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1

8
The Geometry of
Vector Spaces

WEB

INTRODUCTORY EXAMPLE

The Platonic Solids

In the city of Athens in 387 B.C., the Greek philosopher

Plato founded an Academy, sometimes referred to as the

world’s first university. While the curriculum included

astronomy, biology, political theory, and philosophy, the

subject closest to his heart was geometry. Indeed,

inscribed over the doors of his academy were these words:

“Let no one destitute of geometry enter my doors.”

The Greeks were greatly impressed by geometric

patterns such as the regular solids. A polyhedron is called

regular if its faces are congruent regular polygons and all

the angles at the vertices are equal. As early as 150 years

before Euclid, the Pythagoreans knew at least three of the

regular solids: the tetrahedron (4 triangular faces), the

cube (6 square faces), and the octahedron (8 triangular

faces). (See Fig. 1.) These shapes occur naturally as

crystals of common minerals. There are only five such

regular solids, the remaining two being the dodecahedron

(12 pentagonal faces) and the icosahedron (20 triangular

faces).

Plato discussed the basic theory of these five solids in

Book XIII of his Elements, and since then they have

carried his name: the Platonic solids.

For centuries there was no need to envision geometric

objects in more than three dimensions. But nowadays

mathematicians regularly deal with objects in vector

spaces having four, five, or even hundreds of dimensions.

It is not necessarily clear what geometrical properties one

might ascribe to these objects in higher dimensions.

For example, what properties do lines have in 2-space

and planes have in 3-space that would be useful in higher

dimensions? How can one characterize such objects?

Sections 8.1 and 8.4 provide some answers. The

hyperplanes of Section 8.4 will be important for

understanding the multi-dimensional nature of the linear

programming problems in Chapter 9.

What would the analogue of a polyhedron “look like”

in more than three dimensions? A partial answer is

provided by two-dimensional projections of the

four-dimensional object, created in a manner analogous to

two-dimensional projections of a three-dimensional

object. Section 8.5 illustrates this idea for the
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four-dimensional “cube” and the four-dimensional

“simplex.”

The study of geometry in higher dimensions not only

provides new ways of visualizing abstract algebraic

concepts, but also creates tools that may be applied inR
3.

For instance, Sections 8.2 and 8.6 include applications to

computer graphics, and Section 8.5 outlines a proof

(in Exercise 13) that there are only five regular polyhedra

in R
3.

FIGURE 1 The five Platonic solids.

M ost applications in earlier chapters involved algebraic calculations with sub-
spaces and linear combinations of vectors. This chapter studies sets of vectors
that can be visualized as geometric objects such as line segments, polygons,

and solid objects.1 Individual vectors are viewed as points. The concepts introduced here

1I thank my brother, Dr. Steven R. Lay, for designing and writing most of this chapter and for class test-
ing it at Lee University. Several colleagues and I have also class tested the chapter, and I have made a
few changes and additions. Comments from faculty and students who use it would be appreciated. Write
to: lay@math.umd.edu.
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are used in computer graphics, linear programming (in Chapter 9), and other areas of
mathematics.2

Throughout the chapter, sets of vectors are described by linear combinations, but
with various restrictions on the weights used in the combinations. For instance, in
Section 8.1, the sum of the weights is one, while in Section 8.2, the weights are positive
and sum to one. The visualizations are inR

2 or R
3, of course, but the concepts also

apply toR
n and other vector spaces.

8.1 AFFINE COMBINATIONS
An affine combination of vectors is a special kind of linear combination. Given vectors
(or “points”) v1, v2, . . . , vp in R

n and scalarsc1, . . . , cp, an affine combination of
v1, v2, . . . , vp is a linear combination

c1v1 + · · · + cpvp

such that the weights satisfyc1 + · · · + cp = 1.

D E F I N I T I O N The set of all affine combinations of points in a setS is called theaffine hull (or
affine span) of S, denoted by affS.

The affine hull of a single pointv1 is just the set{v1}, since it has the formc1v1 where
c1 = 1. The affine hull of two distinct points is often written in a special way. Suppose
y = c1v1 + c2v2 with c1 + c2 = 1. Write t in place ofc2, so thatc1 = 1 − c2 = 1 − t .
Then the affine hull of{v1, v2} is the set

y = (1 − t)v1 + tv2, with t in R (1)

This set of points includesv1 (when t = 0) andv2 (when t = 1). If v2 = v1, then (1)
again describes just one point. Otherwise, (1) describes theline throughv1 andv2. To

see this, rewrite (1) in the form

y = v1 + t (v2 − v1)= p + tu, with t in R

wherep is v1 andu is v2 − v1. The set of all multiples ofu is Span{u}, the
line throughu and the origin. Addingp to each point on this line translates
Span{u} into the line throughp parallel to the line throughu and the origin.
See Fig. 1. (Compare this figure with Fig. 5 in Section 1.5.)

tu

p + tu

p

u

FIGURE 1
Figure 2 uses the original pointsv1 andv2, and displays aff{v1, v2} as

the line throughv1 andv2.

2See Foley, van Dam, Feiner, and Hughes,Computer Graphics—Principles and Practice, 2nd edition
(Boston: Addison Wesley, 1996), pp. 1083–1112. That material also discusses coordinate-free “affine
spaces.”
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v2
t(v2 – v1)

aff{v1, v2}

y = v1 + t(v2 – v1)

v1

v2 – v1

FIGURE 2

Notice that while the pointy in Fig. 2 is an affine combination ofv1 andv2, the point
y − v1 equalst (v2 − v1), which is a linear combination (in fact, a multiple) ofv2 − v1.
This relation betweeny andy − v1 holds for any affine combination of points, as the
following theorem shows.

T H E O R E M 1 A point y in R
n is an affine combination ofv1, . . . , vp in R

n if and only if y − v1

is a linear combination of the translated pointsv2 − v1, . . . , vp − v1.

PROOF If y − v1 is a linear combination ofv2 − v1, . . . , vp − v1, there exist weights
c2, . . . , cp such that

y − v1 = c2(v2 − v1) + · · · + cp(vp − v1) (2)

Then

y = (1 − c2 − · · · − cp)v1 + c2v2 + · · · + cpvp (3)

and the weights in this linear combination sum to one. Soy is an affine combination of
v1, . . . , vp. Conversely, suppose

y = c1v1 + c2v2 + · · · + cpvp (4)

where c1 + · · · + cp = 1. Sincec1 = 1 − c2 − · · · − cp, equation (4) may be written
as in (3), and this leads to (2), which shows thaty − v1 is a linear combination of
v2 − v1, . . . , vp − v1. ■

In the statement of Theorem 1, the pointv1 could be replaced by any of the other
points in the listv1, . . . , vp. Only the notation in the proof would change.

EXAMPLE 1 Let v1 =
[

1
2

]
, v2 =

[
2
5

]
, v3 =

[
1
3

]
, v4 =

[ −2
2

]
, andy =

[
4
1

]
. If

possible, writey as an affine combination ofv1, v2, v3, andv4.
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Solution Compute the translated points

v2 − v1 =
[

1
3

]
, v3 − v1 =

[
0
1

]
, v4 − v1 =

[ −3
0

]
, y − v1 =

[
3

−1

]

To find scalarsc2, c3, andc4 such that

c2(v2 − v1) + c3(v3 − v1) + c4(v4 − v1)= y − v1 (5)

row reduce the augmented matrix having these points as columns:[
1 0 −3 3
3 1 0 −1

]
∼

[
1 0 −3 3
0 1 9 −10

]

This shows that equation (5) is consistent, and the general solution isc2 = 3c4 + 3,
c3 = −9c4 − 10, withc4 free. Whenc4 = 0,

y − v1 = 3(v2 − v1)− 10(v3 − v1) + 0(v4 − v1)

and

y = 8v1 + 3v2 − 10v3

As another example, takec4 = 1. Thenc2 = 6 andc3 = −19, so

y − v1 = 6(v2 − v1)− 19(v3 − v1) + 1(v4 − v1)

and

y = 13v1 + 6v2 − 19v3 + v4

While the procedure in Example 1 works for arbitrary pointsv1, v2, . . . , vp in R
n,

the question can be answered more directly if the chosen pointsvi are a basis forRn.
For example, letB = {b1, . . . ,bn} be such a basis. Then anyy in R

n is a uniquelinear
combination ofb1, . . . ,bn. This combination is an affine combination of theb’s if and
only if the weights sum to one. (These weights are just theB-coordinates ofy, as in
Section 4.4.)

EXAMPLE 2 Let b1 =

 4

0
3


, b2 =


 0

4
2


, b3 =


 5

2
4


, p1 =


 2

0
0


, and p2 =


 1

2
2


.

The setB = {b1,b2,b3} is a basis forR3. Determine whether the pointsp1 andp2 are
affine combinations of the points inB.

Solution Find theB-coordinates ofp1 andp2. These two calculations can be combined
by row reducing the matrix[ b1 b2 b3 p1 p2 ], with two augmented columns:


 4 0 5 2 1

0 4 2 0 2
3 2 4 0 2


 ∼




1 0 0 −2 2
3

0 1 0 −1 2
3

0 0 1 2 − 1
3



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Read column 4 to buildp1, and read column 5 to buildp2:

p1 = −2b1 − b2 + 2b3 and p2 = 2
3b1 + 2

3b2 − 1
3b3

The sum of the weights in the linear combination forp1 is −1, not 1, sop1 is not an
affine combination of theb’s. However,p2 is an affine combination of theb’s, because
the sum of the weights forp2 is 1.

D E F I N I T I O N A setS is affine if p,q ∈ S implies that(1 − t)p + tq ∈ S for each real numbert .

Geometrically, a set is affine if whenever two points are in the set, the entire line
through these points is in the set. (IfS contains only one point,p, then the line through
p and p is just a point, a “degenerate” line.) Algebraically, for a setS to be affine,
the definition requires that every affine combination of two points ofS belong toS.
Remarkably, this is equivalent to requiring thatS contain every affine combination of
an arbitrary number of points ofS.

T H E O R E M 2 A setS is affine if and only if every affine combination of points ofS lies in S.
That is,S is affine if and only ifS = aff S.

PROOF Suppose thatS is affine and use induction on the numberm of points ofS
occurring in an affine combination. Whenm is 1 or 2, an affine combination ofm
points ofS lies in S, by the definition of an affine set. Now, assume that every affine
combination ofk or fewer points ofS yields a point inS, and consider a combination of
k + 1 points. Takevi in S for i = 1, . . . , k + 1, and lety = c1v1 + · · · + ckvk + ck+1vk+1,
wherec1 + · · · + ck+1 = 1. Since theci ’s sum to one, at least one of them must not be
equal to one. By re-indexing thevi andci , if necessary, we may assume thatck+1 �= 1.
Let t = c1 + · · · + ck. Thent = 1 − ck+1 �= 0, and

y = (1 − ck+1)
(c1

t
v1 + · · · +

ck

t
vk

)
+ ck+1vk+1 (6)

By the induction hypothesis, the pointz = (c1/t)v1 + · · · + (ck/t)vk is in S, since the
coefficients sum to one. Thus (6) displaysy as an affine combination of two points in
S, and soy ∈ S. By the principle of induction, every affine combination of such points
lies inS. That is, affS ⊂ S. But the reverse inclusion,S ⊂ aff S, always applies. Thus,
whenS is affine,S = aff S. Conversely, ifS = aff S, then affine combinations of two
(or more) points ofS lie in S, soS is affine. ■

The next definition provides terminology for affine sets that emphasizes their close
connection with subspaces ofR

n.
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D E F I N I T I O N Atranslate of a setS in R
n by a vectorp is the setS + p = {s + p : s ∈ S}.3 A flat in

R
n is a translate of a subspace ofR

n. Two flats areparallel if one is a translate of
the other. Thedimension of a flat is the dimension of the corresponding parallel
subspace. Thedimension of a set S, written as dimS, is the dimension of the
smallest flat containingS. A line in R

n is a flat of dimension one. Ahyperplane
in R

n is a flat of dimensionn− 1.

In R
3, the proper subspaces consist of the origin0, the set of all lines through0, and

the set of all planes through0. Thus the proper flats inR3 are points (zero-dimensional),
lines (one-dimensional), and planes (two-dimensional), which may or may not pass
through the origin.

The next theorem shows that these geometric descriptions of lines and planes inR
3

(as translates of subspaces) actually coincide with their earlier algebraic descriptions as
sets of all affine combinations of two or three points, respectively.

T H E O R E M 3 A nonempty setS is affine if and only if it is a flat.

PROOF Suppose thatS is affine. Letp be any fixed point inS and letW = S + (−p),
so thatS =W + p. To show thatS is a flat, it suffices to show thatW is a subspace of
R
n. Sincep is in S, the zero vector is inW . To show thatW is closed under sums and

scalar multiples, it suffices to show that ifu1 andu2 are elements ofW, thenu1 + tu2

is in W for every realt . Sinceu1 andu2 are inW , there exists1 ands2 in S such that
u1 = s1 − p andu2 = s2 − p. So, for each realt ,

u1 + tu2 = (s1 − p) + t (s2 − p)

= (1 − t)s1 + t (s1 + s2 − p)− p

Let y = s1 + s2 − p. Theny is an affine combination of points inS. SinceS is affine,y is
in S (by Theorem 2). But then(1 − t)s1 + ty is also inS. Sou1 + tu2 is in−p + S =W .
This shows thatW is a subspace ofRn. ThusS is a flat, becauseS =W + p.

Conversely, supposeS is a flat. That is,S =W + p for somep ∈ R
n and some

subspaceW . To show thatS is affine, it suffices to show that for any pairs1 ands2 of
points inS, the line throughs1 ands2 lies in S. By definition ofW , there existu1 and
u2 in W such thats1 = u1 + p ands2 = u2 + p. So, for each realt ,

(1 − t)s1 + ts2 = (1 − t)(u1 + p) + t (u2 + p)

= (1 − t)u1 + tu2 + p

SinceW is a subspace,(1 − t)u1 + tu2 ∈ W and so(1 − t)s1 + ts2 ∈ W + p = S. Thus
S is affine. ■

3If p = 0, then the translate is justS itself. See Fig. 4 in Section 1.5.
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Theorem 3 provides a geometric way to view the affine hull of a set: it is the flat that
consists of all the affine combinations of points in the set. For instance, Fig. 3 shows the
points studied in Example 2. Although the set of alllinear combinations ofb1, b2, and
b3 is all of R3, the set of allaffinecombinations is only the plane throughb1, b2, andb3.
Note thatp2 (from Example 2) is in the plane throughb1, b2, andb3, while p1 is not in
that plane. Also, see Exercise 12.

b1p2

b3

x3

x1

b2

p1

5

5

0

FIGURE 3

Earlier, Theorem 1 displayed an important connection between affine combinations
and linear combinations. The next theorem provides another view of affine combinations,
which forR2 andR

3 is closely connected to applications in computer graphics, discussed
in the next section (and in Section 2.7).

D E F I N I T I O N
Forv in R

n, the standardhomogeneous form of v is the pointṽ =
[

v
1

]
in R

n+1.

T H E O R E M 4 A point y in R
n is an affine combination ofv1, . . . , vp in R

n if and only if the
homogeneous form ofy is in Span{ṽ1, . . . , ṽp}. In fact, y = c1v1 + · · · + cpvp,
with c1 + · · · + cp = 1, if and only if ỹ = c1ṽ1 + · · · + cpṽp.

PROOF Apoint y is in aff {v1, . . . , vp} if and only if there exist weightsc1, . . . , cp such
that [

y
1

]
= c1

[
v1

1

]
+ c2

[
v2

1

]
+ · · · + cp

[
vp
1

]

This happens if and only if̃y is in Span{ṽ1, ṽ2, . . . , ṽp}. ■

EXAMPLE 3 Let v1 =

 3

1
1


, v2 =


 1

2
2


, v3 =


 1

7
1


, andp =


 4

3
0


. Use Theorem 4

to write p as an affine combination ofv1, v2, andv3, if possible.

Solution Row reduce the augmented matrix for the equation

x1ṽ1 + x2ṽ2 + x3ṽ3 = p̃

To simplify the arithmetic, move the fourth row of 1’s to the top (equivalent to three row
interchanges). After this, the number of arithmetic operations here is basically the same
as the number needed for the method using Theorem 1.

[ ṽ1 ṽ2 ṽ3 p̃ ] ∼




1 1 1 1
3 1 1 4
1 2 7 3
1 2 1 0


 ∼




1 1 1 1
0 −2 −2 1
0 1 6 2
0 1 0 −1



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∼ · · · ∼




1 0 0 1.5
0 1 0 −1
0 0 1 .5
0 0 0 0




By Theorem 4, 1.5v1 − v2 + .5v3 = p. See Fig. 4, which shows the plane that contains
v1, v2, v3, andp (together with points on the coordinate axes).

x1
x2

x3

v1

p

3

5

15

v2

v3

FIGURE 4

P R A C T I C E P R O B L E M

Plot the pointsv1 =
[

1
0

]
, v2 =

[ −1
2

]
, v3 =

[
3
1

]
, andp =

[
4
3

]
on graph paper, and

explain whyp mustbe an affine combination ofv1, v2, andv3. Then find the affine
combination forp. [Hint: What is the dimension of aff{v1, v2, v3}?]

8.1 EXERCISES

In Exercises 1–5, writey as an affine combination of the other
points listed, if possible.

1. v1 =
[

1
2

]
, v2 =

[ −2
2

]
, v3 =

[
0
4

]
, v4 =

[
3
7

]
, y =

[
5
3

]

2. v1 =
[

1
1

]
, v2 =

[ −1
2

]
, v3 =

[
3
2

]
, y =

[
5
7

]

3. v1 =

 −3

1
1


, v2 =


 0

4
−2


, v3 =


 4

−2
6


, y =


 17

1
5




4. v1 =

 1

2
0


, v2 =


 2

−6
7


, v3 =


 4

3
1


, y =


 −3

4
−4




5. v1 =




1
0
3

−2


, v2 =




0
1

−2
0


, v3 =




4
7

−2
−8


, y =




−1
3

−9
2




6. Let b1 =

 2

1
1


, b2 =


 1

0
−2


, b3 =


 2

−5
1


, and

S = {b1,b2,b3}. Write each point below as an affine com-
bination of the points in the setS, if possible. Note thatS is
an orthogonal basis forR3. [Hint: Use Theorem 5 in Section
6.2 instead of row reduction to find the weights.]

a. p1 =

 0

−19
−5


 b. p2 =


 1.5

−1.3
−.5


 c. p3 =


 5

−4
0






August 16, 2005 10:58 L57-ch08 Sheet number 10 Page number 10 cyan magenta yellow black

10 CHAPTER 8 The Geometry of Vector Spaces

7. Let v1 =




1
0
3
0


, v2 =




2
−1

0
4


, v3 =




−1
2
1
1


, p1 =




5
−3

5
3


,

p2 =




−9
10
9

−13


, p3 =




4
2
8
5


, andS = {v1, v2, v3}. It can be

shown thatS is linearly independent.
a. Isp1 in SpanS? Isp1 in aff S?

b. Isp2 in SpanS? Isp2 in aff S?

c. Isp3 in SpanS? Isp3 in aff S?

8. Repeat Exercise 7 whenv1 =




1
0
3

−2


, v2 =




2
1
6

−5


,

v3 =




3
0

12
−6


, p1 =




4
−1
15
−7


, p2 =




−5
3

−8
6


, andp3 =




1
6

−6
−8


.

In Exercises 9 and 10, mark each statement True or False. Justify
each answer.

9. a. The set of all affine combinations of points in a setS is
called the affine hull ofS.

b. If {b1, . . . ,bk} is a linearly independent subset ofR
n and if

p is a linear combination ofb1, . . . ,bk, thenp is an affine
combination ofb1, . . . ,bk.

c. The affine hull of two distinct points is called a line.

d. A flat is a subspace.

e. A plane inR3 is a hyperplane.

10. a. If S = {x}, then affS is the empty set.

b. A set is affine if and only if it contains its affine hull.

c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyperplane.

e. A flat through the origin is a subspace.

11. Suppose {v1, v2, v3} is a basis for R
3. Show that

Span{v2 − v1, v3 − v1} is a plane inR
3. [Hint: What can

you say aboutu andv when Span{u, v} is a plane?]

12. Show that if{v1, v2, v3} is a basis forR3, then aff{v1, v2, v3}
is the plane throughv1, v2, andv3.

13. Let A be anm×n matrix and, givenb in R
m, show that the

setS of all solutions ofAx = b is an affine subset ofRn.

14. Let v ∈ R
n and letk ∈ R. Prove thatS = {x ∈ R

n : x·v = k}
is an affine subset ofRn.

15. Choose a setS of three points such that affS is the plane in
R

3 whose equation isx3 = 5. Justify your work.

16. Choose a setS of four distinct points inR3 such that affS is
the plane 2x1 + x2 − 3x3 = 12. Justify your work.

17. Let S be an affine subset ofRn, supposef : R
n → R

m is a
linear transformation, and letf (S) denote the set of images
{f (x) : x ∈ S}. Prove thatf (S) is an affine subset ofRm.

18. Let f : R
n → R

m be a linear transformation, letT be an affine
subset ofRm, and letS = {x ∈ R

n : f (x) ∈ T }. Show thatS
is an affine subset ofRn.

In Exercises 19–22, prove the given statement about subsetsA

andB of R
n. A proof for an exercise may use results from earlier

exercises.

19. If A ⊂ B andB is affine, then affA ⊂ B.

20. If A ⊂ B, then affA ⊂ aff B.

21. [(aff A) ∪ (aff B)] ⊂ aff (A ∪ B). [Hint: To show that
D ∪ E ⊂ F , show thatD ⊂ F andE ⊂ F .]

22. aff (A ∩ B) ⊂ (aff A ∩ aff B). [Hint: To show that
D ⊂ E ∩ F , show thatD ⊂ E andD ⊂ F .]

23. Find an example inR2 to show that equality need not hold in
the statement of Exercise 21. [Hint: Consider setsA andB
that each contain only one or two points.]

24. Find an example inR2 to show that equality need not hold in
the statement of Exercise 22.

S O L U T I O N T O P R A C T I C E P R O B L E M

x1

x2

p

v3
v1

v2

Since the pointsv1, v2, andv3 are not collinear (that is, not on a single line), aff{v1, v2, v3}
cannot be one-dimensional. Thus, aff{v1, v2, v3} must equalR2. To find the actual
weights used to expressp as an affine combination ofv1, v2, andv3, first compute

v2 − v1 =
[ −2

2

]
, v3 − v1 =

[
2
1

]
, and p − v1 =

[
3
3

]
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To write p − v1 as a linear combination ofv2 − v1 andv3 − v1, row reduce the matrix
having these points as columns:[−2 2 3

2 1 3

]
∼

[
1 0 1

2

0 1 2

]

Thusp − v1 = 1
2(v2 − v1) + 2(v3 − v1), which shows that

p = (
1 − 1

2 − 2
)

v1 + 1
2v2 + 2v3 = − 3

2v1 + 1
2v2 + 2v3

This expressesp as an affine combination ofv1, v2, andv3, because the coefficients sum
to one.

Alternatively, use the method of Example 3 and row reduce:

[
v1 v2 v3 p
1 1 1 1

]
∼


1 1 1 1

1 −1 3 4
0 2 1 3


 ∼




1 0 0 − 3
2

0 1 0 1
2

0 0 1 2




This shows thatp = − 3
2v1 + 1

2v2 + 2v3.

8.2 AFFINE INDEPENDENCE
Because affine sets are simply translates of subspaces, some important concepts for
subspaces “translate” into related concepts for affine sets.

D E F I N I T I O N An indexed set of points{v1, . . . , vp} in R
n is affinely dependent if there exist

real numbersc1, . . . , cp, not all zero, such that

c1 + · · · + cp = 0 and c1v1 + · · · + cpvp = 0 (1)

Otherwise, the set isaffinely independent.

A set {v1} of only one point (even the zero vector) must be affinely independent
because the required properties of the coefficientsci cannot be satisfied when there is
only one coefficient. For{v1}, the first equation in (1) is justc1 = 0, and yet at least one
(the only one) coefficient must be nonzero.

Exercise 13 asks you to show that an indexed set{v1, v2} is affinely dependent if
and only ifv1 = v2. The following theorem handles the general case and shows how the
concept of affine dependence is analogous to that of linear dependence. Parts (c) and (d)
give useful methods for determining whether a set is affinely dependent. Recall from
Section 8.1 that ifv is in R

n, then the vector̃v in R
n+1 denotes the homogeneous form

of v.
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T H E O R E M 5 Given an indexed setS = {v1, . . . , vp} in R
n, withp ≥ 2, the following statements

are logically equivalent. That is, either they are all true statements or they are all
false.

a. S is affinely dependent.

b. One of the points inS is an affine combination of the other points inS.

c. The set{v2 − v1, . . . , vp − v1} in R
n is linearly dependent.

d. The set{ṽ1, . . . , ṽp} in R
n+1 is linearly dependent.

PROOF Suppose (a) is true, and letc1, . . . , cp satisfy (1). By renaming the points if
necessary, one may assume thatc1 �= 0 and divide both equations in (1) byc1, so that
1 + (c2/c1) + · · · + (cp/c1)= 0 and

v1 = (−c2/c1)v2 + · · · + (−cp/c1)vp (2)

Note that the coefficients on the right of (2) sum to one. Thus (a) implies (b). Now,
suppose that (b) is true. By renaming the points if necessary, one may assume that
v1 = c2v2 + · · · + cpvp, wherec2 + · · · + cp = 1. Then

(c2 + · · · + cp)v1 = c2v2 + · · · + cpvp (3)

and

c2(v2 − v1) + · · · + cp(vp − v1)= 0 (4)

Not all of c2, . . . , cp can be zero because they sum to one. So (b) implies (c).
Next, if (c) is true, then there exist weightsc2, . . . , cp, not all zero, such that (4)

holds. Rewrite (4) as (3) and setc1 = −(c2 + · · · + cp). Thenc1 + · · · + cp = 0. Thus
(3) shows that (1) is true. So (c) implies (a), which proves that (a), (b), and (c) are
logically equivalent. Finally, (d) is equivalent to (a) because the two equations in (1)
are equivalent to the following equation involving the homogeneous forms of the points
in S:

c1

[
v1

1

]
+ · · · + cp

[
vp
1

]
=

[
0
0

]
■

In statement (c) of Theorem 5,v1 could be replaced by any of the other points in
the listv1, . . . , vp. Only the notation in the proof would change. So, to test whether a
set is affinely dependent, subtract one point in the set from the other points, and check
whether the translated set ofp − 1 points is linearly dependent.

EXAMPLE 1 The affine hull of two distinct pointsp andq is a line. If a third point
r is on the line, then{p,q, r} is an affinely dependent set. If a points is not on the
line throughp andq, then these three points are not collinear and{p,q, s} is an affinely
independent set. See Fig. 1.
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p

aff{p, q}
q

r s

FIGURE 1 {p,q, r} is affinely dependent.

EXAMPLE 2 Let v1 =

 1

3
7


, v2 =


 2

7
6.5


, v3 =


 0

4
7


, andS = {v1, v2, v3}. Deter-

mine whetherS is affinely independent.

Solution Computev2 − v1 =

 1

4
−.5


 andv3 − v1 =


 −1

1
0


. These two points are

not multiples and hence form a linearly independent set,S ′. So all statements in Theorem
5 are false, andS is affinely independent. Figure 2 showsS and the translated setS ′.
Notice that SpanS ′ is a plane through the origin and affS is a parallel plane throughv1,
v2, andv3. (Only a portion of each plane is shown here, of course.)

x3

v3

v2 – v1

v2

x2

v1

x1

aff{v1 , v2 , v3}

Span{v2 – v1 , v3 – v1}

v3 – v1

FIGURE 2 An affinely independent set{v1, v2, v3}.

EXAMPLE 3 Let v1 =

 1

3
7


, v2 =


 2

7
6.5


, v3 =


 0

4
7


, and v4 =


 0

14
6


, and let

S = {v1, . . . , v4}. Is S affinely dependent?

Solution Compute v2 − v1 =

 1

4
−.5


, v3 − v1 =


 −1

1
0


, and v4 − v1 =


 −1

11
−1


,

and row reduce the matrix:
 1 −1 −1

4 1 11
−.5 0 −1


 ∼


1 −1 −1

0 5 15
0 −.5 −1.5


 ∼


1 −1 −1

0 5 15
0 0 0



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Recall from Section 4.6 (or Section 2.8) that the columns are linearly dependent because
not every column is a pivot column; sov2 − v1, v3 − v1, andv4 − v1 are linearly depen-
dent. By (c) in Theorem 5,{v1, v2, v3, v4} is affinely dependent. This dependence can
also be established using (d) in Theorem 5 instead of (c).

The calculations in Example 3 show thatv4 − v1 is a linear combination ofv2 − v1

andv3 − v1, which means thatv4 − v1 is in Span{v2 − v1, v3 − v1}. By Theorem 1 in
Section 8.1,v4 is in aff {v1, v2, v3}. In fact, complete row reduction of the matrix in
Example 3 would show that

v4 − v1 = 2(v2 − v1) + 3(v3 − v1) (5)

v4 = −4v1 + 2v2 + 3v3 (6)

See Fig. 3.

x3

v3 v4

v2 – v1

v2

x2

v1

x1

aff{v1 , v2 , v3}

v4 – v1v3 – v1

FIGURE 3 v4 is in the plane aff{v1, v2, v3}.

Figure 3 shows grids on both Span{v2 − v1, v3 − v1} and aff{v1, v2, v3}. The grid
on aff{v1, v2, v3} is based on (5). Another “coordinate system” can be based on (6), in
which the coefficients−4,3,2 are calledaffineor barycentriccoordinates ofv4.

Barycentric Coordinates

The definition of barycentric coordinates depends on the following affine version of the
Unique Representation Theorem in Section 4.4. See Exercise 17.

T H E O R E M 6 Let S = {b1, . . . ,bk} be an affinely independent set inRn. Then eachp in aff S
has a unique representation as an affine combination ofb1, . . . ,bk. That is, for
eachp there exists a unique set of scalarsc1, . . . , ck such that

p = c1b1 + · · · + ckbk and c1 + · · · + ck = 1 (7)
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D E F I N I T I O N Let S = {v1, . . . , vk} be an affinely independent set. Then for each pointp in
aff S, the coefficientsc1, . . . , cp in the unique representation (7) ofp are called
thebarycentric (or, sometimes,affine) coordinates of p.

Observe that (7) is equivalent to the single equation[
p
1

]
= c1

[
b1

1

]
+ · · · + ck

[
bk
1

]
(8)

involving the homogeneous forms of the points. Row reduction of the augmented matrix[
b̃1 · · · b̃k p̃

]
for (8) produces the barycentric coordinates ofp.

EXAMPLE 4 Let a =
[

1
7

]
, b =

[
3
0

]
, c =

[
9
3

]
, andp =

[
5
3

]
. Find the barycentric

coordinates ofp determined by the affinely independent set{a,b, c}.
Solution Row reduce the augmented matrix of points in homogeneous form, moving
the last row of ones to the top to simplify the arithmetic:

[
ã b̃ c̃ p̃

] =

1 3 9 5

7 0 3 3
1 1 1 1


∼


1 1 1 1

1 3 9 5
7 0 3 3


∼




1 0 0 1
4

0 1 0 1
3

0 0 1 5
12




The coordinates are14, 1
3, 5

12, sop = 1
4a + 1

3b + 5
12c.

Barycentric coordinates have both physical and geometric interpretations. They
were originally defined by A. F. Moebius in 1827 for a pointp inside a triangular region
with verticesa, b, and c. He wrote that the barycentric coordinates ofp are three
nonnegative numbersma,mb, andmc such thatp is the center of mass of a system
consisting of the triangle (with no mass) and massesma,mb, andmc at the corresponding
vertices. The masses are uniquely determined by requiring that their sum be one. This
view is still useful in physics today.1

Figure 4 gives a geometric interpretation to the barycentric coordinates in Example
4, showing the triangle�abc and three small triangles�pbc, �apc, and�abp. The
areas of the small triangles are proportional to the barycentric coordinates ofp. In fact,

area(�pbc) = 1
4
·area(�abc)

area(�apc) = 1
3
·area(�abc) (9)

area(�abp) = 5
12

·area(�abc)

1See Exercise 29 in Section 1.3. In astronomy, however, “barycentric coordinates” usually refer to or-
dinary R

3 coordinates of points in what is now called theInternational Celestial Reference System, a
Cartesian coordinate system for outer space, with the origin at the center of mass (the barycenter) of
the solar system.
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area = r · area(∆abc)

area = s · area(∆abc)

area = t · area(∆abc)

a

b

c
p

FIGURE 4 p = ra + sb + tc. Here,
r = 1

4, s = 1
3, t = 5

12.

The formulas in Fig. 4 are verified in Exercises 19–21. Analogous equalities for
volumes of tetrahedrons hold for the case whenp is a point inside a tetrahedron inR3,
with verticesa, b, c, andd.

When a point is not inside the triangle (or tetrahedron), some or all of the barycentric
coordinates will be negative. The case of a triangle is illustrated in Fig. 5, for verticesa,
b, c, and coordinate valuesr, s, t , as above. The points on the line throughb andc, for
instance, haver = 0 because they are affine combinations of onlyb andc. The parallel
line througha identifies points withr = 1.

a

b

cp

r = 1

r = 0

s = 1

s = 0

FIGURE 5 Barycentric coordinates
for points in aff{a,b, c}.

Barycentric Coordinates in Computer Graphics

When working with geometric objects in a computer graphics program, a designer may
use a “wire-frame” approximation to an object at certain key points in the process of
creating a realistic final image.2 For instance, if the surface of part of an object consists
of small flat triangular surfaces, then a graphics program can easily add color, lighting,
and shading to each small surface when that information is known only at the vertices.

2The Introductory Example for Chapter 2 shows a wire-frame model of a Boeing 777 airplane, used to
visualize the flow of air over the surface of the plane.
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Barycentric coordinates provide the tool for smoothly interpolating the vertex infor-
mation over the interior of a triangle. The interpolation at a point is simply the linear
combination of the vertex values using the barycentric coordinates as weights.

Colors on a computer screen are often described by RGB coordinates. A triple
(r, g, b) indicates the amount of each color–red, green, and blue–with the parameters
varying from 0 to 1. For example, pure red is(1,0,0), white is(1,1,1), and black is
(0,0,0).3

EXAMPLE 5 Let v1 =

 3

1
5


, v2 =


 4

3
4


, v3 =


 1

5
1


, andp =


 3

3
3.5


. The colors at

the verticesv1, v2, andv3 of a triangle are magenta(1,0,1), light magenta(1, .4,1),
and purple(.6,0,1), respectively. Find the interpolated color atp. See Fig. 6.

v2

v3

v1

FIGURE 6 Interpolated colors.

Solution First, find the barycentric coordinates ofp. Here is the calculation using
homogeneous forms of the points, with the first step moving row 4 to row 1:

[
ṽ1 ṽ2 ṽ3 p̃

] ∼




1 1 1 1
3 4 1 3
1 3 5 3
5 4 1 3.5


 ∼




1 0 0 .25
0 1 0 .50
0 0 1 .25
0 0 0 0




So p = .25v1 + .5v2 + .25v3. Use the barycentric coordinates ofp to make a linear
combination of the color data. The RGB values forp are

.25


 1

0
1


 + .50


 1
.4
1


 + .25


 .6

0
1


 =


 .9
.2
1


 red

green
blue

One of the last steps in preparing a graphics scene for display on a computer screen
is to remove “hidden surfaces” that should not be visible on the screen. Imagine the
viewing screen as consisting of, say, a million pixels, and consider a ray or “line of
sight” from the viewer’s eye through a pixel and into the collection of objects that make
up the 3D display. The color and other information displayed in the pixel on the screen

3Applets for color experiments are currently on the Web atwww.nacs.uci.edu/∼wiedeman/cspace/. Click
on rgb.

www.nacs.uci.edu/~wiedeman/cspace/
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should come from the object that the ray first intersects. See Fig. 7. When the objects in
the graphics scene are approximated by wire frames with triangular patches, the hidden
surface problem can be solved using barycentric coordinates.

FIGURE 7 A ray from the eye through the screen to the
nearest object.

The mathematics for finding the ray-triangle intersections can also be used to perform
extremely realistic shading of objects. Currently, thisray-tracingmethod is too slow for
real-time rendering, but recent advances in hardware implementation may change that
in the future.4

EXAMPLE 6 Let v1 =

 1

1
−6


, v2 =


 8

1
−4


, v3 =


 5

11
−2


, a =


 0

0
10


, b =


 .7
.4
−3


,

andx(t)= a + tb for t ≥ 0. Find the point where the rayx(t) intersects the plane that
contains the triangle with verticesv1, v2, andv3. Is this point inside the triangle?

Solution The plane is aff{v1, v2, v3}. A typical point in this plane may be written as
(1 − c2 − c3)v1 + c2v2 + c3v3 for somec2 andc3. (The weights in this combination sum
to one.) The rayx(t) intersects the plane whenc2, c3, andt satisfy

(1 − c2 − c3)v1 + c2v2 + c3v3 = a + tb

Rearrange this asc2(v2 − v1) + c3(v3 − v1) + t (−b)= a − v1. In matrix form,

[ v2 − v1 v3 − v1 −b ]


 c2

c3

t


= a − v1

For the specific points given here,

v2 − v1 =

 7

0
2


, v3 − v1 =


 4

10
4


, a − v1 =


 −1

−1
16




4See Joshua Fender and Jonathan Rose, “A High-Speed Ray Tracing Engine Built on a Field-Program-
mable System,” currently online atwww.eecg.toronto.edu/∼fender/pdfs/raytrace_fender.pdf. (A single
processor can calculate 600 million ray-triangle intersections per second.)

www.eecg.toronto.edu/~fender/pdfs/raytrace_fender.pdf
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Row reduction of the augmented matrix above produces
7 4 −.7 −1

0 10 −.4 −1
2 4 3 16


 ∼


1 0 0 .3

0 1 0 .1
0 0 1 5




Thusc2 = .3, c3 = .1, andt = 5. Therefore, the intersection point is

x(5)= a + 5b =

 0

0
10


 + 5


 .7
.4
−3


 =


 3.5

2.0
−5.0




Also,

x(5)= (1 − .3 − .1)v1 + .3v2 + .1v3 = .6


 1

1
−6


 + .3


 8

1
−4


 + .1


 5

11
−2


 =


 3.5

2.0
−5.0




The intersection point is inside the triangle because the barycentric weights forx(5) are
all positive.

P R A C T I C E P R O B L E M S

1. Describe a fast way to determine when three points are collinear.

2. The pointsv1 =
[

4
1

]
, v2 =

[
1
0

]
, v3 =

[
5
4

]
, andv4 =

[
1
2

]
, form an affinely de-

pendent set. Find weightsc1, . . . , c4 that produce anaffine dependence relation
c1v1 + · · · + c4v4 = 0, wherec1 + · · · + c4 = 0 and not allci are zero. [Hint: See the
end of the proof of Theorem 5.]

8.2 EXERCISES

In Exercises 1–6, determine if the set of points is affinely depen-
dent. (See Practice Problem 2.) If so, construct an affine depen-
dence relation for the points.

1.
[

3
−3

]
,

[
0
6

]
,

[
2
0

]
2.

[
2
1

]
,

[
5
4

]
,

[ −3
−2

]

3.


 1

2
−1


,


 −2

−4
8


,


 2

−1
11


,


 0

15
−9




4.


 −2

5
3


,


 0

−3
7


,


 1

−2
−6


,


 −2

7
−3




5.


 1

0
−2


,


 0

1
1


,


 −1

5
1


,


 0

5
−3




6.


 1

3
1


,


 0

−1
−2


,


 2

5
2


,


 3

5
0




In Exercises 7 and 8, find the barycentric coordinates ofp with
respect to the affinely independent set of points that precedes it.

7.




1
−1

2
1


,




2
1
0
1


,




1
2

−2
0


, p =




5
4

−2
2




8.




0
1

−2
1


,




1
1
0
2


,




1
4

−6
5


, p =




−1
1

−4
0



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In Exercises 9 and 10, mark each statement True or False. Justify
each answer.

9. a. If v1, . . . , vp are in R
n and if the set

{v1 − v2, v3 − v2, . . . , vp − v2} is linearly dependent,
then{v1, . . . , vp} is affinely dependent. (Read this care-
fully.)

b. If v1, . . . vp are in R
n and if the set of homogeneous

forms {ṽ1, . . . , ṽp} in R
n+1 is linearly independent, then

{v1, . . . , vp} is affinely dependent.

c. A finite set of points{v1, . . . , vk} is affinely dependent if
there exist real numbersc1, . . . , ck, not all zero, such that
c1 + · · · + ck = 1 andc1v1 + · · · + ckvk = 0.

d. If S = {v1, . . . , vp} is an affinely independent set inR
n and

if p in R
n has a negative barycentric coordinate determined

by S, thenp is not in affS.

e. If v1, v2, v3, a, andb are inR
3 and if a raya + tb for t ≥ 0

intersects the triangle with verticesv1, v2, andv3, then
the barycentric coordinates of the intersection point are all
nonnegative.

10. a. If {v1, . . . vp} is an affinely dependent set inRn, then the
set {ṽ1, . . . , ṽp} in R

n+1 of homogeneous forms may be
linearly independent.

b. If v1, v2, v3, and v4 are in R
3 and if the set

{v2 − v1, v3 − v1, v4 − v1} is linearly independent, then
{v1, . . . , v4} is affinely independent.

c. GivenS = {b1, . . . ,bk} in R
n, eachp in aff S has a unique

representation as an affine combination ofb1, . . . ,bk.

d. When color information is specified at each vertexv1, v2,
v3 of a triangle inR3, then the color may be interpolated at a
pointp in aff {v1, v2, v3} using the barycentric coordinates
of p.

e. If T is a triangle inR
2 and if a pointp is on an edge of

the triangle, then the barycentric coordinates ofp (for this
triangle) are not all positive.

11. Explain why any set of five or more points inR3 must be
affinely dependent.

12. Show that a set{v1, . . . , vp} in R
n is affinely dependent when

p ≥ n + 2.

13. Use only the definition of affine dependence to show that an
indexed set{v1, v2} in R

n is affinely dependent if and only if
v1 = v2.

14. The conditions for affine dependence are stronger than those
for linear dependence, so an affinely dependent set is auto-
matically linearly dependent. Also, a linearly independent set

cannot be affinely dependent and therefore must be affinely
independent. Construct two linearly dependent indexed sets
S1 and S2 in R

2 such thatS1 is affinely dependent andS2

is affinely independent. In each case, the set should contain
either one, two, or three nonzero points.

15. Let v1 =
[ −1

2

]
, v2 =

[
0
4

]
, v3 =

[
2
0

]
, andS = {v1, v2, v3}.

a. Show that the setS is affinely independent.

b. Find the barycentric coordinates ofp1 =
[

2
3

]
, p2 =

[
1
2

]
,

p3 =
[ −2

1

]
, p4 =

[
1

−1

]
, and p5 =

[
1
1

]
, with respect

to S.

c. LetT be the triangle with verticesv1, v2, andv3. When
the sides ofT are extended, the lines divideR2 into seven
regions. See Fig. 8. Note the signs of the barycentric co-
ordinates of the points in each region. For example,p5

is inside the triangleT and all its barycentric coordinates
are positive. Pointp1 has coordinates(−,+,+). Its third
coordinate is positive becausep1 is on thev3 side of the
line throughv1 andv2. Its first coordinate is negative be-
causep1 is opposite thev1 side of the line throughv2 and
v3. Pointp2 is on thev2v3 edge ofT . Its coordinates are
(0,+,+). Without calculating the actual values, determine
the signs of the barycentric coordinates of pointsp6, p7,
andp8 as shown in Fig. 8.

y

x

p1

v1 p2

v2

p3

p4

p5

p6

p7

p8

v3

FIGURE 8



August 16, 2005 10:58 L57-ch08 Sheet number 21 Page number 21 cyan magenta yellow black

8.2 Affine Independence 21

16. Let v1 =
[

0
1

]
, v2 =

[
1
5

]
, v3 =

[
4
3

]
, p1 =

[
3
5

]
, p2 =

[
5
1

]
,

p3 =
[

2
3

]
, p4 =

[ −1
0

]
, p5 =

[
0
4

]
, p6 =

[
1
2

]
, p7 =

[
6
4

]
,

andS = {v1, v2, v3}.
a. Show that the setS is affinely independent.

b. Find the barycentric coordinates ofp1, p2, andp3 with
respect toS.

c. On graph paper, sketch the triangleT with verticesv1, v2,
andv3, extend the sides as in Fig. 5, and plot the pointsp4,
p5, p6, andp7. Without calculating the actual values, de-
termine the signs of the barycentric coordinates of points
p4, p5, p6, andp7.

17. Prove Theorem 6 for an affinely independent set
S = {v1, . . . , vk} in R

n. [Hint: One method is to mimic
the proof of Theorem 7 in Section 4.4.]

18. LetT be a tetrahedron in “standard” position, with three edges
along the three positive coordinate axes inR

3, and suppose
the vertices areae1, be2, ce3, and0, where[ e1 e2 e3 ] = I3.
Find formulas for the barycentric coordinates of an arbitrary
point p in R

3.

In Exercises 19–22,a, b, andc are noncollinear points inR2 and
p is any other point inR2. Let�abc denote the closed triangular
region determined bya,b, andc, and let�pbc be the region de-
termined byp, b, andc. For convenience, assume thata, b, andc
are arranged so that det[ ã b̃ c̃ ] is positive, wherẽa, b̃, andc̃
are the standard homogeneous forms for the points.

19. Show that the area of�abc is det[ ã b̃ c̃ ] /2. [Hint: Con-
sult Sections 3.2 and 3.3, including the Exercises.]

20. Let p be a point on the line througha and b. Show that
det[ ã b̃ p̃ ] = 0.

21. Let p be any point in the interior of�abc, with barycentric
coordinates(r, s, t), so that

[ ã b̃ c̃ ]


 r

s

t


 = p̃

Use Exercise 19 and a fact about determinants (Chapter 3) to
show that

r = (area of�pbc)/ (area of�abc)

s = (area of�apc)/ (area of�abc)

t = (area of�abp)/ (area of�abc)

22. Takeq on the line segment fromb to c and consider the line
throughq anda, which may be written asp = (1 − x)q + xa
for all real x. Show that, for eachx, det[ p̃ b̃ c̃ ] =
x ·det[ ã b̃ c̃ ]. From this and earlier work, conclude that
the parameterx is the first barycentric coordinate ofp. How-
ever, by construction, the parameterx also determines the
relative distance betweenp andq along the segment fromq
to a. (Whenx = 1,p = a.) When this fact is applied to Ex-
ample 5, it shows that the colors at vertexa and the pointq
are smoothly interpolated asp moves along the line between
a andq.

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. From Example 1, the problem is to determine if the points are affinely dependent.
Use the method of Example 2 and subtract one point from the other two. If one of
these two new points is a multiple of the other, the original three points lie on a line.

2. The proof of Theorem 5 essentially points out that an affine dependence relation
among points corresponds to a linear dependence relation among the homogeneous
forms of the points, using thesameweights. So, row reduce:

[ ṽ1 ṽ2 ṽ3 ṽ4 ] =

4 1 5 1

1 0 4 2
1 1 1 1


 ∼


1 1 1 1

4 1 5 1
1 0 4 2




∼

1 0 0 −1

0 1 0 1.25
0 0 1 .75



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View this matrix as the coefficient matrix forAx = 0 with four variables. Then
x4 is free,x1 = x4, x2 = −1.25x4, andx3 = −.75x4. One solution isx1 = x4 = 4,
x2 = −5, andx3 = −3. A linear dependence among the homogeneous forms is
4ṽ1 − 5ṽ2 − 3ṽ3 + 4ṽ4 = 0. So 4v1 − 5v2 − 3v3 + 4v4 = 0.

Another solution method is to translate the problem to the origin by subtractingv1

from the other points, find a linear dependence relation among the translated points,
and then rearrange the terms. The amount of arithmetic involved is about the same
as in the approach shown above.

8.3 CONVEX COMBINATIONS
Section 8.1 considered special linear combinations of the form

c1v1 + c2v2 + · · · + ckvk, wherec1 + c2 + · · · + ck = 1

This section further restricts the weights to be nonnegative.

D E F I N I T I O N A convex combination of pointsv1, v2, . . . , vk in R
n is a linear combination of

the form

c1v1 + c2v2 + · · · + ckvk

such thatc1 + c2 + · · · + ck = 1 andci ≥ 0 for all i. The set of all convex com-
binations of points in a setS is called theconvex hull of S, denoted by convS.

The convex hull of a single pointv1 is just the set{v1}, the same as the affine hull.
In other cases, the convex hull is properly contained in the affine hull. Recall that the
affine hull of distinct pointsv1 andv2 is the line

y = (1 − t)v1 + tv2, with t in R

Because the weights in a convex combination are nonnegative, the points in conv{v1, v2}
may be written as

y = (1 − t)v1 + tv2, with 0 ≤ t ≤ 1

which is theline segment betweenv1 andv2, hereafter denoted byv1v2.
If a setS is affinely independent and ifp ∈ aff S, thenp ∈ convS if and only if the

barycentric coordinates ofp are nonnegative. Example 1 shows a special situation in
whichS is much more than just affinely independent.

EXAMPLE 1 Let v1 =




3
0
6

−3


, v2 =




−6
3
3
0


, v3 =




3
6
0
3


, p1 =




0
3
3
0


, p2 =




−10
5

11
−4


,

andS = {v1, v2, v3}. Note thatS is an orthogonal set. Determine whetherp1 is in
SpanS, aff S, and convS. Then do the same forp2.
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Solution If p1 is at least alinear combination of the points inS, then the weights are
easily found, becauseS is an orthogonal set. LetW be the subspace spanned byS. A
calculation as in Section 6.3 shows that the orthogonal projection ofp1 ontoW is p1

itself:

projW p1 = p1·v1

v1·v1
v1 +

p1·v2

v2·v2
v2 +

p1·v3

v3·v3
v3

= 18

54
v1 +

18

54
v2 +

18

54
v3

= 1

3




3
0
6

−3


 +

1

3




−6
3
3
0


 +

1

3




3
6
0
3


 =




0
3
3
0


 = p1

This shows thatp1 is in SpanS. Also, since the coefficients sum to one,p1 is in aff S.
In fact,p1 is in convS, because the coefficients are also nonnegative.

Forp2, a similar calculation shows that projW p2 �= p2. Since projW p2 is the closest
point in SpanS to p2, the pointp2 is not in SpanS. In particular,p2 cannot be in affS
or convS.

Recall that a setS is affine if it contains all lines determined by pairs of points inS.
When attention is restricted to convex combinations, the appropriate condition involves
line segments rather than lines.

D E F I N I T I O N A setS is convex if for eachp,q ∈ S, the line segmentpq is contained inS.

Intuitively, a setS is convex if every two points in the set can “see” each other
without the line of sight leaving the set. Figure 1 illustrates this idea.

Convex Convex Not convex

FIGURE 1

The next result is analogous to Theorem 2 for affine sets.

T H E O R E M 7 A setS is convex if and only if every convex combination of points ofS lies inS.
That is,S is convex if and only ifS = convS.

PROOF The argument is similar to the proof of Theorem 2. The only difference is
in the induction step. When taking a convex combination ofk + 1 points, consider
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y = c1v1 + · · · + ckvk + ck+1vk+1, wherec1 + · · · + ck+1 = 1 and 0≤ ci ≤ 1 for all i. If
ck+1 = 1, theny = vk+1, which belongs toS, and there is nothing further to prove. If
ck+1 < 1, let t = c1 + · · · + ck. Thent = 1 − ck+1 > 0 and

y = (1 − ck+1)
(c1

t
v1 + · · · +

ck

t
vk

)
+ ck+1vk+1 (1)

By the induction hypothesis, the pointz = (c1/t)v1 + · · · + (ck/t)vk is in S, since the
nonnegative coefficients sum to one. Thus (1) displaysy as a convex combination of
two points inS. By the principle of induction, every convex combination of such points
lies inS. ■

Theorem 9 below provides a more geometric characterization of the convex hull
of a set. It requires a preliminary result on intersections of sets. Recall from Section
4.1 (Exercise 32) that the intersection of two subspaces is itself a subspace. In fact, the
intersection of any collection of subspaces is itself a subspace. A similar result holds for
affine sets and convex sets.

T H E O R E M 8 Let {Sα:α ∈ A} be any collection of convex sets. Then∩α∈ASα is convex. If
{Tβ :β ∈ B} is any collection of affine sets, then∩β∈BTβ is affine.

PROOF If p andq are in∩Sα, thenp andq are in eachSα. Since eachSα is convex,
the line segment betweenp andq is in Sα for all α and hence that segment is contained
in ∩Sα. The proof of the affine case is similar. ■

T H E O R E M 9 For any setS, the convex hull ofS is the intersection of all the convex sets that
containS.

PROOF LetT denote the intersection of all the convex sets containingS. Since convS
is a convex set containingS, it follows thatT ⊂ convS. On the other hand, letC be
any convex set containingS. ThenC contains every convex combination of points
of C (Theorem 7), and hence also contains every convex combination of points of the
subsetS. That is, convS ⊂ C. Since this is true for every convex setC containingS, it
is also true for the intersection of them all. That is, convS ⊂ T . ■

Theorem 9 shows that convS is in a natural sense the “smallest” convex set con-
tainingS. For example, consider a setS that lies inside some large rectangle inR

2, and
imagine stretching a rubber band around the outside ofS. As the rubber band contracts
aroundS, it outlines the boundary of the convex hull ofS. Or to use another analogy,
the convex hull ofS fills in all the holes in the inside ofS and fillsout all the dents in
the boundary ofS.
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EXAMPLE 2

a. The convex hulls of setsS andT in R
2 are shown below.

S conv S T conv T

b. LetS be the set consisting of the standard basis forR
3, S = {e1, e2, e3}. Then convS

is a triangular surface inR3, with verticese1, e2, ande3. See Fig. 2.
e1

0

e2

e3 x2

x3

x1

FIGURE 2
EXAMPLE 3 Let S =

{[
x

y

]
: x ≥ 0 andy = x2

}
. Show that the convex hull ofS is

the union of the origin and

{[
x

y

]
: x > 0 andy ≥ x2

}
. See Fig. 3.

x

y

y = x2

FIGURE 3

Solution Every point in convS must lie on a line segment that connects two points of
S. The dashed line in Fig. 3 indicates that, except for the origin, the positivey-axis is not
in convS, because the origin is the only point ofS on they-axis. It may seem reasonable
that Fig. 3 does show convS, but how can you be sure that the point(10−2,104), for
example, is on a line segment from the origin to a point on the curve inS?

Consider any pointp in the shaded region of Fig. 3, say

p =
[
a

b

]
, with a > 0 andb ≥ a2

The line through0 andp has the equationy = (b/a)t for t real. That line intersectsS
wheret satisfies(b/a)t = t2, that is, whent = b/a. Thus,p is on the line segment from

0 to

[
b/a

b2/a2

]
, which shows that Fig. 3 is correct.

The following theorem is basic in the study of convex sets. It was first proved by
Constantin Caratheodory in 1907. Ifp is in the convex hull ofS, then, by definition,p
must be a convex combination of points ofS. But the definition makes no stipulation
as to how many points ofS are required to make the combination. Caratheodory’s
remarkable theorem says that in ann-dimensional space, the number of points ofS in
the convex combination never has to be more thann + 1.

T H E O R E M 10 (Caratheodory) If S is a nonempty subset ofR
n, then every point in convS can

be expressed as a convex combination ofn + 1 or fewer points ofS.
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PROOF Given p in convS, one may writep = c1v1 + · · · + ckvk, where vi ∈ S,

c1 + · · · + ck = 1, andci ≥ 0, for somek and i = 1, . . . , k. The goal is to show that
such an expression exists forp with k ≤ n + 1.

If k > n + 1, then{v1, . . . , vk} is affinely dependent, by Exercise 12 in Section 8.2.
Thus there exist scalarsd1, . . . , dk, not all zero, such that

k∑
i=1

divi = 0 and
k∑

i=1

di = 0

Consider the two equations

c1v1 + c2v2 + · · · + ckvk = p

and

d1v1 + d2v2 + · · · + dkvk = 0

By subtracting an appropriate multiple of the second equation from the first, we now
eliminate one of thevi terms and obtain a convex combination of fewer thank elements
of S that is equal top.

Since not all of thedi coefficients are zero, we may assume (by reordering subscripts
if necessary) thatdk > 0 and thatck/dk ≤ ci/di for all thosei for which di > 0. For
i = 1, . . . , k, let bi = ci − (ck/dk)di . Thenbk = 0 and

k∑
i=1

bi =
k∑

i=1

ci − ck

dk

k∑
i=1

di = 1 − 0 = 1

Furthermore, eachbi ≥ 0. Indeed, ifdi ≤ 0, thenbi ≥ ci ≥ 0. If di > 0, thenbi=
di(ci/di − ck/dk) ≥ 0. By construction,

k−1∑
i=1

bivi =
k∑

i=1

bivi =
k∑

i=1

(
ci − ck

dk
di

)
vi

=
k∑

i=1

civi − ck

dk

k∑
i=1

divi =
k∑

i=1

civi = p

Thusp is now a convex combination ofk − 1 of the pointsv1, . . . , vk. This process may
be repeated untilp is expressed as a convex combination of at mostn + 1 of the points
of S. ■

The following example illustrates the calculations in the proof above.

EXAMPLE 4 Let v1 =
[

1
0

]
, v2 =

[
2
3

]
, v3 =

[
5
4

]
, v4 =

[
3
0

]
, p =

[
10
3
5
2

]
, and

S = {v1, v2, v3, v4}. Then

1
4v1 + 1

6v2 + 1
2v3 + 1

12v4 = p (2)
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Use the procedure in the proof of Caratheodory’s Theorem to expressp as a convex
combination of three points ofS.

Solution The setS is affinely dependent. Use the technique of Section 8.2 to obtain
an affine dependence relation

−5v1 + 4v2 − 3v3 + 4v4 = 0 (3)

Next, choose the pointsv2 andv4 in (3), whose coefficients are positive. For each point,
compute the ratio of the quotients in equations (2) and (3). The ratio forv2 is 1

6 ÷ 4 = 1
24,

and that forv4 is 1
12 ÷ 4 = 1

48. The ratio forv4 is smaller, so subtract148 times equation
(3) from equation (2) to eliminatev4:(

1
4 + 5

48

)
v1 +

(
1
6 − 4

48

)
v2 +

(
1
2 + 3

48

)
v3 +

(
1
12 − 4

48

)
v4 = p

17
48v1 + 4

48v2 + 27
48v3 = p

This result cannot, in general, be improved by decreasing the required number of
points. Indeed, given any three non-collinear points inR

2, the centroid of the triangle
formed by them is in the convex hull of all three, but is not in the convex hull of any two.

P R A C T I C E P R O B L E M S

1. Let v1 =

 6

2
2


, v2 =


 7

1
5


, v3 =


 −2

4
−1


, p1 =


 1

3
1


, and p2 =


 3

2
1


, and let

S = {v1, v2, v3}. Determine whetherp1 andp2 are in convS.

2. LetS be the set of points on the curvey = 1/x for x > 0. Explain geometrically why
convS consists of all points on and above the curveS.

8.3 EXERCISES

1. In R
2, let S =

{[
0
y

]
: 0 ≤ y < 1

} ⋃ {[
2
0

]}
. Describe (or

sketch) the convex hull ofS.

2. Describe the convex hull of the setS of points

[
x

y

]
in R

2 that

satisfy the given conditions. Justify your answers. (Show that
an arbitrary pointp in S belongs to convS.)

a. y = 1/x andx ≥ 1/2

b. y = sinx

c. y = x1/2 andx ≥ 0

3. Consider the points in Exercise 7 of Section 8.1. Which ofp1,
p2, andp3 are in convS?

4. Consider the points in Exercise 6 of Section 8.1. Which ofp1,
p2, andp3 are in convS?

5. Let v1 =

 −1

−3
4


, v2 =


 0

−3
1


, v3 =


 1

−1
4


, v4 =


 1

1
−2


,

p1 =

 1

−1
2


, p2 =


 0

−2
2


, andS = {v1, v2, v3, v4}. Deter-

mine whetherp1 andp2 are in convS.
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6. Let v1 =




2
0

−1
2


, v2 =




0
−2

2
1


, v3 =




−2
1
0
2


, p1 =




−1
2

− 3
2
5
2


,

p2 =




− 1
2

0
1
4
7
4


, p3 =




6
−4

1
−1


, andp4 =




−1
−2

0
4


, and letS be

the orthogonal set{v1, v2, v3}. Determine whether eachpi is
in SpanS, aff S, or convS.

a. p1 b. p2 c. p3 d. p4

Exercises 7 and 8 use the terminology from Section 8.2.

7. a. Let T =
{[

2
0

]
,

[
0
5

]
,

[ −1
1

]}
and let p1 =

[
2
1

]
,

p2 =
[

1
1

]
, p3 =

[
1
1
3

]
, andp4 =

[
1
0

]
. Find the barycen-

tric coordinates ofp1, p2, p3, andp4 with respect toT .

b. Use your answers in part (a) to determine whether each of
p1, . . . ,p4 in part (a) is inside, outside, or on the edge of
convT , a triangle.

8. Let S = {v1, v2, v3, v4} be an affinely independent set. Con-
sider the pointsp1, . . . ,p5 whose barycentric coordinates
with respect toS are given by(2,0,0,−1),

(
0, 1

2,
1
4,

1
4

)
,(

1
2,0, 3

2,−1
)
,

(
1
3,

1
4,

1
4,

1
6

)
, and

(
1
3,0, 2

3,0
)
, respectively.

Determine whether each ofp1, . . . ,p5 is inside, outside, or
on the surface of convS, a tetrahedron. Are any of these
points on an edge of convS?

9. Let v1 =
[

1
0

]
, v2 =

[
1
2

]
, v3 =

[
4
2

]
, v4 =

[
4
0

]
, and

p =
[

2
1

]
. Confirm that

p = 1
3v1 + 1

3v2 + 1
6v3 + 1

6v4 and v1 − v2 + v3 − v4 = 0

Use the procedure in the proof of Caratheodory’s Theorem to
expressp as a convex combination of three of thevi ’s. Do
this in twoways.

10. Repeat Exercise 9 for pointsv1 =
[ −1

0

]
, v2 =

[
0
3

]
,

v3 =
[

3
1

]
, v4 =

[
1

−1

]
, andp =

[
1
2

]
. Confirm that

p = 1
121v1 + 72

121v2 + 37
121v3 + 1

11v4

and

10v1 − 6v2 + 7v3 − 11v4 = 0

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11. a. If y = c1v1 + c2v2 + c3v3 andc1 + c2 + c3 = 1, theny is a
convex combination ofv1, v2, andv3.

b. If S is a nonempty set, then convS contains some points
that are not inS.

c. If S andT are convex sets, thenS ∪ T is also convex.
12. a. A set is convex ifx, y ∈ S implies that the line segment

betweenx andy is contained inS.

b. If S andT are convex sets, thenS ∩ T is also convex.

c. If S is a nonempty subset ofR
5 andy ∈ convS, then there

exist distinct pointsv1, . . . , v6 in S such thaty is a convex
combination ofv1, . . . , v6.

Exercises 13–16 use the following definition:
A point y is called apositive combination of the points
v1, . . . , vm if y = c1v1 + · · · + cmvm, where allci ≥ 0. The
set of all positive combinations of points of a setS is called
thepositive hull of S and is denoted by posS.

13. In R
2, find posS whenS =

{[ −1
1

]
,

[
1
1

]}
.

14. Observe that in Exercise 13,(posS) ∩ (aff S)= convS.

a. Letv1 =
[

0
1

]
, v2 =

[
1
1

]
, v3 =

[
1
0

]
, andp =

[
3
2

]
. Ver-

ify that p ∈ pos{v1, v2, v3} and p ∈ aff {v1, v2, v3}, but
p �∈ conv{v1, v2, v3}. This shows that the result in Ex-
ercise 13 is not true in general.

b. What special property does the setS in Exercise 13 have
so that(posS) ∩ (aff S)= convS?

15. Prove that posS = pos(convS) for any setS.

16. Let S be a convex set. Prove thatx ∈ posS if and only if
x = λs for someλ ≥ 0 ands ∈ S.

17. Let S be a convex subset ofRn and suppose
f : R

n → R
m is a linear transformation. Prove that the set

f (S)= {f (x) : x ∈ S} is a convex subset ofRm.

18. Letf : R
n → R

m be a linear transformation and letT be a con-
vex subset ofRm. Prove that the setS = {x ∈ R

n : f (x) ∈ T }
is a convex subset ofRn.

In Exercises 19–22, prove the given statement about subsetsA

andB of R
n. A proof for an exercise may use results of earlier

exercises.
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19. If A ⊂ B andB is convex, then convA ⊂ B.

20. If A ⊂ B, then convA ⊂ convB.

21. [(convA) ∪ (convB)] ⊂ conv(A ∪ B)

22. conv(A ∩ B) ⊂ [(convA) ∩ (convB)]
23. Find an example inR2 to show that equality need not hold in

the statement of Exercise 21.

24. Find an example inR2 to show that equality need not hold in
the statement of Exercise 22.

25. a. LetF andG be subspaces ofRn. Prove thatF ∪G is
convex if and only ifF ⊂ G orG ⊂ F .

b. Show by an example that the union of two convex sets
may be convex without either of the sets being a subset of
the other.

26. Let p0, p1, and p2 be points in R
n, and define

f0(t)= (1 − t)p0 + tp1, f1(t)= (1 − t)p1 + tp2, and g(t)=
(1 − t)f0(t) + tf1(t) for 0 ≤ t ≤ 1.
a. For the points shown in the figure, draw a picture that

showsg
(

1
4

)
, g

(
1
2

)
, andg

(
3
4

)
.

p1 p2

p0

b. The graph ofg(t) is called aquadratic Bézier curve, and it
is used in some computer graphics designs. The pointsp0,
p1, andp2 are called thecontrol pointsfor the curve. Com-
pute a formula forg(t) that involves onlyp0, p1, andp2.
Then show thatg(t) is in conv{p0,p1,p2} for 0 ≤ t ≤ 1.

27. Given control pointsp0, p1, p2, and p3 in R
n, let g1(t)

for 0 ≤ t ≤ 1 be the quadratic Bézier curve from Exercise
26 determined byp0, p1, and p2, and let g2(t) be de-
fined similarly for p1, p2, and p3. For 0≤ t ≤ 1, define
h(t)= (1 − t)g1(t) + tg2(t). Show that the graph ofh(t) lies
in the convex hull of the four control points. This curve is
called acubic Bézier curve, and its definition here is one step
of the de Casteljau algorithm for constructing Bézier curves.
A Bézier curve of degreek is determined byk + 1 control
points, and its graph lies in the convex hull of these control
points.

28. Given p0, . . . ,pk+1 in R
n, let S0 = conv{p0, . . . ,pk} and

S1 = conv{p1, . . . ,pk+1}. For 0≤ t ≤ 1, let g1(t) and
g2(t) be curves that lie inS0 and S1, respectively, and let
h(t)= (1 − t)g1(t) + tg2(t).

Show thath(t) lies in conv{p0,p1, . . . ,pk+1}. This fact
provides the induction step in the proof that fork ≥ 2, a Bézier
curve of degreek lies in the convex hull of its control points.

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The pointsv1, v2, andv3 are not orthogonal, so compute

v2 − v1 =

 1

−1
3


, v3 − v1 =


 −8

2
−3


,p1 − v1 =


 −5

1
−1


,p2 − v1 =


 −3

0
−1




Augment the matrix[ v2 − v1 v3 − v1 ] with both p1 − v1 andp2 − v1, and row
reduce: 

 1 −8 −5 −3
−1 2 1 0

3 −3 −1 −1


 ∼




1 0 1
3 1

0 1 2
3

1
2

0 0 0 − 5
2




The third column shows thatp1 − v1 = 1
3(v2 − v1) + 2

3(v3 − v1), which leads to
p1 = 0v1 + 1

3v2 + 2
3v3. Thusp1 is in convS. In fact,p1 is in conv{v2, v3}.

The last column of the matrix shows thatp2 − v1 is not a linear combination of
v2 − v1 andv3 − v1. Thusp2 is not an affine combination ofv1, v2, andv3, sop2

cannot possibly be in convS.
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An alternative method of solution is to row reduce the augmented matrix of
homogeneous forms:

[ ṽ1 ṽ2 ṽ3 p̃1 p̃2 ] ∼




1 0 0 0 0
0 1 0 1

3 0

0 0 1 2
3 0

0 0 0 0 1




2. If p is a point aboveS, then the line throughp with slope−1 will intersectS at two
points before it reaches the positivex- andy-axes.

8.4 HYPERPLANES
Hyperplanes play a special role in the geometry ofR

n because they divide the space into
two disjoint pieces, just as a plane separatesR

3 into two parts and a line cuts throughR
2.

The key to working with hyperplanes is to use simpleimplicit descriptions, rather than
the explicit or parametric representations of lines and planes used in the earlier work
with affine sets.1

An implicit equation of a line inR2 has the formax + by = d. An implicit equation
of a plane inR3 has the formax + by + cz = d. Both equations describe the line or plane
as the set of all points at which a linear expression, or linear functional, such asax + by

has a fixed value,d.

D E F I N I T I O N A linear functional on R
n is a linear transformationf from R

n into R. For each
scalard in R, the symbol[f : d] denotes the set of allx in R

n at which the value
of f is d. That is,

[f : d] is the set {x ∈ R
n: f (x)= d}

Thezero functional is the transformation such thatf (x)= 0 for all x in R
n. All

other linear functionals onRn are said to benonzero.

EXAMPLE 1 In R
2, the linex − 4y = 13 is a hyperplane inR2, and it is the set of

points at which the linear functionalf (x, y)= x − 4y has the value 13. That is, the line
is the set[f :13].

EXAMPLE 2 In R
3, the plane 5x − 2y + 3z = 21 is a hyperplane, the set of points at

which the linear functionalg(x, y, z)= 5x − 2y + 3z has the value 21. This hyperplane
is the set[g:21].

1Parametric representations were introduced in Section 1.5.
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If f is a linear functional onRn, then the standard matrix of this linear transformation
f is a 1×n matrixA, sayA= [ a1 a2 · · · an ]. So

[f : 0] is the same as {x ∈ R
n:Ax = 0} = NulA (1)

If f is a nonzero functional, then rankA= 1, and dim NulA= n− 1, by the Rank
Theorem.2 Thus, the subspace[f : 0] has dimensionn− 1 and so is a hyperplane. Also,
if d is any number inR, then

[f : d] is the same as {x ∈ R
n:Ax = d} (2)

Recall from Theorem 6 in Section 1.5 that the set of solutions ofAx = b is obtained
by translating the solution set ofAx = 0, using any particular solutionp of Ax = b.
WhenA is the standard matrix of the transformationf , this theorem says that

[f : d] = [f : 0] + p for anyp in [f : d] (3)

Thus the sets[f : d] are hyperplanes parallel to[f : 0]. See Fig. 1.

p

[ f :d ]

[ f :0]

FIGURE 1 Parallel hyperplanes,
with f (p)= d.

WhenA is a 1×nmatrix, the equationAx = d may be written with an inner product
n·x, usingn in R

n with the same entries asA. Thus, from (2),

[f : d] is the same as {x ∈ R
n: n·x = d} (4)

Then[f : 0] = {x ∈ R
n: n·x = 0}, which shows that[f : 0] is the orthogonal complement

of the subspace spanned byn. In the terminology of calculus and geometry forR
3, n

is called anormal vector to[f : 0]. (A “normal” vector in this sense need not have unit
length.) Also,n is said to benormal to each parallel hyperplane[f : d], even though
n·x is not zero whend �= 0.

Another name for[f : d] is a level setof f , andn is sometimes called thegradient
of f whenf (x)= n·x for eachx.

2See Theorem 14 in Section 2.9 or Theorem 14 in Section 4.6.
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EXAMPLE 3 Let n =
[

3
4

]
and v =

[
1

−6

]
, and letH = {x : n·x = 12}, so H =

[f : 12], wheref (x, y)= 3x + 4y. ThusH is the line 3x + 4y = 12. Find an implicit
description of the parallel hyperplane (line)H1 =H + v.

Solution First, find a pointp in H1. To do this, find a point inH and addv to it.

For instance,

[
0
3

]
is in H , so p =

[
1

−6

]
+

[
0
3

]
=

[
1

−3

]
is in H1. Now, compute

n·p = −9. This shows thatH1 = [f : −9]. See Fig. 2, which also shows the subspace
H0 = {x : n·x = 0}.

n

y

4

H = [ f : 12]

H0 = [ f : 0]

H1 = [ f : –9]

–4

4

–4

x

v

v

v

FIGURE 2

The next three examples show connections between implicit and explicit descrip-
tions of hyperplanes. Example 4 begins with an implicit form.

EXAMPLE 4 In R
2, write the linex − 4y = 13 in parametric vector form.

Solution This amounts to solving a nonhomogeneous equationAx = b, whereA =
[ 1 −4] andb is the number 13 inR. Write x = 13+ 4y, wherey is a free variable.
In parametric form, the solution is

x =
[
x

y

]
=

[
13+ 4y

y

]
=

[
13
0

]
+ y

[
4
1

]
= p + yq, y ∈ R

Converting an explicit description of a line into implicit form is more involved. The
basic idea is to construct[f : 0] and then findd for [f : d].

EXAMPLE 5 Let v1 =
[

1
2

]
andv2 =

[
6
0

]
, and letL1 be the line throughv1 andv2.

Find a linear functionalf and a constantd such thatL1 = [f : d].
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Solution The lineL1 is parallel to the translated lineL0 throughv2 − v1 and the origin.
The defining equation forL0 has the form

[ a b ]

[
x

y

]
= 0 or n·x = 0, where n =

[
a

b

]
(5)

Sincen is orthogonal to the subspaceL0, which containsv2 − v1, compute

v2 − v1 =
[

6
0

]
−

[
1
2

]
=

[
5

−2

]

and solve

[ a b ]

[
5

−2

]
= 0

By inspection, a solution is[ a b ] = [ 2 5]. Let f (x, y)= 2x + 5y. From (5),
L0 = [f : 0], andL1 = [f : d] for somed. Sincev1 is on lineL1, d = f (v1)= 2(1) +
5(2)= 12. Thus, the equation forL1 is 2x + 5y = 12. As a check, note thatf (v2) =
f (6,0)= 2(6) + 5(0)= 12, sov2 is onL1, too.

EXAMPLE 6 Let v1 =

 1

1
1


, v2 =


 2

−1
4


, andv3 =


 3

1
2


. Find an implicit descrip-

tion [f : d] of the planeH1 that passes throughv1, v2, andv3.

Solution H1 is parallel to a planeH0 through the origin that contains the translated
points

v2 − v1 =

 1

−2
3


 and v3 − v1 =


 2

0
1




Since these two points are linearly independent,H0 = Span{v2 − v1, v3 − v1}. Let

n =

 a

b

c


 be the normal toH0. Thenv2 − v1 andv3 − v1 are each orthogonal ton. That

is, (v2 − v1)·n = 0 and(v3 − v1)·n = 0. These two equations form a system whose
augmented matrix can be row reduced:

[ 1 −2 3]


 a

b

c


 = 0, [ 2 0 1]


 a

b

c


 = 0,

[
1 −2 3 0
2 0 1 0

]

Row operations yielda = (–2
4)c, b = ( 5

4)c, with c free. Setc = 4, for instance. Then

n =

 −2

5
4


 andH0 = [f : 0], wheref (x)= −2x1 + 5x2 + 4x3.

The parallel hyperplaneH1 is [f : d]. To find d, use the fact thatv1 is in H1,
and computed = f (v1)= f (1,1,1)= −2(1) + 5(1) + 4(1)= 7. As a check, compute
f (v2)= f (2,−1,4)= −2(2) + 5(−1) + 4(4)= 16− 9 = 7.
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The procedure in Example 6 generalizes to higher dimensions. However, for the
special case ofR3, one can also use thecross product formula to computen, using a
symbolic determinant as a mnemonic device:

n = (v2 − v1)×(v3 − v1)

=
∣∣∣∣∣∣

1 2 i
−2 0 j

3 1 k

∣∣∣∣∣∣ =
∣∣∣∣ −2 0

3 1

∣∣∣∣ i −
∣∣∣∣ 1 2
3 1

∣∣∣∣ j +

∣∣∣∣ 1 2
−2 0

∣∣∣∣ k

= −2i + 5j + 4k =

 −2

5
4




If only the formula forf is needed, the cross product calculation may be written as
an ordinary determinant:

f (x1, x2, x3) =
∣∣∣∣∣∣

1 2 x1

−2 0 x2

3 1 x3

∣∣∣∣∣∣ =
∣∣∣∣ −2 0

3 1

∣∣∣∣ x1 −
∣∣∣∣ 1 2
3 1

∣∣∣∣ x2 +

∣∣∣∣ 1 2
−2 0

∣∣∣∣ x3

= −2x1 + 5x2 + 4x3

So far, every hyperplane examined has been described as[f : d] for some linear
functionalf and somed in R, or equivalently as{x ∈ R

n: n·x = d} for somen in R
n.

The following theorem shows thateveryhyperplane has these equivalent descriptions.

T H E O R E M 11 AsubsetH of R
n is a hyperplane if and only ifH = [f : d] for some nonzero linear

functionalf and some scalard in R. Thus, ifH is a hyperplane, there exist a
nonzero vectorn and a real numberd such thatH = {x : n·x = d}.

PROOF Suppose thatH is a hyperplane, takep ∈ H , and letH0 =H − p. ThenH0

is an(n− 1)-dimensional subspace. Next, take any pointy that is not inH0. By the
Orthogonal Decomposition Theorem in Section 6.3,

y = y1 + n

wherey1 is a vector inH0 andn is orthogonal to every vector inH0. The functionf
defined by

f (x)= n·x for x ∈ R
n

is a linear functional, by properties of the inner product. Now,[f : 0] is a hyperplane
that containsH0, by construction ofn. It follows that

H0 = [f : 0]
[Argument: H0 contains a basisS of n− 1 vectors, and sinceS is in the (n− 1)-
dimensional subspace[f : 0], S must also be a basis for[f : 0], by the Basis Theorem.]
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Finally, letd = f (p)= n·p. Then, as in (3) shown earlier,

[f : d] = [f : 0] + p =H0 + p =H

The converse statement that[f : d] is a hyperplane follows from (1) and (3). ■

Many important applications of hyperplanes depend on the possibility of “separat-
ing” two sets by a hyperplane. Intuitively, this means that one of the sets is on one side
of the hyperplane and the other set is on the other side. The following terminology and
notation will help to make this idea more precise.

TOPOLOGY IN R
n: TERMS AND FACTS

For any pointp in R
n and any realδ > 0, theopen ball B(p, δ) with centerp and

radiusδ is given by

B(p, δ)= {x : ‖x − p‖ < δ}
Given a setS, a pointp is aninterior point of S if there exists aδ > 0 such that
B(p, δ) ⊂ S. If every open ball centered atp intersects bothS and the complement
of S, thenp is called aboundary point of S. A set isopen if it contains none of
its boundary points. (This is equivalent to saying that all of its points are interior
points.) A set isclosed if it contains all of its boundary points. (IfS contains some
but not all of its boundary points, thenS is neither open nor closed.) A setS is
bounded if there exists aδ > 0 such thatS ⊂ B(0, δ). A set iscompact if it is
closed and bounded.

Theorem: The convex hull of an open set is open, and the convex hull of a
compact set is compact. (The convex hull of a closed set need not be closed. See
Exercise 17.)

EXAMPLE 7 LetS = conv

{[ −2
2

]
,

[ −2
−2

]
,

[
2

−2

]
,

[
2
2

]}
, p1 =

[ −1
0

]
, andp2 =[

2
1

]
, as shown in Fig. 3. Thenp1 is an interior point sinceB

(
p, 3

4

) ⊂ S. The point

p2 is a boundary point since every open ball centered atp2 intersects bothS and the
complement ofS. The setS is closed since it contains all its boundary points. The set
S is bounded sinceS ⊂ B(0,3). ThusS is also compact.

x

S

B(0, 3)

y

p1

p2

FIGURE 3
The setS is closed and bounded.

Notation: If f is a linear functional, thenf (A) ≤ d meansf (x) ≤ d for each
x ∈ A. Corresponding notations will be used when the inequalities are reversed or when
they are strict.
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D E F I N I T I O N The hyperplaneH = [f : d] separates two setsA andB if one of the following
holds:

(i) f (A) ≤ d andf (B) ≥ d, or

(ii) f (A) ≥ d andf (B) ≤ d.

If in the conditions above all the weak inequalities are replaced by strict inequali-
ties, thenH is said tostrictly separate A andB.

Notice that strict separation requires that the two sets be disjoint, while mere sep-
aration does not. Indeed, if two circles in the plane are externally tangent, then their
common tangent line separates them (but does not separate them strictly).

Although it is necessary that two sets be disjoint in order to strictly separate them,
this condition is not sufficient, even for closed convex sets. Indeed, inR

2, let

A=
{[

x

y

]
: x ≥ 1

2
and

1

x
≤ y ≤ 2

}
and B =

{[
x

y

]
: x ≥ 0 andy = 0

}

ThenA andB are disjoint closed convex sets, but they cannot be strictly separated
by a hyperplane (line inR2). See Fig. 4. Thus the problem of separating (or strictly
separating) two sets by a hyperplane is more complex than it might at first appear.

2

2 4

y

x

FIGURE 4 Disjoint closed convex sets.

There are many interesting conditions on the setsA andB that imply the existence
of a separating hyperplane, but the following two theorems are sufficient for this section.
The proof of the first theorem requires quite a bit of preliminary material,3 but the second
theorem follows easily from the first.

T H E O R E M 12 SupposeA andB are nonempty convex sets such thatA is compact andB is
closed. Then there exists a hyperplaneH that strictly separatesA andB if and
only if A ∩ B = ∅ .

3A proof of Theorem 12 is given in Steven R. Lay,Convex Sets and Their Applications(New York: John
Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), pp. 34–39.
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T H E O R E M 13 SupposeA andB are nonempty compact sets. Then there exists a hyperplane that
strictly separatesA andB if and only if (convA) ∩ (convB)= ∅ .

PROOF Suppose that(convA) ∩ (convB)= ∅ . Since the convex hull of a compact
set is compact, Theorem 12 ensures that there is a hyperplaneH that strictly separates
convA and convB. Clearly,H also strictly separates the smaller setsA andB.

Conversely, suppose the hyperplaneH = [f : d] strictly separatesA andB. Without
loss of generality, assume thatf (A) < d andf (B) > d. Let x = c1x1 + · · · + ckxk be
any convex combination of elements ofA. Then

f (x)= c1f (x1) + · · · + ckf (xk) < c1d + · · · + ckd = d

sincec1 + · · · + ck = 1. Thusf (convA) < d. Likewise,f (convB) > d, soH = [f : d]
strictly separates convA and convB. By Theorem 12, convA and convB must be
disjoint. ■

EXAMPLE 8 Let a1 =

 2

1
1


, a2 =


 −3

2
1


, a3 =


 3

4
0


, b1 =


 1

0
2


, andb2 =


 2

−1
5


,

and letA= {a1, a2, a3} andB = {b1,b2}. Show that the hyperplaneH = [f : 5], where
f (x1, x2, x3)= 2x1 − 3x2 + x3, does not separateA andB. Is there a hyperplane parallel
toH that does separateA andB? Do the convex hulls ofA andB intersect?

Solution Evaluate the linear functionalf at each of the points inA andB:

f (a1)= 2, f (a2)= −11, f (a3)= −6, f (b1)= 4, and f (b2)= 12

Sincef (b1)= 4 is less than 5 andf (b2)= 12 is greater than 5, points ofB lie on both
sides ofH = [f : 5] and soH does not separateA andB.

Sincef (A) < 3 andf (B) > 3, the parallel hyperplane[f : 3] strictly separatesA
andB. By Theorem 13,(convA) ∩ (convB)= ∅ .

Caution: If there were no hyperplane parallel toH that strictly separatedA andB,
this wouldnot necessarily imply that their convex hulls intersect. It might be that some
other hyperplane not parallel toH would strictly separate them.

P R A C T I C E P R O B L E M

Let p1 =

 1

0
2


, p2 =


 −1

2
1


, n1 =


 1

1
−2


, n2 =


 −2

1
3


, let H1 be the hyperplane

(plane) inR
3 passing through the pointp1 and having normal vectorn1, and letH2 be

the hyperplane passing through the pointp2 and having normal vectorn2. Describe
H1 ∩H2.
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8.4 EXERCISES

1. Let L be the line inR
2 through the points

[ −1
4

]
and

[
3
1

]
.

Find a linear functionalf and a real numberd such that
L= [f : d].

2. Let L be the line inR
2 through the points

[
1
4

]
and

[ −2
−1

]
.

Find a linear functionalf and a real numberd such that
L= [f : d].

In Exercises 3–6, letH be the hyperplane through the listed points.
(a) Find a normal vectorn to the hyperplane. (b) Find a linear func-
tionalf and a real numberd such thatH = [f : d].

3.


1

1
3


 ,


2

4
1


 ,


−1

−2
5


 4.


 1

−2
1


 ,


 4

−2
3


 ,


 7

−4
4




5.




1
0
1
0


 ,




2
3
1
0


 ,




1
2
2
0


 ,




1
1
1
1




6.




1
2
0
0


 ,




2
2

−1
−3


 ,




1
3
2
7


 ,




3
2

−1
−1




7. Let p =




1
−3

1
2


, n =




2
1
5

−1


, v1 =




0
1
1
1


, v2 =




−2
0
1
3


, and

v3 =




1
4
0
4


, and letH be the hyperplane inR4 with normaln

and passing throughp. Which of the pointsv1, v2, andv3 are
on the same side ofH as the origin, and which are not?

8. Let a1 =

 2

−1
5


, a2 =


 3

1
3


, a3 =


 −1

6
0


, b1 =


 0

5
−1


,

b2 =

 1

−3
−2


, b3 =


 2

2
1


, and n =


 3

1
−2


, and let

A= {a1, a2, a3} andB = {b1,b2,b3}. Find a hyperplaneH
with normaln that separatesA andB. Is there a hyperplane
parallel toH that strictly separatesA andB?

9. Let p1 =




2
−3

1
2


, p2 =




1
2

−1
3


, n1 =




1
2
4
2


, andn2 =




2
3
1
5


,

letH1 be the hyperplane inR4 throughp1 with normaln1, and
let H2 be the hyperplane throughp2 with normaln2. Find a
point p in H1 ∩H2 and two linearly independent vectorsv1

andv2 that span a subspace parallel to the 2-dimensional flat
H1 ∩H2.

10. Let F1 andF2 be 4-dimensional flats inR6, and suppose that
F1 ∩ F2 �= ∅ . What are the possible dimensions ofF1 ∩ F2?

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11. a. A linear transformation fromR to R
n is called a linear

functional.

b. If f is a linear functional defined onRn, then there exists
a real numberk such thatf (x)= kx for all x in R

n.

c. If a hyperplane strictly separates setsA and B, then
A ∩ B = ∅ .

d. If A andB are closed convex sets andA ∩ B = ∅ , then
there exists a hyperplane that strictly separatesA andB.

12. a. If d is a real number andf is a nonzero linear functional
defined onRn, then[f : d] is a hyperplane inRn.

b. Given any vectorn and any real numberd, the set
{x : n·x = d} is a hyperplane.

c. If A andB are nonempty disjoint sets such thatA is com-
pact andB is closed, then there exists a hyperplane that
strictly separatesA andB.

d. If there exists a hyperplaneH such thatH does not strictly
separate two setsAandB, then(convA) ∩ (convB) �= ∅ .

13. Prove that the open ballB(p, δ)= {x : ‖x − p‖ < δ} is a con-
vex set.

14. Prove that the convex hull of a bounded set is bounded.

15. Let p =
[

4
1

]
. Find a hyperplane[f : d] that strictly sepa-

ratesB(0,3) andB(p,1). [Hint: After finding f , show that
the pointv = (1 − .75)0 + .75p is neither inB(0,3) nor in
B(p,1).]

16. Let q =
[

2
3

]
and p =

[
6
1

]
. Find a hyperplane[f : d] that

strictly separatesB(q,3) andB(p,1).
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17. Give an example of a closed subsetS of R
2 such that convS

is not closed.

18. Give an example of a compact setA and a closed setB in R
2

such that(convA) ∩ (convB)= ∅ but A andB cannot be
strictly separated by a hyperplane.

Exercises 19–30 use the following notations: LetS be ann-
dimensional subset ofRn. Denote the set of all interior points
of S by intS, and the set of all boundary points ofS by bdS. Also,
define theclosure of S, denoted clS, by clS = S ∪ bdS. For any
λ ∈ R, let λS = {λs : s ∈ S}. Prove the following. You may use
the fact that ifS is ann-dimensional convex subset ofR

n, then
int S �= ∅ . You may also use the results in the earlier exercises
in the proofs of the later exercises. (It may be helpful to draw a
diagram in doing the proofs, but the proof needs to be more than
just a diagram.)

19. Let p ∈ R
n and letδ > 0.

a. If λ > 0, thenλB(p, δ)= B(λp, λδ).

b. If λ < 0, thenλB(p, δ)= B(λp, |λ|δ).
20. A point p is in cl S if and only if, for everyδ > 0, the open

ballB(p, δ) contains at least one point ofS.

21. cl (cl S) = cl S

22. If x ∈ int S andy ∈ S, then for everyλ such that 0< λ < 1,
the pointz = λx + (1 − λ)y ∈ int S.

23. If x ∈ int S andy ∈ cl S, then for everyλ such that 0< λ < 1,
the pointz = λx + (1 − λ)y ∈ int S.

24. If S is convex, then intS is convex.

25. If S is convex, then clS is convex.

26. a. If S is convex, then cl (intS) = cl S.

b. Find an example to show that part (a) may not hold ifS is
not convex.

27. a. If S is convex, then int (clS) = int S.

b. Find an example to show that part (a) may not hold ifS is
not convex.

28. a. If S is convex, then bd (clS) = bdS.

b. Find an example to show that part (a) may not hold ifS is
not convex.

29. If S is convex, then bdS may be a convex set.

30. If S is convex, then bdS may be a non-convex set.

S O L U T I O N T O P R A C T I C E P R O B L E M

First, computen1· p1 = −3 andn2· p2 = 7. The hyperplaneH1 is the solution set of
the equationx1 + x2 − 2x3 = −3, andH2 is the solution set of the equation−2x1 + x2 +
3x3 = 7. Next, solve this system of equations by row reduction:[

1 1 −2 −3
−2 1 3 7

]
∼

[
1 0 − 5

3 − 10
3

0 1 − 1
3

1
3

]

Thusx1 = − 10
3 + 5

3x3, x2 = 1
3 + 1

3x3, x3 = x3. Let p =




− 10
3
1
3

0


 andv =




5
3
1
3

1


. The

general solution can be written asx = p + x3v. This is the line throughp in the direction
of v. Note thatv is orthogonal to bothn1 andn2.

8.5 POLYTOPES
This section studies geometric properties of an important class of compact convex sets
called polytopes. These sets arise in all sorts of applications, including game theory
(Section 9.1), linear programming (Sections 9.2 to 9.4), and more general optimization
problems, such as the design of feedback controls for engineering systems.
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A polytope inR
n is the convex hull of a finite set of points. InR

2, a polytope is simply
a polygon. InR3, a polytope is called a polyhedron. Important features of a polyhedron
are its faces, edges, and vertices. For example, the cube has 6 square faces, 12 edges, and
8 vertices. The following definitions provide terminology for higher dimensions as well
asR

2 andR
3. Recall that the dimension of a set inR

n is the dimension of the smallest
flat that contains it. Also, note that a polytope is a special type of compact convex set,
because a finite set inRn is compact and the convex hull of this set is compact, by the
theorem in the topology facts box in Section 8.4.

D E F I N I T I O N Let S be a compact convex subset ofR
n. A nonempty subsetF of S is called

a (proper)face of S if F �= S and there exists a hyperplaneH = [f : d] such that
F = S ∩H and eitherf (S) ≤ d or f (S) ≥ d. The hyperplaneH is called a
supporting hyperplane toS. If the dimension ofF is k, thenF is called ak-face
of S.

If P is a polytope of dimensionk, thenP is called ak-polytope. A0-face ofP
is called avertex (plural: vertices), a 1-face is anedge, and a(k − 1)-dimensional
face is afacet of S.

EXAMPLE 1 SupposeS is a cube inR3. When a planeH is translated throughR3 until
it just touches (supports) the cube but does not cut through the interior of the cube, there
are three possibilities forH ∩ S, depending on the orientation ofH . (See Figure 1.)

H ∩ S may be a 2-dimensional square face (facet) of the cube.

H ∩ S may be a 1-dimensional edge of the cube.

H ∩ S may be a 0-dimensional vertex of the cube.

H � S is 2-dimensional. H � S is 1-dimensional. H � S is 0-dimensional.

S S S

H

H
H

FIGURE 1

Most applications of polytopes involve the vertices in some way, because they have
a special property that is identified in the following definition.
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D E F I N I T I O N Let S be a convex set. A pointp in S is called anextreme point of S if p is not
in the interior of any line segment that lies inS. More precisely, ifx, y ∈ S and
p ∈ xy, thenp = x or p = y. The set of all extreme points ofS is called theprofile
of S.

A vertex of any compact convex setS is automatically an extreme point ofS. This
fact is proved during the proof of Theorem 14, below. In working with a polytope, say
P = conv{v1, . . . , vk} for v1, . . . , vk in R

n, it is usually helpful to know thatv1, . . . , vk
are the extreme points ofP . However, such a list might contain extraneous points. For
example, some vectorvi could be the midpoint of an edge of the polytope. Of course,
in this casevi is not really needed to generate the convex hull. The following definition
describes the property of the vertices that will make them all extreme points.

D E F I N I T I O N The set{v1, . . . , vk} is a minimal representation of the polytopeP if P =
conv{v1, . . . , vk} and for eachi = 1, . . . , k, vi �∈ conv{vj : j �= i}.

Every polytope has a minimal representation. For ifP = conv{v1, . . . , vk} and if
somevi is a convex combination of the other points, thenvi may be deleted from the
set of points without changing the convex hull. This process may be repeated until the
minimal representation is left. It can be shown that the minimal representation is unique.

T H E O R E M 14 SupposeM = {v1, . . . , vk} is the minimal representation of the polytopeP . Then
the following three statements are equivalent:

a. p ∈ M.

b. p is a vertex ofP .

c. p is an extreme point ofP .

PROOF (a)⇒ (b) Supposep ∈ M and letQ= conv{v : v ∈ M andv �= p}. It follows
from the definition ofM thatp �∈ Q, and sinceQ is compact, Theorem 13 implies the
existence of a hyperplaneH ′ that strictly separates{p} andQ. LetH be the hyperplane
throughp parallel toH ′. See Fig. 2.

H H'

p Q

FIGURE 2

ThenQ lies in one of the closed half-spacesH + bounded byH and soP ⊆ H +.
ThusH supportsP at p. Furthermore,p is the only point ofP that can lie onH , so
H ∩ P = {p} andp is a vertex ofP .

(b) ⇒ (c) Let p be a vertex ofP . Then there exists a hyperplaneH = [f : d] such
thatH ∩ P = {p} andf (P ) ≥ d. If p were not an extreme point, then there would exist
pointsx andy in P such thatp = (1 − c)x + cy with 0 < c < 1. That is,

cy = p − (1 − c)x and y =
(

1

c

)
(p)−

(
1

c
− 1

)
(x)
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It follows thatf (y)= 1

c
f (p)−

(
1

c
− 1

)
f (x). But f (p)= d andf (x) ≥ d, so

f (y) ≤
(

1

c

)
(d)−

(
1

c
− 1

)
(d)= d

On the other hand,y ∈ P , sof (y) ≥ d. It follows thatf (y)= d and thaty ∈ H ∩ P .
This contradicts the fact thatp is a vertex. Sop must be an extreme point. (Note that
this part of the proof does not depend onP being a polytope. It holds for any compact
convex set.)

(c) ⇒ (a) It is clear that any extreme point ofP must be a member ofM. ■

EXAMPLE 2 Recall that the profile of a setS is the set of extreme points ofS. Theorem
14 shows that the profile of a polygon inR2 is the set of vertices. (See Fig. 3.) The
profile of a closed ball is its boundary. An open set has no extreme points, so its profile
is empty. A closed half-space has no extreme points, so its profile is empty.

FIGURE 3

Exercise 10 asks you to show that a pointp in a convex setS is an extreme point
of S if and only if, whenp is removed fromS, the remaining points still form a convex
set. It follows that ifS∗ is any subset ofS such that convS∗ is equal toS, thenS∗ must
contain the profile ofS. The sets in Example 2 show that in generalS∗ may have to be
larger than the profile ofS. It is true, however, that whenS is compact we may actually
takeS∗ to be the profile ofS, as Theorem 15 will show. Thus every nonempty compact
setS has an extreme point, and the set of all extreme points is the smallest subset ofS

whose convex hull is equal toS.

T H E O R E M 15 Let S be a nonempty compact convex set. ThenS is the convex hull of its profile
(the set of extreme points ofS).

PROOF The proof is by induction on the dimension of the setS.1 ■

One important application of Theorem 15 is the following theorem. It is one of the
key theoretical results in the development of linear programming. Linear functionals
are continuous, and continuous functions always attain their maximum and minimum
on a compact set. The significance of Theorem 16 is that for compact convex sets, the
maximum (and minimum) is actually attained at an extreme point ofS.

1The details may be found in Steven R. Lay,Convex Sets and Their Applications(New York: John
Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), p. 43.
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T H E O R E M 16 Let f be a linear functional defined on a nonempty compact convex setS. Then
there exist extreme pointŝv andŵ of S such that

f (v̂)= max
v∈S f (v) and f (ŵ)= min

v∈S f (v)

PROOF We assume thatf attains its maximumm on S at some pointv′ in S. That
is, f (v′)=m. We wish to show that there exists an extreme point inS with the same
property. By Theorem 15,v′ is a convex combination of the extreme points ofS. That
is, there exist extreme pointsv1, . . . , vk of S and nonnegativec1, . . . , ck such that

v′ = c1v1 + · · · + ckvk with c1 + · · · + ck = 1

If none of the extreme points ofS satisfyf (v)=m, then

f (vi ) < m for i = 1, . . . , k

sincem is the maximum off onS. But then, becausef is linear,

m = f (v′)= f (c1v1 + · · · + ckvk)

= c1f (v1) + · · · + ckf (vk)

< c1m + · · · + ckm=m(c1 + · · · + ck)=m

This contradiction implies that some extreme pointv̂ of S must satisfyf (v̂)=m.
The proof forŵ is similar. ■

The remainder of this section discusses the construction of two basic polytopes inR
3

(and higher dimensions). The first appears in linear programming problems, the subject
of Chapter 9. Both polytopes provide opportunities to visualizeR

4 in a remarkable way.

Simplex

A simplex is the convex hull of an affinely independent finite set of vectors. To construct
ak-dimensional simplex (ork-simplex), proceed as follows:

0-simplexS0: a single point{v1}
1-simplexS1: conv(S0 ∪ {v2}), with v2 not in affS0

2-simplexS2: conv(S1 ∪ {v3}), with v3 not in affS1

...

k-simplexSk: conv(Sk−1 ∪ {vk+1}), with vk+1 not in affSk−1

The simplexS1 is a line segment. The triangleS2 comes from choosing a pointv3 that
is not in the line containingS1 and then forming the convex hull withS2. (See Fig. 4.)
The tetrahedronS3 is produced by choosing a pointv4 not in the plane ofS2 and then
forming the convex hull withS2.
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S 0

v1

v1 v1 v1 v4

v2 v2 v3 v2 v3

S 1 S 2 S 3

FIGURE 4

Before continuing, consider some of the patterns that are being followed. The
triangleS2 has three edges. Each of these edges is a line segment likeS1. Where do
these three line segments come from? One of them isS1. One of them comes by joining
the endpointv2 to the new pointv3. The third comes from joining the other endpointv1

to v3. You might say that each endpoint inS1 is stretched out into a line segment inS2.
The tetrahedronS3 has four triangular faces. One of these is the original triangleS2,

and the other three come from stretching the edges ofS2 out to the new pointv4. Notice
too that the vertices ofS2 get stretched out into edges inS3. The other edges inS3 come
from the edges inS2. This suggests how to “visualize” the four-dimensionalS4.

The construction ofS4, called a pentatope, involves forming the convex hull ofS3

with a pointv5 not in the 3-space ofS3. A complete picture is impossible, of course,
but Fig. 5 is suggestive:S4 has five vertices, and any four of the vertices determine a

v4

v3

v5

v2

v1

v4

v3

v5

v2

v1 v4

v3

v5

v2

v1

FIGURE 5 The 4-dimensional simplexS4 projected ontoR2, with two
tetrahedral facets emphasized.
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facet in the shape of a tetrahedron. For example, the figure emphasizes the facet with
verticesv1, v2, v4, andv5 and the facet with verticesv2, v3, v4, andv5. There are five
such facets. Figure 5 identifies all ten edges ofS4, and these can be used to visualize the
ten triangular faces.

Figure 6 shows another representation of the 4-dimensional simplexS4. This time
the fifth vertex appears “inside” the tetrahedronS3. The highlighted tetrahedral facets
also appear to be “inside”S3.

v1 v3

v2
v5

v4

v1 v3

v2
v5

v4

v1 v3

v2

v4

v1 v3

v2
v5

v4

FIGURE 6 The fifth vertex ofS4 is “inside” S3.

Hypercube

Let Ii = 0ei be the line segment from the origin0 to the standard basis vectorei in R
n.

Then fork such that 1≤ k ≤ n, the vector sum2

Ck = I1 + I2 + · · · + Ik

is called ak-dimensionalhypercube.
To visualize the construction ofCk, start with the simple cases. The hypercubeC1

is the line segmentI1. If C1 is translated bye2, the convex hull of its initial and final

2The vector sum of two setsA andB is defined byA + B = {a + b : a ∈ A andb ∈ B}.
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positions describes a squareC2. (See Fig. 7.) TranslatingC2 by e3 creates the cubeC3.
A similar translation ofC3 by the vectore4 yields the 4-dimensional hypercubeC4.

C 1 C 2 C 3

FIGURE 7 Constructing the cubeC3.

Again, this is hard to visualize, but Fig. 8 shows a 2-dimensional projection ofC4.
Each of the edges ofC3 is stretched into a square face ofC4. And each of the square
faces ofC3 is stretched into a cubic face ofC4. Figure 9 shows three facets ofC4. Part
(a) highlights the cube that comes from the left square face ofC3. Part (b) shows the
cube that comes from the front square face ofC3. And part (c) emphasizes the cube that
comes from the top square face ofC3.

FIGURE 8 C4 projected ontoR2.

(a) (b) (c)

FIGURE 9 Three of the cubic facets ofC4.

Figure 10 shows another representation ofC4 in which the translated cube is placed
“inside” C3. This makes it easier to visualize the cubic facets ofC4, since there is less
distortion.

Altogether, the 4-dimensional cubeC4 has 8 cubic faces. Two come from the
original and translated images ofC3, and six come from the square faces ofC3 that are
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FIGURE 10 The translated image ofC3

is placed “inside”C3 to obtainC4.

stretched into cubes. The square 2-dimensional faces ofC4 come from the square faces
of C3 and its translate, and the edges ofC3 that are stretched into squares. Thus there
are 2×6 + 12= 24 square faces. To count the edges, take 2 times the number of edges
in C3 and add the number of vertices inC3. This makes 2×12+ 8 = 32 edges inC4.
The vertices inC4 all come fromC3 and its translate, so there are 2×8 = 16 vertices.

One of the truly remarkable results in the study of polytopes is the following formula,
first proved by Leonard Euler (1707–1783). It establishes a simple relationship between
the number of faces of different dimensions in a polytope. To simplify the statement of
the formula, letfk(P ) denote the number ofk-dimensional faces of ann-dimensional
polytopeP .3

Euler’s formula:
n−1∑
k=0

(−1)kfk(P )= 1 + (−1)n−1

In particular, whenn= 3, v − e + f = 2, wherev, e, andf denote the number of ver-
tices, edges, and facets (respectively) ofP .

8.5 EXERCISES
1. Let S = {(x, y) : x2 + (y − 1)2 ≤ 1} ∪ {(3,0)}. Is the origin

an extreme point of convS ? Is the origin a vertex of convS?

2. Find an example of a closed convex setS in R
2 such that its

profileP is nonempty but convP �= S.

3. Find an example of a bounded convex setS in R
2 such that

its profileP is nonempty but convP �= S.

4. a. Determine the number ofk-faces of the 5-dimensional
simplexS5 for k = 0,1, . . . ,4. Verify that your answer
satisfies Euler’s formula.

b. Make a chart of the values offk(Sn) for n= 1, . . . ,5 and
k = 0,1, . . . ,4. Can you see a pattern? Guess at a general
formula forfk(Sn).

3A proof is in Steven R. Lay,Convex Sets and Their Applications(New York: John Wiley & Sons, 1982;
Melbourne, FL: Krieger Pub., 1992), p. 131.



August 16, 2005 10:58 L57-ch08 Sheet number 48 Page number 48 cyan magenta yellow black

48 CHAPTER 8 The Geometry of Vector Spaces

5. a. Determine the number ofk-faces of the 5-dimensional hy-
percubeC5 for k = 0,1, . . . ,4. Verify that your answer
satisfies Euler’s formula.

b. Make a chart of the values offk(Cn) for n= 1, . . . ,5 and
k = 0,1, . . . ,4. Can you see a pattern? Guess at a general
formula forfk(Cn).

6. Supposev1, . . . , vk are linearly independent vectors in
R
n (1 ≤ k ≤ n). Then the setXk = conv{±v1, . . . ,±vk} is

called ak-crosspolytope.
a. SketchX1 andX2.

b. Determine the number ofk-faces of the 3-dimensional
crosspolytopeX3 for k = 0,1,2. What is another name
for X3?

c. Determine the number ofk-faces of the 4-dimensional
crosspolytopeX4 for k = 0,1,2,3. Verify that your an-
swer satisfies Euler’s formula.

d. Find a formula forfk(Xn), the number ofk-faces ofXn,
for 0 ≤ k ≤ n− 1.

7. A k-pyramid P k is the convex hull of a(k − 1)-polytopeQ
and a pointx �∈ aff Q. Find a formula for each of the following
in terms offj (Q), j = 1, . . . , k − 1.
a. The number of vertices ofP n: f0(P

n).

b. The number ofk-faces ofP n: fk(P n) for 1 ≤ k ≤ n− 2.

c. The number of (n− 1)-dimensional facets ofP n:
fn−1(P

n).

In Exercises 8 and 9, mark each statement True or False. Justify
each answer.

8. a. A polytope is the convex hull of a finite set of points.

b. Let p be an extreme point of a convex setS. If u, v ∈ S,
p ∈ uv, andp �= u, thenp = v.

c. If S is a nonempty convex subset ofR
n, thenS is the

convex hull of its profile.

d. The 4-dimensional simplexS4 has exactly five facets, each
of which is a 3-dimensional tetrahedron.

9. a. A cube inR3 has five facets.

b. A pointp is an extreme point of a polytopeP if and only
if p is a vertex ofP .

c. If S is a nonempty compact convex set and a linear func-
tional attains its maximum at a pointp, thenp is an extreme
point ofS.

d. A 2-dimensional polytope always has the same number of
vertices and edges.

10. Let v be an element of the convex setS. Prove thatv is an
extreme point ofS if and only if the set{x ∈ S : x �= v} is
convex.

11. If A andB are convex sets, prove thatA + B is convex.

12. If c ∈ R andS is a set, definecS = {cx : x ∈ S}.
a. LetS be a convex set and supposec > 0 andd > 0. Prove

thatcS + dS = (c + d)S.

b. Find an example to show that the convexity ofS is neces-
sary in part (a).

13. Apolyhedron (3-polytope) is calledregular if all its facets are
congruent regular polygons and all the angles at the vertices
are equal. Supply the details in the following proof that there
are only five regular polyhedra.
a. Suppose that a regular polyhedron hasr facets, each of

which is ak-sided regular polygon, and thats edges meet
at each vertex. Lettingv ande denote the numbers of ver-
tices and edges in the polyhedron, explain whykr = 2e
andsv = 2e.

b. Use Euler’s formula to show that 1/s + 1/k = 1/2 + 1/e.

c. Find all the integral solutions of the equation in part (b)
that satisfy the geometric constraints of the problem. (How
small cank ands be?)

For your information, the five regular polyhedra are the tetra-
hedron (4, 6, 4), the cube (8, 12, 6), the octahedron (6, 12,
8), the dodecahedron (20, 30, 12), and the icosahedron (12,
30, 20). (The numbers in parentheses indicate the numbers of
vertices, edges, and faces, respectively.)

8.6 CURVES AND SURFACES
For thousands of years, builders used long thin strips of wood to create the hull of a boat.
In more recent times, designers used long flexible metal strips to lay out the surfaces of
cars and airplanes. Weights and pegs shaped the strips into smooth curves callednatural
cubic splines. The curve between two successive control points (pegs or weights) has
a parametric representation using cubic polynomials. Unfortunately, such curves have
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the property that moving one control point affects the shape of the entire curve, because
of physical forces that the pegs and weights exert on the strip. Design engineers had
long wanted local control of the curve—in which movement of one control point would
affect only a small portion of the curve. In 1962, a French automotive engineer, Pierre
Bézier, solved this problem by adding extra control points and using a class of curves
now called by his name.

Bézier Curves

The curves described below play an important role in computer graphics as well as
engineering. For example, they are used inAdobe Illustrator and Macromedia Freehand,
and in application programming languages such as OpenGL. These curves permit a
program to store exact information about curved segments and surfaces in a relatively
small number of control points. All graphics commands for the segments and surfaces
have only to be computed for the control points. The special structure of these curves
also speeds up other calculations in the “graphics pipeline” that creates the final display
on the viewing screen.

Exercises in Section 8.3 introduced quadratic Bézier curves and showed one method
for constructing Bézier curves of higher degree. The discussion here focuses on quadratic
and cubic Bézier curves, which are determined by three or four control points, denoted
by p0, p1, p2, andp3. These points can be inR2 or R

3, or they can be represented by
homogeneous forms inR3 or R

4. The standard parametric descriptions of these curves,
for 0 ≤ t ≤ 1, are

w(t) = (1 − t)2p0 + 2t (1 − t)p1 + t2p2 (1)

x(t) = (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3 (2)

Figure 1 shows two typical curves. Usually, the curves pass through only the initial and
terminal control points, but a Bézier curve is always in the convex hull of its control
points. (See Exercises 26–28 in Section 8.3.)

p1 p2

p0

p1 p2

p0 p3

FIGURE 1 Quadratic and cubic Bézier curves.

Bézier curves are useful in computer graphics because their essential properties are
preserved under the action of linear transformations and translations. For instance, if
A is a matrix of appropriate size, then from the linearity of matrix multiplication, for
0 ≤ t ≤ 1,

Ax(t) = A[(1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3]
= (1 − t)3Ap0 + 3t (1 − t)2Ap1 + 3t2(1 − t)Ap2 + t3Ap3
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The new control points areAp0, . . . , Ap3. Translations of Bézier curves are considered
in Exercise 1.

The curves in Fig. 1 suggest that the control points determine the tangent lines to
the curves at the initial and terminal control points. Recall from calculus that for any
parametric curve, sayy(t), the direction of the tangent line to the curve at a pointy(t) is
given by the derivativey′(t), called thetangent vector of the curve. (This derivative is
computed entry by entry.)

EXAMPLE 1 Determine how the tangent vector of the quadratic Bézier curvew(t) is
related to the control points of the curve, att = 0 andt = 1.

Solution Write the weights in (1) as simple polynomials

w(t)= (1 − 2t + t2)p0 + (2t − 2t2)p1 + t2p2

Then, because differentiation is a linear transformation on functions,

w′(t)= (−2 + 2t)p0 + (2 − 4t)p1 + 2tp2

So

w′(0) = −2p0 + 2p1 = 2(p1 − p0)

w′(1) = −2p1 + 2p2 = 2(p2 − p1)

The tangent vector atp0, for instance, points fromp0 to p1, but it is twice as long
as the segment fromp0 to p1. Notice thatw′(0)= 0 when p1 = p0. In this case,
w(t)= (1 − t2)p1 + t2p2, and the graph ofw(t) is the line segment fromp1

to p2.

Connecting Two Bézier Curves

Two basic Bézier curves can be joined end to end, with the terminal point of the first
curvex(t) being the initial pointp2 of the second curvey(t). The combined curve is
said to haveG0 geometric continuity(atp2) because the two segments join atp2. If the
tangent line to curve 1 atp2 has a different direction than the tangent line to curve 2,
then a “corner,” or abrupt change of direction, may be apparent atp2. See Fig. 2.

p2

p3 p4

p1

p0

x(t)

y(t)

FIGURE 2 G0 continuity atp2.
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To avoid a sharp bend, it usually suffices to adjust the curves to have what is called
G1 geometric continuity, where both tangent vectors atp2 point in the same direction.
That is, the derivativesx′(1) andy′(0) point in the same direction, even though their
magnitudes may be different. When the tangent vectors are actually equal atp2, the
tangent vector is continuous atp2, and the combined curve is said to haveC1 continuity,
or C1 parametric continuity. Figure 3 showsG1 continuity in (a) andC1 continuity
in (b).

2

0
20 4 6 8 10 12 14

(a) (b)

p1

p0

p2
p3

p4

p1

p0

p2 p3

p4

x(t) y(t) x(t) y(t)

FIGURE 3 (a)G1 continuity and (b)C1 continuity.

EXAMPLE 2 Let x(t) andy(t) determine two quadratic Bézier curves, with control
points{p0,p1,p2} and{p2,p3,p4}, respectively. The curves are joined atp2 = x(1) =
y(0).

a. Suppose the combined curve hasG1 continuity (atp2). What algebraic restriction
does this condition impose on the control points? Express this restriction in geometric
language.

b. Repeat part (a) forC1 continuity.

Solution

a. From Example 1,x′(1)= 2(p2 − p1). Also, using the control points fory(t) in
place ofw(t), Example 1 shows thaty′(0)= 2(p3 − p2). G1 continuity means that
y′(0)= kx′(1) for some positive constantk. Equivalently,

p3 − p2 = k(p2 − p1), with k > 0 (3)

Geometrically, (3) implies thatp2 lies on the line segment fromp1 top3. To prove this,
let t = (k + 1)−1, and note that 0< t < 1. Solve fork to obtaink = (1 − t)/t . When
this expression is used fork in (3), a rearrangement shows thatp2 = (1 − t)p1 + tp3,
which verifies the assertion aboutp2.

b. C1 continuity means thaty′(0)= x′(1). Thus 2(p3 − p2)= 2(p2 − p1), sop3 − p2 =
p2 − p1, andp2 = (p1 + p3)/2. Geometrically,p2 is the midpoint of the line segment
from p1 to p3. See Fig. 3.
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Figure 4 showsC1 continuity for two cubic Bézier curves. Notice how the point
joining the two segments lies in the middle of the line segment between the adjacent
control points.

p1

p0

x(t)
y(t)

p2

p3
p4

p5

p6

FIGURE 4 Two cubic Bézier curves.

Two curves haveC2 (parametric) continuity when they haveC1 continuity and
the secondderivativesx′′(1) and y′′(0) are equal. This is possible for cubic Bézier
curves, but it severely limits the positions of the control points. Another class of cubic
curves, calledB-splines, always haveC2 continuity because each pair of curves share
three control points rather than one. Graphics figures using B-splines have more control
points and consequently require more computations. Some exercises for this section
examine these curves.

Surprisingly, ifx(t) andy(t) join atp3, the apparent smoothness of the curve atp3 is
usually the same for bothG1 continuity andC1 continuity. This is because the magnitude
of x′(t) is not related to the physical shape of the curve. The magnitude reflects only the
mathematical parameterization of the curve. For instance, if a new vector functionz(t)
equalsx(2t), then the pointz(t) traverses the curve fromp0 to p3 twice as fast as the
original version, because 2t reaches 1 whent is .5. But, by the chain rule of calculus,
z′(t)= 2·x′(2t), so the tangent vector toz(t) at p3 is twice the tangent vector tox(t)
at p3.

In practice, many simple Bézier curves are joined to create graphics objects. Type-
setting programs provide one important application, because many letters in a type font
involve curved segments. Each letter in a PostScript® font, for example, is stored as a
set of control points, along with information on how to construct the “outline” of the
letter using line segments and Bézier curves. Enlarging such a letter basically requires
multiplying the coordinates of each control point by one constant scale factor. Once the
outline of the letter has been computed, the appropriate solid parts of the letter are filled
in. Figure 5 illustrates this for a character in a PostScript font. Note the control points.

Matrix Equations for Bézier Curves

Since a Bézier curve is a linear combination of control points using polynomials as
weights, the formula forx(t) may be written as
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Q
FIGURE 5 A PostScript character.

x(t) = [ p0 p1 p2 p3 ]



(1 − t)3

3t (1 − t)2

3t2(1 − t)

t3


 = [ p0 p1 p2 p3 ]




1 − 3t + 3t2 − t3

3t − 6t2 + 3t3

3t2 − 3t3

t3




= [ p0 p1 p2 p3 ]




1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1






1
t

t2

t3




The matrix whose columns are the four control points is called ageometry matrix, G.
The 4×4 matrix of polynomial coefficients is theBézier basis matrix, MB . If u(t) is
the column vector of powers oft , then the Bézier curve is given by

x(t)=GMBu(t) (4)

Other parametric cubic curves in computer graphics are written in this form, too. For
instance, if the entries in the matrixMB are changed appropriately, the resulting curves
are B-splines. They are “smoother” than Bézier curves, but they do not pass through
any of the control points. AHermite cubic curve arises when the matrixMB is replaced
by a Hermite basis matrix. In this case, the columns of the geometry matrix consist of
the starting and ending points of the curves and the tangent vectors to the curves at those
points.1

The Bézier curve in (4) can also be “factored” in another way, to be used in the
discussion of Bézier surfaces. For convenience later, the parametert is replaced by a
parameters:

1The termbasis matrixcomes from the rows of the matrix that list the coefficients of theblendingpoly-
nomials used to define the curve. For a cubic Bézier curve, the four polynomials are(1 − t)3, 3t (1 − t)2,
3t2(1 − t), andt3. They form a basis for the spaceP3 of polynomials of degree 3 or less. Each entry
in the vectorx(t) is a linear combination of these polynomials. The weights come from the rows of the
geometry matrixG in (4).
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x(s) = u(s)TM T
B




p0

p1

p2

p3


 = [ 1 s s2 s3 ]




1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1






p0

p1

p2

p3




= [ (1 − s)3 3s(1 − s)2 3s2(1 − s) s3 ]




p0

p1

p2

p3


 (5)

This formula is not quite the same as the transpose of the product on the right of
(4), becausex(s) and the control points appear in (5) without transpose symbols. The
matrix of control points in (5) is called ageometry vector. This should be viewed as a
4×1 block (partitioned) matrix whose entries are column vectors. The matrix to the left
of the geometry vector, in the second part of (5), can be viewed as a block matrix, too,
with a scalar in each block. The partitioned matrix multiplication makes sense, because
each (vector) entry in the geometry vector can be left-multiplied by a scalar as well as
by a matrix. Thus, the column vectorx(s) is represented by (5).

Bézier Surfaces

A 3D bicubic surface patch can be constructed from a set of four Bézier curves. Consider
the four geometry matrices


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44




and recall from (4) that a Bézier curve is produced when any one of these matrices is
multiplied on the right by the following vector of weights:

MBu(t)=




(1 − t)3

3t (1 − t)2

3t2(1 − t)

t3




Let G be the block (partitioned) 4×4 matrix whose entries are the control pointspij
displayed above. Then the following product is a block 4×1 matrix, and each entry is
a Bézier curve:

GMBu(t)=




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44






(1 − t)3

3t (1 − t)2

3t2(1 − t)

t3




In fact,

GMBu(t)=



(1 − t)3p11 + 3t (1 − t)2p12 + 3t2(1 − t)p13 + t3p14

(1 − t)3p21 + 3t (1 − t)2p22 + 3t2(1 − t)p23 + t3p24

(1 − t)3p31 + 3t (1 − t)2p32 + 3t2(1 − t)p33 + t3p34

(1 − t)3p41 + 3t (1 − t)2p42 + 3t2(1 − t)p43 + t3p44



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Now fix t . ThenGMBu(t) is a column vector that can be used as a geometry vector in (5)
for a Bézier curve in another variables. This observation produces theBézier bicubic
surface:

x(s, t)= u(s)TM T
B GMBu(t), where 0≤ s, t ≤ 1 (6)

The formula forx(s, t) is a linear combination of the sixteen control points. If one
imagines that these control points are arranged in a fairly uniform rectangular array, as
in Fig. 6, then the Bézier surface is controlled by a web of eight Bézier curves, four
in the “s-direction” and four in the “t-direction.” The surface actually passes through
the four control points at its “corners.” When it is in the middle of a larger surface, the
sixteen-point surface shares its twelve boundary control points with its neighbors.

p41

p31

p21 p11
p12

p13

p14p24

p34

p44

p43

p42

p32

p33

p23

p22

FIGURE 6 Sixteen control points for a Bézier bicubic
surface patch.

Approximations to Curves and Surfaces

In CAD programs and in programs used to create realistic computer games, the designer
often works at a graphics workstation to compose a “scene” involving various geometric
structures. This process requires interaction between the designer and the geometric
objects. Each slight repositioning of an object requires new mathematical computations
by the graphics program. Bézier curves and surfaces can be useful in this process because
they involve fewer control points than objects approximated by many polygons. This
dramatically reduces the computation time and speeds up the designer’s work.

After the scene composition, however, the final image preparation has different
computational demands that are more easily met by objects consisting of flat surfaces and
straight edges, such as polyhedra. The designer needs torenderthe scene, by introducing
light sources, adding color and texture to surfaces, and simulating reflections from the
surfaces.

Computing the direction of a reflected light at a pointp on a surface, for instance,
requires knowing the direction of both the incoming light and thesurface normal—
the vector perpendicular to the tangent plane atp. Computing such normal vectors is
much easier on a surface composed of, say, tiny flat polygons than on a curved surface
whose normal vector changes continuously asp moves. Ifp1, p2, andp3 are adjacent
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vertices of a flat polygon, then the surface normal is just plus or minus the cross product
(p2 − p1)×(p2 − p3). When the polygon is small, only one normal vector is needed for
rendering the entire polygon. Also, two widely used shading routines, Gouraud shading
and Phong shading, both require a surface to be defined by polygons.

As a result of these needs for flat surfaces, the Bézier curves and surfaces from the
scene composition stage now are usually approximated by straight line segments and
polyhedral surfaces. The basic idea for approximating a Bézier curve or surface is to
divide the curve or surface into smaller pieces, with more and more control points.

Recursive Subdivision of Bézier Curves and Surfaces

Figure 7 shows the four control pointsp0, . . . ,p3 for a Bézier curve, along with control
points for two new curves, each coinciding with half of the original curve. The “left”
curve begins atq0 = p0 and ends atq3, at the midpoint of the original curve. The “right”
curve begins atr0 = q3 and ends atr3 = p3.

p0 = q0

q3 = r0

p3 = r3

p1 p2
r1

r2q1

q2

FIGURE 7 Subdivision of a Bézier curve.

Figure 8 shows how the new control points enclose regions that are “thinner” than
the region enclosed by the original control points. As the distances between the control
points decrease, the control points of each curve segment also move closer to a line
segment. Thisvariation-diminishing propertyof Bézier curves depends on the fact that
a Bézier curve always lies in the convex hull of the control points.

p0 = q0

q3 = r0

p3 = r3

p1 p2
r1

r2q1

q2

FIGURE 8 Convex hulls of the control points.

The new control points are related to the original control points by simple formulas.
Of course,q0 = p0 andr3 = p3. The midpoint of the original curvex(t) occurs atx(.5)
whenx(t) has the standard parameterization,

x(t)= (1 − 3t + 3t2 − t3)p0 + (3t − 6t2 + 3t3)p1 + (3t2 − 3t3)p2 + t3p3 (7)
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for 0 ≤ t ≤ 1. Thus, the new control pointsq3 andr0 are given by

q3 = r0 = x(.5)= 1
8(p0 + 3p1 + 3p2 + p3) (8)

The formulas for the remaining “interior” control points are also simple, but the deriva-
tion of the formulas requires some work involving the tangent vectors of the curves. By
definition, the tangent vector to a parameterized curvex(t) is the derivativex′(t). This
vector shows the direction of the line tangent to the curve atx(t). For the Bézier curve
in (7),

x′(t)= (−3 + 6t − 3t2)p0 + (3 − 12t + 9t2)p1 + (6t − 9t2)p2 + 3t2p3

for 0 ≤ t ≤ 1. In particular,

x′(0)= 3(p1 − p0) and x′(1)= 3(p3 − p2) (9)

Geometrically,p1 is on the line tangent to the curve atp0, andp2 is on the line tangent
to the curve atp3. See Fig. 8. Also, fromx′(t), compute

x′(.5)= 3
4(−p0 − p1 + p2 + p3) (10)

Let y(t) be the Bézier curve determined byq0, . . . ,q3, and letz(t) be the Bézier curve
determined byr0, . . . , r3. Sincey(t) traverses the same path asx(t) but only gets to
x(.5) ast goes from 0 to 1,y(t)= x(.5t) for 0 ≤ t ≤ 1. Similarly, sincez(t) starts at
x(.5) whent = 0, z(t)= x(.5 + .5t) for 0 ≤ t ≤ 1. By the chain rule for derivatives,

y′(t)= .5x′(.5t) and z′(t)= .5x′(.5 + .5t) for 0 ≤ t ≤ 1 (11)

From (9) withy′(0) in place ofx′(0), from (11) with t = 0, and from (9), the control
points fory(t) satisfy

3(q1 − q0)= y′(0)= .5x′(0)= 3
2(p1 − p0) (12)

From (9) withy′(1) in place ofx′(1), from (11) witht = 1, and from (10),

3(q3 − q2)= y′(1)= .5x′(.5)= 3
8(−p0 − p1 + p2 + p3) (13)

Equations (8), (9), (10), (12), and (13) can be solved to produce the formulas for
q0, . . . ,q3 shown in Exercise 13. Geometrically, the formulas are displayed in Fig.
9. The interior control pointsq1 andr2 are the midpoints, respectively, of the segment
from p0 to p1 and the segment fromp2 to p3. When the midpoint of the segment from
p1 to p2 is connected toq1, the resulting line segment hasq2 in the middle!

q0 = p0

q3 = r0

p3 = r3

p1 p2
r1

r2q1

q2

(p1 + p2)1
2

FIGURE 9 Geometric structure of new control points.
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This completes one step of the subdivision process. The “recursion” begins, and
both new curves are subdivided. The recursion continues to a depth at which all curves
are sufficiently straight. Alternatively, at each step the recursion can be “adaptive” and
not subdivide one of the two new curves if that curve is sufficiently straight. Once the
subdivision completely stops, the endpoints of each curve are joined by line segments,
and the scene is ready for the next step in the final image preparation.

A Bézier bicubic surface has the same variation-diminishing property as the Bézier
curves that make up each cross-section of the surface, so the process described above
can be applied in each cross-section. With the details omitted, here is the basic strat-
egy. Consider the four “parallel” Bézier curves whose parameter iss, and apply the
subdivision process to each of them. This produces four sets of eight control points;
each set determines a curve ass varies from 0 to 1. Ast varies, however, there are eight
curves, each with four control points. Apply the subdivision process to each of these
sets of four points, creating a total of 64 control points. Adaptive recursion is possible
in this setting, too, but there are some subtleties involved.2 See the following Web site
for a color/interactive demo:http://id.mind.net/∼zona/mmts/curveFitting/bezierCurves/
bezierCurve.html.

8.6 EXERCISES
1. Suppose a Bézier curve is translated tox(t) + b. That is, for

0 ≤ t ≤ 1, the new curve is

x(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3 + b

Show that this new curve is again a Bézier curve. [Hint:
Where are the new control points?]

2. A splineusually refers to a curve that passes through specified
points. A B-spline, however, usually does not pass through
its control points. A single segment has the parametric vector
form

x(t)= 1

6
[(1 − t)3p0 + (3t3 − 6t2 + 4)p1

+ (−3t3 + 3t2 + 3t + 1)p2 + t3p3]
(14)

for 0 ≤ t ≤ 1, wherep0, p1, p2, andp3 are the control points.
Whent varies from 0 to 1,x(t) creates a short curve that lies
close top1 and p2. Figure 10 compares a B-spline with a
Bézier curve that has the same control points.
a. Compare the B-spline with the cubic Bézier curve by

showing that the B-spline has the form

x(t)= 1

6
[(1 − t)3p0 + (3t (t − 1)2 + 4 − 3t)p1

+ (3t2(1 − t) + 3t + 1)p2 + t3p3]
(15)

p1

p0

FIGURE 10 A B-spline segment and
a Bézier curve.

b. Show that for 0 ≤ t ≤ 1, x(t) lies in the convex hull of the
control points.

c. Suppose that a B-spline curve x(t) is translated to x(t) + b
(as in Exercise 1). Show that this new curve is again a
B-spline.

2See Foley, van Dam, Feiner, and Hughes, Computer Graphics—Principles and Practice, 2nd Ed.
(Boston: Addison-Wesley, 1996), pp. 527–528.

http://id.mind.net/~zona/mmts/curveFitting/bezierCurves/bezierCurve.html
http://id.mind.net/~zona/mmts/curveFitting/bezierCurves/bezierCurve.html
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3. Let x(t) be a cubic Bézier curve determined by points p0, p1,
p2, and p3.
a. Compute the tangentvector x′(t). Determine how x′(0)

and x′(1) are related to the control points, and give geomet-
ric descriptions of the directionsof these tangent vectors.
Is it possible to have x′(1)= 0?

b. Compute the second derivative x′′(t) and determine how
x′′(0) and x′′(1) are related to the control points. Draw a
figure based on Fig. 10, and construct a line segment that
points in the direction of x′′(0). [Hint: Use p1 as the origin
of the coordinate system.]

4. Let x(t) be the B-spline in Exercise 2, with control points p0,
p1, p2, and p3.
a. Compute the tangent vector x′(t) and determine how the

derivatives x′(0) and x′(1) are related to the control points.
Give geometric descriptions of the directionsof these tan-
gent vectors. Explore what happens when both x′(0) and
x′(1) equal 0. Justify your assertions.

b. Compute the second derivative x′′(t) and determine how
x′′(0) and x′′(1) are related to the control points. Draw a
figure based on Fig. 10, and construct a line segment that
points in the direction of x′′(1). [Hint: Use p2 as the origin
of the coordinate system.]

5. Let x(t) and y(t) be cubic Bézier curves with control points
{p0,p1,p2,p3} and {p3,p4,p5,p6}, respectively, so that x(t)
and y(t) are joined at p3. The following questions refer to
the curve consisting of x(t) followed by y(t). For simplicity,
assume that the curve is in R

2.
a. What condition on the control points will guarantee that

the curve has C1 continuity at p3? Justify your answer.

b. What happens when x′(1) and y′(0) are both the zero vec-
tor?

6. A B-spline is built out of B-spline segments, described in Ex-
ercise 2. Let p0, . . . ,p4 be control points. For 0 ≤ t ≤ 1,
let x(t) and y(t) be determined by the geometry matri-
ces [ p0 p1 p2 p3 ] and [ p1 p2 p3 p4 ], respectively.
Notice how the two segments share three control points. The
two segments do not overlap, however—they join at a com-
mon endpoint, close to p2.
a. Show that the combined curve has G0 continuity—that is,

x(1)= y(0).

b. Show that the curve has C1 continuity at the join point,
x(1). That is, show that x′(1)= y′(0).

7. Let x(t) and y(t) be Bézier curves from Exercise 5, and sup-
pose the combined curve has C2 continuity (which includes

C1 continuity) at p3. Set x′′(1)= y′′(0) and show that p5 is
completely determined by p1, p2, and p3. Thus, the points
p0, . . . ,p3 and the C2 condition determine all but one of the
control points for y(t).

8. Let x(t) and y(t) be segments of a B-spline as in Exercise
6. Show that the curve has C2 continuity (as well as C1

continuity) at x(1). That is, show that x′′(1)= y′′(0). This
higher-order continuity is desirable in CAD applications such
as automotive body design, since the curves and surfaces ap-
pear much smoother. However, B-splines require three times
the computation of Bézier curves, for curves of comparable
length. For surfaces, B-splines require nine times the compu-
tation of Bézier surfaces. Programmers often choose Bézier
surfaces for applications (such as an airplane cockpit simula-
tor) that require real-time rendering.

9. A quartic Bézier curve is determined by five control points,
p0, p1, p2,p3, and p4:

x(t)= (1 − t)4p0 + 4t (1 − t)3p1 + 6t2(1 − t)2p2

+ 4t3(1 − t)p3 + t4p4 for 0 ≤ t ≤ 1

Construct the quartic basis matrix MB for x(t).

10. The “B” in B-spline refers to the fact that a segment x(t) may
be written in terms of a basis matrix, MS , in a form similar to
a Bézier curve. That is,

x(t)=GMSu(t) for 0 ≤ t ≤ 1

where G is the geometry matrix [ p0 p1 p2 p3 ] and u(t)
is the column vector (1, t, t2, t3). In a uniformB-spline, each
segment uses the same basis matrix, but the geometry matrix
changes. Construct the basis matrix MS for x(t).

11. [M] The MATLAB program bezier.m creates Bézier
curves of degrees 2, 3, and 4. This exercise involves only
cubic curves.
a. Begin by entering the 2×4 geometry matrix for the control

points

[
1
2

]
,

[
4
6

]
,

[
5
6

]
, and

[
8
2

]
. Notice how the sym-

metry of the control points is reflected in the symmetry of
the curve.

b. Rerun the program to create a Bézier curve x(t) for the

points

[
1
2

]
,

[
2
6

]
,

[
4

1.8

]
, and

[
5

4.2

]
. Print the out-

put, and keep the MATLAB Figure window open. (The
program includes the command hold on , so MATLAB
will display any new graphs in the same window.)

c. Design a new Bézier curve y(t) that joins x(t) at
p3 = (5, 4.2) such that the combined curve has G1
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continuity but not C1 continuity (at p3). Also, design the
new curve so that the combined curve has an inflection
point at p3. (The combined curve should cross the tangent
line at p3.) Print the new curve in the same window so
that the combined curve is shown. [If you wish to start
a new figure, close the existing figure before you run the
program again. In this case you will need to do part (a)
again.] By hand (or in your MATLAB printout), identify
the coordinates you choose for the second set of control
points.

12. [M] Suppose that as part of an animated sequence, a person
or animal needs to move along a curve x(t) (in the xy-plane,
for simplicity). Then the curve must haveC2 continuity. Oth-
erwise, the movement of the person may appear jerky at the
join points of the segments of the curve, because x′′(t) reflects
the acceleration(rate of change of the velocity or tangent vec-
tor) along the curve. In general, cubic Bézier curves are not
suitable for this task. However, from Exercise 8, every B-
spline has C2 continuity. This exercise asks you to watch as
a program computes three segments of a uniform B-spline.
a. The MATLAB program bspline.m creates a uniform

B-spline consisting of three segments that form a contin-
uous curve. The first three lines of the program define the
geometry matrices. Currently, lines 2 and 3 begin with
a % “comment” symbol. Run the program, and print the
output. Close the MATLAB Figure window.

b. Generate the second curve segment by moving the com-
ment symbol from line 2 to line 1. Print the result and
close the Figure window. Repeat this for the third curve
segment (moving the comment symbol from line 3 to line
2). Parts (a) and (b) should generate three figures.

c. Print all three B-spline segments onto one figure. [That
is, repeat parts (a) and (b) without closing the Figure win-
dow.]

d. Modify the program so that it asks for a 2×6 matrix such
that the program uses the first four columns for one seg-
ment, the middle four columns for the second segment, and
the last four columns for the third segment. The program
should print all three segments, pausing between segments
for the user to see how the graph is being constructed.
Use the pause command and a disp(’ ’) command
that asks the user to check the graph and then press any
key to continue. (See bezier.m for ideas, if you need
them.) You may modify the input step if you think that
the data entry would be easier if the points were entered
in order as the rows of a matrix rather than the columns:
[p01 p02;p11 p12; . . . ;p51 p52 ].

Exercises 13–15 concern the subdivision of a Bézier curve shown
in Fig. 7. Let x(t) be the Bézier curve, with control points
p0, . . . ,p3, and let y(t) and z(t) be the subdividing Bézier curves
as in the text, with control points q0, . . . ,q3 and r0, . . . , r3, re-
spectively.

13. a. Use equation (12) to show that q1 is the midpoint of the
segment from p0 to p1.

b. Use equation (13) to show that 8q2 = 8q3 + p0 + p1 − p2

− p3.

c. Use (b), equation (8), and (a) to show that q2 is the mid-
point of the segment from q1 to the midpoint of the segment
from p1 to p2. That is, q2 = 1

2 [q1 + 1
2 (p1 + p2)].

14. a. Justify each equals sign: 3(r3 − r2)= z′(1)= .5x′(1) =
3
2 (p3 − p2).

b. Show that r2 is the midpoint of the segment from p2 to p3.

c. Justify each equals sign: 3(r1 − r0)= z′(0)= .5x′(.5).
d. Use (c) to show that 8r1 = −p0 − p1 + p2 + p3 + 8r0.

e. Use (d), equation (8), and (b) to show that r1 is the mid-
point of the segment from r2 to the midpoint of the segment
from p2 to p3. That is, r1 = 1

2 [r2 + 1
2 (p1 + p2)].

15. Sometimes only one half of a Bézier curve needs further sub-
dividing. For example, subdivision of the “ left” side is accom-
plished with parts (a) and (c) of Exercise 13 and equation (8).
When both halves of the curve x(t) are divided, it is possible
to organize calculations efficiently to calculate both left and
right control points concurrently, without using (8) directly.
a. Show that the tangent vectors y′(1) and z′(0) are equal.

b. Use (a) to show that q3 (which equals r0) is the midpoint
of the segment from q2 to r1.

c. Using (b) and the results of Exercises 13 and 14, write
an algorithm that computes the control points for both
y(t) and z(t) in an efficient manner. The only operations
needed are sums and division by 2.

16. Explain why a cubic Bézier curve is completely determined
by x(0), x′(0), x(1), and x′(1).

17. TrueType® fonts created by Apple Computer and Adobe Sys-
tems use quadratic Bézier curves; PostScript fonts created by
Microsoft use cubic Bézier curves. The cubic curves pro-
vide more flexibility for typeface design, but it is important
to Microsoft that every typeface using quadratic curves can
be transformed into one that uses cubic curves. Suppose that
w(t) is a quadratic curve, with control points p0, p1, and p2.
a. Find control points r0, r1, r2, and r3 such that the cubic

Bézier curve x(t) with these control points has the prop-
erty that x(t) and w(t) have the same initial and terminal
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points and the same tangent vectors at t = 0 and t = 1.
(See Exercise 16.)

b. Show that if x(t) is constructed as in part (a), then
x(t)= w(t) for 0 ≤ t ≤ 1.

18. Use partitioned matrix multiplication to compute the follow-
ing matrix product, which appears in the alternative formula

(5) for a Bézier curve:


1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1







p0

p1

p2

p3



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Answers to Exercises
Chapter 8

Section 8.1, page 9

1. Some possible answers: y = 2v1 − 1.5v2 + .5v3,
y = 2v1 − 2v3 + v4, y = 2v1 + 3v2 − 7v3 + 3v4

STUDY GUIDE SOLUTION:

1. v1 =
[

1
2

]
, v2 =

[ −2
2

]
, v3 =

[
0
4

]
4, v4 =

[
3
7

]
,

y =
[

5
3

]

v2 − v1 =
[ −3

0

]
, v3 − v1 =

[ −1
2

]
, v4 − v1 =

[
2
5

]
,

y − v1 =
[

4
1

]
Solve c2(v2 − v1) + c3(v3 − v1) + c4(v4 − v1)=
y − v1 by row reducing the augmented matrix:[ −3 −1 2 4

0 2 5 1

]
∼

[ −3 −1 2 4
0 1 2.5 .5

]

∼
[ −3 0 4.5 4.5

0 1 2.5 .5

]

∼
[

1 0 −1.5 −1.5
0 1 2.5 .5

]
The general solution is c2 = 1.5c4 − 1.5,
c3 = −2.5c4 + .5, with c4 free. When c4 = 0,

y − v1 = −1.5(v2 − v1) + .5(v3 − v1)

and

y = 2v1 − 1.5v2 + .5v3

If c4 = 1, then c2 = 0 and

y − v1 = −2(v3 − v1) + 1(v4 − v1)

and

y = 2v1 − 2v3 + v4

If c4 = 3, then

y − v1 = 3(v2 − v1)− 7(v3 − v1) + 3(v4 − v1) and
y = 2v1 + 3v2 − 7v3 + 3v4

Of course, many other answers are possible. Note that
in all cases, the weights in the linear combination sum
to one.

2. y = −5v1 + 2v2 + 4v3. The weights sum to one, so this is an
affine sum.

3. y = −3v1 + 2v2 + 2v3. The weights sum to one, so this is an
affine sum.

4. y = 2.6v1 − .4v2 − 1.2v3

5. y = −1.4v1 + 2.3v2 + .1v3

6. a. p1 = −4b1 + 2b2 + 3b3 , so p1 ∈ aff S
b. p2 = 0.2b1 + 0.5b2 + 0.3b3, so p2 ∈ aff S
c. p3 = b1 + b2 + b3, so p3 /∈ aff S

7. a. p1 ∈ Span S, but p1 /∈ aff S
b. p2 ∈ Span S, and p2 ∈ aff S
c. p3 /∈ Span S, so p3 /∈ aff S

STUDY GUIDE SOLUTION:

7. The matrix [ v1 v2 v3 p1 p2 p3 ] reduces to


1 0 0 2 2 2
0 1 0 1 −4 2
0 0 1 −1 3 2
0 0 0 0 0 −5


.

Parts (a), (b), and (c) use columns 4, 5, and 6,
respectively, as the “augmented” column.

a. p1 = 2v1 + v2 − v3, so p1 is in Span S. The weights
do not sum to one, so p1 /∈ aff S.

b. p2 = 2v1 − 4v2 + 3v3, so p2 is in Span S. The
weights sum to one, so p2 ∈ aff S.
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c. p3 /∈ Span S because 0 �= − 5, so p3 cannot
possibly be in aff S.

8. The matrix [ v1 v2 v3 p1 p2 p3 ] reduces to


1 0 0 3 0 −2
0 1 0 −1 0 6
0 0 1 1 0 −3
0 0 0 0 1 0


.

Parts (a), (b), and (c) use columns 4, 5, and 6, respectively,
as the “augmented’’ column.

a. p1 = 3v1 − v2 + v3, so p1 is in Span S. The weights do
not sum to one, so p1 /∈ aff S.

b. p2 /∈ Span S because 0 �= 1 (column 5 is the augmented
column), so p2 cannot possibly be in aff S.

c. p3 = −2v1 + 6v2 − 3v3, so p3 is in Span S. The weights
sum to one, so p3 ∈ aff S.

9. a. True. This is the definition.
b. False. The weights in the linear combination must sum

to one.
c. True. See equation (1).
d. False. A flat is a translate of a subspace.
e. True. A hyperplane in R

3 has dimension 2, so it is a
plane.

10. a. False. If S = {x}, then aff S = {x}.
b. True. Theorem 2.
c. True. This is the definition.
d. False. A flat of dimension 2 is called a hyperplane only if

the flat is considered a subset of R
3. In general, a

hyperplane is a flat of dimension n− 1.
e. True. A flat through the origin is a subspace translated by

the 0 vector.

11. Span {v2 − v1, v3 − v1} is a plane if and only if
{v2 − v1, v3 − v1} is linearly independent. Suppose c2 and
c3 satisfy c2(v2 − v1) + c3(v3 − v1)= 0. Then
c2v2 + c3v3 − (c2 + c3)v1 = 0. Then c2 = c3 = 0, because
{v1, v2, v3} is a linearly independent set. This shows that
{v2 − v1, v3 − v1} is a linearly independent set. Thus,
Span {v2 − v1, v3 − v1} is a plane in R

3.

12. Since {v1, v2, v3} is a basis for R
3, the set

W = Span {v2 − v1, v3 − v1} is a plane in R
3, by Exercise

11. Thus,W + v1 is a plane parallel toW that contains v1.
Since v2 = (v2 − v1) + v1,W + v1 contains v2. Similarly,
W + v1 contains v3. Finally, Theorem 1 shows that
aff {v1, v2, v3} is the planeW + v1 that contains v1, v2, and
v3.

13. Let S = {x : Ax = b}. To show that S is affine, it suffices to
show that S is a flat, by Theorem 3. LetW = {x : Ax = 0}.
ThenW is a subspace of R

n, by Theorem 2 in Section 4.2

(or Theorem 12 in Section 2.8). Since S =W + p, where p
satisfies Ap = b, by Theorem 6 in Section 1.5, S is a
translate ofW , and hence S is a flat.

14. Suppose p,q ∈ S and t ∈ R. Then, by properties of the dot
product (Theorem 1 in Section 6.1),

[(1 − t)p + tq]·v = (1 − t)(p·v) + t (q·v)
= (1 − t)k + tk = k

Thus, [(1 − t)p + tq] ∈ S, by definition of S. This shows
that S is an affine set.

15. A suitable set consists of any three vectors that are not
collinear and have 5 as their third entry. If 5 is their third
entry, they lie in the plane x3 = 5. If the vectors are not
collinear, their affine hull cannot be a line, so it must be the
plane.

16. A suitable set consists of any four vectors that lie in the
plane 2x1 + x2 − 3x3 = 12 and are not collinear. If the
vectors are not collinear, their affine hull cannot be a line, so
it must be the plane.

17. If p,q ∈ f (S), then there exist r, s ∈ S such that f (r)= p
and f (s)= q. Given any t ∈ R, we must show that
z = (1 − t)p + tq is in f (S). Since f is linear,

z = (1 − t)p + tq = (1 − t)f (r) + tf (s)= f ((1 − t)r + ts)

Since S is affine, (1 − t)r + ts ∈ S. Thus, z ∈ f (S) and
f (S) is affine.

18. Given an affine set T , let S = {x ∈ R
n : f (x) ∈ T }. Con-

sider x, y ∈ S and t ∈ R. Then

f ((1 − t)x + ty)= (1 − t)f (x) + tf (y)

But f (x) ∈ T and f (y) ∈ T , so (1 − t)f (x) + tf (y) ∈ T
because T is an affine set. It follows that (1 − t)x + ty ∈ S.
This is true for all x, y ∈ S and t ∈ R, so S is an affine set.

19. Since B is affine, Theorem 2 implies that B contains all
affine combinations of points of B. Hence B contains all
affine combinations of points of A. That is, aff A ⊂ B.

20. Since aff B is an affine set, this result follows from Exercise
19, with B replaced by aff B.

21. Since A ⊂ (A ∪ B), it follows from Exercise 20 that
aff A ⊂ aff (A ∪ B). Similarly, aff B ⊂ aff (A ∪ B), so
[aff A ∪ aff B] ⊂ aff (A ∪ B).

22. Since (A ∩ B) ⊂ A, it follows from Exercise 20 that
aff (A ∩ B) ⊂ aff A. Similarly, aff (A ∩ B) ⊂ aff B, so
aff (A ∩ B) ⊂ (aff A ∩ aff B).
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23. One possibility is to let A=
{[

0
0

]
,

[
1
0

]}
and

B =
{[

0
0

]
,

[
0
1

]}
. Then (aff A) ∪ (aff B) consists of the

two coordinate axes, but aff (A ∪ B)= R
2.

24. One possibility is to let A=
{[

0
0

]
,

[
1
0

]}
and

B =
{[

1
0

]
,

[
2
0

]}
. Then both aff A and aff B are equal to

the x-axis. But A ∩ B =
{[

1
0

]}
, so

aff (A ∩ B)=
{[

1
0

]}
.

Section 8.2, page 19

1. Let v1 =
[

3
−3

]
, v2 =

[
0
6

]
, v3 =

[
2
0

]
. Then

v2 − v1 =
[ −3

9

]
, v3 − v1 =

[ −1
3

]
. Since v3 − v1 is a

multiple of v2 − v1, these two points are linearly dependent.
By Theorem 5, {v1, v2, v3} is affinely dependent. Note that
(v2 − v1)− 3(v3 − v1)= 0. A rearrangement produces the
affine dependence relation 2v1 + v2 − 3v3 = 0. (Note that
the weights sum to one.) Geometrically, v1, v2, and v3 are
collinear.

2. v1 =
[

2
1

]
, v2 =

[
5
4

]
, v3 =

[ −3
−2

]
; v2 − v1 =

[
3
3

]
,

v3 − v1 =
[ −5

−3

]
. Since v3 − v1 and v2 − v1 are not

multiples, they are linearly independent. By Theorem 5,
{v1, v2, v3} is affinely independent.

3. The set is affinely independent. If the points are called v1,
v2, v3, and v4, then {v1, v2, v3} is a basis for R

3 and
v4 = 16v1 + 5v2 − 3v3, but the weights in the linear
combination do not sum to one.

Solution:

Name the points v1, v2, v3, and v4. Then v2 − v1 =

 −3

−6
9


,

v3 − v1 =

 1

−3
12


, v4 − v1 =


 −1

13
−8


. To study linear

independence of these points, row reduce the matrix:
 −3 1 −1

−6 −3 13
9 12 −8


 ∼


 −3 1 −1

0 −5 15
0 15 −11


 ∼


 −3 1 −1

0 −5 15
0 0 34


. The points are linearly independent

because there is a pivot in each column. So {v1, v2, v3, v4} is
affinely independent, by Theorem 5.

Alternative Solution:
Name the points v1, v2, v3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. The first step is
to move the bottom row of ones (in the augmented matrix)
to the top to simplify the arithmetic:


1 1 1 1
1 −2 2 0
2 −4 −1 15

−1 8 11 −9


 ∼




1 1 1 1
0 −3 1 −1
0 −6 −3 13
0 9 12 −8




∼




1 1 1 1
0 −3 1 −1
0 0 −5 15
0 0 15 −11


 ∼




1 1 1 1
0 −3 1 −1
0 0 −5 15
0 0 0 34




The homogeneous points are linearly independent because
there is a pivot in each column. So the set {v1, v2, v3, v4} is
affinely independent, by Theorem 5.

4. −6v1 + 3v2 − 2v3 + 5v4 = 0

Solution:

Name the points v1, v2, v3, and v4. Then v2 − v1 =

 2

−8
4


,

v3 − v1 =

 3

−7
−9


, v4 − v1 =


 0

2
−6


. To study linear

independence of the translated points, row reduce the
augmented matrix for Ax = 0:
 2 3 0 0

−8 −7 2 0
4 −9 −6 0


 ∼


 2 3 0 0

0 5 2 0
0 −15 −6 0




∼

 2 3 0 0

0 5 2 0
0 0 0 0


 ∼


 1 0 −.6 0

0 1 .4 0
0 0 0 0




The first three columns are linearly dependent, so
{v1, v2, v3, v4} is affinely dependent, by Theorem 5. To find
the affine dependence relation, write the general solution of
this system: x1 = .6x3, x2 = −.4x3, with x3 free. Set x3 = 5,
for instance. Then x1 = 3, x2 = −2, and x3 = 5. Thus,
3(v2 − v1)− 2(v3 − v1) + 5(v4 − v1)= 0. Rearranging
gives −6v1 + 3v2 − 2v3 + 5v4 = 0.
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Alternative Solution:
Name the points v1, v2, v3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. The first step is
to move the bottom row (in the augmented matrix) to the top
to simplify the arithmetic:

[
ṽ1 ṽ2 ṽ3 ṽ4 0̃

] ∼




1 1 1 1 0
−2 0 1 −2 0

5 −3 −2 7 0
3 7 −6 −3 0




∼




1 0 0 1.2 0
0 1 0 −.6 0
0 0 1 .4 0
0 0 0 0 0




Thus, x1 + 1.2x4 = 0, x2 − .6x4 = 0, and x3 + .4x4 = 0, with
x4 free. Take x4 = 5, for example, and get x1 = −6, x2 = 3,
and x3 = −2. An affine dependence relation is
−6v1 + 3v2 − 2v3 + 5v4 = 0.

5. −4v1 + 5v2 − 4v3 + 3v4 = 0

Solution:
One solution method is to translate the points to the origin.
The following solution uses homogeneous forms. The first
step is to move the bottom row (in the augmented matrix) to
the top to simplify the arithmetic:

[
ṽ1 ṽ2 ṽ3 ṽ4 0̃

] ∼




1 1 1 1 0
1 0 −1 0 0
0 1 5 5 0

−2 1 1 −3 0




∼




1 0 0 4
3 0

0 1 0 − 5
3 0

0 0 1 4
3 0

0 0 0 0 0




Thus, x1 = − 4
3x4, x2 = 5

3x4, x3 = − 4
3x4. An affine

dependence relation is −4v1 + 5v2 − 4v3 + 3v4 = 0.

6. The set is affinely independent, as the following calculation
with homogeneous forms shows:

[
ṽ1 ṽ2 ṽ3 ṽ4

] ∼




1 1 1 1
1 0 2 3
3 −1 5 5
1 −2 2 0




∼




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Row reduction of [ v1 v2 v3 v4 ] shows that
{v1, v2, v3} is a basis for R

3 and v4 = −2v1 + 1.5v2 + 2.5v3,
but the weights in the linear combination do not sum to one.
Instructor: (Possible exam question)
If the last entry of v4 is changed from 0 to 1, then row
reduction of [ v1 v2 v3 v4 ] shows that {v1, v2, v3} is a
basis for R

3 and v4 = −3v1 + v2 + 3v3.

7. The barycentric coordinates are (−2, 4,−1).

Solution:
Denote the given points as v1, v2, v3, and p. Row reduce the
augmented matrix for the equation x1ṽ1 + x2ṽ2 + x3ṽ3 = p̃.
Remember to move the bottom row of ones to the top as the
first step, to simplify the arithmetic by hand.

[
ṽ1 ṽ2 ṽ3 p̃

] ∼




1 1 1 1
1 2 1 5

−1 1 2 4
2 0 −2 −2
1 1 0 2




∼




1 0 0 −2
0 1 0 4
0 0 1 −1
0 0 0 0
0 0 0 0




Thus, x1 = −2, x2 = 4, x3 = −1, and p̃ = −2ṽ1 + 4ṽ2 − ṽ3,
so p = −2v1 + 4v2 − v3, and the barycentric coordinates are
(−2, 4,−1).

8. The barycentric coordinates are (2,−1, 0).

Solution:
Denote the given points as v1, v2, v3, and p. Row reduce the
augmented matrix for the equation x1ṽ1 + x2ṽ2 + x3ṽ3 = p̃.

[
ṽ1 ṽ2 ṽ3 p̃

] ∼




1 1 1 1
0 1 1 −1
1 1 4 1

−2 0 −6 −4
1 2 5 0




∼




1 0 0 2
0 1 0 −1
0 0 1 0
0 0 0 0
0 0 0 0




Thus, p̃ = 2ṽ1 − ṽ2 + 0ṽ3, so p = 2v1 − v2. The barycentric
coordinates are (2,−1, 0).
Instructor: v3 = 3v1 + v2
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9. a. True. Theorem 5 uses the point v1 for the translation, but
the paragraph after the theorem points out that any one
of the points in the set can be used for the translation.

b. False, by (d) of Theorem 5.
c. False. The weights in the linear combination must sum

to zero, not one.
d. False. The only points that have barycentric coordinates

determined by S belong to aff S.
e. True. The barycentric coordinates are zero on the edges

of the triangle and positive for interior points.

10. a. False. By Theorem 5, the set of homogeneous forms
must be linearly dependent, too.

b. True. If one statement in Theorem 5 is false, the other
statements are false, too.

c. False. Theorem 6 applies only when S is affinely
independent.

d. False. The color interpolation applies only to points
whose barycentric coordinates are nonnegative, since the
colors are formed by nonnegative combinations of red,
green, and blue.

e. True. See the discussion of Fig. 5.

11. When a set of five points is translated by subtracting, say,
the first point, the new set of four points must be linearly
dependent, by Theorem 8 in Section 1.7, because the four
points are in R

3. By Theorem 5, the original set of five
points is affinely dependent.

12. Suppose v1, . . . , vp are in R
n and p ≥ n + 2. Since

p − 1 ≥ n + 1, the points v2 − v1, v3 − v1, . . . , vp − v1 are
linearly dependent, by Theorem 8 in Section 1.7. By
Theorem 5, {v1, v2, . . . , vp} is affinely dependent.

13. If {v1, v2} is affinely dependent, then there exist c1 and c2,
not both zero, such that c1 + c2 = 0, and c1v1 + c2v2 = 0.
Then c1 = −c2 �= 0 and c1v1 = −c2v2 = c1v2, which implies
that v1 = v2. Conversely, if v1 = v2, let c1 = 1 and c2 = −1.
Then c1v1 + c2v2 = v1 + (−1)v1 = 0 and c1 + c2 = 0, which
shows that {v1, v2} is affinely dependent.

14. Let S1 consist of three (distinct) points on a line through the
origin. The set is affinely dependent because the third point
is on the line determined by the first two points. Let S2

consist of two (distinct) points on a line through the origin.
By Exercise 13, the set is affinely independent because the
two points are distinct. (A correct solution should include a
justification for the sets presented.)

15. a. The vectors v2 − v1 =
[

1
2

]
and v3 − v1 =

[
3

−2

]
are

not multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

b. p1 ↔ (− 6
8 ,

9
8 ,

5
8

)
, p2 ↔ (

0, 1
2 ,

1
2

)
, p3 ↔ (

14
8 ,− 5

8 ,− 1
8

)
,

p4 ↔ (
6
8 ,− 5

8 ,
7
8

)
, p5 ↔ (

2
8 ,

1
8 ,

5
8

)
c. p6 is (−,−,+), p7 is (0,+,−), and p8 is (+,+,−).

16. a. The vectors v2 − v1 =
[

1
4

]
and v3 − v1 =

[
4
2

]
are not

multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

b. p1 ↔ (− 2
7 ,

5
7 ,

4
7 ), p2 ↔ ( 2

7 ,− 5
7 ,

10
7 ), p3 ↔ ( 2

7 ,
2
7 ,

3
7 )

c. p4 ↔ (+,−,−), p5 ↔ (+,+,−), p6 ↔ (+,+,+),
p7 ↔ (−, 0,+). See the figure below. Actually,
p4 ↔ ( 19

14 ,− 2
14 ,− 3

14 ), p5 ↔ ( 5
14 ,

12
14 ,− 3

14 ),

p6 ↔ ( 9
14 ,

2
14 ,

3
14 ), and p7 ↔ (− 1

2 , 0,
3
2 ).

p2

p1

p3

p4

p5 p7

v1

v2

v3p6

17. Suppose S = {b1, . . . ,bk} is an affinely independent set.
Then (7) has a solution, because p is in aff S. Hence (8) has
a solution. By Theorem 5, the homogeneous forms of the
points in S are linearly independent. Thus, (8) has a unique
solution. Then (7) also has a unique solution, because (8)
encodes both equations that appear in (7).

The following argument mimics the proof of Theorem
7 in Section 4.4. If S = {b1, . . . ,bk} is an affinely
independent set, then scalars c1, . . . , ck exist that satisfy (7),
by definition of aff S. Suppose p also has the representation

p = d1b1 + · · · + dkbk and d1 + · · · + dk = 1 (7a)

for scalars d1, . . . , dk . Then subtraction produces the
equation

0 = p − p = (c1 − d1)b1 + · · · + (ck − dk)bk (7b)

The weights in (7b) sum to zero because the c’s and the d’s
separately sum to one. This is impossible, unless each
weight in (8) is zero, because S is an affinely independent
set. This proves that ci = di for i = 1, . . . , k.

18. Let p =

 xy
z


 . Then


 xy
z


 = x

a


 a0

0


 +

y

b


 0
b

0


 +

z

c


 0

0
c


 +

(
1 − x

a
− y

b
− z

c

) 
 0

0
0


. So the barycentric
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coordinates are x/a, y/b, z/c, and 1 − x/a − y/b − z/c.
This holds for any nonzero choices of a, b, and c.

19. Let a =
[
a1

a2

]
, b =

[
b1

b2

]
, and c =

[
c1

c2

]
. Then

det[ ã b̃ c̃ ] = det


 a1 b1 c1

a2 b2 c2

1 1 1


 =

det


 a1 a2 1
b1 b2 1
c1 c2 1


 by using the transpose property of the

determinant (Theorem 5 in Section 3.2). By Exercise 30 in
Section 3.3, this determinant equals 2 times the area of the
triangle with vertices at a, b, and c.

20. If p is on the line through a and b, then p is an affine
combination of a and b, so p̃ is a linear combination of ã
and b̃. Thus, the columns of [ ã b̃ p̃ ] are linearly
dependent. So the determinant of this matrix is zero.

21. If [ ã b̃ c̃ ]

 rs
t


= p̃, then Cramer’s rule gives

r = det[ p̃ b̃ c̃ ]/ det[ ã b̃ c̃ ]. By Exercise 19, the
numerator of this quotient is twice the area of�pbc, and the
denominator is twice the area of �abc. This proves the
formula for r . The other formulas are proved using
Cramer’s rule for s and t .

22. Let p = (1 − x)q + xa, where q is on the line segment from
b to c. Then, because the determinant is a linear function of
the first column when the other columns are fixed (Section
3.2),

det[ p̃ b̃ c̃ ] = det[ (1 − x)q̃ + xã b̃ c̃ ]
= (1 − x)·det[ q̃ b̃ c̃ ] + x ·det[ ã b̃ c̃ ]

Now, [ q̃ b̃ c̃ ] is a singular matrix because q̃ is a linear

combination of b̃ and c̃. So det[ q̃ b̃ c̃ ] = 0 and

det[ p̃ b̃ c̃ ] = x ·det[ ã b̃ c̃ ].

Section 8.3, page 27

1.

1

2

x2

x1

2. a.

2

2 4

x2

x1

b. x2

x1

c.

2

2 4

x2

x1

3. None are in conv S.

Solution:
From Exercise 7 in Section 8.1, p1 and p3 are not in aff S, so
they certainly are not in conv S. Since
p2 = 2v1 − 4v2 + 3v3, and the weights sum to one, p2 is in
aff S. However, S is affinely independent (because S is
linearly independent), so the barycentric coordinates of p2

are 2, −4 and 3. Since one coordinate is negative, p2 is not
in conv S.

4. p2 ∈ conv S

Solution:
From Exercise 6 in Section 8.1, p3 is not in aff S, so it
certainly is not in conv S. Since p1 = −4b1 + 2b2 + 3b3 and
p2 = 0.2b1 + 0.5b2 + .3b3, and in each case the weights sum
to one, both p1 and p2 are in aff S. However, S is affinely
independent (because S is linearly independent), so the
weights in these combinations are barycentric coordinates.
Thus, p2 is in conv S, because its barycentric coordinates
are nonnegative. This is not the case for p1, so p1 /∈ conv S.
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5. p1 = − 1
6 v1 + 1

3 v2 + 2
3 v3 + 1

6 v4, so p1 /∈ conv S.
p2 = 1

3 v1 + 1
3 v2 + 1

6 v3 + 1
6 v4, so p2 ∈ conv S.

6. a. p1 = 1
2 v1 − 1

2 v2 + v3 ∈ aff S

b. p2 = 1
4 v1 + 1

4 v2 + 1
2 v3 ∈ conv S

c. p3 = v1 + v2 − 2v3 ∈ Span S
d. projSpan S p4 = 2

3 v1 + 8
9 v2 + 8

9 v3 = (− 4
9 ,− 8

9 ,
10
9 , 4

) �= p4,
so p4 /∈ Span S

7. a. The barycentric coordinates of p1, p2, p3, and p4 are,
respectively,

(
12
13 ,

3
13 ,− 2

13

)
,
(

8
13 ,

2
13 ,

3
13

)
,
(

2
3 , 0,

1
3

)
, and(

9
13 ,− 1

13 ,
5
13

)
.

b. p1 and p4 are outside conv T . p2 is inside conv T . p3 is
on the edge v1v3 of conv T .

8. p1 and p3 are outside the tetrahedron conv S. p2 is on the
face containing the vertices v2, v3, and v4. p4 is inside
conv S. p5 is on the edge between v1 and v3.

9. p = 1
6 v1 + 1

2 v2 + 1
3 v4 and p = 1

2 v1 + 1
6 v2 + 1

3 v3.

10. p = 3
5 v2 + 3

10 v3 + 1
10 v4 and p = 1

11 v1 + 6
11 v2 + 4

11 v3

11. a. False. In order for y to be a convex combination, the c’s
must also all be nonnegative.

b. False. If S is convex, then conv S is equal to S.
c. False. For example, the union of two distinct points is

not convex, but the individual points form convex sets.

12. a. True. This is the definition.
b. True. Theorem 9.
c. False. The points do not have to be distinct. For

example, S might consist of two points in R
5. A point in

conv S would be a convex combination of these two
points. Caratheodory’s Theorem requires n + 1 or fewer
points.

13. pos S is a cone with vertex at (0, 0) containing the positive
x-axis, with sides on the lines y = ±x.

14. a. There are many possibilities. For example,
p = v1 + v2 + 2v3, so p ∈ pos S.
p = −2v1 + 4v2 − v3, so p ∈ aff S. It is clear from a
graph that p /∈ conv S.

b. The set in Exercise 13 consists of exactly two points, say
v1 and v2. These points form a basis for R

2. Any other
point p in R

2 has a unique representation as a linear
combination of v1 and v2. If this combination is both
affine and positive, it must be convex. In part (a) above,
there were two different linear combinations giving p,
one affine and one positive, but no single linear
combination with both properties.

15. Let y ∈ pos (conv S). Then y = c1v1 + · · · + ckvk , where
vi ∈ conv S and ci ≥ 0. But by Caratheodory’s Theorem,

each vi is a convex combination of n + 1 (or fewer) points
of S, so

vi = (di1wi1 + · · · + di,n+1wi,n+1),

where

dij ≥ 0, �dij = 1, and wij ∈ S
Then

y = c1(d11w11 + · · · + d1,n+1w1,n+1) + · · · +
ck(dk1wk1 + · · · + dk,n+1wk,n+1)

Since all these coefficients are nonnegative, this shows that
y ∈ pos S.

The converse is immediate since S ⊂ conv S.

16. Suppose S is convex and let y ∈ pos S. Then
y = c1v1 + · · · + ckvk , where vi ∈ S and ci ≥ 0. Let
α = c1 + · · · + ck . If α = 0, then all ci = 0. It follows that
y = 0, and y = λs for λ= 0. If α �= 0, then
y
α

= c1

α
v1 + · · · +

ck

α
vk ∈ S, since S is convex

That is, y/α = s for some s ∈ S, and y = αs.

17. If p,q ∈ f (S), then there exist r, s ∈ S such that f (r)= p
and f (s)= q. If 0 ≤ t ≤ 1, we must show that
y = (1 − t)p + tq is in f (S). Since f is linear,

y = (1 − t)p + tq = (1 − t)f (r) + tf (s)= f ((1 − t)r + ts)

Since S is convex, (1 − t)r + ts ∈ S whenever 0 ≤ t ≤ 1.
Thus, y ∈ S and f (S) is convex.

18. Suppose r, s ∈ S and 0 ≤ t ≤ 1. Then, since f is a linear
transformation,

f ((1 − t)r + ts)= (1 − t)f (r) + tf (s)

But f (r) ∈ T and f (s) ∈ T , so (1 − t)f (r) + tf (s) ∈ T
since T is convex. It follows that (1 − t)r + ts ∈ S. This
shows that S is convex.

19. Suppose A ⊂ B, where B is convex. Then, since B is
convex, Theorem 7 implies that B contains all convex
combinations of points of B. Hence B contains all convex
combinations of points of A. That is, conv A ⊂ B.

20. Suppose A ⊂ B. Then A ⊂ B ⊂ conv B. Since conv B is
convex, Exercise 19 shows that conv A ⊂ conv B.

21. Since A ⊂ (A ∪ B), Exercise 20 shows that
conv A ⊂ conv (A ∪ B). Similarly,
conv B ⊂ conv (A ∪ B). Thus,
[(conv A) ∪ (conv B)] ⊂ conv (A ∪ B).

22. Since (A ∩ B) ⊂ A, Exercise 20 shows that
conv (A ∩ B) ⊂ conv A. Similarly,
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conv (A ∩ B) ⊂ conv B. Thus,
conv (A ∩ B) ⊂ [(conv A) ∩ (conv B)].

23. One possibility is to let A be two adjacent corners of a
square and B be the other two corners. Then
(conv A) ∪ (conv B) consists of two opposite sides of the
square, but conv (A ∪ B) is the whole square.

24. One possibility is to let A be a pair of opposite vertices of a
square and B be the other pair of opposite vertices. Then
conv A and conv B are intersecting diagonals of the square.
A ∩ B is the empty set, so conv (A ∩ B) must be empty,
too. But conv A ∩ conv B contains the single point where
the diagonals intersect. So conv (A ∩ B) is a proper subset
of conv A ∩ conv B.

25. a. Hint: Suppose F is not a subset of G and G is not a
subset of F . Then there exist points p and q such that
p ∈ F , p /∈ G, q ∈ G, and q /∈ F . Consider the point
r = ( 1

2 )(p + q). Since F ∪G is convex, r belongs to the
line segment between p and q, which is contained in
F ∪G. Is r ∈ F ? Is r ∈ G?

STUDY GUIDE SOLUTION:
If r ∈ F , then q ∈ F since q = 2r − p and F is a
subspace. This contradicts q /∈ F . Similarly, if r ∈ G,
we reach the contradiction p ∈ G. Thus, the points p and
q cannot both exist as described, and either F ⊂ G or
G ⊂ F . The converse is immediate.

b. Here is one possibility in R
1: let A= [1, 4] and

B = [2, 5].
26. a. p1

p3

p0

f0(   )3
4

f0(   )1
2

f0(   )1
4

f1(   )1
4 f1(   )1

2 f1(   )3
4

g(   )1
4

g(   )1
2

g(   )3
4

b. g(t)= (1 − t)f0(t) + tf1(t)= (1 − t)[(1 − t)p0 + tp1] +
t[(1 − t)p1 + tp2] = (1 − t)2p0 + 2t (1 − t)p1 + t2p2.
The sum of the weights in the linear combination for g is
(1 − t)2 + 2t (1 − t) + t2, which equals
(1 − 2t + t2) + (2t − 2t2) + t2 = 1. The weights are
each between 0 and 1 when 0 ≤ t ≤ 1, so g(t) is in
conv {p0,p1,p2}.

27. h(t)= (1 − t)g1(t) + tg2(t). Use the representation for
g1(t) from Exercise 26, and the analogous representation for
g2(t), based on the control points p1, p2, and p3, and obtain

h(t) = (1 − t)[(1 − t)2p0 + 2t (1 − t)p1 + t2p2]
+ t[(1 − t)2p1 + 2t (1 − t)p2 + t2p3]

= (1 − t)3p0 + 2t (1 − 2t + t2)p1 + (t2–t3)p2

+ t (1 − 2t + t2)p1 + 2t2(1 − t)p2 + t3p3

= (1 − 3t + 3t2–t3)p0 + (2t − 4t2 + 2t3)p1

+ (t2–t3)p2 + (t − 2t2 + t3)p1 + (2t2 − 2t3)p2 + t3p3

= (1 − 3t + 3t2–t3)p0 + (3t − 6t2 + 3t3)p1

+ (3t2 − 3t3)p2 + t3p3

By inspection, the sum of the weights in this linear
combination is 1, for all t . To show that the weights are
nonnegative for 0 ≤ t ≤ 1, factor the coefficients and write

h(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2

+ t3p3 for ≤ t ≤ 1

Thus, h(t) is in the convex hull of the control points p0, p1,
p2, and p3.

28. Fix t , with 0 ≤ t ≤ 1. If g1(t) is in S0 and if g2(t) is in S1,
then there exist nonnegative weights c0, . . . , ck that sum to
one, and nonnegative weights d1, . . . , dk+1 that also sum to
one, such that

g1(t)= c0p0 + c1p1 + · · · + ckpk

and

g2(t)= d1p1 + · · · + dkpk + dk+1pk+1

If h(t)= (1 − t)g1(t) + t ·g2(t), then the weights on
p0, . . . ,pk+1 in the expression for h(t) are nonnegative
because they are nonnegative ci and di multiplied by (1 − t)
and t . Further, the sum of these weights is (1 − t)[c0 + · · · +
ck] + t[d1 + · · · + dk+1] = (1 − t)·1 + t ·1 = 1. Thus,
h(t) ∈ conv {p0, . . . ,pk+1} for each t .

(More detailed solution)
Fix t , with 0 ≤ t ≤ 1. By hypothesis, g1(t)= ∑k

i=0 cipi and
g2(t)= ∑k+1

j=1 djpj for some nonnegative constants ci and
dj , respectively, such that

∑
ci = 1 and

∑
dj = 1. Let

y = (1 − t)g1(t) + tg2(t)

= (1 − t)
k∑
i=0
cipi + t

k+1∑
j=1
djpj

=
k∑
i=0
(1 − t)cipi +

k+1∑
j=1
tdjpj

The weights in this linear combination are all nonnegative,
so to show y ∈ conv {p0,p1, . . . ,pk+1}, it suffices to show
that the weights sum to one. In fact, this sum is
k∑
i=0
(1 − t)ci +

k+1∑
j=1
tdj = (1 − t)

k∑
i=0
ci + t

k+1∑
j=1
dj

= (1 − t)·1 + t ·1 = 1
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Possible Test Question. Let p0, p1, p2, and p3 be points in
R
n. Show that a line segment from a point in

conv {p0,p1,p2} to a point in conv {p1,p2,p3} is contained
in conv {p0,p1,p2,p3}.
Solution:
Given p ∈ conv {p0,p1,p2} and q ∈ conv {p1,p2,p3}, let
y = (1 − t)p + tq for some t such that 0 ≤ t ≤ 1. Write
p = c0p0 + c1p1 + c2p2 and q = d1p1 + d2p2 + d3p3, where
the weights in each case are nonnegative and sum to one.
Etc.

Section 8.4, page 38

1. f (x1, x2)= 3x1 + 4x2 and d = 13

Solution:
v2 − v1 =

[
3
1

]
−

[ −1
4

]
=

[
4

−3

]
, n =

[
3
4

]
.

f (x1, x2)= 3x1 + 4x2. f (v1)= 3(3) + 4(1)= 13.

2. f (x1, x2)= 5x1 − 3x2 and d = −7

Solution:
v2 − v1 =

[
1
4

]
−

[ −2
−1

]
=

[
3
5

]
, n =

[
5

−3

]
.

f (x1, x2)= 5x1 − 3x2. f (v1)= 5(1)− 3(4)= −7.

3. a. n =

 0

2
3


 or a multiple

b. f (x)= 2x2 + 3x3, d = 11

4. a. n =

 4

3
−6


 or a multiple

b. f (x)= 4x1 + 3x2 − 6x3, d = −8

Solution:

v1 =

 1

−2
1


 , v2 − v1 =


 3

0
2


 , v3 − v1 =


 6

−2
3




∣∣∣∣∣∣
3 6 x1

0 −2 x2

2 3 x3

∣∣∣∣∣∣ = 4x1 + 3x2 − 6x3 = f (x1, x2, x3)

So n =

 4

3
−6


 and d = n·v1 = −8.

5. a. n =




3
−1

2
1


 or a multiple

b. f (x)= 3x1 − x2 + 2x3 + x4, d = 5

6. a. n =




−2
3

−5
1


 or a multiple

b. f (x)= −2x1 + 3x2 − 5x3 + x4, d = 4

Solution:

v1 =




1
2
0
0


, v2 − v1 =




1
0

−1
−3


, v3 − v1 =




0
1
2
7


,

v4 − v1 =




2
0

−1
−1


. Solve the equations (v2 − v1)·n = 0,

(v3 − v1)·n = 0, (v4 − v1)·n = 0. The augmented matrix is
 1 0 −1 −3 0

0 1 2 7 0
2 0 −1 −1 0


 ∼


 1 0 0 2 0

0 1 0 −3 0
0 0 1 5 0


 .

Thus, x1 = −2x4, x2 = 3x4, x3 = −5x4, with x4 free. Take

x4 = 1, for example, to get n =




−2
3

−5
1


.

b. Let f (x1, x2, x3, x4)= −2x1 + 3x2 − 5x3 + x4. Let
d = f (v1)= −2(1) + 3(2) + 0 + 0 = 4.

7. v2 is on the same side as 0, v1 is on the other side, and v3 is
in H .

Solution:
Compute n·p = 2. Then H = {x : n·x = 2}. The origin is
in H0 = {x : n·x = 0}. Compute n·v1 = 5. This is more
than 2, so v1 and 0 are on the opposite sides of H . Compute
n·v2 = −2, which is less than 2, so v2 and 0 are on the same
side of H . Compute n·v3 = 2, so v3 is in H .

8. Let H = [f : d], where f (x1, x2, x3)= 3x1 + x2 − 2x3 and
d = 4. There is no hyperplane parallel to H that strictly
separates A and B.

9. One possibility is p =




32
−14

0
0


, v1 =




10
−7

1
0


, v2 =




−4
1
0
1




Solution:
H1 = {x : n1 ·x = d1} and H2 = {x : n2 ·x = d2}. Since
p1 ∈ H1, d1 = n1 ·p1 = 4. Similarly, d2 = n2 ·p2 = 22.
Solve the simultaneous system [1 2 4 2]x = 4 and
[2 3 1 5]x = 22:[

1 2 4 2 4
2 3 1 5 22

]
∼

[
1 0 −10 4 32
0 1 7 −1 −14

]
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The general solution provides one set of vectors, p, v1, and
v2. Other choices are possible.

x =




32
−14

0
0


 + x3




10
−7

1
0


 + x4




−4
1
0
1


 = p + x3v1 + x4v2, where

p =




32
−14

0
0


 , v1 =




10
−7

1
0


 , v2 =




−4
1
0
1




10. 2, 3, or 4

11. a. False. A linear functional goes from R
n to R.

b. False. See the discussion of (1) and (4). There is a 1×n
matrix A such that f (x)= Ax for all x in R

n.
Equivalently, there is a point n in R

n such that
f (x)= n·x for all x in R

n.
c. True. See the comments after the definition of strictly

separate.
d. False. See the sets in Fig. 4.

12. a. True. See the statement after (3).
b. False. The vector n must be nonzero. If n = 0, then the

given set is empty if d �= 0 and the set is all of R
n if

d = 0.
c. False. Theorem 12 requires that the sets A and B be

convex. For example, A could be the boundary of a
circle and B could be the center of the circle.

d. False. Some other hyperplane might strictly separate
them. See the caution at the end of Example 8.

13. Let x, y ∈ B(p, δ) and suppose z = (1 − t)x + ty, where
0 ≤ t ≤ 1. Then

‖z − p‖ = ‖[(1 − t)x + ty] − p‖
= ‖(1 − t)(x − p) + t (y − p)‖
≤ (1 − t)‖x − p‖ + t‖y − p‖
< (1 − t)δ + tδ = δ

where the first inequality comes from the Triangle
Inequality (Theorem 17 in Section 6.7) and the second
inequality follows from x, y ∈ B(p, δ). It follows that
z ∈ B(p, δ) and B(p, δ) is convex.

14. Let S be a bounded set. Then there exists a δ > 0 such that
S ⊂ B(0, δ). Since B(0, δ) is convex by Exercise 13,
Theorem 9 in Section 8.3 implies that conv S ⊂ B(0, δ) and
conv S is bounded.

15. f (x, y)= 4x + y. A natural choice for d is 12.75, which
equals f (3, .75). The point (3, .75) is three-fourths of the
distance between the center of B(0, 3) and the center of
B(p, 1).

Solution:
Let L be the line segment from the center of B(0, 3) to the
center of B(p, 1). This is on the line through the origin in
the direction of p. The length of L is (42 + 12)1/2 ≈ 4.1231.
This exceeds the sum of the radii of the two disks, so the
disks do not touch. If the disks did touch, the separating
hyperplane (line) would have to be orthogonal to p, the
vector that in this case determines the direction of L. Since
the disks are separated slightly, the hyperplane need not be
exactly perpendicular, but the easiest one to find is a
hyperplane H whose normal vector is p. So define f by
f (x)= p·x.

To find d, evaluate f at any point on L that is between
the two disks. If the disks were tangent, that point would be
three-fourths of the distance between their centers, since the
radii are 3 and 1. Since the disks are slightly separated, the
distance is 4.1231. Three-fourths of this distance is greater
than 3, and one-fourth of this distance is greater than 1. A
suitable value of d is f (q), where
q = ( 1

4 )0 + ( 3
4 )p = (3, .75). So d = 4(3) + 1(.75)= 12.75.

16. Note: p =
[

6
1

]
. f (x, y)= 4x − 2y. A natural choice for d

is f (5, 1.5)= 17.

Solution:
The normal to the separating hyperplane has the direction of
the line segment between p and q. So, let

n = p − q =
[

4
−2

]
. The distance between p and q is

√
20,

which is more than the sum of the radii of the two balls. The
large ball has center q. A point three-fourths of the distance
from q to p will be greater than 3 units from q and greater
than 1 unit from p. This point is

x = .75p + .25q = .75

[
6
1

]
+ .25

[
2
3

]
=

[
5.0
1.5

]
Compute n·x = 17. The desired hyperplane is{[
x

y

]
: 4x − 2y = 17

}
.

17. Exercise 2(a) in Section 8.3 gives one possibility. Or let
S = {(x, y) : x2y2 = 1 and y > 0}. Then conv S is the
upper (open) half-plane.

18. One possibility is A= {(x, y) : |x| ≤ 1 and y = 0} and
B = {(x, y) : x2y2 = 1 and y > 0}.

19. Let y ∈ B(p, δ) so that λy ∈ λB(p, δ). Then ‖y − p‖ < δ,
so ‖λy − λp‖ = λ‖y − p‖ < λδ , and λy ∈ B(λp, λδ).

Conversely, suppose z ∈ B(λp, λδ). Then
‖z − λp‖ < λδ, so∥∥ z
λ

− p
∥∥ = 1

λ
‖z − λp‖ < 1

λ
(λδ)= δ
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Thus, z
λ

∈ B(p, δ) and z ∈ λB(p, δ).
The proof of the second part is similar.

20. If p ∈ cl S, then p ∈ S or p ∈ bd S. If p ∈ S, then every
open ball centered at p contains the point p, which is in S. If
p ∈ bd S, then, by definition, every open ball centered at p
intersects S.

On the other hand, suppose every open ball centered at
p contains a point of S. If p is not in S, then every open ball
centered at p intersects both S and its complement. Thus,
p ∈ bd S.

21. Let x ∈ cl (cl S). Then, given any δ > 0, there exists a point
p ∈ B(x, δ) ∩ cl S. We must show that some point of
B(x, δ) is in S. Since p ∈ cl S, either p ∈ S or p ∈ bd S. If
p ∈ S, we are done. Otherwise, p ∈ bd S. Let
ε = δ − ‖x − p‖. Then ε > 0 and the open ball
B(p, ε) ⊂ B(x, δ). See the figure below. Since p ∈ bd S,
there exists a point s in B(p, ε) ∩ S. But then
s ∈ B(x, δ) ∩ S and x ∈ cl S.

Conversely, let x ∈ cl S. Then, given any δ > 0, there
exists a point q ∈ B(x, δ) ∩ S. But S ⊂ cl S, so
q ∈ B(x, δ) ∩ cl S and x ∈ cl (cl S).

B(p, �)

B(x, �)

p
s

x

22. Assume without loss of generality that y = 0. Then, for any
λ such that 0 < λ < 1, we have z = λx. See the figure
below. If x ∈ int S, then there exists δ > 0 such that
B(x, δ) ⊂ S. Now B(λx, λδ)= λB(x, δ), by Exercise 19.
Since S is convex and 0 ∈ S, λB(x, δ) ⊂ S. Thus,
B(z, λδ) ⊂ S and z ∈ int S.

xzy = 0

B(x, �)

B(z, ��)

23. Let z = λx + (1 − λ)y, with 0 < λ < 1. We may assume
without loss of generality that 1

2 y + 1
2 z = 0. Then y = −tx

for some t > 0. See the figure below. Since x ∈ int S, there
exists an open ball U = B(x, δ) contained in S. Let
V = −tU . Then V is an open ball of radius tδ about y.

Since y ∈ cl S, there exists a point p in V ∩ S. That is,
p = −tu for some u ∈ U . Since u and −tu are in the
convex set S, it follows that 0 ∈ S. But then Exercise 22
implies z ∈ int S.

y
p

u

xz0

U = B(x, �)

V = –tU

24. Let x, y ∈ int S. By Exercise 22, all the points
(1 − t)x + ty, where 0 < t < 1, are in the interior of S.
Thus, xy ⊂ int S, and int S is convex.

25. Let x, y ∈ cl S and let z = αx + βy, where α ≥ 0, β ≥ 0,
and α + β = 1. Furthermore, let B(z, δ) be an open ball
centered at z. See the figure below. Since x and y are in
cl S, Exercise 20 implies that there exist points
x0 ∈ B(x, δ) ∩ S and y0 ∈ B(y, δ) ∩ S. We claim that
z0 = αx0 + βy0 ∈ B(z, δ). Indeed,

‖z − z0‖ = ‖(αx + βy)− (αx0 + βy0)‖
= ‖α(x − x0) + β(y − y0)‖
≤ ‖α(x − x0)‖ + ‖β(y − y0)‖
= α‖x − x0‖ + β‖y − y0‖ < αδ + βδ = (α + β)δ = δ

Since z0 ∈ x0y0, we have z0 ∈ S. Thus, z ∈ cl S and cl S is
convex.

B(z, �)B(x, �)

yzx

y0z0x0

B(y, �)

26. a. Suppose x ∈ cl (int S). Then, for every δ > 0, B(x, δ)
contains at least one point of int S, by Exercise 20. Since
int S ⊂ S, this means B(x, δ) contains at least one point
of S. Thus, x ∈ cl S.

Conversely, suppose x ∈ cl S. Given any δ > 0,
there exists a point s in S ∩ B(x, δ). Since ‖x − s‖ < δ ,
we have ε = δ − ‖x − s‖ > 0. It follows that
B(s, ε) ⊂ B(x, δ). See the figure below. Let y ∈ int S
and consider the line segment sy. Since ε > 0, there
exists z ∈ sy such that z ∈ B(s, ε). But Exercise 22
implies that z ∈ int S, so z ∈ B(x, δ) ∩ (int S), and
x ∈ cl (int S).
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B(s, �)

B(x, �)

s
z

x
y ∈ int S

b. Let S be a “lollipop” shape in R
2:

27. a. Since S ⊂ cl S, int S ⊂ int (cl S). Conversely, suppose
x ∈ int (cl S). Then there exists δ > 0 such that
B(x, δ) ⊂ cl S. Let y ∈ int S. Then there exists a point z
in cl S such that x ∈ zy, with x �= z. See the figure below.
It follows from Exercise 23 that x ∈ int S.

xz y ∈ int S

B(x, �) � cl S

b. Let S = [0, 1) ∪ (1, 2] in R
2. Then

int S = (0, 1) ∪ (1, 2), but int (cl S)= (0, 2). Or let S be
a solid square in R

2 with one diagonal removed. Then
int S consists of two triangular pieces, but int (cl S) is
the whole square (without the boundary).

28. a. If x ∈ bd S, then x ∈ cl S and x /∈ int S. But
cl S = cl (cl S), by applying Exercise 21 to cl S in place
of S, and int S = int (cl S), by Exercise 27. Thus,
x ∈ cl (cl S) and x /∈ int (cl S), so x ∈ bd (cl S). For the
converse, reverse the argument above.

b. Let S = [0, 1) ∪ (1, 2] in R
1. Then bd S = {0, 1, 2}, but

bd (cl S)= {0, 2}. Or let S be a solid square in R
2 with

one diagonal removed. Then bd S consists of the
diagonal and the four edges of the square, but bd (cl S)
does not include the diagonal.

29. Let H = [f : d] be a hyperplane and let
S = {x : f (x) ≥ d}. Then S is a closed half-space, and its
boundary is the convex set H .

30. Let S be the convex hull of a circle in R
2. Then bd S is the

circle itself, which is not convex.

Section 8.5, page 47

1. The origin is an extreme point, but it is not a vertex.

2. One possibility is a ray. It has an extreme point at one end.

3. One possibility is to let S be a square that includes part of
the boundary but not all of it. For example, include just two
adjacent edges. The convex hull of the profile is a triangle.

4. a. f0(S
5)= 6, f1(S

5)= 15, f2(S
5)= 20, f3(S

5)= 15,
f4(S

5)= 6, and 6 − 15 + 20 − 15 + 6 = 2.
b. f0 f1 f2 f3 f4

S1 2
S2 3 3
S3 4 6 4

S4 5 10 10 5
S5 6 15 20 15 6

fk(S
n)=

(
n + 1
k + 1

)
, where

(
a

b

)
= a!
b!(a − b)! is the

binomial coefficient.

5. a. f0(C
5)= 32, f1(C

5)= 80, f2(C
5)= 80, f3(C

5)= 40,
f4(C

5)= 10, and 32 − 80 + 80 − 40 + 10 = 2.
b. f0 f1 f2 f3 f4

C1 2
C2 4 4
C3 8 12 6

C4 16 32 24 8
C5 32 80 80 40 10

fk(C
n)= 2n−k

(
n

k

)
, where

(
a

b

)
= a!
b!(a − b)! is the

binomial coefficient.
Note that fk(Cn)= 2fk(Cn−1) + fk−1(C

n−1).
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6. a. X1 is a line segment: v1
0

X2 is a parallelogram: v1

v2

b. f0(X
3)= 6, f1(X

3)= 12, f2(X
3)= 8. X3 is an

octahedron.
c. f0(X

4)= 8, f1(X
4)= 24, f2(X

4)= 32, f3(X
4)= 16,

8 − 24 + 32 − 16 = 0

d. fk(Xn)= 2k+1

(
n

k + 1

)
, 0 ≤ k ≤ n–1, where(

a

b

)
= a!
b!(a − b)! is the binomial coefficient.

7. a. f0(P
n)= f0(Q) + 1

b. fk(P n)= fk(Q) + fk–1(Q)

c. fn–1(P
n)= fn–2(Q) + 1

8. a. True. Definition.
b. True. Definition.
c. False. S must be compact. See Theorem 15.
d. True. See the comment after Fig. 4.

9. a. False. It has six facets (faces).
b. True. Theorem 14.
c. False. The maximum is always attained at some extreme

point, but there may be other points that are not extreme
points at which the maximum is attained.

d. True. Follows from Euler’s formula with n= 2.

10. Let x be an extreme point of the convex set S and let
T = {y ∈ S : y �= x}. If y and z are in T , then yz ⊂ S since
S is convex. But since x is an extreme point of S, x /∈ yz, so
yz ⊂ T . Thus, T is convex.

Conversely, suppose x ∈ S, but x is not an extreme
point of S. Then there exist y and z in S such that x ∈ yz,
with x �= y and x �= z. It follows that y and z are in T , but
yz �⊂ T . Hence T is not convex.

11. Suppose A and B are convex. Let x, y ∈ A + B. Then there
exist a, c ∈ A and b,d ∈ B such that x = a + b and
y = c + d. For any t such that 0 ≤ t ≤ 1, we have

(1 − t)x + ty = (1 − t)(a + b) + t (c + d)
= [(1 − t)a + tc] + [(1 − t)b + td]

But (1 − t)a + tc ∈ A since A is convex, and
(1 − t)b + td ∈ B since B is convex. Thus, (1 − t)x + ty is
in A + B, which shows that A + B is convex.

12. a. Let S be convex and let x ∈ cS + dS, where c > 0 and
d > 0. Then there exist s1 and s2 in S such that
x = cs1 + ds2. But then

x = cs1 + ds2 = (c + d)
[
c

c + d
s1 +

d

c + d
s2

]

Now c

c+d and d

c+d are both nonnegative and sum to one.
Since S is convex, c

c+d s1 + d

c+d s2 ∈ S. Thus,
x ∈ (c + d)S.

Conversely, let x ∈ (c + d)S. Then x = (c + d)s for
some s ∈ S. But then x = cs + ds ∈ cS + dS, as desired.

13. a. Since each edge belongs to two facets, kr is twice the
number of edges: kr = 2e. Since each edge has two
vertices, sv = 2e.

b. v − e + r = 2, so 2e
s

− e + 2e
k

= 2 ⇒ 1
s

+ 1
k

= 1
2 + 1

e

c. A polygon must have at least three sides, so k ≥ 3. At
least three edges meet at each vertex, so s ≥ 3. But k
and s cannot both be greater than 3, for then the left side
of the equation in (b) could not exceed 1

2 .
When k = 3, we get 1

s
− 1

6 = 1
e
, so s = 3, 4, or 5.

For these values, we get e = 6, 12, or 30, corresponding
to the tetrahedron, the octahedron, and the icosahedron,
respectively.

When s = 3, we get 1
k

− 1
6 = 1

e
, so k = 2, 3, or 5

and e = 6, 12, or 30, respectively. These values
correspond to the tetrahedron, the cube, and the
dodecahedron.

Section 8.6, page 58

1. Given
x(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3,
0 ≤ t ≤ 1, let b be any fixed vector. Observe (by algebraic
computation) that

(1 − t)3b + 3t (1 − t)2b + 3t2(1 − t)b + t3b = b

Thus,

x(t) + b = (1 − t)3(p0 + b) + 3t (1 − t)2(p1 + b)
+ 3t2(1 − t)(p2 + b) + t3(p3 + b)

This representation of x(t) + b has the form of a Bézier
curve, whose control points are translates by b of the
original control points. So translation by b maps a Bézier
curve into a Bézier curve.

2. a. The coefficients of p0 and p3 in (15) match those in (14).
For p1,

3t (t − 1)2 + 4 − 3t = 3t (t2 − 2t + 1) + 4 − 3t
= 3t3 − 6t2 + 3t + 4 − 3t
= 3t3 − 6t2 + 4

The verification for p2 is trivial. So (15) is an equivalent
description for x(t).

b. Equation (15) reveals that each polynomial weight is
nonnegative for 0 ≤ t ≤ 1, since 4 − 3t > 0. For the
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sum of the coefficients, use (15) with the first term
expanded: 1 − 3t + 3t2 − t3. The 1 here plus the 4 and 1
in the coefficients of p1 and p2, respectively, sum to 6,
while the other terms sum to 0. This explains the 1

6 in the
formula for x(t), which makes the coefficients sum to 1.
Thus, x(t) is a convex combination of the control points
for 0 ≤ t ≤ 1.

c. Since the coefficients inside the brackets in equation (14)
sum to 6, it follows that

b = 1
6 [6b]

= 1
6

[
(1 − t)3b + (3t3 − 6t2 + 4)b

+(−3t3 + 3t2 + 3t + 1)b + t3b
]

and hence x(t) + b may be written in a similar form,
with pi replaced by pi + b for each i. This shows that
x(t) + b is a cubic B-spline with control points pi + b for
i = 0, . . . , 3.

3. a. Start with
x(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3,
and compute

x′(t) = (−3 + 6t − 3t2)p0 + (3 − 12t + 9t2)p1

+ (6t − 9t2)p2 + 3t2p3

Then x′(0)= −3p0 + 3p1 = 3(p1 − p0), and
x′(1)= −3p2 + 3p3 = 3(p3 − p2). This shows that the
tangent vector x′(0) points in the direction from p0 to p1

and is three times the length of p1 − p0. Likewise, x′(1)
points in the direction from p2 to p3 and is three times
the length of p3 − p2. In particular, x′(1)= 0 if and only
if p3 = p2.

b. From part (a), differentiate x′(t) to get

x′′(t) = (6 − 6t)p0 + (−12 + 18t)p1

+(6 − 18t)p2 + 6tp3

Then

x′′(0)= 6p0 − 12p1 + 6p2 = 6(p0 − p1) + 6(p2 − p1)

and

x′′(1)= 6p1 − 12p2 + 6p3 = 6(p1 − p2) + 6(p3 − p2)

For a picture of x′′(0), construct a coordinate system with
the origin at p1, temporarily, label p0 as p0 − p1 and label
p2 as p2 − p1. Finally, construct a line from this new
origin through the sum of p0 − p1 and p2 − p1, extended
out a bit. That line points in the direction of x′′(0).

4. a. x′(t)= 1
6

[(−3t2 + 6t − 3
)

p0 +
(
9t2 − 12t

)
p1

+
(−9t2 + 6t + 3

)
p2 + 3t2p3

]
x′(0)= 1

2 (p2 − p0) and x′(1)= 1
2 (p3 − p1) (Verify that,

in the first part of Fig. 10, a line drawn through p0 and p2

is parallel to the tangent line at the beginning of the

B-spline.) When x′(0) and x′(1) are both zero, the figure
collapses and the convex hull of the set of control points
is the line segment between p0 and p3, in which case x(t)
is a straight line. Where does x(t) start? In this case,

x(t) = 1
6

[
(−4t3 + 6t2 + 2)p0 + (4t3 − 6t2 + 4)p3

]
x(0) = 1

3 p0 + 2
3 p3 and x(1)= 2

3 p0 + 1
3 p3

The curve begins closer to p3 and finishes closer to p0.
Could it turn around during its travel? Since
x′(t)= 2t (1 − t)(p0 − p3), the curve travels in the
direction p0 − p3, so when x′(0)= x′(1)= 0, the curve
always moves away from p3 toward p0 for 0 ≤ t ≤ 1.

b. x′′(t)= (1 − t)p0 + (−2 + 3t)p1 + (1 − 3t)p2 + tp3

x′′(0)= p0 − 2p1 + p2 = (p0 − p1) + (p2 − p1)

and

x′′(1)= p1 − 2p2 + p3 = (p1 − p2) + (p3 − p2)

For a picture of x′′(0), construct a coordinate
system with the origin at p1, temporarily, label p0 as
p0 − p1, and label p2 as p2 − p1. Finally, construct a line
from this new origin to the sum of p0 − p1 and p2 − p1.
That segment represents x′′(0).

For a picture of x′′(1), construct a coordinate
system with the origin at p2, temporarily, label p1 as
p1 − p2, and label p3 as p3 − p2. Finally, construct a line
from this new origin to the sum of p1 − p2 and p3 − p2.
That segment represents x′′(1).

5. a. From Exercise 3(a) or equation (9) in the text,

x′(1)= 3(p3 − p2)

Use the formula for x′(0), with the control points from
y(t), and obtain

y′(0)= −3p3 + 3p4 = 3(p4 − p3)

For C1 continuity, 3(p3 − p2)= 3(p4 − p3), so
p3 = (p4 + p2)/2, and p3 is the midpoint of the line
segment from p2 to p4.

b. If x′(1)= y′(0)= 0, then p2 = p3 and p3 = p4. Thus, the
“line segment” from p2 to p4 is just the point p3. [Note:
In this case, the combined curve is still C1 continuous,
by definition. However, some choices of the other
control points, p0,p1,p5, and p6, can produce a curve
with a visible “corner” at p3, in which case the curve is
not G1 continuous at p3.]

6. a. With x(t) as in Exercise 2,

x(0)= (p0 + 4p1 + p2)/6

and

x(1)= (p1 + 4p2 + p3)/6
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Use the formula for x(0), but with the shifted control
points for y(t), and obtain

y(0)= (p1 + 4p2 + p3)/6

This equals x(1), so the B-spline is G0 continuous at the
join point.

b. From Exercise 4(a),

x′(1)= (p3 − p1)/2 and x′(0)= (p2 − p0)/2

Use the formula for x′(0), with the control points for
y(t), and obtain

y′(0)= (p3 − p1)/2 = x′(1)

Thus, the B-spline is C1 continuous at the join point.

7. From Exercise 3(b),

x′′(0)= 6(p0 − p1) + 6(p2 − p1)

and

x′′(1)= 6(p1 − p2) + 6(p3 − p2)

Use the formula for x′′(0), but with the control points for
y(t), to get

y′′(0)= 6(p3 − p4) + 6(p5 − p4)

Set x′′(1)= y′′(0) and divide by 6, to get

(p1 − p2) + (p3 − p2)= (p3 − p4) + (p5 − p4)

Since the curve is C1 continuous at p3, the point p3 is the
midpoint of the segment from p2 to p4, by Exercise 5(a).
Thus, p4 − p3 = p3 − p2. Substituting gives

(p1 − p2) + (p3 − p2) = −(p3 − p2) + p5 − p4

(p1 − p2) + 2(p3 − p2) + p4 = p5

Finally, again from C1 continuity, p4 = p3 + p3 − p2. Thus,

p5 = p3 + (p1 − p2) + 3(p3 − p2)

Only p6 can be chosen arbitrarily.

8. From Exercise 4(b), x′′(0)= p0 − 2p1 + p2 and
x′′(1)= p1 − 2p2 + p3. Use the formula for x′′(0), with the
shifted control points for y(t), to get

y′′(0)= p1 − 2p2 + p3 = x′′(1)

Thus, the curve has C2 continuity at x(1).

9. Write a vector of the polynomial weights for x(t), expand
the polynomial weights, and factor the vector asMBu(t):


1 − 4t + 6t2 − 4t3 + t4

4t − 12t2 + 12t3 − 4t4

6t2 − 12t3 + 6t4

4t3 − 4t4

t4


 =




1 −4 6 −4 1
0 4 −12 12 −4
0 0 6 −12 6
0 0 0 4 −4
0 0 0 0 1







1
t

t2

t3

t4


 ,

MB =




1 −4 6 −4 1
0 4 −12 12 −4
0 0 6 −12 6
0 0 0 4 −4
0 0 0 0 1




10. Write a vector of the polynomial weights for x(t), expand
the polynomial weights, taking care to write the terms in
ascending powers of t , and factor the vector asMSu(t):

1

6




1 − 3t + 3t2 − t3
4 − 6t2 + 3t3

1 + 3t + 3t2 − 3t3

t3


 = 1

6




1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1






1
t

t2

t3




= MSu(t),

MS = 1

6




1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1




11. a.

(8, 2)(1, 2)

(4, 6) (5, 6)

0 2 4 6 8
0

2

4

8

6

b.

(1, 2)

(2, 6)

(4, 1.8)

(5, 4.2)

0 2 4 6 8
0

2

4

8

6

c. The graph for this part must show an inflection point.
The first new control point p4 must be on the line
determined by p2 and p3, placed so that p3 is not the
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midpoint of the line segment from p2 to p4. So p4 cannot

be

[
6.0
6.6

]
, but two natural choices are

[
5.5
5.4

]
and[

6.5
7.8

]
. The first figure below was produced from[

5.0
4.2

]
,

[
5.5
5.4

]
,

[
6.5
3.3

]
, and

[
7.0
5.3

]
. The MATLAB

input is [5 5.5 6.5 7; 4.2 5.4 3.3 5.3]

(1, 2)

(2, 6)
(5.5, 5.4)

(6.5, 3.3)

(7, 5.3)

(4, 1.8)

(5, 4.2)

0 21 3 4 65 7
0

1

2

4

3

5

7

6

The second graph, from a student, uses

[
5

4.2

]
,

[
5.5
5.4

]
,[

7
7

]
, and

[
9
8

]
.

0 21 3 4 65 10987
0

1

2

4

3

5

7

8

9

6

(1, 2)

(2, 6)

(5.5, 5.4)

(9, 8)

(7, 7)

(4, 1.8)

(5, 4.2)

12. a.

0 21 3 4 65 7
0

1

2

4

3

5

6

b. Second segment (one new control point):

0 21 3 4 65 7
0

1

2

4

3

5

6

Third segment:

0 21 3 4 65 7
0

1

2

4

3

5

6
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c. Three segments combined into one curve:

0 21 3 4 65 7
0

1

2

4

3

5

6

d. Sample bspline.m modification

%B-spline curve
disp(‘Sample B-spline Curve’)

%Input data points
A = input(‘Enter 2x6 Geometry Matrix:’);

%Set up the axes and keep them fixed.
axis([0 10 0 10])

%Simple default setting
hold on

%Create the parameter t and the vector u
that contains the powers of t.
t = linspace(0,1);
u = [t.ˆ0; t; t.ˆ2; t.ˆ3];

%plot each segment of the curve
for i = 1:3
G = [A(:,i) A(:,i+1) A(:,i+2) A(:,i+3)]

%Current geometry matrix
M = [1 -3 3 -1; 4 0 -6 3; 1 3 3 -3;
0 0 0 1]/6

%B-spline basis curve
x = G*M*u;

%The B-spline curve

plot(G(1,:),G(2,:),‘-ob’,
‘MarkerFacecolor’,‘b’,‘MarkerSize’,2)
%This comment plots the control points
with connecting lines.

%‘-ob’ draws lines and sets a circle
for each point, in blue.

%Use ‘ob’ instead, if you want no lines
between the circles.

%MarkerFaceColor fills in each circle
(marker) in blue.
%MarkerSize specifies the size of the
circle, in points.

plot(x(1,:), x(2,:),‘r’)
%Plot the B-sline curve in red.

if(i < 3)
disp(‘Press any key to continue’)
pause

end

end

13. a. From (12), q1 − q0 = 1
2 (p1 − p0)= 1

2 p1 − 1
2 p0. Since

q0 = p0, q1 = 1
2 (p1 + p0).

b. From (13), (q3 − q2)= −p0 − p1 + p2 + p3. So
8q3 + p0 + p1 − p2 − p3 = 8q2.

c. Use (8) to substitute for 8q3, and obtain

8q2 = (p0 + 3p1 + 3p2 + p3) + p0 + p1 − p2 − p3

= 2p0 + 4p1 + 2p2

Then dividing by 8 and using part (a) gives

q2 = 1
4 p0 + 1

2 p1 + 1
4 p2

= ( 1
4 p0 + 1

4 p1) + ( 1
4 p1 + 1

4 p2)

= 1
2 q1 + 1

4 (p1 + p2)

= 1
2 [q1 + 1

2 (p1 + p2)]
14. a. 3(r3 − r2)= z′(1), by (9) with z′(1) and ri in place of

x′(1) and pj .
z′(1)= .5x′(1), by (11) with t = 1.
.5x′(1)= (.5)3(p3 − p2), by (9).

b. From part (a), 6(r3 − r2)= 3(p3 − p2),
r3 − r2 = 1

2 p3 − 1
2 p2, and r3 − 1

2 p3 + 1
2 p2 = r2.

Since r3 = p3, this equation becomes r2 = 1
2 (p3 + p2).

c. 3(r1 − r0)= z′(0), by (9) with z′(0) and ri in place of
x′(0) and pj .
z′(0)= .5x′(.5), by (11) with t = 0.

d. Part (c) and (10) show that 3(r1 − r0)=
3
8 (−p0 − p1 + p2 + p3). Multiply by 8

3 and rearrange to
obtain 8r1 = −p0 − p1 + p2 + p3 + 8r0.

e. From (8), 8r0 = p0 + 3p1 + 3p2 + p3. Substitute into the
equation from part (d), and obtain
8r1 = 2p1 + 4p2 + 2p3. Divide by 8 and use part (b) to
obtain

r1 = 1
4 p1 + 1

2 p2 + 1
4 p3 = ( 1

4 p1 + 1
4 p2) + 1

4 (p2 + p3)

= 1
2
· 1

2 (p1 + p2) + 1
2 r2

Interchange the terms on the right, and obtain
r1 = 1

2 [r2 + 1
2 (p1 + p2)].

15. a. From (11), y′(1)= .5x′(.5)= z′(0).
b. Observe that y′(1)= 3(q3–q2). This follows from (9),

with y(t) and its control points in place of x(t) and its
control points. Similarly, for z(t) and its control points,
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z′(0)= 3(r1 − r0). By part (a), 3(q3 − q2)= 3(r1 − r0).
Replace r0 by q3, and obtain q3 − q2 = r1 − q3, and
hence q3 = (q2 + r1)/2.

c. Set q0 = p0 and r3 = p3.
Compute q1 = (p0 + p1)/2 and r2 = (p2 + p3)/2.
Compute m = (p1 + p2)/2.
Compute q2 = (l1 + m)/2 and r1 = (m + r2)/2.
Compute q3 = (q2 + r1)/2 and set r0 = q3.

16. A Bézier curve is completely determined by its four control
points. Two are given directly: p0 = x(0) and p3 = x(1).
From equation (9), x′(0)= 3(p1 − p0) and
x′(1)= 3(p3 − p2). Solving gives

p1 = 1
3 x′(0) + p0 and p2 = p3 − 1

3 x′(1)

17. a. The quadratic curve is
w(t)= (1 − t)2p0 + 2t (1 − t)p1 + t2p2. From Example
1, the tangent vectors at the endpoints are
w′(0)= 2p1 − 2p0 and w′(1)= 2p2 − 2p1. Denote the
control points of x(t) by r0, r1, r2, and r3. Then

r0 = x(0)= w(0)= p0 and r3 = x(1)= w(1)= p2

From equation (9) or Exercise 3(a) (using ri in place of
pi) and Example 1,

−3r0 + 3r1 = x′(0)= w′(0)= 2p1 − 2p0

so

−p0 + r1 = 2p1 − 2p0

3
and

r1 = 2p1 + p0

3
Similarly, from the tangent data at t = 1, along with
equation (9) and Example 1,

−3r2 + 3r3 = x′(1)= w′(1)= 2p2 − 2p1,

−r2 + p2 = 2p2 − 2p1

3
, r2 = p2 − 2p2 − 2p1

3
, and

r2 = 2p1 + p2

3
b. Write the standard formula (7), with ri in place of pi for
i = 0, . . . , 3, and then replace r0 by p0, and replace r3 by
p2:
x(t)= (1 − 3t + 3t2–t3)p0 + (3t − 6t2 + 3t3)r1

+ (3t2 − 3t3)r2 + t3p2
(*)

Use the formulas for r1 and r2 to examine the second and
third terms in (*):

(3t − 6t2 + 3t3)r1 = 1
3 (3t − 6t2 + 3t3)p0 + 2

3 (3t − 6t2 + 3t3)p1

= (t − 2t2 + t3)p0 + (2t − 4t2 + 2t3)p1

(3t2 − 3t3)r2 = 2
3 (3t

2 − 3t3)p1 + 1
3 (3t

2 − 3t3)p2

= (2t2 − 2t3)p1 + (t2 − t3)p2

When these two results are substituted in (*), the
coefficient of p0 is

(1 − 3t + 3t2 − t3) + (t − 2t2 + t3)= 1 − 2t + t2 = (1 − t)2
The coefficient of p1 is

(2t − 4t2 + 2t3) + (2t2 − 2t3)= 2t − 2t2 = 2t (1 − t)
The coefficient of p2 is (t2 − t3) + t3 = t2. So
x(t)= (1 − t)2p0 + 2t (1 − t)p1 + t2p2, which shows
that x(t) is the quadratic Bézier curve w(t).

18.




p0

−3p0 + 3p1

3p0 − 6p1 + 3p2

−p0 + 3p1 − 3p2 + p3



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Answers to Exercises
Chapter 8

Section 8.1, page 9

1. Some possible answers: y = 2v1 − 1.5v2 + .5v3,
y = 2v1 − 2v3 + v4, y = 2v1 + 3v2 − 7v3 + 3v4

STUDY GUIDE SOLUTION:

1. v1 =
[

1
2

]
, v2 =

[ −2
2

]
, v3 =

[
0
4

]
4, v4 =

[
3
7

]
,

y =
[

5
3

]

v2 − v1 =
[ −3

0

]
, v3 − v1 =

[ −1
2

]
, v4 − v1 =

[
2
5

]
,

y − v1 =
[

4
1

]
Solve c2(v2 − v1) + c3(v3 − v1) + c4(v4 − v1)=
y − v1 by row reducing the augmented matrix:[ −3 −1 2 4

0 2 5 1

]
∼

[ −3 −1 2 4
0 1 2.5 .5

]

∼
[ −3 0 4.5 4.5

0 1 2.5 .5

]

∼
[

1 0 −1.5 −1.5
0 1 2.5 .5

]
The general solution is c2 = 1.5c4 − 1.5,
c3 = −2.5c4 + .5, with c4 free. When c4 = 0,

y − v1 = −1.5(v2 − v1) + .5(v3 − v1)

and

y = 2v1 − 1.5v2 + .5v3

If c4 = 1, then c2 = 0 and

y − v1 = −2(v3 − v1) + 1(v4 − v1)

and

y = 2v1 − 2v3 + v4

If c4 = 3, then

y − v1 = 3(v2 − v1)− 7(v3 − v1) + 3(v4 − v1) and
y = 2v1 + 3v2 − 7v3 + 3v4

Of course, many other answers are possible. Note that
in all cases, the weights in the linear combination sum
to one.

2. y = −5v1 + 2v2 + 4v3. The weights sum to one, so this is an
affine sum.

3. y = −3v1 + 2v2 + 2v3. The weights sum to one, so this is an
affine sum.

4. y = 2.6v1 − .4v2 − 1.2v3

5. y = −1.4v1 + 2.3v2 + .1v3

6. a. p1 = −4b1 + 2b2 + 3b3 , so p1 ∈ aff S
b. p2 = 0.2b1 + 0.5b2 + 0.3b3, so p2 ∈ aff S
c. p3 = b1 + b2 + b3, so p3 /∈ aff S

7. a. p1 ∈ Span S, but p1 /∈ aff S
b. p2 ∈ Span S, and p2 ∈ aff S
c. p3 /∈ Span S, so p3 /∈ aff S

STUDY GUIDE SOLUTION:

7. The matrix [ v1 v2 v3 p1 p2 p3 ] reduces to


1 0 0 2 2 2
0 1 0 1 −4 2
0 0 1 −1 3 2
0 0 0 0 0 −5


.

Parts (a), (b), and (c) use columns 4, 5, and 6,
respectively, as the “augmented” column.

a. p1 = 2v1 + v2 − v3, so p1 is in Span S. The weights
do not sum to one, so p1 /∈ aff S.

b. p2 = 2v1 − 4v2 + 3v3, so p2 is in Span S. The
weights sum to one, so p2 ∈ aff S.
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c. p3 /∈ Span S because 0 �= − 5, so p3 cannot
possibly be in aff S.

8. The matrix [ v1 v2 v3 p1 p2 p3 ] reduces to


1 0 0 3 0 −2
0 1 0 −1 0 6
0 0 1 1 0 −3
0 0 0 0 1 0


.

Parts (a), (b), and (c) use columns 4, 5, and 6, respectively,
as the “augmented’’ column.

a. p1 = 3v1 − v2 + v3, so p1 is in Span S. The weights do
not sum to one, so p1 /∈ aff S.

b. p2 /∈ Span S because 0 �= 1 (column 5 is the augmented
column), so p2 cannot possibly be in aff S.

c. p3 = −2v1 + 6v2 − 3v3, so p3 is in Span S. The weights
sum to one, so p3 ∈ aff S.

9. a. True. This is the definition.
b. False. The weights in the linear combination must sum

to one.
c. True. See equation (1).
d. False. A flat is a translate of a subspace.
e. True. A hyperplane in R

3 has dimension 2, so it is a
plane.

10. a. False. If S = {x}, then aff S = {x}.
b. True. Theorem 2.
c. True. This is the definition.
d. False. A flat of dimension 2 is called a hyperplane only if

the flat is considered a subset of R
3. In general, a

hyperplane is a flat of dimension n− 1.
e. True. A flat through the origin is a subspace translated by

the 0 vector.

11. Span {v2 − v1, v3 − v1} is a plane if and only if
{v2 − v1, v3 − v1} is linearly independent. Suppose c2 and
c3 satisfy c2(v2 − v1) + c3(v3 − v1)= 0. Then
c2v2 + c3v3 − (c2 + c3)v1 = 0. Then c2 = c3 = 0, because
{v1, v2, v3} is a linearly independent set. This shows that
{v2 − v1, v3 − v1} is a linearly independent set. Thus,
Span {v2 − v1, v3 − v1} is a plane in R

3.

12. Since {v1, v2, v3} is a basis for R
3, the set

W = Span {v2 − v1, v3 − v1} is a plane in R
3, by Exercise

11. Thus,W + v1 is a plane parallel toW that contains v1.
Since v2 = (v2 − v1) + v1,W + v1 contains v2. Similarly,
W + v1 contains v3. Finally, Theorem 1 shows that
aff {v1, v2, v3} is the planeW + v1 that contains v1, v2, and
v3.

13. Let S = {x : Ax = b}. To show that S is affine, it suffices to
show that S is a flat, by Theorem 3. LetW = {x : Ax = 0}.
ThenW is a subspace of R

n, by Theorem 2 in Section 4.2

(or Theorem 12 in Section 2.8). Since S =W + p, where p
satisfies Ap = b, by Theorem 6 in Section 1.5, S is a
translate ofW , and hence S is a flat.

14. Suppose p,q ∈ S and t ∈ R. Then, by properties of the dot
product (Theorem 1 in Section 6.1),

[(1 − t)p + tq]·v = (1 − t)(p·v) + t (q·v)
= (1 − t)k + tk = k

Thus, [(1 − t)p + tq] ∈ S, by definition of S. This shows
that S is an affine set.

15. A suitable set consists of any three vectors that are not
collinear and have 5 as their third entry. If 5 is their third
entry, they lie in the plane x3 = 5. If the vectors are not
collinear, their affine hull cannot be a line, so it must be the
plane.

16. A suitable set consists of any four vectors that lie in the
plane 2x1 + x2 − 3x3 = 12 and are not collinear. If the
vectors are not collinear, their affine hull cannot be a line, so
it must be the plane.

17. If p,q ∈ f (S), then there exist r, s ∈ S such that f (r)= p
and f (s)= q. Given any t ∈ R, we must show that
z = (1 − t)p + tq is in f (S). Since f is linear,

z = (1 − t)p + tq = (1 − t)f (r) + tf (s)= f ((1 − t)r + ts)

Since S is affine, (1 − t)r + ts ∈ S. Thus, z ∈ f (S) and
f (S) is affine.

18. Given an affine set T , let S = {x ∈ R
n : f (x) ∈ T }. Con-

sider x, y ∈ S and t ∈ R. Then

f ((1 − t)x + ty)= (1 − t)f (x) + tf (y)

But f (x) ∈ T and f (y) ∈ T , so (1 − t)f (x) + tf (y) ∈ T
because T is an affine set. It follows that (1 − t)x + ty ∈ S.
This is true for all x, y ∈ S and t ∈ R, so S is an affine set.

19. Since B is affine, Theorem 2 implies that B contains all
affine combinations of points of B. Hence B contains all
affine combinations of points of A. That is, aff A ⊂ B.

20. Since aff B is an affine set, this result follows from Exercise
19, with B replaced by aff B.

21. Since A ⊂ (A ∪ B), it follows from Exercise 20 that
aff A ⊂ aff (A ∪ B). Similarly, aff B ⊂ aff (A ∪ B), so
[aff A ∪ aff B] ⊂ aff (A ∪ B).

22. Since (A ∩ B) ⊂ A, it follows from Exercise 20 that
aff (A ∩ B) ⊂ aff A. Similarly, aff (A ∩ B) ⊂ aff B, so
aff (A ∩ B) ⊂ (aff A ∩ aff B).
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23. One possibility is to let A=
{[

0
0

]
,

[
1
0

]}
and

B =
{[

0
0

]
,

[
0
1

]}
. Then (aff A) ∪ (aff B) consists of the

two coordinate axes, but aff (A ∪ B)= R
2.

24. One possibility is to let A=
{[

0
0

]
,

[
1
0

]}
and

B =
{[

1
0

]
,

[
2
0

]}
. Then both aff A and aff B are equal to

the x-axis. But A ∩ B =
{[

1
0

]}
, so

aff (A ∩ B)=
{[

1
0

]}
.

Section 8.2, page 19

1. Let v1 =
[

3
−3

]
, v2 =

[
0
6

]
, v3 =

[
2
0

]
. Then

v2 − v1 =
[ −3

9

]
, v3 − v1 =

[ −1
3

]
. Since v3 − v1 is a

multiple of v2 − v1, these two points are linearly dependent.
By Theorem 5, {v1, v2, v3} is affinely dependent. Note that
(v2 − v1)− 3(v3 − v1)= 0. A rearrangement produces the
affine dependence relation 2v1 + v2 − 3v3 = 0. (Note that
the weights sum to one.) Geometrically, v1, v2, and v3 are
collinear.

2. v1 =
[

2
1

]
, v2 =

[
5
4

]
, v3 =

[ −3
−2

]
; v2 − v1 =

[
3
3

]
,

v3 − v1 =
[ −5

−3

]
. Since v3 − v1 and v2 − v1 are not

multiples, they are linearly independent. By Theorem 5,
{v1, v2, v3} is affinely independent.

3. The set is affinely independent. If the points are called v1,
v2, v3, and v4, then {v1, v2, v3} is a basis for R

3 and
v4 = 16v1 + 5v2 − 3v3, but the weights in the linear
combination do not sum to one.

Solution:

Name the points v1, v2, v3, and v4. Then v2 − v1 =

 −3

−6
9


,

v3 − v1 =

 1

−3
12


, v4 − v1 =


 −1

13
−8


. To study linear

independence of these points, row reduce the matrix:
 −3 1 −1

−6 −3 13
9 12 −8


 ∼


 −3 1 −1

0 −5 15
0 15 −11


 ∼


 −3 1 −1

0 −5 15
0 0 34


. The points are linearly independent

because there is a pivot in each column. So {v1, v2, v3, v4} is
affinely independent, by Theorem 5.

Alternative Solution:
Name the points v1, v2, v3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. The first step is
to move the bottom row of ones (in the augmented matrix)
to the top to simplify the arithmetic:


1 1 1 1
1 −2 2 0
2 −4 −1 15

−1 8 11 −9


 ∼




1 1 1 1
0 −3 1 −1
0 −6 −3 13
0 9 12 −8




∼




1 1 1 1
0 −3 1 −1
0 0 −5 15
0 0 15 −11


 ∼




1 1 1 1
0 −3 1 −1
0 0 −5 15
0 0 0 34




The homogeneous points are linearly independent because
there is a pivot in each column. So the set {v1, v2, v3, v4} is
affinely independent, by Theorem 5.

4. −6v1 + 3v2 − 2v3 + 5v4 = 0

Solution:

Name the points v1, v2, v3, and v4. Then v2 − v1 =

 2

−8
4


,

v3 − v1 =

 3

−7
−9


, v4 − v1 =


 0

2
−6


. To study linear

independence of the translated points, row reduce the
augmented matrix for Ax = 0:
 2 3 0 0

−8 −7 2 0
4 −9 −6 0


 ∼


 2 3 0 0

0 5 2 0
0 −15 −6 0




∼

 2 3 0 0

0 5 2 0
0 0 0 0


 ∼


 1 0 −.6 0

0 1 .4 0
0 0 0 0




The first three columns are linearly dependent, so
{v1, v2, v3, v4} is affinely dependent, by Theorem 5. To find
the affine dependence relation, write the general solution of
this system: x1 = .6x3, x2 = −.4x3, with x3 free. Set x3 = 5,
for instance. Then x1 = 3, x2 = −2, and x3 = 5. Thus,
3(v2 − v1)− 2(v3 − v1) + 5(v4 − v1)= 0. Rearranging
gives −6v1 + 3v2 − 2v3 + 5v4 = 0.
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Alternative Solution:
Name the points v1, v2, v3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. The first step is
to move the bottom row (in the augmented matrix) to the top
to simplify the arithmetic:

[
ṽ1 ṽ2 ṽ3 ṽ4 0̃

] ∼




1 1 1 1 0
−2 0 1 −2 0

5 −3 −2 7 0
3 7 −6 −3 0




∼




1 0 0 1.2 0
0 1 0 −.6 0
0 0 1 .4 0
0 0 0 0 0




Thus, x1 + 1.2x4 = 0, x2 − .6x4 = 0, and x3 + .4x4 = 0, with
x4 free. Take x4 = 5, for example, and get x1 = −6, x2 = 3,
and x3 = −2. An affine dependence relation is
−6v1 + 3v2 − 2v3 + 5v4 = 0.

5. −4v1 + 5v2 − 4v3 + 3v4 = 0

Solution:
One solution method is to translate the points to the origin.
The following solution uses homogeneous forms. The first
step is to move the bottom row (in the augmented matrix) to
the top to simplify the arithmetic:

[
ṽ1 ṽ2 ṽ3 ṽ4 0̃

] ∼




1 1 1 1 0
1 0 −1 0 0
0 1 5 5 0

−2 1 1 −3 0




∼




1 0 0 4
3 0

0 1 0 − 5
3 0

0 0 1 4
3 0

0 0 0 0 0




Thus, x1 = − 4
3x4, x2 = 5

3x4, x3 = − 4
3x4. An affine

dependence relation is −4v1 + 5v2 − 4v3 + 3v4 = 0.

6. The set is affinely independent, as the following calculation
with homogeneous forms shows:

[
ṽ1 ṽ2 ṽ3 ṽ4

] ∼




1 1 1 1
1 0 2 3
3 −1 5 5
1 −2 2 0




∼




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Row reduction of [ v1 v2 v3 v4 ] shows that
{v1, v2, v3} is a basis for R

3 and v4 = −2v1 + 1.5v2 + 2.5v3,
but the weights in the linear combination do not sum to one.
Instructor: (Possible exam question)
If the last entry of v4 is changed from 0 to 1, then row
reduction of [ v1 v2 v3 v4 ] shows that {v1, v2, v3} is a
basis for R

3 and v4 = −3v1 + v2 + 3v3.

7. The barycentric coordinates are (−2, 4,−1).

Solution:
Denote the given points as v1, v2, v3, and p. Row reduce the
augmented matrix for the equation x1ṽ1 + x2ṽ2 + x3ṽ3 = p̃.
Remember to move the bottom row of ones to the top as the
first step, to simplify the arithmetic by hand.

[
ṽ1 ṽ2 ṽ3 p̃

] ∼




1 1 1 1
1 2 1 5

−1 1 2 4
2 0 −2 −2
1 1 0 2




∼




1 0 0 −2
0 1 0 4
0 0 1 −1
0 0 0 0
0 0 0 0




Thus, x1 = −2, x2 = 4, x3 = −1, and p̃ = −2ṽ1 + 4ṽ2 − ṽ3,
so p = −2v1 + 4v2 − v3, and the barycentric coordinates are
(−2, 4,−1).

8. The barycentric coordinates are (2,−1, 0).

Solution:
Denote the given points as v1, v2, v3, and p. Row reduce the
augmented matrix for the equation x1ṽ1 + x2ṽ2 + x3ṽ3 = p̃.

[
ṽ1 ṽ2 ṽ3 p̃

] ∼




1 1 1 1
0 1 1 −1
1 1 4 1

−2 0 −6 −4
1 2 5 0




∼




1 0 0 2
0 1 0 −1
0 0 1 0
0 0 0 0
0 0 0 0




Thus, p̃ = 2ṽ1 − ṽ2 + 0ṽ3, so p = 2v1 − v2. The barycentric
coordinates are (2,−1, 0).
Instructor: v3 = 3v1 + v2
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9. a. True. Theorem 5 uses the point v1 for the translation, but
the paragraph after the theorem points out that any one
of the points in the set can be used for the translation.

b. False, by (d) of Theorem 5.
c. False. The weights in the linear combination must sum

to zero, not one.
d. False. The only points that have barycentric coordinates

determined by S belong to aff S.
e. True. The barycentric coordinates are zero on the edges

of the triangle and positive for interior points.

10. a. False. By Theorem 5, the set of homogeneous forms
must be linearly dependent, too.

b. True. If one statement in Theorem 5 is false, the other
statements are false, too.

c. False. Theorem 6 applies only when S is affinely
independent.

d. False. The color interpolation applies only to points
whose barycentric coordinates are nonnegative, since the
colors are formed by nonnegative combinations of red,
green, and blue.

e. True. See the discussion of Fig. 5.

11. When a set of five points is translated by subtracting, say,
the first point, the new set of four points must be linearly
dependent, by Theorem 8 in Section 1.7, because the four
points are in R

3. By Theorem 5, the original set of five
points is affinely dependent.

12. Suppose v1, . . . , vp are in R
n and p ≥ n + 2. Since

p − 1 ≥ n + 1, the points v2 − v1, v3 − v1, . . . , vp − v1 are
linearly dependent, by Theorem 8 in Section 1.7. By
Theorem 5, {v1, v2, . . . , vp} is affinely dependent.

13. If {v1, v2} is affinely dependent, then there exist c1 and c2,
not both zero, such that c1 + c2 = 0, and c1v1 + c2v2 = 0.
Then c1 = −c2 �= 0 and c1v1 = −c2v2 = c1v2, which implies
that v1 = v2. Conversely, if v1 = v2, let c1 = 1 and c2 = −1.
Then c1v1 + c2v2 = v1 + (−1)v1 = 0 and c1 + c2 = 0, which
shows that {v1, v2} is affinely dependent.

14. Let S1 consist of three (distinct) points on a line through the
origin. The set is affinely dependent because the third point
is on the line determined by the first two points. Let S2

consist of two (distinct) points on a line through the origin.
By Exercise 13, the set is affinely independent because the
two points are distinct. (A correct solution should include a
justification for the sets presented.)

15. a. The vectors v2 − v1 =
[

1
2

]
and v3 − v1 =

[
3

−2

]
are

not multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

b. p1 ↔ (− 6
8 ,

9
8 ,

5
8

)
, p2 ↔ (

0, 1
2 ,

1
2

)
, p3 ↔ (

14
8 ,− 5

8 ,− 1
8

)
,

p4 ↔ (
6
8 ,− 5

8 ,
7
8

)
, p5 ↔ (

2
8 ,

1
8 ,

5
8

)
c. p6 is (−,−,+), p7 is (0,+,−), and p8 is (+,+,−).

16. a. The vectors v2 − v1 =
[

1
4

]
and v3 − v1 =

[
4
2

]
are not

multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

b. p1 ↔ (− 2
7 ,

5
7 ,

4
7 ), p2 ↔ ( 2

7 ,− 5
7 ,

10
7 ), p3 ↔ ( 2

7 ,
2
7 ,

3
7 )

c. p4 ↔ (+,−,−), p5 ↔ (+,+,−), p6 ↔ (+,+,+),
p7 ↔ (−, 0,+). See the figure below. Actually,
p4 ↔ ( 19

14 ,− 2
14 ,− 3

14 ), p5 ↔ ( 5
14 ,

12
14 ,− 3

14 ),

p6 ↔ ( 9
14 ,

2
14 ,

3
14 ), and p7 ↔ (− 1

2 , 0,
3
2 ).

p2

p1

p3

p4

p5 p7

v1

v2

v3p6

17. Suppose S = {b1, . . . ,bk} is an affinely independent set.
Then (7) has a solution, because p is in aff S. Hence (8) has
a solution. By Theorem 5, the homogeneous forms of the
points in S are linearly independent. Thus, (8) has a unique
solution. Then (7) also has a unique solution, because (8)
encodes both equations that appear in (7).

The following argument mimics the proof of Theorem
7 in Section 4.4. If S = {b1, . . . ,bk} is an affinely
independent set, then scalars c1, . . . , ck exist that satisfy (7),
by definition of aff S. Suppose p also has the representation

p = d1b1 + · · · + dkbk and d1 + · · · + dk = 1 (7a)

for scalars d1, . . . , dk . Then subtraction produces the
equation

0 = p − p = (c1 − d1)b1 + · · · + (ck − dk)bk (7b)

The weights in (7b) sum to zero because the c’s and the d’s
separately sum to one. This is impossible, unless each
weight in (8) is zero, because S is an affinely independent
set. This proves that ci = di for i = 1, . . . , k.

18. Let p =

 xy
z


 . Then


 xy
z


 = x

a


 a0

0


 +

y

b


 0
b

0


 +

z

c


 0

0
c


 +

(
1 − x

a
− y

b
− z

c

) 
 0

0
0


. So the barycentric
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coordinates are x/a, y/b, z/c, and 1 − x/a − y/b − z/c.
This holds for any nonzero choices of a, b, and c.

19. Let a =
[
a1

a2

]
, b =

[
b1

b2

]
, and c =

[
c1

c2

]
. Then

det[ ã b̃ c̃ ] = det


 a1 b1 c1

a2 b2 c2

1 1 1


 =

det


 a1 a2 1
b1 b2 1
c1 c2 1


 by using the transpose property of the

determinant (Theorem 5 in Section 3.2). By Exercise 30 in
Section 3.3, this determinant equals 2 times the area of the
triangle with vertices at a, b, and c.

20. If p is on the line through a and b, then p is an affine
combination of a and b, so p̃ is a linear combination of ã
and b̃. Thus, the columns of [ ã b̃ p̃ ] are linearly
dependent. So the determinant of this matrix is zero.

21. If [ ã b̃ c̃ ]

 rs
t


= p̃, then Cramer’s rule gives

r = det[ p̃ b̃ c̃ ]/ det[ ã b̃ c̃ ]. By Exercise 19, the
numerator of this quotient is twice the area of�pbc, and the
denominator is twice the area of �abc. This proves the
formula for r . The other formulas are proved using
Cramer’s rule for s and t .

22. Let p = (1 − x)q + xa, where q is on the line segment from
b to c. Then, because the determinant is a linear function of
the first column when the other columns are fixed (Section
3.2),

det[ p̃ b̃ c̃ ] = det[ (1 − x)q̃ + xã b̃ c̃ ]
= (1 − x)·det[ q̃ b̃ c̃ ] + x ·det[ ã b̃ c̃ ]

Now, [ q̃ b̃ c̃ ] is a singular matrix because q̃ is a linear

combination of b̃ and c̃. So det[ q̃ b̃ c̃ ] = 0 and

det[ p̃ b̃ c̃ ] = x ·det[ ã b̃ c̃ ].

Section 8.3, page 27

1.

1

2

x2

x1

2. a.

2

2 4

x2

x1

b. x2

x1

c.

2

2 4

x2

x1

3. None are in conv S.

Solution:
From Exercise 7 in Section 8.1, p1 and p3 are not in aff S, so
they certainly are not in conv S. Since
p2 = 2v1 − 4v2 + 3v3, and the weights sum to one, p2 is in
aff S. However, S is affinely independent (because S is
linearly independent), so the barycentric coordinates of p2

are 2, −4 and 3. Since one coordinate is negative, p2 is not
in conv S.

4. p2 ∈ conv S

Solution:
From Exercise 6 in Section 8.1, p3 is not in aff S, so it
certainly is not in conv S. Since p1 = −4b1 + 2b2 + 3b3 and
p2 = 0.2b1 + 0.5b2 + .3b3, and in each case the weights sum
to one, both p1 and p2 are in aff S. However, S is affinely
independent (because S is linearly independent), so the
weights in these combinations are barycentric coordinates.
Thus, p2 is in conv S, because its barycentric coordinates
are nonnegative. This is not the case for p1, so p1 /∈ conv S.
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5. p1 = − 1
6 v1 + 1

3 v2 + 2
3 v3 + 1

6 v4, so p1 /∈ conv S.
p2 = 1

3 v1 + 1
3 v2 + 1

6 v3 + 1
6 v4, so p2 ∈ conv S.

6. a. p1 = 1
2 v1 − 1

2 v2 + v3 ∈ aff S

b. p2 = 1
4 v1 + 1

4 v2 + 1
2 v3 ∈ conv S

c. p3 = v1 + v2 − 2v3 ∈ Span S
d. projSpan S p4 = 2

3 v1 + 8
9 v2 + 8

9 v3 = (− 4
9 ,− 8

9 ,
10
9 , 4

) �= p4,
so p4 /∈ Span S

7. a. The barycentric coordinates of p1, p2, p3, and p4 are,
respectively,

(
12
13 ,

3
13 ,− 2

13

)
,
(

8
13 ,

2
13 ,

3
13

)
,
(

2
3 , 0,

1
3

)
, and(

9
13 ,− 1

13 ,
5
13

)
.

b. p1 and p4 are outside conv T . p2 is inside conv T . p3 is
on the edge v1v3 of conv T .

8. p1 and p3 are outside the tetrahedron conv S. p2 is on the
face containing the vertices v2, v3, and v4. p4 is inside
conv S. p5 is on the edge between v1 and v3.

9. p = 1
6 v1 + 1

2 v2 + 1
3 v4 and p = 1

2 v1 + 1
6 v2 + 1

3 v3.

10. p = 3
5 v2 + 3

10 v3 + 1
10 v4 and p = 1

11 v1 + 6
11 v2 + 4

11 v3

11. a. False. In order for y to be a convex combination, the c’s
must also all be nonnegative.

b. False. If S is convex, then conv S is equal to S.
c. False. For example, the union of two distinct points is

not convex, but the individual points form convex sets.

12. a. True. This is the definition.
b. True. Theorem 9.
c. False. The points do not have to be distinct. For

example, S might consist of two points in R
5. A point in

conv S would be a convex combination of these two
points. Caratheodory’s Theorem requires n + 1 or fewer
points.

13. pos S is a cone with vertex at (0, 0) containing the positive
x-axis, with sides on the lines y = ±x.

14. a. There are many possibilities. For example,
p = v1 + v2 + 2v3, so p ∈ pos S.
p = −2v1 + 4v2 − v3, so p ∈ aff S. It is clear from a
graph that p /∈ conv S.

b. The set in Exercise 13 consists of exactly two points, say
v1 and v2. These points form a basis for R

2. Any other
point p in R

2 has a unique representation as a linear
combination of v1 and v2. If this combination is both
affine and positive, it must be convex. In part (a) above,
there were two different linear combinations giving p,
one affine and one positive, but no single linear
combination with both properties.

15. Let y ∈ pos (conv S). Then y = c1v1 + · · · + ckvk , where
vi ∈ conv S and ci ≥ 0. But by Caratheodory’s Theorem,

each vi is a convex combination of n + 1 (or fewer) points
of S, so

vi = (di1wi1 + · · · + di,n+1wi,n+1),

where

dij ≥ 0, �dij = 1, and wij ∈ S
Then

y = c1(d11w11 + · · · + d1,n+1w1,n+1) + · · · +
ck(dk1wk1 + · · · + dk,n+1wk,n+1)

Since all these coefficients are nonnegative, this shows that
y ∈ pos S.

The converse is immediate since S ⊂ conv S.

16. Suppose S is convex and let y ∈ pos S. Then
y = c1v1 + · · · + ckvk , where vi ∈ S and ci ≥ 0. Let
α = c1 + · · · + ck . If α = 0, then all ci = 0. It follows that
y = 0, and y = λs for λ= 0. If α �= 0, then
y
α

= c1

α
v1 + · · · +

ck

α
vk ∈ S, since S is convex

That is, y/α = s for some s ∈ S, and y = αs.

17. If p,q ∈ f (S), then there exist r, s ∈ S such that f (r)= p
and f (s)= q. If 0 ≤ t ≤ 1, we must show that
y = (1 − t)p + tq is in f (S). Since f is linear,

y = (1 − t)p + tq = (1 − t)f (r) + tf (s)= f ((1 − t)r + ts)

Since S is convex, (1 − t)r + ts ∈ S whenever 0 ≤ t ≤ 1.
Thus, y ∈ S and f (S) is convex.

18. Suppose r, s ∈ S and 0 ≤ t ≤ 1. Then, since f is a linear
transformation,

f ((1 − t)r + ts)= (1 − t)f (r) + tf (s)

But f (r) ∈ T and f (s) ∈ T , so (1 − t)f (r) + tf (s) ∈ T
since T is convex. It follows that (1 − t)r + ts ∈ S. This
shows that S is convex.

19. Suppose A ⊂ B, where B is convex. Then, since B is
convex, Theorem 7 implies that B contains all convex
combinations of points of B. Hence B contains all convex
combinations of points of A. That is, conv A ⊂ B.

20. Suppose A ⊂ B. Then A ⊂ B ⊂ conv B. Since conv B is
convex, Exercise 19 shows that conv A ⊂ conv B.

21. Since A ⊂ (A ∪ B), Exercise 20 shows that
conv A ⊂ conv (A ∪ B). Similarly,
conv B ⊂ conv (A ∪ B). Thus,
[(conv A) ∪ (conv B)] ⊂ conv (A ∪ B).

22. Since (A ∩ B) ⊂ A, Exercise 20 shows that
conv (A ∩ B) ⊂ conv A. Similarly,
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conv (A ∩ B) ⊂ conv B. Thus,
conv (A ∩ B) ⊂ [(conv A) ∩ (conv B)].

23. One possibility is to let A be two adjacent corners of a
square and B be the other two corners. Then
(conv A) ∪ (conv B) consists of two opposite sides of the
square, but conv (A ∪ B) is the whole square.

24. One possibility is to let A be a pair of opposite vertices of a
square and B be the other pair of opposite vertices. Then
conv A and conv B are intersecting diagonals of the square.
A ∩ B is the empty set, so conv (A ∩ B) must be empty,
too. But conv A ∩ conv B contains the single point where
the diagonals intersect. So conv (A ∩ B) is a proper subset
of conv A ∩ conv B.

25. a. Hint: Suppose F is not a subset of G and G is not a
subset of F . Then there exist points p and q such that
p ∈ F , p /∈ G, q ∈ G, and q /∈ F . Consider the point
r = ( 1

2 )(p + q). Since F ∪G is convex, r belongs to the
line segment between p and q, which is contained in
F ∪G. Is r ∈ F ? Is r ∈ G?

STUDY GUIDE SOLUTION:
If r ∈ F , then q ∈ F since q = 2r − p and F is a
subspace. This contradicts q /∈ F . Similarly, if r ∈ G,
we reach the contradiction p ∈ G. Thus, the points p and
q cannot both exist as described, and either F ⊂ G or
G ⊂ F . The converse is immediate.

b. Here is one possibility in R
1: let A= [1, 4] and

B = [2, 5].
26. a. p1

p3

p0

f0(   )3
4

f0(   )1
2

f0(   )1
4

f1(   )1
4 f1(   )1

2 f1(   )3
4

g(   )1
4

g(   )1
2

g(   )3
4

b. g(t)= (1 − t)f0(t) + tf1(t)= (1 − t)[(1 − t)p0 + tp1] +
t[(1 − t)p1 + tp2] = (1 − t)2p0 + 2t (1 − t)p1 + t2p2.
The sum of the weights in the linear combination for g is
(1 − t)2 + 2t (1 − t) + t2, which equals
(1 − 2t + t2) + (2t − 2t2) + t2 = 1. The weights are
each between 0 and 1 when 0 ≤ t ≤ 1, so g(t) is in
conv {p0,p1,p2}.

27. h(t)= (1 − t)g1(t) + tg2(t). Use the representation for
g1(t) from Exercise 26, and the analogous representation for
g2(t), based on the control points p1, p2, and p3, and obtain

h(t) = (1 − t)[(1 − t)2p0 + 2t (1 − t)p1 + t2p2]
+ t[(1 − t)2p1 + 2t (1 − t)p2 + t2p3]

= (1 − t)3p0 + 2t (1 − 2t + t2)p1 + (t2–t3)p2

+ t (1 − 2t + t2)p1 + 2t2(1 − t)p2 + t3p3

= (1 − 3t + 3t2–t3)p0 + (2t − 4t2 + 2t3)p1

+ (t2–t3)p2 + (t − 2t2 + t3)p1 + (2t2 − 2t3)p2 + t3p3

= (1 − 3t + 3t2–t3)p0 + (3t − 6t2 + 3t3)p1

+ (3t2 − 3t3)p2 + t3p3

By inspection, the sum of the weights in this linear
combination is 1, for all t . To show that the weights are
nonnegative for 0 ≤ t ≤ 1, factor the coefficients and write

h(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2

+ t3p3 for ≤ t ≤ 1

Thus, h(t) is in the convex hull of the control points p0, p1,
p2, and p3.

28. Fix t , with 0 ≤ t ≤ 1. If g1(t) is in S0 and if g2(t) is in S1,
then there exist nonnegative weights c0, . . . , ck that sum to
one, and nonnegative weights d1, . . . , dk+1 that also sum to
one, such that

g1(t)= c0p0 + c1p1 + · · · + ckpk

and

g2(t)= d1p1 + · · · + dkpk + dk+1pk+1

If h(t)= (1 − t)g1(t) + t ·g2(t), then the weights on
p0, . . . ,pk+1 in the expression for h(t) are nonnegative
because they are nonnegative ci and di multiplied by (1 − t)
and t . Further, the sum of these weights is (1 − t)[c0 + · · · +
ck] + t[d1 + · · · + dk+1] = (1 − t)·1 + t ·1 = 1. Thus,
h(t) ∈ conv {p0, . . . ,pk+1} for each t .

(More detailed solution)
Fix t , with 0 ≤ t ≤ 1. By hypothesis, g1(t)= ∑k

i=0 cipi and
g2(t)= ∑k+1

j=1 djpj for some nonnegative constants ci and
dj , respectively, such that

∑
ci = 1 and

∑
dj = 1. Let

y = (1 − t)g1(t) + tg2(t)

= (1 − t)
k∑
i=0
cipi + t

k+1∑
j=1
djpj

=
k∑
i=0
(1 − t)cipi +

k+1∑
j=1
tdjpj

The weights in this linear combination are all nonnegative,
so to show y ∈ conv {p0,p1, . . . ,pk+1}, it suffices to show
that the weights sum to one. In fact, this sum is
k∑
i=0
(1 − t)ci +

k+1∑
j=1
tdj = (1 − t)

k∑
i=0
ci + t

k+1∑
j=1
dj

= (1 − t)·1 + t ·1 = 1
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Possible Test Question. Let p0, p1, p2, and p3 be points in
R
n. Show that a line segment from a point in

conv {p0,p1,p2} to a point in conv {p1,p2,p3} is contained
in conv {p0,p1,p2,p3}.
Solution:
Given p ∈ conv {p0,p1,p2} and q ∈ conv {p1,p2,p3}, let
y = (1 − t)p + tq for some t such that 0 ≤ t ≤ 1. Write
p = c0p0 + c1p1 + c2p2 and q = d1p1 + d2p2 + d3p3, where
the weights in each case are nonnegative and sum to one.
Etc.

Section 8.4, page 38

1. f (x1, x2)= 3x1 + 4x2 and d = 13

Solution:
v2 − v1 =

[
3
1

]
−

[ −1
4

]
=

[
4

−3

]
, n =

[
3
4

]
.

f (x1, x2)= 3x1 + 4x2. f (v1)= 3(3) + 4(1)= 13.

2. f (x1, x2)= 5x1 − 3x2 and d = −7

Solution:
v2 − v1 =

[
1
4

]
−

[ −2
−1

]
=

[
3
5

]
, n =

[
5

−3

]
.

f (x1, x2)= 5x1 − 3x2. f (v1)= 5(1)− 3(4)= −7.

3. a. n =

 0

2
3


 or a multiple

b. f (x)= 2x2 + 3x3, d = 11

4. a. n =

 4

3
−6


 or a multiple

b. f (x)= 4x1 + 3x2 − 6x3, d = −8

Solution:

v1 =

 1

−2
1


 , v2 − v1 =


 3

0
2


 , v3 − v1 =


 6

−2
3




∣∣∣∣∣∣
3 6 x1

0 −2 x2

2 3 x3

∣∣∣∣∣∣ = 4x1 + 3x2 − 6x3 = f (x1, x2, x3)

So n =

 4

3
−6


 and d = n·v1 = −8.

5. a. n =




3
−1

2
1


 or a multiple

b. f (x)= 3x1 − x2 + 2x3 + x4, d = 5

6. a. n =




−2
3

−5
1


 or a multiple

b. f (x)= −2x1 + 3x2 − 5x3 + x4, d = 4

Solution:

v1 =




1
2
0
0


, v2 − v1 =




1
0

−1
−3


, v3 − v1 =




0
1
2
7


,

v4 − v1 =




2
0

−1
−1


. Solve the equations (v2 − v1)·n = 0,

(v3 − v1)·n = 0, (v4 − v1)·n = 0. The augmented matrix is
 1 0 −1 −3 0

0 1 2 7 0
2 0 −1 −1 0


 ∼


 1 0 0 2 0

0 1 0 −3 0
0 0 1 5 0


 .

Thus, x1 = −2x4, x2 = 3x4, x3 = −5x4, with x4 free. Take

x4 = 1, for example, to get n =




−2
3

−5
1


.

b. Let f (x1, x2, x3, x4)= −2x1 + 3x2 − 5x3 + x4. Let
d = f (v1)= −2(1) + 3(2) + 0 + 0 = 4.

7. v2 is on the same side as 0, v1 is on the other side, and v3 is
in H .

Solution:
Compute n·p = 2. Then H = {x : n·x = 2}. The origin is
in H0 = {x : n·x = 0}. Compute n·v1 = 5. This is more
than 2, so v1 and 0 are on the opposite sides of H . Compute
n·v2 = −2, which is less than 2, so v2 and 0 are on the same
side of H . Compute n·v3 = 2, so v3 is in H .

8. Let H = [f : d], where f (x1, x2, x3)= 3x1 + x2 − 2x3 and
d = 4. There is no hyperplane parallel to H that strictly
separates A and B.

9. One possibility is p =




32
−14

0
0


, v1 =




10
−7

1
0


, v2 =




−4
1
0
1




Solution:
H1 = {x : n1 ·x = d1} and H2 = {x : n2 ·x = d2}. Since
p1 ∈ H1, d1 = n1 ·p1 = 4. Similarly, d2 = n2 ·p2 = 22.
Solve the simultaneous system [1 2 4 2]x = 4 and
[2 3 1 5]x = 22:[

1 2 4 2 4
2 3 1 5 22

]
∼

[
1 0 −10 4 32
0 1 7 −1 −14

]
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The general solution provides one set of vectors, p, v1, and
v2. Other choices are possible.

x =




32
−14

0
0


 + x3




10
−7

1
0


 + x4




−4
1
0
1


 = p + x3v1 + x4v2, where

p =




32
−14

0
0


 , v1 =




10
−7

1
0


 , v2 =




−4
1
0
1




10. 2, 3, or 4

11. a. False. A linear functional goes from R
n to R.

b. False. See the discussion of (1) and (4). There is a 1×n
matrix A such that f (x)= Ax for all x in R

n.
Equivalently, there is a point n in R

n such that
f (x)= n·x for all x in R

n.
c. True. See the comments after the definition of strictly

separate.
d. False. See the sets in Fig. 4.

12. a. True. See the statement after (3).
b. False. The vector n must be nonzero. If n = 0, then the

given set is empty if d �= 0 and the set is all of R
n if

d = 0.
c. False. Theorem 12 requires that the sets A and B be

convex. For example, A could be the boundary of a
circle and B could be the center of the circle.

d. False. Some other hyperplane might strictly separate
them. See the caution at the end of Example 8.

13. Let x, y ∈ B(p, δ) and suppose z = (1 − t)x + ty, where
0 ≤ t ≤ 1. Then

‖z − p‖ = ‖[(1 − t)x + ty] − p‖
= ‖(1 − t)(x − p) + t (y − p)‖
≤ (1 − t)‖x − p‖ + t‖y − p‖
< (1 − t)δ + tδ = δ

where the first inequality comes from the Triangle
Inequality (Theorem 17 in Section 6.7) and the second
inequality follows from x, y ∈ B(p, δ). It follows that
z ∈ B(p, δ) and B(p, δ) is convex.

14. Let S be a bounded set. Then there exists a δ > 0 such that
S ⊂ B(0, δ). Since B(0, δ) is convex by Exercise 13,
Theorem 9 in Section 8.3 implies that conv S ⊂ B(0, δ) and
conv S is bounded.

15. f (x, y)= 4x + y. A natural choice for d is 12.75, which
equals f (3, .75). The point (3, .75) is three-fourths of the
distance between the center of B(0, 3) and the center of
B(p, 1).

Solution:
Let L be the line segment from the center of B(0, 3) to the
center of B(p, 1). This is on the line through the origin in
the direction of p. The length of L is (42 + 12)1/2 ≈ 4.1231.
This exceeds the sum of the radii of the two disks, so the
disks do not touch. If the disks did touch, the separating
hyperplane (line) would have to be orthogonal to p, the
vector that in this case determines the direction of L. Since
the disks are separated slightly, the hyperplane need not be
exactly perpendicular, but the easiest one to find is a
hyperplane H whose normal vector is p. So define f by
f (x)= p·x.

To find d, evaluate f at any point on L that is between
the two disks. If the disks were tangent, that point would be
three-fourths of the distance between their centers, since the
radii are 3 and 1. Since the disks are slightly separated, the
distance is 4.1231. Three-fourths of this distance is greater
than 3, and one-fourth of this distance is greater than 1. A
suitable value of d is f (q), where
q = ( 1

4 )0 + ( 3
4 )p = (3, .75). So d = 4(3) + 1(.75)= 12.75.

16. Note: p =
[

6
1

]
. f (x, y)= 4x − 2y. A natural choice for d

is f (5, 1.5)= 17.

Solution:
The normal to the separating hyperplane has the direction of
the line segment between p and q. So, let

n = p − q =
[

4
−2

]
. The distance between p and q is

√
20,

which is more than the sum of the radii of the two balls. The
large ball has center q. A point three-fourths of the distance
from q to p will be greater than 3 units from q and greater
than 1 unit from p. This point is

x = .75p + .25q = .75

[
6
1

]
+ .25

[
2
3

]
=

[
5.0
1.5

]
Compute n·x = 17. The desired hyperplane is{[
x

y

]
: 4x − 2y = 17

}
.

17. Exercise 2(a) in Section 8.3 gives one possibility. Or let
S = {(x, y) : x2y2 = 1 and y > 0}. Then conv S is the
upper (open) half-plane.

18. One possibility is A= {(x, y) : |x| ≤ 1 and y = 0} and
B = {(x, y) : x2y2 = 1 and y > 0}.

19. Let y ∈ B(p, δ) so that λy ∈ λB(p, δ). Then ‖y − p‖ < δ,
so ‖λy − λp‖ = λ‖y − p‖ < λδ , and λy ∈ B(λp, λδ).

Conversely, suppose z ∈ B(λp, λδ). Then
‖z − λp‖ < λδ, so∥∥ z
λ

− p
∥∥ = 1

λ
‖z − λp‖ < 1

λ
(λδ)= δ
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Thus, z
λ

∈ B(p, δ) and z ∈ λB(p, δ).
The proof of the second part is similar.

20. If p ∈ cl S, then p ∈ S or p ∈ bd S. If p ∈ S, then every
open ball centered at p contains the point p, which is in S. If
p ∈ bd S, then, by definition, every open ball centered at p
intersects S.

On the other hand, suppose every open ball centered at
p contains a point of S. If p is not in S, then every open ball
centered at p intersects both S and its complement. Thus,
p ∈ bd S.

21. Let x ∈ cl (cl S). Then, given any δ > 0, there exists a point
p ∈ B(x, δ) ∩ cl S. We must show that some point of
B(x, δ) is in S. Since p ∈ cl S, either p ∈ S or p ∈ bd S. If
p ∈ S, we are done. Otherwise, p ∈ bd S. Let
ε = δ − ‖x − p‖. Then ε > 0 and the open ball
B(p, ε) ⊂ B(x, δ). See the figure below. Since p ∈ bd S,
there exists a point s in B(p, ε) ∩ S. But then
s ∈ B(x, δ) ∩ S and x ∈ cl S.

Conversely, let x ∈ cl S. Then, given any δ > 0, there
exists a point q ∈ B(x, δ) ∩ S. But S ⊂ cl S, so
q ∈ B(x, δ) ∩ cl S and x ∈ cl (cl S).

B(p, �)

B(x, �)

p
s

x

22. Assume without loss of generality that y = 0. Then, for any
λ such that 0 < λ < 1, we have z = λx. See the figure
below. If x ∈ int S, then there exists δ > 0 such that
B(x, δ) ⊂ S. Now B(λx, λδ)= λB(x, δ), by Exercise 19.
Since S is convex and 0 ∈ S, λB(x, δ) ⊂ S. Thus,
B(z, λδ) ⊂ S and z ∈ int S.

xzy = 0

B(x, �)

B(z, ��)

23. Let z = λx + (1 − λ)y, with 0 < λ < 1. We may assume
without loss of generality that 1

2 y + 1
2 z = 0. Then y = −tx

for some t > 0. See the figure below. Since x ∈ int S, there
exists an open ball U = B(x, δ) contained in S. Let
V = −tU . Then V is an open ball of radius tδ about y.

Since y ∈ cl S, there exists a point p in V ∩ S. That is,
p = −tu for some u ∈ U . Since u and −tu are in the
convex set S, it follows that 0 ∈ S. But then Exercise 22
implies z ∈ int S.

y
p

u

xz0

U = B(x, �)

V = –tU

24. Let x, y ∈ int S. By Exercise 22, all the points
(1 − t)x + ty, where 0 < t < 1, are in the interior of S.
Thus, xy ⊂ int S, and int S is convex.

25. Let x, y ∈ cl S and let z = αx + βy, where α ≥ 0, β ≥ 0,
and α + β = 1. Furthermore, let B(z, δ) be an open ball
centered at z. See the figure below. Since x and y are in
cl S, Exercise 20 implies that there exist points
x0 ∈ B(x, δ) ∩ S and y0 ∈ B(y, δ) ∩ S. We claim that
z0 = αx0 + βy0 ∈ B(z, δ). Indeed,

‖z − z0‖ = ‖(αx + βy)− (αx0 + βy0)‖
= ‖α(x − x0) + β(y − y0)‖
≤ ‖α(x − x0)‖ + ‖β(y − y0)‖
= α‖x − x0‖ + β‖y − y0‖ < αδ + βδ = (α + β)δ = δ

Since z0 ∈ x0y0, we have z0 ∈ S. Thus, z ∈ cl S and cl S is
convex.

B(z, �)B(x, �)

yzx

y0z0x0

B(y, �)

26. a. Suppose x ∈ cl (int S). Then, for every δ > 0, B(x, δ)
contains at least one point of int S, by Exercise 20. Since
int S ⊂ S, this means B(x, δ) contains at least one point
of S. Thus, x ∈ cl S.

Conversely, suppose x ∈ cl S. Given any δ > 0,
there exists a point s in S ∩ B(x, δ). Since ‖x − s‖ < δ ,
we have ε = δ − ‖x − s‖ > 0. It follows that
B(s, ε) ⊂ B(x, δ). See the figure below. Let y ∈ int S
and consider the line segment sy. Since ε > 0, there
exists z ∈ sy such that z ∈ B(s, ε). But Exercise 22
implies that z ∈ int S, so z ∈ B(x, δ) ∩ (int S), and
x ∈ cl (int S).
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B(s, �)

B(x, �)

s
z

x
y ∈ int S

b. Let S be a “lollipop” shape in R
2:

27. a. Since S ⊂ cl S, int S ⊂ int (cl S). Conversely, suppose
x ∈ int (cl S). Then there exists δ > 0 such that
B(x, δ) ⊂ cl S. Let y ∈ int S. Then there exists a point z
in cl S such that x ∈ zy, with x �= z. See the figure below.
It follows from Exercise 23 that x ∈ int S.

xz y ∈ int S

B(x, �) � cl S

b. Let S = [0, 1) ∪ (1, 2] in R
2. Then

int S = (0, 1) ∪ (1, 2), but int (cl S)= (0, 2). Or let S be
a solid square in R

2 with one diagonal removed. Then
int S consists of two triangular pieces, but int (cl S) is
the whole square (without the boundary).

28. a. If x ∈ bd S, then x ∈ cl S and x /∈ int S. But
cl S = cl (cl S), by applying Exercise 21 to cl S in place
of S, and int S = int (cl S), by Exercise 27. Thus,
x ∈ cl (cl S) and x /∈ int (cl S), so x ∈ bd (cl S). For the
converse, reverse the argument above.

b. Let S = [0, 1) ∪ (1, 2] in R
1. Then bd S = {0, 1, 2}, but

bd (cl S)= {0, 2}. Or let S be a solid square in R
2 with

one diagonal removed. Then bd S consists of the
diagonal and the four edges of the square, but bd (cl S)
does not include the diagonal.

29. Let H = [f : d] be a hyperplane and let
S = {x : f (x) ≥ d}. Then S is a closed half-space, and its
boundary is the convex set H .

30. Let S be the convex hull of a circle in R
2. Then bd S is the

circle itself, which is not convex.

Section 8.5, page 47

1. The origin is an extreme point, but it is not a vertex.

2. One possibility is a ray. It has an extreme point at one end.

3. One possibility is to let S be a square that includes part of
the boundary but not all of it. For example, include just two
adjacent edges. The convex hull of the profile is a triangle.

4. a. f0(S
5)= 6, f1(S

5)= 15, f2(S
5)= 20, f3(S

5)= 15,
f4(S

5)= 6, and 6 − 15 + 20 − 15 + 6 = 2.
b. f0 f1 f2 f3 f4

S1 2
S2 3 3
S3 4 6 4

S4 5 10 10 5
S5 6 15 20 15 6

fk(S
n)=

(
n + 1
k + 1

)
, where

(
a

b

)
= a!
b!(a − b)! is the

binomial coefficient.

5. a. f0(C
5)= 32, f1(C

5)= 80, f2(C
5)= 80, f3(C

5)= 40,
f4(C

5)= 10, and 32 − 80 + 80 − 40 + 10 = 2.
b. f0 f1 f2 f3 f4

C1 2
C2 4 4
C3 8 12 6

C4 16 32 24 8
C5 32 80 80 40 10

fk(C
n)= 2n−k

(
n

k

)
, where

(
a

b

)
= a!
b!(a − b)! is the

binomial coefficient.
Note that fk(Cn)= 2fk(Cn−1) + fk−1(C

n−1).
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6. a. X1 is a line segment: v1
0

X2 is a parallelogram: v1

v2

b. f0(X
3)= 6, f1(X

3)= 12, f2(X
3)= 8. X3 is an

octahedron.
c. f0(X

4)= 8, f1(X
4)= 24, f2(X

4)= 32, f3(X
4)= 16,

8 − 24 + 32 − 16 = 0

d. fk(Xn)= 2k+1

(
n

k + 1

)
, 0 ≤ k ≤ n–1, where(

a

b

)
= a!
b!(a − b)! is the binomial coefficient.

7. a. f0(P
n)= f0(Q) + 1

b. fk(P n)= fk(Q) + fk–1(Q)

c. fn–1(P
n)= fn–2(Q) + 1

8. a. True. Definition.
b. True. Definition.
c. False. S must be compact. See Theorem 15.
d. True. See the comment after Fig. 4.

9. a. False. It has six facets (faces).
b. True. Theorem 14.
c. False. The maximum is always attained at some extreme

point, but there may be other points that are not extreme
points at which the maximum is attained.

d. True. Follows from Euler’s formula with n= 2.

10. Let x be an extreme point of the convex set S and let
T = {y ∈ S : y �= x}. If y and z are in T , then yz ⊂ S since
S is convex. But since x is an extreme point of S, x /∈ yz, so
yz ⊂ T . Thus, T is convex.

Conversely, suppose x ∈ S, but x is not an extreme
point of S. Then there exist y and z in S such that x ∈ yz,
with x �= y and x �= z. It follows that y and z are in T , but
yz �⊂ T . Hence T is not convex.

11. Suppose A and B are convex. Let x, y ∈ A + B. Then there
exist a, c ∈ A and b,d ∈ B such that x = a + b and
y = c + d. For any t such that 0 ≤ t ≤ 1, we have

(1 − t)x + ty = (1 − t)(a + b) + t (c + d)
= [(1 − t)a + tc] + [(1 − t)b + td]

But (1 − t)a + tc ∈ A since A is convex, and
(1 − t)b + td ∈ B since B is convex. Thus, (1 − t)x + ty is
in A + B, which shows that A + B is convex.

12. a. Let S be convex and let x ∈ cS + dS, where c > 0 and
d > 0. Then there exist s1 and s2 in S such that
x = cs1 + ds2. But then

x = cs1 + ds2 = (c + d)
[
c

c + d
s1 +

d

c + d
s2

]

Now c

c+d and d

c+d are both nonnegative and sum to one.
Since S is convex, c

c+d s1 + d

c+d s2 ∈ S. Thus,
x ∈ (c + d)S.

Conversely, let x ∈ (c + d)S. Then x = (c + d)s for
some s ∈ S. But then x = cs + ds ∈ cS + dS, as desired.

13. a. Since each edge belongs to two facets, kr is twice the
number of edges: kr = 2e. Since each edge has two
vertices, sv = 2e.

b. v − e + r = 2, so 2e
s

− e + 2e
k

= 2 ⇒ 1
s

+ 1
k

= 1
2 + 1

e

c. A polygon must have at least three sides, so k ≥ 3. At
least three edges meet at each vertex, so s ≥ 3. But k
and s cannot both be greater than 3, for then the left side
of the equation in (b) could not exceed 1

2 .
When k = 3, we get 1

s
− 1

6 = 1
e
, so s = 3, 4, or 5.

For these values, we get e = 6, 12, or 30, corresponding
to the tetrahedron, the octahedron, and the icosahedron,
respectively.

When s = 3, we get 1
k

− 1
6 = 1

e
, so k = 2, 3, or 5

and e = 6, 12, or 30, respectively. These values
correspond to the tetrahedron, the cube, and the
dodecahedron.

Section 8.6, page 58

1. Given
x(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3,
0 ≤ t ≤ 1, let b be any fixed vector. Observe (by algebraic
computation) that

(1 − t)3b + 3t (1 − t)2b + 3t2(1 − t)b + t3b = b

Thus,

x(t) + b = (1 − t)3(p0 + b) + 3t (1 − t)2(p1 + b)
+ 3t2(1 − t)(p2 + b) + t3(p3 + b)

This representation of x(t) + b has the form of a Bézier
curve, whose control points are translates by b of the
original control points. So translation by b maps a Bézier
curve into a Bézier curve.

2. a. The coefficients of p0 and p3 in (15) match those in (14).
For p1,

3t (t − 1)2 + 4 − 3t = 3t (t2 − 2t + 1) + 4 − 3t
= 3t3 − 6t2 + 3t + 4 − 3t
= 3t3 − 6t2 + 4

The verification for p2 is trivial. So (15) is an equivalent
description for x(t).

b. Equation (15) reveals that each polynomial weight is
nonnegative for 0 ≤ t ≤ 1, since 4 − 3t > 0. For the
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sum of the coefficients, use (15) with the first term
expanded: 1 − 3t + 3t2 − t3. The 1 here plus the 4 and 1
in the coefficients of p1 and p2, respectively, sum to 6,
while the other terms sum to 0. This explains the 1

6 in the
formula for x(t), which makes the coefficients sum to 1.
Thus, x(t) is a convex combination of the control points
for 0 ≤ t ≤ 1.

c. Since the coefficients inside the brackets in equation (14)
sum to 6, it follows that

b = 1
6 [6b]

= 1
6

[
(1 − t)3b + (3t3 − 6t2 + 4)b

+(−3t3 + 3t2 + 3t + 1)b + t3b
]

and hence x(t) + b may be written in a similar form,
with pi replaced by pi + b for each i. This shows that
x(t) + b is a cubic B-spline with control points pi + b for
i = 0, . . . , 3.

3. a. Start with
x(t)= (1 − t)3p0 + 3t (1 − t)2p1 + 3t2(1 − t)p2 + t3p3,
and compute

x′(t) = (−3 + 6t − 3t2)p0 + (3 − 12t + 9t2)p1

+ (6t − 9t2)p2 + 3t2p3

Then x′(0)= −3p0 + 3p1 = 3(p1 − p0), and
x′(1)= −3p2 + 3p3 = 3(p3 − p2). This shows that the
tangent vector x′(0) points in the direction from p0 to p1

and is three times the length of p1 − p0. Likewise, x′(1)
points in the direction from p2 to p3 and is three times
the length of p3 − p2. In particular, x′(1)= 0 if and only
if p3 = p2.

b. From part (a), differentiate x′(t) to get

x′′(t) = (6 − 6t)p0 + (−12 + 18t)p1

+(6 − 18t)p2 + 6tp3

Then

x′′(0)= 6p0 − 12p1 + 6p2 = 6(p0 − p1) + 6(p2 − p1)

and

x′′(1)= 6p1 − 12p2 + 6p3 = 6(p1 − p2) + 6(p3 − p2)

For a picture of x′′(0), construct a coordinate system with
the origin at p1, temporarily, label p0 as p0 − p1 and label
p2 as p2 − p1. Finally, construct a line from this new
origin through the sum of p0 − p1 and p2 − p1, extended
out a bit. That line points in the direction of x′′(0).

4. a. x′(t)= 1
6

[(−3t2 + 6t − 3
)

p0 +
(
9t2 − 12t

)
p1

+
(−9t2 + 6t + 3

)
p2 + 3t2p3

]
x′(0)= 1

2 (p2 − p0) and x′(1)= 1
2 (p3 − p1) (Verify that,

in the first part of Fig. 10, a line drawn through p0 and p2

is parallel to the tangent line at the beginning of the

B-spline.) When x′(0) and x′(1) are both zero, the figure
collapses and the convex hull of the set of control points
is the line segment between p0 and p3, in which case x(t)
is a straight line. Where does x(t) start? In this case,

x(t) = 1
6

[
(−4t3 + 6t2 + 2)p0 + (4t3 − 6t2 + 4)p3

]
x(0) = 1

3 p0 + 2
3 p3 and x(1)= 2

3 p0 + 1
3 p3

The curve begins closer to p3 and finishes closer to p0.
Could it turn around during its travel? Since
x′(t)= 2t (1 − t)(p0 − p3), the curve travels in the
direction p0 − p3, so when x′(0)= x′(1)= 0, the curve
always moves away from p3 toward p0 for 0 ≤ t ≤ 1.

b. x′′(t)= (1 − t)p0 + (−2 + 3t)p1 + (1 − 3t)p2 + tp3

x′′(0)= p0 − 2p1 + p2 = (p0 − p1) + (p2 − p1)

and

x′′(1)= p1 − 2p2 + p3 = (p1 − p2) + (p3 − p2)

For a picture of x′′(0), construct a coordinate
system with the origin at p1, temporarily, label p0 as
p0 − p1, and label p2 as p2 − p1. Finally, construct a line
from this new origin to the sum of p0 − p1 and p2 − p1.
That segment represents x′′(0).

For a picture of x′′(1), construct a coordinate
system with the origin at p2, temporarily, label p1 as
p1 − p2, and label p3 as p3 − p2. Finally, construct a line
from this new origin to the sum of p1 − p2 and p3 − p2.
That segment represents x′′(1).

5. a. From Exercise 3(a) or equation (9) in the text,

x′(1)= 3(p3 − p2)

Use the formula for x′(0), with the control points from
y(t), and obtain

y′(0)= −3p3 + 3p4 = 3(p4 − p3)

For C1 continuity, 3(p3 − p2)= 3(p4 − p3), so
p3 = (p4 + p2)/2, and p3 is the midpoint of the line
segment from p2 to p4.

b. If x′(1)= y′(0)= 0, then p2 = p3 and p3 = p4. Thus, the
“line segment” from p2 to p4 is just the point p3. [Note:
In this case, the combined curve is still C1 continuous,
by definition. However, some choices of the other
control points, p0,p1,p5, and p6, can produce a curve
with a visible “corner” at p3, in which case the curve is
not G1 continuous at p3.]

6. a. With x(t) as in Exercise 2,

x(0)= (p0 + 4p1 + p2)/6

and

x(1)= (p1 + 4p2 + p3)/6
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Use the formula for x(0), but with the shifted control
points for y(t), and obtain

y(0)= (p1 + 4p2 + p3)/6

This equals x(1), so the B-spline is G0 continuous at the
join point.

b. From Exercise 4(a),

x′(1)= (p3 − p1)/2 and x′(0)= (p2 − p0)/2

Use the formula for x′(0), with the control points for
y(t), and obtain

y′(0)= (p3 − p1)/2 = x′(1)

Thus, the B-spline is C1 continuous at the join point.

7. From Exercise 3(b),

x′′(0)= 6(p0 − p1) + 6(p2 − p1)

and

x′′(1)= 6(p1 − p2) + 6(p3 − p2)

Use the formula for x′′(0), but with the control points for
y(t), to get

y′′(0)= 6(p3 − p4) + 6(p5 − p4)

Set x′′(1)= y′′(0) and divide by 6, to get

(p1 − p2) + (p3 − p2)= (p3 − p4) + (p5 − p4)

Since the curve is C1 continuous at p3, the point p3 is the
midpoint of the segment from p2 to p4, by Exercise 5(a).
Thus, p4 − p3 = p3 − p2. Substituting gives

(p1 − p2) + (p3 − p2) = −(p3 − p2) + p5 − p4

(p1 − p2) + 2(p3 − p2) + p4 = p5

Finally, again from C1 continuity, p4 = p3 + p3 − p2. Thus,

p5 = p3 + (p1 − p2) + 3(p3 − p2)

Only p6 can be chosen arbitrarily.

8. From Exercise 4(b), x′′(0)= p0 − 2p1 + p2 and
x′′(1)= p1 − 2p2 + p3. Use the formula for x′′(0), with the
shifted control points for y(t), to get

y′′(0)= p1 − 2p2 + p3 = x′′(1)

Thus, the curve has C2 continuity at x(1).

9. Write a vector of the polynomial weights for x(t), expand
the polynomial weights, and factor the vector asMBu(t):


1 − 4t + 6t2 − 4t3 + t4

4t − 12t2 + 12t3 − 4t4

6t2 − 12t3 + 6t4

4t3 − 4t4

t4


 =




1 −4 6 −4 1
0 4 −12 12 −4
0 0 6 −12 6
0 0 0 4 −4
0 0 0 0 1







1
t

t2

t3

t4


 ,

MB =




1 −4 6 −4 1
0 4 −12 12 −4
0 0 6 −12 6
0 0 0 4 −4
0 0 0 0 1




10. Write a vector of the polynomial weights for x(t), expand
the polynomial weights, taking care to write the terms in
ascending powers of t , and factor the vector asMSu(t):

1

6




1 − 3t + 3t2 − t3
4 − 6t2 + 3t3

1 + 3t + 3t2 − 3t3

t3


 = 1

6




1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1






1
t

t2

t3




= MSu(t),

MS = 1

6




1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1




11. a.

(8, 2)(1, 2)

(4, 6) (5, 6)

0 2 4 6 8
0

2

4

8

6

b.

(1, 2)

(2, 6)

(4, 1.8)

(5, 4.2)

0 2 4 6 8
0

2

4

8

6

c. The graph for this part must show an inflection point.
The first new control point p4 must be on the line
determined by p2 and p3, placed so that p3 is not the
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midpoint of the line segment from p2 to p4. So p4 cannot

be

[
6.0
6.6

]
, but two natural choices are

[
5.5
5.4

]
and[

6.5
7.8

]
. The first figure below was produced from[

5.0
4.2

]
,

[
5.5
5.4

]
,

[
6.5
3.3

]
, and

[
7.0
5.3

]
. The MATLAB

input is [5 5.5 6.5 7; 4.2 5.4 3.3 5.3]

(1, 2)

(2, 6)
(5.5, 5.4)

(6.5, 3.3)

(7, 5.3)

(4, 1.8)

(5, 4.2)

0 21 3 4 65 7
0

1

2

4

3

5

7

6

The second graph, from a student, uses

[
5

4.2

]
,

[
5.5
5.4

]
,[

7
7

]
, and

[
9
8

]
.

0 21 3 4 65 10987
0

1

2

4

3

5

7

8

9

6

(1, 2)

(2, 6)

(5.5, 5.4)

(9, 8)

(7, 7)

(4, 1.8)

(5, 4.2)

12. a.

0 21 3 4 65 7
0

1

2

4

3

5

6

b. Second segment (one new control point):

0 21 3 4 65 7
0

1

2

4

3

5

6

Third segment:

0 21 3 4 65 7
0

1

2

4

3

5

6
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c. Three segments combined into one curve:

0 21 3 4 65 7
0

1

2

4

3

5

6

d. Sample bspline.m modification

%B-spline curve
disp(‘Sample B-spline Curve’)

%Input data points
A = input(‘Enter 2x6 Geometry Matrix:’);

%Set up the axes and keep them fixed.
axis([0 10 0 10])

%Simple default setting
hold on

%Create the parameter t and the vector u
that contains the powers of t.
t = linspace(0,1);
u = [t.ˆ0; t; t.ˆ2; t.ˆ3];

%plot each segment of the curve
for i = 1:3
G = [A(:,i) A(:,i+1) A(:,i+2) A(:,i+3)]

%Current geometry matrix
M = [1 -3 3 -1; 4 0 -6 3; 1 3 3 -3;
0 0 0 1]/6

%B-spline basis curve
x = G*M*u;

%The B-spline curve

plot(G(1,:),G(2,:),‘-ob’,
‘MarkerFacecolor’,‘b’,‘MarkerSize’,2)
%This comment plots the control points
with connecting lines.

%‘-ob’ draws lines and sets a circle
for each point, in blue.

%Use ‘ob’ instead, if you want no lines
between the circles.

%MarkerFaceColor fills in each circle
(marker) in blue.
%MarkerSize specifies the size of the
circle, in points.

plot(x(1,:), x(2,:),‘r’)
%Plot the B-sline curve in red.

if(i < 3)
disp(‘Press any key to continue’)
pause

end

end

13. a. From (12), q1 − q0 = 1
2 (p1 − p0)= 1

2 p1 − 1
2 p0. Since

q0 = p0, q1 = 1
2 (p1 + p0).

b. From (13), (q3 − q2)= −p0 − p1 + p2 + p3. So
8q3 + p0 + p1 − p2 − p3 = 8q2.

c. Use (8) to substitute for 8q3, and obtain

8q2 = (p0 + 3p1 + 3p2 + p3) + p0 + p1 − p2 − p3

= 2p0 + 4p1 + 2p2

Then dividing by 8 and using part (a) gives

q2 = 1
4 p0 + 1

2 p1 + 1
4 p2

= ( 1
4 p0 + 1

4 p1) + ( 1
4 p1 + 1

4 p2)

= 1
2 q1 + 1

4 (p1 + p2)

= 1
2 [q1 + 1

2 (p1 + p2)]
14. a. 3(r3 − r2)= z′(1), by (9) with z′(1) and ri in place of

x′(1) and pj .
z′(1)= .5x′(1), by (11) with t = 1.
.5x′(1)= (.5)3(p3 − p2), by (9).

b. From part (a), 6(r3 − r2)= 3(p3 − p2),
r3 − r2 = 1

2 p3 − 1
2 p2, and r3 − 1

2 p3 + 1
2 p2 = r2.

Since r3 = p3, this equation becomes r2 = 1
2 (p3 + p2).

c. 3(r1 − r0)= z′(0), by (9) with z′(0) and ri in place of
x′(0) and pj .
z′(0)= .5x′(.5), by (11) with t = 0.

d. Part (c) and (10) show that 3(r1 − r0)=
3
8 (−p0 − p1 + p2 + p3). Multiply by 8

3 and rearrange to
obtain 8r1 = −p0 − p1 + p2 + p3 + 8r0.

e. From (8), 8r0 = p0 + 3p1 + 3p2 + p3. Substitute into the
equation from part (d), and obtain
8r1 = 2p1 + 4p2 + 2p3. Divide by 8 and use part (b) to
obtain

r1 = 1
4 p1 + 1

2 p2 + 1
4 p3 = ( 1

4 p1 + 1
4 p2) + 1

4 (p2 + p3)

= 1
2
· 1

2 (p1 + p2) + 1
2 r2

Interchange the terms on the right, and obtain
r1 = 1

2 [r2 + 1
2 (p1 + p2)].

15. a. From (11), y′(1)= .5x′(.5)= z′(0).
b. Observe that y′(1)= 3(q3–q2). This follows from (9),

with y(t) and its control points in place of x(t) and its
control points. Similarly, for z(t) and its control points,
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z′(0)= 3(r1 − r0). By part (a), 3(q3 − q2)= 3(r1 − r0).
Replace r0 by q3, and obtain q3 − q2 = r1 − q3, and
hence q3 = (q2 + r1)/2.

c. Set q0 = p0 and r3 = p3.
Compute q1 = (p0 + p1)/2 and r2 = (p2 + p3)/2.
Compute m = (p1 + p2)/2.
Compute q2 = (l1 + m)/2 and r1 = (m + r2)/2.
Compute q3 = (q2 + r1)/2 and set r0 = q3.

16. A Bézier curve is completely determined by its four control
points. Two are given directly: p0 = x(0) and p3 = x(1).
From equation (9), x′(0)= 3(p1 − p0) and
x′(1)= 3(p3 − p2). Solving gives

p1 = 1
3 x′(0) + p0 and p2 = p3 − 1

3 x′(1)

17. a. The quadratic curve is
w(t)= (1 − t)2p0 + 2t (1 − t)p1 + t2p2. From Example
1, the tangent vectors at the endpoints are
w′(0)= 2p1 − 2p0 and w′(1)= 2p2 − 2p1. Denote the
control points of x(t) by r0, r1, r2, and r3. Then

r0 = x(0)= w(0)= p0 and r3 = x(1)= w(1)= p2

From equation (9) or Exercise 3(a) (using ri in place of
pi) and Example 1,

−3r0 + 3r1 = x′(0)= w′(0)= 2p1 − 2p0

so

−p0 + r1 = 2p1 − 2p0

3
and

r1 = 2p1 + p0

3
Similarly, from the tangent data at t = 1, along with
equation (9) and Example 1,

−3r2 + 3r3 = x′(1)= w′(1)= 2p2 − 2p1,

−r2 + p2 = 2p2 − 2p1

3
, r2 = p2 − 2p2 − 2p1

3
, and

r2 = 2p1 + p2

3
b. Write the standard formula (7), with ri in place of pi for
i = 0, . . . , 3, and then replace r0 by p0, and replace r3 by
p2:
x(t)= (1 − 3t + 3t2–t3)p0 + (3t − 6t2 + 3t3)r1

+ (3t2 − 3t3)r2 + t3p2
(*)

Use the formulas for r1 and r2 to examine the second and
third terms in (*):

(3t − 6t2 + 3t3)r1 = 1
3 (3t − 6t2 + 3t3)p0 + 2

3 (3t − 6t2 + 3t3)p1

= (t − 2t2 + t3)p0 + (2t − 4t2 + 2t3)p1

(3t2 − 3t3)r2 = 2
3 (3t

2 − 3t3)p1 + 1
3 (3t

2 − 3t3)p2

= (2t2 − 2t3)p1 + (t2 − t3)p2

When these two results are substituted in (*), the
coefficient of p0 is

(1 − 3t + 3t2 − t3) + (t − 2t2 + t3)= 1 − 2t + t2 = (1 − t)2
The coefficient of p1 is

(2t − 4t2 + 2t3) + (2t2 − 2t3)= 2t − 2t2 = 2t (1 − t)
The coefficient of p2 is (t2 − t3) + t3 = t2. So
x(t)= (1 − t)2p0 + 2t (1 − t)p1 + t2p2, which shows
that x(t) is the quadratic Bézier curve w(t).

18.




p0

−3p0 + 3p1

3p0 − 6p1 + 3p2

−p0 + 3p1 − 3p2 + p3





