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7
Symmetric Matrices
and Quadratic
Forms

WEB

INTRODUCTORY EXAMPLE

Multichannel Image Processing

Around the world in little more than 80 minutes, the two

Landsat satellites streak silently across the sky in near

polar orbits, recording images of terrain and coastline, in

swaths 185 kilometers wide. Every 16 days, each satellite

passes over almost every square kilometer of the earth’s

surface, so any location can be monitored every 8 days.

The Landsat images are useful for many purposes.

Developers and urban planners use them to study the rate

and direction of urban growth, industrial development,

and other changes in land usage. Rural countries can

analyze soil moisture, classify the vegetation in remote

regions, and locate inland lakes and streams. Govern-

ments can detect and assess damage from natural disas-

ters, such as forest fires, lava flows, floods, and hurricanes.

Environmental agencies can identify pollution from

smokestacks and measure water temperatures in lakes and

rivers near power plants.

Sensors aboard the satellite acquire seven simul-

taneous images of any region on earth to be studied. The

sensors record energy from separate wavelength bands—

three in the visible light spectrum and four in infrared and

thermal bands. Each image is digitized and stored as a

rectangular array of numbers, each number indicating the

signal intensity at a corresponding small point (or pixel)

on the image. Each of the seven images is one channel of

a multichannel or multispectral image.

The seven Landsat images of one fixed region typ-

ically contain much redundant information, since some

features will appear in several images. Yet other features,

because of their color or temperature, may reflect light that

is recorded by only one or two sensors. One goal of multi-

channel image processing is to view the data in a way that

extracts information better than studying each image

separately.

Principal component analysis is an effective way to

suppress redundant information and provide in only one or
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two composite images most of the information from the

initial data. Roughly speaking, the goal is to find a special

linear combination of the images, that is, a list of weights

that at each pixel combine all seven corresponding image

values into one new value. The weights are chosen in a

way that makes the range of light intensities—the scene

variance—in the composite image (called the first prin-

cipal component) greater than that in any of the original

images. Additional component images can also be con-

structed, by criteria that will be explained in Section 7.5.

Principal component analysis is illustrated in the

photos below, taken over Railroad Valley, Nevada. Images

from three Landsat spectral bands are shown in (a)–(c).

The total information in the three bands is rearranged in

the three principal component images in (d)–(f). The first

component (d) displays (or “explains”) 93.5% of the scene

variance present in the initial data. In this way, the three-

channel initial data have been reduced to one-channel

data, with a loss in some sense of only 6.5% of the scene

variance.

Earth Satellite Corporation of Rockville, Maryland,

which kindly supplied the photos shown here, is experi-

menting with images from 224 separate spectral bands.

Principal component analysis, essential for such massive

data sets, typically reduces the data to about 15 usable

principal components.
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Symmetric matrices arise more often in applications, in one way or another, than
any other major class of matrices. The theory is rich and beautiful, depending in
an essential way on both diagonalization from Chapter 5 and orthogonality from

Chapter 6. The diagonalization of a symmetric matrix, described in Section 7.1, is the
foundation for the discussion in Sections 7.2 and 7.3 concerning quadratic forms. Section
7.3, in turn, is needed for the final two sections on the singular value decomposition and
on the image processing described in the introductory example. Throughout the chapter,
all vectors and matrices have real entries.

7.1 DIAGONALIZATION OF SYMMETRIC MATRICES
A symmetric matrix is a matrixA such thatAT = A. Such a matrix is necessarily square.
Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite
sides of the main diagonal.

EXAMPLE 1 Of the following matrices, only the first three are symmetric:

Symmetric:

[
1 0
0 −3

]
,


 0 −1 0

−1 5 8
0 8 −7


 ,


 a b c

b d e

c e f




Nonsymmetric:

[
1 −3
3 0

]
,


 1 −4 0

−6 1 −4
0 −6 1


 ,


 5 4 3 2

4 3 2 1
3 2 1 0




To begin the study of symmetric matrices, it is helpful to review the diagonalization
process of Section 5.3.

EXAMPLE 2 If possible, diagonalize the matrix A=

 6 −2 −1

−2 6 −1
−1 −1 5


.

Solution The characteristic equation of A is

0 = −λ3 + 17λ2 − 90λ + 144 = −(λ− 8)(λ− 6)(λ− 3)

Standard calculations produce a basis for each eigenspace:

λ= 8: v1 =

 −1

1
0


 ; λ= 6: v2 =


 −1

−1
2


 ; λ= 3: v3 =


 1

1
1




These three vectors form a basis for R
3, and we could use them as the columns for a

matrix P that diagonalizesA. However, it is easy to see that {v1, v2, v3} is an orthogonal
set, and P will be more useful if its columns are orthonormal. Since a nonzero multiple
of an eigenvector is still an eigenvector, we can normalize v1, v2, and v3 to produce the
unit eigenvectors
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u1 =

 −1/

√
2

1/
√

2
0


 , u2 =


 −1/

√
6

−1/
√

6
2/

√
6


 , u3 =


 1/

√
3

1/
√

3
1/

√
3




Let

P =

 −1/

√
2 −1/

√
6 1/

√
3

1/
√

2 −1/
√

6 1/
√

3
0 2/

√
6 1/

√
3


 , D =


 8 0 0

0 6 0
0 0 3




Then A= PDP−1, as usual. But this time, since P is square and has orthonormal
columns, P is an orthogonal matrix, and P−1 is simply PT . (See Section 6.2.)

Theorem 1 explains why the eigenvectors in Example 2 are orthogonal—they cor-
respond to distinct eigenvalues.

THEOREM 1 If A is symmetric, then any two eigenvectors from different eigenspaces are
orthogonal.

PROOF Let v1 and v2 be eigenvectors that correspond to distinct eigenvalues, say, λ1

and λ2. To show that v1 · v2 = 0, compute

λ1v1 · v2 = (λ1v1)
T v2 = (Av1)

T v2 Since v1 is an eigenvector

= (vT1A
T )v2 = vT1 (Av2) Since AT = A

= vT1 (λ2v2) Since v2 is an eigenvector

= λ2vT1 v2 = λ2v1 · v2

Hence (λ1 − λ2)v1 · v2 = 0. But λ1 − λ2 �= 0, so v1 · v2 = 0. �

The special type of diagonalization in Example 2 is crucial for the theory of sym-
metric matrices. A matrix A is said to be orthogonally diagonalizable if there are an
orthogonal matrix P (with P−1 = PT ) and a diagonal matrix D such that

A= PDPT = PDP−1 (1)

To orthogonally diagonalize ann×nmatrix, we must findn linearly independent and
orthonormal eigenvectors. When is this possible? If A is orthogonally diagonalizable
as in (1), then

AT = (PDPT )T = PT TDT P T = PDPT = A

Thus A is symmetric! Theorem 2 shows that, conversely, every symmetric matrix is
orthogonally diagonalizable. The proof is much harder and is omitted; the main idea for
a proof will be given after Theorem 3.
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THEOREM 2 An n×n matrix A is orthogonally diagonalizable if and only if A is a symmetric
matrix.

This theorem is rather amazing, because our experience in Chapter 5 would suggest
that it is usually impossible to tell when a matrix is diagonalizable. But this is not the
case for symmetric matrices.

The next example treats a matrix whose eigenvalues are not all distinct.

EXAMPLE 3 Orthogonally diagonalize the matrix A=

 3 −2 4

−2 6 2
4 2 3


, whose

characteristic equation is

0 = −λ3 + 12λ2 − 21λ− 98 = −(λ− 7)2(λ + 2)

Solution The usual calculations produce bases for the eigenspaces:

λ= 7: v1 =

 1

0
1


 , v2 =


 −1/2

1
0


 ; λ= −2: v3 =


 −1

−1/2
1




Although v1 and v2 are linearly independent, they are not orthogonal. Recall from Section

6.2 that the projection of v2 onto v1 is
v2 · v1

v1 · v1
v1, and the component of v2 orthogonal to

v1 is

z2 = v2 − v2 · v1

v1 · v1
v1 =


 −1/2

1
0


 − −1/2

2


 1

0
1


 =


 −1/4

1
1/4




Then {v1, z2} is an orthogonal set in the eigenspace for λ= 7. (Note that z2 is a linear
combination of the eigenvectors v1 and v2, so z2 is in the eigenspace. This construction
of z2 is just the Gram–Schmidt process of Section 6.4.) Since the eigenspace is two-
dimensional (with basis v1, v2), the orthogonal set {v1, z2} is an orthogonal basis for the
eigenspace, by the Basis Theorem. (See Section 2.9 or 4.5.)

Normalizing v1 and z2, we obtain the following orthonormal basis for the eigenspace
for λ= 7:

u1 =

 1/

√
2

0
1/

√
2


 , u2 =


 −1/

√
18

4/
√

18
1/

√
18




An orthonormal basis for the eigenspace for λ= −2 is

u3 = 1

‖2v3‖2v3 = 1

3


 −2

−1
2


 =


 −2/3

−1/3
2/3



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By Theorem 1, u3 is orthogonal to the other eigenvectors u1 and u2. Hence {u1,u2,u3}
is an orthonormal set. Let

P = [ u1 u2 u3 ] =

 1/

√
2 −1/

√
18 −2/3

0 4/
√

18 −1/3
1/

√
2 1/

√
18 2/3


 , D =


 7 0 0

0 7 0
0 0 −2




Then P orthogonally diagonalizes A, and A= PDP−1.

In Example 3, the eigenvalue 7 has multiplicity two and the eigenspace is two-
dimensional. This fact is not accidental, as the next theorem shows.

The Spectral Theorem

The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the
following description of the eigenvalues is called a spectral theorem.

THEOREM 3 The Spectral Theorem for Symmetric Matrices

An n×n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity
of λ as a root of the characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corre-
sponding to different eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.

Part (a) follows from Exercise 24 of Section 5.5. Part (b) follows easily from part
(d). (See Exercise 31.) Part (c) is Theorem 1. Because of (a), a proof of (d) can be given
using Exercise 32 and the Schur factorization discussed in Supplementary Exercise 16
in Chapter 6. The details are omitted.

Spectral Decomposition

SupposeA= PDP−1, where the columns of P are orthonormal eigenvectors u1, . . . ,un
of A and the corresponding eigenvalues λ1, . . . , λn are in the diagonal matrix D. Then,
since P−1 = PT ,

A = PDPT = [ u1 · · · un ]


 λ1 0

. . .
0 λn






uT1
...

uTn




= [ λ1u1 · · · λnun ]




uT1
...

uTn



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Using the column–row expansion of a product (Theorem 10 in Section 2.4), we can write

A= λ1u1uT1 + λ2u2uT2 + · · · + λnunuTn (2)

This representation of A is called a spectral decomposition of A because it breaks
up A into pieces determined by the spectrum (eigenvalues) of A. Each term in (2) is
an n×n matrix of rank 1. For example, every column of λ1u1uT1 is a multiple of u1.
Furthermore, each matrix ujuTj is a projection matrix in the sense that for each x in
R
n, the vector (ujuTj )x is the orthogonal projection of x onto the subspace spanned by

uj . (See Exercise 35.)

EXAMPLE 4 Construct a spectral decomposition of the matrix A that has the orthog-
onal diagonalization

A=
[

7 2
2 4

]
=

[
2/

√
5 −1/

√
5

1/
√

5 2/
√

5

][
8 0
0 3

][
2/

√
5 1/

√
5

−1/
√

5 2/
√

5

]

Solution Denote the columns of P by u1 and u2. Then

A= 8u1uT1 + 3u2uT2

To verify this decomposition of A, compute

u1uT1 =
[

2/
√

5
1/

√
5

]
[ 2/

√
5 1/

√
5 ] =

[
4/5 2/5
2/5 1/5

]

u2uT2 =
[ −1/

√
5

2/
√

5

]
[ −1/

√
5 2/

√
5 ] =

[
1/5 −2/5

−2/5 4/5

]

and

8u1uT1 + 3u2uT2 =
[

32/5 16/5
16/5 8/5

]
+

[
3/5 −6/5

−6/5 12/5

]
=

[
7 2
2 4

]
= A

NU M E R I CA L NOT E

When A is symmetric and not too large, modern high-performance computer algo-
rithms calculate eigenvalues and eigenvectors with great precision. They apply a
sequence of similarity transformations to A involving orthogonal matrices. The di-
agonal entries of the transformed matrices converge rapidly to the eigenvalues of A.
(See the Numerical Notes in Section 5.2.) Using orthogonal matrices generally pre-
vents numerical errors from accumulating during the process. WhenA is symmetric,
the sequence of orthogonal matrices combines to form an orthogonal matrix whose
columns are eigenvectors of A.

A nonsymmetric matrix cannot have a full set of orthogonal eigenvectors, but
the algorithm still produces fairly accurate eigenvalues. After that, nonorthogonal
techniques are needed to calculate eigenvectors.
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P R A C T I C E P R O B L E M S

1. Show that if A is a symmetric matrix, then A2 is symmetric.

2. Show that if A is orthogonally diagonalizable, then so is A2.

7.1 EXERCISES
Determine which of the matrices in Exercises 1–6 are symmetric.

1.
[

3 5
5 −7

]
2.

[ −3 5
−5 3

]

3.
[

2 2
4 4

]
4.


 0 8 3

8 0 −2
3 −2 0




5.


 −6 2 0

0 −6 2
0 0 −6


 6.


 1 2 1 2

2 1 2 1
1 2 1 2




Determine which of the matrices in Exercises 7–12 are orthogonal.
If orthogonal, find the inverse.

7.
[
.6 .8
.8 −.6

]
8.

[
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]

9.
[ −5 2

2 5

]
10.


 −1 2 2

2 −1 2
2 2 −1




11.


 2/3 2/3 1/3

0 1/
√

5 −2/
√

5√
5/3 −4/

√
45 −2/

√
45




12.




.5 .5 −.5 −.5
−.5 .5 −.5 .5
.5 .5 .5 .5

−.5 .5 .5 −.5




Orthogonally diagonalize the matrices in Exercises 13–22, giving
an orthogonal matrix P and a diagonal matrix D. To save you
time, the eigenvalues in Exercises 17–24 are: (17) 5, 2, −2; (18)
25, 3, −50; (19) 7, −2; (20) 13, 7, 1; (21) 9, 5, 1; (22) 2, 0.

13.
[

3 1
1 3

]
14.

[
1 5
5 1

]

15.
[

16 −4
−4 1

]
16.

[ −7 24
24 7

]

17.


 1 1 3

1 3 1
3 1 1


 18.


 −2 −36 0

−36 −23 0
0 0 3




19.


 3 −2 4

−2 6 2
4 2 3


 20.


 7 −4 4

−4 5 0
4 0 9




21.




4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4


 22.




2 0 0 0
0 1 0 1
0 0 2 0
0 1 0 1




23. Let A=

 3 1 1

1 3 1
1 1 3


 and v =


 1

1
1


. Verify that 2 is an

eigenvalue of A and v is an eigenvector. Then orthogonally
diagonalize A.

24. Let A=

 5 −4 −2

−4 5 2
−2 2 2


, v1 =


 −2

2
1


, and v2 =


 1

1
0


.

Verify that v1 and v2 are eigenvectors of A. Then orthogo-
nally diagonalize A.

In Exercises 25 and 26, mark each statement True or False. Justify
each answer.

25. a. An n×n matrix that is orthogonally diagonalizable must
be symmetric.

b. If AT = A and if vectors u and v satisfy Au = 3u and
Av = 4v, then u·v = 0.

c. An n×n symmetric matrix has n distinct real eigenvalues.

d. For a nonzero v in R
n, the matrix vvT is called a projection

matrix.

26. a. Every symmetric matrix is orthogonally diagonalizable.

b. If B = PDPT , where P T = P−1 and D is a diagonal ma-
trix, then B is a symmetric matrix.

c. An orthogonal matrix is orthogonally diagonalizable.

d. The dimension of an eigenspace of a symmetric matrix
equals the multiplicity of the corresponding eigenvalue.

27. Suppose A is a symmetric n×n matrix and B is any n×m
matrix. Show that BTAB, BTB, and BBT are symmetric ma-
trices.
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28. Show that if A is an n×n symmetric matrix, then (Ax)·y =
x·(Ay) for all x, y in R

n.

29. SupposeA is invertible and orthogonally diagonalizable. Ex-
plain why A−1 is also orthogonally diagonalizable.

30. Suppose A and B are both orthogonally diagonalizable and
AB = BA. Explain why AB is also orthogonally diagonaliz-
able.

31. LetA= PDP−1, whereP is orthogonal andD is diagonal, and
let λ be an eigenvalue of A of multiplicity k. Then λ appears
k times on the diagonal of D. Explain why the dimension of
the eigenspace for λ is k.

32. Suppose A= PRP−1, where P is orthogonal and R is upper
triangular. Show that if A is symmetric, then R is symmetric
and hence is actually a diagonal matrix.

33. Construct a spectral decomposition of A from Example 2.

34. Construct a spectral decomposition of A from Example 3.

35. Let u be a unit vector in R
n, and let B = uuT .

a. Given any x in R
n, compute Bx and show that Bx is the

orthogonal projection of x onto u, as described in Section
6.2.

b. Show that B is a symmetric matrix and B2 = B.

c. Show that u is an eigenvector of B. What is the corre-
sponding eigenvalue?

36. Let B be an n×n symmetric matrix such that B2 = B. Any
such matrix is called a projection matrix (or an orthogo-
nal projection matrix). Given any y in R

n, let ŷ = By and
z = y − ŷ.

a. Show that z is orthogonal to ŷ.

b. Let W be the column space of B. Show that y is the sum
of a vector inW and a vector inW⊥. Why does this prove
that By is the orthogonal projection of y onto the column
space of B?

[M] Orthogonally diagonalize the matrices in Exercises 37–40.
To practice the methods of this section, do not use an eigenvector
routine from your matrix program. Instead, use the program to find
the eigenvalues, and, for each eigenvalue λ, find an orthonormal
basis for Nul(A− λI), as in Examples 2 and 3.

37.




5 2 9 −6
2 5 −6 9
9 −6 5 2

−6 9 2 5




38.




.38 −.18 −.06 −.04
−.18 .59 −.04 .12
−.06 −.04 .47 −.12
−.04 .12 −.12 .41




39.



.31 .58 .08 .44
.58 −.56 .44 −.58
.08 .44 .19 −.08
.44 −.58 −.08 .31




40.




10 2 2 −6 9
2 10 2 −6 9
2 2 10 −6 9

−6 −6 −6 26 9
9 9 9 9 −19




S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. (A2)T = (AA)T = ATAT , by a property of transposes. By hypothesis, AT = A. So
(A2)T = AA= A2, which shows that A2 is symmetric.

2. IfA is orthogonally diagonalizable, thenA is symmetric, by Theorem 2. By Practice
Problem 1, A2 is symmetric and hence is orthogonally diagonalizable (Theorem 2).

7.2 QUADRATIC FORMS
Until now, our attention in this text has focused on linear equations, except for the sums
of squares encountered in Chapter 6 when computing xTx. Such sums and more general
expressions, called quadratic forms, occur frequently in applications of linear algebra
to engineering (in design criteria and optimization) and signal processing (as output
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noise power). They also arise, for example, in physics (as potential and kinetic energy),
differential geometry (as normal curvature of surfaces), economics (as utility functions),
and statistics (in confidence ellipsoids). Some of the mathematical background for such
applications flows easily from our work on symmetric matrices.

A quadratic form on R
n is a function Q defined on R

n whose value at a vector x
in R

n can be computed by an expression of the form Q(x)= xTAx, where A is an n×n
symmetric matrix. The matrix A is called the matrix of the quadratic form.

The simplest example of a nonzero quadratic form is Q(x)= xTIx = ‖x‖2. Exam-
ples 1 and 2 show the connection between any symmetric matrix A and the quadratic
form xTAx.

EXAMPLE 1 Let x =
[
x1

x2

]
. Compute xTAx for the following matrices:

a. A=
[

4 0
0 3

]
b. A=

[
3 −2

−2 7

]

Solution

a. xTAx = [ x1 x2 ]

[
4 0
0 3

][
x1

x2

]
= [ x1 x2 ]

[
4x1

3x2

]
= 4x2

1 + 3x2
2 .

b. There are two −2 entries in A. Watch how they enter the calculations. The (1, 2)-
entry in A is in boldface type.

xTAx = [ x1 x2 ]

[
3 −2

−2 7

][
x1

x2

]
= [ x1 x2 ]

[
3x1 − 2x2

−2x1 + 7x2

]

= x1(3x1−2x2) + x2(−2x1 + 7x2)

= 3x2
1−2x1x2 − 2x2x1 + 7x2

2

= 3x2
1 − 4x1x2 + 7x2

2

The presence of −4x1x2 in the quadratic form in Example 1(b) is due to the −2
entries off the diagonal in the matrix A. In contrast, the quadratic form associated with
the diagonal matrix A in Example 1(a) has no x1x2 cross-product term.

EXAMPLE 2 For x in R
3, let Q(x)= 5x2

1 + 3x2
2 + 2x2

3 − x1x2 + 8x2x3. Write this
quadratic form as xTAx.

Solution The coefficients of x2
1 , x2

2 , x2
3 go on the diagonal ofA. To makeA symmetric,

the coefficient of xixj for i �= j must be split evenly between the (i, j)- and (j, i)-entries
in A. The coefficient of x1x3 is 0. It is readily checked that

Q(x)= xTAx = [ x1 x2 x3 ]


 5 −1/2 0

−1/2 3 4
0 4 2




 x1

x2

x3




EXAMPLE 3 Let Q(x)= x2
1 − 8x1x2 − 5x2

2 . Compute the value of Q(x) for x =[ −3
1

]
,

[
2

−2

]
, and

[
1

−3

]
.
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Solution

Q(−3, 1) = (−3)2 − 8(−3)(1)− 5(1)2 = 28

Q(2,−2) = (2)2 − 8(2)(−2)− 5(−2)2 = 16

Q(1,−3) = (1)2 − 8(1)(−3)− 5(−3)2 = −20

In some cases, quadratic forms are easier to use when they have no cross-product
terms—that is, when the matrix of the quadratic form is a diagonal matrix. Fortunately,
the cross-product term can be eliminated by making a suitable change of variable.

Change of Variable in a Quadratic Form

If x represents a variable vector in R
n, then a change of variable is an equation of the

form

x = Py, or equivalently, y = P−1x (1)

where P is an invertible matrix and y is a new variable vector in R
n. Here y is the

coordinate vector of x relative to the basis of R
n determined by the columns of P . (See

Section 4.4.)
If the change of variable (1) is made in a quadratic form xTAx, then

xTAx = (Py)TA(Py)= yTP TAPy = yT(P TAP )y (2)

and the new matrix of the quadratic form is PTAP . If P orthogonally diagonalizes A,
then PT = P−1 and PTAP = P−1AP =D. The matrix of the new quadratic form is
diagonal! That is the strategy of the next example.

EXAMPLE 4 Make a change of variable that transforms the quadratic form in Exam-
ple 3 into a quadratic form with no cross-product term.

Solution The matrix of the quadratic form in Example 3 is

A=
[

1 −4
−4 −5

]

The first step is to orthogonally diagonalize A. Its eigenvalues turn out to be λ= 3 and
λ= −7. Associated unit eigenvectors are

λ= 3:

[
2/

√
5

−1/
√

5

]
; λ= −7:

[
1/

√
5

2/
√

5

]

These vectors are automatically orthogonal (because they correspond to distinct eigen-
values) and so provide an orthonormal basis for R

2. Let

P =
[

2/
√

5 1/
√

5
−1/

√
5 2/

√
5

]
, D =

[
3 0
0 −7

]

Then A= PDP−1 and D = P−1AP = PTAP , as pointed out earlier. A suitable change
of variable is
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x = Py, where x =
[
x1

x2

]
and y =

[
y1

y2

]

Then

x2
1 − 8x1x2 − 5x2

2 = xTAx = (Py)TA(Py)

= yTP TAPy = yTDy

= 3y2
1 − 7y2

2

To illustrate the meaning of the equality of quadratic forms in Example 4, we can
compute Q(x) for x = (2,−2) using the new quadratic form. First, since x = Py, we
have

y = P−1x = PT x

so

y =
[

2/
√

5 −1/
√

5
1/

√
5 2/

√
5

][
2

−2

]
=

[
6/

√
5

−2/
√

5

]

Hence

3y2
1 − 7y2

2 = 3(6/
√

5)2 − 7(−2/
√

5)2 = 3(36/5)− 7(4/5)

= 80/5 = 16

This is the value of Q(x) in Example 3 when x = (2,−2). See Fig. 1.

�

�2

�2

160

Multiplication
by P

x

y

yTDy

xTAx

FIGURE 1 Change of variable in xTAx.

Example 4 illustrates the following theorem. The proof of the theorem was essen-
tially given before Example 4.

THEOREM 4 The Principal Axes Theorem

LetAbe ann×n symmetric matrix. Then there is an orthogonal change of variable,
x = Py, that transforms the quadratic form xTAx into a quadratic form yTDy with
no cross-product term.
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The columns of P in the theorem are called the principal axes of the quadratic form
xTAx. The vector y is the coordinate vector of x relative to the orthonormal basis of R

n

given by these principal axes.

A Geometric View of Principal Axes

Suppose Q(x)= xTAx, where A is an invertible 2×2 symmetric matrix, and let c be a
constant. It can be shown that the set of all x in R

2 that satisfy

xTAx = c (3)

either corresponds to an ellipse (or circle), a hyperbola, two intersecting lines, or a single
point, or contains no points at all. If A is a diagonal matrix, the graph is in standard
position, such as in Fig. 2. If A is not a diagonal matrix, the graph of (3) is rotated out
of standard position, as in Fig. 3 (on page 460). Finding the principal axes (determined
by the eigenvectors of A) amounts to finding a new coordinate system with respect to
which the graph is in standard position.

The hyperbola in Fig. 3(b) is the graph of the equation xTAx = 16, where A is the
matrix in Example 4. The positive y1-axis in Fig. 3(b) is in the direction of the first
column of the P in Example 4, and the positive y2-axis is in the direction of the second
column of P .

x1

x2

a

= 1,  a > b > 0
a2 b2

x2 x2
21

b

x1

x2

a

b

— —+

ellipse

= 1,  a > b > 0
a2 b2

x2 x2
21— —–

hyperbola

FIGURE 2 An ellipse and a hyperbola in standard position.

EXAMPLE 5 The ellipse in Fig. 3(a) is the graph of the equation 5x2
1 − 4x1x2 + 5x2

2 =
48. Find a change of variable that removes the cross-product term from the equation.

Solution The matrix of the quadratic form is A=
[

5 −2
−2 5

]
. The eigenvalues of A

turn out to be 3 and 7, with corresponding unit eigenvectors

u1 =
[

1/
√

2
1/

√
2

]
, u2 =

[ −1/
√

2
1/

√
2

]
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(a) 5x2 – 4x1x2 + 5x2 = 48

x1

x2 y1y2

1

1

1 2

x2

(b) x2 – 8x1x2 – 5x2 = 16

x1

y1

y2

11

1 2

FIGURE 3 An ellipse and a hyperbola not in standard position.

Let P = [ u1 u2 ] =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
. Then P orthogonally diagonalizes A, so the

change of variable x = Py produces the quadratic form yT Dy = 3y2
1 + 7y2

2 . The new
axes for this change of variable are shown in Fig. 3(a).

Classifying Quadratic Forms

When A is an n×n matrix, the quadratic form Q(x)= xTAx is a real-valued function
with domain R

n. We distinguish several important classes of quadratic forms by the
type of values they assume for various x’s.

Figure 4 displays the graphs of four quadratic forms. For each point x = (x1, x2) in
the domain of a quadratic formQ, a point (x1, x2, z) is plotted, where z=Q(x). Notice
that except at x = 0, the values of Q(x) are all positive in Fig. 4(a) and all negative in
Fig. 4(d). The horizontal cross sections of the graphs are ellipses in Figs. 4(a) and 4(d)
and hyperbolas in 4(c).

(a)  z = 3x2 + 7x2

x1

z

x2

1 2 (b)  z = 3x2

x1

z

x2

1

x

(c)  z = 3x2 – 7x2

x1

z

x2

1 2 (d)  z = –3x2 – 7x2

x1

z

x2

1 2

FIGURE 4 Graphs of quadratic forms.

The simple 2×2 examples in Fig. 4 illustrate the following definitions.
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DEF IN I T I ON A quadratic form Q is:

a. positive definite if Q(x) > 0 for all x �= 0,

b. negative definite if Q(x) < 0 for all x �= 0,

c. indefinite if Q(x) assumes both positive and negative values.

Also,Q is said to be positive semidefinite ifQ(x) ≥ 0 for all x, andQ is negative
semidefinite ifQ(x) ≤ 0 for all x. The quadratic forms in parts (a) and (b) of Fig. 4 are
both positive semidefinite.

Theorem 5 characterizes some quadratic forms in terms of eigenvalues.

THEOREM 5 Quadratic Forms and Eigenvalues

Let A be an n×n symmetric matrix. Then a quadratic form xTAx is:

a. positive definite if and only if the eigenvalues of A are all positive,

b. negative definite if and only if the eigenvalues of A are all negative, or

c. indefinite if and only if A has both positive and negative eigenvalues.

Positive definite

z

Indefinite

z

Negative definite

z

x1 x2

x1

x1
x2

x2

PROOF By the Principal Axes Theorem, there exists an orthogonal change of variable
x = Py such that

Q(x)= xTAx = yT Dy = λ1y
2
1 + λ2y

2
2 + · · · + λny2

n (4)

where λ1, . . . , λn are the eigenvalues of A. Since P is invertible, there is a one-to-one
correspondence between all nonzero x and all nonzero y. Thus the values of Q(x)
for x �= 0 coincide with the values of the expression on the right side of (4), which is
obviously controlled by the signs of the eigenvalues λ1, . . . , λn, in the three ways
described in the theorem. �

EXAMPLE 6 Is Q(x)= 3x2
1 + 2x2

2 + x2
3 + 4x1x2 + 4x2x3 positive definite?

Solution Because of all the plus signs, the form “looks” positive definite. But the
matrix of the form is

A=

 3 2 0

2 2 2
0 2 1




and the eigenvalues of A turn out to be 5, 2, and −1. So Q is an indefinite quadratic
form, not positive definite.

The classification of a quadratic form is often carried over to the matrix of the form.
Thus a positive definite matrix A is a symmetric matrix for which the quadratic form
xTAx is positive definite. Other terms, such as positive semidefinite matrix, are defined
analogously.

WEB
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NU M E R I CA L NOT E

Afast way to determine whether a symmetric matrixA is positive definite is to attempt
to factor A in the form A= RTR, where R is upper triangular with positive diagonal
entries. (A slightly modified algorithm for an LU factorization is one approach.)
Such a Cholesky factorization is possible if and only if A is positive definite. See
Supplementary Exercise 7.

P R A C T I C E P R O B L E M

Describe a positive semidefinite matrix A in terms of its eigenvalues.

WEB

7.2 EXERCISES

1. Compute the quadratic form xTAx, when A=
[

5 1/3
1/3 1

]

and

a. x =
[
x1

x2

]
b. x =

[
6
1

]
c. x =

[
1
3

]

2. Compute the quadratic form xTAx, for A=

 4 3 0

3 2 1
0 1 1




and

a. x =

 x1

x2

x3


 b. x =


 2

−1
5


 c. x =


 1/

√
3

1/
√

3
1/

√
3




3. Find the matrix of the quadratic form. Assume x is in R
2.

a. 10x2
1 − 6x1x2 − 3x2

2 b. 5x2
1 + 3x1x2

4. Find the matrix of the quadratic form. Assume x is in R
2.

a. 20x2
1 + 15x1x2 − 10x2

2 b. x1x2

5. Find the matrix of the quadratic form. Assume x is in R
3.

a. 8x2
1 + 7x2

2 − 3x2
3 − 6x1x2 + 4x1x3 − 2x2x3

b. 4x1x2 + 6x1x3 − 8x2x3

6. Find the matrix of the quadratic form. Assume x is in R
3.

a. 5x2
1 − x2

2 + 7x2
3 + 5x1x2 − 3x1x3

b. x2
3 − 4x1x2 + 4x2x3

7. Make a change of variable, x = P y, that transforms the
quadratic form x2

1 + 10x1x2 + x2
2 into a quadratic form with

no cross-product term. Give P and the new quadratic form.

8. Let A be the matrix of the quadratic form

9x2
1 + 7x2

2 + 11x2
3 − 8x1x2 + 8x1x3

It can be shown that the eigenvalues of A are 3, 9, and 15.
Find an orthogonal matrix P such that the change of vari-
able x = Py transforms xTAx into a quadratic form with no
cross-product term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9–18. Then make a
change of variable, x = Py, that transforms the quadratic form
into one with no cross-product term. Write the new quadratic
form. Construct P using the methods of Section 7.1.

9. 3x2
1 − 4x1x2 + 6x2

2 10. 9x2
1 − 8x1x2 + 3x2

2

11. 2x2
1 + 10x1x2 + 2x2

2 12. −5x2
1 + 4x1x2 − 2x2

2

13. x2
1 − 6x1x2 + 9x2

2 14. 8x2
1 + 6x1x2

15. [M] −2x2
1 − 6x2

2 − 9x2
3 − 9x2

4 + 4x1x2 + 4x1x3 + 4x1x4 +
6x3x4

16. [M] 4x2
1 + 4x2

2 + 4x2
3 + 4x2

4 + 3x1x2 + 3x3x4 − 4x1x4 +
4x2x3

17. [M] x2
1 + x2

2 + x2
3 + x2

4 + 9x1x2 − 12x1x4 + 12x2x3 + 9x3x4

18. [M] 11x2
1 − x2

2 − 12x1x2 − 12x1x3 − 12x1x4 − 2x3x4

19. What is the largest possible value of the quadratic form
5x2

1 + 8x2
2 if x = (x1, x2) and xTx = 1, that is, if x2

1 + x2
2 = 1?

(Try some examples of x.)

20. What is the largest value of the quadratic form 5x2
1 − 3x2

2 if
xTx = 1?

In Exercises 21 and 22, matrices are n×n and vectors are in R
n.

Mark each statement True or False. Justify each answer.
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21. a. The matrix of a quadratic form is a symmetric matrix.

b. A quadratic form has no cross-product terms if and only if
the matrix of the quadratic form is a diagonal matrix.

c. The principal axes of a quadratic form xTAx are eigenvec-
tors of A.

d. Apositive definite quadratic formQ satisfiesQ(x) > 0 for
all x in R

n.

e. If the eigenvalues of a symmetric matrixA are all positive,
then the quadratic form xTAx is positive definite.

f. A Cholesky factorization of a symmetric matrix A has the
formA= RTR, for an upper triangular matrixR with pos-
itive diagonal entries.

22. a. The expression ‖x‖2 is a quadratic form.

b. If A is symmetric and P is an orthogonal matrix, then
the change of variable x = P y transforms xTAx into a
quadratic form with no cross-product term.

c. IfA is a 2×2 symmetric matrix, then the set of x such that
xTAx = c (for a constant c) corresponds to either a circle,
an ellipse, or a hyperbola.

d. An indefinite quadratic form is either positive semidefinite
or negative semidefinite.

e. If A is symmetric and the quadratic form xTAx has only
negative values for x �= 0, then the eigenvalues ofA are all
negative.

Exercises 23 and 24 show how to classify a quadratic form

Q(x)= xTAx, when A=
[
a b

b d

]
and detA �= 0, without find-

ing the eigenvalues of A.

23. If λ1 and λ2 are the eigenvalues of A, then the characteristic
polynomial ofA can be written in two ways: det(A− λI) and
(λ− λ1)(λ− λ2). Use this fact to show that λ1 + λ2 = a + d
(the diagonal entries of A) and λ1λ2 = detA.

24. Verify the following statements.

a. Q is positive definite if detA > 0 and a > 0.

b. Q is negative definite if detA > 0 and a < 0.

c. Q is indefinite if detA < 0.

25. Show that ifB ism×n, thenBTB is positive semidefinite; and
if B is n×n and invertible, then BTB is positive definite.

26. Show that if an n×n matrix A is positive definite, then there
exists a positive definite matrix B such that A= BTB. [Hint:
Write A= PDPT , with P T = P−1. Produce a diagonal ma-
trix C such that D = CTC, and let B = PCPT . Show that B
works.]

27. Let A and B be symmetric n×n matrices whose eigenvalues
are all positive. Show that the eigenvalues of A + B are all
positive. [Hint: Consider quadratic forms.]

28. Let A be an n×n invertible symmetric matrix. Show that
if the quadratic form xTAx is positive definite, then so is the
quadratic form xTA−1x. [Hint: Consider eigenvalues.]

SG Mastering: Diagonalization and Quadratic Forms 7–8

S O L U T I O N T O P R A C T I C E P R O B L E M

Make an orthogonal change of variable x = Py, and write

xTAx = yT Dy = λ1y
2
1 + λ2y

2
2 + · · · + λny2

n

as in (4). If an eigenvalue—say, λi—were negative, then xTAx would be negative for
the x corresponding to y = ei (the ith column of In). So the eigenvalues of a positive
semidefinite quadratic form must all be nonnegative. Conversely, if the eigenvalues are
nonnegative, the expansion above shows that xTAx must be positive semidefinite.Positive semidefinite

z

x1 x2

7.3 CONSTRAINED OPTIMIZATION
Engineers, economists, scientists, and mathematicians often need to find the maximum
or minimum value of a quadratic form Q(x) for x in some specified set. Typically, the
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problem can be arranged so that x varies over the set of unit vectors. As we shall see,
this constrained optimization problem has an interesting and elegant solution. Example
6 below and the discussion in Section 7.5 illustrate how such problems arise in practice.

The requirement that a vector x in R
n be a unit vector can be stated in several

equivalent ways:

‖x‖ = 1, ‖x‖2 = 1, xTx = 1

and

x2
1 + x2

2 + · · · + x2
n = 1 (1)

We shall use xTx = 1, but the expanded version (1) is commonly used in applications.
When a quadratic formQ has no cross-product terms, it is easy to find the maximum

and minimum of Q(x) for xTx = 1.

EXAMPLE 1 Find the maximum and minimum values ofQ(x)= 9x2
1 + 4x2

2 + 3x2
3 sub-

ject to the constraint xTx = 1.

Solution Since x2
2 and x2

3 are nonnegative, note that

4x2
2 ≤ 9x2

2 and 3x2
3 ≤ 9x2

3

and hence

Q(x) = 9x2
1 + 4x2

2 + 3x2
3

≤ 9x2
1 + 9x2

2 + 9x2
3

= 9(x2
1 + x2

2 + x2
3)

= 9

whenever x2
1 + x2

2 + x2
3 = 1. So the maximum value of Q(x) cannot exceed 9 when x is

a unit vector. Furthermore, Q(x)= 9 when x = (1, 0, 0). Thus 9 is the maximum value
of Q(x) for xTx = 1.

To find the minimum value of Q(x), observe that

9x2
1 ≥ 3x2

1 , 4x2
2 ≥ 3x2

2

and hence

Q(x) ≥ 3x2
1 + 3x2

2 + 3x2
3 = 3(x2

1 + x2
2 + x2

3)= 3

whenever x2
1 + x2

2 + x2
3 = 1. Also, Q(x)= 3 when x1 = 0, x2 = 0, and x3 = 1. So 3 is

the minimum value of Q(x) when xTx = 1.

It is easy to see in Example 1 that the matrix of the quadratic formQ has eigenvalues
9, 4, and 3 and that the greatest and least eigenvalues equal, respectively, the (constrained)
maximum and minimum of Q(x). The same holds true for any quadratic form, as we
shall see.

EXAMPLE 2 Let A=
[

3 0
0 7

]
, and let Q(x)= xTAx for x in R

2. Figure 1 displays

the graph of Q. Figure 2 shows only the portion of the graph inside a cylinder; the
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intersection of the cylinder with the surface is the set of points (x1, x2, z) such that
z=Q(x1, x2) and x2

1 + x2
2 = 1. The “heights” of these points are the constrained values

of Q(x). Geometrically, the constrained optimization problem is to locate the highest
and lowest points on the intersection curve.

The two highest points on the curve are 7 units above the x1x2-plane, occurring
where x1 = 0 and x2 = ±1. These points correspond to the eigenvalue 7 of A and
the eigenvectors x = (0, 1) and −x = (0,−1). Similarly, the two lowest points on the
curve are 3 units above the x1x2-plane. They correspond to the eigenvalue 3 and the
eigenvectors (1, 0) and (−1, 0).

x1
x2

z

FIGURE 1 z= 3x2
1 + 7x2

2 .

x1
x2

z

FIGURE 2 The intersection of z=
3x2

1 + 7x2
2 and the cylinder x2

1 + x2
2 = 1.

Every point on the intersection curve in Fig. 2 has a z-coordinate between 3 and 7,
and for any number t between 3 and 7, there is a unit vector x such that Q(x)= t . In
other words, the set of all possible values of xTAx, for ‖x‖ = 1, is the closed interval
3 ≤ t ≤ 7.

It can be shown that for any symmetric matrix A, the set of all possible values of
xTAx, for ‖x‖ = 1, is a closed interval on the real axis. (See Exercise 13.) Denote the
left and right endpoints of this interval by m and M , respectively. That is, let

m= min {xTAx : ‖x‖ = 1}, M = max {xTAx : ‖x‖ = 1} (2)

Exercise 12 asks you to prove that if λ is an eigenvalue of A, then m ≤ λ ≤ M . The
next theorem says thatm andM are themselves eigenvalues ofA, just as in Example 2.1

THEOREM 6 LetA be a symmetric matrix, and definem andM as in (2). ThenM is the greatest
eigenvalue λ1 of A and m is the least eigenvalue of A. The value of xTAx is M
when x is a unit eigenvector u1 corresponding toM . The value of xTAx ismwhen
x is a unit eigenvector corresponding to m.

1The use of minimum and maximum in (2), and least and greatest in the theorem, refers to the natural
ordering of the real numbers, not to magnitudes.
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PROOF Orthogonally diagonalize A as PDP−1. We know that

xTAx = yTDy when x = Py (3)

Also,

‖x‖ = ‖Py‖ = ‖y‖ for all y

because PTP = I and ‖Py‖2 = (Py)T (Py)= yTP TPy = yTy = ‖y‖2. In particular,
‖y‖ = 1 if and only if ‖x‖ = 1. Thus xTAx and yTDy assume the same set of values
as x and y range over the set of all unit vectors.

To simplify notation, we will suppose that A is a 3×3 matrix with eigenvalues
a ≥ b ≥ c. Arrange the (eigenvector) columns of P so that P = [ u1 u2 u3 ] and

D =

 a 0 0

0 b 0
0 0 c




Given any unit vector y in R
3 with coordinates y1, y2, y3, observe that

ay2
1 = ay2

1

by2
2 ≤ ay2

2

cy2
3 ≤ ay2

3

Adding these inequalities, we have

yTDy = ay2
1 + by2

2 + cy2
3

≤ ay2
1 + ay2

2 + ay2
3

= a(y2
1 + y2

2 + y2
3)

= a‖y‖2 = a

Thus M ≤ a, by definition of M . However, yTDy = a when y = e1 = (1, 0, 0), so in
factM = a. By (3), the x that corresponds to y = e1 is the eigenvector u1 of A, because

x = P e1 = [ u1 u2 u3 ]


 1

0
0


 = u1

Thus M = a = eT1 De1 = uT1Au1, which proves the statement about M . A similar argu-
ment shows that m is the least eigenvalue, c, and this value of xTAx is attained when
x = P e3 = u3. �

EXAMPLE 3 LetA=

 3 2 1

2 3 1
1 1 4


. Find the maximum value of the quadratic form

xTAx subject to the constraint xTx = 1, and find a unit vector at which this maximum
value is attained.

Solution By Theorem 6, we seek the greatest eigenvalue of A. The characteristic
equation turns out to be
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0 = −λ3 + 10λ2 − 27λ + 18 = −(λ− 6)(λ− 3)(λ− 1)

The greatest eigenvalue is 6.
The constrained maximum of xTAx is attained when x is a unit eigenvector for λ= 6.

Solving (A− 6I )x = 0, we find an eigenvector


 1

1
1


 and u1 =


 1/

√
3

1/
√

3
1/

√
3


.

In later applications, we will need to consider values of xTAx when x not only is a
unit vector but also is orthogonal to the eigenvector u1 mentioned in Theorem 6. This
case is treated in the next theorem.

THEOREM 7 Let A, λ1, and u1 be as in Theorem 6. Then the maximum value of xTAx subject
to the constraints

xTx = 1, xTu1 = 0

is the second greatest eigenvalue, λ2, and this maximum is attained when x is an
eigenvector u2 corresponding to λ2.

Theorem 7 can be proved by an argument similar to the one above in which the
theorem is reduced to the case where the matrix of the quadratic form is diagonal. The
next example gives an idea of the proof for the case of a diagonal matrix.

EXAMPLE 4 Find the maximum value of 9x2
1 + 4x2

2 + 3x2
3 subject to the constraints

xTx = 1 and xTu1 = 0, where u1 = (1, 0, 0). Note that u1 is a unit eigenvector corre-
sponding to the greatest eigenvalue λ= 9 of the matrix of the quadratic form.

Solution If the coordinates of x are x1, x2, x3, then the constraint xTu1 = 0 means
simply that x1 = 0. For such a unit vector, x2

2 + x2
3 = 1, and

9x2
1 + 4x2

2 + 3x2
3 = 4x2

2 + 3x2
3

≤ 4x2
2 + 4x2

3

= 4(x2
2 + x2

3)

= 4

Thus the constrained maximum of the quadratic form does not exceed 4. And this value
is attained for x = (0, 1, 0), which is an eigenvector for the second greatest eigenvalue
of the matrix of the quadratic form.

EXAMPLE 5 Let A be the matrix in Example 3 and let u1 be a unit eigenvector corre-
sponding to the greatest eigenvalue of A. Find the maximum value of xTAx subject to
the conditions

xTx = 1, xTu1 = 0 (4)
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Solution From Example 3, the second greatest eigenvalue of A is λ= 3. Solve
(A− 3I )x = 0 to find an eigenvector, and normalize it to obtain

u2 =

 1/

√
6

1/
√

6
−2/

√
6




The vector u2 is automatically orthogonal to u1 because the vectors correspond to dif-
ferent eigenvalues. Thus the maximum of xTAx subject to the constraints in (4) is 3,
attained when x = u2.

The next theorem generalizes Theorem 7 and, together with Theorem 6, gives a
useful characterization of all the eigenvalues of A. The proof is omitted.

THEOREM 8 LetAbe a symmetricn×nmatrix with an orthogonal diagonalizationA= PDP−1,
where the entries on the diagonal of D are arranged so that λ1 ≥ λ2 ≥ · · · ≥ λn
and where the columns ofP are corresponding unit eigenvectors u1, . . . ,un. Then
for k = 2, . . . , n, the maximum value of xTAx subject to the constraints

xTx = 1, xTu1 = 0, . . . , xTuk−1 = 0

is the eigenvalue λk , and this maximum is attained at x = uk .

Theorem 8 will be helpful in Sections 7.4 and 7.5. The following application requires
only Theorem 6.

EXAMPLE 6 During the next year, a county government is planning to repairx hundred
miles of public roads and bridges and to improve y hundred acres of parks and recreation
areas. The county must decide how to allocate its resources (funds, equipment, labor,
etc.) between these two projects. If it is more cost-effective to work simultaneously on
both projects rather than on only one, then x and y might satisfy a constraint such as

4x2 + 9y2 ≤ 36

See Fig. 3. Each point (x, y) in the shaded feasible set represents a possible public
works schedule for the year. The points on the constraint curve, 4x2 + 9y2 = 36, use the
maximum amounts of resources available.

y
Parks and
recreation

4x2 + 9y2 = 36

Feasible
set

2

3
Road and bridge repair

x

FIGURE 3 Public works schedules.
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In choosing its public works schedule, the county wants to consider the opinions of
the county residents. To measure the value, or utility, that the residents would assign to
the various work schedules (x, y), economists sometimes use a function such as

q(x, y)= xy

The set of points (x, y) at which q(x, y) is a constant is called an indifference curve.
Three such curves are shown in Fig. 4. Points along an indifference curve correspond
to alternatives that county residents as a group would find equally valuable.2 Find the
public works schedule that maximizes the utility function q.

y

Parks and
recreation

1.4

4x2 + 9y2 = 36
(indifference curves)

q (x, y) = 4
q (x, y) = 3

q (x, y) = 2
Road and bridge repair

2.1
x

FIGURE 4 The optimum public works schedule is
(2.1, 1.4).

Solution The constraint equation 4x2 + 9y2 = 36 does not describe a set of unit vectors,
but a change of variable can fix that problem. Rewrite the constraint in the form(x

3

)2
+

(y
2

)2 = 1

and define

x1 = x

3
, x2 = y

2
, that is, x = 3x1 and y = 2x2

Then the constraint equation becomes

x2
1 + x2

2 = 1

and the utility function becomes q(3x1, 2x2)= (3x1)(2x2)= 6x1x2. Let x =
[
x1

x2

]
.

Then the problem is to maximize Q(x)= 6x1x2 subject to xTx = 1. Note that Q(x)=
xTAx, where

A=
[

0 3
3 0

]

The eigenvalues of A are ±3, with eigenvectors

[
1/

√
2

1/
√

2

]
for λ= 3 and

[ −1/
√

2
1/

√
2

]
for

2Indifference curves are discussed in Michael D. Intriligator, Ronald G. Bodkin, and Cheng Hsiao,
Econometric Models, Techniques, and Applications (Upper Saddle River, NJ: Prentice-Hall, 1996).
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λ= −3. Thus the maximum value of Q(x)= q(x1, x2) is 3, attained when x1 = 1/
√

2
and x2 = 1/

√
2.

In terms of the original variables, the optimum public works schedule is x = 3x1 =
3/

√
2 ≈ 2.1 hundred miles of roads and bridges and y = 2x2 = √

2 ≈ 1.4 hundred acres
of parks and recreational areas. The optimum public works schedule is the point where
the constraint curve and the indifference curve q(x, y)= 3 just meet. Points (x, y) with
a higher utility lie on indifference curves that do not touch the constraint curve. See
Fig. 4.

P R A C T I C E P R O B L E M S

1. Let Q(x)= 3x2
1 + 3x2

2 + 2x1x2. Find a change of variable that transforms Q into a
quadratic form with no cross-product term, and give the new quadratic form.

2. With Q as in Problem 1, find the maximum value of Q(x) subject to the constraint
xTx = 1, and find a unit vector at which the maximum is attained.

7.3 EXERCISES
In Exercises 1 and 2, find the change of variable x = Py that trans-
forms the quadratic form xTAx into yTDy as shown.

1. 5x2
1 + 6x2

2 + 7x2
3 + 4x1x2 − 4x2x3 = 9y2

1 + 6y2
2 + 3y2

3

2. 3x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x1x3 + 4x2x3 = 5y2

1 + 2y2
2

[Hint: x and y must have the same number of coordinates, so
the quadratic form shown here must have a coefficient of zero
for y2

3 .]

In Exercises 3–6, find (a) the maximum value of Q(x) subject to
the constraint xTx = 1, (b) a unit vector u where this maximum is
attained, and (c) the maximum of Q(x) subject to the constraints
xTx = 1 and xTu = 0.

3. Q(x)= 5x2
1 + 6x2

2 + 7x2
3 + 4x1x2 − 4x2x3 (See Exercise 1.)

4. Q(x)= 3x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x1x3 + 4x2x3 (See Exer-

cise 2.)

5. Q(x)= 5x2
1 + 5x2

2 − 4x1x2

6. Q(x)= 7x2
1 + 3x2

2 + 3x1x2

7. Let Q(x)= −2x2
1 − x2

2 + 4x1x2 + 4x2x3. Find a unit vector x
in R

3 at whichQ(x) is maximized, subject to xTx = 1. [Hint:
The eigenvalues of the matrix of the quadratic form Q are 2,
−1, and −4.]

8. Let Q(x)= 7x2
1 + x2

2 + 7x2
3 − 8x1x2 − 4x1x3 − 8x2x3. Find

a unit vector x in R
3 at which Q(x) is maximized, subject to

xTx = 1. [Hint: The eigenvalues of the matrix of the quadratic
form Q are 9 and −3.]

9. Find the maximum value of Q(x)= 7x2
1 + 3x2

2 − 2x1x2, sub-
ject to the constraint x2

1 + x2
2 = 1. (Do not go on to find a

vector where the maximum is attained.)

10. Find the maximum value of Q(x)= −3x2
1 + 5x2

2 − 2x1x2,
subject to the constraint x2

1 + x2
2 = 1. (Do not go on to find a

vector where the maximum is attained.)

11. Suppose x is a unit eigenvector of a matrix A corresponding
to an eigenvalue 3. What is the value of xTAx?

12. Let λ be any eigenvalue of a symmetric matrix A. Justify the
statement made in this section thatm ≤ λ ≤ M , wherem and
M are defined as in (2). [Hint: Find an x such that λ= xTAx.]

13. Let A be an n×n symmetric matrix, let M and m denote the
maximum and minimum values of the quadratic form xTAx,
and denote corresponding unit eigenvectors by u1 and un. The
following calculations show that given any number t between
M and m, there is a unit vector x such that t = xTAx. Verify
that t = (1 − α)m + αM for some number α between 0 and 1.
Then let x = √

1 − αun +
√
αu1, and show that xTx = 1 and

xTAx = t .

[M] In Exercises 14–17, follow the instructions given for Exer-
cises 3–6.
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14. x1x2 + 3x1x3 + 30x1x4 + 30x2x3 + 3x2x4 + x3x4

15. 3x1x2 + 5x1x3 + 7x1x4 + 7x2x3 + 5x2x4 + 3x3x4

16. 4x2
1 − 6x1x2 − 10x1x3 − 10x1x4 − 6x2x3 − 6x2x4 − 2x3x4

17. −6x2
1 − 10x2

2 − 13x2
3 − 13x2

4 − 4x1x2 − 4x1x3 − 4x1x4 +
6x3x4

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The matrix of the quadratic form isA=
[

3 1
1 3

]
. It is easy to find the eigenvalues,

4 and 2, and corresponding unit eigenvectors,

[
1/

√
2

1/
√

2

]
and

[ −1/
√

2
1/

√
2

]
. So the

desired change of variable is x = Py, where P =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
. (A common

error here is to forget to normalize the eigenvectors.) The new quadratic form is
yTDy = 4y2

1 + 2y2
2 .x

4

z

x1

x2

















The maximum value of Q(x)
subject to xT x = 1 is 4.

2. The maximum ofQ(x) for x a unit vector is 4, and the maximum is attained at the unit

eigenvector

[
1/

√
2

1/
√

2

]
. [A common incorrect answer is

[
1
0

]
. This vector maximizes

the quadratic form yTDy instead of Q(x).]

7.4 THE SINGULAR VALUE DECOMPOSITION
The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting
applications. Unfortunately, as we know, not all matrices can be factored asA= PDP−1

withD diagonal. However, a factorizationA=QDP−1 is possible for anym×nmatrix
A! A special factorization of this type, called the singular value decomposition, is one
of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary
diagonalization that can be imitated for rectangular matrices: The absolute values of the
eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks
certain vectors (the eigenvectors). If Ax = λx and ‖x‖ = 1, then

‖Ax‖ = ‖λx‖ = |λ| ‖x‖ = |λ| (1)

If λ1 is the eigenvalue with the greatest magnitude, then a corresponding unit eigenvector
v1 identifies a direction in which the stretching effect ofA is greatest. That is, the length
of Ax is maximized when x = v1, and ‖Av1‖ = |λ1|, by (1). This description of v1

and |λ1| has an analogue for rectangular matrices that will lead to the singular value
decomposition.

EXAMPLE 1 If A=
[

4 11 14
8 7 −2

]
, then the linear transformation x �→ Ax maps

the unit sphere {x : ‖x‖ = 1} in R
3 onto an ellipse in R

2, shown in Fig. 1. Find a unit
vector x at which the length ‖Ax‖ is maximized, and compute this maximum length.
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x1

x2

x3
Multiplication

by A

x2

(3, –9)

(18, 6)

x1

FIGURE 1 A transformation from R
3 to R

2.

Solution The quantity ‖Ax‖2 is maximized at the same x that maximizes ‖Ax‖, and
‖Ax‖2 is easier to study. Observe that

‖Ax‖2 = (Ax)T (Ax)= xTATAx = xT(ATA)x

Also, ATA is a symmetric matrix, since (ATA)T = ATATT = ATA. So the problem now
is to maximize the quadratic form xT(ATA)x subject to the constraint ‖x‖ = 1. That’s
a problem from Section 7.3, and we know the solution. By Theorem 6, the maximum
value is the greatest eigenvalue λ1 ofATA. Also, the maximum value is attained at a unit
eigenvector of ATA corresponding to λ1.

For the matrix A in this example,

ATA=

 4 8

11 7
14 −2


[

4 11 14
8 7 −2

]
=


 80 100 40

100 170 140
40 140 200




The eigenvalues of ATA are λ1 = 360, λ2 = 90, and λ3 = 0. Corresponding unit eigen-
vectors are, respectively,

v1 =

 1/3

2/3
2/3


 , v2 =


 −2/3

−1/3
2/3


 , v3 =


 2/3

−2/3
1/3




The maximum value of ‖Ax‖2 is 360, attained when x is the unit vector v1. The vector
Av1 is a point on the ellipse in Fig. 1 farthest from the origin, namely,

Av1 =
[

4 11 14
8 7 −2

] 1/3
2/3
2/3


 =

[
18

6

]

For ‖x‖ = 1, the maximum value of ‖Ax‖ is ‖Av1‖ = √
360 = 6

√
10.

Example 1 suggests that the effect of A on the unit sphere in R
3 is related to the

quadratic form xT(ATA)x. In fact, the entire geometric behavior of the transformation
x �→Ax is captured by this quadratic form, as we shall see.
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The Singular Values of an m×n Matrix

LetA be anm×nmatrix. ThenATA is symmetric and can be orthogonally diagonalized.
Let {v1, . . . , vn} be an orthonormal basis for R

n consisting of eigenvectors of ATA, and
let λ1, . . . , λn be the associated eigenvalues of ATA. Then, for 1 ≤ i ≤ n,

‖Avi‖2 = (Avi )TAvi = vTi A
TAvi

= vTi (λivi ) Since vi is an eigenvector of ATA

= λi Since vi is a unit vector (2)

So the eigenvalues of ATA are all nonnegative. By renumbering, if necessary, we may
assume that the eigenvalues are arranged so that

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

The singular values of A are the square roots of the eigenvalues of ATA, denoted by
σ1, . . . , σn, and they are arranged in decreasing order. That is, σi = √

λi for 1 ≤ i ≤ n.
By (2), the singular values of A are the lengths of the vectors Av1, . . . , Avn.

EXAMPLE 2 LetA be the matrix in Example 1. Since the eigenvalues ofATA are 360,
90, and 0, the singular values of A are

σ1 = √
360 = 6

√
10, σ2 = √

90 = 3
√

10, σ3 = 0

From Example 1, the first singular value of A is the maximum of ‖Ax‖ over all unit
vectors, and the maximum is attained at the unit eigenvector v1. Theorem 7 in Section 7.3
shows that the second singular value of A is the maximum of ‖Ax‖ over all unit vectors
that are orthogonal to v1, and this maximum is attained at the second unit eigenvector,
v2 (Exercise 22). For the v2 in Example 1,

Av2 =
[

4 11 14
8 7 −2

] −2/3
−1/3

2/3


 =

[
3

−9

]

This point is on the minor axis of the ellipse in Fig. 1, just as Av1 is on the major axis.
(See Fig. 2.) The first two singular values of A are the lengths of the major and minor
semiaxes of the ellipse.

Av1

Av2

x2

x1

FIGURE 2

The fact thatAv1 andAv2 are orthogonal in Fig. 2 is no accident, as the next theorem
shows.

THEOREM 9 Suppose {v1, . . . , vn} is an orthonormal basis of R
n consisting of eigenvectors of

ATA, arranged so that the corresponding eigenvalues ofATA satisfy λ1 ≥ · · · ≥ λn,
and suppose A has r nonzero singular values. Then {Av1, . . . , Avr} is an orthog-
onal basis for ColA, and rankA= r .
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PROOF Because vi and λjvj are orthogonal for i �= j ,

(Avi )T (Avj )= vTi A
TAvj = vTi (λjvj )= 0

Thus {Av1, . . . , Avn} is an orthogonal set. Furthermore, since the lengths of the vec-
tors Av1, . . . , Avn are the singular values of A, and since there are r nonzero singular
values, Avi �= 0 if and only if 1 ≤ i ≤ r . So Av1, . . . , Avr are linearly independent
vectors, and they are in ColA. Finally, for any y in ColA—say, y = Ax—we can write
x = c1v1 + · · · + cnvn, and

y = Ax = c1Av1 + · · · + crAvr + cr+1Avr+1 + · · · + cnAvn
= c1Av1 + · · · + crAvr + 0 + · · · + 0

Thus y is in Span {Av1, . . . , Avr}, which shows that {Av1, . . . , Avr} is an (orthogonal)
basis for ColA. Hence rankA= dim ColA= r . �

NU M E R I CA L NOT E

In some cases, the rank of A may be very sensitive to small changes in the entries of
A. The obvious method of counting the number of pivot columns inA does not work
well ifA is row reduced by a computer. Roundoff error often creates an echelon form
with full rank.

In practice, the most reliable way to estimate the rank of a large matrix A is to
count the number of nonzero singular values. In this case, extremely small nonzero
singular values are assumed to be zero for all practical purposes, and the effective
rank of the matrix is the number obtained by counting the remaining nonzero singular
values.1

The Singular Value Decomposition

The decomposition of A involves an m×n “diagonal” matrix ' of the form

' =
[
D 0
0 0

]
m− r rows✛

n− r columns✲

(3)

where D is an r×r diagonal matrix for some r not exceeding the smaller of m and n.
(If r equals m or n or both, some or all of the zero matrices do not appear.)

1In general, rank estimation is not a simple problem. For a discussion of the subtle issues involved, see
Philip E. Gill, Walter Murray, and Margaret H. Wright, Numerical Linear Algebra and Optimization, vol.
1 (Redwood City, CA: Addison-Wesley, 1991), Sec. 5.8.
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THEOREM 10 The Singular Value Decomposition

Let A be an m×n matrix with rank r . Then there exists an m×n matrix '
as in (3) for which the diagonal entries in D are the first r singular values of
A, σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and there exist anm×m orthogonal matrix U and an
n×n orthogonal matrix V such that

A= U'V T

Any factorization A= U'V T , with U and V orthogonal, ' as in (3), and positive
diagonal entries in D, is called a singular value decomposition (or SVD) of A. The
matrices U and V are not uniquely determined by A, but the diagonal entries of ' are
necessarily the singular values of A. See Exercise 19. The columns of U in such a
decomposition are called left singular vectors of A, and the columns of V are called
right singular vectors of A.

PROOF Let λi and vi be as in Theorem 9, so that {Av1, . . . , Avr} is an orthogonal basis
for ColA. Normalize each Avi to obtain an orthonormal basis {u1, . . . ,ur}, where

ui = 1

‖Avi‖Avi = 1

σi
Avi

and

Avi = σiui (1 ≤ i ≤ r) (4)

Now extend {u1, . . . ,ur} to an orthonormal basis {u1, . . . ,um} of R
m, and let

U = [ u1 u2 · · · um ] and V = [ v1 v2 · · · vn ]

By construction, U and V are orthogonal matrices. Also, from (4),

AV = [Av1 · · · Avr 0 · · · 0 ] = [ σ1u1 · · · σrur 0 · · · 0 ]

Let D be the diagonal matrix with diagonal entries σ1, . . . , σr , and let ' be as in
(3) above. Then

U' = [ u1 u2 · · · um ]




σ1 0
σ2 0

. . .

0 σr

0 0




= [ σ1u1 · · · σrur 0 · · · 0 ]

= AV

Since V is an orthogonal matrix, U'V T = AVV T = A. �
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The next two examples focus attention on the internal structure of a singular value
decomposition. An efficient and numerically stable algorithm for this decomposition
would use a different approach. See the Numerical Note at the end of the section.

EXAMPLE 3 Use the results of Examples 1 and 2 to construct a singular value decom-

position of A=
[

4 11 14
8 7 −2

]
.

Solution A construction can be divided into three steps.

SG Computing an SVD
7–11

Step 1. Find an orthogonal diagonalization of ATA. That is, find the eigenvalues ofATA
and a corresponding orthonormal set of eigenvectors. If A had only two columns, the
calculations could be done by hand. Larger matrices usually require a matrix program.2

However, for the matrix A here, the eigendata for ATA are provided by Example 1.

Step 2. Set up V and �. Arrange the eigenvalues of ATA in decreasing order. In
Example 1, the eigenvalues are already listed in decreasing order: 360, 90, and 0. The
corresponding unit eigenvectors, v1, v2, and v3, are the right singular vectors ofA. Using
Example 1, construct

V = [ v1 v2 v3 ] =

 1/3 −2/3 2/3

2/3 −1/3 −2/3
2/3 2/3 1/3




The square roots of the eigenvalues are the singular values:

σ1 = 6
√

10, σ2 = 3
√

10, σ3 = 0

The nonzero singular values are the diagonal entries of D. The matrix ' is the same
size as A, with D in its upper-left corner and with 0’s elsewhere.

D =
[

6
√

10 0
0 3

√
10

]
, ' = [D 0] =

[
6
√

10 0 0
0 3

√
10 0

]

Step 3. Construct U . When A has rank r , the first r columns of U are the normalized
vectors obtained from Av1, . . . , Avr . In this example, A has two nonzero singular
values, so rankA= 2. Recall from equation (2) and the paragraph before Example 2
that ‖Av1‖ = σ1 and ‖Av2‖ = σ2. Thus

u1 = 1

σ1
Av1 = 1

6
√

10

[
18

6

]
=

[
3/

√
10

1/
√

10

]

u2 = 1

σ2
Av2 = 1

3
√

10

[
3

−9

]
=

[
1/

√
10

−3/
√

10

]

Note that {u1,u2} is already a basis for R
2. Thus no additional vectors are needed for

U , and U = [ u1 u2 ]. The singular value decomposition of A is

2See the Study Guide for software and graphing calculator commands. MATLAB, for instance, can pro-
duce both the eigenvalues and the eigenvectors with one command, eig.
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A =
[

3/
√

10 1/
√

10
1/

√
10 −3/

√
10

] [
6
√

10 0 0
0 3

√
10 0

] 
 1/3 2/3 2/3

−2/3 −1/3 2/3
2/3 −2/3 1/3




↑ ↑ ↑
U ' V T

EXAMPLE 4 Find a singular value decomposition of A=

 1 −1

−2 2
2 −2


.

x3

x1

x1

x2

x2

1

Av1 u1

u2

v1

u3

FIGURE 3

Solution First, compute ATA=
[

9 −9
−9 9

]
. The eigenvalues of ATA are 18 and 0,

with corresponding unit eigenvectors

v1 =
[

1/
√

2
−1/

√
2

]
, v2 =

[
1/

√
2

1/
√

2

]

These unit vectors form the columns of V :

V = [ v1 v2 ] =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

]

The singular values are σ1 = √
18 = 3

√
2 and σ2 = 0. Since there is only one nonzero

singular value, the “matrix” D may be written as a single number. That is, D = 3
√

2.
The matrix ' is the same size as A, with D in its upper-left corner:

' =

D 0

0 0
0 0


 =


 3

√
2 0

0 0
0 0




To construct U , first construct Av1 and Av2:

Av1 =

 2/

√
2

−4/
√

2
4/

√
2


 , Av2 =


 0

0
0




As a check on the calculations, verify that ‖Av1‖ = σ1 = 3
√

2. Of course, Av2 = 0
because ‖Av2‖ = σ2 = 0. The only column found for U so far is

u1 = 1

3
√

2
Av1 =


 1/3

−2/3
2/3




The other columns of U are found by extending the set {u1} to an orthonormal basis for
R

3. In this case, we need two orthogonal unit vectors u2 and u3 that are orthogonal to
u1. (See Fig. 3.) Each vector must satisfy uT1 x = 0, which is equivalent to the equation
x1 − 2x2 + 2x3 = 0. A basis for the solution set of this equation is

w1 =

 2

1
0


 , w2 =


 −2

0
1



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(Check that w1 and w2 are each orthogonal to u1.) Apply the Gram–Schmidt process
(with normalizations) to {w1,w2}, and obtain

u2 =

 2/

√
5

1/
√

5
0


 , u3 =


 −2/

√
45

4/
√

45
5/

√
45




Finally, set U = [ u1 u2 u3 ], take ' and V T from above, and write

A=

 1 −1

−2 2
2 −2


 =


 1/3 2/

√
5 −2/

√
45

−2/3 1/
√

5 4/
√

45
2/3 0 5/

√
45




 3

√
2 0

0 0
0 0


[ 1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]

Applications of the Singular Value Decomposition

The SVD is often used to estimate the rank of a matrix, as noted above. Several other nu-
merical applications are described briefly below, and an application to image processing
is presented in Section 7.5.

EXAMPLE 5 (The Condition Number) Most numerical calculations involving an
equation Ax = b are as reliable as possible when the SVD of A is used. The two
orthogonal matrices U and V do not affect lengths of vectors or angles between vectors
(Theorem 7 in Section 6.2). Any possible instabilities in numerical calculations are
identified in '. If the singular values of A are extremely large or small, roundoff errors
are almost inevitable, but an error analysis is aided by knowing the entries in ' and V .

If A is an invertible n×n matrix, then the ratio σ1/σn of the largest and smallest
singular values gives the condition number ofA. Exercises 41–43 in Section 2.3 showed
how the condition number affects the sensitivity of a solution of Ax = b to changes (or
errors) in the entries of A. (Actually, a “condition number” of A can be computed in
several ways, but the definition given here is widely used for studyingAx = b.)

EXAMPLE 6 (Bases for Fundamental Subspaces) Given an SVD for an m×n matrix
A, let u1, . . . ,um be the left singular vectors, v1, . . . , vn the right singular vectors, and
σ1, . . . , σn the singular values, and let r be the rank of A. By Theorem 9,

{u1, . . . ,ur} (5)

is an orthonormal basis for ColA.
Recall from Theorem 3 in Section 6.1 that (ColA)⊥ = NulAT . Hence

{ur+1, . . . ,um} (6)

is an orthonormal basis for NulAT .
Since ‖Avi‖ = σi for 1 ≤ i ≤ n, and σi is 0 if and only if i > r , the vectors

vr+1, . . . , vn span a subspace of NulA of dimension n− r . By the Rank Theorem,
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dim NulA= n− rankA. It follows that

{vr+1, . . . , vn} (7)

is an orthonormal basis for NulA, by the Basis Theorem (in Section 4.5).
From (5) and (6), the orthogonal complement of NulAT is ColA. Interchanging A

and AT , we have (NulA)⊥ = ColAT = RowA. Hence, from (7),

{v1, . . . , vr} (8)

is an orthonormal basis for RowA.

Nul 
A

Row A

x3

x1

x2

v1

u3

u2

Av1 u1

Col A(Col A)�

The fundamental subspaces in
Example 4.

Figure 4 summarizes (5)–(8), but shows the orthogonal basis {σ1u1, . . . , σrur} for
ColA instead of the normalized basis, to remind you that Avi = σiui for 1 ≤ i ≤ r .
Explicit orthonormal bases for the four fundamental subspaces determined by A are
useful in some calculations, particularly in constrained optimization problems.

vr + 1

Col A = Row ATRow A

Multiplication

by A

Nul AT

Nul A vn – 1

vn

um

vr
0 0

ur + 1

σrur 

σ2u2 

σ1u1 v1 

v2
...

.. .

...

...

. . .

FIGURE 4 The four fundamental subspaces and the action
of A.

The four fundamental subspaces and the concept of singular values provide the final
statements of the Invertible Matrix Theorem. (Recall that statements about AT have
been omitted from the theorem, to avoid nearly doubling the number of statements.)
The other statements were given in Sections 2.3, 2.9, 3.2, 4.6, and 5.2.

THEOREM The Invertible Matrix Theorem (concluded)

Let A be an n×n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

u. (ColA)⊥ = {0}.
v. (NulA)⊥ = R

n.

w. RowA= R
n.

x. A has n nonzero singular values.
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EXAMPLE 7 (Reduced SVD and the Pseudoinverse of A) When' contains rows or
columns of zeros, a more compact decomposition of A is possible. Using the notation
established above, let r = rankA, and partition U and V into submatrices whose first
blocks contain r columns:

U = [Ur Um−r ] , where Ur = [ u1 · · · ur ]
V = [Vr Vn−r ] , where Vr = [ v1 · · · vr ]

Then Ur is m×r and Vr is n×r . (To simplify notation, we consider Um−r or Vn−r
even though one of them may have no columns.) Then partitioned matrix multiplication
shows that

A= [Ur Um−r ]

[
D 0
0 0

][
V T
r

V T
n−r

]
= UrDV

T
r (9)

This factorization of A is called a reduced singular value decomposition of A. Since
the diagonal entries in D are nonzero, we can form the following matrix, called the
pseudoinverse (also, the Moore–Penrose inverse) of A:

A+ = VrD
−1UT

r (10)

Supplementary Exercises 12–14 at the end of the chapter explore some of the properties
of the reduced singular value decomposition and the pseudoinverse.

EXAMPLE 8 (Least-Squares Solution) Given the equation Ax = b, use the pseu-
doinverse of A in (10) to define

x̂ = A+b = VrD
−1UT

r b

Then, from the SVD in (9),

Ax̂ = (UrDV
T
r )(VrD

−1UT
r b)

= UrDD
−1UT

r b Because V T
r Vr = Ir

= UrU
T
r b

It follows from (5) that UrUT
r b is the orthogonal projection b̂ of b onto ColA. (See

Theorem 10 in Section 6.3.) Thus x̂ is a least-squares solution of Ax = b. In fact, this x̂
has the smallest length among all least-squares solutions ofAx = b. See Supplementary
Exercise 14.

NU M E R I CA L NOT E

Examples 1–4 and the exercises illustrate the concept of singular values and suggest
how to perform calculations by hand. In practice, the computation of ATA should be
avoided, since any errors in the entries of A are squared in the entries of ATA. There
exist fast iterative methods that produce the singular values and singular vectors of
A accurately to many decimal places.
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P R A C T I C E P R O B L E M

Given a singular value decomposition, A= U'V T , find an SVD of AT . How are theCD Exploring the SVD
singular values of A and AT related?

7.4 EXERCISES
Find the singular values of the matrices in Exercises 1–4.

1.
[

1 0
0 −3

]
2.

[ −5 0
0 0

]

3.
[ √

6 1
0

√
6

]
4.

[ √
3 2
0

√
3

]

Find an SVD of each matrix in Exercises 5–12. [Hint: In Exer-

cise 11, one choice for U is


 −1/3 2/3 2/3

2/3 −1/3 2/3
2/3 2/3 −1/3


. In Exer-

cise 12, one column of U can be


 1/

√
6

−2/
√

6
1/

√
6


.]

5.
[ −3 0

0 0

]
6.

[ −2 0
0 −1

]

7.
[

2 −1
2 2

]
8.

[
2 3
0 2

]

9.


 7 1

0 0
5 5


 10.


 4 −2

2 −1
0 0




11.


 −3 1

6 −2
6 −2


 12.


 1 1

0 1
−1 1




13. Find the SVD ofA=
[

3 2 2
2 3 −2

]
. [Hint: Work withAT .]

14. In Exercise 7, find a unit vector x at which Ax has maximum
length.

15. Suppose the factorization below is an SVD of a matrixA, with
the entries in U and V rounded to two decimal places.

A =

 .40 −.78 .47

.37 −.33 −.87
−.84 −.52 −.16




 7.10 0 0

0 3.10 0
0 0 0




×

 .30 −.51 −.81
.76 .64 −.12
.58 −.58 .58




a. What is the rank of A?

b. Use this decomposition ofA, with no calculations, to write
a basis for ColA and a basis for NulA. [Hint: First write
the columns of V .]
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16. Repeat Exercise 15 for the following SVD of a 3×4 matrix
A:

A=

 −.86 −.11 −.50

.31 .68 −.67

.41 −.73 −.55




 12.48 0 0 0

0 6.34 0 0
0 0 0 0




×




.66 −.03 −.35 .66
−.13 −.90 −.39 −.13
.65 .08 −.16 −.73

−.34 .42 −.84 −.08




In Exercises 17–24, A is an m×n matrix with a singular value
decomposition A= U'V T , where U is anm×m orthogonal ma-
trix, ' is an m×n “diagonal” matrix with r positive entries and
no negative entries, and V is an n×n orthogonal matrix. Justify
each answer.

17. Suppose A is square and invertible. Find a singular value
decomposition of A−1.

18. Show that if A is square, then | detA| is the product of the
singular values of A.

19. Show that the columns of V are eigenvectors of ATA, the
columns of U are eigenvectors of AAT , and the diagonal en-
tries of ' are the singular values of A. [Hint: Use the SVD
to compute ATA and AAT .]

20. Show that if A is an n×n positive definite matrix, then an
orthogonal diagonalizationA= PDPT is a singular value de-
composition of A.

21. Show that if P is an orthogonal m×m matrix, then PA has
the same singular values as A.

22. Justify the statement in Example 2 that the second singular
value of a matrix A is the maximum of ‖Ax‖ as x varies over

all unit vectors orthogonal to v1, with v1 a right singular vec-
tor corresponding to the first singular value of A. [Hint: Use
Theorem 7 in Section 7.3.]

23. If U = [ u1 · · · um ] and V = [ v1 · · · vn ], show that

A= σ1u1vT1 + σ2u2vT2 + · · · + σrurvTr

24. Using the notation of Exercise 23, show thatAT uj = σjvj for
1 ≤ j ≤ r = rankA.

25. Let T : R
n → R

m be a linear transformation. Describe how
to find a basis B for R

n and a basis C for R
m such that the ma-

trix for T relative to B and C is an m×n “diagonal” matrix.

[M] Compute an SVD of each matrix in Exercises 26 and 27. Re-
port the final matrix entries to two decimal places. Use the method
of Examples 3 and 4.

26. A=




−18 13 −4 4
2 19 −4 12

−14 11 −12 8
−2 21 4 8




27. A=




6 −8 −4 5 −4
2 7 −5 −6 4
0 −1 −8 2 2

−1 −2 4 4 −8




28. [M] Compute the singular values of the 4×4 matrix in Ex-
ercise 9 of Section 2.3, and compute the condition number
σ1/σ4.

29. [M] Compute the singular values of the 5×5 matrix in Ex-
ercise 10 of Section 2.3, and compute the condition number
σ1/σ5.

S O L U T I O N T O P R A C T I C E P R O B L E M

IfA= U'V T , where' ism×n, thenAT = (V T )T 'T UT = V'TUT . This is an SVD
of AT because V and U are orthogonal matrices and 'T is an n×m “diagonal” matrix.
Since ' and 'T have the same nonzero diagonal entries, A and AT have the same
nonzero singular values. [Note: IfA is 2×n, thenAAT is only 2×2 and its eigenvalues
may be easier to compute (by hand) than the eigenvalues of ATA.]

7.5 APPLICATIONS TO IMAGE PROCESSING AND STATISTICS
The satellite photographs in the chapter’s introduction provide an example of multidi-
mensional, or multivariate, data—information organized so that each datum in the data
set is identified with a point (vector) in R

n. The main goal of this section is to explain a
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technique, called principal component analysis, used to analyze such multivariate data.
The calculations will illustrate the use of orthogonal diagonalization and the singular
value decomposition.

Principal component analysis can be applied to any data that consist of lists of
measurements made on a collection of objects or individuals. For instance, consider a
chemical process that produces a plastic material. To monitor the process, 300 samples
are taken of the material produced, and each sample is subjected to a battery of eight
tests, such as melting point, density, ductility, tensile strength, and so on. The laboratory
report for each sample is a vector in R

8, and the set of such vectors forms an 8×300
matrix, called the matrix of observations.

Loosely speaking, we can say that the process control data are eight-dimensional.
The next two examples describe data that can be visualized graphically.

EXAMPLE 1 An example of two-dimensional data is given by a set of weights and
heights of N college students. Let Xj denote the observation vector in R

2 that lists the
weight and height of the j th student. If w denotes weight and h height, then the matrix
of observations has the form [

w1

h1

↑
X1

w2

h2

↑
X2

· · ·
· · ·

wN
hN

↑
XN

]

The set of observation vectors can be visualized as a two-dimensional scatter plot. See
Fig. 1.

h

w

FIGURE 1 A scatter plot of observation
vectors X1, . . . ,XN .

EXAMPLE 2 The first three photographs of Railroad Valley, Nevada, shown in the
chapter introduction, can be viewed as one image of the region, with three spectral com-
ponents, because simultaneous measurements of the region were made at three separate
wavelengths. Each photograph gives different information about the same physical re-
gion. For instance, the first pixel in the upper-left corner of each photograph corresponds
to the same place on the ground (about 30 meters by 30 meters). To each pixel there
corresponds an observation vector in R

3 that lists the signal intensities for that pixel in
the three spectral bands.
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Typically, the image is 2000×2000 pixels, so there are 4 million pixels in the image.
The data for the image form a matrix with 3 rows and 4 million columns (with columns
arranged in any convenient order). In this case, the “multidimensional” character of the
data refers to the three spectral dimensions rather than the two spatial dimensions that
naturally belong to any photograph. The data can be visualized as a cluster of 4 million
points in R

3, perhaps as in Fig. 2.

x3 x2

x1

FIGURE 2
A scatter plot of spectral data for a
satellite image.

Mean and Covariance

To prepare for principal component analysis, let [ X1 · · · XN ] be a p×N matrix of
observations, such as described above. The sample mean, M, of the observation vectors
X1, . . . ,XN is given by

M = 1

N
(X1 + · · · + XN)

For the data in Fig. 1, the sample mean is the point in the “center” of the scatter plot.
For k = 1, . . . , N , let

X̂k = Xk − M

The columns of the p×N matrix

B = [ X̂1 X̂2 · · · X̂N ]

have a zero sample mean, andB is said to be in mean-deviation form. When the sample
mean is subtracted from the data in Fig. 1, the resulting scatter plot has the form in Fig. 3.

ĥ

ŵ

FIGURE 3
Weight–height data in
mean-deviation form.

The (sample) covariance matrix is the p×p matrix S defined by

S = 1

N − 1
BBT

Since any matrix of the form BBT is positive semidefinite, so is S. (See Exercise 25 of
Section 7.2 with B and BT interchanged.)

EXAMPLE 3 Three measurements are made on each of four individuals in a random
sample from a population. The observation vectors are

X1 =

 1

2
1


 , X2 =


 4

2
13


 , X3 =


 7

8
1


 , X4 =


 8

4
5




Compute the sample mean and the covariance matrix.

Solution The sample mean is

M = 1

4





 1

2
1


 +


 4

2
13


 +


 7

8
1


 +


 8

4
5





 = 1

4


 20

16
20


 =


 5

4
5



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Subtract the sample mean from X1, . . . ,X4 to obtain

X̂1 =

 −4

−2
−4


 , X̂2 =


 −1

−2
8


 , X̂3 =


 2

4
−4


 , X̂4 =


 3

0
0




and

B =

 −4 −1 2 3

−2 −2 4 0
−4 8 −4 0




The sample covariance matrix is

S = 1

3


 −4 −1 2 3

−2 −2 4 0
−4 8 −4 0






−4 −2 −4
−1 −2 8

2 4 −4
3 0 0




= 1

3


 30 18 0

18 24 −24
0 −24 96


 =


 10 6 0

6 8 −8
0 −8 32




To discuss the entries in S = [sij ], let X represent a vector that varies over the set
of observation vectors and denote the coordinates of X by x1, . . . , xp. Then x1, for
example, is a scalar that varies over the set of first coordinates of X1, . . . ,XN . For
j = 1, . . . , p, the diagonal entry sjj in S is called the variance of xj .

The variance of xj measures the spread of the values of xj . (See Exercise 13.) In
Example 3, the variance of x1 is 10 and the variance of x3 is 32. The fact that 32 is more
than 10 indicates that the set of third entries in the response vectors contains a wider
spread of values than the set of first entries.

The total variance of the data is the sum of the variances on the diagonal of S. In
general, the sum of the diagonal entries of a square matrix S is called the trace of the
matrix, written tr(S). Thus

{total variance} = tr(S)

The entry sij in S for i �= j is called the covariance of xi and xj . Observe that
in Example 3, the covariance between x1 and x3 is 0 because the (1, 3)-entry in S is
0. Statisticians say that x1 and x3 are uncorrelated. Analysis of the multivariate data
in X1, . . . ,XN is greatly simplified when most or all of the variables x1, . . . , xp are
uncorrelated, that is, when the covariance matrix of X1, . . . ,XN is diagonal or nearly
diagonal.

Principal Component Analysis

For simplicity, assume that the matrix [ X1 · · · XN ] is already in mean-deviation
form. The goal of principal component analysis is to find an orthogonal p×p matrix
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P = [ u1 · · · up ] that determines a change of variable, X = PY, or

x1

x2
...

xp


 = [ u1 u2 · · · up ]



y1

y2
...

yp




with the property that the new variables y1, . . . , yp are uncorrelated and are arranged in
order of decreasing variance.

The orthogonal change of variable X = PY means that each observation vector Xk

receives a “new name,” Yk , such that Xk = PYk . Notice that Yk is the coordinate vector
of Xk with respect to the columns of P , and Yk = P−1Xk = PTXk for k = 1, . . . , N .

It is not difficult to verify that for any orthogonal P , the covariance matrix of
Y1, . . . ,YN isPTSP (Exercise 11). So the desired orthogonal matrixP is one that makes
PTSP diagonal. LetD be a diagonal matrix with the eigenvalues λ1, . . . , λp of S on the
diagonal, arranged so that λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, and let P be an orthogonal matrix
whose columns are the corresponding unit eigenvectors u1, . . . ,up. Then S = PDPT

and PTSP =D.
The unit eigenvectors u1, . . . ,up of the covariance matrix S are called the principal

components of the data (in the matrix of observations). The first principal component
is the eigenvector corresponding to the largest eigenvalue of S, the second principal
component is the eigenvector corresponding to the second largest eigenvalue, and so
on.

The first principal component u1 determines the new variable y1 in the following
way. Let c1, . . . , cp be the entries in u1. Since uT1 is the first row of PT , the equation
Y = PTX shows that

y1 = uT1 X = c1x1 + c2x2 + · · · + cpxp

Thus y1 is a linear combination of the original variables x1, . . . , xp, using the entries in
the eigenvector u1 as weights. In a similar fashion, u2 determines the variable y2, and
so on.

EXAMPLE 4 The initial data for the multispectral image of Railroad Valley (Example
2) consisted of 4 million vectors in R

3. The associated covariance matrix is1

S =

 2382.78 2611.84 2136.20

2611.84 3106.47 2553.90
2136.20 2553.90 2650.71




Find the principal components of the data, and list the new variable determined by the
first principal component.

Solution The eigenvalues of S and the associated principal components (the unit eigen-
vectors) are

1Data for Example 4 and Exercises 5 and 6 were provided by Earth Satellite Corporation, Rockville,
Maryland.
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λ1 = 7614.23 λ2 = 427.63 λ3 = 98.10

u1 =

 .5417
.6295
.5570


 u2 =


 −.4894

−.3026
.8179


 u3 =


 .6834

−.7157
.1441




Using two decimal places for simplicity, the variable for the first principal component is

y1 = .54x1 + .63x2 + .56x3

This equation was used to create photograph (d) in the chapter introduction. The variables
x1, x2, x3 are the signal intensities in the three spectral bands. The values of x1, converted
to a gray scale between black and white, produced photograph (a). Similarly, the values of
x2 and x3 produced photographs (b) and (c), respectively. At each pixel in photograph (d),
the gray scale value is computed from y1, a weighted linear combination of x1, x2, x3. In
this sense, photograph (d) “displays” the first principal component of the data.

In Example 4, the covariance matrix for the transformed data, using variables y1,
y2, y3, is

D =

 7614.23 0 0

0 427.63 0
0 0 98.10




AlthoughD is obviously simpler than the original covariance matrix S, the merit of con-
structing the new variables is not yet apparent. However, the variances of the variables
y1, y2, y3 appear on the diagonal of D, and obviously the first variance in D is much
larger than the other two. As we shall see, this fact will permit us to view the data as
essentially one-dimensional rather than three-dimensional.

Reducing the Dimension of Multivariate Data

Principal component analysis is potentially valuable for applications in which most of
the variation, or dynamic range, in the data is due to variations in only a few of the new
variables, y1, . . . , yp.

It can be shown that an orthogonal change of variables, X = PY, does not change
the total variance of the data. (Roughly speaking, this is true because left-multiplication
by P does not change the lengths of vectors or the angles between them. See Exercise
12.) This means that if S = PDPT , then{

total variance
of x1, . . . , xp

}
=

{
total variance
of y1, . . . , yp

}
= tr(D)= λ1 + · · · + λp

The variance of yj is λj , and the quotient λj/ tr(S) measures the fraction of the total
variance that is “explained” or “captured” by yj .

EXAMPLE 5 Compute the various percentages of variance of the Railroad Valley mul-
tispectral data that are displayed in the principal component photographs, (d)–(f), shown
in the chapter introduction.
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Solution The total variance of the data is

tr(D)= 7614.23 + 427.63 + 98.10 = 8139.96

[Verify that this number also equals tr(S).] The percentages of the total variance
explained by the principal components are

First component Second component Third component

7614.23

8139.96
= 93.5%

427.63

8139.96
= 5.3%

98.10

8139.96
= 1.2%

In a sense, 93.5% of the information collected by Landsat for the Railroad Valley region is
displayed in photograph (d), with 5.3% in (e) and only 1.2% remaining for (f).

The calculations in Example 5 show that the data have practically no variance in
the third (new) coordinate. The values of y3 are all close to zero. Geometrically, the
data points lie nearly in the plane y3 = 0, and their locations can be determined fairly
accurately by knowing only the values of y1 and y2. In fact, y2 also has relatively small
variance, which means that the points lie approximately along a line, and the data are
essentially one-dimensional. See Fig. 2, in which the data resemble a popsicle stick.

Characterizations of Principal Component Variables

If y1, . . . , yp arise from a principal component analysis of ap×N matrix of observations,
then the variance of y1 is as large as possible in the following sense: If u is any unit
vector and if y = uTX, then the variance of the values of y as X varies over the original
data X1, . . . ,XN turns out to be uTSu. By Theorem 8 in Section 7.3, the maximum
value of uTSu, over all unit vectors u, is the largest eigenvalue λ1 of S, and this variance
is attained when u is the corresponding eigenvector u1. In the same way, Theorem 8
shows that y2 has maximum possible variance among all variables y = uTX that are
uncorrelated with y1. Likewise, y3 has maximum possible variance among all variables
uncorrelated with both y1 and y2, and so on.

NU M E R I CA L NOT E

The singular value decomposition is the main tool for performing principal component
analysis in practical applications. If B is a p×N matrix of observations in mean-
deviation form, and if A= (

1/
√
N − 1

)
BT , then ATA is the covariance matrix, S.

The squares of the singular values of A are the p eigenvalues of S, and the right
singular vectors of A are the principal components of the data.

As mentioned in Section 7.4, iterative calculation of the SVD of A is faster
and more accurate than an eigenvalue decomposition of S. This is particularly true,
for instance, in the hyperspectral image processing (with p = 224) mentioned in
the chapter introduction. Principal component analysis is completed in seconds on
specialized workstations.
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Further Reading

Lillesand, Thomas M., and Ralph W. Kiefer, Remote Sensing and Image Interpretation,
4th ed. (New York: John Wiley, 2000).

P R A C T I C E P R O B L E M S

The following table lists the weights and heights of five boys:

Boy #1 #2 #3 #4 #5

Weight (lb) 120 125 125 135 145

Height (in.) 61 60 64 68 72

1. Find the covariance matrix for the data.

2. Make a principal component analysis of the data to find a single size index that
explains most of the variation in the data.

7.5 EXERCISES
In Exercises 1 and 2, convert the matrix of observations to mean-
deviation form, and construct the sample covariance matrix.

1.
[

19 22 6 3 2 20
12 6 9 15 13 5

]

2.
[

1 5 2 6 7 3
3 11 6 8 15 11

]

3. Find the principal components of the data for Exercise 1.

4. Find the principal components of the data for Exercise 2.

5. [M] A Landsat image with three spectral components was
made of Homestead Air Force Base in Florida (after the base
was hit by hurricane Andrew in 1992). The covariance matrix
of the data is shown below. Find the first principal component
of the data, and compute the percentage of the total variance
that is contained in this component.

S =

 164.12 32.73 81.04

32.73 539.44 249.13
81.04 249.13 189.11




6. [M] The covariance matrix below was obtained from a Land-
sat image of the Columbia River in Washington, using data
from three spectral bands. Let x1, x2, x3 denote the spectral
components of each pixel in the image. Find a new variable
of the form y1 = c1x1 + c2x2 + c3x3 that has maximum possi-
ble variance, subject to the constraint that c2

1 + c2
2 + c2

3 = 1.

What percentage of the total variance in the data is explained
by y1?

S =

 29.64 18.38 5.00

18.38 20.82 14.06
5.00 14.06 29.21




7. Let x1, x2 denote the variables for the two-dimensional
data in Exercise 1. Find a new variable y1 of the form
y1 = c1x1 + c2x2, with c2

1 + c2
2 = 1, such that y1 has maximum

possible variance over the given data. How much of the vari-
ance in the data is explained by y1?

8. Repeat Exercise 7 for the data in Exercise 2.

9. Suppose three tests are administered to a random sample of
college students. Let X1, . . . ,XN be observation vectors in
R

3 that list the three scores of each student, and for j = 1, 2, 3,
let xj denote a student’s score on the j th exam. Suppose the
covariance matrix of the data is

S =

 5 2 0

2 6 2
0 2 7




Let y be an “index” of student performance, with y=
c1x1 + c2x2 + c3x3 and c2

1 + c2
2 + c2

3 = 1. Choose c1, c2, c3 so
that the variance of y over the data set is as large as possible.
[Hint: The eigenvalues of the sample covariance matrix are
λ= 3, 6, and 9.]
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10. [M] Repeat Exercise 9 with S =

 5 4 2

4 11 4
2 4 5


.

11. Given multivariate data X1, . . . ,XN (in R
p) in mean-

deviation form, letP be ap×pmatrix, and define Yk = P T Xk

for k = 1, . . . , N .

a. Show that Y1, . . . ,YN are in mean-deviation form. [Hint:
Let w be the vector in R

N with a 1 in each entry. Then
[ X1 · · · XN ] w = 0 (the zero vector in R

p).]

b. Show that if the covariance matrix of X1, . . . ,XN is S,
then the covariance matrix of Y1, . . . ,YN is P TSP .

12. Let X denote a vector that varies over the columns of a p×N
matrix of observations, and letP be ap×p orthogonal matrix.
Show that the change of variable X = PY does not change the

total variance of the data. [Hint: By Exercise 11, it suffices
to show that tr (P TSP )= tr (S). Use a property of the trace
mentioned in Exercise 25 in Section 5.4.]

13. The sample covariance matrix is a generalization of a formula
for the variance of a sample of N scalar measurements, say,
t1, . . . , tN . If m is the average of t1, . . . , tN , then the sample
variance is given by

1

N − 1

n∑
k=1

(tk −m)2 (1)

Show how the sample covariance matrix, S, defined prior to
Example 3, may be written in a form similar to (1). [Hint:
Use partitioned matrix multiplication to write S as 1/(N − 1)
times the sum of N matrices of size p×p. For 1 ≤ k ≤ N ,
write Xk − M in place of X̂k .]

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. First arrange the data in mean-deviation form. The sample mean vector is easily seen

to be M =
[

130
65

]
. Subtract M from the observation vectors (the columns in the

table) and obtain

B =
[ −10 −5 −5 5 15

−4 −5 −1 3 7

]

Then the sample covariance matrix is

S = 1

5 − 1

[ −10 −5 −5 5 15
−4 −5 −1 3 7

]



−10 −4
−5 −5
−5 −1

5 3
15 7




= 1

4

[
400 190
190 100

]
=

[
100.0 47.5

47.5 25.0

]

2. The eigenvalues of S are (to two decimal places)

λ1 = 123.02 and λ2 = 1.98

The unit eigenvector corresponding to λ1 is u =
[
.900
.436

]
. (Since S is 2×2, the

computations can be done by hand if a matrix program is not available.) For the size
index, set

y = .900ŵ + .436ĥ

where ŵ and ĥ are weight and height, respectively, in mean-deviation form. The
variance of this index over the data set is 123.02. Because the total variance is
tr(S)= 100 + 25 = 125, the size index accounts for practically all (98.4%) of the
variance of the data.
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The original data for Practice Problem 1 and the line determined by the first
principal component u are shown in Fig. 4. (In parametric vector form, the line is
x = M + tu.) It can be shown that the line is the best approximation to the data,
in the sense that the sum of the squares of the orthogonal distances to the line is
minimized. In fact, principal component analysis is equivalent to what is termed
orthogonal regression, but that is a story for another day. Perhaps we’ll meet again.

h

120

55

60

65

70

75

130 140 150
w

Pounds

Inches

FIGURE 4 An orthogonal regression line determined by the
first principal component of the data.

CHAPTER 7 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. In
each part, A represents an n×n matrix.

a. If A is orthogonally diagonalizable, then A is symmetric.

b. If A is an orthogonal matrix, then A is symmetric.

c. IfA is an orthogonal matrix, then ‖Ax‖ = ‖x‖ for all x in
R
n.

d. The principal axes of a quadratic form xTAx can be the
columns of any matrix P that diagonalizes A.

e. If P is an n×n matrix with orthogonal columns, then
P T = P−1.

f. If every coefficient in a quadratic form is positive, then
the quadratic form is positive definite.

g. If xTAx > 0 for some x, then the quadratic form xTAx is
positive definite.

h. By a suitable change of variable, any quadratic form can
be changed into one with no cross-product term.

i. The largest value of a quadratic form xTAx, for ‖x‖ = 1,
is the largest entry on the diagonal of A.

j. The maximum value of a positive definite quadratic form
xTAx is the greatest eigenvalue of A.

k. A positive definite quadratic form can be changed into a
negative definite form by a suitable change of variable
x = Pu, for some orthogonal matrix P .

l. An indefinite quadratic form is one whose eigenvalues are
not definite.

m. If P is an n×n orthogonal matrix, then the change of
variable x = Pu transforms xTAx into a quadratic form
whose matrix is P−1AP .

n. If U ism×n with orthogonal columns, then UUT x is the
orthogonal projection of x onto ColU .

o. IfB ism×n and x is a unit vector in R
n, then ‖Bx‖ ≤ σ1,

where σ1 is the first singular value of B.

p. A singular value decomposition of anm×nmatrix B can
be written asB = P'Q, where P is anm×m orthogonal
matrix,Q is an n×n orthogonal matrix, and' is anm×n
“diagonal” matrix.

q. If A is n×n, then A and ATA have the same singular val-
ues.

2. Let {u1, . . . ,un} be an orthonormal basis for R
n, and let

λ1, . . . , λn be any real scalars. Define

A= λ1u1uT1 + · · · + λnunuTn
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a. Show that A is symmetric.

b. Show that λ1, . . . , λn are the eigenvalues of A.

3. Let A be an n×n symmetric matrix of rank r . Explain why
the spectral decomposition of A represents A as the sum of
r rank 1 matrices.

4. Let A be an n×n symmetric matrix.

a. Show that (ColA)⊥ = NulA. [Hint: See Section 6.1.]

b. Show that each y in R
n can be written in the form y =

ŷ + z, with ŷ in ColA and z in NulA.

5. Show that if v is an eigenvector of an n×n matrix A and v
corresponds to a nonzero eigenvalue of A, then v is in ColA.
[Hint: Use the definition of an eigenvector.]

6. Let A be an n×n symmetric matrix. Use Exercise 5 and an
eigenvector basis for R

n to give a second proof of the decom-
position in Exercise 4(b).

7. Prove that an n×nmatrixA is positive definite if and only ifA
admits a Cholesky factorization, namely, A= RTR for some
invertible upper triangular matrix R whose diagonal entries
are all positive. [Hint: Use a QR factorization and Exercise
26 from Section 7.2.]

8. Use Exercise 7 to show that ifA is positive definite, thenA has
an LU factorization,A= LU , whereU has positive pivots on
its diagonal. (The converse is true, too.)

If A is m×n, then the matrix G= ATA is called the Gram matrix
of A. In this case, the entries of G are the inner products of the
columns of A.

9. Show that the Gram matrix of any matrix A is positive semi-
definite, with the same rank asA. (See the Exercises in Section
6.5.)

10. Show that if an n×n matrix G is positive semidefinite and
has rank r , then G is the Gram matrix of some r×n matrix
A. This is called a rank-revealing factorization of G. [Hint:
Consider the spectral decomposition of G, and first write G
as BBT for an n×r matrix B.]

11. Prove that any n×n matrix A admits a polar decomposition
of the form A= PQ, where P is an n×n positive semidefi-
nite matrix with the same rank as A and where Q is an n×n
orthogonal matrix. [Hint: Use a singular value decompo-
sition, A= U'V T , and observe that A= (U'UT )(UV T ).]
This decomposition is used, for instance, in mechanical engi-
neering to model the deformation of a material. The matrix
P describes the stretching or compression of the material (in

the directions of the eigenvectors of P ), and Q describes the
rotation of the material in space.

Exercises 12–14 concern an m×n matrix A with a reduced sin-
gular value decomposition, A= UrDV

T
r , and the pseudoinverse

A+ = VrD
−1UT

r .

12. Verify the properties of A+:

a. For each y in R
m, AA+y is the orthogonal projection of y

onto ColA.

b. For each x in R
n, A+Ax is the orthogonal projection of x

onto RowA.

c. AA+A= A and A+AA+ = A+.

13. Suppose the equationAx = b is consistent, and let x+ = A+b.
By Exercise 23 in Section 6.3, there is exactly one vector p
in RowA such that Ap = b. The following steps prove that
x+ = p and x+ is the minimum length solution of Ax = b.

a. Show that x+ is in RowA. [Hint: Write b as Ax for some
x, and use Exercise 12.]

b. Show that x+ is a solution of Ax = b.

c. Show that if u is any solution ofAx = b, then ‖x+‖ ≤ ‖u‖,
with equality only if u = x+.

14. Given any b in R
m, adapt Exercise 13 to show that A+b is the

least-squares solution of minimum length. [Hint: Consider
the equation Ax = b̂, where b̂ is the orthogonal projection of
b onto ColA.]

[M] In Exercises 15 and 16, construct the pseudoinverse ofA. Be-
gin by using a matrix program to produce the SVD ofA, or, if that
is not available, begin with an orthogonal diagonalization of ATA.
Use the pseudoinverse to solve Ax = b, for b = (6,−1,−4, 6),
and let x̂ be the solution. Make a calculation to verify that x̂
is in RowA. Find a nonzero vector u in NulA, and verify that
‖x̂‖ < ‖x̂ + u‖, which must be true by Exercise 13(c).

15. A=




−3 −3 −6 6 1
−1 −1 −1 1 −2

0 0 −1 1 −1
0 0 −1 1 −1




16. A=




4 0 −1 −2 0
−5 0 3 5 0

2 0 −1 −2 0
6 0 −3 −6 0





