

22. Explain why the columns of an n×n matrix A span R
n when

A is invertible. [Hint: Review Theorem 4 in Section 1.4.]
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23. Suppose A is n×n and the equation Ax = 0 has only the triv-
ial solution. Explain why A has n pivot columns and A is
row equivalent to In. By Theorem 7, this shows that A must
be invertible. (This exercise and Exercise 24 will be cited in
Section 2.3.)

24. Suppose A is n×n and the equation Ax = b has a solution for
each b in R

n. Explain why A must be invertible. [Hint: Is A
row equivalent to In?]

Exercises 25 and 26 prove Theorem 4 for A =
[
a b

c d

]
.

25. Show that if ad − bc = 0, then the equation Ax = 0 has more
than one solution. Why does this imply that A is not invert-
ible? [Hint: First, consider a = b = 0. Then, if a and b are

not both zero, consider the vector x =
[ −b

a

]
.]

26. Show that if ad − bc �= 0, the formula for A−1 works.

Exercises 27 and 28 prove special cases of the facts about elemen-
tary matrices stated in the box following Example 5. Here A is a
3×3 matrix and I = I3. (A general proof would require slightly
more notation.)

27. a. Use equation (1) from Section 2.1 to show that rowi (A)=
rowi (I )·A, for i = 1, 2, 3.

b. Show that if rows 1 and 2 of A are interchanged, then the
result may be written as EA, where E is an elementary
matrix formed by interchanging rows 1 and 2 of I.

c. Show that if row 3 of A is multiplied by 5, then the result
may be written as EA, where E is formed by multiplying
row 3 of I by 5.

28. Show that if row 3 ofA is replaced by row3(A) − 4· row1(A),

the result is EA, where E is formed from I by replacing
row3(I ) by row3(I ) − 4· row1(I ).

Find the inverses of the matrices in Exercises 29–32, if they exist.
Use the algorithm introduced in this section.

29.
[

1 2
4 7

]
30.

[
5 10
4 7

]

31.


 1 0 −2

−3 1 4
2 −3 4


 32.


 1 −2 1

4 −7 3
−2 6 −4




33. Use the algorithm from this section to find the inverses of
 1 0 0

1 1 0
1 1 1


 and




1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1


 . Let A be the

corresponding n×n matrix, and let B be its inverse. Guess
the form of B, and then prove that AB = I and BA = I.

34. Repeat the strategy of Exercise 33 to guess the inverse of

A =




1 0 0 · · · 0
1 2 0 0
1 2 3 0
...

. . .
...

1 2 3 · · · n


 . Prove that your guess is

correct.

35. Let A =

 −2 −7 −9

2 5 6
1 3 4


. Find the third column of A−1

without computing the other columns.

36. [M] Let A =

 −25 −9 −27

546 180 537
154 50 149


. Find the second and

third columns of A−1 without computing the first column.

37. Let A =

 1 2

1 3
1 5


 . Construct a 2×3 matrix C (by trial and

error) using only 1, −1, and 0 as entries, such that CA = I2.

Compute AC and note that AC �= I3.

38. Let A =
[

1 1 1 0
0 1 1 1

]
. Construct a 4×2 matrix D

using only 1 and 0 as entries, such that AD = I2. Is it possible
that CA = I4 for some 4×2 matrix C? Why or why not?

39. LetD =

 .005 .002 .001
.002 .004 .002
.001 .002 .005


 be a flexibility matrix, with

flexibility measured in inches per pound. Suppose that forces
of 30, 50, and 20 lb are applied at points 1, 2, and 3, re-
spectively, in Fig. 1 of Example 3. Find the corresponding
deflections.

40. [M] Compute the stiffness matrix D−1 for D in Exercise 39.
List the forces needed to produce a deflection of .04 in. at
point 3, with zero deflections at the other points.

41. [M] Let D =



.0040 .0030 .0010 .0005
.0030 .0050 .0030 .0010
.0010 .0030 .0050 .0030
.0005 .0010 .0030 .0040


 be a

flexibility matrix for an elastic beam with four points at which
force is applied. Units are centimeters per newton of force.
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Measurements at the four points show deflections of .08, .12,
.16, and .12 cm. Determine the forces at the four points.

f3

#1 #2 #3 #4

f1 f2
f4

.08 .12 .16 .12

Deflection of elastic beam in Exercises 41 and 42.

42. [M] With D as in Exercise 41, determine the forces that pro-
duce a deflection of .24 cm at the second point on the beam,
with zero deflections at the other three points. How is the
answer related to the entries in D−1? [Hint: First answer the
question when the deflection is 1 cm at the second point.]

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. a. det

[
3 −9
2 6

]
= 3·6 − (−9)·2 = 18 + 18 = 36. The determinant is nonzero, so

the matrix is invertible.

b. det

[
4 −9
0 5

]
= 4·5 − (−9)·0 = 20 �= 0. The matrix is invertible.

c. det

[
6 −9

−4 6

]
= 6·6 − (−9)(−4) = 36 − 36 = 0. The matrix is not invertible.

2. [A I ] ∼

 1 −2 −1 1 0 0

−1 5 6 0 1 0
5 −4 5 0 0 1




∼

 1 −2 −1 1 0 0

0 3 5 1 1 0
0 6 10 −5 0 1




∼

 1 −2 −1 1 0 0

0 3 5 1 1 0
0 0 0 −7 −2 1




We have obtained a matrix of the form [B D ], where B is square and has a row
of zeros. Further row operations will not transform B into I , so we stop. A does not
have an inverse.

2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES
This section provides a review of most of the concepts introduced in Chapter 1, in relation
to systems of n linear equations in n unknowns and to square matrices. The main result
is Theorem 8.
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THEOREM 8 The Invertible Matrix Theorem

Let A be a square n×n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the n×n identity matrix.

c. A has n pivot positions.

d. The equation Ax = 0 has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x �→ Ax is one-to-one.

g. The equation Ax = b has at least one solution for each b in R
n.

h. The columns of A span R
n.

i. The linear transformation x �→ Ax maps R
n onto R

n.

j. There is an n×n matrix C such that CA = I .

k. There is an n×n matrix D such that AD = I .

l. AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that
statement (j) is true, we say that (a) implies (j) and write (a) ⇒ (j). We will establish the
“circle” of implications shown in Fig. 1. If any one of these five statements is true, then
so are the others. Finally, we will link the remaining statements of the theorem to the
statements in this circle.

(c) (d)

( j)

(a)

(b)

FIGURE 1

PROOF If (a) is true, then A−1 works for C in (j), so (a) ⇒ (j). Next, (j) ⇒ (d) by Exer-
cise 23 in Section 2.1. (Turn back and read the exercise.) Also, (d) ⇒ (c) by Exercise
23 in Section 2.2. If A is square and has n pivot positions, then the pivots must lie on
the main diagonal, in which case, the reduced echelon form of A is In. Thus (c) ⇒ (b).
Also, (b) ⇒ (a) by Theorem 7 in Section 2.2. This completes the circle in Fig. 1.

Next, (a) ⇒ (k) because A−1 works for D. Also, (k) ⇒ (g) by Exercise 24 in Sec-
tion 2.1, and (g) ⇒ (a) by Exercise 24 in Section 2.2. So (k) and (g) are linked to the
circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in Section 1.4
and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g) to the circle.

Since (d) is linked to the circle, so are (e) and (f), because (d), (e), and (f) are
all equivalent for any matrix A. (See Section 1.7 and Theorem 12(b) in Section 1.9.)
Finally, (a) ⇒ (l) by Theorem 6(c) in Section 2.2, and (l) ⇒ (a) by the same theorem
with A and AT interchanged. This completes the proof. �

(g)

(k)

(h)

(a)

(l)(a)

(i)(g)

(e) (f )(d)

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equation Ax = b has a unique solution for each b in R

n.” This statement
certainly implies (b) and hence implies that A is invertible.
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The next fact follows from Theorem 8 and Exercise 8 in Section 2.2.

Let A and B be square matrices. If AB = I , then A and B are both invertible, with
B = A−1 and A = B−1.

The Invertible Matrix Theorem divides the set of all n×n matrices into two disjoint
classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
Each statement in the theorem describes a property of every n×n invertible matrix.
The negation of a statement in the theorem describes a property of every n×n singular
matrix. For instance, an n×n singular matrix is not row equivalent to In, does not have
n pivot positions, and has linearly dependent columns. Negations of other statements
are considered in the exercises.

EXAMPLE 1 Use the Invertible Matrix Theorem to decide if A is invertible:

A =

 1 0 −2

3 1 −2
−5 −1 9




Solution

A ∼

 1 0 −2

0 1 4
0 −1 −1


 ∼


 1 0 −2

0 1 4
0 0 3




So A has three pivot positions and hence is invertible, by the Invertible Matrix Theorem,
statement (c).

The power of the Invertible Matrix Theorem lies in the connections it providesSG Expanded Table
for the IMT 2–10 between so many important concepts, such as linear independence of columns of a

matrix A and the existence of solutions to equations of the form Ax = b. It should
be emphasized, however, that the Invertible Matrix Theorem applies only to square
matrices. For example, if the columns of a 4×3 matrix are linearly independent, we
cannot use the Invertible Matrix Theorem to conclude anything about the existence or
nonexistence of solutions to equations of the form Ax = b.

Invertible Linear Transformations

Recall from Section 2.1 that matrix multiplication corresponds to composition of linear
transformations. When a matrix A is invertible, the equation A−1Ax = x can be viewed
as a statement about linear transformations. See Fig. 2.

A linear transformation T : R
n → R

n is said to be invertible if there exists a func-
tion S : R

n → R
n such that

S(T (x)) = x for all x in R
n (1)

T (S(x)) = x for all x in R
n (2)

The next theorem shows that if such an S exists, it is unique and must be a linear
transformation. We call S the inverse of T and write it as T −1.
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Multiplication

by A

Multiplication

by A–1

Axx

FIGURE 2 A−1 transforms Ax back to x.

THEOREM 9 Let T : R
n → R

n be a linear transformation and let A be the standard matrix for
T . Then T is invertible if and only if A is an invertible matrix. In that case, the
linear transformation S given by S(x) = A−1x is the unique function satisfying
(1) and (2).

PROOF Suppose that T is invertible. Then (2) shows that T is onto R
n, for if b is in

R
n and x = S(b), then T (x) = T (S(b)) = b, so each b is in the range of T . Thus A is

invertible, by the Invertible Matrix Theorem, statement (i).
Conversely, suppose that A is invertible, and let S(x) = A−1x. Then, S is a linear

transformation, and S obviously satisfies (1) and (2). For instance,

S(T (x)) = S(Ax) = A−1(Ax) = x

Thus T is invertible. The proof that S is unique is outlined in Exercise 39. �

EXAMPLE 2 What can you say about a one-to-one linear transformation T from R
n

into R
n?

Solution The columns of the standard matrix A of T are linearly independent (by
Theorem 12 in Section 1.9). So A is invertible, by the Invertible Matrix Theorem, and
T maps R

n onto R
n. Also, T is invertible, by Theorem 9.

NU M E R I CA L NOT E S

In practical work, you might occasionally encounter a “nearly singular” or ill-
conditioned matrix—an invertible matrix that can become singular if some of its
entries are changed ever so slightly. In this case, row reduction may produce fewer
than n pivot positions, as a result of roundoff error. Also, roundoff error can some-
times make a singular matrix appear to be invertible.

Some matrix programs will compute a condition number for a square matrix.
The larger the condition number, the closer the matrix is to being singular. The
condition number of the identity matrix is 1. Asingular matrix has an infinite condition
number. In extreme cases, a matrix program may not be able to distinguish between
a singular matrix and an ill-conditioned matrix.

WEB

Exercises 41–45 show that matrix computations can produce substantial error
when a condition number is large.
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P R A C T I C E P R O B L E M S

1. Determine if A =

 2 3 4

2 3 4
2 3 4


 is invertible.

2. Suppose that for a certain n×n matrix A, statement (g) of the Invertible Matrix
Theorem is not true. What can you say about equations of the form Ax = b?

3. Suppose that A and B are n×n matrices and the equation ABx = 0 has a nontrivial
solution. What can you say about the matrix AB?

2.3 EXERCISES
Unless otherwise specified, assume that all matrices in these exer-
cises are n×n. Determine which of the matrices in Exercises 1–10
are invertible. Use as few calculations as possible. Justify your
answers.

1.
[

5 7
−3 −6

]
2.

[ −4 6
6 −9

]

3.


 5 0 0

−3 −7 0
8 5 −1


 4.


 −7 0 4

3 0 −1
2 0 9




5.


 0 3 −5

1 0 2
−4 −9 7


 6.


 1 −5 −4

0 3 4
−3 6 0




7.




−1 −3 0 1
3 5 8 −3

−2 −6 3 2
0 −1 2 1


 8.




1 3 7 4
0 5 9 6
0 0 2 8
0 0 0 10




9. [M]




4 0 −7 −7
−6 1 11 9

7 −5 10 19
−1 2 3 −1




10. [M]




5 3 1 7 9
6 4 2 8 −8
7 5 3 10 9
9 6 4 −9 −5
8 5 2 11 4




In Exercises 11 and 12, the matrices are all n×n. Each part of
the exercises is an implication of the form “If 〈 statement 1 〉,
then 〈 statement 2 〉.” Mark an implication as True if the truth of
〈 statement 2 〉 always follows whenever 〈 statement 1 〉 happens to
be true. An implication is False if there is an instance in which

〈 statement 2 〉 is false but 〈 statement 1 〉 is true. Justify each
answer.

11. a. If the equation Ax = 0 has only the trivial solution, then
A is row equivalent to the n×n identity matrix.

b. If the columns of A span R
n, then the columns are linearly

independent.

c. If A is an n×n matrix, then the equation Ax = b has at
least one solution for each b in R

n.

d. If the equation Ax = 0 has a nontrivial solution, then A

has fewer than n pivot positions.

e. If AT is not invertible, then A is not invertible.

12. a. If there is an n×n matrix D such that AD = I , then there
is also an n×n matrix C such that CA = I .

b. If the columns of A are linearly independent, then the
columns of A span R

n.

c. If the equation Ax = b has at least one solution for each b
in R

n, then the solution is unique for each b.

d. If the linear transformation x �→ Ax maps R
n into R

n, then
A has n pivot positions.

e. If there is a b in R
n such that the equationAx = b is incon-

sistent, then the transformation x �→ Ax is not one-to-one.

13. Anm×nupper triangular matrix is one whose entries below
the main diagonal are 0’s (as in Exercise 8). When is a square
upper triangular matrix invertible? Justify your answer.

14. Anm×n lower triangular matrix is one whose entries above
the main diagonal are 0’s (as in Exercise 3). When is a square
lower triangular matrix invertible? Justify your answer.

15. Can a square matrix with two identical columns be invertible?
Why or why not?
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16. Is it possible for a 5×5 matrix to be invertible when its
columns do not span R

5? Why or why not?

17. If A is invertible, then the columns of A−1 are linearly inde-
pendent. Explain why.

18. If C is 6×6 and the equation Cx = v is consistent for every v
in R

6, is it possible that for some v, the equation Cx = v has
more than one solution? Why or why not?

19. If the columns of a 7×7 matrix D are linearly independent,
what can you say about solutions of Dx = b? Why?

20. If n×n matrices E and F have the property that EF = I, then
E and F commute. Explain why.

21. If the equation Gx = y has more than one solution for some
y in R

n, can the columns of G span R
n? Why or why not?

22. If the equation Hx = c is inconsistent for some c in R
n, what

can you say about the equation Hx = 0? Why?

23. If an n×n matrix K cannot be row reduced to In, what can
you say about the columns of K? Why?

24. If L is n×n and the equation Lx = 0 has the trivial solution,
do the columns of L span R

n? Why?

25. Verify the boxed statement preceding Example 1.

26. Explain why the columns ofA2 span R
n whenever the columns

of A are linearly independent.

27. Show that ifAB is invertible, so isA. You cannot use Theorem
6(b), because you cannot assume that A and B are invertible.
[Hint: There is a matrix W such that ABW = I. Why?]

28. Show that if AB is invertible, so is B.

29. If A is an n×n matrix and the equation Ax = b has more than
one solution for some b, then the transformation x �→ Ax is
not one-to-one. What else can you say about this transforma-
tion? Justify your answer.

30. If A is an n×n matrix and the transformation x �→ Ax is
one-to-one, what else can you say about this transformation?
Justify your answer.

31. Suppose A is an n×n matrix with the property that the equa-
tionAx = b has at least one solution for each b in R

n. Without
using Theorems 5 or 8, explain why each equationAx = b has
in fact exactly one solution.

32. Suppose A is an n×n matrix with the property that the equa-
tion Ax = 0 has only the trivial solution. Without using the
Invertible Matrix Theorem, explain directly why the equation
Ax = b must have a solution for each b in R

n.

In Exercises 33 and 34, T is a linear transformation from R
2 into

R
2. Show that T is invertible and find a formula for T −1.

33. T (x1, x2) = (−5x1 + 9x2, 4x1 − 7x2)

34. T (x1, x2) = (6x1 − 8x2,−5x1 + 7x2)

35. Let T : R
n → R

n be an invertible linear transformation. Ex-
plain why T is both one-to-one and onto R

n. Use equations
(1) and (2). Then give a second explanation using one or more
theorems.

36. Let T be a linear transformation that maps R
n onto R

n. Show
that T −1 exists and maps R

n onto R
n. Is T −1 also one-to-one?

37. Suppose T and U are linear transformations from R
n to

R
n such that T (U(x)) = x for all x in R

n. Is it true that
U(T (x)) = x for all x in R

n? Why or why not?

38. Suppose a linear transformation T : R
n → R

n has the prop-
erty that T (u) = T (v) for some pair of distinct vectors u and
v in R

n. Can T map R
n onto R

n? Why or why not?

39. Let T : R
n → R

n be an invertible linear transformation, and
let S and U be functions from R

n into R
n such that S(T (x))=

x and U(T (x)) = x for all x in R
n. Show that U(v) = S(v)

for all v in R
n. This will show that T has a unique inverse,

as asserted in Theorem 9. [Hint: Given any v in R
n, we can

write v = T (x) for some x. Why? Compute S(v) and U(v).]

40. Suppose T and S satisfy the invertibility equations (1) and (2),
where T is a linear transformation. Show directly that S is a
linear transformation. [Hint: Given u, v in R

n, let x = S(u),
y = S(v). Then T (x) = u, T (y) = v. Why? Apply S to both
sides of the equation T (x) + T (y) = T (x + y). Also, consider
T (cx)= cT (x).]

41. [M] Suppose an experiment leads to the following system of
equations:

4.5x1 + 3.1x2 = 19.249

1.6x1 + 1.1x2 = 6.843
(3)

a. Solve system (3), and then solve system (4), below, in
which the data on the right have been rounded to two dec-
imal places. In each case, find the exact solution.

4.5x1 + 3.1x2 = 19.25

1.6x1 + 1.1x2 = 6.84
(4)

b. The entries in (4) differ from those in (3) by less than .05%.
Find the percentage error when using the solution of (4)
as an approximation for the solution of (3).

c. Use your matrix program to produce the condition number
of the coefficient matrix in (3).

Exercises 42–44 show how to use the condition number of a ma-
trix A to estimate the accuracy of a computed solution of Ax = b.
If the entries of A and b are accurate to about r significant digits
and if the condition number of A is approximately 10 k (with k

a positive integer), then the computed solution of Ax = b should
usually be accurate to at least r − k significant digits.
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42. [M] Find the condition number of the matrix A in Exercise
9. Construct a random vector x in R

4 and compute b = Ax.
Then use your matrix program to compute the solution x1 of
Ax = b. To how many digits do x and x1 agree? Find out the
number of digits your matrix program stores accurately, and
report how many digits of accuracy are lost when x1 is used
in place of the exact solution x.

43. [M] Repeat Exercise 42 for the matrix in Exercise 10.

44. [M] Solve an equation Ax = b for a suitable b to find the last
column of the inverse of the fifth-order Hilbert matrix

A =




1 1/2 1/3 1/4 1/5
1/2 1/3 1/4 1/5 1/6
1/3 1/4 1/5 1/6 1/7
1/4 1/5 1/6 1/7 1/8
1/5 1/6 1/7 1/8 1/9




How many digits in each entry of x do you expect to be cor-
rect? Explain. [Note: The exact solution is (630, −12600,
56700, −88200, 44100).]

45. [M] Some matrix programs, such as MATLAB, have a com-
mand to create Hilbert matrices of various sizes. If possible,
use an inverse command to compute the inverse of a twelfth-
order or larger Hilbert matrix, A. Compute AA−1. Report
what you find.

SG Mastering: Reviewing and Reflecting 2–13

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The columns of A are obviously linearly dependent because columns 2 and 3 are
multiples of column 1. Hence A cannot be invertible, by the Invertible Matrix
Theorem.

2. If statement (g) is not true, then the equation Ax = b is inconsistent for at least one
b in R

n.

3. Apply the Invertible Matrix Theorem to the matrix AB in place of A. Then statement
(d) becomes: ABx = 0 has only the trivial solution. This is not true. So AB is not
invertible.

2.4 PARTITIONED MATRICES
A key feature of our work with matrices has been the ability to regard a matrix A as a list
of column vectors rather than just a rectangular array of numbers. This point of view has
been so useful that we wish to consider other partitions of A, indicated by horizontal
and vertical dividing rules, as in Example 1 below. Partitioned matrices appear in most
modern applications of linear algebra because the notation highlights essential structures
in matrix analysis, as in the chapter introductory example on aircraft design. This section
provides an opportunity to review matrix algebra and use the Invertible Matrix Theorem.

EXAMPLE 1 The matrix

A =

 3 0 −1 5 9 −2

−5 2 4 0 −3 1

−8 −6 3 1 7 −4



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can also be written as the 2×3 partitioned (or block) matrix

A =
[
A11 A12 A13

A21 A22 A23

]
whose entries are the blocks (or submatrices)

A11 =
[

3 0 −1
−5 2 4

]
, A12 =

[
5 9
0 −3

]
, A13 =

[ −2
1

]
A21 = [ −8 −6 3

]
, A22 = [

1 7
]
, A23 = [ −4

]

EXAMPLE 2 When a matrix A appears in a mathematical model of a physical system
such as an electrical network, a transportation system, or a large corporation, it may
be natural to regard A as a partitioned matrix. For instance, if a microcomputer circuit
board consists mainly of three VLSI (very large-scale integrated) microchips, then the
matrix for the circuit board might have the general form

A =



A11 A12 A13

A21 A22 A23

A31 A32 A33




The submatrices on the “diagonal” of A—namely, A11, A22, and A33—concern the three
VLSI chips, while the other submatrices depend on the interconnections among those
microchips.

Addition and Scalar Multiplication

If matrices A and B are the same size and are partitioned in exactly the same way,
then it is natural to make the same partition of the ordinary matrix sum A + B. In this
case, each block of A + B is the (matrix) sum of the corresponding blocks of A and B.
Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices

Partitioned matrices can be multiplied by the usual row–column rule as if the block
entries were scalars, provided that for a product AB, the column partition of A matches
the row partition of B.

EXAMPLE 3 Let

A =

 2 −3 1 0 −4

1 5 −2 3 −1

0 −4 −2 7 −1


 =

[
A11 A12

A21 A22

]
, B =




6 4
−2 1
−3 7

−1 3
5 2


 =

[
B1

B2

]
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The 5 columns ofA are partitioned into a set of 3 columns and then a set of 2 columns.
The 5 rows of B are partitioned in the same way—into a set of 3 rows and then a set of 2
rows. We say that the partitions of A and B are conformable for block multiplication.
It can be shown that the ordinary product AB can be written as

AB =
[
A11 A12

A21 A22

][
B1

B2

]
=

[
A11B1 + A12B2

A21B1 + A22B2

]
=


 −5 4

−6 2

2 1




It is important that each smaller product in the expression for AB is written with
the submatrix from A on the left, since matrix multiplication is not commutative. For
instance,

A11B1 =
[

2 −3 1
1 5 −2

] 6 4
−2 1
−3 7


 =

[
15 12

2 −5

]

A12B2 =
[

0 −4
3 −1

][ −1 3
5 2

]
=

[ −20 −8
−8 7

]
Hence the top block in AB is

A11B1 + A12B2 =
[

15 12
2 −5

]
+

[ −20 −8
−8 7

]
=

[ −5 4
−6 2

]

The row–column rule for multiplication of block matrices provides the most general
way to regard the product of two matrices. Each of the following views of a product
has already been described using simple partitions of matrices: (1) the definition of Ax
using the columns of A, (2) the column definition of AB, (3) the row–column rule for
computing AB, and (4) the rows of AB as products of the rows of A and the matrix B.
A fifth view of AB, again using partitions, follows in Theorem 10 below.

The calculations in the next example prepare the way for Theorem 10. Here colk(A)
is the kth column of A, and rowk(B) is the kth row of B.

EXAMPLE 4 Let A =
[ −3 1 2

1 −4 5

]
and B =


 a b

c d

e f


. Verify that

AB = col1(A) row1(B) + col2(A) row2(B) + col3(A) row3(B)

Solution Each term above is an outer product. (See Exercises 27 and 28 in Section 2.1.)
By the row–column rule for computing a matrix product,

col1(A) row1(B) =
[ −3

1

] [
a b

] =
[ −3a −3b

a b

]

col2(A) row2(B) =
[

1
−4

] [
c d

] =
[

c d

−4c −4d

]

col3(A) row3(B) =
[

2
5

] [
e f

] =
[

2e 2f
5e 5f

]
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Thus
3∑

k=1

colk(A) rowk(B) =
[ −3a + c + 2e −3b + d + 2f
a − 4c + 5e b − 4d + 5f

]
This matrix is obviously AB. Notice that the (1, 1)-entry in AB is the sum of the (1, 1)-
entries in the three outer products, the (1, 2)-entry in AB is the sum of the (1, 2)-entries
in the three outer products, and so on.

THEOREM 10 Column–Row Expansion of AB

If A is m×n and B is n×p, then

AB = [ col1(A) col2(A) · · · coln(A) ]




row1(B)

row2(B)
...

rown(B)




= col1(A) row1(B) + · · · + coln(A) rown(B)

(1)

PROOF For each row index i and column index j , the (i, j)-entry in colk(A) rowk(B)

is the product of aik from colk(A) and bkj from rowk(B). Hence the (i, j)-entry in the
sum shown in (1) is

ai1b1j + ai2b2j + · · · + ainbnj
(k = 1) (k = 2) (k = n)

This sum is also the (i, j)-entry in AB, by the row–column rule. �

Inverses of Partitioned Matrices

The next example illustrates calculations involving inverses and partitioned matrices.

EXAMPLE 5 A matrix of the form

A =
[
A11 A12

0 A22

]
is said to be block upper triangular. Assume that A11 is p×p, A22 is q×q, and A is
invertible. Find a formula for A−1.

Solution Denote A−1 by B and partition B so that[
A11 A12

0 A22

][
B11 B12

B21 B22

]
=

[
Ip 0
0 Iq

]
(2)

This matrix equation provides four equations that will lead to the unknown blocks
B11, . . . , B22. Compute the product on the left side of (2), and equate each entry with
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the corresponding block in the identity matrix on the right. That is, set

A11B11 + A12B21 = Ip (3)

A11B12 + A12B22 = 0 (4)

A22B21 = 0 (5)

A22B22 = Iq (6)

By itself, (6) does not say that A22 is invertible, because we do not yet know that
B22A22 = Iq . But, using the Invertible Matrix Theorem and the fact that A22 is square,
we can conclude that A22 is invertible and B22 = A−1

22 . Now we can use (5) to find

B21 = A−1
22 0 = 0

so that (3) simplifies to
A11B11 + 0 = Ip

This shows that A11 is invertible and B11 = A−1
11 . Finally, from (4),

A11B12 = −A12B22 = −A12A
−1
22 and B12 = −A−1

11 A12A
−1
22

Thus

A−1 =
[
A11 A12

0 A22

]−1

=
[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]

A block diagonal matrix is a partitioned matrix with zero blocks off the main
diagonal (of blocks). Such a matrix is invertible if and only if each block on the diagonal
is invertible. See Exercises 13 and 14.

NU M E R I CA L NOT E S

1. When matrices are too large to fit in a computer’s high-speed memory, parti-
tioning permits the computer to work with only two or three submatrices at a
time. For instance, one linear programming research team simplified a prob-
lem by partitioning the matrix into 837 rows and 51 columns. The problem’s
solution took about 4 minutes on a Cray supercomputer.1

2. Some high-speed computers, particularly those with vector pipeline architec-
ture, perform matrix calculations more efficiently when the algorithms use
partitioned matrices.2

3. Professional software for high-performance numerical linear algebra, such as
LAPACK, makes intensive use of partitioned matrix calculations.

1The solution time doesn’t sound too impressive until you learn that each of the 51 block columns con-
tained about 250,000 individual columns. The original problem had 837 equations and over 12,750,000
variables! Nearly 100 million of the more than 10 billion entries in the matrix were nonzero. See Robert
E. Bixby et al., “Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and
Simplex Methods,” Operations Research, 40, no. 5 (1992): 885–897.
2The importance of block matrix algorithms for computer calculations is described in Matrix Computa-
tions, 3rd ed., by Gene H. Golub and Charles F. van Loan (Baltimore: Johns Hopkins University Press,
1996).
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The exercises that follow give practice with matrix algebra and illustrate typical
calculations found in applications.

P R A C T I C E P R O B L E M S

1. Show that

[
I 0
A I

]
is invertible and find its inverse.

2. Compute XTX, when X is partitioned as
[
X1 X2

]
.

2.4 EXERCISES
In Exercises 1–9, assume that the matrices are partitioned con-
formably for block multiplication. Compute the products shown
in Exercises 1–4.

1.
[
I 0
E I

][
A B

C D

]
2.

[
E 0
0 F

][
A B

C D

]

3.
[

0 I

I 0

][
W X

Y Z

]
4.

[
I 0

−X I

][
A B

C D

]
In Exercises 5–8, find formulas for X, Y, and Z in terms of A,B,
and C, and justify your calculations. In some cases, you may need
to make assumptions about the size of a matrix in order to produce
a formula. [Hint: Compute the product on the left, and set it equal
to the right side.]

5.
[
A B

C 0

][
I 0
X Y

]
=

[
0 I

Z 0

]

6.
[
X 0
Y Z

][
A 0
B C

]
=

[
I 0
0 I

]

7.
[
X 0 0
Y 0 I

] A Z

0 0
B I


 =

[
I 0
0 I

]

8.
[
A B

0 I

][
X Y Z

0 0 I

]
=

[
I 0 0
0 0 I

]
9. Suppose A11 is an invertible matrix. Find matrices X and

Y such that the product below has the form indicated. Also,
compute B22. [Hint: Compute the product on the left, and set
it equal to the right side.]
 I 0 0
X I 0
Y 0 I




A11 A12

A21 A22

A31 A32


 =


B11 B12

0 B22

0 B32




10. The inverse of


 I 0 0
C I 0
A B I


 is


 I 0 0
Z I 0
X Y I


. Find

X, Y , and Z.

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11. a. If A = [A1 A2 ] and B = [B1 B2 ], with A1 and A2

the same sizes as B1 and B2, respectively, then A + B=
[A1 + B1 A2 + B2 ].

b. If A =
[
A11 A12

A21 A22

]
and B =

[
B1

B2

]
, then the partitions

of A and B are conformable for block multiplication.

12. a. The definition of the matrix–vector productAx is a special
case of block multiplication.

b. If A1, A2, B1, and B2 are n×n matrices, A =
[
A1

A2

]
, and

B = [B1 B2 ], then the product BA is defined, but AB is
not.

13. Let A =
[
B 0
0 C

]
, where B and C are square. Show that

A is invertible if and only if both B and C are invertible.

14. Show that the block upper triangular matrix A in Example 5 is
invertible if and only if bothA11 andA22 are invertible. [Hint:
If A11 and A22 are invertible, the formula for A−1 given in Ex-
ample 5 actually works as the inverse of A.] This fact about
A is an important part of several computer algorithms that es-
timate eigenvalues of matrices. Eigenvalues are discussed in
Chapter 5.

15. Suppose A11 is invertible. Find X and Y such that[
A11 A12

A21 A22

]
=

[
I 0
X I

][
A11 0
0 S

][
I Y

0 I

]
(7)

where S = A22 − A21A
−1
11 A12. The matrix S is called the

Schur complement of A11. Likewise, if A22 is invertible,
the matrix A11 − A12A

−1
22 A21 is called the Schur complement

of A22. Such expressions occur frequently in the theory of
systems engineering, and elsewhere.
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16. Suppose the block matrix A on the left side of (7) is invertible
and A11 is invertible. Show that the Schur complement S of
A11 is invertible. [Hint: The outside factors on the right side
of (7) are always invertible. Verify this.] When A and A11

are both invertible, (7) leads to a formula for A−1, using S−1,
A−1

11 , and the other entries in A.

17. When a deep space probe is launched, corrections may be nec-
essary to place the probe on a precisely calculated trajectory.
Radio telemetry provides a stream of vectors, x1, . . . , xk , giv-
ing information at different times about how the probe’s posi-
tion compares with its planned trajectory. LetXk be the matrix
[ x1 · · · xk ]. The matrix Gk = XkX

T
k is computed as the

radar data are analyzed. When xk+1 arrives, a new Gk+1 must
be computed. Since the data vectors arrive at high speed, the
computational burden could be severe. But partitioned matrix
multiplication helps tremendously. Compute the column–row
expansions of Gk and Gk+1, and describe what must be com-
puted in order to update Gk to form Gk+1.

The probe Galileo was launched October 18, 1989,
and arrived near Jupiter in early December 1995.

18. Let X be an m×n data matrix such that XTX is invertible, and
let M = Im − X(XTX)−1XT . Add a column x0 to the data and
form

W = [X x0]
Compute WTW . The (1, 1)-entry is XTX. Show that the
Schur complement (Exercise 15) of XTX can be written in the
form xT

0Mx0. It can be shown that the quantity (xT
0Mx0)

−1 is
the (2, 2)-entry in (WTW)−1. This entry has a useful statisti-
cal interpretation, under appropriate hypotheses.

In the study of engineering control of physical systems, a standard
set of differential equations is transformed by Laplace transforms
into the following system of linear equations:[
A − sIn B

C Im

][
x
u

]
=

[
0
y

]
(8)

where A is n×n, B is n×m, C is m×n, and s is a variable. The
vector u in R

m is the “input” to the system, y in R
m is the “output,”

and x in R
n is the “state” vector. (Actually, the vectors x, u, and

y are functions of s, but we suppress this fact because it does not
affect the algebraic calculations in Exercises 19 and 20.)

19. Assume A − sIn is invertible and view (8) as a system of two
matrix equations. Solve the top equation for x and substitute
into the bottom equation. The result is an equation of the form
W(s)u = y, where W(s) is a matrix that depends on s. W(s)

is called the transfer function of the system because it trans-
forms the input u into the output y. Find W(s) and describe
how it is related to the partitioned system matrix on the left
side of (8). See Exercise 15.

20. Suppose the transfer functionW(s) in Exercise 19 is invertible
for some s. It can be shown that the inverse transfer function
W(s)−1, which transforms outputs into inputs, is the Schur
complement of A − BC − sIn for the matrix below. Find this
Schur complement. See Exercise 15.[
A − BC − sIn B

−C Im

]
21. a. Verify that A2 = I when A =

[
1 0
3 −1

]
.

b. Use partitioned matrices to show that M2 = I when

M =




1 0 0 0
3 −1 0 0
1 0 −1 0
0 1 −3 1




22. Generalize the idea of Exercise 21(a) [not 21(b)] by construct-

ing a 5×5 matrix M =
[
A 0
C D

]
such that M2 = I. Make

C a nonzero 2×3 matrix. Show that your construction works.

23. Use partitioned matrices to prove by induction that the prod-
uct of two lower triangular matrices is also lower triangular.
[Hint: A (k + 1)×(k + 1)matrixA1 can be written in the form
below, where a is a scalar, v is in R

k , and A is a k×k lower
triangular matrix. See the Study Guide for help with induc-
tion.]

A1 =
[
a 0T

v A

]
SG

The Principle of
Induction 2–20
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24. Use partitioned matrices to prove by induction that for
n = 2, 3, . . . , the n×n matrix A shown below is invertible
and B is its inverse.

A =




1 0 0 · · · 0
1 1 0 0
1 1 1 0
...

. . .

1 1 1 · · · 1


 ,

B =




1 0 0 · · · 0
−1 1 0 0

0 −1 1 0
...

. . .
. . .

0 . . . −1 1




For the induction step, assume A and B are (k + 1)×(k + 1)
matrices, and partition A and B in a form similar to that dis-
played in Exercise 23.

25. Without using row reduction, find the inverse of

A =




1 2 0 0 0
3 5 0 0 0
0 0 2 0 0
0 0 0 7 8
0 0 0 5 6




26. [M] For block operations, it may be necessary to access or
enter submatrices of a large matrix. Describe the functions or

commands of your matrix program that accomplish the fol-
lowing tasks. Suppose A is a 20×30 matrix.

a. Display the submatrix ofA from rows 15 to 20 and columns
5 to 10.

b. Insert a 5×10 matrix B into A, beginning at row 10 and
column 20.

c. Create a 50×50 matrix of the form B =
[
A 0
0 AT

]
.

[Note: It may not be necessary to specify the zero blocks
in B.]

27. [M] Suppose memory or size restrictions prevent your ma-
trix program from working with matrices having more than
32 rows and 32 columns, and suppose some project involves
50×50 matrices A and B. Describe the commands or oper-
ations of your matrix program that accomplish the following
tasks.

a. Compute A + B.

b. Compute AB.

c. Solve Ax = b for some vector b in R
50, assuming that A

can be partitioned into a 2×2 block matrix [Aij ], with
A11 an invertible 20×20 matrix, A22 an invertible 30×30
matrix, and A12 a zero matrix. [Hint: Describe appro-
priate smaller systems to solve, without using any matrix
inverses.]

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. If

[
I 0
A I

]
is invertible, its inverse has the form

[
W X

Y Z

]
. We compute

[
I 0
A I

][
W X

Y Z

]
=

[
W X

AW + Y AX + Z

]
SoW , X, Y , Z must satisfyW = I ,X = 0,AW + Y = 0, andAX + Z = I . It follows
that Y = −A and Z = I . Hence[

I 0
A I

][
I 0

−A I

]
=

[
I 0
0 I

]
The product in the reverse order is also the identity, so the block matrix is invert-

ible, and its inverse is

[
I 0

−A I

]
. (You could also appeal to the Invertible Matrix

Theorem.)
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2. XTX =
[
XT

1

XT
2

][
X1 X2

] =
[
XT

1 X1 XT
1 X2

XT
2 X1 XT

2 X2

]
. The partitions of XT and X are

automatically conformable for block multiplication because the columns of XT are
the rows of X. This partition of XTX is used in several computer algorithms for
matrix computations.

2.5 MATRIX FACTORIZATIONS
A factorization of a matrix A is an equation that expresses A as a product of two or more
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effect of two or more linear transformations into a single matrix), matrix factorization
is an analysis of data. In the language of computer science, the expression of A as a
product amounts to a preprocessing of the data in A, organizing that data into two or
more parts whose structures are more useful in some way, perhaps more accessible for
computation.

Matrix factorizations and, later, factorizations of linear transformations will appear
at a number of key points throughout the text. This section focuses on a factorization that
lies at the heart of several important computer programs widely used in applications, such
as the airflow problem described in the chapter introduction. Several other factorizations,
to be studied later, are introduced in the exercises.

The LU Factorization

The LU factorization, described below, is motivated by the fairly common industrial
and business problem of solving a sequence of equations, all with the same coefficient
matrix:

Ax = b1, Ax = b2, . . . , Ax = bp (1)

See Exercise 32, for example. Also see Section 5.8, where the inverse power method is
used to estimate eigenvalues of a matrix by solving equations like those in (1), one at a
time.

When A is invertible, one could compute A−1 and then compute A−1b1, A−1b2, and
so on. However, it is more efficient to solve the first equation in (1) by row reduction and
obtain an LU factorization of A at the same time. Thereafter, the remaining equations
in (1) are solved with the LU factorization.

At first, assume that A is an m×n matrix that can be row reduced to echelon form,
without row interchanges. (Later, we will treat the general case.) Then A can be written
in the formA = LU , whereL is anm×m lower triangular matrix with 1’s on the diagonal
and U is an m×n echelon form of A. For instance, see Fig. 1. Such a factorization is
called an LU factorization of A. The matrix L is invertible and is called a unit lower
triangular matrix.
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A = 

L U

1
*
*
*

0
1
*
*

0
0
1
*

0
0
0
1

0
0
0

*

0
0

*
*
0
0

*
*
*
0

*
*

0

FIGURE 1 An LU factorization.

Before studying how to constructL andU , we should look at why they are so useful.
When A = LU , the equation Ax = b can be written as L(Ux) = b. Writing y for Ux, we
can find x by solving the pair of equations

Ly = b
Ux = y

(2)

First solve Ly = b for y, and then solve Ux = y for x. See Fig. 2. Each equation is easy
to solve because L and U are triangular.

x

Multiplication

by A

b

Multiplication
by L

Multiplication
by U

y

FIGURE 2 Factorization of the mapping x �→Ax.

EXAMPLE 1 It can be verified that

A =




3 −7 −2 2
−3 5 1 0

6 −4 0 −5
−9 5 −5 12


 =




1 0 0 0
−1 1 0 0

2 −5 1 0
−3 8 3 1






3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1


 = LU

Use this LU factorization of A to solve Ax = b, where b =




−9
5
7

11


.

Solution The solution ofLy = b needs only 6 multiplications and 6 additions, because
the arithmetic takes place only in column 5. (The zeros below each pivot inL are created
automatically by the choice of row operations.)
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[
L b

] =




1 0 0 0 −9
−1 1 0 0 5

2 −5 1 0 7
−3 8 3 1 11


 ∼




1 0 0 0 −9
0 1 0 0 −4
0 0 1 0 5
0 0 0 1 1


 = [

I y
]

Then, for Ux = y, the “backward” phase of row reduction requires 4 divisions, 6 mul-

tiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U y ]
requires 1 division in row 4 and 3 multiplication–addition pairs to add multiples of row 4
to the rows above.)

[
U y

]=




3 −7 −2 2 −9
0 −2 −1 2 −4
0 0 −1 1 5
0 0 0 −1 1


 ∼




1 0 0 0 3
0 1 0 0 4
0 0 1 0 −6
0 0 0 1 −1


, x =




3
4

−6
−1




To find x requires 28 arithmetic operations, or “flops” (floating point operations),
excluding the cost of finding L and U . In contrast, row reduction of [A b ] to [ I x ]
takes 62 operations.

The computational efficiency of the LU factorization depends on knowing L and U .
The next algorithm shows that the row reduction of A to an echelon form U amounts to
an LU factorization because it produces L with essentially no extra work. After the first
row reduction, L and U are available for solving additional equations whose coefficient
matrix is A.

An LU Factorization Algorithm

Suppose A can be reduced to an echelon form U using only row replacements that add a
multiple of one row to another row below it. In this case, there exist unit lower triangular
elementary matrices E1, . . . , Ep such that

Ep · · ·E1A = U (3)

Then

A = (Ep · · ·E1)
−1U = LU

where

L = (Ep · · ·E1)
−1 (4)

It can be shown that products and inverses of unit lower triangular matrices are also unit

lower triangular. (For instance, see Exercise 19.) Thus L is unit lower triangular.
Note that the row operations in (3), which reduce A to U , also reduce the L in (4)

to I , because Ep · · ·E1L = (Ep · · ·E1)(Ep · · ·E1)
−1 = I . This observation is the key

to constructing L.
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ALGORITHM FOR AN LU FACTORIZATION
1. Reduce A to an echelon form U by a sequence of row replacement operations,

if possible.

2. Place entries in L such that the same sequence of row operations reduces L
to I .

Step 1 is not always possible, but when it is, the argument above shows that an LU
factorization exists. Example 2 will show how to implement step 2. By construction, L
will satisfy

(Ep · · ·E1)L = I

using the same E1, . . . , Ep as in (3). Thus L will be invertible, by the Invertible Matrix
Theorem, with (Ep · · ·E1) = L−1. From (3), L−1A = U , and A = LU . So step 2 will
produce an acceptable L.

EXAMPLE 2 Find an LU factorization of

A =




2 4 −1 5 −2
−4 −5 3 −8 1

2 −5 −4 1 8
−6 0 7 −3 1




Solution Since A has four rows, L should be 4×4. The first column of L is the first
column of A divided by the top pivot entry:

L =




1 0 0 0
−2 1 0 0

1 1 0
−3 1




Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. We want this same
correspondence of row operations to hold for the rest of L, so we watch a row reduction
of A to an echelon form U :

A =




2 4 −1 5 −2
−4 −5 3 −8 1

2 −5 −4 1 8
−6 0 7 −3 1


 ∼




2 4 −1 5 −2
0 3 1 2 −3
0 − 9 −3 −4 10
0 12 4 12 −5


 = A1 (5)

∼ A2 =




2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 4 7


 ∼




2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 0 5


 = U
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The highlighted entries above determine the row reduction of A to U . At each pivot
column, divide the highlighted entries by the pivot and place the result into L:


2

−4
2

−6




 3

−9
12


[

2
4

][
5

]
÷2 ÷3 ÷2 ÷5
↓ ↓ ↓ ↓


1

−2 1
1 −3 1

−3 4 2 1


 , and L =




1 0 0 0
−2 1 0 0

1 −3 1 0
−3 4 2 1




An easy calculation verifies that this L and U satisfy LU = A.

In practical work, row interchanges are nearly always needed, because partial piv-
oting is used for high accuracy. (Recall that this procedure selects, among the possible
choices for a pivot, an entry in the column having the largest absolute value.) To handle
row interchanges, the LU factorization above can be modified easily to produce an L

that is permuted lower triangular, in the sense that a rearrangement (called a permu-
tation) of the rows of L can make L (unit) lower triangular. The resulting permuted
LU factorization solves Ax = b in the same way as before, except that the reduction of
[L b ] to [ I y ] follows the order of the pivots in L from left to right, starting with
the pivot in the first column. A reference to an “LU factorization” usually includes the
possibility that L might be permuted lower triangular. For details, see the Study Guide.

SG Permuted LU
Factorizations 2–24

CD Floating Point
Operations

NU M E R I CA L NOT E S

The following operation counts apply to an n×n dense matrix A (with most entries
nonzero) for n moderately large, say, n ≥ 30.1

1. Computing an LU factorization of A takes about 2n3/3 flops (about the same
as row reducing [A b ]), whereas finding A−1 requires about 2n3 flops.

2. Solving Ly = b and Ux = y requires about 2n2 flops, because any n×n trian-
gular system can be solved in about n2 flops.

3. Multiplication of b by A−1 also requires about 2n2 flops, but the result may not
be as accurate as that obtained from L and U (because of roundoff error when
computing both A−1 and A−1b).

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas A−1 is likely to be dense. In this case, a solution of Ax = b with an
LU factorization is much faster than using A−1. See Exercise 31.

1See Section 3.8 in Applied Linear Algebra, 3rd ed., by Ben Noble and James W. Daniel (Englewood
Cliffs, NJ: Prentice-Hall, 1988). Recall that for our purposes, a flop is +, −, ×, or ÷.
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A Matrix Factorization in Electrical Engineering

Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

Suppose the box in Fig. 3 represents some sort of electric circuit, with an input

and output. Record the input voltage and current by

[
v1

i1

]
(with voltage v in volts and

current i in amps), and record the output voltage and current by

[
v2

i2

]
. Frequently, the

transformation

[
v1

i1

]
�→

[
v2

i2

]
is linear. That is, there is a matrix A, called the transfer

matrix, such that [
v2

i2

]
= A

[
v1

i1

]

i1 i2

electric
circuit

input
terminals

output
terminalsv1 v2

FIGURE 3 A circuit with input and output
terminals.

Figure 4 shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next
circuit. The left circuit in Fig. 4 is called a series circuit, with resistance R1 (in ohms).

i1

R1
v1

i2 i2

v2 R2

i3

v3

A series circuit A shunt circuit

FIGURE 4 A ladder network.

The right circuit in Fig. 4 is a shunt circuit, with resistance R2. Using Ohm’s law and
Kirchhoff’s laws, one can show that the transfer matrices of the series and shunt circuits,
respectively, are [

1 −R1

0 1

]
and

[
1 0

−1/R2 1

]
Transfer matrix Transfer matrix
of series circuit of shunt circuit
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EXAMPLE 3

a. Compute the transfer matrix of the ladder network in Fig. 4.

b. Design a ladder network whose transfer matrix is

[
1 −8

−.5 5

]
.

Solution

a. Let A1 and A2 be the transfer matrices of the series and shunt circuits, respectively.
Then an input vector x is transformed first intoA1x and then intoA2(A1x). The series
connection of the circuits corresponds to composition of linear transformations, and
the transfer matrix of the ladder network is (note the order)

A2A1 =
[

1 0
−1/R2 1

][
1 −R1

0 1

]
=

[
1 −R1

−1/R2 1 + R1/R2

]
(6)

b. We seek to factor the matrix

[
1 −8

−.5 5

]
into the product of transfer matrices, as in

(6). So we look for R1 and R2 in Fig. 4 to satisfy[
1 −R1

−1/R2 1 + R1/R2

]
=

[
1 −8

−.5 5

]
From the (1, 2)-entries, R1 = 8 ohms, and from the (2, 1)-entries, 1/R2 = .5 ohm
and R2 = 1/.5 = 2 ohms. With these values, the network in Fig. 4 has the desired
transfer matrix.

A network transfer matrix summarizes the input–output behavior (the design speci-
fications) of the network without reference to the interior circuits. To physically build a
network with specified properties, an engineer first determines if such a network can be
constructed (or realized ). Then the engineer tries to factor the transfer matrix into ma-
trices corresponding to smaller circuits that perhaps are already manufactured and ready
for assembly. In the common case of alternating current, the entries in the transfer matrix
are usually rational complex-valued functions. (See Exercises 19 and 20 in Section 2.4
and Example 2 in Section 3.3.) A standard problem is to find a minimal realization that
uses the smallest number of electrical components.

P R A C T I C E P R O B L E M

Find an LU factorization of A =




2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1

−6 3 3 4


 . [Note: It will turn out that A

has only three pivot columns, so the method of Example 2 will produce only the first
three columns of L. The remaining two columns of L come from I5.]
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2.5 EXERCISES
In Exercises 1–6, solve the equation Ax = b by using the LU fac-
torization given for A. In Exercises 1 and 2, also solve Ax = b by
ordinary row reduction.

1. A =

 3 −7 −2

−3 5 1
6 −4 0


 , b =


 −7

5
2




A =

 1 0 0

−1 1 0
2 −5 1




 3 −7 −2

0 −2 −1
0 0 −1




2. A =

 4 3 −5

−4 −5 7
8 6 −8


 , b =


 2

−4
6




A =

 1 0 0

−1 1 0
2 0 1




 4 3 −5

0 −2 2
0 0 2




3. A =

 2 −1 2

−6 0 −2
8 −1 5


 , b =


 1

0
4




A =

 1 0 0

−3 1 0
4 −1 1




 2 −1 2

0 −3 4
0 0 1




4. A =

 2 −2 4

1 −3 1
3 7 5


 , b =


 0

−5
7




A =

 1 0 0

1/2 1 0
3/2 −5 1




 2 −2 4

0 −2 −1
0 0 −6




5. A =




1 −2 −4 −3
2 −7 −7 −6

−1 2 6 4
−4 −1 9 8


 , b =




1
7
0
3




A =




1 0 0 0
2 1 0 0

−1 0 1 0
−4 3 −5 1






1 −2 −4 −3
0 −3 1 0
0 0 2 1
0 0 0 1




6. A =




1 3 4 0
−3 −6 −7 2

3 3 0 −4
−5 −3 2 9


 , b =




1
−2
−1

2




A =




1 0 0 0
−3 1 0 0

3 −2 1 0
−5 4 −1 1






1 3 4 0
0 3 5 2
0 0 −2 0
0 0 0 1




Find an LU factorization of the matrices in Exercises 7–16 (withL
unit lower triangular). Note that MATLAB will usually produce
a permuted LU factorization because it uses partial pivoting for
numerical accuracy.

7.
[

2 5
−3 −4

]
8.

[
6 9
4 5

]

9.


 3 −1 2

−3 −2 10
9 −5 6


 10.


 −5 3 4

10 −8 −9
15 1 2




11.


 3 −6 3

6 −7 2
−1 7 0


 12.


 2 −4 2

1 5 −4
−6 −2 4




13.




1 3 −5 −3
−1 −5 8 4

4 2 −5 −7
−2 −4 7 5


 14.




1 4 −1 5
3 7 −2 9

−2 −3 1 −4
−1 6 −1 7




15.


 2 −4 4 −2

6 −9 7 −3
−1 −4 8 0


 16.




2 −6 6
−4 5 −7

3 5 −1
−6 4 −8

8 −3 9




17. When A is invertible, MATLAB finds A−1 by factoring
A = LU (where L may be permuted lower triangular), invert-
ingL andU , and then computingU−1L−1. Use this method to
compute the inverse of A in Exercise 2. (Apply the algorithm
of Section 2.2 to L and to U .)

18. Find A−1 as in Exercise 17, using A from Exercise 3.

19. Let A be a lower triangular n×n matrix with nonzero en-
tries on the diagonal. Show that A is invertible and A−1 is
lower triangular. [Hint: Explain why A can be changed into
I using only row replacements and scaling. (Where are the
pivots?) Also, explain why the row operations that reduce A
to I change I into a lower triangular matrix.]

20. Let A = LU be an LU factorization. Explain why A can be
row reduced to U using only replacement operations. (This
fact is the converse of what was proved in the text.)

21. Suppose A = BC, where B is invertible. Show that any se-
quence of row operations that reduces B to I also reduces A
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to C. The converse is not true, since the zero matrix may be
factored as 0 = B ·0.

Exercises 22–26 provide a glimpse of some widely used matrix
factorizations, some of which are discussed later in the text.

22. (Reduced LU Factorization) With A as in the Practice Prob-
lem, find a 5×3 matrix B and a 3×4 matrix C such that
A = BC. Generalize this idea to the case where A is m×n,
A = LU , and U has only three nonzero rows.

23. (Rank Factorization) Suppose an m×n matrix A admits a
factorization A = CD where C is m×4 and D is 4×n.

a. Show that A is the sum of four outer products. (See Sec-
tion 2.4.)

b. Let m = 400 and n = 100. Explain why a computer pro-
grammer might prefer to store the data from A in the form
of two matrices C and D.

24. (QR Factorization) Suppose A = QR, where Q and R are
n×n,R is invertible and upper triangular, andQ has the prop-
erty that QTQ = I . Show that for each b in R

n, the equation
Ax = b has a unique solution. What computations withQ and
R will produce the solution?

WEB

25. (Singular Value Decomposition) Suppose A = UDV T , where
U and V are n×n matrices with the property that UTU = I

and V TV = I , and where D is a diagonal matrix with positive
numbersσ1, . . . , σn on the diagonal. Show thatA is invertible,
and find a formula for A−1.

26. (Spectral Factorization) Suppose a 3×3 matrix A admits a
factorization asA = PDP−1, whereP is some invertible 3×3
matrix and D is the diagonal matrix

D =

 1 0 0

0 1/2 0
0 0 1/3




Show that this factorization is useful when computing high
powers of A. Find fairly simple formulas for A2, A3, and Ak

(k a positive integer), using P and the entries in D.

27. Design two different ladder networks that each output 9 volts
and 4 amps when the input is 12 volts and 6 amps.

28. Show that if three shunt circuits (with resistances R1, R2, R3)
are connected in series, the resulting network has the same
transfer matrix as a single shunt circuit. Find a formula for
the resistance in that circuit.

29. a. Compute the transfer matrix of the network in the figure.

b. Let A =
[

4/3 −12
−1/4 3

]
. Design a ladder network whose

transfer matrix is A by finding a suitable matrix factoriza-
tion of A.

i1 i2 i2

R1
v1 v2

R2

i3 i3 i4

v4R3
v3

30. Find a different factorization of the A in Exercise 29, and
thereby design a different ladder network whose transfer ma-
trix is A.

31. [M] The solution to the steady-state heat flow problem for
the plate in the figure is approximated by the solution to the
equation Ax = b, where b = (5, 15, 0, 10, 0, 10, 20, 30) and

A =




4 −1 −1
−1 4 0 −1
−1 0 4 −1 −1

−1 −1 4 0 −1
−1 0 4 −1 −1

−1 −1 4 0 −1
−1 0 4 −1

−1 −1 4




WEB

0°

5°

5°

20°

20°

0° 0°0°

10° 10° 10°10°

1 3 5 7

2 4 6 8

(Refer to Exercise 33 of Section 1.1.) The missing entries in
A are zeros. The nonzero entries of A lie within a band along
the main diagonal. Such band matrices occur in a variety of
applications and often are extremely large (with thousands of
rows and columns but relatively narrow bands).

a. Use the method of Example 2 to construct an LU factoriza-
tion ofA, and note that both factors are band matrices (with
two nonzero diagonals below or above the main diagonal).
Compute LU − A to check your work.

b. Use the LU factorization to solve Ax = b.
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c. Obtain A−1 and note that A−1 is a dense matrix with no
band structure. When A is large, L and U can be stored in
much less space than A−1. This fact is another reason for
preferring the LU factorization of A to A−1 itself.

32. [M] The band matrix A shown below can be used to estimate
the unsteady conduction of heat in a rod when the temperatures
at points p1, . . . , p5 on the rod change with time.2

∆x ∆x

p1 p2 p3 p4 p5

The constant C in the matrix depends on the physical nature
of the rod, the distance 1x between the points on the rod, and

2See Biswa N. Datta, Numerical Linear Algebra and Applications
(Pacific Grove, CA: Brooks/Cole, 1994), pp. 200–201.

the length of time 1t between successive temperature mea-
surements. Suppose that for k = 0, 1, 2, . . . , a vector tk in R

5

lists the temperatures at time k1t . If the two ends of the rod
are maintained at 0◦, then the temperature vectors satisfy the
equation Atk+1 = tk (k = 0, 1, . . .), where

A =



(1 + 2C) −C

−C (1 + 2C) −C

−C (1 + 2C) −C

−C (1 + 2C) −C

−C (1 + 2C)




a. Find the LU factorization of A when C = 1. A matrix such
as A with three nonzero diagonals is called a tridiagonal
matrix. The L and U factors are bidiagonal matrices.

b. Suppose C = 1 and t0 = (10, 12, 12, 12, 10). Use the LU
factorization of A to find the temperature distributions t1,
t2, t3, and t4.

S O L U T I O N T O P R A C T I C E P R O B L E M

A =




2 −4 −2 3
6 −9 −5 8
2 −7 −3 9
4 −2 −2 −1

−6 3 3 4


 ∼




2 −4 −2 3
0 3 1 −1
0 −3 −1 6
0 6 2 −7
0 −9 −3 13




∼




2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 −5
0 0 0 10


 ∼




2 −4 −2 3
0 3 1 −1
0 0 0 5
0 0 0 0
0 0 0 0


 = U

Divide the entries in each highlighted column by the pivot at the top. The resulting
columns form the first three columns in the lower half of L. This suffices to make row
reduction of L to I correspond to reduction of A to U . Use the last two columns of I5

to make L unit lower triangular.







2
6
2
4

−6




÷2
↓
1




3
−3

6
−9




÷3
↓


 5

−5
10




÷5
↓

3 1
1 −1 1 · · ·
2 2 −1

−3 −3 2


 , L =




1 0 0 0 0
3 1 0 0 0
1 −1 1 0 0
2 2 −1 1 0

−3 −3 2 0 1



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2.6 THE LEONTIEF INPUT–OUTPUT MODEL

WEB Linear algebra played an essential role in the Nobel prize–winning work of Wassily
Leontief, as mentioned at the beginning of Chapter 1. The economic model described
in this section is the basis for more elaborate models used in many parts of the world.

Suppose a nation’s economy is divided into n sectors that produce goods or services,
and let x be a production vector in R

n that lists the output of each sector for one
year. Also, suppose another part of the economy (called the open sector) does not
produce goods or services but only consumes them, and let d be a final demand vector
(or bill of final demands) that lists the value of the goods and services demanded
from the various sectors by the nonproductive part of the economy. The vector d can
represent consumer demand, government consumption, surplus production, exports, or
other external demand.

As the various sectors produce goods to meet consumer demand, the producers
themselves create additional intermediate demand for goods they need as inputs for
their own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amounts produced (or “supplied”) will exactly
balance the total demand for that production, so that


amount

produced
x


 =

{
intermediate

demand

}
+




final
demand

d


 (1)

The basic assumption of Leontief’s input–output model is that for each sector, there is
a unit consumption vector in R

n that lists the inputs needed per unit of output of the
sector. All input and output units are measured in millions of dollars, rather than in
quantities such as tons or bushels. (Prices of goods and services are held constant.)

As a simple example, suppose the economy consists of three sectors—manufac-
turing, agriculture, and services—with unit consumption vectors c1, c2, c3 shown in the
table below:

Inputs Consumed per Unit of Output
Purchased
from: Manufacturing Agriculture Services

Manufacturing .50 .40 .20

Agriculture .20 .30 .10

Services .10 .10 .30

↑ ↑ ↑
c1 c2 c3

EXAMPLE 1 What amounts will be consumed by the manufacturing sector if it decides
to produce 100 units?

Solution Compute

100c1 = 100


 .50
.20
.10


 =


 50

20
10



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To produce 100 units, manufacturing will order (i.e., “demand”) and consume 50 units
from other parts of the manufacturing sector, 20 units from agriculture, and 10 units
from services.

If manufacturing decides to produce x1 units of output, then x1c1 represents the
intermediate demands of manufacturing, because the amounts in x1c1 will be consumed
in the process of creating the x1 units of output. Likewise, if x2 and x3 denote the planned
outputs of the agriculture and services sectors, x2c2 and x3c3 list their corresponding
intermediate demands. The total intermediate demand from all three sectors is given by

{ intermediate demand } = x1c1 + x2c2 + x3c3

= Cx (2)

where C is the consumption matrix [ c1 c2 c3 ], namely,

C =

 .50 .40 .20
.20 .30 .10
.10 .10 .30


 (3)

Equations (1) and (2) yield Leontief’s model.

THE LEONTIEF INPUT–OUTPUT MODEL, OR PRODUCTION EQUATION

x = Cx + d
Amount Intermediate Final
produced demand demand

(4)

Writing x as Ix and using matrix algebra, we can rewrite (4):

Ix − Cx = d

(I − C)x = d (5)

EXAMPLE 2 Consider the economy whose consumption matrix is given by (3). Sup-
pose the final demand is 50 units for manufacturing, 30 units for agriculture, and 20 units
for services. Find the production level x that will satisfy this demand.

Solution The coefficient matrix in (5) is

I − C =

 1 0 0

0 1 0
0 0 1


 −


 .5 .4 .2
.2 .3 .1
.1 .1 .3


 =


 .5 −.4 −.2

−.2 .7 −.1
−.1 −.1 .7




To solve (5), row reduce the augmented matrix
 .5 −.4 −.2 50

−.2 .7 −.1 30
−.1 −.1 .7 20


 ∼


 5 −4 −2 500

−2 7 −1 300
−1 −1 7 200


 ∼ · · · ∼


 1 0 0 226

0 1 0 119
0 0 1 78




The last column is rounded to the nearest whole unit. Manufacturing must produce
approximately 226 units, agriculture 119 units, and services only 78 units.
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If the matrix I − C is invertible, then we can apply Theorem 5 in Section 2.2, withA
replaced by (I − C), and from the equation (I − C)x = d obtain x = (I − C)−1d. The
theorem below shows that in most practical cases, I − C is invertible and the production
vector x is economically feasible, in the sense that the entries in x are nonnegative.

In the theorem, the term column sum denotes the sum of the entries in a column
of a matrix. Under ordinary circumstances, the column sums of a consumption matrix
are less than 1 because a sector should require less than one unit’s worth of inputs to
produce one unit of output.

THEOREM 11 Let C be the consumption matrix for an economy, and let d be the final demand.
If C and d have nonnegative entries and if each column sum of C is less than 1,
then (I − C)−1 exists and the production vector

x = (I − C)−1d

has nonnegative entries and is the unique solution of

x = Cx + d

The following discussion will suggest why the theorem is true and will lead to a
new way to compute (I − C)−1.

A Formula for (I − C)−1

Imagine that the demand represented by d is presented to the various industries at the
beginning of the year, and the industries respond by setting their production levels at
x = d, which will exactly meet the final demand. As the industries prepare to produce d,
they send out orders for their raw materials and other inputs. This creates an intermediate
demand of Cd for inputs.

To meet the additional demand of Cd, the industries will need as additional inputs
the amounts in C(Cd) = C2d. Of course, this creates a second round of intermediate
demand, and when the industries decide to produce even more to meet this new demand,
they create a third round of demand, namely, C(C2d) = C3d. And so it goes.

Theoretically, we can imagine this process continuing indefinitely, although in real
life it would not take place in such a rigid sequence of events. We can diagram this
hypothetical situation as follows:

Demand That Inputs Needed to
Must Be Met Meet This Demand

Final demand d Cd

Intermediate demand

1st round Cd C(Cd) = C2d

2nd round C2d C(C2d) = C3d

3rd round C3d C(C3d) = C4d
...

...
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The production level x that will meet all of this demand is

x = d + Cd + C2d + C3d + · · ·
= (I + C + C2 + C3 + · · ·)d (6)

To make sense of (6), we use the following algebraic identity:

(I − C)(I + C + C2 + · · · + Cm) = I − Cm+1 (7)

It can be shown that if the column sums in C are all strictly less than 1, then I − C is
invertible,Cm approaches the zero matrix asm gets arbitrarily large, and I − Cm+1 → I .
(This fact is analogous to the fact that if a positive number t is less than 1, then tm → 0
as m increases.) Using (7), we write

(I − C)−1 ≈ I + C + C2 + C3 + · · · + Cm

when the column sums of C are less than 1.

(8)

We interpret (8) as meaning that the right side can be made as close to (I − C)−1 as
desired by taking m sufficiently large.

In actual input–output models, powers of the consumption matrix approach the zero
matrix rather quickly. So (8) really provides a practical way to compute (I − C)−1.
Likewise, for any d, the vectors Cmd approach the zero vector quickly, and (6) is a
practical way to solve (I − C)x = d. If the entries in C and d are nonnegative, then (6)
shows that the entries in x are nonnegative, too.

The Economic Importance of Entries in (I − C)−1

The entries in (I − C)−1 are significant because they can be used to predict how the
production x will have to change when the final demand d changes. In fact, the entries
in column j of (I − C)−1 are the increased amounts the various sectors will have to
produce in order to satisfy an increase of 1 unit in the final demand for output from
sector j . See Exercise 8.

NU M E R I CA L NOT E

In any applied problem (not just in economics), an equation Ax = b can always be
written as (I − C)x = b, with C = I − A. If the system is large and sparse (with
mostly zero entries), it can happen that the column sums of the absolute values in C

are less than 1. In this case, Cm → 0. If Cm approaches zero quickly enough, (6) and
(8) will provide practical formulas for solving Ax = b and finding A−1.

P R A C T I C E P R O B L E M

Suppose an economy has two sectors, goods and services. One unit of output from goods
requires inputs of .2 unit from goods and .5 unit from services. One unit of output from
services requires inputs of .4 unit from goods and .3 unit from services. There is a final
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demand of 20 units of goods and 30 units of services. Set up the Leontief input–output
model for this situation.

2.6 EXERCISES

Agriculture Manufacturing Services

Open Sector

Exercises 1–4 refer to an economy that is divided into three
sectors—manufacturing, agriculture, and services. For each unit
of output, manufacturing requires .10 unit from other companies
in that sector, .30 unit from agriculture, and .30 unit from services.
For each unit of output, agriculture uses .20 unit of its own output,
.60 unit from manufacturing, and .10 unit from services. For each
unit of output, the services sector consumes .10 unit from services,
.60 unit from manufacturing, but no agricultural products.

1. Construct the consumption matrix for this economy, and de-
termine what intermediate demands are created if agriculture
plans to produce 100 units.

2. Determine the production levels needed to satisfy a final de-
mand of 18 units for agriculture, with no final demand for the
other sectors. (Do not compute an inverse matrix.)

3. Determine the production levels needed to satisfy a final de-
mand of 18 units for manufacturing, with no final demand for
the other sectors. (Do not compute an inverse matrix.)

4. Determine the production levels needed to satisfy a final de-
mand of 18 units for manufacturing, 18 units for agriculture,
and 0 units for services.

5. Consider the production model x = Cx + d for an economy
with two sectors, where

C =
[
.0 .5
.6 .2

]
, d =

[
50
30

]
Use an inverse matrix to determine the production level nec-
essary to satisfy the final demand.

6. Repeat Exercise 5 with C =
[
.1 .6
.5 .2

]
and d =

[
18
11

]
.

7. Let C and d be as in Exercise 5.
a. Determine the production level necessary to satisfy a final

demand for 1 unit of output from sector 1.
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b. Use an inverse matrix to determine the production level

necessary to satisfy a final demand of

[
51
30

]
.

c. Use the fact that

[
51
30

]
=

[
50
30

]
+

[
1
0

]
to explain how and

why the answers to parts (a) and (b) and to Exercise 5 are
related.

8. LetC be an n×n consumption matrix whose column sums are
less than 1. Let x be the production vector that satisfies a final
demand d, and let 1x be a production vector that satisfies a
different final demand 1d.

a. Show that if the final demand changes from d to d + 1d,
then the new production level must be x + 1x. Thus 1x
gives the amounts by which production must change in
order to accommodate the change 1d in demand.

b. Let 1d be the vector in R
n with 1 as the first entry and

0’s elsewhere. Explain why the corresponding production
1x is the first column of (I − C)−1. This shows that the
first column of (I − C)−1 gives the amounts the various
sectors must produce to satisfy an increase of 1 unit in the
final demand for output from sector 1.

9. Solve the Leontief production equation for an economy with
three sectors, given that

C =

 .2 .2 .0
.3 .1 .3
.1 .0 .2


 and d =


 40

60
80




10. The consumption matrix C for the U.S. economy in 1972
has the property that every entry in the matrix (I − C)−1 is
nonzero (and positive).1 What does that say about the effect
of raising the demand for the output of just one sector of the
economy?

11. The Leontief production equation, x = Cx + d, is usually ac-
companied by a dual price equation,

p = CT p + v

where p is a price vector whose entries list the price per unit
for each sector’s output, and v is a value added vector whose
entries list the value added per unit of output. (Value added
includes wages, profit, depreciation, etc.) An important fact
in economics is that the gross domestic product (GDP) can be
expressed in two ways:

{ gross domestic product } = pT d = vTx

Verify the second equality. [Hint: Compute pTx in two ways.]

1Wassily W. Leontief, “The World Economy of the Year 2000,”
Scientific American, September 1980, pp. 206–231.

12. LetC be a consumption matrix such thatCm → 0 asm → ∞,
and for m = 1, 2, . . . , let Dm = I + C + · · · + Cm. Find a dif-
ference equation that relates Dm and Dm+1 and thereby ob-
tain an iterative procedure for computing formula (8) for
(I − C)−1.

13. [M] The consumption matrix C below is based on input–
output data for the U.S. economy in 1958, with data for 81
sectors grouped into 7 larger sectors: (1) nonmetal household
and personal products, (2) final metal products (such as mo-
tor vehicles), (3) basic metal products and mining, (4) basic
nonmetal products and agriculture, (5) energy, (6) services,
and (7) entertainment and miscellaneous products.2 Find the
production levels needed to satisfy the final demand d. (Units
are in millions of dollars.)


.1588 .0064 .0025 .0304 .0014 .0083 .1594

.0057 .2645 .0436 .0099 .0083 .0201 .3413

.0264 .1506 .3557 .0139 .0142 .0070 .0236

.3299 .0565 .0495 .3636 .0204 .0483 .0649

.0089 .0081 .0333 .0295 .3412 .0237 .0020

.1190 .0901 .0996 .1260 .1722 .2368 .3369

.0063 .0126 .0196 .0098 .0064 .0132 .0012



,

d =




74,000
56,000
10,500
25,000
17,500

196,000
5,000




14. [M] The demand vector in Exercise 13 is reasonable for 1958
data, but Leontief’s discussion of the economy in the reference
cited there used a demand vector closer to 1964 data:

d = (99640, 75548, 14444, 33501, 23527, 263985, 6526)

Find the production levels needed to satisfy this demand.

15. [M] Use equation (6) to solve the problem in Exercise 13.
Set x(0) = d, and for k = 1, 2, . . ., compute x(k) = d + Cx(k−1).
How many steps are needed to obtain the answer in Exercise 13
to four significant figures?

2Wassily W. Leontief, “The Structure of the U.S. Economy,”
Scientific American, April 1965, pp. 30–32.
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S O L U T I O N T O P R A C T I C E P R O B L E M

The following data are given:

Inputs Needed per Unit of Output
Purchased External
from: Goods Services Demand

Goods .2 .4 20

Services .5 .3 30

The Leontief input–output model is x = Cx + d, where

C =
[
.2 .4
.5 .3

]
, d =

[
20
30

]

2.7 APPLICATIONS TO COMPUTER GRAPHICS
Computer graphics are images displayed or animated on a computer screen. Applications
of computer graphics are widespread and growing rapidly. For instance, computer-aided
design (CAD) is an integral part of many engineering processes, such as the aircraft
design process described in the chapter introduction. The entertainment industry has
made the most spectacular use of computer graphics—from the special effects in The
Matrix to PlayStation 2 and the Xbox.

Most interactive computer software for business and industry makes use of computer
graphics in the screen displays and for other functions, such as graphical display of data,
desktop publishing, and slide production for commercial and educational presentations.
Consequently, anyone studying a computer language invariably spends time learning
how to use at least two-dimensional (2D) graphics.

This section examines some of the basic mathematics used to manipulate and dis-
play graphical images such as a wire-frame model of an airplane. Such an image (or
picture) consists of a number of points, connecting lines or curves, and information about
how to fill in closed regions bounded by the lines and curves. Often, curved lines are
approximated by short straight-line segments, and a figure is defined mathematically by
a list of points.

Among the simplest 2D graphics symbols are letters used for labels on the screen.
Some letters are stored as wire-frame objects; others that have curved portions are stored
with additional mathematical formulas for the curves.

8

3

1 2 4

6 5

7

FIGURE 1
Regular N .

EXAMPLE 1 The capital letter N in Fig. 1 is determined by eight points, or vertices.
The coordinates of the points can be stored in a data matrix, D.

Vertex:

x-coordinate
y-coordinate

[ 1
0

2
.5

3
.5

4
6

5
6

6
5.5

7
5.5

8
0

0 0 6.42 0 8 8 1.58 8

]
= D

In addition to D, it is necessary to specify which vertices are connected by lines, but we
omit this detail.
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The main reason graphical objects are described by collections of straight-line seg-
ments is that the standard transformations in computer graphics map line segments onto
other line segments. (For instance, see Exercise 27 in Section 1.8.) Once the vertices
that describe an object have been transformed, their images can be connected with the
appropriate straight lines to produce the complete image of the original object.

EXAMPLE 2 Given A =
[

1 .25
0 1

]
, describe the effect of the shear transformation

x �→Ax on the letter N in Example 1.

Solution By definition of matrix multiplication, the columns of the productAD contain
the images of the vertices of the letter N.

AD =
[ 1

0
2
.5

3
2.105

4
6

5
8

6
7.5

7
5.895

8
2

0 0 6.420 0 8 8 1.580 8

]
The transformed vertices are plotted in Fig. 2, along with connecting line segments that
correspond to those in the original figure.

5

1 2 4

7

3

68

FIGURE 2
Slanted N .

The italic N in Fig. 2 looks a bit too wide. To compensate, we can shrink the width
by a scale transformation.

EXAMPLE 3 Compute the matrix of the transformation that performs a shear trans-
formation, as in Example 2, and then scales all x-coordinates by a factor of .75.

FIGURE 3
Composite transformation of N .

Solution The matrix that multiplies the x-coordinate of a point by .75 is

S =
[
.75 0
0 1

]
So the matrix of the composite transformation is

SA =
[
.75 0
0 1

][
1 .25
0 1

]

=
[
.75 .1875
0 1

]
The result of this composite transformation is shown in Fig. 3.

The mathematics of computer graphics is intimately connected with matrix multi-
plication. Unfortunately, translating an object on a screen does not correspond directly
to matrix multiplication because translation is not a linear transformation. The standard
way to avoid this difficulty is to introduce what are called homogeneous coordinates.

Homogeneous Coordinates

Each point (x, y) in R
2 can be identified with the point (x, y, 1) on the plane in R

3 that lies
one unit above the xy-plane. We say that (x, y) has homogeneous coordinates (x, y, 1).
For instance, the point (0, 0) has homogeneous coordinates (0, 0, 1). Homogeneous
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coordinates for points are not added or multiplied by scalars, but they can be transformed
via multiplication by 3×3 matrices.

EXAMPLE 4 A translation of the form (x, y) �→(x + h, y + k) is written in homoge-
neous coordinates as (x, y, 1) �→(x + h, y + k, 1). This transformation can be computed
via matrix multiplication: 

 1 0 h

0 1 k

0 0 1




 x

y

1


 =


 x + h

y + k

1




x2

x1
–4 –2 2

2

4

4

Translation by

[
4
3

]
.

EXAMPLE 5 Any linear transformation on R
2 is represented with respect to homo-

geneous coordinates by a partitioned matrix of the form

[
A 0
0 1

]
, where A is a 2×2

matrix. Typical examples are
 cosϕ − sin ϕ 0

sin ϕ cosϕ 0
0 0 1


 ,


 0 1 0

1 0 0
0 0 1


 ,


 s 0 0

0 t 0
0 0 1




Counterclockwise Reflection Scale x by s
rotation about the through y = x and y by t

origin, angle ϕ

Composite Transformations

The movement of a figure on a computer screen often requires two or more basic transfor-
mations. The composition of such transformations corresponds to matrix multiplication
when homogeneous coordinates are used.

EXAMPLE 6 Find the 3×3 matrix that corresponds to the composite transformation
of a scaling by .3, a rotation of 90◦, and finally a translation that adds (−.5, 2) to each
point of a figure.

After Translating

After Rotating

After Scaling

Original Figure

Solution If ϕ = π/2, then sin ϕ = 1 and cosϕ = 0. From Examples 4 and 5, we have
 x

y

1


 Scale−→


 .3 0 0

0 .3 0
0 0 1





 x

y

1




Rotate−→

 0 −1 0

1 0 0
0 0 1




 .3 0 0

0 .3 0
0 0 1




 x

y

1




Translate−→

 1 0 −.5

0 1 2
0 0 1




 0 −1 0

1 0 0
0 0 1




 .3 0 0

0 .3 0
0 0 1




 x

y

1



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The matrix for the composite transformation is
 1 0 −.5

0 1 2
0 0 1




 0 −1 0

1 0 0
0 0 1




 .3 0 0

0 .3 0
0 0 1




=

 0 −1 −.5

1 0 2
0 0 1




 .3 0 0

0 .3 0
0 0 1


 =


 0 −.3 −.5
.3 0 2
0 0 1




3D Computer Graphics

Some of the newest and most exciting work in computer graphics is connected with
molecular modeling. With 3D (three-dimensional) graphics, a biologist can examine a
simulated protein molecule and search for active sites that might accept a drug molecule.
The biologist can rotate and translate an experimental drug and attempt to attach it to the
protein. This ability to visualize potential chemical reactions is vital to modern drug and
cancer research. In fact, advances in drug design depend to some extent upon progress
in the ability of computer graphics to construct realistic simulations of molecules and
their interactions.1

Current research in molecular modeling is focused on virtual reality, an environ-
ment in which a researcher can see and feel the drug molecule slide into the protein.
In Fig. 4, such tactile feedback is provided by a force-displaying remote manipulator.

FIGURE 4 Molecular modeling in virtual reality.
(Computer Science Department, University of
North Carolina at Chapel Hill. Photo by Bo
Strain.)

1Robert Pool, “Computing in Science,” Science 256, 3 April 1992, p. 45.
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Another design for virtual reality involves a helmet and glove that detect head, hand, and
finger movements. The helmet contains two tiny computer screens, one for each eye.
Making this virtual environment more realistic is a challenge to engineers, scientists,
and mathematicians. The mathematics we examine here barely opens the door to this
interesting field of research.

Homogeneous 3D Coordinates

By analogy with the 2D case, we say that (x, y, z, 1) are homogeneous coordinates for
the point (x, y, z) in R

3. In general, (X, Y, Z,H) are homogeneous coordinates for
(x, y, z) if H �= 0 and

x = X

H
, y = Y

H
, and z = Z

H
(1)

Each nonzero scalar multiple of (x, y, z, 1) gives a set of homogeneous coordinates for
(x, y, z). For instance, both (10,−6, 14, 2) and (−15, 9,−21,−3) are homogeneous
coordinates for (5,−3, 7).

The next example illustrates the transformations used in molecular modeling to
move a drug into a protein molecule.

EXAMPLE 7 Give 4×4 matrices for the following transformations:

a. Rotation about the y-axis through an angle of 30◦. (By convention, a positive angle
is the counterclockwise direction when looking toward the origin from the positive
half of the axis of rotation—in this case, the y-axis.)

b. Translation by the vector p = (−6, 4, 5).

Solution

a. First, construct the 3×3 matrix for the rotation. The vector e1 rotates down toward
the negative z-axis, stopping at (cos 30◦, 0,− sin 30◦) = (

√
3/2, 0,−.5). The vector

e2 on the y-axis does not move, but e3 on the z-axis rotates down toward the positive
x-axis, stopping at (sin 30◦, 0, cos 30◦) = (.5, 0,

√
3/2). See Fig. 5. From Section

1.9, the standard matrix for this rotation is

A =



√
3/2 0 .5
0 1 0

−.5 0
√

3/2




So the rotation matrix for homogeneous coordinates is

A =




√
3/2 0 .5 0
0 1 0 0

−.5 0
√

3/2 0
0 0 0 1




z

e3

e1

x
e2

y

FIGURE 5
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b. We want (x, y, z, 1) to map to (x − 6, y + 4, z + 5, 1). The matrix that does this is


1 0 0 −6
0 1 0 4
0 0 1 5
0 0 0 1




Perspective Projections

A three-dimensional object is represented on the two-dimensional computer screen by
projecting the object onto a viewing plane. (We ignore other important steps, such as
selecting the portion of the viewing plane to display on the screen.) For simplicity, let
the xy-plane represent the computer screen, and imagine that the eye of a viewer is along
the positive z-axis, at a point (0, 0, d). A perspective projection maps each point (x, y, z)
onto an image point (x∗, y∗, 0) so that the two points and the eye position, called the
center of projection, are on a line. See Fig. 6(a).

(a) (b)

(0, 0, d )
z

z

y

(x*, y*, 0)

x

x

0 0
(x, y, z)

d – z

x*

FIGURE 6 Perspective projection of (x, y, z) onto (x∗, y∗, 0).

The triangle in the xz-plane in Fig. 6(a) is redrawn in part (b) showing the lengths
of line segments. Similar triangles show that

x∗

d
= x

d − z
and x∗ = dx

d − z
= x

1 − z/d

Similarly,

y∗ = y

1 − z/d
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Using homogeneous coordinates, we can represent the perspective projection by a matrix,

say, P . We want (x, y, z, 1) to map into

(
x

1 − z/d
,

y

1 − z/d
, 0, 1

)
. Scaling these

coordinates by 1 − z/d , we can also use (x, y, 0, 1 − z/d) as homogeneous coordinates
for the image. Now it is easy to display P . In fact,

P



x

y

z

1


 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1





x

y

z

1


 =




x

y

0
1 − z/d




EXAMPLE 8 Let S be the box with vertices (3, 1, 5), (5, 1, 5), (5, 0, 5), (3, 0, 5),
(3, 1, 4), (5, 1, 4), (5, 0, 4), and (3, 0, 4). Find the image of S under the perspective pro-
jection with center of projection at (0, 0, 10).

Solution Let P be the projection matrix, and let D be the data matrix for S using
homogeneous coordinates. The data matrix for the image of S is

PD =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/10 1




Vertex:


1
3

2
5

3
5

4
3

5
3

6
5

7
5

8
3

1 1 0 0 1 1 0 0
5 5 5 5 4 4 4 4
1 1 1 1 1 1 1 1




=




3 5 5 3 3 5 5 3
1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0
.5 .5 .5 .5 .6 .6 .6 .6




To obtain R
3 coordinates, use (1) and divide the top three entries in each column by the

corresponding entry in the fourth row:

Vertex:


1
6

2
10

3
10

4
6

5
5

6
8.3

7
8.3

8
5

2 2 0 0 1.7 1.7 0 0
0 0 0 0 0 0 0 0




S under the perspective
transformation.

This text’s web site has some interesting applications of computer graphics, includ-
ing a further discussion of perspective projections. One of the computer projects on the
web site involves simple animation.

WEB
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NU M E R I CA L NOT E

Continuous movement of graphical 3D objects requires intensive computation with
4×4 matrices, particularly when the surfaces are rendered to appear realistic, with
texture and appropriate lighting. High-end computer graphics boards have 4×4
matrix operations and graphics algorithms embedded in their microchips and circuitry.
Such boards can perform the billions of matrix multiplications per second needed for
realistic color animation in 3D gaming programs.2

Further Reading

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 3rd ed. (Boston, MA: Addison-Wesley, 2002),
Chapters 5 and 6.

P R A C T I C E P R O B L E M

Rotation of a figure about a point p in R
2 is accomplished by first translating the figure

by −p, rotating about the origin, and then translating back by p. See Fig. 7. Construct
the 3×3 matrix that rotates points −30◦ about the point (−2, 6), using homogeneous
coordinates.

x2 x2 x2 x2

x1 x1 x1 x1

(a) Original figure. (b) Translated to
      origin by –p.

(c) Rotated about
      the origin.

(d) Translated
      back by p.

p p p p

FIGURE 7 Rotation of figure about point p.

2.7 EXERCISES
1. What 3×3 matrix will have the same effect on homogeneous

coordinates for R
2 that the shear matrix A has in Example 2?

2. Use matrix multiplication to find the image of the triangle

with data matrix D =
[

5 2 4
0 2 3

]
under the transforma-

tion that reflects points through the y-axis. Sketch both the
original triangle and its image.

In Exercises 3–8, find the 3×3 matrices that produce the described
composite 2D transformations, using homogeneous coordinates.

2See Jan Ozer, “High-Performance Graphics Boards,” PC Magazine 19, 1 September 2000, pp. 187–200.
Also, “The Ultimate Upgrade Guide: Moving On Up,” PC Magazine 21, 29 January 2002, pp. 82–91.
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3. Translate by (3, 1), and then rotate 45◦ about the origin.

4. Translate by (−2, 3), and then scale the x-coordinate by .8
and the y-coordinate by 1.2.

5. Reflect points through the x-axis, and then rotate 30◦ about
the origin.

6. Rotate points 30◦, and then reflect through the x-axis.

7. Rotate points through 60◦ about the point (6, 8).

8. Rotate points through 45◦ about the point (3, 7).

9. A 2×200 data matrix D contains the coordinates of 200
points. Compute the number of multiplications required to
transform these points using two arbitrary 2×2 matrices A

and B. Consider the two possibilities A(BD) and (AB)D.
Discuss the implications of your results for computer graph-
ics calculations.

10. Consider the following geometric 2D transformations: D, a
dilation (in which x-coordinates and y-coordinates are scaled
by the same factor); R, a rotation; and T , a translation. Does
D commute with R? That is, is D(R(x)) = R(D(x)) for all x
in R

2? Does D commute with T ? Does R commute with T ?

11. A rotation on a computer screen is sometimes implemented
as the product of two shear-and-scale transformations, which
can speed up calculations that determine how a graphic image
actually appears in terms of screen pixels. (The screen con-
sists of rows and columns of small dots, called pixels.) The
first transformation A1 shears vertically and then compresses
each column of pixels; the second transformation A2 shears
horizontally and then stretches each row of pixels. Let

A1 =

 1 0 0

sin ϕ cosϕ 0
0 0 1


 ,

A2 =

 secϕ − tan ϕ 0

0 1 0
0 0 1




Show that the composition of the two transformations is a
rotation in R

2.

12. A rotation in R
2 usually requires four multiplications. Com-

pute the product below, and show that the matrix for a rotation

can be factored into three shear transformations (each of which
requires only one multiplication).
 1 − tan ϕ/2 0

0 1 0
0 0 1




 1 0 0

sin ϕ 1 0
0 0 1





 1 − tan ϕ/2 0

0 1 0
0 0 1




13. The usual transformations on homogeneous coordinates for
2D computer graphics involve 3×3 matrices of the form[
A p
0T 1

]
where A is a 2×2 matrix and p is in R

2. Show that such a
transformation amounts to a linear transformation on R

2 fol-
lowed by a translation. [Hint: Find an appropriate matrix
factorization involving partitioned matrices.]

14. Show that the transformation in Exercise 7 is equivalent to
a rotation about the origin followed by a translation by p.
Find p.

15. What vector in R
3 has homogeneous coordinates

( 1
2 ,− 1

4 ,
1
8 ,

1
24 )?

16. Are (1,−2, 3, 4) and (10,−20, 30, 40) homogeneous coordi-
nates for the same point in R

3? Why or why not?

17. Give the 4×4 matrix that rotates points in R
3 about the x-axis

through an angle of 60◦. (See the figure.)

z

e3

e2

y
e1

x

18. Give the 4×4 matrix that rotates points in R
3 about the

z-axis through an angle of −30◦, and then translates by
p = (5,−2, 1).

19. Let S be the triangle with vertices (4.2, 1.2, 4), (6, 4, 2),
(2, 2, 6). Find the image of S under the perspective projec-
tion with center of projection at (0, 0, 10).
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20. Let S be the triangle with vertices (9, 3,−5), (12, 8, 2),
(1.8, 2.7, 1). Find the image of S under the perspective pro-
jection with center of projection at (0, 0, 10).

Exercises 21 and 22 concern the way in which color is specified
for display in computer graphics. A color on a computer screen is
encoded by three numbers (R,G,B) that list the amount of energy
an electron gun must transmit to red, green, and blue phosphor dots
on the computer screen. (A fourth number specifies the luminance
or intensity of the color.)

21. [M] The actual color a viewer sees on a screen is influenced
by the specific type and amount of phosphors on the screen.
So each computer screen manufacturer must convert between
the (R,G,B) data and an international CIE standard for color,
which uses three primary colors, calledX, Y , andZ. A typical
conversion for short-persistence phosphors is
 .61 .29 .150
.35 .59 .063
.04 .12 .787




 R

G

B


 =


X

Y

Z




Acomputer program will send a stream of color information to
the screen, using standard CIE data (X, Y, Z). Find the equa-
tion that converts these data to the (R,G,B) data needed for
the screen’s electron gun.

22. [M] The signal broadcast by commercial television describes
each color by a vector (Y, I,Q). If the screen is black and
white, only the Y -coordinate is used. (This gives a better
monochrome picture than using CIE data for colors.) The
correspondence between YIQ and a “standard” RGB color is
given by
 Y

I

Q


 =


 .299 .587 .114
.596 −.275 −.321
.212 −.528 .311




 R

G

B




(A screen manufacturer would change the matrix entries to
work for its RGB screens.) Find the equation that converts the
YIQ data transmitted by the television station to the RGB data
needed for the television screen.

S O L U T I O N T O P R A C T I C E P R O B L E M

Assemble the matrices right-to-left for the three operations. Using p = (−2, 6),
cos(−30◦) = √

3/2, and sin(−30◦) = −.5, we have

Translate Rotate around Translate
back by p the origin by −p

 1 0 −2
0 1 6
0 0 1






√
3/2 1/2 0

−1/2
√

3/2 0
0 0 1




 1 0 2

0 1 −6
0 0 1




=



√
3/2 1/2

√
3 − 5

−1/2
√

3/2 −3
√

3 + 5
0 0 1




2.8 SUBSPACES OF R
n

This section focuses on important sets of vectors in R
n called subspaces. Often subspaces

arise in connection with some matrix A, and they provide useful information about the
equation Ax = b. The concepts and terminology in this section will be used repeatedly
throughout the rest of the book.1

1Sections 2.8 and 2.9 are included here to permit readers to postpone the study of most or all of the next
two chapters and to skip directly to Chapter 5, if so desired. Omit these two sections if you plan to work
through Chapter 4 before Chapter 5.
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DEF IN I T I ON A subspace of R
n is any set H in R

n that has three properties:

a. The zero vector is in H .

b. For each u and v in H , the sum u + v is in H .

c. For each u in H and each scalar c, the vector cu is in H .

In words, a subspace is closed under addition and scalar multiplication. As you will
see in the next few examples, most sets of vectors discussed in Chapter 1 are subspaces.
For instance, a plane through the origin is the standard way to visualize the subspace in
Example 1. See Fig. 1.

v1

x1

x3

x2

v2

0

FIGURE 1
Span {v1, v2} as a plane through
the origin.

EXAMPLE 1 If v1 and v2 are in R
n and H = Span{v1, v2}, then H is a subspace of R

n.
To verify this statement, note that the zero vector is in H (because 0v + 0u is a linear
combination of u and v). Now take two arbitrary vectors in H , say,

u = s1v1 + s2v2 and v = t1v1 + t2v2

Then

u + v = (s1 + t1)v1 + (s2 + t2)v2

which shows that u + v is a linear combination of v1 and v2 and hence is in H . Also, for
any scalar c, the vector cu is in H , because cu = c(s1v1 + s2v2) = (cs1)v1 + (cs2)v2.

Span{v1, 
v 2}

v1

v2

x2

x1

v1 �= 0, v2 = kv1.

If v1 is not zero and if v2 is a multiple of v1, then v1 and v2 simply span a line
through the origin. So a line through the origin is another example of a subspace.

EXAMPLE 2 A line L not through the origin is not a subspace, because it does not
contain the origin, as required. Also, Fig. 2 shows that L is not closed under addition or
scalar multiplication.

u

v

u � v

u � v is not on L 2w is not on L

2w

w

L L

FIGURE 2

EXAMPLE 3 For v1, . . . , vp in R
n, the set of all linear combinations of v1, . . . , vp is

a subspace of R
n. The verification of this statement is similar to the argument given in
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Example 1. We shall now refer to Span {v1, . . . , vp} as the subspace spanned (or
generated) by v1, . . . , vp.

Note that R
n is a subspace of itself because it has the three properties required for

a subspace. Another special subspace is the set consisting of only the zero vector in R
n.

This set, called the zero subspace, also satisfies the conditions for a subspace.

Column Space and Null Space of a Matrix

Subspaces of R
n usually occur in applications and theory in one of two ways. In both

cases, the subspace can be related to a matrix.

DEF IN I T I ON The column space of a matrix A is the set ColA of all linear combinations of the
columns of A.

If A = [ a1 · · · an ], with the columns in R
m, then ColA is the same as

Span {a1, . . . , an}. Example 3 shows that the column space of an m×n matrix is a
subspace of R

m.

EXAMPLE 4 Let A =

 1 −3 −4

−4 6 −2
−3 7 6


 and b =


 3

3
−4


. Determine whether b is in

the column space of A.

x3 x2

x1b

Col A

Solution The vector b is a linear combination of the columns of A if and only if b can
be written as Ax for some x, that is, if and only if the equation Ax = b has a solution.
Row reducing the augmented matrix [A b ],

 1 −3 −4 3
−4 6 −2 3
−3 7 6 −4


 ∼


 1 −3 −4 3

0 −6 −18 15
0 −2 −6 5


 ∼


 1 −3 −4 3

0 −6 −18 15
0 0 0 0




we conclude that Ax = b is consistent and b is in ColA.

The solution of Example 4 shows that when a system of linear equations is written
in the form Ax = b, the column space of A is the set of all b for which the system has a
solution.

DEF IN I T I ON The null space of a matrix A is the set NulA of all solutions to the homogeneous
equation Ax = 0.

When A has n columns, the solutions of Ax = 0 belong to R
n, and the null space of

A is a subset of R
n. In fact, NulA has the properties of a subspace of R

n.
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THEOREM 12 The null space of anm×nmatrixA is a subspace of R
n. Equivalently, the set of all

solutions to a system Ax = 0 of m homogeneous linear equations in n unknowns
is a subspace of R

n.

PROOF The zero vector is in NulA (because A0 = 0). To show that NulA satisfies the
other two properties required for a subspace, take any u and v in NulA. That is, suppose
Au = 0 and Av = 0. Then, by a property of matrix multiplication,

A(u + v) = Au + Av = 0 + 0 = 0

Thus u + v satisfies Ax = 0, and so u + v is in NulA. Also, for any scalar c,A(cu)=
c(Au) = c(0) = 0, which shows that cu is in NulA. �

To test whether a given vector v is in NulA, just compute Av to see whether Av is
the zero vector. Because NulA is described by a condition that must be checked for each
vector, we say that the null space is defined implicitly. In contrast, the column space is
defined explicitly, because vectors in ColA can be constructed (by linear combinations)
from the columns of A. To create an explicit description of Nul A, solve the equation
Ax = 0 and write the solution in parametric vector form. (See Example 6, below.)2

Basis for a Subspace

Because a subspace typically contains an infinite number of vectors, some problems
involving a subspace are handled best by working with a small finite set of vectors that
span the subspace. The smaller the set, the better. It can be shown that the smallest
possible spanning set must be linearly independent.

DEF IN I T I ON A basis for a subspace H of R
n is a linearly independent set in H that spans H .

x3

e3

e2
x2

e1

x1

FIGURE 3
The standard basis for R

3.

EXAMPLE 5 The columns of an invertible n×n matrix form a basis for all of R
n

because they are linearly independent and span R
n, by the Invertible Matrix Theorem.

One such matrix is the n×n identity matrix. Its columns are denoted by e1, . . . , en:

e1 =




1
0
...

0


 , e2 =




0
1
...

0


 , . . . , en =




0
...

0
1




The set {e1, . . . , en} is called the standard basis for R
n. See Fig. 3.

2The contrast between NulA and ColA is discussed further in Section 4.2.
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The next example shows that the standard procedure for writing the solution set of
Ax = 0 in parametric vector form actually identifies a basis for NulA. This fact will be
used throughout Chapter 5.

EXAMPLE 6 Find a basis for the null space of the matrix

A =

 −3 6 −1 1 −7

1 −2 2 3 −1
2 −4 5 8 −4




Solution First, write the solution of Ax = 0 in parametric vector form:

A ∼

 1 −2 0 −1 3 0

0 0 1 2 −2 0
0 0 0 0 0 0


 ,

x1 − 2x2 − x4 + 3x5 = 0
x3 + 2x4 − 2x5 = 0

0 = 0

The general solution is x1 = 2x2 + x4 − 3x5, x3 = −2x4 + 2x5, with x2, x4, and x5 free.

x1

x2

x3

x4

x5


=




2x2 + x4 − 3x5

x2

−2x4 + 2x5

x4

x5


= x2




2
1
0
0
0


+ x4




1
0

−2
1
0


+ x5




−3
0
2
0
1




↑ ↑ ↑
u v w

= x2u + x4v + x5w (1)

Equation (1) shows that NulA coincides with the set of all linear combinations of u, v,
and w. That is, {u, v,w} generates NulA. In fact, this construction of u, v, and w auto-
matically makes them linearly independent, because (1) shows that 0 = x2u + x4v + x5w
only if the weights x2, x4, and x5 are all zero. (Examine entries 2, 4, and 5 in the vector
x2u + x4v + x5w.) So {u, v,w} is a basis for NulA.

Finding a basis for the column space of a matrix is actually less work than finding
a basis for the null space. However, the method requires some explanation. Let’s begin
with a simple case.

EXAMPLE 7 Find a basis for the column space of the matrix

B =




1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0




Solution Denote the columns of B by b1, . . . ,b5 and note that b3 = −3b1 + 2b2 and
b4 = 5b1 − b2. The fact that b3 and b4 are combinations of the pivot columns means that
any combination of b1, . . . ,b5 is actually just a combination of b1, b2, and b5. Indeed,
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if v is any vector in ColB, say,

v = c1b1 + c2b2 + c3b3 + c4b4 + c5b5

then, substituting for b3 and b4, we can write v in the form

v = c1b1 + c2b2 + c3(−3b1 + 2b2) + c4(5b1 − b2) + c5b5

which is a linear combination of b1, b2, and b5. So {b1,b2,b5} spans ColB. Also, b1,
b2, and b5 are linearly independent, because they are columns from an identity matrix.
So the pivot columns of B form a basis for ColB.

The matrix B in Example 7 is in reduced echelon form. To handle a general matrix
A, recall that linear dependence relations among the columns of A can be expressed in
the formAx=0 for some x. (If some columns are not involved in a particular dependence
relation, then the corresponding entries in x are zero.) WhenA is row reduced to echelon
form B, the columns are drastically changed, but the equations Ax = 0 and Bx = 0 have
the same set of solutions. That is, the columns of A have exactly the same linear
dependence relationships as the columns of B.

EXAMPLE 8 It can be verified that the matrix

A = [ a1 a2 · · · a5 ] =




1 3 3 2 −9
−2 −2 2 −8 2

2 3 0 7 1
3 4 −1 11 −8




is row equivalent to the matrix B in Example 7. Find a basis for ColA.

Solution From Example 7, the pivot columns of A are columns 1, 2, and 5. Also,
b3 = −3b1 + 2b2 and b4 = 5b1 − b2. Since row operations do not affect linear depen-
dence relations among the columns of the matrix, we should have

a3 = −3a1 + 2a2 and a4 = 5a1 − a2

Check that this is true! By the argument in Example 7, a3 and a4 are not needed to generate
the column space of A. Also, {a1, a2, a5} must be linearly independent, because any
dependence relation among a1, a2, and a5 would imply the same dependence relation
among b1, b2, and b5. Since {b1,b2,b5} is linearly independent, {a1, a2, a5} is also
linearly independent and hence is a basis for ColA.

The argument in Example 8 can be adapted to prove the following theorem.

THEOREM 13 The pivot columns of a matrix A form a basis for the column space of A.

Warning: Be careful to use pivot columns of A itself for the basis of ColA. The
columns of an echelon form B are often not in the column space of A. (For instance,
in Examples 7 and 8, the columns of B all have zeros in their last entries and cannot
generate the columns of A.)
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P R A C T I C E P R O B L E M S

1. Let A =

 1 −1 5

2 0 7
−3 −5 −3


 and u =


 −7

3
2


 . Is u in Nul A? Is u in Col A? Justify

each answer.

2. Given A =

 0 1 0

0 0 1
0 0 0


 , find a vector in Nul A and a vector in Col A.

3. Suppose an n×n matrix A is invertible. What can you say about ColA? About
SG Mastering: Subspace,

Col A, Nul A, Basis 2–37

NulA?

2.8 EXERCISES
Exercises 1–4 display sets in R

2. Assume the sets include the
bounding lines. In each case, give a specific reason why the set
H is not a subspace of R

2. (For instance, find two vectors in H

whose sum is not in H , or find a vector in H with a scalar multiple
that is not in H . Draw a picture.)

1.

2.

3.

4.

5. Let v1 =

 2

3
−5


, v2 =


 −4

−5
8


, and w =


 8

2
−9


. Determine

if w is in the subspace of R
3 generated by v1 and v2.

6. Let v1 =




1
−2

4
3


, v2 =




4
−7

9
7


, v3 =




5
−8

6
5


, and u =




−4
10
−7
−5


. Determine if u is in the subspace of R

4 generated

by {v1, v2, v3}.

7. Let v1 =

 2

−8
6


, v2 =


 −3

8
−7


, v3 =


 −4

6
−7


, p =


 6

−10
11


,

and A = [ v1 v2 v3 ].

a. How many vectors are in {v1, v2, v3}?
b. How many vectors are in ColA?

c. Is p in ColA? Why or why not?

8. Let v1 =

 −3

0
6


, v2 =


 −2

2
3


, v3 =


 0

−6
3


, and p =


 1

14
−9


. Determine if p is in ColA, whereA=[ v1 v2 v3 ].
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9. With A and p as in Exercise 7, determine if p is in NulA.

10. With u = (−2, 3, 1) and A as in Exercise 8, determine if u is
in NulA.

In Exercises 11 and 12, give integers p and q such that NulA is a
subspace of R

p and ColA is a subspace of R
q .

11. A =

 3 2 1 −5

−9 −4 1 7
9 2 −5 1




12. A =




1 2 3
4 5 7

−5 −1 0
2 7 11




13. For A as in Exercise 11, find a nonzero vector in NulA and a
nonzero vector in ColA.

14. For A as in Exercise 12, find a nonzero vector in NulA and a
nonzero vector in ColA.

Determine which sets in Exercises 15–20 are bases for R
2 or R

3.
Justify each answer.

15.
[

5
−2

]
,

[
10
−3

]
16.

[ −4
6

]
,

[
2

−3

]

17.


 0

1
−2


,


 5

−7
4


,


 6

3
5


 18.


 1

1
−2


,


 −5

−1
2


,


 7

0
−5




19.


 3

−8
1


,


 6

2
−5




20.


 1

−6
−7


,


 3

−4
7


,


 −2

7
5


,


 0

8
9




In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21. a. A subspace of R
n is any set H such that (i) the zero vector

is in H, (ii) u, v, and u + v are in H , and (iii) c is a scalar
and cu is in H .

b. If v1, . . . , vp are in R
n, then Span {v1, . . . , vp} is the same

as the column space of the matrix [ v1 · · · vp ].
c. The set of all solutions of a system of m homogeneous

equations in n unknowns is a subspace of R
m.

d. The columns of an invertible n×n matrix form a basis for
R

n.

e. Row operations do not affect linear dependence relations
among the columns of a matrix.

22. a. A subset H of R
n is a subspace if the zero vector is in H .

b. Given vectors v1, . . . , vp in R
n, the set of all linear com-

binations of these vectors is a subspace of R
n.

c. The null space of an m×n matrix is a subspace of R
n.

d. The column space of a matrix A is the set of solutions of
Ax = b.

e. If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

Exercises 23–26 display a matrix A and an echelon form of A.
Find a basis for Col A and a basis for Nul A.

23. A =

 4 5 9 −2

6 5 1 12
3 4 8 −3


 ∼


 1 2 6 −5

0 1 5 −6
0 0 0 0




24. A =

 −3 9 −2 −7

2 −6 4 8
3 −9 −2 2


 ∼


 1 −3 6 9

0 0 4 5
0 0 0 0




25. A =




1 4 8 −3 −7
−1 2 7 3 4
−2 2 9 5 5

3 6 9 −5 −2




∼




1 4 8 0 5
0 2 5 0 −1
0 0 0 1 4
0 0 0 0 0




26. A =




3 −1 7 3 9
−2 2 −2 7 5
−5 9 3 3 4
−2 6 6 3 7




∼




3 −1 7 0 6
0 2 4 0 3
0 0 0 1 1
0 0 0 0 0




27. Construct a 3×3 matrix A and a nonzero vector b such that b
is in Col A, but b is not the same as any one of the columns
of A.

28. Construct a 3×3 matrix A and a vector b such that b is not in
Col A.

29. Construct a nonzero 3×3 matrix A and a nonzero vector b
such that b is in Nul A.

30. Suppose the columns of a matrix A = [a1 · · · ap] are linearly
independent. Explain why {a1, . . . , ap} is a basis for Col A.

In Exercises 31–36, respond as comprehensively as possible, and
justify your answer.
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31. Suppose F is a 5×5 matrix whose column space is not equal
to R

5. What can you say about Nul F ?

32. If R is a 6×6 matrix and Nul R is not the zero subspace, what
can you say about Col R?

33. IfQ is a 4×4 matrix and ColQ = R
4,what can you say about

solutions of equations of the form Qx = b for b in R
4?

34. If P is a 5×5 matrix and Nul P is the zero subspace, what
can you say about solutions of equations of the form Px = b
for b in R

5?

35. What can you say about Nul B when B is a 5×4 matrix with
linearly independent columns?

36. What can you say about the shape of an m×n matrix A when
the columns of A form a basis for R

m?

[M] In Exercises 37 and 38, construct bases for the column space
and the null space of the given matrix A. Justify your work.

37. A =




3 −5 0 −1 3
−7 9 −4 9 −11
−5 7 −2 5 −7

3 −7 −3 4 0




38. A =




5 2 0 −8 −8
4 1 2 −8 −9
5 1 3 5 19

−8 −5 6 8 5




CD Column Space and Null Space

CD A Basis for Col A

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. To determine whether u is in Nul A, simply compute

Au =

 1 −1 5

2 0 7
−3 −5 −3




 −7

3
2


 =


 0

0
0




The result shows that u is in Nul A. Deciding whether u is in Col A requires more
work. Reduce the augmented matrix [A u] to echelon form to determine whether
the equation Ax = u is consistent:

 1 −1 5 −7
2 0 7 3

−3 −5 −3 2


 ∼


 1 −1 5 −7

0 2 −3 17
0 −8 12 −19


 ∼


 1 −1 5 −7

0 2 −3 17
0 0 0 49




The equation Ax = u has no solution, so u is not in Col A.

2. In contrast to Practice Problem 1, finding a vector in Nul A requires more work than
testing whether a specified vector is in NulA. However, sinceA is already in reduced
echelon form, the equationAx = 0 shows that if x = (x1, x2, x3), then x2 = 0, x3 = 0,
and x1 is a free variable. Thus, a basis for Nul A is v = (1, 0, 0). Finding just one
vector in Col A is trivial, since each column of A is in Col A. In this particular case,
the same vector v is in both Nul A and Col A. For most n×n matrices, the zero
vector of R

n is the only vector in both Nul A and Col A.

3. If A is invertible, then the columns of A span R
n, by the Invertible Matrix Theorem.

By definition, the columns of any matrix always span the column space, so in this case
Col A is all of R

n. In symbols, Col A = R
n.Also, since A is invertible, the equation

Ax = 0 has only the trivial solution. This means that Nul A is the zero subspace. In
symbols, Nul A = {0}.
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2.9 DIMENSION AND RANK
This section continues the discussion of subspaces and bases for subspaces, beginning
with the concept of a coordinate system. The definition and example below should make
a useful new term, dimension, seem quite natural, at least for subspaces of R

3.

Coordinate Systems

The main reason for selecting a basis for a subspace H, instead of merely a spanning
set, is that each vector in H can be written in only one way as a linear combination of
the basis vectors. To see why, suppose B = {b1, . . . ,bp} is a basis for H , and suppose
a vector x in H can be generated in two ways, say,

x = c1b1 + · · · + cpbp and x = d1b1 + · · · + dpbp (1)

Then, subtracting gives

0 = x − x = (c1 − d1)b1 + · · · + (cp − dp)bp (2)

Since B is linearly independent, the weights in (2) must all be zero. That is, cj = dj for
1 ≤ j ≤ p, which shows that the two representations in (1) are actually the same.

DEF IN I T I ON Suppose the set B = {b1, . . . ,bp} is a basis for a subspace H . For each x in H ,
the coordinates of x relative to the basis B are the weights c1, . . . , cp such that
x = c1b1 + · · · + cpbp, and the vector in R

p

[x]B =

 c1

...

cp




is called the coordinate vector of x (relative to B) or the B-coordinate vector
of x.1

EXAMPLE 1 Let v1 =

 3

6
2


, v2 =


 −1

0
1


, x =


 3

12
7


, and B = {v1, v2}. Then B is a

basis for H = Span {v1, v2} because v1 and v2 are linearly independent. Determine if x
is in H , and if it is, find the coordinate vector of x relative to B.

Solution If x is in H , then the following vector equation is consistent:

c1


 3

6
2


 + c2


 −1

0
1


 =


 3

12
7




1It is important that the elements of B are numbered because the entries in [x]B depend on the order of
the vectors in B.
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The scalars c1 and c2, if they exist, are the B-coordinates of x. Row operations show
that 

 3 −1 3
6 0 12
2 1 7


 ∼


 1 0 2

0 1 3
0 0 0




Thus c1 = 2, c2 = 3, and [ x ]B =
[

2
3

]
. The basis B determines a “coordinate system”

on H , which can be visualized by the grid shown in Fig. 1.

3v2

2v2

v2

0 v1 2v1

x = 2v1 + 3v2

FIGURE 1 A coordinate system on a plane H in
R

3.

Notice that although points in H are also in R
3, they are completely determined by

their coordinate vectors, which belong to R
2. The grid on the plane in Fig. 1 makes

H “look” like R
2. The correspondence x �→ [ x ]B is a one-to-one correspondence

between H and R
2 that preserves linear combinations. We call such a correspondence

an isomorphism, and we say that H is isomorphic to R
2.

In general, if B = {b1, . . . ,bp} is a basis for H , then the mapping x �→ [x]B is a
one-to-one correspondence that makes H look and act the same as R

p (even though the
vectors in H themselves may have more than p entries). (Section 4.4 has more details.)

The Dimension of a Subspace

It can be shown that if a subspace H has a basis of p vectors, then every basis of H must
consist of exactly p vectors. (See Exercises 27 and 28.) Thus the following definition
makes sense.

DEF IN I T I ON The dimension of a nonzero subspace H , denoted by dimH , is the number of
vectors in any basis for H . The dimension of the zero subspace {0} is defined to
be zero.2

2The zero subspace has no basis (because the zero vector by itself forms a linearly dependent set).
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The space R
n has dimension n. Every basis for R

n consists of n vectors. A plane
through 0 in R

3 is two-dimensional, and a line through 0 is one-dimensional.

EXAMPLE 2 Recall that the null space of the matrixA in Example 6 of Section 2.8 had
a basis of 3 vectors. So the dimension of NulA in this case is 3. Observe how each basis
vector corresponds to a free variable in the equation Ax = 0. Our construction always
produces a basis in this way. So, to find the dimension of NulA, simply identify and
count the number of free variables in Ax = 0.

DEF IN I T I ON The rank of a matrix A, denoted by rank A, is the dimension of the column space
of A.

Since the pivot columns ofA form a basis for ColA, the rank ofA is just the number
of pivot columns in A.

EXAMPLE 3 Determine the rank of the matrix

A =




2 5 −3 −4 8
4 7 −4 −3 9
6 9 −5 2 4
0 −9 6 5 −6




Solution Reduce A to echelon form:

A ∼




2 5 −3 −4 8
0 −3 2 5 −7
0 −6 4 14 −20
0 −9 6 5 −6


 ∼ · · · ∼




2 5 −3 −4 8
0 −3 2 5 −7
0 0 0 4 −6
0 0 0 0 0




Pivot columns ✲ ✲ ✲

The matrix A has 3 pivot columns, so rank A = 3.

The row reduction in Example 3 reveals that there are two free variables in Ax = 0,
because two of the five columns of A are not pivot columns. (The nonpivot columns
correspond to the free variables in Ax = 0.) Since the number of pivot columns plus the
number of nonpivot columns is exactly the number of columns, the dimensions of ColA
and NulA have the following useful connection. (See the Rank Theorem in Section 4.6
for additional details.)

THEOREM 14 The Rank Theorem

If a matrix A has n columns, then rank A + dim NulA = n.

The following theorem is important for applications and will be needed in Chapters 5
and 6. The theorem (proved in Section 4.5) is certainly plausible, if you think of a
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p-dimensional subspace as isomorphic to R
p. The Invertible Matrix Theorem shows

that p vectors in R
p are linearly independent if and only if they also span R

p.

THEOREM 15 The Basis Theorem

LetH be a p-dimensional subspace of R
n. Any linearly independent set of exactly

p elements in H is automatically a basis for H . Also, any set of p elements of H
that spans H is automatically a basis for H .

Rank and the Invertible Matrix Theorem

The various vector space concepts associated with a matrix provide several more state-
ments for the Invertible Matrix Theorem. They are presented below to follow the state-
ments in the original theorem in Section 2.3.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n×n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of R
n.

n. Col A = R
n

o. dim Col A = n

p. rank A = n

q. Nul A = {0}
r. dim Nul A = 0

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

(g) ⇒ (n) ⇒ (o) ⇒ (p) ⇒ (r) ⇒ (q) ⇒ (d)

Statement (g), which says that the equation Ax = b has at least one solution for each b in
R
n, implies (n), because Col A is precisely the set of all b such that the equation Ax = b

is consistent. The implications (n) ⇒ (o) ⇒ (p) follow from the definitions of dimension
and rank. If the rank of A is n, the number of columns of A, then dim Nul A = 0, by
the Rank Theorem, and so Nul A = {0}. Thus (p) ⇒ (r) ⇒ (q). Also, (q) implies that the
equation Ax = 0 has only the trivial solution, which is statement (d). Since statements
(d) and (g) are already known to be equivalent to the statement that A is invertible, the
proof is complete. �

SG Expanded Table
for the IMT 2–39
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NU M E R I CA L NOT E S

Many algorithms discussed in this text are useful for understanding concepts and
making simple computations by hand. However, the algorithms are often unsuitable
for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed on a
matrix whose entries are specified exactly, row operations can change the apparent

rank of a matrix. For instance, if the value of x in the matrix

[
5 7
5 x

]
is not stored

exactly as 7 in a computer, then the rank may be 1 or 2, depending on whether the
computer treats x − 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7.4.

P R A C T I C E P R O B L E M S

1. Determine the dimension of the subspace H of R
3 spanned by the vectors v1, v2, and

CD The rank command

v3. (First, find a basis for H .)

v1 =

 2

−8
6


 , v2 =


 3

−7
−1


 , v3 =


 −1

6
−7




2. Consider the basis B =
{[

1
.2

]
,

[
.2
1

]}
for R

2. If [ x ]B =
[

3
2

]
, what is x?

3. Could R
3 possibly contain a four-dimensional subspace? Explain.

2.9 EXERCISES
In Exercises 1 and 2, find the vector x determined by the given
coordinate vector [x]B and the given basis B. Illustrate your an-
swer with a figure, as in the solution of Practice Problem 2.

1. B =
{[

1
1

]
,

[
2

−1

]}
, [x]B =

[
3
2

]

2. B =
{[ −2

1

]
,

[
3
1

]}
, [x]B =

[ −1
3

]

In Exercises 3–6, the vector x is in a subspace H with a basis
B = {b1,b2}. Find the B-coordinate vector of x.

3. b1 =
[

1
−4

]
,b2 =

[ −2
7

]
, x =

[ −3
7

]

4. b1 =
[

1
−3

]
,b2 =

[ −3
5

]
, x =

[ −7
5

]

5. b1 =

 1

5
−3


 ,b2 =


 −3

−7
5


 , x =


 4

10
−7




6. b1 =

 −3

1
−4


 ,b2 =


 7

5
−6


 , x =


 11

0
7




7. Let b1 =
[

3
0

]
,b2 =

[ −1
2

]
, w =

[
7

−2

]
, x =

[
4
1

]
, and

B = {b1,b2}. Use the figure to estimate [w]B and [x]B. Con-
firm your estimate of [x]B by using it and {b1,b2} to compute
x.
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b 2

b1

x

w

0

8. Let b1 =
[

0
2

]
, b2 =

[
2
1

]
, x =

[ −2
3

]
, y =

[
2
4

]
,

z =
[ −1

−2.5

]
, and B = {b1,b2}. Use the figure to estimate

[x]B, [y]B, and [z]B. Confirm your estimates of [y]B and
[z]B by using them and {b1,b2} to compute y and z.

b2

b1

x

0

z

y

Exercises 9–12 display a matrix A and an echelon form of A. Find
bases for Col A and Nul A, and then state the dimensions of these
subspaces.

9. A =




1 −3 2 −4
−3 9 −1 5

2 −6 4 −3
−4 12 2 7


 ∼




1 −3 2 −4
0 0 5 −7
0 0 0 5
0 0 0 0




10. A =




1 −2 9 5 4
1 −1 6 5 −3

−2 0 −6 1 −2
4 1 9 1 −9




∼




1 −2 9 5 4
0 1 −3 0 −7
0 0 0 1 −2
0 0 0 0 0




11. A =




1 2 −5 0 −1
2 5 −8 4 3

−3 −9 9 −7 −2
3 10 −7 11 7




∼




1 2 −5 0 −1
0 1 2 4 5
0 0 0 1 2
0 0 0 0 0




12. A =




1 2 −4 3 3
5 10 −9 −7 8
4 8 −9 −2 7

−2 −4 5 0 −6




∼




1 2 −4 3 3
0 0 1 −2 0
0 0 0 0 −5
0 0 0 0 0




In Exercises 13 and 14, find a basis for the subspace spanned by
the given vectors. What is the dimension of the subspace?

13.




1
−3

2
−4


 ,




−3
9

−6
12


 ,




2
−1

4
2


 ,




−4
5

−3
7




14.




1
−1
−2

5


 ,




2
−3
−1

6


 ,




0
2

−6
8


 ,




−1
4

−7
7


 ,




3
−8

9
−5




15. Suppose a 3×5 matrix A has three pivot columns. Is
Col A = R

3? Is Nul A = R
2? Explain your answers.

16. Suppose a 4×7 matrix A has three pivot columns. Is
Col A = R

3? What is the dimension of Nul A? Explain your
answers.

In Exercises 17 and 18, mark each statement True or False. Justify
each answer. Here A is an m×n matrix.

17. a. If B = {v1, . . . , vp} is a basis for a subspace H and if
x = c1v1 + · · · + cpvp, then c1, . . . , cp are the coordinates
of x relative to the basis B.

b. Each line in R
n is a one-dimensional subspace of R

n.

c. The dimension of Col A is the number of pivot columns
of A.

d. The dimensions of Col A and Nul A add up to the number
of columns of A.
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e. If a set of p vectors spans a p-dimensional subspace H of
R

n, then these vectors form a basis for H .

18. a. If B is a basis for a subspace H, then each vector in H can
be written in only one way as a linear combination of the
vectors in B.

b. If B = {v1, . . . , vp} is a basis for a subspace H of R
n, then

the correspondence x �→ [x]B makes H look and act the
same as R

p.

c. The dimension of Nul A is the number of variables in the
equation Ax = 0.

d. The dimension of the column space of A is rank A.

e. If H is a p-dimensional subspace of R
n, then a linearly

independent set of p vectors in H is a basis for H .

In Exercises 19–24, justify each answer or construction.

19. If the subspace of all solutions of Ax = 0 has a basis consist-
ing of three vectors and if A is a 5×7 matrix, what is the rank
of A?

20. What is the rank of a 4×5 matrix whose null space is three-
dimensional?

21. If the rank of a 7×6 matrix A is 4, what is the dimension of
the solution space of Ax = 0?

22. Show that a set {v1, . . . , v5} in R
n is linearly dependent if

dim Span{v1, . . . , v5} = 4.

23. If possible, construct a 3×4 matrixA such that dim NulA = 2
and dim Col A = 2.

24. Construct a 4×3 matrix with rank 1.

25. Let A be an n×p matrix whose column space is p-
dimensional. Explain why the columns of A must be linearly
independent.

26. Suppose columns 1, 3, 5, and 6 of a matrix A are linearly
independent (but are not necessarily pivot columns) and the
rank of A is 4. Explain why the four columns mentioned must
be a basis for the column space of A.

27. Suppose vectors b1, . . . ,bp span a subspace W, and let
{a1, . . . , aq} be any set in W containing more than p vec-
tors. Fill in the details of the following argument to show
that {a1, . . . , aq} must be linearly dependent. First, let
B = [b1 · · · bp] and A = [a1 · · · aq ].
a. Explain why for each vector aj , there exists a vector cj in

R
p such that aj = Bcj .

b. Let C = [c1 · · · cq ]. Explain why there is a nonzero
vector u such that Cu = 0.

c. Use B and C to show that Au = 0. This shows that the
columns of A are linearly dependent.

28. Use Exercise 27 to show that if A and B are bases for a sub-
space W of R

n, then A cannot contain more vectors than B,
and, conversely, B cannot contain more vectors than A.

29. [M] Let H = Span {v1, v2} and B = {v1, v2}. Show that x is
in H , and find the B-coordinate vector of x, when

v1 =




11
−5
10

7


 , v2 =




14
−8
13
10


 , x =




19
−13

18
15




30. [M] Let H= Span {v1, v2, v3} and B = {v1, v2, v3}. Show
that B is a basis for H and x is in H , and find the B-coordinate
vector of x, when

v1 =




−6
4

−9
4


 , v2 =




8
−3

7
−3


 , v3 =




−9
5

−8
3


 , x =




4
7

−8
3




SG Mastering: Dimension and Rank 2–41

S O L U T I O N S T O P R A C T I C E P R O B L E M S

v1

v2
v3

0

Col A
1. Construct A = [v1 v2 v3] so that the subspace spanned by v1, v2, v3 is the column

space of A. A basis for this space is provided by the pivot columns of A.

A =

 2 3 −1

−8 −7 6
6 −1 −7


 ∼


 2 3 −1

0 5 2
0 −10 −4


 ∼


 2 3 −1

0 5 2
0 0 0




The first two columns of A are pivot columns and form a basis for H . Thus
dimH = 2.
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2. If [x]B =
[

3
2

]
, then x is formed from a linear combination of the basis vectors using

weights 3 and 2:

x = 3b1 + 2b2 = 3

[
1
.2

]
+ 2

[
.2
1

]
=

[
3.4
2.6

]
The basis {b1,b2} determines a coordinate system for R

2, illustrated by the grid in
the figure. Note how x is 3 units in the b1-direction and 2 units in the b2-direction.

b1

b2

x

1

1

3. A four-dimensional subspace would contain a basis of four linearly independent
vectors. This is impossible inside R

3. Since any linearly independent set in R
3 has

no more than three vectors, any subspace of R
3 has dimension no more than 3. The

space R
3 itself is the only three-dimensional subspace of R

3. Other subspaces of R
3

have dimension 2, 1, or 0.

CHAPTER 2 SUPPLEMENTARY EXERCISES

1. Assume that the matrices mentioned in the statements below
have appropriate sizes. Mark each statement True or False.
Justify each answer.
a. IfA andB arem×n, then bothABT andATB are defined.

b. If AB = C and C has 2 columns, then A has 2 columns.

c. Left-multiplying a matrix B by a diagonal matrix A, with
nonzero entries on the diagonal, scales the rows of B.

d. If BC = BD, then C = D.

e. If AC = 0, then either A = 0 or C = 0.

f. If A and B are n×n, then (A + B)(A − B) = A2 − B2.

g. An elementary n×n matrix has either n or n + 1 nonzero
entries.

h. The transpose of an elementary matrix is an elementary
matrix.

i. An elementary matrix must be square.

j. Every square matrix is a product of elementary matrices.

k. If A is a 3×3 matrix with three pivot positions,
there exist elementary matrices E1, . . . , Ep such that
Ep · · ·E1A = I .

l. If AB = I , then A is invertible.

m. IfA andB are square and invertible, thenAB is invertible,
and (AB)−1 = A−1B−1.

n. If AB = BA and if A is invertible, then A−1B = BA−1.

o. If A is invertible and if r �= 0, then (rA)−1 = rA−1.

p. If A is a 3×3 matrix and the equation Ax =

 1

0
0


 has a

unique solution, then A is invertible.

2. Find the matrix C whose inverse is C−1 =
[

4 5
6 7

]
.

3. Let A =

 0 0 0

1 0 0
0 1 0


. Show that A3 = 0. Use matrix al-

gebra to compute the product (I − A)(I + A + A2).

4. Suppose An = 0 for some n > 1. Find an inverse for I − A.

5. Suppose an n×n matrix A satisfies the equation A2−
2A + I = 0. Show that A3 = 3A − 2I and A4 = 4A − 3I .

6. Let A =
[

1 0
0 −1

]
, B =

[
0 1
1 0

]
. These are Pauli spin

matrices used in the study of electron spin in quantum me-
chanics. Show that A2 = I , B2 = I , and AB = −BA. Matri-
ces such that AB = −BA are said to anticommute.

7. Let A =

 1 3 8

2 4 11
1 2 5


 and B =


 −3 5

1 5
3 4


. Compute

A−1B without computing A−1. [Hint: A−1B is the solution
of the equation AX = B.]
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8. Find a matrix A such that the transformation x �→Ax maps[
1
3

]
and

[
2
7

]
into

[
1
1

]
and

[
3
1

]
, respectively. [Hint: Write

a matrix equation involving A, and solve for A.]

9. Suppose AB =
[

5 4
−2 3

]
and B =

[
7 3
2 1

]
. Find A.

10. Suppose A is invertible. Explain why ATA is also invertible.
Then show that A−1 = (ATA)−1AT .

11. Let x1, . . . , xn be fixed numbers. The matrix below, called
a Vandermonde matrix, occurs in applications such as signal
processing, error-correcting codes, and polynomial interpola-
tion.

V =




1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2...
...

...
...

1 xn x2
n · · · xn−1

n




Given y = (y1, . . . , yn) in R
n, suppose c = (c0, . . . , cn−1) in

R
n satisfies V c = y, and define the polynomial

p(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1

a. Show thatp(x1) = y1, . . . , p(xn) = yn. We callp(t) an in-
terpolating polynomial for the points (x1, y1), . . . , (xn, yn)

because the graph of p(t) passes through the points.

b. Suppose x1, . . . , xn are distinct numbers. Show that the
columns of V are linearly independent. [Hint: How many
zeros can a polynomial of degree n − 1 have?]

c. Prove: “If x1, . . . , xn are distinct numbers, and y1, . . . , yn
are arbitrary numbers, then there is an interpolating poly-
nomial of degree ≤ n − 1 for (x1, y1), . . . , (xn, yn).”

12. Let A = LU , where L is an invertible lower triangular matrix
and U is upper triangular. Explain why the first column of
A is a multiple of the first column of L. How is the second
column of A related to the columns of L?

13. Given u in R
n with uTu = 1, let P = uuT (an outer product)

and Q = I − 2P . Justify statements (a), (b), and (c).
a. P 2 = P b. P T = P c. Q2 = I

The transformation x �→P x is called a projection, and
x �→Qx is called a Householder reflection. Such reflections
are used in computer programs to create multiple zeros in a
vector (usually a column of a matrix).

14. Let u =

 0

0
1


 and x =


 1

5
3


. Determine P and Q as in Exer-

cise 13, and compute Px and Qx. The figure shows that Qx
is the reflection of x through the x1x2-plane.

Px

x3

x1

x2

u

x

x � Px

Qx

A Householder reflection through the plane
x3 = 0.

15. Suppose C = E3E2E1B, where E1, E2, E3 are elementary
matrices. Explain why C is row equivalent to B.

16. Let A be an n×n singular matrix. Describe how to construct
an n×n nonzero matrix B such that AB = 0.

17. Let A be a 6×4 matrix and B a 4×6 matrix. Show that the
6×6 matrix AB cannot be invertible.

18. Suppose A is a 5×3 matrix and there exists a 3×5 matrix C

such that CA = I3. Suppose further that for some given b in
R

5, the equation Ax = b has at least one solution. Show that
this solution is unique.

19. [M] Certain dynamical systems can be studied by examin-
ing powers of a matrix, such as those below. Determine
what happens to Ak and Bk as k increases (for example, try
k = 2, . . . , 16). Try to identify what is special about A and B.
Investigate large powers of other matrices of this type, and
make a conjecture about such matrices.

A =

 .4 .2 .3
.3 .6 .3
.3 .2 .4


 , B =


 0 .2 .3
.1 .6 .3
.9 .2 .4




20. [M] Let An be the n×n matrix with 0’s on the main diago-
nal and 1’s elsewhere. Compute A−1

n for n = 4, 5, and 6, and
make a conjecture about the general form of A−1

n for larger
values of n.

CD Lagrange Interpolation


