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3
Determinants

WEB

INTRODUCTORY EXAMPLE

Determinants in
Analytic Geometry

A determinant is a number that is assigned to a square

array of numbers in a certain way. This idea was consid-

ered as early as 1683 by the Japanese mathematician Seki

Takakazu and independently in 1693 by the German math-

ematician Gottfried Leibniz, about 160 years before a

separate theory of matrices developed. For many years,

determinants appeared mainly in discussions of systems of

linear equations.

In 1750, an article by the Swiss mathematician

Gabriel Cramer hinted that determinants might be useful

in analytic geometry. In that paper, Cramer used deter-

minants to construct equations of certain curves in the

xy-plane. In the same paper, he also produced his famous

rule for solving an n×n system by determinants. Then, in

1812, Augustin-Louis Cauchy published a paper that gave

determinantal formulas for volumes of several solid poly-

hedra, and he connected the formulas with earlier work on

determinants. Among the “crystals” Cauchy studied were

the tetrahedron in Fig. 1 and the parallelepiped in Fig. 2.

If the vertices of the parallelepiped are the origin

0 = (0, 0, 0), v1 = (a1, b1, c1), v2 = (a2, b2, c2), and

v3 = (a3, b3, c3), then its volume is the absolute value of

the determinant of coefficient matrix of the system:

a1x + b1y + c1z = 0

a2x + b2y + c2z = 0

a3x + b3y + c3z = 0

Cauchy’s use of determinants in analytic geometry

stimulated an intense interest in applications of

determinants that lasted for about 100 years. A mere

summary of what was known by the early 1900s filled a

four-volume treatise by Thomas Muir.

0

v3 v2

v1 v3

v2

v3

0

FIGURE 1 A tetrahedron. FIGURE 2 A parallelepiped.
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In Cauchy’s day, when life was simple and matrices were small, determinants played
a major role in analytic geometry and other parts of mathematics. Today, deter-
minants are of little numerical value in the large-scale matrix computations that

occur so often. Nevertheless, determinantal formulas still give important information
about matrices, and a knowledge of determinants is useful in some applications of linear
algebra.

We have three goals in this chapter: to prove an invertibility criterion for a square
matrix A that involves the entries of A rather than its columns, to give formulas for
A−1 and A−1b that are used in theoretical applications, and to derive the geometric
interpretation of a determinant described in the chapter introduction. The first goal is
reached in Section 3.2 and the other two in Section 3.3.

3.1 INTRODUCTION TO DETERMINANTS
Recall from Section 2.2 that a 2×2 matrix is invertible if and only if its determinant
is nonzero. To extend this useful fact to larger matrices, we need a definition for the
determinant of an n×n matrix. We can discover the definition for the 3×3 case by
watching what happens when an invertible 3×3 matrix A is row reduced.

Consider A= [aij ] with a11 �= 0. If we multiply the second and third rows of A by
a11 and then subtract appropriate multiples of the first row from the other two rows, we
find that A is row equivalent to the following two matrices:

 a11 a12 a13

a11a21 a11a22 a11a23

a11a31 a11a32 a11a33


 ∼


 a11 a12 a13

0 a11a22 − a12a21 a11a23 − a13a21

0 a11a32 − a12a31 a11a33 − a13a31


 (1)

Since A is invertible, either the (2, 2)-entry or the (3, 2)-entry on the right in (1) is
nonzero. Let us suppose that the (2, 2)-entry is nonzero. (Otherwise, we can make a
row interchange before proceeding.) Multiply row 3 by a11a22 − a12a21, and then to the
new row 3 add −(a11a32 − a12a31) times row 2. This will show that

A ∼

 a11 a12 a13

0 a11a22 − a12a21 a11a23 − a13a21

0 0 a11�




where

�= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31 (2)

Since A is invertible, � must be nonzero. The converse is true, too, as we will see in
Section 3.2. We call � in (2) the determinant of the 3×3 matrix A.

Recall that the determinant of a 2×2 matrix, A= [aij ], is the number

detA= a11a22 − a12a21

For a 1×1 matrix—say, A= [a11]—we define detA= a11. To generalize the defini-
tion of the determinant to larger matrices, we’ll use 2×2 determinants to rewrite the
3×3 determinant � described above. Since the terms in � can be grouped as
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(a11a22a33 − a11a23a32)− (a12a21a33 − a12a23a31) + (a13a21a32 − a13a22a31),

�= a11 ·det

[
a22 a23

a32 a33

]
− a12 ·det

[
a21 a23

a31 a33

]
+ a13 ·det

[
a21 a22

a31 a32

]

For brevity, we write

�= a11 ·detA11 − a12 ·detA12 + a13 ·detA13 (3)

where A11, A12, and A13 are obtained from A by deleting the first row and one of the
three columns. For any square matrixA, letAij denote the submatrix formed by deleting
the ith row and j th column of A. For instance, if

A=




1 −2 5 0
2 0 4 −1
3 1 0 7
0 4 −2 0




then A32 is obtained by crossing out row 3 and column 2,


1 −2 5 0
2 0 4 −1
3 1 0 7
0 4 −2 0




so that

A32 =

 1 5 0

2 4 −1
0 −2 0




We can now give a recursive definition of a determinant. When n= 3, detA is defined
using determinants of the 2×2 submatricesA1j , as in (3) above. When n= 4, detA uses
determinants of the 3×3 submatrices A1j . In general, an n×n determinant is defined
by determinants of (n− 1)×(n− 1) submatrices.

D E F I N I T I O N For n ≥ 2, the determinant of an n×n matrix A= [aij ] is the sum of n terms
of the form ±a1j detA1j , with plus and minus signs alternating, where the entries
a11, a12, . . . , a1n are from the first row of A. In symbols,

detA = a11 detA11 − a12 detA12 + · · · + (−1)1+na1n detA1n

=
n∑

j=1

(−1)1+j a1j detA1j

EXAMPLE 1 Compute the determinant of

A=

 1 5 0

2 4 −1
0 −2 0






April 4, 2005 13:36 l57-ch03 Sheet number 4 Page number 188 cyan magenta yellow black

188 CHAPTER 3 Determinants

Solution Compute detA= a11 detA11 − a12 detA12 + a13 detA13:

detA = 1·det

[
4 −1

−2 0

]
− 5·det

[
2 −1
0 0

]
+ 0·det

[
2 4
0 −2

]

= 1(0 − 2)− 5(0 − 0) + 0(−4 − 0)= −2

Another common notation for the determinant of a matrix uses a pair of vertical
lines in place of brackets. Thus the calculation in Example 1 can be written as

detA= 1

∣∣∣∣ 4 −1
−2 0

∣∣∣∣ − 5

∣∣∣∣2 −1
0 0

∣∣∣∣ + 0

∣∣∣∣2 4
0 −2

∣∣∣∣ = · · · = −2

To state the next theorem, it is convenient to write the definition of detA in a slightly
different form. Given A= [aij ], the (i, j)-cofactor of A is the number Cij given by

Cij = (−1)i+j detAij (4)

Then

detA= a11C11 + a12C12 + · · · + a1nC1n

This formula is called a cofactor expansion across the first row of A. We omit the
proof of the following fundamental theorem to avoid a lengthy digression.

T H E O R E M 1 The determinant of an n×n matrix A can be computed by a cofactor expansion
across any row or down any column. The expansion across the ith row using the
cofactors in (4) is

detA= ai1Ci1 + ai2Ci2 + · · · + ainCin

The cofactor expansion down the j th column is

detA= a1jC1j + a2jC2j + · · · + anjCnj

The plus or minus sign in the (i, j)-cofactor depends on the position of aij in the
matrix, regardless of the sign of aij itself. The factor (−1)i+j determines the following
checkerboard pattern of signs: 


+ − + · · ·
− + −
+ − +
...

. . .




EXAMPLE 2 Use a cofactor expansion across the third row to compute detA, where

A=

 1 5 0

2 4 −1
0 −2 0



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Solution Compute

detA = a31C31 + a32C32 + a33C33

= (−1)3+1a31 detA31 + (−1)3+2a32 detA32 + (−1)3+3a33 detA33

= 0

∣∣∣∣5 0
4 −1

∣∣∣∣ − (−2)

∣∣∣∣1 0
2 −1

∣∣∣∣ + 0

∣∣∣∣1 5
2 4

∣∣∣∣
= 0 + 2(−1) + 0 = −2

Theorem 1 is helpful for computing the determinant of a matrix that contains many
zeros. For example, if a row is mostly zeros, then the cofactor expansion across that row
has many terms that are zero, and the cofactors in those terms need not be calculated.
The same approach works with a column that contains many zeros.

EXAMPLE 3 Compute detA, where

A=




3 −7 8 9 −6
0 2 −5 7 3
0 0 1 5 0
0 0 2 4 −1
0 0 0 −2 0




Solution The cofactor expansion down the first column of A has all terms equal to
zero except the first. Thus

detA= 3·

∣∣∣∣∣∣∣∣

2 −5 7 3
0 1 5 0
0 2 4 −1
0 0 −2 0

∣∣∣∣∣∣∣∣
− 0·C21 + 0·C31 − 0·C41 + 0·C51

Henceforth we will omit the zero terms in the cofactor expansion. Next, expand this
4×4 determinant down the first column, in order to take advantage of the zeros there.
We have

detA= 3·2·
∣∣∣∣∣∣
1 5 0
2 4 −1
0 −2 0

∣∣∣∣∣∣
This 3×3 determinant was computed in Example 1 and found to equal −2. Hence
detA= 3·2·(−2)= −12.

The matrix in Example 3 was nearly triangular. The method in that example is easily
adapted to prove the following theorem.

T H E O R E M 2 If A is a triangular matrix, then detA is the product of the entries on the main
diagonal of A.
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The strategy in Example 3 of looking for zeros works extremely well when an entire
row or column consists of zeros. In such a case, the cofactor expansion along such a row
or column is a sum of zeros! So the determinant is zero. Unfortunately, most cofactor
expansions are not so quickly evaluated.

NU M E R I CA L NOT E

By today’s standards, a 25×25 matrix is small. Yet it would be impossible to calculate
a 25×25 determinant by cofactor expansion. In general, a cofactor expansion requires
over n! multiplications, and 25! is approximately 1.5×1025.

If a computer performs one trillion multiplications per second, it would have
to run for over 500,000 years to compute a 25×25 determinant by this method.
Fortunately, there are faster methods, as we’ll soon discover.

Exercises 19–38 explore important properties of determinants, mostly for the 2×2
case. The results from Exercises 33–36 will be used in the next section to derive the
analogous properties for n×n matrices.

P R A C T I C E P R O B L E M

Compute

∣∣∣∣∣∣∣∣

5 −7 2 2
0 3 0 −4

−5 −8 0 3
0 5 0 −6

∣∣∣∣∣∣∣∣
.

3.1 EXERCISES

Compute the determinants in Exercises 1–8 using a cofactor ex-
pansion across the first row. In Exercises 1–4, also compute the
determinant by a cofactor expansion down the second column.

1.

∣∣∣∣∣∣
3 0 4
2 3 2
0 5 −1

∣∣∣∣∣∣ 2.

∣∣∣∣∣∣
0 5 1
4 −3 0
2 4 1

∣∣∣∣∣∣

3.

∣∣∣∣∣∣
2 −4 3
3 1 2
1 4 −1

∣∣∣∣∣∣ 4.

∣∣∣∣∣∣
1 3 5
2 1 1
3 4 2

∣∣∣∣∣∣

5.

∣∣∣∣∣∣
2 3 −4
4 0 5
5 1 6

∣∣∣∣∣∣ 6.

∣∣∣∣∣∣
5 −2 4
0 3 −5
2 −4 7

∣∣∣∣∣∣

7.

∣∣∣∣∣∣
4 3 0
6 5 2
9 7 3

∣∣∣∣∣∣ 8.

∣∣∣∣∣∣
8 1 6
4 0 3
3 −2 5

∣∣∣∣∣∣

Compute the determinants in Exercises 9–14 by cofactor expan-
sions. At each step, choose a row or column that involves the least
amount of computation.

9.

∣∣∣∣∣∣∣∣

6 0 0 5
1 7 2 −5
2 0 0 0
8 3 1 8

∣∣∣∣∣∣∣∣
10.

∣∣∣∣∣∣∣∣

1 −2 5 2
0 0 3 0
2 −6 −7 5
5 0 4 4

∣∣∣∣∣∣∣∣

11.

∣∣∣∣∣∣∣∣

3 5 −8 4
0 −2 3 −7
0 0 1 5
0 0 0 2

∣∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣∣

4 0 0 0
7 −1 0 0
2 6 3 0
5 −8 4 −3

∣∣∣∣∣∣∣∣

13.

∣∣∣∣∣∣∣∣∣∣

4 0 −7 3 −5
0 0 2 0 0
7 3 −6 4 −8
5 0 5 2 −3
0 0 9 −1 2

∣∣∣∣∣∣∣∣∣∣
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14.

∣∣∣∣∣∣∣∣∣∣

6 3 2 4 0
9 0 −4 1 0
8 −5 6 7 1
3 0 0 0 0
4 2 3 2 0

∣∣∣∣∣∣∣∣∣∣
The expansion of a 3×3 determinant can be remembered by the
following device. Write a second copy of the first two columns to
the right of the matrix, and compute the determinant by multiplying
entries on six diagonals:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

– – –

+ + +

Add the downward diagonal products and subtract the upward
products. Use this method to compute the determinants in Ex-
ercises 15–18. Warning: This trick does not generalize in any
reasonable way to 4×4 or larger matrices.

15.

∣∣∣∣∣∣
3 0 4
2 3 2
0 5 −1

∣∣∣∣∣∣ 16.

∣∣∣∣∣∣
0 5 1
4 −3 0
2 4 1

∣∣∣∣∣∣

17.

∣∣∣∣∣∣
2 −4 3
3 1 2
1 4 −1

∣∣∣∣∣∣ 18.

∣∣∣∣∣∣
1 3 5
2 1 1
3 4 2

∣∣∣∣∣∣
In Exercises 19–24, explore the effect of an elementary row oper-
ation on the determinant of a matrix. In each case, state the row
operation and describe how it affects the determinant.

19.
[
a b

c d

]
,

[
c d

a b

]
20.

[
a b

c d

]
,

[
a b

kc kd

]

21.
[

3 4
5 6

]
,

[
3 4

5 + 3k 6 + 4k

]

22.
[
a b

c d

]
,

[
a + kc b + kd

c d

]

23.


 1 1 1

−3 8 −4
2 −3 2


,


 k k k

−3 8 −4
2 −3 2




24.


 a b c

3 2 2
6 5 6


,


 3 2 2
a b c

6 5 6




Compute the determinants of the elementary matrices given in
Exercises 25–30. (See Section 2.2.)

25.


 1 0 0

0 1 0
0 k 1


 26.


 1 0 0

0 1 0
k 0 1




27.


 k 0 0

0 1 0
0 0 1


 28.


 1 0 0

0 k 0
0 0 1




29.


 0 1 0

1 0 0
0 0 1


 30.


 0 0 1

0 1 0
1 0 0




Use Exercises 25–28 to answer the questions in Exercises 31 and
32. Give reasons for your answers.

31. What is the determinant of an elementary row replacement
matrix?

32. What is the determinant of an elementary scaling matrix with
k on the diagonal?

In Exercises 33–36, verify that detEA= (detE)(detA), whereE

is the elementary matrix shown and A=
[
a b

c d

]
.

33.
[

0 1
1 0

]
34.

[
1 0
0 k

]

35.
[

1 k

0 1

]
36.

[
1 0
k 1

]

37. Let A=
[

3 1
4 2

]
. Write 5A. Is det 5A= 5 detA?

38. Let A=
[
a b

c d

]
and let k be a scalar. Find a formula that

relates det kA to k and detA.

In Exercises 39 and 40, A is an n×n matrix. Mark each statement
True or False. Justify each answer.

39. a. An n×n determinant is defined by determinants of
(n− 1)×(n− 1) submatrices.

b. The (i, j)-cofactor of a matrixA is the matrixAij obtained
by deleting from A its ith row and j th column.

40. a. The cofactor expansion of detA down a column is the
negative of the cofactor expansion along a row.

b. The determinant of a triangular matrix is the sum of the
entries on the main diagonal.

41. Let u =
[

3
0

]
and v =

[
1
2

]
. Compute the area of the paral-

lelogram determined by u, v, u + v, and 0, and compute the
determinant of [ u v ]. How do they compare? Replace the
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first entry of v by an arbitrary number x, and repeat the prob-
lem. Draw a picture and explain what you find.

42. Let u =
[
a

b

]
and v =

[
c

0

]
, where a, b, c are positive (for sim-

plicity). Compute the area of the parallelogram determined
by u, v, u + v, and 0, and compute the determinants of the ma-
trices [ u v ] and [ v u ]. Draw a picture and explain what
you find.

43. [M] Is it true that det(A + B)= detA + detB? To find
out, generate random 5×5 matrices A and B, and compute
det(A + B)− detA− detB. (Refer to Exercise 37 in Sec-
tion 2.1.) Repeat the calculations for three other pairs of n×n

matrices, for various values of n. Report your results.

44. [M] Is it true that detAB = (detA)(detB)? Experiment with
four pairs of random matrices as in Exercise 43, and make a
conjecture.

45. [M] Construct a random 4×4 matrix A with integer entries
between −9 and 9, and compare detA with detAT , det(−A),
det(2A), and det(10A). Repeat with two other random 4×4
integer matrices, and make conjectures about how these de-
terminants are related. (Refer to Exercise 36 in Section 2.1.)
Then check your conjectures with several random 5×5 and
6×6 integer matrices. Modify your conjectures, if necessary,
and report your results.

46. [M] How is detA−1 related to detA? Experiment with ran-
dom n×n integer matrices for n= 4, 5, and 6, and make a
conjecture. Note: In the unlikely event that you encounter a
matrix with a zero determinant, reduce it to echelon form and
discuss what you find.

S O L U T I O N T O P R A C T I C E P R O B L E M

Take advantage of the zeros. Begin with a cofactor expansion down the third column to
obtain a 3×3 matrix, which may be evaluated by an expansion down its first column.∣∣∣∣∣∣∣∣

5 −7 2 2
0 3 0 −4

−5 −8 0 3
0 5 0 −6

∣∣∣∣∣∣∣∣
= (−1)1+32

∣∣∣∣∣∣
0 3 −4

−5 −8 3
0 5 −6

∣∣∣∣∣∣

= 2·(−1)2+1(−5)

∣∣∣∣3 −4
5 −6

∣∣∣∣ = 20

The (−1)2+1 in the next-to-last calculation came from the (2, 1)-position of the −5 in
the 3×3 determinant.

3.2 PROPERTIES OF DETERMINANTS
The secret of determinants lies in how they change when row operations are performed.
The following theorem generalizes the results of Exercises 19–24 in Section 3.1. The
proof is at the end of this section.

T H E O R E M 3 Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B,
then detB = detA.

b. If two rows of A are interchanged to produce B, then detB = − detA.

c. If one row of A is multiplied by k to produce B, then detB = k ·detA.
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The following examples show how to use Theorem 3 to find determinants efficiently.

EXAMPLE 1 Compute detA, where A=

 1 −4 2

−2 8 −9
−1 7 0


.

Solution The strategy is to reduce A to echelon form and then to use the fact that the
determinant of a triangular matrix is the product of the diagonal entries. The first two
row replacements in column 1 do not change the determinant:

detA=
∣∣∣∣∣∣

1 −4 2
−2 8 −9
−1 7 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 −4 2
0 0 −5

−1 7 0

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 −4 2
0 0 −5
0 3 2

∣∣∣∣∣∣
An interchange of rows 2 and 3 reverses the sign of the determinant, so

detA= −
∣∣∣∣∣∣
1 −4 2
0 3 2
0 0 −5

∣∣∣∣∣∣ = −(1)(3)(−5)= 15

A common use of Theorem 3(c) in hand calculations is to factor out a common
multiple of one row of a matrix. For instance,∣∣∣∣∣∣

∗ ∗ ∗
5k −2k 3k
∗ ∗ ∗

∣∣∣∣∣∣ = k

∣∣∣∣∣∣
∗ ∗ ∗
5 −2 3
∗ ∗ ∗

∣∣∣∣∣∣
where the starred entries are unchanged. We use this step in the next example.

EXAMPLE 2 Compute detA, where A=




2 −8 6 8
3 −9 5 10

−3 0 1 −2
1 −4 0 6


.

Solution To simplify the arithmetic, we want a 1 in the upper-left corner. We could
interchange rows 1 and 4. Instead, we factor out 2 from the top row, and then proceed
with row replacements in the first column:

detA= 2

∣∣∣∣∣∣∣∣

1 −4 3 4
3 −9 5 10

−3 0 1 −2
1 −4 0 6

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣

1 −4 3 4
0 3 −4 −2
0 −12 10 10
0 0 −3 2

∣∣∣∣∣∣∣∣
Next, we could factor out another 2 from row 3 or use the 3 in the second column as a
pivot. We choose the latter operation, adding 4 times row 2 to row 3:

detA= 2

∣∣∣∣∣∣∣∣

1 −4 3 4
0 3 −4 −2
0 0 −6 2
0 0 −3 2

∣∣∣∣∣∣∣∣
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Finally, adding −1/2 times row 3 to row 4, and computing the “triangular” determinant,
we find that

detA= 2

∣∣∣∣∣∣∣∣

1 −4 3 4
0 3 −4 −2
0 0 −6 2
0 0 0 1

∣∣∣∣∣∣∣∣
= 2·(1)(3)(−6)(1)= −36

U = 

det U ≠  0

0
0
0

*

0
0

*
*

0

*
*
*

U = 

det U =  0

0
0
0

*

0
0

*
*
0
0

*
*

0

FIGURE 1
Typical echelon forms of square
matrices.

Suppose a square matrix A has been reduced to an echelon form U by row replace-
ments and row interchanges. (This is always possible. See the row reduction algorithm
of Section 1.2.) If there are r interchanges, then Theorem 3 shows that

detA= (−1)r detU

SinceU is in echelon form, it is triangular, and so detU is the product of the diagonal
entries u11, . . . , unn. If A is invertible, the entries uii are all pivots (because A ∼ In and
the uii have not been scaled to 1’s). Otherwise, at least unn is zero, and the product
u11 · · · unn is zero. See Fig. 1. Thus

detA=


(−1)r ·

(
product of
pivots in U

)
when A is invertible

0 when A is not invertible
(1)

It is interesting to note that although the echelon form U described above is not unique
(because it is not completely row reduced), and the pivots are not unique, the product of
the pivots is unique, except for a possible minus sign.

Formula (1) not only gives a concrete interpretation of detA but also proves the
main theorem of this section:

T H E O R E M 4 A square matrix A is invertible if and only if detA �= 0.

Theorem 4 adds the statement “detA �= 0” to the Invertible Matrix Theorem. A
useful corollary is that detA= 0 when the columns of A are linearly dependent. Also,
detA= 0 when the rows of A are linearly dependent. (Rows of A are columns of AT ,
and linearly dependent columns of AT make AT singular. When AT is singular, so is A,
by the Invertible Matrix Theorem.) In practice, linear dependence is obvious only when
two columns or two rows are the same or a column or a row is zero.

EXAMPLE 3 Compute detA, where A=




3 −1 2 −5
0 5 −3 −6

−6 7 −7 4
−5 −8 0 9


.
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Solution Add 2 times row 1 to row 3 to obtain

detA= det




3 −1 2 −5
0 5 −3 −6
0 5 −3 −6

−5 −8 0 9


 = 0

because the second and third rows of the second matrix are equal.

NU M E R I CA L NOT E S

1. Most computer programs that compute detA for a general matrix A use the
method of formula (1) above.

2. It can be shown that evaluation of an n×n determinant using row operations
requires about 2n3/3 arithmetic operations. Any modern microcomputer can
calculate a 25×25 determinant in a fraction of a second, since only about
10,000 operations are required.

Computers can also handle large “sparse” matrices, with special routines that take

CD Determinants
and Flops

advantage of the presence of many zeros. Of course, zero entries can speed hand compu-
tations, too. The calculations in the next example combine the power of row operations
with the strategy from Section 3.1 of using zero entries in cofactor expansions.

EXAMPLE 4 Compute detA, where A=




0 1 2 −1
2 5 −7 3
0 3 6 2

−2 −5 4 −2


.

Solution A good way to begin is to use the 2 in column 1 as a pivot, eliminating the −2
below it. Then use a cofactor expansion to reduce the size of the determinant, followed
by another row replacement operation. Thus

detA=

∣∣∣∣∣∣∣∣

0 1 2 −1
2 5 −7 3
0 3 6 2
0 0 −3 1

∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
1 2 −1
3 6 2
0 −3 1

∣∣∣∣∣∣ = −2

∣∣∣∣∣∣
1 2 −1
0 0 5
0 −3 1

∣∣∣∣∣∣
An interchange of rows 2 and 3 would produce a “triangular determinant.” Another
approach is to make a cofactor expansion down the first column:

detA= (−2)(1)

∣∣∣∣ 0 5
−3 1

∣∣∣∣ = −2·(15)= −30
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Column Operations

We can perform operations on the columns of a matrix in a way that is analogous to the
row operations we have considered. The next theorem shows that column operations
have the same effects on determinants as row operations.

T H E O R E M 5 If A is an n×n matrix, then detAT = detA.

PROOF The theorem is obvious for n= 1. Suppose the theorem is true for k×k deter-
minants and let n= k + 1. Then the cofactor of a1j in A equals the cofactor of aj1 in
AT , because the cofactors involve k×k determinants. Hence the cofactor expansion of
detA along the first row equals the cofactor expansion of detAT down the first column.
That is, A and AT have equal determinants. Thus the theorem is true for n= 1, and the
truth of the theorem for one value of n implies its truth for the next value of n. By the
principle of induction, the theorem is true for all n ≥ 1. �

Because of Theorem 5, each statement in Theorem 3 is true when the word row is
replaced everywhere by column. To verify this property, one merely applies the original
Theorem 3 to AT . A row operation on AT amounts to a column operation on A.

Column operations are useful for both theoretical purposes and hand computations.
However, for simplicity we’ll perform only row operations in numerical calculations.

Determinants and Matrix Products

The proof of the following useful theorem is at the end of the section. Applications are
in the exercises.

T H E O R E M 6 Multiplicative Property

If A and B are n×n matrices, then detAB = (detA)(detB).

EXAMPLE 5 Verify Theorem 6 for A=
[

6 1
3 2

]
and B =

[
4 3
1 2

]
.

Solution

AB =
[

6 1
3 2

][
4 3
1 2

]
=

[
25 20
14 13

]

and

detAB = 25·13 − 20·14 = 325 − 280 = 45

Since detA= 9 and detB = 5,

(detA)(detB)= 9·5 = 45 = detAB
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Warning: A common misconception is that Theorem 6 has an analogue for sums
of matrices. However, det(A + B) is not equal to detA + detB, in general.

A Linearity Property of the Determinant Function

For an n×n matrix A, we can consider detA as a function of the n column vectors in
A. We will show that if all columns except one are held fixed, then detA is a linear
function of that one (vector) variable.

Suppose that the j th column of A is allowed to vary, and write

A= [ a1 · · · aj−1 x aj+1 · · · an ]

Define a transformation T from R
n to R by

T (x)= det [ a1 · · · aj−1 x aj+1 · · · an ]

Then,

T (cx)= cT (x) for all scalars c and all x in R
n (2)

T (u + v)= T (u) + T (v) for all u, v in R
n (3)

Property (2) is Theorem 3(c) applied to the columns ofA. Aproof of property (3) follows
from a cofactor expansion of detAdown the j th column. (See Exercise 43.) This (multi-)
linearity property of the determinant turns out to have many useful consequences that
are studied in more advanced courses.

Proofs of Theorems 3 and 6

It is convenient to prove Theorem 3 when it is stated in terms of the elementary matrices
discussed in Section 2.2. We call an elementary matrix E a row replacement (matrix) if
E is obtained from the identity I by adding a multiple of one row to another row; E is
an interchange if E is obtained by interchanging two rows of I ; and E is a scale by r if
E is obtained by multiplying a row of I by a nonzero scalar r . With this terminology,
Theorem 3 can be reformulated as follows:

If A is an n×n matrix and E is an n×n elementary matrix, then

detEA= (detE)(detA)

where

detE =



1 if E is a row replacement
−1 if E is an interchange
r if E is a scale by r

PROOF OF THEOREM 3 The proof is by induction on the size of A. The case of a 2×2
matrix was verified in Exercises 33–36 of Section 3.1. Suppose the theorem has been
verified for determinants of k×k matrices with k ≥ 2, let n= k + 1, and let A be n×n.
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The action ofE onA involves either two rows or only one row. So we can expand detEA
across a row that is unchanged by the action of E, say, row i. Let Aij (respectively, Bij )

be the matrix obtained by deleting row i and column j from A (respectively, EA). Then
the rows of Bij are obtained from the rows of Aij by the same type of elementary row
operation that E performs on A. Since these submatrices are only k×k, the induction
assumption implies that

detBij = α ·detAij

where α = 1, −1, or r , depending on the nature of E. The cofactor expansion across
row i is

detEA = ai1(−1)i+1 detBi1 + · · · + ain(−1)i+n detBin

= αai1(−1)i+1 detAi1 + · · · + αain(−1)i+n detAin

= α ·detA

In particular, taking A= In, we see that detE = 1, −1, or r , depending on the nature of
E. Thus the theorem is true for n= 2, and the truth of the theorem for one value of n
implies its truth for the next value of n. By the principle of induction, the theorem must
be true for n ≥ 2. The theorem is trivially true for n= 1. �

PROOF OF THEOREM 6 If A is not invertible, then neither is AB, by Exercise 27
in Section 2.3. In this case, detAB = (detA)(detB), because both sides are zero, by
Theorem 4. If A is invertible, then A and the identity matrix In are row equivalent by
the Invertible Matrix Theorem. So there exist elementary matricesE1, . . . , Ep such that

A= EpEp−1 · · ·E1 ·In = EpEp−1 · · ·E1

For brevity, write |A| for detA. Then repeated application of Theorem 3, as rephrased
above, shows that

|AB| = |Ep · · ·E1B| = |Ep||Ep−1 · · ·E1B| = · · ·
= |Ep| · · · |E1||B| = · · · = |Ep · · ·E1||B|
= |A||B| �

P R A C T I C E P R O B L E M S

1. Compute

∣∣∣∣∣∣∣∣

1 −3 1 −2
2 −5 −1 −2
0 −4 5 1

−3 10 −6 8

∣∣∣∣∣∣∣∣
in as few steps as possible.

2. Use a determinant to decide if v1, v2, v3 are linearly independent, when

v1 =

 5

−7
9


 , v2 =


 −3

3
−5


 , v3 =


 2

−7
5



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3.2 EXERCISES

Each equation in Exercises 1–4 illustrates a property of determi-
nants. State the property.

1.

∣∣∣∣∣∣
0 5 −2
1 −3 6
4 −1 8

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
1 −3 6
0 5 −2
4 −1 8

∣∣∣∣∣∣

2.

∣∣∣∣∣∣
2 −6 4
3 5 −2
1 6 3

∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
1 −3 2
3 5 −2
1 6 3

∣∣∣∣∣∣

3.

∣∣∣∣∣∣
1 3 −4
2 0 −3
5 −4 7

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 3 −4
0 −6 5
5 −4 7

∣∣∣∣∣∣

4.

∣∣∣∣∣∣
1 2 3
0 5 −4
3 7 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
0 5 −4
0 1 −5

∣∣∣∣∣∣
Find the determinants in Exercises 5–10 by row reduction to ech-
elon form.

5.

∣∣∣∣∣∣
1 5 −6

−1 −4 4
−2 −7 9

∣∣∣∣∣∣ 6.

∣∣∣∣∣∣
1 5 −3
3 −3 3
2 13 −7

∣∣∣∣∣∣

7.

∣∣∣∣∣∣∣∣

1 3 0 2
−2 −5 7 4

3 5 2 1
1 −1 2 −3

∣∣∣∣∣∣∣∣
8.

∣∣∣∣∣∣∣∣

1 3 3 −4
0 1 2 −5
2 5 4 −3

−3 −7 −5 2

∣∣∣∣∣∣∣∣

9.

∣∣∣∣∣∣∣∣

1 −1 −3 0
0 1 5 4

−1 2 8 5
3 −1 −2 3

∣∣∣∣∣∣∣∣

10.

∣∣∣∣∣∣∣∣∣∣

1 3 −1 0 −2
0 2 −4 −1 −6

−2 −6 2 3 9
3 7 −3 8 −7
3 5 5 2 7

∣∣∣∣∣∣∣∣∣∣
Combine the methods of row reduction and cofactor expansion to
compute the determinants in Exercises 11–14.

11.

∣∣∣∣∣∣∣∣

2 5 −3 −1
3 0 1 −3

−6 0 −4 9
4 10 −4 −1

∣∣∣∣∣∣∣∣
12.

∣∣∣∣∣∣∣∣

−1 2 3 0
3 4 3 0
5 4 6 6
4 2 4 3

∣∣∣∣∣∣∣∣

13.

∣∣∣∣∣∣∣∣

2 5 4 1
4 7 6 2
6 −2 −4 0

−6 7 7 0

∣∣∣∣∣∣∣∣
14.

∣∣∣∣∣∣∣∣

−3 −2 1 −4
1 3 0 −3

−3 4 −2 8
3 −4 0 4

∣∣∣∣∣∣∣∣
Find the determinants in Exercises 15–20, where∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = 7.

15.

∣∣∣∣∣∣
a b c

d e f

5g 5h 5i

∣∣∣∣∣∣ 16.

∣∣∣∣∣∣
a b c

3d 3e 3f
g h i

∣∣∣∣∣∣

17.

∣∣∣∣∣∣
a b c

g h i

d e f

∣∣∣∣∣∣ 18.

∣∣∣∣∣∣
g h i

a b c

d e f

∣∣∣∣∣∣

19.

∣∣∣∣∣∣
a b c

2d + a 2e + b 2f + c

g h i

∣∣∣∣∣∣

20.

∣∣∣∣∣∣
a + d b + e c + f

d e f

g h i

∣∣∣∣∣∣
In Exercises 21–23, use determinants to find out if the matrix is
invertible.

21.


 2 3 0

1 3 4
1 2 1


 22.


 5 0 −1

1 −3 −2
0 5 3




23.




2 0 0 8
1 −7 −5 0
3 8 6 0
0 7 5 4




In Exercises 24–26, use determinants to decide if the set of vectors
is linearly independent.

24.


 4

6
−7


,


 −7

0
2


,


 −3

−5
6


 25.


 7

−4
−6


,


 −8

5
7


,


 7

0
−5




26.




3
5

−6
4


,




2
−6

0
7


,




−2
−1

3
0


,




0
0
0

−3




In Exercises 27 and 28, A and B are n×n matrices. Mark each
statement True or False. Justify each answer.
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27. a. A row replacement operation does not affect the determi-
nant of a matrix.

b. The determinant of A is the product of the pivots in any
echelon form U of A, multiplied by (−1)r , where r is the
number of row interchanges made during row reduction
from A to U .

c. If the columns ofA are linearly dependent, then detA= 0.

d. det(A + B)= detA + detB.

28. a. If two row interchanges are made in succession, then the
new determinant equals the old determinant.

b. The determinant ofA is the product of the diagonal entries
in A.

c. If detA is zero, then two rows or two columns are the
same, or a row or a column is zero.

d. detAT = (−1) detA.

29. Compute detB5, where B =

 1 0 1

1 1 2
1 2 1


.

30. Use Theorem 3 (but not Theorem 4) to show that if two rows
of a square matrix A are equal, then detA= 0. The same is
true for two columns. Why?

In Exercises 31–36, mention an appropriate theorem in your ex-
planation.

31. Show that if A is invertible, then detA−1 = 1

detA
.

32. Find a formula for det(rA) when A is an n×n matrix.

33. Let A and B be square matrices. Show that even though
AB and BA may not be equal, it is always true that
detAB = detBA.

34. Let A and P be square matrices, with P invertible. Show that
det(PAP−1)= detA.

35. Let U be a square matrix such that UTU = I . Show that
detU = ±1.

36. Suppose that A is a square matrix such that detA4 = 0. Ex-
plain why A cannot be invertible.

Verify that detAB = (detA)(detB) for the matrices in Exercises
37 and 38. (Do not use Theorem 6.)

37. A=
[

3 0
6 1

]
, B =

[
2 0
5 4

]

38. A=
[

3 6
−1 −2

]
, B =

[
4 2

−1 −1

]

39. LetA andB be 3×3 matrices, with detA= 4 and detB = −3.
Use properties of determinants (in the text and in the exercises
above) to compute:

a. detAB b. det 5A c. detBT

d. detA−1 e. detA3

40. LetA andB be 4×4 matrices, with detA= −1 and detB = 2.
Compute:

a. detAB b. detB5 c. det 2A

d. detATA e. detB−1AB

41. Verify that detA= detB + detC, where

A=
[
a + e b + f

c d

]
, B =

[
a b

c d

]
, C =

[
e f

c d

]

42. Let A=
[

1 0
0 1

]
and B =

[
a b

c d

]
. Show that

det(A + B)= detA + detB if and only if a + d = 0.

43. Verify that detA= detB + detC, where

A =

 a11 a12 u1 + v1

a21 a22 u2 + v2

a31 a32 u3 + v3


 ,

B =

 a11 a12 u1

a21 a22 u2

a31 a32 u3


 , C =


 a11 a12 v1

a21 a22 v2

a31 a32 v3




Note, however, that A is not the same as B + C.

44. Right-multiplication by an elementary matrix E affects the
columns of A in the same way that left-multiplication affects
the rows. Use Theorems 5 and 3 and the obvious fact that ET

is another elementary matrix to show that

detAE = (detE)(detA)

Do not use Theorem 6.

45. [M] Compute detATA and detAAT for several random 4×5
matrices and several random 5×6 matrices. What can you say
about ATA and AAT when A has more columns than rows?

46. [M] If detA is close to zero, is the matrix A nearly singu-
lar? Experiment with the nearly singular 4×4 matrix A in
Exercise 9 of Section 2.3. Compute the determinants of A,
10A, and 0.1A. In contrast, compute the condition numbers
of these matrices. Repeat these calculations when A is the
4×4 identity matrix. Discuss your results.
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S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Perform row replacements to create zeros in the first column and then create a row
of zeros.∣∣∣∣∣∣∣∣

1 −3 1 −2
2 −5 −1 −2
0 −4 5 1

−3 10 −6 8

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 −3 1 −2
0 1 −3 2
0 −4 5 1
0 1 −3 2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 −3 1 −2
0 1 −3 2
0 −4 5 1
0 0 0 0

∣∣∣∣∣∣∣∣
= 0

2. det [ v1 v2 v3 ] =
∣∣∣∣∣∣

5 −3 2
−7 3 −7

9 −5 5

∣∣∣∣∣∣ =
∣∣∣∣∣∣

5 −3 2
−2 0 −5

9 −5 5

∣∣∣∣∣∣
Row 1 added
to row 2

= −(−3)

∣∣∣∣−2 −5
9 5

∣∣∣∣ − (−5)

∣∣∣∣ 5 2
−2 −5

∣∣∣∣ Cofactors of
column 2

= 3 · (35) + 5 · (−21)= 0

By Theorem 4, the matrix [ v1 v2 v3 ] is not invertible. The columns are linearly
dependent, by the Invertible Matrix Theorem.

3.3 CRAMER’S RULE, VOLUME, AND LINEAR TRANSFORMATIONS
This section applies the theory of the preceding sections to obtain important theoretical
formulas and a geometric interpretation of the determinant.

Cramer’s Rule

Cramer’s rule is needed in a variety of theoretical calculations. For instance, it can be
used to study how the solution of Ax = b is affected by changes in the entries of b.
However, the formula is inefficient for hand calculations, except for 2×2 or perhaps
3×3 matrices.

For any n×n matrix A and any b in R
n, let Ai(b) be the matrix obtained from A by

replacing column i by the vector b.

Ai(b) = [a1 · · · b · · · an]

✲

col i

T H E O R E M 7 Cramer’s Rule

Let A be an invertible n×n matrix. For any b in R
n, the unique solution x of

Ax = b has entries given by

xi = detAi(b)
detA

, i = 1, 2, . . . , n (1)
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PROOF Denote the columns of A by a1, . . . , an and the columns of the n×n identity
matrix I by e1, . . . , en. If Ax = b, the definition of matrix multiplication shows that

A·Ii(x) = A[ e1 · · · x · · · en ] = [Ae1 · · · Ax · · · Aen ]
= [ a1 · · · b · · · an ] = Ai(b)

By the multiplicative property of determinants,

(detA)(det Ii(x))= detAi(b)

The second determinant on the left is simply xi . (Make a cofactor expansion along the
ith row.) Hence (detA)·xi = detAi(b). This proves (1) because A is invertible and
detA �= 0. �

EXAMPLE 1 Use Cramer’s rule to solve the system

3x1 − 2x2 = 6

−5x1 + 4x2 = 8

Solution View the system as Ax = b. Using the notation introduced above,

A=
[

3 −2
−5 4

]
, A1(b)=

[
6 −2
8 4

]
, A2(b)=

[
3 6

−5 8

]

Since detA= 2, the system has a unique solution. By Cramer’s rule,

x1 = detA1(b)
detA

= 24 + 16

2
= 20

x2 = detA2(b)
detA

= 24 + 30

2
= 27

Application to Engineering

A number of important engineering problems, particularly in electrical engineering and
control theory, can be analyzed by Laplace transforms. This approach converts an appro-
priate system of linear differential equations into a system of linear algebraic equations
whose coefficients involve a parameter. The next example illustrates the type of algebraic
system that may arise.

EXAMPLE 2 Consider the following system in which s is an unspecified parameter.
Determine the values of s for which the system has a unique solution, and use Cramer’s
rule to describe the solution.

3sx1 − 2x2 = 4

−6x1 + sx2 = 1

Solution View the system as Ax = b. Then

A=
[

3s −2
−6 s

]
, A1(b)=

[
4 −2
1 s

]
, A2(b)=

[
3s 4
−6 1

]



April 4, 2005 13:36 l57-ch03 Sheet number 19 Page number 203 cyan magenta yellow black

3.3 Cramer’s Rule, Volume, and Linear Transformations 203

Since

detA= 3s2 − 12 = 3(s + 2)(s − 2)

the system has a unique solution precisely when s �= ± 2. For such an s, the solution is
(x1, x2), where

x1 = detA1(b)
detA

= 4s + 2

3(s + 2)(s − 2)

x2 = detA2(b)
detA

= 3s + 24

3(s + 2)(s − 2)
= s + 8

(s + 2)(s − 2)

A Formula for A−1

Cramer’s rule leads easily to a general formula for the inverse of an n×n matrix A. The
j th column of A−1 is a vector x that satisfies

Ax = ej

where ej is the j th column of the identity matrix, and the ith entry of x is the (i, j)-entry
of A−1. By Cramer’s rule,

{
(i, j)-entry of A−1

} = xi = detAi(ej )
detA

(2)

Recall that Aji denotes the submatrix of A formed by deleting row j and column i. A
cofactor expansion down column i of Ai(ej ) shows that

detAi(ej )= (−1)i+j detAji = Cji (3)

where Cji is a cofactor of A. By (2), the (i, j)-entry of A−1 is the cofactor Cji divided
by detA. [Note that the subscripts on Cji are the reverse of (i, j).] Thus

A−1 = 1

detA



C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn


 (4)

The matrix of cofactors on the right side of (4) is called the adjugate (or classical
adjoint) ofA, denoted by adjA. (The term adjoint also has another meaning in advanced
texts on linear transformations.) The next theorem simply restates (4).

T H E O R E M 8 An Inverse Formula

Let A be an invertible n×n matrix. Then

A−1 = 1

detA
adjA

EXAMPLE 3 Find the inverse of the matrix A=

 2 1 3

1 −1 1
1 4 −2


.
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Solution The nine cofactors are

C11 = +

∣∣∣∣−1 1
4 −2

∣∣∣∣ = −2, C12 = −
∣∣∣∣1 1
1 −2

∣∣∣∣ = 3, C13 = +

∣∣∣∣1 −1
1 4

∣∣∣∣ = 5

C21 = −
∣∣∣∣1 3
4 −2

∣∣∣∣ = 14, C22 = +

∣∣∣∣2 3
1 −2

∣∣∣∣ = −7, C23 = −
∣∣∣∣2 1
1 4

∣∣∣∣ = −7

C31 = +

∣∣∣∣ 1 3
−1 1

∣∣∣∣ = 4, C32 = −
∣∣∣∣2 3
1 1

∣∣∣∣ = 1, C33 = +

∣∣∣∣2 1
1 −1

∣∣∣∣ = −3

The adjugate matrix is the transpose of the matrix of cofactors. [For instance, C12 goes
in the (2, 1) position.] Thus

adjA=

 −2 14 4

3 −7 1
5 −7 −3




We could compute detA directly, but the following computation provides a check on
the calculations above and produces detA:

(adjA)·A=

 −2 14 4

3 −7 1
5 −7 −3




 2 1 3

1 −1 1
1 4 −2


 =


 14 0 0

0 14 0
0 0 14


 = 14I

Since (adjA)A= 14I , Theorem 8 shows that detA= 14 and

A−1 = 1

14


 −2 14 4

3 −7 1
5 −7 −3


 =


 −1/7 1 2/7

3/14 −1/2 1/14
5/14 −1/2 −3/14




NU M E R I CA L NOT E S

Theorem 8 is useful mainly for theoretical calculations. The formula for A−1 permits
one to deduce properties of the inverse without actually calculating it. Except for
special cases, the algorithm in Section 2.2 gives a much better way to compute A−1,
if the inverse is really needed.

Cramer’s rule is also a theoretical tool. It can be used to study how sensitive the
solution of Ax = b is to changes in an entry in b or in A (perhaps due to experimental
error when acquiring the entries for b or A). When A is a 3×3 matrix with complex
entries, Cramer’s rule is sometimes selected for hand computation because row re-
duction of [A b ] with complex arithmetic can be messy, and the determinants are
fairly easy to compute. For a larger n×n matrix (real or complex), Cramer’s rule is
hopelessly inefficient. Computing just one determinant takes about as much work as
solving Ax = b by row reduction.

Determinants as Area or Volume

In the next application, we verify the geometric interpretation of determinants described
in the chapter introduction. Although a general discussion of length and distance in R

n
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will not be given until Chapter 6, we assume here that the usual Euclidean concepts of
length, area, and volume are already understood for R

2 and R
3.

















y

x

0
d

a
0

FIGURE 1
Area = |ad|.

T H E O R E M 9 If A is a 2×2 matrix, the area of the parallelogram determined by the columns of
A is |detA|. If A is a 3×3 matrix, the volume of the parallelepiped determined
by the columns of A is |detA|.

PROOF The theorem is obviously true for any 2×2 diagonal matrix:SG A Geometric Proof
3–12 ∣∣∣∣det

[
a 0
0 d

]∣∣∣∣ = |ad| =
{

area of
rectangle

}

See Fig. 1. It will suffice to show that any 2×2 matrixA= [ a1 a2 ] can be transformed
into a diagonal matrix in a way that changes neither the area of the associated parallelo-
gram nor |detA|. From Section 3.2, we know that the absolute value of the determinant
is unchanged when two columns are interchanged or a multiple of one column is added to
another. And it is easy to see that such operations suffice to transform A into a diagonal
matrix. Column interchanges do not change the parallelogram at all. So it suffices to
prove the following simple geometric observation that applies to vectors in R

2 or R
3:

Let a1 and a2 be nonzero vectors. Then for any scalar c, the area of the parallelo-
gram determined by a1 and a2 equals the area of the parallelogram determined by
a1 and a2 + ca1.

To prove this statement, we may assume that a2 is not a multiple of a1, for other-
wise the two parallelograms would be degenerate and have zero area. If L is the line
through 0 and a1, then a2 + L is the line through a2 parallel to L, and a2 + ca1 is on this
line. See Fig. 2. The points a2 and a2 + ca1 have the same perpendicular distance to L.
Hence the two parallelograms in Fig. 2 have the same area, since they share the base
from 0 to a1. This completes the proof for R

2.

a2 + c a1

a2 a2 + L

L

a10c a1

FIGURE 2 Two parallelograms of equal area.































x

a
0
0

0 
b
0

y

z
0 
0
c

FIGURE 3
Volume = |abc|.

The proof for R
3 is similar. The theorem is obviously true for a 3×3 diagonal

matrix. See Fig. 3. And any 3×3 matrix A can be transformed into a diagonal matrix
using column operations that do not change |detA|. (Think about doing row operations
on AT .) So it suffices to show that these operations do not affect the volume of the
parallelepiped determined by the columns of A.
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A parallelepiped is shown in Fig. 4 as a shaded box with two sloping sides. Its
volume is the area of the base in the plane Span {a1, a3} times the altitude of a2 above
Span {a1, a3}. Any vector a2 + ca1 has the same altitude because a2 + ca1 lies in the
plane a2 + Span {a1, a3}, which is parallel to Span {a1, a3}. Hence the volume of the
parallelepiped is unchanged when [ a1 a2 a3 ] is changed to [ a1 a2 + ca1 a3 ].
Thus a column replacement operation does not affect the volume of the parallelepiped.
Since column interchanges have no effect on the volume, the proof is complete. �

a2

0 a1

a 3

a2

0 a1

a3

a 2 + ca1a 2 +
 Span{a 1, 

a 3}

Span{a 1, 
a 3}

a 2 +
 Span{a 1, 

a 3}

Span{a 1, 
a 3}

FIGURE 4 Two parallelepipeds of equal volume.

EXAMPLE 4 Calculate the area of the parallelogram determined by the points
(−2,−2), (0, 3), (4,−1), and (6, 4). See Fig. 5(a).

Solution First translate the parallelogram to one having the origin as a vertex. For
example, subtract the vertex (−2,−2) from each of the four vertices. The new paral-
lelogram has the same area, and its vertices are (0, 0), (2, 5), (6, 1), and (8, 6). See
Fig. 5(b). This parallelogram is determined by the columns of

A=
[

2 6
5 1

]

Since |detA| = |−28|, the area of the parallelogram is 28.

x1

x1 x1

x2

(a) (b)

FIGURE 5 Translating a parallelogram does not change its
area.
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Linear Transformations

Determinants can be used to describe an important geometric property of linear trans-
formations in the plane and in R

3. If T is a linear transformation and S is a set in the
domain of T , let T (S) denote the set of images of points in S. We are interested in how
the area (or volume) of T (S) compares with the area (or volume) of the original set S.
For convenience, when S is a region bounded by a parallelogram, we also refer to S as
a parallelogram.

T H E O R E M 10 Let T : R
2 → R

2 be the linear transformation determined by a 2×2 matrix A. If
S is a parallelogram in R

2, then

{area of T (S)} = |detA|·{area of S} (5)

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in R
3, then

{volume of T (S)} = |detA|·{volume of S} (6)

PROOF Consider the 2×2 case, with A= [ a1 a2 ]. A parallelogram at the origin in
R

2 determined by vectors b1 and b2 has the form

S = {s1b1 + s2b2 : 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1}
The image of S under T consists of points of the form

T (s1b1 + s2b2) = s1T (b1) + s2T (b2)

= s1Ab1 + s2Ab2

where 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1. It follows that T (S) is the parallelogram determined
by the columns of the matrix [Ab1 Ab2 ]. This matrix can be written as AB, where
B = [ b1 b2 ]. By Theorem 9 and the product theorem for determinants,

{area of T (S)} = |detAB| = |detA|·|detB|
= |detA|·{area of S} (7)

An arbitrary parallelogram has the form p + S, where p is a vector andS is a parallelogram
at the origin, as above. It is easy to see that T transforms p + S into T (p) + T (S). (See
Exercise 26.) Since translation does not affect the area of a set,

{area of T (p + S)} = {area of T (p) + T (S)}
= {area of T (S)} Translation

= |detA|·{area of S} By (7)

= |detA|·{area of p + S} Translation

This shows that (5) holds for all parallelograms in R
2. The proof of (6) for the 3×3 case

is analogous. �
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When we attempt to generalize Theorem 10 to a region in R
2 or R

3 that is not
bounded by straight lines or planes, we must face the problem of how to define and
compute its area or volume. This is a question studied in calculus, and we shall only
outline the basic idea for R

2. If R is a planar region that has a finite area, then R can
be approximated by a grid of small squares that lie inside R. By making the squares
sufficiently small, the area of R may be approximated as closely as desired by the sum
of the areas of the small squares. See Fig. 6.

0 0

FIGURE 6 Approximating a planar region by a union of squares. The
approximation improves as the grid becomes finer.

If T is a linear transformation associated with a 2×2 matrix A, then the image of a
planar region R under T is approximated by the images of the small squares inside R.
The proof of Theorem 10 shows that each such image is a parallelogram whose area is
|detA| times the area of the square. If R′ is the union of the squares inside R, then the
area of T (R′) is |detA| times the area of R′. See Fig. 7. Also, the area of T (R′) is close
to the area of T (R). An argument involving a limiting process may be given to justify
the following generalization of Theorem 10.

0 0
R'

T

T(R' )

FIGURE 7 Approximating T (R) by a union of parallelograms.
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The conclusions of Theorem 10 hold whenever S is a region in R
2 with finite area

or a region in R
3 with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the region E bounded
by the ellipse whose equation is

x2
1

a2
+
x2

2

b2
= 1

x2

x1

1

a

b

u1

u2

T

D

E

Solution We claim that E is the image of the unit disk D under the linear transforma-

tion T determined by the matrix A=
[
a 0
0 b

]
, because if u =

[
u1

u2

]
, x =

[
x1

x2

]
, and

x = Au, then

u1 = x1

a
and u2 = x2

b

It follows that u is in the unit disk, with u2
1 + u2

2 ≤ 1, if and only if x is in E, with
(x1/a)

2 + (x2/b)
2 ≤ 1. By the generalization of Theorem 10,

{area of ellipse} = {area of T (D)}
= |detA|·{area of D}
= ab ·π(1)2 = πab

P R A C T I C E P R O B L E M

Let S be the parallelogram determined by the vectors b1 =
[

1
3

]
and b2 =

[
5
1

]
, and let

A=
[

1 −.1
0 2

]
. Compute the area of the image of S under the mapping x �→Ax.

WEB

3.3 EXERCISES

Use Cramer’s rule to compute the solutions of the systems in Ex-
ercises 1–6.

1. 5x1 + 7x2 = 3
2x1 + 4x2 = 1

2. 4x1 + x2 = 6
5x1 + 2x2 = 7

3. 3x1 − 2x2 = 7
−5x1 + 6x2 = −5

4. −5x1 + 3x2 = 9
3x1 − x2 = −5

5. 2x1 + x2 = 7
−3x1 + x3 = −8

x2 + 2x3 = −3

6. 2x1 + x2 + x3 = 4
−x1 + 2x3 = 2
3x1 + x2 + 3x3 = −2
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In Exercises 7–10, determine the values of the parameter s for
which the system has a unique solution, and describe the solution.

7. 6sx1 + 4x2 = 5
9x1 + 2sx2 = −2

8. 3sx1 − 5x2 = 3
9x1 + 5sx2 = 2

9. sx1 − 2sx2 = −1
3x1 + 6sx2 = 4

10. 2sx1 + x2 = 1
3sx1 + 6sx2 = 2

In Exercises 11–16, compute the adjugate of the given matrix, and
then use Theorem 8 to give the inverse of the matrix.

11.


 0 −2 −1

3 0 0
−1 1 1


 12.


 1 1 3

2 −2 1
0 1 0




13.


 3 5 4

1 0 1
2 1 1


 14.


 3 6 7

0 2 1
2 3 4




15.


 3 0 0

−1 1 0
−2 3 2


 16.


 1 2 4

0 −3 1
0 0 3




17. Show that ifA is 2×2, then Theorem 8 gives the same formula
for A−1 as that given by Theorem 4 in Section 2.2.

18. Suppose that all the entries in A are integers and detA= 1.
Explain why all the entries in A−1 are integers.

In Exercises 19–22, find the area of the parallelogram whose ver-
tices are listed.

19. (0, 0), (5, 2), (6, 4), (11, 6)

20. (0, 0), (−1, 3), (4,−5), (3,−2)

21. (−1, 0), (0, 5), (1,−4), (2, 1)

22. (0,−2), (6,−1), (−3, 1), (3, 2)

23. Find the volume of the parallelepiped with one vertex at the
origin and adjacent vertices at (1, 0,−2), (1, 2, 4), (7, 1, 0).

24. Find the volume of the parallelepiped with one vertex at
the origin and adjacent vertices at (1, 4, 0), (−2,−5, 2),
(−1, 2,−1).

25. Use the concept of volume to explain why the determinant of
a 3×3 matrix A is zero if and only if A is not invertible. Do
not appeal to Theorem 4 in Section 3.2. [Hint: Think about
the columns of A.]

26. Let T : R
m → R

n be a linear transformation, and let p be a
vector and S a set in R

m. Show that the image of p + S under
T is the translated set T (p) + T (S) in R

n.

27. Let S be the parallelogram determined by the vectors

b1 =
[ −2

3

]
and b2 =

[ −2
5

]
, and let A=

[
6 −2

−3 2

]
.

Compute the area of the image of S under the mapping
x �→ Ax.

28. Repeat Exercise 27 with b1 =
[

4
−7

]
, b2 =

[
0
1

]
, and

A=
[

7 2
1 1

]
.

29. Find a formula for the area of the triangle whose vertices are
0, v1, and v2 in R

2.

30. Let R be the triangle with vertices at (x1, y1), (x2, y2), and
(x3, y3). Show that

{area of triangle} = 1

2

∣∣∣∣∣∣det


 x1 y1 1
x2 y2 1
x3 y3 1




∣∣∣∣∣∣
[Hint: Translate R to the origin by subtracting one of the
vertices, and use Exercise 29.]

31. Let T : R
3 → R

3 be the linear transformation determined by

the matrix A=

 a 0 0

0 b 0
0 0 c


, where a, b, c are positive

numbers. Let S be the unit ball, whose bounding surface has
the equation x2

1 + x2
2 + x2

3 = 1.
a. Show that T (S) is bounded by the ellipsoid with the equa-

tion
x2

1

a2
+
x2

2

b2
+
x2

3

c2
= 1.

b. Use the fact that the volume of the unit ball is 4π/3 to de-
termine the volume of the region bounded by the ellipsoid
in part (a).

32. Let S be the tetrahedron in R
3 with vertices at the vectors 0,

e1, e2, and e3, and let S ′ be the tetrahedron with vertices at
vectors 0, v1, v2, and v3. See the figure.

x3 x3

e3
S

e2

x2
x2

0 0

e1
x1

x1

v3
S' v2

v1

a. Describe a linear transformation that maps S onto S ′.
b. Find a formula for the volume of the tetrahedron S ′ using

the fact that
{volume of S} = (1/3){area of base}·{height}
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33. [M] Test the inverse formula of Theorem 8 for a random
4×4 matrix A. Use your matrix program to compute the
cofactors of the 3×3 submatrices, construct the adjugate, and
set B = (adjA)/(detA). Then compute B − inv(A), where
inv(A) is the inverse of A as computed by the matrix pro-
gram. Use floating-point arithmetic with the maximum pos-
sible number of decimal places. Report your results.

34. [M] Test Cramer’s rule for a random 4×4 matrix A and a
random 4×1 vector b. Compute each entry in the solution of

Ax = b, and compare these entries with the entries in A−1b.
Write the command (or keystrokes) for your matrix program
that uses Cramer’s rule to produce the second entry of x.

35. [M] If your version of MATLAB has the flops command,
use it to count the number of floating-point operations to com-
pute A−1 for a random 30×30 matrix. Compare this number
with the number of flops needed to form (adjA)/(detA).

S O L U T I O N T O P R A C T I C E P R O B L E M

The area of S is

∣∣∣∣det

[
1 5
3 1

]∣∣∣∣ = 14, and detA= 2. By Theorem 10, the area of the

image of S under the mapping x �→ Ax is

|detA|·{area of S} = 2·14 = 28

CHAPTER 3 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. As-
sume that all matrices here are square.

a. If A is a 2×2 matrix with a zero determinant, then one
column of A is a multiple of the other.

b. If two rows of a 3×3 matrix A are the same, then
detA= 0.

c. If A is a 3×3 matrix, then det 5A= 5 detA.

d. If A and B are n×n matrices, with detA= 2 and
detB = 3, then det(A + B)= 5.

e. If A is n×n and detA= 2, then detA3 = 6.

f. If B is produced by interchanging two rows of A, then
detB = detA.

g. If B is produced by multiplying row 3 of A by 5, then
detB = 5·detA.

h. If B is formed by adding to one row of A a linear combi-
nation of the other rows, then detB = detA.

i. detAT = − detA.

j. det(−A)= − detA.

k. detATA ≥ 0.

l. Any system of n linear equations in n variables can be
solved by Cramer’s rule.

m. If u and v are in R
2 and det [ u v ] = 10, then the area of

the triangle in the plane with vertices at 0, u, and v is 10.

n. If A3 = 0, then detA= 0.

o. If A is invertible, then detA−1 = detA.

p. If A is invertible, then (detA)(detA−1)= 1.

Use row operations to show that the determinants in Exercises 2–4
are all zero.

2.

∣∣∣∣∣∣
12 13 14
15 16 17
18 19 20

∣∣∣∣∣∣ 3.

∣∣∣∣∣∣
1 a b + c

1 b a + c

1 c a + b

∣∣∣∣∣∣

4.

∣∣∣∣∣∣
a b c

a + x b + x c + x

a + y b + y c + y

∣∣∣∣∣∣
Compute the determinants in Exercises 5 and 6.

5.

∣∣∣∣∣∣∣∣∣∣

9 1 9 9 9
9 0 9 9 2
4 0 0 5 0
9 0 3 9 0
6 0 0 7 0

∣∣∣∣∣∣∣∣∣∣
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6.

∣∣∣∣∣∣∣∣∣∣

4 8 8 8 5
0 1 0 0 0
6 8 8 8 7
0 8 8 3 0
0 8 2 0 0

∣∣∣∣∣∣∣∣∣∣
7. Show that the equation of the line in R

2 through distinct points
(x1, y1) and (x2, y2) can be written as

det


1 x y

1 x1 y1

1 x2 y2


 = 0

8. Find a 3×3 determinant equation similar to that in Exercise 7
that describes the equation of the line through (x1, y1) with
slope m.

Exercises 9 and 10 concern determinants of the following Vander-
monde matrices.

T =

 1 a a2

1 b b2

1 c c2


 , V (t)=




1 t t2 t3

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3




9. Use row operations to show that

det T = (b − a)(c − a)(c − b)

10. Let f (t)= det V , with x1, x2, x3 all distinct. Explain why
f (t) is a cubic polynomial, show that the coefficient of t3 is
nonzero, and find three points on the graph of f .

11. Determine the area of the parallelogram determined by the
points (1, 4), (−1, 5), (3, 9), and (5, 8). How can you tell
that the quadrilateral determined by the points is actually a
parallelogram?

12. Use the concept of area of a parallelogram to write a statement
about a 2×2 matrixA that is true if and only ifA is invertible.

13. Show that if A is invertible, then adjA is invertible, and

(adjA)−1 = 1

detA
A

[Hint: Given matrices B and C, what calculation(s) would
show that C is the inverse of B?]

14. Let A, B, C, D, and I be n×n matrices. Use the definition or
properties of a determinant to justify the following formulas.
Part (c) is useful in applications of eigenvalues (Chapter 5).

a. det

[
A 0
0 I

]
= detA b. det

[
I 0
C D

]
= detD

c. det

[
A 0
C D

]
= (detA)(detD)= det

[
A B

0 D

]

15. Let A, B, C, and D be n×n matrices with A invertible.

a. Find matrices X and Y to produce the block LU factoriza-
tion[
A B

C D

]
=

[
I 0
X I

] [
A B

0 Y

]

and then show that

det

[
A B

C D

]
= (detA)·det(D − CA−1B)

b. Show that if AC = CA, then

det

[
A B

C D

]
= det(AD − CB)

16. Let J be the n×n matrix of all ones, and consider
A= (a − b)I + bJ ; that is,

A=




a b b · · · b

b a b · · · b

b b a · · · b

...
...

...
. . .

...

b b b · · · a




Confirm that detA= (a − b)n−1[a + (n− 1)b] as follows:

a. Subtract row 2 from row 1, row 3 from row 2, and so on,
and explain why this does not change the determinant of
the matrix.

b. With the resulting matrix from (a), add column 1 to col-
umn 2, then add this new column 2 to column 3, and so
on, and explain why this does not change the determinant.

c. Find the determinant of the resulting matrix from (b).

17. Let A be the original matrix given in Exercise 16, and let

B =




a − b b b · · · b

0 a b · · · b

0 b a · · · b

...
...

...
. . .

...

0 b b · · · a



,

C =




b b b · · · b

b a b · · · b

b b a · · · b

...
...

...
. . .

...

b b b · · · a




Notice that A, B, and C are nearly the same except that the
first column of A equals the sum of the first columns of B and
C. A linearity property of the determinant function, discussed
in Section 3.2, says that detA= detB + detC. Use this fact



April 4, 2005 13:36 l57-ch03 Sheet number 29 Page number 213 cyan magenta yellow black

Chapter 3 Supplementary Exercises 213

to prove the formula in Exercise 16 by induction on the size
of the matrix A.

18. [M] Apply the result of Exercise 16 to find the determinants
of the following matrices, and confirm your answers using a
matrix program.




3 8 8 8
8 3 8 8
8 8 3 8
8 8 8 3







8 3 3 3 3
3 8 3 3 3
3 3 8 3 3
3 3 3 8 3
3 3 3 3 8




19. [M] Use a matrix program to compute the determinants of
the following matrices.


 1 1 1

1 2 2
1 2 3







1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4







1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5




Use the results to guess the determinant of the matrix below,
and confirm your guess by using row operations to evaluate
that determinant.


1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · n




20. [M] Use the method of Exercise 19 to guess the determinant
of


1 1 1 · · · 1
1 3 3 · · · 3
1 3 6 · · · 6
...

...
...

. . .
...

1 3 6 · · · 3(n− 1)




Justify your conjecture. [Hint: Use Exercise 14(c) and the
result of Exercise 19.]


