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The Geometry of
Vector Spaces

INTRODUCTORY EXAMPLE
The Platonic Solids

In the city of Athens in 387 B.C., the Greek philosopher
Plato founded an Academy, sometimes referred to as the
world’s first university. While the curriculum included
astronomy, biology, political theory, and philosophy, the
subject closest to his heart was geometry. Indeed,
inscribed over the doors of his academy were these words:
“Let no one destitute of geometry enter my ddors

The Greeks were greatly impressed by geometric
patterns such as the regular solids. A polyhedron is called
regular if its faces are congruent regular polygons and all spaces having four, five, or even hundreds of dimensions.
the angles at the vertices are equal. As early as 150 yeardt is not necessarily clear what geometrical properties one
before Euclid, the Pythagoreans knew at least three of themight ascribe to these objects in higher dimensions.
regular solids: the tetrahedron (4 triangular faces), the For example, what properties do lines have in 2-space
cube (6 square faces), and the octahedron (8 triangular and planes have in 3-space that would be useful in higher
faces). (See Fig. 1.) These shapes occur naturally as  dimensions? How can one characterize such objects?
crystals of common minerals. There are only five such ~ Sections 8.1 and 8.4 provide some answers. The
regular solids, the remaining two being the dodecahedronhyperplanes of Section 8.4 will be important for
(12 pentagonal faces) and the icosahedron (20 triangular understanding the multi-dimensional nature of the linear

faces). programming problems in Chapter 9.

Plato discussed the basic theory of these five solidsin ~ What would the analogue of a polyhedron “look like”
Book XIII of his Elementsand since then they have in more than three dimensions? A partial answer is
carried his name: the Platonic solids. provided by two-dimensional projections of the

For centuries there was no need to envision geometrifour-dimensional object, created in a manner analogous to
objects in more than three dimensions. But nowadays two-dimensional projections of a three-dimensional
mathematicians regularly deal with objects in vector object. Section 8.5 illustrates this idea for the
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four-dimensional “cube” and the four-dimensional For instance, Sections 8.2 and 8.6 include applications to
“simplex.” computer graphics, and Section 8.5 outlines a proof

The study of geometry in higher dimensions not only (in Exercise 13) that there are only five regular polyhedra
provides new ways of visualizing abstract algebraic in R,

concepts, but also creates tools that may be appli&f.in

FIGURE1 The five Platonic solids.

ost applications in earlier chapters involved algebraic calculations with sub-

spaces and linear combinations of vectors. This chapter studies sets of vectors

that can be visualized as geometric objects such as line segments, polygons,
and solid objects. Individual vectors are viewed as points. The concepts introduced here

1] thank my brother, Dr. Steven R. Lay, for designing and writing most of this chapter and for class test-
ing it at Lee University. Several colleagues and | have also class tested the chapter, and | have made a
few changes and additions. Comments from faculty and students who use it would be appreciated. Write
to: | ay@mat h. und. edu.
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are used in computer graphics, linear programming (in Chapter 9), and other areas of
mathematics.

Throughout the chapter, sets of vectors are described by linear combinations, but
with various restrictions on the weights used in the combinations. For instance, in
Section 8.1, the sum of the weights is one, while in Section 8.2, the weights are positive
and sum to one. The visualizations areRif or R®, of course, but the concepts also
apply toR"” and other vector spaces.

AFFINE COMBINATIONS

DEFINITION

— p tu
u

An affine combination of vectors is a special kind of linear combination. Given vectors
(or “points”) v, vy, ..., Vv, in R* and scalars, ..., ¢,, anaffine combination of
Vi, V2, ...,V is alinear combination

ciV1+ -+ CpVp

such that the weights satisfy + - - - + ¢, = 1.

The set of all affine combinations of points in a §at called theaffine hull (or
affine span) of S, denoted by aff.

The affine hull of a single poiry; is just the setv,}, since it has the forry v, where
c1 = 1. The affine hull of two distinct points is often written in a special way. Suppose
Y = c1V1 + caVp With ¢ + ¢ = 1. Write ¢ in place ofcy, so thatc; =1 —c;=1—+.
Then the affine hull ofvy, v»} is the set

y=(1—1)Vi+1Vvp, withzinR (1)

This set of points includeg; (whenz = 0) andv, (whent =1). If v, =vq, then (1)
again describes just one point. Otherwise, (1) describenta¢hroughv, andv,. To
see this, rewrite (1) in the form

ot y=Vvi+t(Va—Vy)=p+tu, withzinR
/ wherep isv; andu isv, — vi1. The set of all multiples afi is Span{u}, the
line throughu and the origin. Adding to each point on this line translates

Span{u} into the line througlp parallel to the line through and the origin.

FIGURE 1

See Fig. 1. (Compare this figure with Fig. 5 in Section 1.5.)
Figure 2 uses the original pointg andv,, and displays affvy, vo} as
the line throughv; andvs,.

2See Foley, van Dam, Feiner, and Hugh@smputer Graphics—Principles and Practj@nd edition
(Boston: Addison Wesley, 1996), pp. 1083-1112. That material also discusses coordinate-free “affine
spaces.”
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THEOREM 1

// y= V1 + t(Vz—Vl)
aff{v,, v} V2 Z
— v )

1 t(v2—vl

2~ V1

FIGURE 2

Notice that while the point in Fig. 2 is an affine combination ®f andv,, the point
y — V1 equalg (v2 — Vi), which is a linear combination (in fact, a multiple)wof — v;.
This relation betweey andy — v; holds for any affine combination of points, as the
following theorem shows.

Apointy in R" is an affine combination ofy, ..., v, in R" if and only ify — v,
is a linear combination of the translated poims- vy, ..., v, — vi.
PROOF If y — vy is a linear combination of, — vy, ..., Vv, — vi, there exist weights
2, ..., cpsuch that
y_VIZCZ(VZ_V1)+"'+Cp(vp _Vl) (2)
Then
y:(l—CZ—-~-—Cp)V1+C2V2+~-~+Cpr (3)

and the weights in this linear combination sum to oney $oan affine combination of
Vi, ..., V,. Conversely, suppose

y=C1V1+C2V2+-~'+Cpr (4)

whereci+---+c, =1. Sincec;=1—c2 —--- — ¢, €quation (4) may be written
as in (3), and this leads to (2), which shows thiat v; is a linear combination of
Vo —Vg,...,Vp — V1.

In the statement of Theorem 1, the pointcould be replaced by any of the other
points in the listvy, . .., v,,. Only the notation in the proof would change.

1 2 1 -2 4
EXAMPLE1 Letv,;= [2} Vo = {5} V3 = [3] Vg4 = [ 2] andy = {1} If
possible, writey as an affine combination f, vy, v3, andv,.
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Solution Compute the translated points

1 0 -3 3
e e H A N R B

To find scalars:, c3, andcs such that
c2(V2 — V1) +c3(V3 — V1) +ca(Vg — V1)) =y — V3 )
row reduce the augmented matrix having these points as columns:

1 0-3 3] [t 0-3 3
3 1 0-1/7 [0 1 9 -10

This shows that equation (5) is consistent, and the general solutign=S3c, + 3,
c3 = —9c4 — 10, withc, free. Wherne, =0,

y —Vv1=3(V2 — V1) — 10(v3 — V1) + O(v4 — V1)
and
y = 8vy + 3vy, — 10v3
As another example, takg = 1. Thenc, = 6 andcz = —19, so
Yy —V1=06(v2 — V1) — 19(v3 — V1) + 1(v4 — V1)
and
y =13v1 + 6V, — 19v3 + V4

While the procedure in Example 1 works for arbitrary powisvy, ..., v, in R",
the question can be answered more directly if the chosen pairtise a basis foR”.
For example, leB = {bs, ..., b,} be such a basis. Then apyn R”" is a uniqudinear
combination ofb, ..., b,. This combination is an affine combination of ths if and
only if the weights sum to one. (These weights are justAhepordinates o/, as in
Section 4.4.)

4 0 5 2 1
EXAMPLE 2 Let bl =|(0], b2 =|4], b3 =2, P1= 0|, and P2 = 2.
3 2 4 0

The setB = {by, by, b} is a basis foiR®. Determine whether the poinpg andp, are
affine combinations of the points 5.

N

Solution Find theB-coordinates gp; andp,. These two calculations can be combined
by row reducing the matrikb; by, bz p1 p2], with two augmented columns:

4 0 5 2 1 1 0 0-2
0 4 2 0 2/~lo 1 o0-1
0

o 1 2 -

Wik WIN wIN
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DEFINITION

S
THEOREM 2

Read column 4 to builg,;, and read column 5 to buil,:
P1= —2b1 — b2 + 2b3 and P2 = %bl + %bz — %bg

The sum of the weights in the linear combination fgris —1, not 1, sop; is not an
affine combination of thé’s. However,p, is an affine combination of thie's, because
the sum of the weights fgg, is 1.

AsetS is affineif p, q € S implies that(1 — 7)p + zq € S for each real numbet

Geometrically, a set is affine if whenever two points are in the set, the entire line
through these points is in the set. §licontains only one poinf, then the line through
p andp is just a point, a “degenerate” line.) Algebraically, for a Seto be affine,
the definition requires that every affine combination of two points dfelong toS.
Remarkably, this is equivalent to requiring ttfatontain every affine combination of
an arbitrary number of points ¢f.

A set S is affine if and only if every affine combination of points &flies in S.
That is, S is affine if and only ifS = aff S.

PROOF Suppose thaf is affine and use induction on the humhberof points of S
occurring in an affine combination. Whem is 1 or 2, an affine combination of
points of S lies in S, by the definition of an affine set. Now, assume that every affine
combination of or fewer points ofS yields a pointinS, and consider a combination of
k+ 1 points. Takes; in Sfori =1,...,k+1,andlety = ci1vy + - - - + cx Vi + Cre1Virls
wherec; + - - - + cr1 = 1. Since the;'s sum to one, at least one of them must not be
equal to one. By re-indexing the andc;, if necessary, we may assume that; # 1.
Letr=cy+---+c. Thent =1 —¢;11#0, and

Cc1 Ck
y=(1~-crs1) (7V1 +oot TVk) + Cr41Vis1 (6)

By the induction hypothesis, the point= (c¢1/1)vy + - - - + (¢ /t)Vi iS in S, since the
coefficients sum to one. Thus (6) displayas an affine combination of two points in
S, and soy € S. By the principle of induction, every affine combination of such points
liesinS. Thatis, affS C S. But the reverse inclusiots, C aff S, always applies. Thus,
when S is affine, S = aff S. Conversely, ifS = aff S, then affine combinations of two
(or more) points of5 lie in S, soS is affine.

The next definition provides terminology for affine sets that emphasizes their close
connection with subspaces®&f.



DEFINITION

THEOREM 3

8.1 Affine Combinations 7

Atranslate of asef inR” by avectopisthesefS + p={s+p : se S}.3Aflatin

R” is a translate of a subspaceRf. Two flats arearallel if one is a translate of
the other. Thelimension of aflat is the dimension of the corresponding parallel
subspace. Thdimension of a set S, written as dimS, is the dimension of the
smallest flat containing. A linein R” is a flat of dimension one. Ayperplane

in R" is a flat of dimensiom — 1.

In R3, the proper subspaces consist of the orijithe set of all lines through, and
the set of all planes throudgh Thus the proper flats iR® are points (zero-dimensional),
lines (one-dimensional), and planes (two-dimensional), which may or may not pass
through the origin.

The next theorem shows that these geometric descriptions of lines and pl&fes in
(as translates of subspaces) actually coincide with their earlier algebraic descriptions as
sets of all affine combinations of two or three points, respectively.

A nonempty sef is affine if and only if it is a flat.

PROOF  Suppose that is affine. Letp be any fixed point ir§ and letW = S + (—p),
so thatS = W + p. To show thatS is a flat, it suffices to show tha¥ is a subspace of
R". Sincep is in S, the zero vector is itW. To show thatW is closed under sums and
scalar multiples, it suffices to show thatuif andu, are elements oW, thenu; + ru,

is in W for every reak. Sinceu; andu, are inW, there exist; ands; in S such that
U =% — pandu; =$s, — p. So, for each real,

Up+1Up = (S — P) +1(S2— P)
=A-Ds+1t(SL+S—p)—p

Lety = s + s, — p. Theny is an affine combination of points 1 SinceS is affiney is
in S (by Theorem 2). Butthe(l — ¢)s; + ty isalsoinS. Sou; + tuisin—p+ S=W.
This shows thaW is a subspace d&”. ThusS is a flat, becausé = W + p.

Conversely, supposg€ is a flat. That is,S = W + p for somep € R* and some
subspacdV. To show thatS is affine, it suffices to show that for any pairands; of
points in S, the line througts, ands; lies in S. By definition of W, there exisu; and
Uy in W such thats; = u; + p ands, = U, + p. So, for each real,

A-Ds+t=A—-0Ur+p)+1Uz2+p)
=A—-fHur+tu+p

SinceW is a subspacél — r)u; + rup € Wand so(l —1)s; +ts, € W +p=S. Thus
S is affine.

8If p=0, then the translate is justitself. See Fig. 4 in Section 1.5.
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DEFINITION

THEOREM 4

Theorem 3 provides a geometric way to view the affine hull of a set: it is the flat that
consists of all the affine combinations of points in the set. For instance, Fig. 3 shows the
points studied in Example 2. Although the set ofl@éar combinations ob;, b,, and
bz is all of R3, the set of alhffinecombinations is only the plane through by, andbs.

Note thatp, (from Example 2) is in the plane through, b,, andbs, while p; is not in
that plane. Also, see Exercise 12.

Earlier, Theorem 1 displayed an important connection between affine combinations
and linear combinations. The nexttheorem provides another view of affine combinations,
which forR? andR? is closely connected to applications in computer graphics, discussed
in the next section (and in Section 2.7).

Forvin R", the standartiomogeneousform of v is the pointv = {V} in R™+L,

1

A pointy in R is an affine combination ofy, ..., v, in R* if and only if the
homogeneous form of is in Span{Vy, ..., V,}. Infact,y =civi+--- +cpVp,
withcy +---+ ¢, =1,ifand only ify = 1V + - - - + ¢, V).

PROOF Apointyisinaff{vy,...,v,}ifand onlyif there exist weights, .. ., ¢, such

that
HEE R R

This happens if and only ¥ is in Spar{Vy, Vo, ..., V,}.

3 1 1 4
EXAMPLE3 Letvi=|1|,vo,=|2]|,v3=|7]|,andp= |3 |. Use Theorem 4
1 2 1 0

to write p as an affine combination ®f, v,, andvs, if possible.

Solution Row reduce the augmented matrix for the equation
x1\71 + x2\72 + )C3\73 = f)

To simplify the arithmetic, move the fourth row of 1's to the top (equivalent to three row
interchanges). After this, the number of arithmetic operations here is basically the same
as the number needed for the method using Theorem 1.

1 1 1 1] [1 1 1 1
i wow o~ |3 L L 4022 1
1 2 7 3 7|0 1 6 2
1 2 1 0 [0 1 0-1
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1 0 0 15
. _]lo 1 0 -1
0O 0 1 5
0 0 O 0

By Theorem 4, 15v; — v, + .5v3 = p. See Fig. 4, which shows the plane that contains
V1, Vo, V3, andp (together with points on the coordinate axes).

15 X,
FIGURE 4

PRACTICE PROBLEM

Plot the points/; = [H , Vo = [_ﬂ , V3= {ﬂ , andp = [g] on graph paper, and

explain whyp mustbe an affine combination of;, v,, andvs. Then find the affine
combination fomp. [Hint: What is the dimension of aff/y, vo, v3}?]

I
8.1 EXERCISES

In Exercises 1-5, writy as an affine combination of the other 1 0 4 -1
ints li i i 0 1 7 3
points listed, if possible. 5. vy = sl o= 5| ve=| 5| v=]_g
:I.v—Elv—_zv—O-v—3 _ |3 - 0 L8 2
. 1—_2 Vo = 2 Ve= 4_, 4= Y= 3
[1 1 3] 5 2 L1 2
2vie | v, =[] vem ,yz{ ] 6. Let by=|1|, by=| 0|, bs=|-5|, and
' _1} ’ { 2} ? {2_ 7 1 —2| 1
r_3 0 T4 17 S = {by, by, b3}. Write each point below as an affine com-
3vi=| 1|,vo=| 4|,va=|-2|,y=] 1 bination of the points in the s&, if possible. Note thaf is
1| | 6l 5 an orthogonal basis fd&3. [Hint: Use Theorem 5 in Section
B 6.2 instead of row reduction to find the weights.]
[1 2 4 -3 0 15 5
4. vi=|2|,vo=|—-6|,v3=|3]|,y= 4 a. p.=|-19 b. po=|-13 c. p3=| -4
| 0 7 1 —4 -5 -5 0
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1 2 -1 5
0 -1 2 -3
7. Let vi = 3| V2= ol Va= 1| P1= 5|
0 4 1 3
-9 4
P2 = 18 , Pz = g , and S = {vq, Vo, v3}. It can be
-13 5
shown thatS is linearly independent.
a. Ispyin SpanS? Isp; in aff §?
b. Isp,in SpanS? Isp, in aff §?
c. Ispzin SpanS? Ispsin aff §?
1 2
. 0 1
8. Repeat Exercise 7 whenv, = 3| Vo = 6l
-2 -5
3 4 -5 1
vo=| O - |71 —| 3| andp=| ©
= 12 P1= | 15| P2= | g |- @NP= | g
—6 -7 6 -8

11. Suppose {vi, Vo, V3} is a basis for RS Show that
Span{V, — v, V3 — v;} is a plane inR3. [Hint: What can
you say abouti andv when Spar{u, v} is a plane?]

[En

2. Show that if{vq, vy, v} is a basis foiR3, then aff{vy, vy, v3}
is the plane through, v,, andva.

=

3. Let A be anm xn matrix and, giverb in R, show that the
setS of all solutions ofAx = b is an affine subset d&”.

14. Letv € R" and letk € R. Prove that§ = {x ¢ R" : x-v =k}
is an affine subset &”".

15. Choose a sef of three points such that affis the plane in
R3 whose equation is; = 5. Justify your work.

16. Choose a sef of four distinct points inR3 such that affS is
the plane 2; + x, — 3x3 = 12. Justify your work.

17. Let S be an affine subset &”, supposef : R” — R™ is a
linear transformation, and let(S) denote the set of images
{f(X) : x € S}. Prove thatf (S) is an affine subset @&".

18. Let f : R" — R™ bealineartransformation, [&tbe an affine
subset ofR™, and letS = {x € R" : f(x) € T}. Show thatS
is an affine subset d&".

In Exercises 9 and 10, mark each statement True or False. Justify

each answer.

9. a. The set of all affine combinations of points in a §dé6

called the affine hull of.

b. If{by, ..., b;}isalinearlyindependent subsef®fand if
p is a linear combination df,, .. ., by, thenp is an affine
combination oby, ..., by.

The affine hull of two distinct points is called a line.
Aflat is a subspace.

Aplane inR? is a hyperplane.

10. If § = {x}, then affS is the empty set.

A set is affine if and only if it contains its affine hull.
Aflat of dimension 1 is called a line.

Aflat of dimension 2 is called a hyperplane.

A flat through the origin is a subspace.

20T oo

In Exercises 19-22, prove the given statement about sulisets

andB of R". A proof for an exercise may use results from earlier

exercises.

19. If A C B andB is affine, then affA C B.

20. If A C B, then affA C aff B.

21. [(aff A) U (aff B)] c aff (AU B). [Hint:
DUE C F,showthatD C F andE C F.]

22. aff (AN B) C (aff AN aff B). [Hint:
D C ENF,showthatD ¢ E andD C F.]

To show that
To show that

23. Find an example ifR? to show that equality need not hold in
the statement of Exercise 21Hipt: Consider setst and B
that each contain only one or two points.]

24. Find an example ifR? to show that equality need not hold in
the statement of Exercise 22.

2 SOLUTION TO PRACTICE PROBLEM

Sincethe points,, v,, andvs are not collinear (thatis, noton asingle line), ff, vy, v3}
p cannot be one-dimensional. Thus, 8#f, v,, v3} must equalR?. To find the actual
weights used to expregsas an affine combination ef, v,, andvs, first compute

—2 2 3
v X Va—Vi=| ,|,Va=Vvi=|, |, and p—vi= |,
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To write p — v; as a linear combination of — v; andvsz — v, row reduce the matrix
having these points as columns:

_223N10%
2 1 3 O 1 2

Thusp — vy = %(vz — V1) + 2(V3 — V1), which shows that

p= (1— ;2L —2)V1+%V2+2V3=—%V1+%V2+2V3
This expresseg as an affine combination of, v,, andvs, because the coefficients sum
to one.
Alternatively, use the method of Example 3 and row reduce:
3
v v 1 1 1 1 1 0 0-3
1o V2 Vs PE 1y 1 3 4|~]0 1 o0 1
1 1 1 1 0 2 1 3 2
O 0 1 2

This shows thap = —3vy + 3V, + 2vs.

AFFINE INDEPENDENCE

Because affine sets are simply translates of subspaces, some important concepts for
subspaces “translate” into related concepts for affine sets.

DEFINITION An indexed set of point$vy, ..., Vv,} in R” is affinely dependent if there exist
real numberssy, ..., ¢,, not all zero, such that

ci+---+c,=0 and cvi+---+¢pv, =0 (2)

Otherwise, the set iaffinely independent.

A set{v;} of only one point (even the zero vector) must be affinely independent
because the required properties of the coefficientannot be satisfied when there is
only one coefficient. Fofv1}, the first equation in (1) is jusy = 0, and yet at least one
(the only one) coefficient must be nonzero.

Exercise 13 asks you to show that an indexed{ggtv,} is affinely dependent if
and only ifv; = v,. The following theorem handles the general case and shows how the
concept of affine dependence is analogous to that of linear dependence. Parts (c) and (d)
give useful methods for determining whether a set is affinely dependent. Recall from
Section 8.1 that if7 is in R”, then the vectot in R"*! denotes the homogeneous form
of v.
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|
THEOREM 5 Givenanindexed sét= {vy, ..., Vv, } inR", with p > 2, the following statements

are logically equivalent. That is, either they are all true statements or they are all
false.

a. S is affinely dependent.

b. One of the points il is an affine combination of the other pointsSn
c. Thesef{v, —v1,...,v, — vy} in R" is linearly dependent.
d. The se{Vy, ..., V,} in R"*!is linearly dependent.

PROOF  Suppose (a) is true, and let, . . ., ¢, satisfy (1). By renaming the points if
necessary, one may assume that 0 and divide both equations in (1) ly, so that
1+ (Cg/cl) + o+ (Cp/Cl) =0and

Vi =(—c2/c)Va+ -+ (—cp/c1)V, (2

Note that the coefficients on the right of (2) sum to one. Thus (a) implies (b). Now,
suppose that (b) is true. By renaming the points if necessary, one may assume that
Vi=coVo+ - +cpV,, Whereco + - - - + ¢, = 1. Then

(Co+ - FCpVi=CVo+ - +CpV, 3)
and

c2(V2 = V1) + -+ ¢p(Vp, —V1) =0 “4)
Not all of ¢,, ... ., ¢, can be zero because they sum to one. So (b) implies (c).

Next, if (c) is true, then there exist weights, . .., ¢, not all zero, such that (4)
holds. Rewrite (4) as (3) and s@t= —(c2+---+cp). Thenci+---+¢, =0. Thus
(3) shows that (1) is true. So (c) implies (a), which proves that (a), (b), and (c) are
logically equivalent. Finally, (d) is equivalent to (a) because the two equations in (1)
are equivalent to the following equation involving the homogeneous forms of the points

in s: q{\ﬂ +...+c,,[vf} = m

In statement (c) of Theorem §; could be replaced by any of the other points in
the listvy, ..., v,. Only the notation in the proof would change. So, to test whether a
set is affinely dependent, subtract one point in the set from the other points, and check
whether the translated set pf— 1 points is linearly dependent.

EXAMPLE 1 The affine hull of two distinct pointp andq is a line. If a third point
r is on the line, therp, q, r} is an affinely dependent set. If a pomts not on the
line throughp andq, then these three points are not collinear gndy, s} is an affinely
independent set. See Fig. 1.
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aff{p, g}
q
. p .

FIGURE1 {p, q,r} is affinely dependent.

1 2 0
EXAMPLE2 Letvy=|3|,Vo=| 7 |,va= |4, andS = {vy, Vo, v3}. Deter-
7 6.5 7
mine whethelS is affinely independent.
1 -1
Solution Computev, —vi=| 4 | andvz—v;= 1|. These two points are
-5 0

not multiples and hence form a linearly independent$et$o all statements in Theorem
5 are false, and is affinely independent. Figure 2 showsand the translated sét.
Notice that Spais’ is a plane through the origin and dffis a parallel plane through,
Vo, andvs. (Only a portion of each plane is shown here, of course.)

X3
Vi

A
aff{vy, vo, v3}

°*V3—Vg

X2
[ ]
Va—Vi

« Span{v, —vq, V3 —Vy}
1

FIGURE2 An affinely independent s¢V;, v,, vs}.

1 2 0 0
EXAMPLE3 LlLetvi= (3|, vo=| 7 |, v3=1|4], andvy= | 14|, and let
7 6.5 7 6
S ={vq,...,Vv4}. Is S affinely dependent?
1 -1 -1
Solution Compute vy, — vy = 41, v3—Vvi = 1(, andvgs—vy=| 11},
-5 0 -1
and row reduce the matrix:
1 -1 -1 1 -1 -1 1 -1 -1
4 1 11| ~ |0 5 15| ~|0 5 15
-5 0 -1 0 -5 =15 0O O 0
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Recall from Section 4.6 (or Section 2.8) that the columns are linearly dependent because
not every column is a pivot column; s@ — v1, vz — V1, andv, — v; are linearly depen-

dent. By (c) in Theorem Sy, Vo, V3, V4} is affinely dependent. This dependence can
also be established using (d) in Theorem 5 instead of (c).

The calculations in Example 3 show that— v; is a linear combination of, — v;
andvs — vq, which means thaty — v is in Span{v, — v1, V3 — vi}. By Theorem 1 in
Section 8.1y, is in aff {v1, vo, v3}. In fact, complete row reduction of the matrix in
Example 3 would show that

V4 — V1 = 2(V2 — V1) + 3(V3 — V1) (5)

Vg = —4vq + 2y + 3v3 (6)

See Fig. 3.
X3
V3 v
Vi
V2
aff{vy, Vo, v3}
V53— V] V4a—V1

X2

V-V >

FIGURE3 v, is in the plane affvy, v,, v3}.

X1

Figure 3 shows grids on both Span — v, vz — v1} and aff{vy, v,, v3}. The grid
on aff{vy, v, v3} is based on (5). Another “coordinate system” can be based on (6), in
which the coefficients-4, 3, 2 are calledaffineor barycentriccoordinates o¥,.

Barycentric Coordinates

The definition of barycentric coordinates depends on the following affine version of the
Unique Representation Theorem in Section 4.4. See Exercise 17.

THEOREM 6 Let S ={by, ..., b} be an affinely independent setlitf. Then eaclp in aff §
has a unique representation as an affine combinatidn,of ., b,. That is, for
eachp there exists a unique set of scalays. . ., ¢; such that

p=clb1+~-~+ckbk and a+-+e=1 (7)
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Let S ={vi, ...,V } be an affinely independent set. Then for each ppitr
aff S, the coefficients:y, ..., ¢, in the unique representation (7) pfare called
thebarycentric (or, sometimesaffine) coor dinates of p.

Observe that (7) is equivalent to the single equation

b b
HEEEERH ©
involving the homogeneous forms of the points. Row reduction of the augmented matrix
[by --- Dby p] for(8)produces the barycentric coordinatepof

0 3
coordinates op determined by the affinely independent &etb, c}.

EXAMPLE4 Leta= {ﬂ b= {ﬂ,c: {ﬂ,andp: {2} Find the barycentric

Solution Row reduce the augmented matrix of points in homogeneous form, moving
the last row of ones to the top to simplify the arithmetic:

) 1 3 9 5 1 1 1 13 |+ 00
(a b ¢ p]=|7 0 3 3|/~|1 3 9 5 ~/0 1 O
1 1 1 1] [7 0 3 3 |5 o

.
Blon wik s

The coordinates arg, £, 5, sop=1a+ ib+ Sc.

Barycentric coordinates have both physical and geometric interpretations. They
were originally defined by A. F. Moebius in 1827 for a pginhside a triangular region
with verticesa, b, andc. He wrote that the barycentric coordinatespofre three
nonnegative numberng,, mp, andm. such thatp is the center of mass of a system
consisting of the triangle (with no mass) and magsgsny,, andm at the corresponding
vertices. The masses are uniquely determined by requiring that their sum be one. This
view is still useful in physics todaly.

Figure 4 gives a geometric interpretation to the barycentric coordinates in Example
4, showing the triangléabc and three small triangleaspbc, Aapc, andAabp. The
areas of the small triangles are proportional to the barycentric coordingtedrofact,

areg Apbc) = %area(Aabc)
aregdAapc) = é-area(Aabc) (9)
aregAabp) = %-area{Aabc)

1See Exercise 29 in Section 1.3. In astronomy, however, “barycentric coordinates” usually refer to or-
dinary R3 coordinates of points in what is now called thrgernational Celestial Reference System
Cartesian coordinate system for outer space, with the origin at the center of mass (the barycenter) of
the solar system.
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area = s - area(Aabc)

area =t - area(Aabc)

b area=r - area(Aabc)

FIGURE4A p=ra+sb+rc. Here,
r=1 Li=35

»S=3 1=

The formulas in Fig. 4 are verified in Exercises 19-21. Analogous equalities for
volumes of tetrahedrons hold for the case whés a point inside a tetrahedron R?,
with verticesa, b, ¢, andd.

When a pointis notinside the triangle (or tetrahedron), some or all of the barycentric
coordinates will be negative. The case of a triangle is illustrated in Fig. 5, for veatices
b, ¢, and coordinate valuess, ¢, as above. The points on the line throughndc, for
instance, have = 0 because they are affine combinations of dnjndc. The parallel
line througha identifies points with- = 1.

FIGURE5 Barycentric coordinates
for points in aff{a, b, c}.

Barycentric Coordinatesin Computer Graphics

When working with geometric objects in a computer graphics program, a designer may
use a “wire-frame” approximation to an object at certain key points in the process of
creating a realistic final imageFor instance, if the surface of part of an object consists

of small flat triangular surfaces, then a graphics program can easily add color, lighting,
and shading to each small surface when that information is known only at the vertices.

2The Introductory Example for Chapter 2 shows a wire-frame model of a Boeing 777 airplane, used to
visualize the flow of air over the surface of the plane.
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Barycentric coordinates provide the tool for smoothly interpolating the vertex infor-
mation over the interior of a triangle. The interpolation at a point is simply the linear
combination of the vertex values using the barycentric coordinates as weights.

Colors on a computer screen are often described by RGB coordinates. A triple
(r, g, b) indicates the amount of each color-red, green, and blue—with the parameters
varying from 0 to 1. For example, pure red(s 0, 0), white is(1, 1, 1), and black is
(0,0,0).3

3 4 1 3
EXAMPLE5 Letv;=|1|,vo=|[3|,v3=|5|,andp=| 3 |. The colors at
5 4 1 35

the verticess, vo, andvs of a triangle are magentd, 0, 1), light magental, .4, 1),
and purple(.6, 0, 1), respectively. Find the interpolated colomatSee Fig. 6.

Vi

Va

FIGURE6 Interpolated colors.

Solution First, find the barycentric coordinates f Here is the calculation using
homogeneous forms of the points, with the first step moving row 4 to row 1:

11 1 1 1 0 0 .25
wowow o~ |® 4L 3]0 1 0 0
1 V2 Vs P 1 3 5 3 0 0 1 .25

5 4 1 35 0 0 0 0

Sop=.25v; + .5v2 +.25v3. Use the barycentric coordinates pfto make a linear
combination of the color data. The RGB valuesicare

1 1 .6 91 red
250 +.50, .4 +.25| 0| =|.2| green
1 1 1 1| blue

One of the last steps in preparing a graphics scene for display on a computer screen
is to remove “hidden surfaces” that should not be visible on the screen. Imagine the
viewing screen as consisting of, say, a million pixels, and consider a ray or “line of
sight” from the viewer’s eye through a pixel and into the collection of objects that make
up the 3D display. The color and other information displayed in the pixel on the screen

SApplets for color experiments are currently on the Webvatwv.nacs.uci.edu/wiedeman/cspace/Click
on rgb.
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should come from the object that the ray first intersects. See Fig. 7. When the objects in
the graphics scene are approximated by wire frames with triangular patches, the hidden
surface problem can be solved using barycentric coordinates.

FIGURE7 Aray from the eye through the screen to the
nearest object.

The mathematics for finding the ray-triangle intersections can also be used to perform
extremely realistic shading of objects. Currently, tlaig-tracingmethod is too slow for
real-time rendering, but recent advances in hardware implementation may change that
in the future?

1 8 5 0 7
EXAMPLE6 Letv,= 1),v,= 1|(,v3=| 11|,a=| Of|,b=| 4 |,
-6 —4 -2 10 -3

andx(z) = a+ tb for ¢+ > 0. Find the point where the ray) intersects the plane that
contains the triangle with vertices, v,, andvs. Is this point inside the triangle?

Solution The plane is affvy, v,, v3}. Atypical point in this plane may be written as
(1 — ¢p — c3)V1 + V2 + c3v3 for somec, andes. (The weights in this combination sum
to one.) The rayx(¢) intersects the plane whes, c3, andr satisfy

(1— Cco — C3)V1 + CoVp + Cc3V3 = a+tb
Rearrange this as (v, — V1) + c3(v3 — V1) + 1 (—b) = a — v;1. In matrix form,

c2
[Vo—v1i vz—vi —b]|lc|=a—-v;
t

For the specific points given here,

7 4 -1
Vo—Vvi=|0]|,vg—vi=|10|,a—vi=| -1
2 4 16

4See Joshua Fender and Jonathan Rose, “A High-Speed Ray Tracing Engine Built on a Field-Program-
mable System,” currently online atww.eecg.toronto.edw/fender/pdfs/raytrace_fender.pdfA single
processor can calculate 600 million ray-triangle intersections per second.)
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Row reduction of the augmented matrix above produces

7 4 -7 -1 1 0 0 .3
0O 10 -4 -1|~]0 1 0 1
2 4 3 16 0O 0 1 5
Thuscy; = .3,c3=.1, andr = 5. Therefore, the intersection point is
0 T 35
x(5)=a+5b=| 0| +5| 4 | = 2.0
10 -3 -5.0
Also,
1 8 5 35
X5 =A-.3-.1vy+.3vo+.1vg=6[ 1| +.3[ 1| +.1 11| = 2.0
—6 —4 -2 -50

The intersection point is inside the triangle because the barycentric weighi&fare
all positive.

PRACTICE PROBLEMS

1. Describe a fast way to determine when three points are collinear.

2. The pointsv; = 4 , Vo = 1 , V3 = 5 , andvy = L , form an affinely de-
1 0 4 2
pendent set. Find weights, ..., ¢4 that produce araffine dependence relation
c1V1 + -+ - + c4V4 = 0, wherecy + - - - + ¢4 = 0 and not alk; are zero. Hint: See the
end of the proof of Theorem 5.]

dent. (See Practice Problem 2.) If so, construct an affine depen5-

In Exercises 1-6, determine if the set of points is affinely depen- [

dence relation for the points.

[ 3] [o] [2]
sl ekl e
1] 2] 2 0
3| 2|, |-4|.|-1]|.] 15
| -1] | 8] | 11] |-9
-2 o] [ 1] [-2
4.1 5|, |=3|,|-2|.| 7
L 3] [ 7] |-6] |-3

HiHAR

1
3

PNRPO RPNRR

|

In Exercises 7 and 8, find the barycentric coordinatep wfith
respect to the affinely independent set of points that precedes it.

0
-1
-2

NOPRFP P POFRPDN

I

2
5
2

g o b~k ONNPE

I

3
5
0

|
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In Exercises 9 and 10, mark each statement True or False. Justify cannot be affinely dependent and therefore must be affinely
each answer. independent. Construct two linearly dependent indexed sets
S1 and S, in R? such thatS; is affinely dependent ansl,

9. a If v,...,v, are in R" and if the set h . : )
(V1 — Vo, V3 — Vi Vv, —V,) is linearly dependent is affinely independent. In each case, the set should contain
then{v, ..., v,} is affinely dependent. (Read this care- either one, two, or three nonzero points.
fully.) 0

b. If v4,...v, are inR” and if the set of homogeneous
forms {Vy, ..., V,} in R"*! is linearly independent, then

15.

Letv, = {_H'VZZ |:4:|,V3: |:g:|,andS:{Vl,V2,V3}.

a. Show that the seftis affinely independent.

{vi,...,v,} is affinely dependent. _ _ _ 2 1
c. Afinite set of pointgvs, ..., v} is affinely dependent if b.  Find the barycentric coordinatesmf= {3] 1P2= [2} '
there exist real numbers, ..., ¢, not all zero, such that _2 1 1 )
cL+- -tk =1andC1V1+~-~+Cka=O. ps = |: 1:|, Pa= |:—l:|, andp5= [l:|, with respect
d. IfS={vy,...,v,}isanaffinely independent setif and toS
if pinIR" has a negative barycentric coordinate determined ¢, Let 7 be the triangle with vertices,, v,, andvs. When

by S, thenp is not in affS.

e. Ifvy, vy, vs, @, andb areinR3andifaraya+ tbfors > 0
intersects the triangle with vertices, v,, andvs, then
the barycentric coordinates of the intersection point are all
nonnegative.

10. a. If {v4,...v,} is an affinely dependent setRi", then the
set{Vy,...,V,}in R™! of homogeneous forms may be
linearly independent.

b. If vi, Vo, v3, and v, are in R® and if the set
{Vo — V1, V3 — Vi1, V4 — Vv1} is linearly independent, then
{v1, ..., v4} is affinely independent.

c. GivenS ={bs,...,b}inR", eachpin aff S has a unique
representation as an affine combinatiorbgf. . ., by.

d. When color information is specified at each vengxv,,
vz of atriangle inR3, then the color may be interpolated ata
pointp in aff {v1, v,, v3} using the barycentric coordinates
of p.

e. If T is a triangle inR? and if a pointp is on an edge of
the triangle, then the barycentric coordinatep @for this
triangle) are not all positive.

11. Explain why any set of five or more points & must be
affinely dependent.

12. Show that a sefivs, ..., Vv,} in R" is affinely dependent when
p>n+2.

13. Use only the definition of affine dependence to show that an
indexed sefvy, v,} in R” is affinely dependent if and only if
Vi =Vs.

14. The conditions for affine dependence are stronger than those
for linear dependence, so an affinely dependent set is auto-
matically linearly dependent. Also, a linearly independent set

the sides off" are extended, the lines divi into seven
regions. See Fig. 8. Note the signs of the barycentric co-
ordinates of the points in each region. For example,

is inside the triangl@ and all its barycentric coordinates
are positive. Poinp; has coordinateé—, +, +). Its third
coordinate is positive becaupg is on thev; side of the
line throughv; andv;. Its first coordinate is negative be-
causep; is opposite they; side of the line through, and

vs. Pointp; is on thev,v; edge ofT . Its coordinates are
(0, +, +). Without calculating the actual values, determine
the signs of the barycentric coordinates of poipdsp,
andpg as shown in Fig. 8.

FIGURE 8
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o[£} e 2 (2 e[ 2]

andS = {vy, Vo, V3}.
a. Show that the sestis affinely independent.

ol
)

b. Find the barycentric coordinates pf, p,, andpz with
respect tas.

c. On graph paper, sketch the trian@lavith verticesvy, v,
andvs, extend the sides as in Fig. 5, and plot the pgnts
Ps, Ps, andp7. Without calculating the actual values, de-
termine the signs of the barycentric coordinates of points
P4, Ps, Ps, andpy.

Prove Theorem 6 for an affinely independent set
S={vy,...,%} in R". [Hint: One method is to mimic
the proof of Theorem 7 in Section 4.4.]

17.

18. LetT be atetrahedronin “standard” position, with three edge
along the three positive coordinate axe<Rify and suppose
the vertices areey, be,, ce3, and0, wherd e, & &]= 1.
Find formulas for the barycentric coordinates of an arbitrary

pointp in R3.

In Exercises 19-223, b, andc are noncollinear points iR? and

p is any other point ifR?. Let Aabc denote the closed triangular
region determined bg, b, andc, and letApbc be the region de-
termined byp, b, andc. For convenience, assume tlaab, andc
are arranged so that dét b  &] is positive, wherd, b, andg
are the standard homogeneous forms for the points.

19.

20.

21.
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Showthatthe area afabcisdetfa b &] /2. [Hint: Con-
sult Sections 3.2 and 3.3, including the Exercises.]

Let p be~ a point on the line through andb. Show that
detfa b pl=0.

Let p be any point in the interior oAabc, with barycentric
coordinatesr, s, t), so that

-
[a b €] |:s] =p
t

Use Exercise 19 and a fact about determinants (Chapter 3) to
show that

r = (area ofApbc)/ (area ofAabc)

s = (area ofAapc)/ (area ofAabc)

t = (area ofAabp)/ (area ofAabc)

22. Takeq on the line segment frorn to ¢ and consider the line

throughq anda, which may be written ap = (1 — x)g + xa
for all real x. Show that, for eachx, det[p b &=
x-detfa b &]. From this and earlier work, conclude that
the parameter is the first barycentric coordinate pf How-
ever, by construction, the parameteralso determines the
relative distance betwegnandq along the segment from
toa. (Whenx =1, p=a.) When this fact is applied to Ex-
ample 5, it shows that the colors at vergand the poingy
are smoothly interpolated asmoves along the line between
aandq.

SOLUTIONS TO PRACTICE PROBLEMS

1. From Example 1, the problem is to determine if the points are affinely dependent.
Use the method of Example 2 and subtract one point from the other two. If one of
these two new points is a multiple of the other, the original three points lie on a line.

2. The proof of Theorem 5 essentially points out that an affine dependence relation
among points corresponds to a linear dependence relation among the homogeneous
forms of the points, using theameweights. So, row reduce:

[Vi V2 V3 W]

4 1 5 1 1 1 1 1

=1 0 4 2|~|4 1 5 1
11 1 1 1 0 4 2
1 0 0 -1
~l0 1 o0 125
0o 0 1 .75
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View this matrix as the coefficient matrix fotx = 0 with four variables. Then

x4 1S free, x1 = x4, xo = —1.25x4, andxz = —.75x4. One solution ist; = x4 = 4,

xp = -5, andxz3 = —3. A linear dependence among the homogeneous forms is
4\71—5\72—3\73+4\74=0. SO4/1—5V2—3V3+4V4=0.

Another solution method is to translate the problem to the origin by subtragting
from the other points, find a linear dependence relation among the translated points,
and then rearrange the terms. The amount of arithmetic involved is about the same
as in the approach shown above.

e} CONVEX COMBINATIONS

Section 8.1 considered special linear combinations of the form
c1V1 + cpVo + - - - + Vi, WhereC1+62+-~-+Ck=1

This section further restricts the weights to be nonnegative.

DEFINITION A convex combination of pointsvy, v, ..., Vi in R” is a linear combination of
the form

c1V1 + Vo + - - - + Vg

such thatcy + co+--- + ¢ =1 andc¢; > 0 for all ;. The set of all convex com-
binations of points in a sef is called theconvex hull of S, denoted by cons.

The convex hull of a single poi; is just the sefv,}, the same as the affine hull.
In other cases, the convex hull is properly contained in the affine hull. Recall that the
affine hull of distinct points; andv; is the line

y=(1—¢t)vi+1tvp, withzinR

Because the weights in a convex combination are nonnegative, the points ifvgovp}
may be written as

y=@A-t)vi+1tvy, withO<zr<1

which is theline segment betweerv, andv,, hereafter denoted by;vs.

If a setS is affinely independent andif € aff S, thenp € conv S if and only if the
barycentric coordinates gf are nonnegative. Example 1 shows a special situation in
which § is much more than just affinely independent.

3 -6 3 0 -10
EXAMPLE1 Letv, = g Vo = g Vg = g Py = 2 P, = 1? ,
-3 0 3 0 -4

and S = {vy, V2, v3}. Note thatS is an orthogonal set. Determine whetlmris in
Spans, aff S, and convS. Then do the same fqm.
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Solution If pq is at least dinear combination of the points i, then the weights are
easily found, becausg is an orthogonal set. LV be the subspace spanned$fiyA
calculation as in Section 6.3 shows that the orthogonal projectign ofito W is p1

itself:
. P1-Vv1 pP1°V2 P1-Vv3
Projy, p1 = V1'V1V1 + V2-V2V2 + V3-V3V3
18
Za‘Vj_-{'aVZ-FaV:;

3 —6 3 0
oy 1p o3 el 13 _
=3 6|73 33|07 |3|™P

-3 0 3 0

This shows thap; isin SpanS. Also, since the coefficients sum to onmg,is in aff S.
In fact, p; is in convsS, because the coefficients are also nonnegative.

Forp,, a similar calculation shows that pppp2 # p2. Since proj, p2 is the closest
point in Spans to p,, the pointp, is not in Spars. In particular,p, cannot be in affS
or convs.

Recall that a sef is affine if it contains all lines determined by pairs of pointsin

When attention is restricted to convex combinations, the appropriate condition involves
line segments rather than lines.

DEFINITION A setS is convex if for eachp, q € S, the line segmerfiq is contained irS.

Intuitively, a setS is convex if every two points in the set can “see” each other
without the line of sight leaving the set. Figure 1 illustrates this idea.

\ /

Convex Convex Not convex
FIGURE 1

The next result is analogous to Theorem 2 for affine sets.

I
THEOREM 7 AsetS is convex if and only if every convex combination of pointsSdfes in S.

That is,S is convex if and only ifS = conv S.

PROOF The argument is similar to the proof of Theorem 2. The only difference is
in the induction step. When taking a convex combinatiork ef1 points, consider
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THEOREM 8

THEOREM 9

Y =c1V1+ -+ Vi + Ck+1Vi+1, Wherecl +-rt1=1 and O<c¢ <1 for alli. If
crr1 = 1, theny = vi,1, which belongs tas, and there is nothing further to prove. If
1 <1, lett=ci+---+¢. Thent=1—¢,1 > 0and

C1 C
y=01- Ck+1)(7V1 +et Tka> + Crs1Vis1 1)

By the induction hypothesis, the point= (c1/1)vy + - - - + (¢ /t)Vy iS in S, since the
nonnegative coefficients sum to one. Thus (1) displags a convex combination of
two points inS. By the principle of induction, every convex combination of such points
liesinS.

Theorem 9 below provides a more geometric characterization of the convex hull
of a set. It requires a preliminary result on intersections of sets. Recall from Section
4.1 (Exercise 32) that the intersection of two subspaces is itself a subspace. In fact, the
intersection of any collection of subspaces is itself a subspace. A similar result holds for
affine sets and convex sets.

Let {S,: @ € A} be any collection of convex sets. Thénc4S, is convex. If
{Ts: B € B} is any collection of affine sets, thégT; is affine.

PROOF If p andq are inNS,, thenp andq are in eacts,. Since eacl$, is convex,
the line segment betwegnandq is in S, for all « and hence that segment is contained
in NS,. The proof of the affine case is similar.

For any setS, the convex hull ofS is the intersection of all the convex sets that
contains.

PROOF LetT denote the intersection of all the convex sets contaifingince con\s

is a convex set containing, it follows that7T c convS. On the other hand, lef be

any convex set containin§. ThenC contains every convex combination of points

of C (Theorem 7), and hence also contains every convex combination of points of the
subsetS. Thatis, con\§ C C. Since this is true for every convex ggtcontainings, it

is also true for the intersection of them all. Thatis, cohe 7.

Theorem 9 shows that corvis in a natural sense the “smallest” convex set con-
taining S. For example, consider a sgthat lies inside some large rectangleRif, and
imagine stretching a rubber band around the outsidg éfs the rubber band contracts
arounds, it outlines the boundary of the convex hull f Or to use another analogy,
the convex hull ofS fills in all the holes in the inside of and fillsout all the dents in
the boundary of.
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EXAMPLE 2

a. The convex hulls of setsand in R? are shown below.

S conv S T conv T

b. LetS be the set consisting of the standard basi®forS = {ey, e, e3}. Then convs
is a triangular surface iR3, with verticese, e, andes. See Fig. 2.

EXAMPLE3 LetS = { [ﬂ :x > 0andy = xZ}. Show that the convex hull of is
the union of the origin anr{ [ﬂ :x > 0andy > xz}. See Fig. 3.

Solution Every pointin conws must lie on a line segment that connects two points of
S. The dashed line in Fig. 3 indicates that, except for the origin, the posiases is not
in conv S, because the origin is the only point$bn they-axis. It may seem reasonable
that Fig. 3 does show corsi; but how can you be sure that the poiad—2, 10%), for
example, is on a line segment from the origin to a point on the cun$@ in

Consider any poinp in the shaded region of Fig. 3, say

p= {ﬂ witha > 0 andb > a?

The line througtD andp has the equation = (b/a)t for ¢ real. That line intersect$
wherer satisfiesb/a)t = t?, thatis, when = b/a. Thus,p is on the line segment from

0to {b’;%z] , which shows that Fig. 3 is correct.

The following theorem is basic in the study of convex sets. It was first proved by
Constantin Caratheodory in 1907.pfis in the convex hull of5, then, by definitionp
must be a convex combination of points$f But the definition makes no stipulation
as to how many points of are required to make the combination. Caratheodory’s
remarkable theorem says that inagimensional space, the number of pointsSah
the convex combination never has to be more tharl.

(Caratheodory) If Sis a nonempty subset &", then every pointin con§ can
be expressed as a convex combination efl or fewer points of.
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PROOF Given p in convS, one may writep =civy + - - - + ¢ Vx, Wherev; € S,

c1+---+c =1, and¢; > 0, for somek andi =1,...,k. The goal is to show that
such an expression exists fowith k < n + 1.

If Kk > n+1,then{vy, ..., v} is affinely dependent, by Exercise 12 in Section 8.2.
Thus there exist scalaih, . . ., d, not all zero, such that

k k
Zd,-v,-:O and Zd,ZO
i=1 i=1

Consider the two equations

ciV1+ Vo + -+ -+ iV =P
and

divi+doVo + -+ dpVy =0

By subtracting an appropriate multiple of the second equation from the first, we now
eliminate one of the; terms and obtain a convex combination of fewer thatements
of S that is equal t.

Since not all of thel; coefficients are zero, we may assume (by reordering subscripts
if necessary) that), > 0 and thatc; /d; < ¢;/d; for all thosei for whichd; > 0. For
i=1 ...,k leth; =c; — (ct/dy)d;. Thenb, =0 and

k k k
_ % _1_0—
;b,-_;c, dk;dl 1-0=1

Furthermore, each; > 0. Indeed, ifd; <0, thenb; > ¢; > 0. If d; > 0, thenb;=
di(c;/d; — cx/dy) > 0. By construction,

k—1 k k
izzlbivi = izzlbivi = Z (Ci — fl]]:dl> V;

i=1

k k k
Ck
= E civi = - E diVi = g ciVi=p
i=1 kliza i=1

Thusp is now a convex combination éf— 1 of the pointsry, ..., vi. This process may
be repeated untp is expressed as a convex combination of at mostl of the points
of S.

The following example illustrates the calculations in the proof above.

10
EXAMPLE 4 Let vlz[(l)], vzz{:ﬂ, vgz[i], v4:{g}, :[2] and
2

S ={vy, Vo, V3, V4}. Then

1 1 1 1
Vit gVa+5Va+ pVa=p (2)
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Use the procedure in the proof of Caratheodory’s Theorem to exprassa convex
combination of three points .

Solution The setS is affinely dependent. Use the technique of Section 8.2 to obtain
an affine dependence relation

—5vy +4v, — 3vz3+4v, =0 (3)

Next, choose the pointg andv, in (3), whose coefficients are positive. For each point,
compute the ratio of the quotients in equations (2) and (3). The ratip fe% 4= 2%1,
and that fonv is 55 + 4= 2. The ratio forv, is smaller, so subtrag}; times equation
(3) from equation (2) to eliminatey:

1 5 1 4 1 3 1 4
(z+a)vi+ (5 —as)Vet (3+38)Va+ (13— dg)Va=p

17 4 27\, _
I8V1 + 478\/2 + I8V3 - p

This result cannot, in general, be improved by decreasing the required number of
points. Indeed, given any three non-collinear point&fnthe centroid of the triangle
formed by them is in the convex hull of all three, but is not in the convex hull of any two.

PRACTICE PROBLEMS

6 7 -2 1 3
1 Letvi=|2]|, vo=|1], va= 41, pp=1|(3]|, andp,=1| 2|, and let
2 5 -1 1 1

S = {vy, Vo, v3}. Determine whethgp; andp, are in convs.

2. Let S be the set of points on the curye= 1/x for x > 0. Explain geometrically why
conv S consists of all points on and above the cusve

I
8.3 EXERCISES

1 INR2 letS = 0 0<y< 1} U { {2} } Describe (or 3. Consider the points in Exercise 7 of Section 8.1. Whichof
y 0 p2, andps are in convs?
sketch) the convex hull of.
4. Consider the points in Exercise 6 of Section 8.1. Whicp,of
p2, andps are in convs?

2. Describe the convex hull of the s&bf points B in R? that 1 0 1 1
satisfy the given conditions. Justify your answers. (Show that5. Let v, = {_3] Vo= [_3] , V3= [_1} ,Va= { 1] ,

an arbitrary poinp in S belongs to con\s.) 4 1 4 2
a. y=1/x andx > 1/2 1 0
b. y = sinx p, = —; , Py = —; , and S = {vq, V,, V3, v4}. Deter-

—_ 172 . .
c. y=x"2andx >0 mine whethep, andp, are in convs.
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2 0 -2 -1 and
0 -2 1 2
6. Letv, = _1|Ve= 2| Va=| o' P1= _% , 10v; — 6v, + 7vz — 11v, =0
2 1 2 % In Exercises 11 and 12, mark each statement True or False. Justify
-3 6 1 each answer.
P, = (1) L ps= -4 , andp, = . and letS be 11. a. Ify=c1Vi+caVa + c3vz andey + ¢ + c3 =1, theny is a
7 1 0 convex combination ofy, v, andvs.
% -1 4 b. If Sis a nonempty set, then cosvcontains some points

the orthogonal s€fv,, v,, v3}. Determine whether eaqh is

in Spans, aff S, or convs.

a.

P1 b. p2 C. P3 d. ps

Exercises 7 and 8 use the terminology from Section 8.2.

o r= (2] 4[]} e 1]

(2

Determine whether each gf, ...

1 1 11 _.
p2= 1 Pa=| ,andpy = 0 . Find the barycen-

3
tric coordinates ofy1, p2, p3, andp4 with respect tdr'.
Use your answers in part (a) to determine whether each of
P1, ..., P4 in part (a) is inside, outside, or on the edge of
convT, atriangle.

. Let S = {vy, Vo, v3, V4} be an affinely independent set. Con- 13.
sider the pointspy, ...
with respect toS are given by(2,0,0,-1), (0,3.%.3
,0, 3

, Pps whose barycentric coordinates
11 l)

-1), (3.7.5.%), and (3.0,3,0), respectively.

, Ps is inside, outside, or

, 29

on the surface of con¥, a tetrahedron. Are any of these
points on an edge of conS?

12.

that are not ins.

c. If SandT are convex sets, thehU T is also convex.
a. Asetis convex ik,y € S implies that the line segment
betweerx andy is contained irS.

b. If SandT are convex sets, thehiN T is also convex.

c. If Sisanonempty subset &° andy € conv S, then there
exist distinct pointyy, ..., vg in S such thay is a convex
combination ofvy, ..., Ve.

Exercises 13-16 use the following definition:

A point y is called apositive combination of the points
Vi, ...,V ify=civi+---+¢,V,, where allc; > 0. The
set of all positive combinations of points of a $at called
thepositive hull of S and is denoted by pa%

3L}

In R?, find posS whensS = { {

14. Observe that in Exercise 1&o0sS) N (aff §) = convs.

a. Letvy = H],VZZ [ﬂ,w: {H,andp: B] Ver-
ify that p € pos{vi, v, v3} and p € aff {vy, v, v3}, but
p € conv{vy, Vo, v3}. This shows that the result in Ex-
ercise 13 is not true in general.

9 Let vi— 1 Vo — 1 Vo 4 Ve 4 and b. What special property does the Sein Exercise 13 have
' =lolr T2 BT 2 AT o) so that(posS) N (aff §) = convS?
p= ﬁ] . Confirm that 15. Prove that pos = pos(conv S) for any sets.

16. Let S be a convex set. Prove thate posS if and only if

P=1vi+iVo+iva+tvy and vi—Vo+Vz—Vs=0 X = Asfor somer > Oandse S.
Let S be a convex subset ofR" and suppose
f:R* — R™ is a linear transformation. Prove that the set

f(8) ={f(X :x e S}is aconvex subset @&".

Let f:R* — R™ be alinear transformation and [Btbe a con-
vex subset oR”. Prove thattheset={x e R" : f(x) € T}
is a convex subset @&".

Use the procedure in the proof of Caratheodory’s Theorem td7.
expresy as a convex combination of three of theés. Do

this intwo ways.
-1 Vo — 0
0 ’ 2= 3 ’

Vs = [ﬂ'v": |:_i:|,andp: B} Confirm that

18.

10. Repeat Exercise 9 for pointy; =

In Exercises 19-22, prove the given statement about sulisets
and B of R". A proof for an exercise may use results of earlier

72 exercises.

a2 37
121

— 1 1
P=15VY1t+ 33Vt 151Vs + 17Va



19.
20.
21.
22.
23.

24.

25.

26.
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If A C B andB is convex, then cony C B. b. The graph o§(¢) is called aquadratic Bézier curveand it

If A C B,thenconvA C convB.

[(convA) U (convB)] C conv(A U B)

is used in some computer graphics designs. The ppints
p1, andp;, are called theontrol pointsfor the curve. Com-
pute a formula fog(z) that involves onlypo, p1, andp,.

conv(A N B) C [(convA) N (convB)] Then show thaty(¢) is in conv{po, p1, po} for0 < < 1.
Find an example ifR? to show that equality need not hold in 27. Given control pointspo, p1, ps, and ps in R”, let gi(r)

the statement of Exercise 21.

for 0 <t < 1 be the quadratic Bézier curve from Exercise

Find an example ifR? to show that equality need not hold in 26 determined bypo, pi1, and p,, and letg,(r) be de-

the statement of Exercise 22.
a. LetF and G be subspaces

fined similarly for p;, p2, andps. For 0<r <1, define
a@". Prove thatF UG is h(t) = (1 —1)g1(r) + tg2(t). Show that the graph &f(¢) lies

convexifand only ifF C GorG C F. in the convex hull of the four control points. This curve is
b. Show by an example that the union of two convex sets ~ called acubic Bézier curveand its definition here is one step
may be convex without either of the sets being a subset of  Of the de Casteljau algorithm for constructing Bézier curves.

the other.

Let po, p1, and p, be points in R”, and define
fo(t) = (1 —1)po +1p1, f1(t) = (L — 1)p1 +1p2, and g()=

AL —0)fe@@) +tfi(r)for0O<t <1

A Bézier curve of degreé is determined by + 1 control
points, and its graph lies in the convex hull of these control
points.

28. Given po, ..., Prs1 in R", let So=conv{po,...,p:} and

a. For the points shown in the figure, draw a picture that ~ S1=CONV{p1, ..., Pra}. For 0<z <1, let g,(r) and

showsg(3) . 9(3) . andg(3).

0:2(¢) be curves that lie inSy and S;, respectively, and let
h() = (1 - D%h@) +1G).
Show thath(z) lies in conv{po, p1, .. ., Prs1}. This fact

P11

Po

*P2 provides the induction step in the proof thatkor 2, a Bézier

curve of degreé lies in the convex hull of its control points.

SOLUTIONS TO PRACTICE PROBLEMS

1. The pointsvy, v, andvs are not orthogonal, so compute

1 -8 -5 -3
Vo—vi=|—-1|,va—vi=| 2|, p;—Vi= 1{,po—vi=| O
3 -3 -1 -1

Augment the matri{ v, — vy vz — vy] with both p; — v andp; — vi, and row
reduce:

1 -8 -5 -3 1
1 2 1 o|l~lo 1
3 -3 -1 -1 0

o WIN Wik
NIOT NI

The third column shows that; — vy = (V> — v1) + (V3 — v1), which leads to
p1=0vy + 3V, + 2va. Thusp; is in convs. In fact,p; is in conv{vy, va}.

The last column of the matrix shows that — v, is not a linear combination of
Vv, — vy andvs — vi. Thusp, is not an affine combination of;, v,, andvs, sop;
cannot possibly be in con¥.
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An alternative method of solution is to row reduce the augmented matrix of
homogeneous forms:

1 0 O 0O O
S 0 1 0 : O
[Vl V2 V3 pl pZ]NO 0 1 % 0
0O 0 O 0 1

2. If pis a point aboves, then the line througp with slope—1 will intersectS at two
points before it reaches the positiveand y-axes.

HYPERPLANES

Hyperplanes play a special role in the geometrRbbecause they divide the space into
two disjoint pieces, just as a plane separ&eto two parts and a line cuts throuf.
The key to working with hyperplanes is to use simipigplicit descriptions, rather than
the explicit or parametric representations of lines and planes used in the earlier work
with affine sets.
An implicit equation of a line irR? has the formux + by = d. An implicit equation
of a plane ifR? has the formux + by + cz = d. Both equations describe the line or plane
as the set of all points at which a linear expression, or linear functional, such+asy
has a fixed value].

DEFINITION A linear functional onR” is a linear transformatioyf from R” into R. For each
scalard in R, the symbol f: d] denotes the set of allin R” at which the value
of fisd. Thatis,

[f:d] istheset {x e R": f(X) =d}

The zero functionalis the transformation such thgtx) = 0 for all x in R”. All
other linear functionals oR” are said to b@onzero.

EXAMPLE 1 In R?, the linex — 4y = 13 is a hyperplane ifR?, and it is the set of
points at which the linear functiongl(x, y) = x — 4y has the value 13. That s, the line
is the se{ f:13].

EXAMPLE 2 In RS, the plane 5 — 2y + 3z = 21 is a hyperplane, the set of points at
which the linear functionad (x, y, z) = 5x — 2y + 3z has the value 21. This hyperplane
is the selg:21].

Iparametric representations were introduced in Section 1.5.
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If fisalinearfunctional of®”", thenthe standard matrix of this linear transformation
fisalxn matrixA,sayA=[a; a» --- a,]. SO

[f:0] isthesameas{x € R":Ax=0}=NulA 1)

If f is a nonzero functional, then ramk= 1, and dim NulA =» — 1, by the Rank
Theoren? Thus, the subspadé: 0] has dimension — 1 and so is a hyperplane. Also,
if d is any number iR, then

[f:d] isthe sameas{x € R": AX =d} (2)

Recall from Theorem 6 in Section 1.5 that the set of solutiomo£ b is obtained
by translating the solution set ofx = 0, using any particular solutiop of Ax =h.
WhenA is the standard matrix of the transformatignthis theorem says that

[f:d]l=[f:01+p foranypin[f:d] 3)
Thus the set§f: d] are hyperplanes parallel {g: 0]. See Fig. 1.

FIGURE1 Parallel hyperplanes,
with f(p) =d.

WhenaA is a 1x n matrix, the equatiodx = d may be written with an inner product
n-x, usingn in R" with the same entries as. Thus, from (2),

[f:d] isthesameas{x € R":n-x=d} (4)

Then[f: 0] = {x € R": n-x = 0}, which shows thdtf: 0] is the orthogonal complement
of the subspace spanned iby In the terminology of calculus and geometry %, n
is called anormal vector to[ f: 0]. (A “normal” vector in this sense need not have unit
length.) Also,n is said to benormal to each parallel hyperplarig: d], even though
n-x is not zero whem £ 0.

Another name fof f: d] is alevel setof f, andn is sometimes called thgradient
of f when f(x) = n-x for eachx.

2See Theorem 14 in Section 2.9 or Theorem 14 in Section 4.6.
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EXAMPLE3 Let n= Z andv= [_é ,and letH={X:n-x=12}, so H =

[f:12], where f(x, y) =3x +4y. ThusH is the line & + 4y =12. Find an implicit
description of the parallel hyperplane (lind) = H + v.

Solution First, find a pointp in H;. To do this, find a point inH and addv to it.
For instance,[g] isin H, sop= [_é} + {g] = {_é] is in H;. Now, compute

n-p = —9. This shows thaH; = [f : —9]. See Fig. 2, which also shows the subspace
Hy={x:n-x=0}.

H=[f:12]

Ho=[f:0]

H = [f: 9]

FIGURE 2

The next three examples show connections between implicit and explicit descrip-
tions of hyperplanes. Example 4 begins with an implicit form.

EXAMPLE 4 In R?, write the linex — 4y = 13 in parametric vector form.

Solution This amounts to solving a honhomogeneous equativa- b, where A =
[1 —4] andb is the number 13 ifR. Write x = 13+ 4y, wherey is a free variable.
In parametric form, the solution is

13+4 13 4
X:[ﬂ:[ ;y]=[0}+y{1}=p+yq, yeR

Converting an explicit description of a line into implicit form is more involved. The
basic idea is to construgy: 0] and then findi for [ f: d].

EXAMPLE5 Letv,;= andv, = 6} and letL, be the line through; andv;.

o] o= o]

Find a linear functionalf and a constant such thatL; = [f: d].
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Solution ThelineL, is parallel to the translated lig, throughv, — v, and the origin.
The defining equation fak.g has the form

[a b]B}:O or n-x=0, where n:{ﬂ (5)

Sincen is orthogonal to the subspaég, which contains, — vi, compute
6 1 5
V2mVislo| T2 T -2

[a b]{_é’]:O

By inspection, a solution ifa b]=[2 5]. Let f(x,y)=2x+5y. From (5),
Lo=[f:0], andLy =[f:d] for somed. Sincev;isonlineLy,d= f(v1) =2(1) +
5(2) = 12. Thus, the equation fdt; is 2x + 5y = 12. As a check, note that(v,) =
f(6,0) =2(6) + 5(0) =12, sov, is on L4, too.

and solve

1 2 3
EXAMPLE6 Letvi=|1]|,vo=|—-1],andvz= {1] . Find an implicit descrip-
1 4 2

tion [ f: d] of the planeH; that passes through, v,, andvs.

Solution H; is parallel to a plandd, through the origin that contains the translated

points
1 2
Vo—Vyi= | =2 and vz—vi= 1|0
3 1

Since these two points are linearly independéifg,= Span{v, — vi, v3 —v3}. Let
a
n= | b | bethe normal tdfy. Thenv, — v; andvs — v; are each orthogonal to That
C
iS, (V2 —Vv1):n=0 and(vz —v1)-n =0. These two equations form a system whose
augmented matrix can be row reduced:

a a
[1 -2 3]{17]:0, [2 0 1]{5;]:0, E _g i g

c c

Row operations yield = (-2)c, b = (3)c, with ¢ free. Setc = 4, for instance. Then
-2
n= 5| andHp =[f: 0], wheref (X) = —2x1 + 5x5 + 4x3.
4
The parallel hyperplanéi; is [f:d]. To find d, use the fact that; is in Hj,
and computel = f(v1) = f(1,1,1) = —2(1) + 5(2) + 4(1) = 7. As a check, compute
fvo)=f(2,-1,4) =-22)+5(-1)+4(4) =16—-9=7.
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The procedure in Example 6 generalizes to higher dimensions. However, for the
special case aR?, one can also use thaeoss product formula to computen, using a
symbolic determinant as a mnemonic device:
n= (V2 — V1) X (V3 — Vy)
| | _‘_2 O‘i_'l 2‘j+ 1 2’k
3 1 k 3 1 3 1 -2 0
-2
=-2i+5+4k = 5
4
If only the formula for f is needed, the cross product calculation may be written as
an ordinary determinant:
( )__;gxl_—zo_l 12
f xla x2, x3 - x2 - 3 1 xl 3 1 x2 _2 0 x3
3 1 X3
= —le + 5xp + 4xs
So far, every hyperplane examined has been describgd: @3 for some linear
functional f and somef in R, or equivalently agx € R":n-x = d} for somen in R".
The following theorem shows thaveryhyperplane has these equivalent descriptions.
I

THEOREM 11 AsubsetH of R” is a hyperplane if and only il = [ f: d] for some nonzero linear

functional f and some scalat in R. Thus, if H is a hyperplane, there exist a
nonzero vecton and a real numbef such thatid = {x : n-x =d}.

PROOF  Suppose thati is a hyperplane, take € H, and letHy = H — p. ThenHy
is an(n — 1)-dimensional subspace. Next, take any p@irthat is not inHy. By the
Orthogonal Decomposition Theorem in Section 6.3,

y=yi+n

wherey; is a vector inHp andn is orthogonal to every vector iHp. The functionf
defined by

fX)=n-x forxeR"

is a linear functional, by properties of the inner product. Npf,0] is a hyperplane
that containgHy, by construction of. It follows that

Ho=[f:0Q]

[Argument: Hy contains a basis of n — 1 vectors, and sinc§ is in the (n — 1)-
dimensional subspadg: 0], S must also be a basis foy: 0], by the Basis Theorem.]
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The setS is closed and bounded.
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Finally, letd = f(p) =n-p. Then, as in (3) shown earlier,
[fidl=[f:01+p=Ho+p=H

The converse statement thigt d] is a hyperplane follows from (1) and (3).

Many important applications of hyperplanes depend on the possibility of “separat-
ing” two sets by a hyperplane. Intuitively, this means that one of the sets is on one side
of the hyperplane and the other set is on the other side. The following terminology and
notation will help to make this idea more precise.

TopoLOGY IN R”: TERMS AND FACTS

For any poinfp in R" and any reaé > 0, theopen ball B(p, §) with centerp and
radiuss is given by

B(p,8) ={x:[Ix—pl < 8}

Given a sefS, a pointp is aninterior point of S if there exists & > 0 such that
B(p, 8) C S. Ifevery open ball centered pintersects botl§ and the complement
of S, thenp is called aboundary point of S. A set isopen if it contains none of
its boundary points. (This is equivalent to saying that all of its points are interior
points.) Asetislosed if it contains all of its boundary points. (K contains some
but not all of its boundary points, thehis neither open nor closed.) A s&tis
bounded if there exists & > 0 such thatS c B(0, §). A set iscompact if it is
closed and bounded.

Theorem: The convex hull of an open set is open, and the convex hull of a
compact set is compact. (The convex hull of a closed set need not be closed. See
Exercise 17.)

_92 _2 2 2 -1
EXAMPLE 7 LetS:coan 2] , {_2] , {_2} , [2]},p1= [ 0},andpz=

1 |- as shown in Fig. 3. Thep, is an interior point sinces (p, 2) C S. The point
p2 is a boundary point since every open ball centerephahtersects botls and the
complement of5. The setS is closed since it contains all its boundary points. The set

S is bounded sincé C B(0, 3). ThusS is also compact.

Notation: If f is a linear functional, therf(A) < d meansf(x) < d for each
x € A. Corresponding notations will be used when the inequalities are reversed or when
they are strict.
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DEFINITION

S
THEOREM 12

The hyperplangd = [ f: d] separates two setsA and B if one of the following
holds:

(i) f(A) <dandf(B)>d, or
(i) f(A)>=dandf(B) <d.

If in the conditions above all the weak inequalities are replaced by strict inequali-
ties, thenH is said tostrictly separate A andB.

Notice that strict separation requires that the two sets be disjoint, while mere sep-
aration does not. Indeed, if two circles in the plane are externally tangent, then their
common tangent line separates them (but does not separate them strictly).

Although it is necessary that two sets be disjoint in order to strictly separate them,
this condition is not sufficient, even for closed convex sets. Inde€R? itet

1 1
Az{[x}:xz and sygz} and Bz{{x]:szandyzo}
y 2 X y

Then A and B are disjoint closed convex sets, but they cannot be strictly separated
by a hyperplane (line ifiR?). See Fig. 4. Thus the problem of separating (or strictly
separating) two sets by a hyperplane is more complex than it might at first appear.

FIGURE4 Disjoint closed convex sets.

There are many interesting conditions on the gesd B that imply the existence
of a separating hyperplane, but the following two theorems are sufficient for this section.
The proof of the first theorem requires quite a bit of preliminary matébai the second
theorem follows easily from the first.

Supposed and B are nonempty convex sets such thais compact and is
closed. Then there exists a hyperplaidhat strictly separateg and B if and
onlyif AnB=10.

3A proof of Theorem 12 is given in Steven R. Laypnvex Sets and Their Applicatiofisew York: John
Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), pp. 34-39.
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THEOREM 13 Supposed andB are nonempty compact sets. Then there exists a hyperplane that
strictly separated andB if and only if (convA) N (convB) = 0.

PROOF Suppose thatconvA) N (convB) = 0. Since the convex hull of a compact
set is compact, Theorem 12 ensures that there is a hyperfldhat strictly separates
convA and convB. Clearly, H also strictly separates the smaller sétand B.

Conversely, suppose the hyperplaiie= [ f: d] strictly separated andB. Without
loss of generality, assume thAtA) < d and f(B) > d. Letx =ciXy + - - + X be
any convex combination of elementsAf Then

f(X) = C]_f(X]_) + .-+ Ckf(Xk) <cd+---+cd=d

sincecy + -+ - + ¢, = 1. Thusf(convA) < d. Likewise, f(convB) > d,s0H = [f:d]
strictly separates con¥ and convB. By Theorem 12, cony and convB must be
disjoint.

2 -3 3 1 2
EXAMPLES8 Lletaj= (1|, a= 2l,a3=|4]|,by=|0|,andb,= | -1,
1 1 0 2 5

and letA = {ay, ap, ag} andB = {by, b,}. Show that the hyperplang = [ f: 5], where
f(x1, x2, x3) = 2x1 — 3x2 + x3, does not separateandB. Isthere a hyperplane parallel
to H that does separate and B? Do the convex hulls ofl and B intersect?

Solution Evaluate the linear functiongl at each of the points iA andB:

Sincef(b1) =4 is less than 5 and (b,) = 12 is greater than 5, points &flie on both
sides ofH = [ f: 5] and soH does not separat¢ andB.

Since f(A) < 3 andf(B) > 3, the parallel hyperplanigf: 3] strictly separateg
andB. By Theorem 13(convA) N (convB) = .

Caution If there were no hyperplane parallel #bthat strictly separated and B,
this wouldnot necessarily imply that their convex hulls intersect. It might be that some
other hyperplane not parallel #& would strictly separate them.

PRACTICE PROBLEM
1 -1 1 -2

Let p1= |0, p2= 2(,n= 1(,n= 1], let H; be the hyperplane
2 1 -2 3

(plane) inR? passing through the poipy and having normal vectar;, and letH, be

the hyperplane passing through the pgiptand having normal vectan,. Describe
Hi N H,.
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.
8.4 EXERCISES
1. Let L be the line inR? through the pointg _ﬂ and [i . _g ; ; g
Find a linear functionalf and a real numbed such that > S6tP1=1 q[.Pa=1| 4|, Mm=1, vandn; = | 4 |,
L=[f:d]. 2 3 2 5
1 27 let Hy be the hyperplane iR* throughp; with normaln,, and
2. Let L be the line inR? through the pointg 4} and {_1 . let H, be the hyperplane through with normaln,. Find a
Find a li functional d | numbed ;tﬁ t pointp in H; N H, and two linearly independent vectors
Lm— a. (llnear unctionalf and a real num sue a andv, that span a subspace parallel to the 2-dimensional flat
=[f:dl. Hy N Ho.
In Exercises 3-6, lef be the hyperplane through the listed points.10. Let F; and F, be 4-dimensional flats iR®, and suppose that
(a) Find anormal vectarto the hyperplane. (b) Find alinear func- F1 N F,#0. What are the possible dimensionsmfn F,?
tional f and a real numbef such thatid = [f:d].

In Exercises 11 and 12, mark each statement True or False. Justify

1 4 7 each answer.
4 =2, |24 11. a. A linear transformation fronR to R” is called a linear
functional.

b. If fis alinear functional defined dR", then there exists
a real numbek such thatf (x) = kx for all x in R”.

1 1
2 1
2] (1 c. If a hyperplane strictly separates setsand B, then
0 1
1
3
2
7

ANB=0.

- d. If A andB are closed convex sets add B = [J, then
there exists a hyperplane that strictly separatesd B.

v 21 12. a. Ifd is areal number and is a nonzero linear functional
-1 defined orR”, then[ f: d] is a hyperplane ifR".

b. Given any vectom and any real numbed, the set
-2 {X : n-x =d} is a hyperplane.
. If A andB are nonempty disjoint sets such thats com-
pact andB is closed, then there exists a hyperplane that
- strictly separated andB.

) ) d. Ifthere exists a hyperplarfé such that? does not strictly
V3= | o | and letH be the hyperplane ii* with normaln separate two setsandB, then(conv A) N (conv B) # 0.

QD
>
o
(9]

y Vi=

4 ) ) . 13. Prove thatthe openball(p, §) = {x : ||x — p|| < 8} isacon-
and passing through. Which of the points/y, v, andvs are vex set.

on the same side df as the origin, and which are not?
14. Prove that the convex hull of a bounded set is bounded.

2 3 -1 0
8. Let ay = [—1], = 1] , B3 = [ 6] , b= { 5] , 15 Letp= ‘11 . Find a hyperplangf: d] that strictly sepa-
1 5 5 3 0 3 -1 ratesB(0, 3) and B(p, 1). [Hint: After finding f, show that
b= | -3|, bs=|2| and n= 1| and let tgéappf)lr]]tv: (1—.750+.75p is neither inB(0, 3) nor in
-2 1 -2 e
A ={a;, &, a3} and B = {b;, b, b3}. Find a hyperplané? |2 |6 . )
with normaln that separated andB. Is there a hyperplane 16. Letq= 3 andp = 1 Find a hyperplané: ] that

parallel toH that strictly separated and B? strictly separate8(q, 3) andB(p, 1).
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17. Give an example of a closed subsenf R? such thatcond  21. cl(cl §) =cl §

is not closed. 22. If x e int S andy € S, then for everyx such that O< < 1,
18. Give an example of a compact setand a closed s& in R? the pointz=Ax + (L — A)y € int S.

:tjrfglthsaé(csrg\tlgg (;(;]nvlzs TaEebut A and B cannot be 23. If x e int Sandy e cl S, thenforevery. suchthatO< 1 < 1,
y Sep yanyperp ' the pointz=Ax+ (1 — A)y €int S.

Exercises 19-30 use the following notations: l%be ann- 24 |f §is convex, then ins is convex.
dimensional subset dR*. Denote the set of all interior points
of S by int S, and the set of all boundary points®by bdS. Also,
define theclosure of S, denoted cls, by cl S =SubdS. Forany 26. a. If Sis convex, then cl (inf) =cl S.

L eR, letAS ={As: se S}. Prove the following. You may use b. Find an example to show that part (a) may not holslii
the fact that ifS is ann-dimensional convex subset &, then not convex.

int S# 0. You may also use the results in the earlier exercises
in the proofs of the later exercises. (It may be helpful to draw a@7'
diagram in doing the proofs, but the proof needs to be more than b. Find an example to show that part (a) may not holglig

25. If S is convex, then ck is convex.

a. If Sis convex, thenint (cF) =int S.

just a diagram.) not convex.
19. Letp € R” and lets > 0. 28. a. If Sis convex, then bd (c§) = bd S.
a. Ifx > 0, thenAB(p, §) = B(Ap, AS). b. Find an example to show that part (a) may not holglig
not convex.

b. If A <0, thenrB(p, §) = B(Ap, |A|3).

20. A pointpisin cl S if and only if, for everys > 0, the open
ball B(p, §) contains at least one point §f 30. If Sis convex, then bd may be a non-convex set.

29. If S is convex, then bd may be a convex set.

SOLUTION TO PRACTICE PROBLEM
First, computen; - p; = —3 andn,- p, = 7. The hyperpland{; is the solution set of
the equation; + x, — 2x3 = —3, andHs is the solution set of the equatierlx; + x, +
3x3 = 7. Next, solve this system of equations by row reduction:
1 1 —2 -3] [1 0-§ -7
-2 1 3 7 0o 1 _%

10 , 5

Thusxy=—22+ 2x3, xp =1 + x5, x3=x3. Letp= . The

= Wik o

general solution can be writtenas= p + x3v. This is the line througp in the direction
of v. Note thatv is orthogonal to botim; andn,.

POLYTOPES

This section studies geometric properties of an important class of compact convex sets
called polytopes. These sets arise in all sorts of applications, including game theory

(Section 9.1), linear programming (Sections 9.2 to 9.4), and more general optimization

problems, such as the design of feedback controls for engineering systems.
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Apolytopein R" is the convex hull of afinite set of points. Ik¥, a polytope is simply
a polygon. InR3, a polytope is called a polyhedron. Important features of a polyhedron
are its faces, edges, and vertices. For example, the cube has 6 square faces, 12 edges, and
8 vertices. The following definitions provide terminology for higher dimensions as well
asRR? andR3. Recall that the dimension of a setlf is the dimension of the smallest
flat that contains it. Also, note that a polytope is a special type of compact convex set,
because a finite set iR" is compact and the convex hull of this set is compact, by the
theorem in the topology facts box in Section 8.4.

DEFINITION Let S be a compact convex subsetlRf. A nonempty subsef of S is called
a (proper)face of S if F # S and there exists a hyperplafie= [ f: d] such that
F =S8N H and eitherf(S) <d or f(S) >d. The hyperplaned is called a
supporting hyperplaneto S. If the dimension off is k, thenF is called ak-face

of §.

If Pisapolytope of dimensiok, thenP is called &k-polytope. AO-face ofP
is called avertex (plural: vertices), a 1-face is aedge, and ak — 1)-dimensional
face is afacet of S.

EXAMPLE 1  SuppossS is a cube irR3. When a plané is translated througR® until
it just touches (supports) the cube but does not cut through the interior of the cube, there
are three possibilities faff N S, depending on the orientation &f. (See Figure 1.)

H N S may be a 2-dimensional square face (facet) of the cube.

H N S may be a 1-dimensional edge of the cube.

H N S may be a 0-dimensional vertex of the cube.

H N Sis2-dimensional. H N Sis 1-dimensional. H N Sis0-dimensional.

FIGURE 1

Most applications of polytopes involve the vertices in some way, because they have
a special property that is identified in the following definition.
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DEFINITION Let S be a convex set. A poirgtin S is called anextreme point of S if p is not
in the interior of any line segment that lies $h More precisely, i,y € S and
p € Xy, thenp = x orp =y. The set of all extreme points &fis called thepr ofile
of S.

A vertex of any compact convex sgis automatically an extreme point 8f This
fact is proved during the proof of Theorem 14, below. In working with a polytope, say
P =conv{vy,..., v} forvy, ..., v, in R, itis usually helpful to know thaty, ..., vi
are the extreme points @f. However, such a list might contain extraneous points. For
example, some vecte; could be the midpoint of an edge of the polytope. Of course,
in this casey; is not really needed to generate the convex hull. The following definition
describes the property of the vertices that will make them all extreme points.

DEFINITION The set{vy, ..., v} is a minimal representation of the polytopeP if P =
conv{vy,...,viyandforeach =1, ..., k,v; & conviv; : j #i}.

Every polytope has a minimal representation. FaP = conv{vy, ..., v} and if
somey; is a convex combination of the other points, thermay be deleted from the
set of points without changing the convex hull. This process may be repeated until the
minimal representation is left. It can be shown that the minimal representation is unique.

I
THEOREM 14 SupposeV = {vi, ..., Vi} is the minimal representation of the polytope Then
the following three statements are equivalent:

a.peM.
b. pis avertex ofP.
C. pis an extreme point oP.

PROOF (a)= (b) Suppos® € M and letQ = conv{v : v € M andv # p}. It follows

H H from the definition ofM thatp ¢ Q, and sinceQ is compact, Theorem 13 implies the
existence of a hyperplané’ that strictly separatep} andQ. Let H be the hyperplane
throughp parallel toH’. See Fig. 2.

Then Q lies in one of the closed half-spacés” bounded byH and soP C H*.
Thus H supportsP atp. Furthermorep is the only point ofP that can lie onH, so
H N P = {p}andp is a vertex ofP.

(b) = (c) Letp be a vertex ofP. Then there exists a hyperplafe= [ f:d] such
thatH N P = {p} and f(P) > d. If p were not an extreme point, then there would exist
pointsx andy in P such thap = (1 — ¢)x + ¢y with 0 < ¢ < 1. That s,

=p--on ana y= (Do (2 2o
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THEOREM 15

1 1
It follows that f (y) = ;f(p) — (C — 1)f(x). But f(p) =d andf(X) > d, so

1 1
fy = ()(d) - < - 1>(d) =d
c c

On the other handj € P, so f(y) > d. It follows that f (y) =d and thaty € H N P.
This contradicts the fact thatis a vertex. S@ must be an extreme point. (Note that
this part of the proof does not depend Brbeing a polytope. It holds for any compact
convex set.)

(c) = (a) Itis clear that any extreme point 8fmust be a member d#/.

EXAMPLE 2 Recallthatthe profile of a sétis the set of extreme points 8f Theorem

14 shows that the profile of a polygon R¥ is the set of vertices. (See Fig. 3.) The
profile of a closed ball is its boundary. An open set has no extreme points, so its profile
is empty. A closed half-space has no extreme points, so its profile is empty.

Vs N
/ \
[
l )
\ /
N\ 7/
\\__/
FIGURE 3

Exercise 10 asks you to show that a pgirih a convex sef is an extreme point
of S if and only if, whenp is removed fromS, the remaining points still form a convex
set. It follows that ifS* is any subset of such that com$* is equal toS, thenS* must
contain the profile of. The sets in Example 2 show that in genetalmay have to be
larger than the profile of. It is true, however, that whefiis compact we may actually
takeS* to be the profile of5, as Theorem 15 will show. Thus every nonempty compact
setS has an extreme point, and the set of all extreme points is the smallest sul§set of
whose convex hull is equal t&.

Let S be a nonempty compact convex set. TIses the convex hull of its profile
(the set of extreme points ¢Y).

PROOF  The proof is by induction on the dimension of the §ét

One important application of Theorem 15 is the following theorem. It is one of the
key theoretical results in the development of linear programming. Linear functionals
are continuous, and continuous functions always attain their maximum and minimum
on a compact set. The significance of Theorem 16 is that for compact convex sets, the
maximum (and minimum) is actually attained at an extreme poist of

1The details may be found in Steven R. L&gnvex Sets and Their Applicatiotisew York: John
Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), p. 43.
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I
THEOREM 16 Let f be a linear functional defined on a nonempty compact convef.s€hen

there exist extreme poinfsandw of S such that

W) =maxf(v) and f(W)=min /()

PROOF We assume thaf attains its maximunmm on S at some poinv’ in S. That
is, f(V') =m. We wish to show that there exists an extreme poirg inith the same
property. By Theorem 15/ is a convex combination of the extreme pointsSofThat
is, there exist extreme points, . .., v, of S and nonnegativey, ..., ¢, such that

V,:C]_V1+-~-+Cka WithC1+~-~+Ck:1
If none of the extreme points ¢f satisfy f (v) = m, then

fv)<m fori=1 ...k

sincem is the maximum off on S. But then, becauség is linear,

m=f(V) = f(caVa+---+crVi)
=c1f(Va) + -+ f (Vi)
<cum+---+cem=m(c1+---+c)=m

This contradiction implies that some extreme pdimtf S must satisfyf () = m.
The proof fonw is similar.

The remainder of this section discusses the construction of two basic polytdpes in
(and higher dimensions). The first appears in linear programming problems, the subject
of Chapter 9. Both polytopes provide opportunities to visudlizen a remarkable way.

Simplex

A simplexis the convex hull of an affinely independent finite set of vectors. To construct
ak-dimensional simplex (ak-simplex), proceed as follows:

0-simplexs?: a single pointv}

1-simplexSt: conv(S° U {v,}), with v, not in aff s°

2-simplexS?: conv (St U {va}), with v3 not in aff §1

k-simplexS*: conv (S U {vi,1}), with v;,1 not in aff S¥~1

The simplexs? is a line segment. The triang# comes from choosing a poimg that
is not in the line containing; and then forming the convex hull witfy. (See Fig. 4.)
The tetrahedrois; is produced by choosing a poinf not in the plane of? and then
forming the convex hull witrs2.
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vy Vi
[ ]
Vi A A V3
S0 st s? S8
FIGURE 4

Before continuing, consider some of the patterns that are being followed. The
triangle $2 has three edges. Each of these edges is a line segmentlik&/here do
these three line segments come from? One of thefh i©ne of them comes by joining
the endpoint/; to the new point/z. The third comes from joining the other endpoint
to vs. You might say that each endpoint$n is stretched out into a line segmentif

The tetrahedros® has four triangular faces. One of these is the original triasigjle
and the other three come from stretching the edgé$ ofit to the new point,. Notice
too that the vertices df? get stretched out into edgesSA. The other edges i come
from the edges ii5?. This suggests how to “visualize” the four-dimensiosil

The construction of*, called a pentatope, involves forming the convex huls®f
with a pointvs not in the 3-space af3. A complete picture is impossible, of course,
but Fig. 5 is suggestives* has five vertices, and any four of the vertices determine a

V2 £ '~'DV3

FIGURES The 4-dimensional simple$’* projected ontdR?, with two
tetrahedral facets emphasized.
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facet in the shape of a tetrahedron. For example, the figure emphasizes the facet with
verticesvy, Vo, V4, andvs and the facet with vertices, va, v4, andvs. There are five
such facets. Figure 5 identifies all ten edges‘fand these can be used to visualize the
ten triangular faces.

Figure 6 shows another representation of the 4-dimensional sin§plekhis time
the fifth vertex appears “inside” the tetrahedi®h The highlighted tetrahedral facets
also appear to be “insides®.

Va

FIGURE6 The fifth vertex ofS* is “inside” S3.

Hypercube

Let I; = Og; be the line segment from the origto the standard basis vectgrin R”.
Then fork such that 1< k < n, the vector surh

Ck=L+L+--+1;

is called ak-dimensionahypercube.
To visualize the construction @f*, start with the simple cases. The hypercdde
is the line segmenk;. If C* is translated by, the convex hull of its initial and final

2The vector sum of two setd and B is defined byA + B={a+b:ac A andb € B}.
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positions describes a squaté. (See Fig. 7.) Translating? by e; creates the cub€®.
A similar translation ofC® by the vector, yields the 4-dimensional hyperculg.

ct c? c3
FIGURE7 Constructing the cub€?.

Again, this is hard to visualize, but Fig. 8 shows a 2-dimensional projectigtf of
Each of the edges af® is stretched into a square face@f. And each of the square
faces ofC? is stretched into a cubic face 6f. Figure 9 shows three facets 6f. Part
(a) highlights the cube that comes from the left square faagofPart (b) shows the
cube that comes from the front square fac€®f And part (c) emphasizes the cube that
comes from the top square face®t.

FIGURES C* projected ontdR?.

@ (b) (©
FIGURE9 Three of the cubic facets @f*.

Figure 10 shows another representatio@6fn which the translated cube is placed
“inside” C3. This makes it easier to visualize the cubic facet€tfsince there is less
distortion.

Altogether, the 4-dimensional culi®* has 8 cubic faces. Two come from the
original and translated images 6f, and six come from the square faces®fthat are
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FIGURE10 The translated image «f®
is placed “inside’C? to obtainC*.

stretched into cubes. The square 2-dimensional fac€4 obme from the square faces

of C2 and its translate, and the edges@¥fthat are stretched into squares. Thus there
are 2x 6 + 12 = 24 square faces. To count the edges, take 2 times the number of edges
in C® and add the number of vertices @¥. This makes % 12+ 8 = 32 edges irC*.

The vertices irC# all come fromC? and its translate, so there are & = 16 vertices.

One of the truly remarkable results in the study of polytopes is the following formula,
first proved by Leonard Euler (1707-1783). It establishes a simple relationship between
the number of faces of different dimensions in a polytope. To simplify the statement of
the formula, letf; (P) denote the number df-dimensional faces of am-dimensional
polytopeP .3

n—1
Euler’s formula: Z(—l)kfk(P) =1+ (=1
k=0
In particular, whem = 3,v — e + f =2, wherev, ¢, and f denote the number of ver-
tices, edges, and facets (respectivelypof

L LetS={(x,y): x2+(y —1?< 1} U{(3, 0)}. Isthe origin 4. a. Determine the number df-faces of the 5-dimensional

an extreme point of con§ ? Is the origin a vertex of con§? simplex $° for k=0, 1, ..., 4. Verify that your answer
satisfies Euler’s formula.
2. Find an example of a closed convex Seh R? such that its b. Make a chart of the values gf(S") forn =1, ..., 5 and
profile P is nonempty but conw # S. k=0,1,..., 4. Canyou see a pattern? Guess at a general

formula for f;.(S").

3. Find an example of a bounded convex $éh R? such that
its profile P is nonempty but conw’ # S.

3A proof is in Steven R. LayConvex Sets and Their Applicatiofisew York: John Wiley & Sons, 1982;
Melbourne, FL: Krieger Pub., 1992), p. 131.
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5. a. Determine the number bffaces of the 5-dimensional hy- 9.

percubeC® for k=0, 1, ..., 4. Verify that your answer
satisfies Euler’s formula.

b. Make a chart of the values gf(C") forn =1, ...,5and
k=0,1,...,4. Canyousee a pattern? Guess ata general
formula for f, (C").

6. Supposevy,...,Vv, are linearly independent vectors in
R" (1 <k <n). Then the sefX* =conv{+vy, ..., v} is
called ak-crosspolytope.

a. Sketchx! andX?.

b. Determine the number df-faces of the 3-dimensional
crosspolytopex® for k =0, 1, 2. What is another name

for X3? 1n.
c. Determine the number df-faces of the 4-dimensional 12.
crosspolytopeX for k =0, 1, 2, 3. Verify that your an-
swer satisfies Euler’s formula.
d. Find a formula forf; (X"), the number ok-faces ofX",
forO<k <n-1.
7. A k-pyramid P* is the convex hull of &k — 1)-polytope Q 13.

andapoink ¢ aff Q. Find aformulaforeach of the following
interms off;(Q), j=1,...,k— 1.
a. The number of vertices d@t": fo(P").
b. The number ok-faces ofP™: f(P")forl <k <n — 2.
c. The number of (n — 1)-dimensional facets ofP":
Ju—1(P").
In Exercises 8 and 9, mark each statement True or False. Justify
each answer.
8. a.

b. Letp be an extreme point of a convex sgtlf u,v € S,
p € uv, andp # u, thenp = v.

c. If § is a nonempty convex subset Bf', then S is the
convex hull of its profile.

d. The 4-dimensional simples¢ has exactly five facets, each
of which is a 3-dimensional tetrahedron.

A polytope is the convex hull of a finite set of points.

EX3 CURVES AND SURFACES

10.

a. Acube inR? has five facets.

b. A pointp is an extreme point of a polytope if and only
if p is a vertex ofP.

c. If §is a nonempty compact convex set and a linear func-
tional attains its maximum at a poimtthenp is an extreme
point of S.

d. A2-dimensional polytope always has the same number of
vertices and edges.

Let v be an element of the convex s&t Prove thatv is an
extreme point ofS if and only if the set{x € S : x#V} is
convex.

If A andB are convex sets, prove that+ B is convex.

If c € RandS is a set, defineS = {¢x : x € S}.
a. LetSbeaconvexsetandsuppase 0andd > 0. Prove
thatcS +dS = (c +d)S.

b. Find an example to show that the convexitysaé neces-
sary in part (a).

Apolyhedron (3-polytope) is calleapgular if all its facets are
congruent regular polygons and all the angles at the vertices
are equal. Supply the details in the following proof that there
are only five regular polyhedra.
a. Suppose that a regular polyhedron hdacets, each of
which is ak-sided regular polygon, and thaedges meet
at each vertex. Lettingande denote the numbers of ver-
tices and edges in the polyhedron, explain vidy= 2¢
andsv = 2e.

b. Use Euler’s formula to show thafd+ 1/k =1/2+ 1/e.

c. Find all the integral solutions of the equation in part (b)
that satisfy the geometric constraints of the problem. (How
small cank ands be?)

For your information, the five regular polyhedra are the tetra-

hedron (4, 6, 4), the cube (8, 12, 6), the octahedron (6, 12,

8), the dodecahedron (20, 30, 12), and the icosahedron (12,

30, 20). (The numbers in parentheses indicate the numbers of

vertices, edges, and faces, respectively.)

For thousands of years, builders used long thin strips of wood to create the hull of a boat.
In more recent times, designers used long flexible metal strips to lay out the surfaces of
cars and airplanes. Weights and pegs shaped the strips into smooth curvesataliad

cubic splines The curve between two successive control points (pegs or weights) has
a parametric representation using cubic polynomials. Unfortunately, such curves have
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the property that moving one control point affects the shape of the entire curve, because
of physical forces that the pegs and weights exert on the strip. Design engineers had
long wanted local control of the curve—in which movement of one control point would
affect only a small portion of the curve. In 1962, a French automotive engineer, Pierre
Bézier, solved this problem by adding extra control points and using a class of curves
now called by his name.

Bézier Curves

The curves described below play an important role in computer graphics as well as
engineering. For example, they are used in Adobe lllustrator and Macromedia Freehand,
and in application programming languages such as OpenGL. These curves permit a
program to store exact information about curved segments and surfaces in a relatively
small number of control points. All graphics commands for the segments and surfaces
have only to be computed for the control points. The special structure of these curves
also speeds up other calculations in the “graphics pipeline” that creates the final display
on the viewing screen.

Exercises in Section 8.3 introduced quadratic Bézier curves and showed one method
for constructing Bézier curves of higher degree. The discussion here focuses on quadratic
and cubic Bézier curves, which are determined by three or four control points, denoted
by po, p1, P2, andps. These points can be R? or R3, or they can be represented by
homogeneous forms iR® or R*. The standard parametric descriptions of these curves,
forO<r <1, are

W() = (1—1)%po + 2t (1 — 1)p1 + 1Pz (1)
X(1) = (1—1)°po + 3t (L — 1)?py + 3*(L — 1)p2 + 1°p3 2
Figure 1 shows two typical curves. Usually, the curves pass through only the initial and

terminal control points, but a Bézier curve is always in the convex hull of its control
points. (See Exercises 26—28 in Section 8.3.)

Py P> P1 P2

po pO p3

FIGURE1 Quadratic and cubic Bézier curves.

Bézier curves are useful in computer graphics because their essential properties are
preserved under the action of linear transformations and translations. For instance, if
A is a matrix of appropriate size, then from the linearity of matrix multiplication, for
0<r<1,

AX(t) = A[(L — 1)3po + 3t (1 — 1)°p1 + 3r%(1 — t)p2 + £°p3]
=1 —0)3Apg+3t(1 — 1)2Ap1 + 32(L — 1) Apo + 12 Ap3
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The new control points arépo, . .., Aps. Translations of Bézier curves are considered
in Exercise 1.

The curves in Fig. 1 suggest that the control points determine the tangent lines to
the curves at the initial and terminal control points. Recall from calculus that for any
parametric curve, say(t), the direction of the tangent line to the curve at a pginj is
given by the derivativg’(r), called thetangent vector of the curve. (This derivative is
computed entry by entry.)

EXAMPLE 1 Determine how the tangent vector of the quadratic Bézier convgis
related to the control points of the curvezat 0 andr = 1.

Solution Write the weights in (1) as simple polynomials
W(t) = (1 — 21 +t2)po + (2t — 21%)py + %P2
Then, because differentiation is a linear transformation on functions,
W () = (—2+ 2t)po + (2 — 4r)p1 + 21P2
So
W'(0) = —2po + 2p1 = 2(P1 — Po)
W'(1) = —2py1 + 2p2 = 2(p2 — P1)

The tangent vector gip, for instance, points fronpg to p1, but it is twice as long
as the segment fromg to p;. Notice thatw'(0) = 0 whenp; = po. In this case,
w(r) = (1 —t?)p1 + t?py, and the graph ofw(r) is the line segment fronp;
to pa2.

Connecting Two Bézier Curves

Two basic Bézier curves can be joined end to end, with the terminal point of the first
curvex(t) being the initial point, of the second curvg(z). The combined curve is
said to haveG® geometric continuitfat p,) because the two segments joirpat If the
tangent line to curve 1 g, has a different direction than the tangent line to curve 2,
then a “corner,” or abrupt change of direction, may be apparemnt &ee Fig. 2.

P3 Py
W

Py

Pqe
x(t)

Po
FIGURE2 G° continuity atp,.
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To avoid a sharp bend, it usually suffices to adjust the curves to have what is called
G' geometric continuitywhere both tangent vectors @t point in the same direction.
That is, the derivativeg’(1) andy’(0) point in the same direction, even though their
magnitudes may be different. When the tangent vectors are actually equalthe
tangent vector is continuousa, and the combined curve is said to hafecontinuity,
or C* parametric continuity Figure 3 showsG?! continuity in (a) andC?! continuity
in (b).

ol pl' p2 p3 pll p2 ! p3
X(t) y(®) X(t) y(®
Po Po Py
0 : : Ps : : : |
0 2 4 6 8 10 12 14

@ (b)
FIGURE3 (@) G continuity and (b)C* continuity.

EXAMPLE 2 Letx(r) andy(z) determine two quadratic Bézier curves, with control
points{po, p1, P2} and{p2, ps, P4}, respectively. The curves are joinedmat= x(1) =
y(0).

a. Suppose the combined curve t@5scontinuity (atp,). What algebraic restriction
does this condition impose on the control points? Express this restriction in geometric
language.

b. Repeat part (a) faf* continuity.

Solution

a. From Example 1x'(1) = 2(p> — p1). Also, using the control points foy(z) in
place ofw(z), Example 1 shows that (0) = 2(p3 — p2). G continuity means that
y'(0) = kx'(1) for some positive constakt Equivalently,

Pz — P2 =k(p2 —p1), Wwithk >0 3

Geometrically, (3) implies that; lies on the line segment from tops. To prove this,
let r = (k + 1)~1, and note that & ¢ < 1. Solve fork to obtaink = (1 — ¢)/¢. When
this expression is used féiin (3), a rearrangement shows tipat= (1 — #)p; + tp3,
which verifies the assertion abquit.

b. C*continuity meansthat (0) = x'(1). Thus 2pz — p2) = 2(p2 — P1), SOP3 — P2 =
p2 — p1, andp, = (p1 + p3)/2. Geometricallyp, is the midpoint of the line segment
from py to p3. See Fig. 3.
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Figure 4 shows_?! continuity for two cubic Bézier curves. Notice how the point
joining the two segments lies in the middle of the line segment between the adjacent
control points.

p3 p4

Po

Ps

Ps

FIGURE4 Two cubic Bézier curves.

Two curves haveC? (parametric) continuity when they have! continuity and
the secondderivativesx”(1) andy”(0) are equal. This is possible for cubic Bézier
curves, but it severely limits the positions of the control points. Another class of cubic
curves, calledB-splines always haveC? continuity because each pair of curves share
three control points rather than one. Graphics figures using B-splines have more control
points and consequently require more computations. Some exercises for this section
examine these curves.

Surprisingly, ifx(¢) andy(¢) join atps, the apparent smoothness of the curvesas
usually the same for botti* continuity andC* continuity. This is because the magnitude
of X'(¢) is not related to the physical shape of the curve. The magnitude reflects only the
mathematical parameterization of the curve. For instance, if a new vector fua@tjon
equalsx(2t), then the pointk(¢) traverses the curve fromy to ps twice as fast as the
original version, because 2eaches 1 whenis .5. But, by the chain rule of calculus,

Z'(t) = 2-X'(2t), so the tangent vector t(¢) at ps is twice the tangent vector ta(r)
atps.

In practice, many simple Bézier curves are joined to create graphics objects. Type-
setting programs provide one important application, because many letters in a type font
involve curved segments. Each letter in a PostS&ripnt, for example, is stored as a
set of control points, along with information on how to construct the “outline” of the
letter using line segments and Bézier curves. Enlarging such a letter basically requires
multiplying the coordinates of each control point by one constant scale factor. Once the
outline of the letter has been computed, the appropriate solid parts of the letter are filled
in. Figure 5 illustrates this for a character in a PostScript font. Note the control points.

Matrix Equationsfor Bézier Curves

Since a Bézier curve is a linear combination of control points using polynomials as
weights, the formula fox(z) may be written as
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FIGURE5 A PostScript character.

[ A—-1)° 1—3r+32—¢3
3r(1—1)? 3r — 62+ 38
X(t) =[po P1 P2 psl] 32(1—1) =[po p1 P2 p3] 32 _ 33
/3 /3
1 -3 3 —-1][1
0 3 -6 3|t
=[po p1 P2 Pp3] 0 0o 3 -3/
0o 0 o0 1|

The matrix whose columns are the four control points is callgebmetry matrix, G.
The 4x 4 matrix of polynomial coefficients is thBézier basis matrix, Mg. If u() is
the column vector of powers of then the Bézier curve is given by

X(t) = GMgu(r) (4)

Other parametric cubic curves in computer graphics are written in this form, too. For
instance, if the entries in the matrdp are changed appropriately, the resulting curves
are B-splines. They are “smoother” than Bézier curves, but they do not pass through
any of the control points. Mermite cubic curve arises when the mati%; is replaced
by a Hermite basis matrix. In this case, the columns of the geometry matrix consist of
the starting and ending points of the curves and the tangent vectors to the curves at those
points?!

The Bézier curve in (4) can also be “factored” in another way, to be used in the
discussion of Bézier surfaces. For convenience later, the paramistegplaced by a
parametes:

1The termbasis matrixcomes from the rows of the matrix that list the coefficients of ihending poly-
nomials used to define the curve. For a cubic Bézier curve, the four polynomials are3, 3t(1 — )2,
3r2(1—1), andr3. They form a basis for the spa@& of polynomials of degree 3 or less. Each entry

in the vectorx(z) is a linear combination of these polynomials. The weights come from the rows of the
geometry matrixG in (4).
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Po 1 0 0 0][po
X(s):U(s)TMBT E; =[1 s s? 5% _g _g g 8 g:
o) -1 3 -3 1||ps
Po
—[(1-s? 35L—952 352Ll—s) s°] E; (5)
P3

This formula is not quite the same as the transpose of the product on the right of
(4), because(s) and the control points appear in (5) without transpose symbols. The
matrix of control points in (5) is called geometry vector. This should be viewed as a
4 x 1 block (partitioned) matrix whose entries are column vectors. The matrix to the left
of the geometry vector, in the second part of (5), can be viewed as a block matrix, too,
with a scalar in each block. The partitioned matrix multiplication makes sense, because
each (vector) entry in the geometry vector can be left-multiplied by a scalar as well as
by a matrix. Thus, the column vectr(s) is represented by (5).

Bézier Surfaces

A 3D bicubic surface patch can be constructed from a set of four Bézier curves. Consider
the four geometry matrices

Pi1 P12 P13 Pus
P21 P22 P23 P2s
P31 P32 P33 Pas
Pa1 Pa2  Paz  Pas

and recall from (4) that a Bézier curve is produced when any one of these matrices is
multiplied on the right by the following vector of weights:

1-1)3
3r(1—1)?

3r2(1—1)
/3

Mpu(t) =

Let G be the block (partitioned) %4 matrix whose entries are the control poipis
displayed above. Then the following product is a block¥matrix, and each entry is
a Bézier curve:

Pi1 P12 P13z Pus 1-13
P21 P22 P2z Paa || 3(1—1)?
Pa1 Ps2  Pas Paa|| 3L —1)
Pa1 Pa2  Paz  Pas 13

GMgu(t) =

In fact,

(1—1)°p1+ 3 (L — 1)%p12+ 3t2(L — )Pz + 13p1a
(L —1)3pa1+ 3t (1 — 1)%pap + 32(1 — 1)p2s + 13p2a
(1 —1)3pa1+ 3t (1 — 1)%pap + 3%(1 — t)pas + 13Paa
(1= 1)*par+3t(1— 1)?paz + 3t3(1 — 1)Paz + 13Paa

GMpu(t) =



8.6 Curves and Surfaces 55

Now fix z. ThenG Mpu(r) is a column vector that can be used as a geometry vector in (5)
for a Bézier curve in another varialbde This observation produces tB&zier bicubic
surface:

X(s, t) = u(s)" M GMpu(t), where 0<s,t <1 (6)

The formula forx(s, #) is a linear combination of the sixteen control points. If one
imagines that these control points are arranged in a fairly uniform rectangular array, as
in Fig. 6, then the Bézier surface is controlled by a web of eight Bézier curves, four
in the “s-direction” and four in the #-direction.” The surface actually passes through
the four control points at its “corners.” When it is in the middle of a larger surface, the
sixteen-point surface shares its twelve boundary control points with its neighbors.

FIGURE6 Sixteen control points for a Bézier bicubic
surface patch.

Approximationsto Curves and Surfaces

In CAD programs and in programs used to create realistic computer games, the designer
often works at a graphics workstation to compose a “scene” involving various geometric
structures. This process requires interaction between the designer and the geometric
objects. Each slight repositioning of an object requires new mathematical computations
by the graphics program. Bézier curves and surfaces can be useful in this process because
they involve fewer control points than objects approximated by many polygons. This
dramatically reduces the computation time and speeds up the designer’s work.

After the scene composition, however, the final image preparation has different
computational demands that are more easily met by objects consisting of flat surfaces and
straight edges, such as polyhedra. The designer neszteterthe scene, by introducing
light sources, adding color and texture to surfaces, and simulating reflections from the
surfaces.

Computing the direction of a reflected light at a pgimn a surface, for instance,
requires knowing the direction of both the incoming light and sheface normak
the vector perpendicular to the tangent planp.aComputing such normal vectors is
much easier on a surface composed of, say, tiny flat polygons than on a curved surface
whose normal vector changes continuouslypasoves. Ifp1, p2, andps are adjacent
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vertices of a flat polygon, then the surface normal is just plus or minus the cross product
(p2 — p1) X (P2 — p3). When the polygon is small, only one normal vector is needed for
rendering the entire polygon. Also, two widely used shading routines, Gouraud shading
and Phong shading, both require a surface to be defined by polygons.

As a result of these needs for flat surfaces, the Bézier curves and surfaces from the
scene composition stage now are usually approximated by straight line segments and
polyhedral surfaces. The basic idea for approximating a Bézier curve or surface is to
divide the curve or surface into smaller pieces, with more and more control points.

Recursive Subdivision of Bézier Curves and Surfaces

Figure 7 shows the four control points, . . ., ps for a Bézier curve, along with control
points for two new curves, each coinciding with half of the original curve. The “left”
curve begins afp = pp and ends af3, at the midpoint of the original curve. The “right”
curve begins aty = gz and ends at; = ps.

pl p2

Po=4dg pz=rg

FIGURE7 Subdivision of a Bézier curve.

Figure 8 shows how the new control points enclose regions that are “thinner” than
the region enclosed by the original control points. As the distances between the control
points decrease, the control points of each curve segment also move closer to a line
segment. Thisariation-diminishing propertpf Bézier curves depends on the fact that
a Bézier curve always lies in the convex hull of the control points.

pl p2

Py =4y py;=ry

FIGURE8 Convex hulls of the control points.

The new control points are related to the original control points by simple formulas.
Of coursego = po andr3 = p3. The midpoint of the original curve(z) occurs a(.5)
whenx(t) has the standard parameterization,

X)) =1 =3t +3%2 = 3po+ Bt —6:2+3>)p1+ 32 = 3)po+1°p3  (7)
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for 0 < < 1. Thus, the new control pointg andrg are given by

O3 =ro=X(.5) = §(Po + 3p1 + 3p2 + P3) (8)

The formulas for the remaining “interior” control points are also simple, but the deriva-
tion of the formulas requires some work involving the tangent vectors of the curves. By
definition, the tangent vector to a parameterized cuvgis the derivatived'(r). This
vector shows the direction of the line tangent to the curvgigt For the Bézier curve

in (7),

X'(t) = (—3+ 61 — 3tH)po + (3— 12 + H?)py + (61 — 9?)p, + 32p3
for0 <t < 1. In particular,
X'(0)=3(p1 —po) and x'(1) =3(ps — p2) ©)

Geometricallyp; is on the line tangent to the curve@, andp, is on the line tangent
to the curve aps. See Fig. 8. Also, fronx’(¢), compute

X'(.5) = 3(—po — P1+ P2 + P3) (10)
Lety(z) be the Bézier curve determined b, . . ., gs, and letz(r) be the Bézier curve
determined by, ..., rs. Sincey(z) traverses the same path>ag) but only gets to

x(.5) ast goes from 0 to 1y(¢) = x(.5¢) for 0 < ¢t < 1. Similarly, sincez(¢) starts at
x(.5) whent =0, z(t) = x(.5+ .5¢) for 0 < r < 1. By the chain rule for derivatives,

y()=.5x(5t) and Z(t)=.5x(5+.5t) forO<tr<1 (12)

From (9) withy’(0) in place ofx’(0), from (11) withz = 0, and from (9), the control
points fory(¢) satisfy

3(d1 — o) = Y'(0) = .5X'(0) = 3(P1 — Po) (12)
From (9) withy’(1) in place ofx’(1), from (11) withs = 1, and from (10),
3(ds — G2) =Y'(1) = .5X'(.5) = §(—Po — P1 + P2 + P3) (13)

Equations (8), (9), (10), (12), and (13) can be solved to produce the formulas for
Jo, - - -, g3 shown in Exercise 13. Geometrically, the formulas are displayed in Fig.
9. The interior control pointg; andr, are the midpoints, respectively, of the segment
from pg to p; and the segment fromy, to p3. When the midpoint of the segment from

p1 to p2 is connected tgj;, the resulting line segment hgg in the middle!

1
S (P1+p,)

dp=Pg
FIGURE9 Geometric structure of new control points.
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This completes one step of the subdivision process. The “recursion” begins, and
both new curves are subdivided. The recursion continues to a depth at which all curves
are sufficiently straight. Alternatively, at each step the recursion can be “adaptive” and
not subdivide one of the two new curves if that curve is sufficiently straight. Once the
subdivision completely stops, the endpoints of each curve are joined by line segments,
and the scene is ready for the next step in the final image preparation.

A Bézier bicubic surface has the same variation-diminishing property as the Bézier
curves that make up each cross-section of the surface, so the process described above
can be applied in each cross-section. With the details omitted, here is the basic strat-
egy. Consider the four “parallel” Bézier curves whose parameter and apply the
subdivision process to each of them. This produces four sets of eight control points;
each set determines a curvesaaries from 0 to 1. As varies, however, there are eight
curves, each with four control points. Apply the subdivision process to each of these
sets of four points, creating a total of 64 control points. Adaptive recursion is possible
in this setting, too, but there are some subtleties involv&ee the following Web site
foracolor/interactive demadnttp://id.mind.net~zona/mmts/curveFitting/bezierCurves/
bezierCurve.html

]
8.6 EXERCISES

1. Suppose a Bézier curve is translateco + b. That is, for —
0 <t <1, the new curve is

X(t) =1 —1)%po+3t(1—1)°p1 +3>(L — 1)po+t3ps + b

Show that this new curve is again a Bézier curvédinf: Po
Where are the new control points?]

2. Asplineusually refers to a curve that passes through specified
points. A B-spline, however, usually does not pass through
its control points. A single segment has the parametric vector
form

1
X(t) = 6[(1 —1)%po + (32 — 612 + 4)p, (14) _
+ (=33 + 32+ 3 + 1)ps + 13pa) FIGURE10 A B-spline segment and

_ aBézier curve.
for0 < r < 1, wherepo, p1, P2, andps are the control points.

Whenr varies from 0 to 1x(¢) creates a short curve that lies
close top, andp,. Figure 10 compares a B-spline with a b. Show that for 0 < ¢ < 1, x(t) liesin the convex hull of the

Bézier curve that has the same control points. control points.
a. Compare the B-spline with the cubic Bézier curve by  ¢. Supposethat aB-splinecurvex(r) istransatedto x(¢) + b
showing that the B-spline has the form (asin Exercise 1). Show that this new curve is again a
1 3 2 B-spline.
X(t) = 6[(1 —1)°Po+ Bt — 1) +4—-3)p; (15)

+ (32(1— 1) + 3t + )py + t3p3]

2See Foley, van Dam, Feiner, and Hughes, Computer Graphics—Principles and Practj@nd Ed.
(Boston: Addison-Wesley, 1996), pp. 527-528.
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3. Let x(r) beacubic Bézier curve determined by points po, p1,

P2, and ps.

a. Compute the tangentvector x'(¢). Determine how x'(0)
andx’(1) arerelated tothecontrol points, and give geomet-
ric descriptions of the directionsof these tangent vectors.
Isit possible to have x'(1) = 0?

b. Compute the second derivative x”(¢) and determine how
x”(0) and x” (1) are related to the control points. Draw a
figure based on Fig. 10, and construct a line segment that
pointsinthedirection of x”(0). [Hint: Usep; astheorigin
of the coordinate system.]

. Let x(¢) bethe B-splinein Exercise 2, with control points po,

P1, P2, and ps.

a. Compute the tangent vector x'(¢) and determine how the
derivativesx’(0) and x' (1) arerelated to the control points.
Give geometric descriptions of the directionsof these tan-
gent vectors. Explore what happens when both x’(0) and
X' (1) equa 0. Justify your assertions.

b. Compute the second derivative x”(¢) and determine how
x”(0) and x”(1) are related to the control points. Draw a
figure based on Fig. 10, and construct a line segment that
pointsinthedirection of x”(1). [Hint: Usep, astheorigin
of the coordinate system.]

. Let x(r) and y(¢) be cubic Bézier curves with control points

{Po, P1, P2, P3} and {pa, P4, Ps, Ps}, respectively, so that x(¢)

and y(¢) are joined at ps. The following questions refer to

the curve consisting of x(¢) followed by y(¢). For simplicity,

assume that the curveisin R2,

a. What condition on the control points will guarantee that
the curve has C* continuity at ps? Justify your answer.

b. What happenswhen x’(1) andy’(0) are both the zero vec-
tor?

6. A B-splineisbuilt out of B-spline segments, described in Ex-

ercise 2. Let po, ..., ps be control points. For 0 <7 <1,

let x(r) and y(z) be determined by the geometry matri-

ces[po p1 P2 psland[p: P2 Pps Pa], respectively.

Notice how the two segments share three control points. The

two segments do not overlap, however—they join at a com-

mon endpoint, close to p,.

a Show that the combined curve has G° continuity—that is,
x(1) =y(0).

b. Show that the curve has C* continuity at the join point,
X(1). That is, show that x'(1) = y’(0).

. Let x(¢r) and y(¢) be Bézier curves from Exercise 5, and sup-
pose the combined curve has C? continuity (which includes

9.

10.
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C? continuity) at ps. Set x”(1) =y”(0) and show that ps is
completely determined by p1, p2, and ps. Thus, the points
Po, - - ., p3 and the C? condition determine all but one of the
control pointsfor y(z).

. Let x(¢) and y(r) be segments of a B-spline as in Exercise

6. Show that the curve has C? continuity (as well as C*
continuity) at x(1). That is, show that x"(1) =y”(0). This
higher-order continuity isdesirablein CAD applications such
as automotive body design, since the curves and surfaces ap-
pear much smoother. However, B-splines require three times
the computation of Bézier curves, for curves of comparable
length. For surfaces, B-splines require nine times the compu-
tation of Bézier surfaces. Programmers often choose Bézier
surfaces for applications (such as an airplane cockpit simula-
tor) that require real-time rendering.

A quartic Bézier curve is determined by five control points,
Po, P1, P2, P3, and pa:
X(1) = (1 —1)*po + 4t (1 — 1)%py + 6:2(1 — 1)%py
+43(L —t)ps+tips for0<t<1
Construct the quartic basis matrix Mg for x(t).

The“B” in B-spline refersto the fact that a segment x(¢) may
be written in terms of abasis matrix, My , inaform similar to
aBézier curve. That is,

X@#)=GMsu@r) forO<r<l1

where G isthe geometry matrix [po p1 p2 pz] andu(z)
isthe column vector (1, ¢, 2, t3). In auniformB-spline, each
segment uses the same basis matrix, but the geometry matrix
changes. Construct the basis matrix My for x(z).

. [M] The MATLAB program bezi er. m creates Bézier

curves of degrees 2, 3, and 4. This exercise involves only
cubic curves.
a. Beginby entering the 2 x 4 geometry matrix for the control
. 1 4 5 8
points ol sl |6 ,and 5
metry of the control pointsis reflected in the symmetry of
the curve.
b. Rerun the program to create a Bézier curve x(¢) for the

points [ﬂ {é} [1‘.18}’ and [452}. Print the out-
put, and keep the MATLAB Figure window open. (The
program includesthecommand hol d on, soMATLAB
will display any new graphs in the same window.)

c. Design a new Bézier curve y(¢) that joins x(¢r) at
ps = (5,4.2) such that the combined curve has G*!

. Notice how the sym-
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continuity but not C* continuity (at ps). Also, design the
new curve so that the combined curve has an inflection
point at p3. (The combined curve should cross the tangent
line at p3.) Print the new curve in the same window so
that the combined curve is shown. [If you wish to start
a new figure, close the existing figure before you run the
program again. In this case you will need to do part (a)
again.] By hand (or in your MATLAB printout), identify
the coordinates you choose for the second set of control
points.

[M] Suppose that as part of an animated sequence, a person
or animal needs to move along a curve x(¢) (in the xy-plane,
for simplicity). Then the curve must have C? continuity. Oth-
erwise, the movement of the person may appear jerky at the
join points of the segments of the curve, because x” () reflects
theacceleration(rate of change of the velocity or tangent vec-
tor) along the curve. In general, cubic Bézier curves are not
suitable for this task. However, from Exercise 8, every B-
spline has C? continuity. This exercise asks you to watch as

a program computes three segments of a uniform B-spline.

a. The MATLAB program bspl i ne. mcreates a uniform
B-spline consisting of three segments that form a contin-
uous curve. Thefirst threelines of the program define the
geometry matrices. Currently, lines 2 and 3 begin with
a % “comment” symbol. Run the program, and print the
output. Close the MATLAB Figure window.

b. Generate the second curve segment by moving the com-
ment symbol from line 2 to line 1. Print the result and
close the Figure window. Repeat this for the third curve
segment (moving the comment symbol from line 3to line
2). Parts (a) and (b) should generate three figures.

c. Print al three B-spline segments onto one figure. [That
is, repeat parts (a) and (b) without closing the Figure win-
dow.]

d. Modify the program so that it asks for a2 x 6 matrix such
that the program uses the first four columns for one seg-
ment, themiddlefour columnsfor the second segment, and
the last four columns for the third segment. The program
should print all three segments, pausing between segments
for the user to see how the graph is being constructed.
Usethepause commandandadi sp(’ ') command
that asks the user to check the graph and then press any
key to continue. (See bezi er. mfor ideas, if you need
them.) You may modify the input step if you think that
the data entry would be easier if the points were entered
in order as the rows of a matrix rather than the columns:

[po Pz pu P12 ... s P:1 Ds2l.

Exercises 13-15 concern the subdivision of a Bézier curve shown
in Fig. 7. Let x(r) be the Bézier curve, with control points

Po, ...
as in the text, with control points qo, . .

, Ps, and let y(¢) and z(¢) be the subdividing Bézier curves
,Qzandrg,...,r3, re-

spectively.

13.

14.

15.

16.

17.

a. Use equation (12) to show that q; is the midpoint of the
segment from pg to p;.

b. Use equation (13) to show that 89, = 8qs + po + P1 — P2
— Ps.

c. Use(h), equation (8), and (a) to show that g is the mid-
point of the segment from ¢, to themidpoint of the segment
from p; to p,. That is, g2 = 5[0 + 3 (P1 + P2)].

a. Justify each equals sign: 3(rs —ry) =7(1) =.5x'(1) =

3

5(Ps — p2).

Show that r isthe midpoint of the segment from p, to ps.

Justify each equalssign: 3(r; — ro) = Z'(0) = .5x/(.5).

Use (c) to show that 8r; = —pg — p1 + P2 + P3 + 8ro.

Use (d), equation (8), and (b) to show that r; is the mid-

point of thesegment fromr , to the midpoint of the segment

from p, tops. Thatis, ry = 1[r2 + 3(p1 + p2)]-

® 2 0 T

Sometimes only one half of aBézier curve needs further sub-
dividing. For example, subdivision of the*left” sideisaccom-
plished with parts (a) and (c) of Exercise 13 and equation (8).
When both halves of the curve x(¢) are divided, it is possible
to organize calculations efficiently to calculate both left and
right control points concurrently, without using (8) directly.
a. Show that the tangent vectorsy’(1) and z'(0) are equal.

b. Use (a) to show that gz (which equalsr) isthe midpoint
of the segment from g, tor;.

¢. Using (b) and the results of Exercises 13 and 14, write
an agorithm that computes the control points for both
y(t) and z(¢) in an efficient manner. The only operations
needed are sums and division by 2.

Explain why a cubic Bézier curve is completely determined
by x(0), X'(0), x(1), and X' (1).

TrueType® fonts created by Apple Computer and Adobe Sys-
tems use quadratic Bézier curves; PostScript fonts created by
Microsoft use cubic Bézier curves. The cubic curves pro-
vide more flexibility for typeface design, but it is important
to Microsoft that every typeface using quadratic curves can
be transformed into one that uses cubic curves. Suppose that
w(t) isaquadratic curve, with control points pg, p1, and p..
a. Find control pointsrog, rq, r», and r3 such that the cubic
Bézier curve x(¢) with these control points has the prop-
erty that x(¢) and w(r) have the sameinitia and terminal



points and the same tangent vectors at t =0 and r = 1.
(See Exercise 16.)

b. Show that if x(z) is constructed as in part (a), then
x(t)=w()for0O<r <1l

18. Use partitioned matrix multiplication to compute the follow-
ing matrix product, which appears in the aternative formula

8.6
(5) for aBézier curve:
1 0
-3 3
3 —6
-1 3

0
0
3
-3

Curves and Surfaces

Po
P1
P2
P3

= O OO
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Answers to Exercises
Chapter 8

Section 8.1, page 9

1. Some possible answers. y = 2v; — 1.5v; + .5v3,
y=2V1—2\/3+V4,y=2\/1+3V2—7V3+3V4

STUDY GUIDE SOLUTION:
1 -2 0 3
e i [Zo o ]
5
=13
v—v—_3v—v—_1v—v—2
2 1— 0 3y V3 1— 2 » V4 1— 5 [l

y—Vvi= [4}
1
Solve co(Va — Vi) + c3(Va — V1) + ca(Va — V1) =
y — v by row reducing the augmented matrix:
-3 -1 2 4 (-3 -1 2 4
[0251}012.5.5}

_[-3 0 a5 45
0 1 25 5

~

1 0 -15 -15
0 1 25 5

The genera solutionisc; = 1.5¢4, — 1.5,
c3=—2.5¢c4 + .5, with Ca free. When cs =0,

y — vy = —1.5(vy — vy) + .5(v3 — V1)
and

y =2v; — 1.5v; + .5v;

If cs=1,thenc, =0and

Yy =V =—2(Vg — V1) + 1(v4 — V1)
and

Yy=2V; —2V3+Vy

0T 0T

If ca=3, then

Yy —Vvi =3(Vo — V1) — 7(Vg — V1) + 3(v4 —v;) and
y=2V1+3V2—7V3+3V4

Of course, many other answers are possible. Note that

in al cases, the weights in the linear combination sum
to one.

. Yy = —5v; + 2v, + 4v3. The weights sum to one, so thisisan

affine sum.

. 'y = —3v; + 2V, + 2v3. The weights sum to one, so thisisan

affine sum.

4, y= 2.6V — .4v, — 1.2v;
5 y=—-14v; +2.3v5 + .1v3

p1=—4b1+2b2+3b3,30p1€affs
p2=0.2b1+0.5b2+0.3b3,33p2 caff S
p3=b1+b2+b3,sop3¢affS

p1 € Span S, but p; ¢ aff S

p2 € Span S, and p, € af S

Ps ¢ Span S, sops ¢ aff S

STUDY GUIDE SOLUTION:

7. Thematrix[vy V2 V3 p1 Pz ps]reducesto

1 0 0o 2 2 2

o 1 o0 1 -4 2

o 0 1 -1 3 2

0O O 0O 0 0 -5

Parts (a), (b), and (c) use columns 4, 5, and 6,

respectively, as the “augmented” column.

a. p1=2vi+Vy— Vg SOPp;isinSpan S. Theweights
do not sumto one, so p; ¢ aff S.

b. po=2v; —4v, + 3vz, sopyisinSpan S. The
weights sum to one, so p; € aff S.

Al



A2

8. Thematrix[vy V2 V3 Pp1 P2

10.

1.

12.

13.

Answers to Exercises

C. p3 ¢ Span S because 0# — 5, so ps cannot
possibly bein aff S.

pz ] reducesto

1 0 0 3 0 -2
0 1 0 -1 0 6
o o0 1 1 o0 -3

0o o0 O o 1 O

Parts (@), (b), and (c) use columns 4, 5, and 6, respectively,

asthe “augmented’’ column.

a. pp=3v; —Vy+ V3, S0P isinSpan S. Theweightsdo
not sum to one, so p; ¢ aff S.

b. p, ¢ Span S because 0# 1 (column 5 is the augmented
column), so p, cannot possibly bein aff S.

C. p3= —2v; +6v, — 3vz, SO pzisin Span S. The weights
sum to one, so ps € aff S.

a. True. Thisisthe definition.
b. False. The weightsin the linear combination must sum
to one.
c. True. Seeequation (1).
. Fase. Aflat isatranglate of a subspace.
. True. A hyperplanein R3 hasdimension 2, soitisa
plane.

o

a. Fase. If S ={x}, thenaff § = {x].

b. True. Theorem 2.

c. True. Thisisthe definition.

d. Fase. Aflat of dimension 2 iscalled ahyperplane only if

the flat is considered a subset of R3. In general, a
hyperplaneisaflat of dimensionn — 1.

e. True. A flat through the origin is a subspace trandated by
the O vector.

Span {v, — v1, V3 — vi} isaplaneif and only if

{vo — v1, v3 — vi} islinearly independent. Suppose ¢, and
Cc3 Satlsfy c2(Vo —Vp) + c3(V3 —vp) =0. Then

oV + c3V3 — (2 + c3)V1 = 0. Then cr =c3=0, because
{v1, V2, v3} isalinearly independent set. This shows that
{v2 — vy, v3 — vq} isalinearly independent set. Thus,
Span {v, — Vi, V3 — vi} isaplanein R®.

Since {v1, V», V3} isabasisfor R3, the set

W = Span {v, — V1, Vs — V1} isaplanein R?, by Exercise
11. Thus, W + vy isaplane parallel to W that containsv;.
Sincev, = (Vo — Vi) + Vi, W + vy containsv,. Similarly,
W + vy contains vs. Finally, Theorem 1 shows that

aff {v1, Vo, v3} istheplane W + v, that containsvy, v, and
V3.

Let S = {x : Ax =Db}. Toshow that S isaffine, it sufficesto
show that S isaflat, by Theorem 3. Let W = {x : Ax = 0}.
Then W isasubspace of R", by Theorem 2 in Section 4.2

14.

15.

16.

17.

18.

19.

20.

21.

22.

(or Theorem 12 in Section 2.8). Since S = W + p, wherep
satisfies Ap = b, by Theorem 6 in Section 1.5, S isa
trandate of W, and hence S isaflat.

Supposep, g € S and r € R. Then, by properties of the dot
product (Theorem 1 in Section 6.1),

[(A-Dp+rql-v=(1-0)(p-V)+1(Q-V)
=A-0k+thk=k

Thus, [(1 —1)p +tq] € S, by definition of S. This shows

that S isan affine set.

A suitable set consists of any three vectors that are not
collinear and have 5 as their third entry. If 5istheir third
entry, they liein the plane x3 = 5. If the vectors are not
collinear, their affine hull cannot be aline, so it must be the
plane.

A suitable set consists of any four vectorsthat liein the
plane 2x; + x, — 3x3 = 12 and are not collinear. If the
vectors are not collinear, their affine hull cannot be aline, so
it must be the plane.

If p,g e f(S), thenthereexistr,se S suchthat f(r)=p
and f(s) =q. Givenany ¢t € R, we must show that
z=(1—-1)p+rqisin £(S). Since f islinear,

z=A-0)p+tq=A—=0)fr)+tf(S = f((L—1)r +19)

Since S isaffine, (1 —)r +tse S. Thus, z € f(S) and
f(S) iséffine.

Givenan affineset 7, let S={x e R" : f(x) € T}. Con-
sider x,y € Sandr € R. Then

SQA=Dx+1y)=A—-0)f(X)+1f(Y)
But fx) e Tand f(y) e T, 0o(L—0)f(X)+tf(y) €T

because T isan affine set. It followsthat (1 — £)x + 1y € S.
Thisistrueforal x,y € Sandt € R, so S isan affine set.

Since B is affine, Theorem 2 impliesthat B contains all
affine combinations of points of B. Hence B contains all
affine combinations of pointsof A. Thatis, aff A C B.

Since aff B isan affine set, this result follows from Exercise
19, with B replaced by aff B.

Since A C (A U B), it follows from Exercise 20 that
aff A c aff (AU B). Similarly, aff B c aff (AU B), so
[aff A U aff B] C aff (AU B).

Since (AN B) C A, it follows from Exercise 20 that
aff (AN B) C aff A. Similarly, aff (AN B) C aff B, so
aff (AN B) C (aff AN aff B).



23. OnepossibilityistoletAz{[g}, (1)} and

B= { m , m } Then (aff A) U (aff B) consists of the
two coordinate axes, but aff (A U B) = R?.

24. Onepossibility istolet A = { {8} , H} } and

B:{m , [(ﬂ} Then both aff A and aff B are equal to

the x-axis. ButAN B = { {1} } o

R

Section 8.2, page 19

1. Letvy = {_g}ﬂzz {g},w: [(2)} . Then

-3 -1 ’ .
Vo — V= 9 , V3 — V= 3 . Sincevsz — vy isa

multiple of v, — vq, these two points are linearly dependent.
By Theorem 5, {v1, v, v3} is affinely dependent. Note that
(V2 — V1) — 3(v3 — v1) = 0. A rearrangement produces the
affine dependence relation 2v; + v, — 3vs = 0. (Note that
the weights sum to one.) Geometrically, vy, v,, and vs are
collinear.

o [t 2o ]

-5 .
3l Sincevs — v4 and v, — V4 are not

multiples, they are linearly independent. By Theorem 5,
{v1, V2, v} is affinely independent.

. V=

V3 — Vi =

. The set is affinely independent. If the points are called vy,
Vy, V3, and v, then {vy, V», v3} isabasisfor R® and

V4 = 16v; + 5v, — 3vs, but the weightsin the linear
combination do not sum to one.

Solution:

-3
Name the points vy, v, v3, and v4. Thenv, —v; = [—6] ,
9

12 -8
independence of these points, row reduce the matrix:

-3 1 -1 -3 1 -1
-6 -3 13| ~ 0 -5 15|~

1 -1
V3 — V)= |:—3],V4—V1: { 13].Tostudylinear

9 12 -8 0 15 -1

Section 8.2 A3

-3 1 -1
0 -5 15 |. Thepointsarelinearly independent
0 0 34
because thereisapivot in each column. So {vy, v, V3, V4} iS
affinely independent, by Theorem 5.

Alternative Solution:

Name the points vy, vy, V3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. Thefirst step is
to move the bottom row of ones (in the augmented matrix)
to the top to simplify the arithmetic:

1 1 1 1 1 1 1 1

1 -2 2 0 0 -3 1 -1
2 -4 -1 15 0 -6 -3 13
-1 8 1 -9 0 9 12 -8
11 1 1 11 1 1
o3 1 -1] |0 -3 1 -1
0 0 -5 15 0 0 -5 15
0 0 15 -1 0 0 0 34

The homogeneous points are linearly independent because
thereisapivot in each column. Sothe set {vy, V2, V3, V4} IS
affinely independent, by Theorem 5.

. —6vy+3v, —2v3+5v, =0

Solution:

2
Name the pOintsvl, Vo, V3, and V4. Then Vo — V1 = [ —8] ,
4

-9 —6
independence of the translated points, row reduce the
augmented matrix for Ax = 0:

2 3 0 o0 2 3 0 O
-8 -v 2 0|~|0 5 2 O

3 0
V3 — V= {—7 Va4 — Vi = { 2].Tostudylinear

4 -9 -6 0 0 -15 -6 O

2 3 0 O 1 0 -6 0
~l0 5 2 0|~|0 1 4 O
0O 0 0 ©O 0 O 0 O

The first three columns are linearly dependent, so

{v1, V2, v3, V4} is affinely dependent, by Theorem 5. To find
the affine dependence relation, write the general solution of
thissystem: x; = .6x3, x, = —.4x3, with x3 free. Set x3 =5,
for instance. Then x; =3, x, = —2, and x3 = 5. Thus,

3(Vo —Vy) — 2(V3 — Vp) + 5(v4 — v1) =0. Rearranglng
gives —6v; + 3v, — 2v3 + 5v, = 0.
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Alternative Solution:

Name the points vy, vz, V3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. Thefirst step is
to move the bottom row (in the augmented matrix) to the top
to simplify the arithmetic:

1 1 1 1 0

o 2 0 1 -2 0
(i V2 % W O]~| ¢ 5 5 7
' 3 7 6 -3 0]

1 0 0 12 0]

lo 1 0 -6 o0

O 0 1 4 0

0O 0 0 0 O

Row reductionof [v; Vo V3 V4] showsthat

{V1, Vo, V3} isabasisfor R® and v, = —2v; + 1.5V, + 2.5v3,
but the weights in the linear combination do not sum to one.
Instructor: (Possible exam question)

If the last entry of v, is changed from 0 to 1, then row
reductionof [vy Vo V3 V4] showsthat {vi, Vo, V3}isa
basisfor R® and Vg = —3Vq + Vo + 3vs.

. The barycentric coordinates are (—2, 4, —1).

Solution:

Denote the given points as vy, V», V3, and p. Row reduce the
augmented matrix for the equation x;V; + x,V; + x3V3 = p.
Remember to move the bottom row of onesto the top as the
first step, to simplify the arithmetic by hand.

Thus, x1+1.2x4=0, x, — .6x4 =0, and x3+.4x, =0, with
x4 free. Teke x, =5, for example, and get x; = —6, x, = 3,
and x3 = —2. An affine dependencerelationis

—6vy +3vo — 2v3 + 5v, = 0.

. —4v;+5vy, —4v3 +3vy, =0

Solution:

One solution method isto translate the points to the origin.
The following solution uses homogeneous forms. The first
step is to move the bottom row (in the augmented matrix) to
the top to simplify the arithmetic:

1 1 1 1 0
[V ¥, U3 Uy O]~ Lot 00
1Tz s 0 1 5 5 0
-2 1 1 -3 0
1 0 0 4 o0
]o 1 0 -2 0
o 0o 1 4 o0
0 0 0 0 O
Thus, x; = —%’x4, Xy = gx4, X3 = —%x4. An affine

dependence relation is —4v; + 5v, — 4vz + 3v, = 0.

. The set is affinely independent, as the following calculation
with homogeneous forms shows:

1 1

[ \71 \72 \73 \74 } ~

OFRP OO NN
P OOO OUlWwer
]l L

1 1 1 1
1 2 1 5
(Vo % Vs P]~|-1 1 2 4
2 0 -2 -2
1 1 0 2
1 0 0 -2
0 1 0 4
~lo 0 1 -1
0 0 0 0
0 0 0 0

Thus, x; = -2, xp =4, x3=—1, and r) = —2V; + 4V, — V3,
S0 p = —2v; + 4v, — V3, and the barycentric coordinates are

(—=2,4,-1).

Solution:

. The barycentric coordinates are (2, —1, 0).

Denote the given points as vy, V», V3, and p. Row reduce the
augmented matrix for the equation x;V; + x,V; + x3V3 = p.

1 1 1 1
o 1 1 -1
[\71 \72 \73 r)}’\’ 1 1 4 1
-2 0 -6 -4
L1 1 2 5 0
(1L 0 o0 2
0 1 0 -1
~10 0 1 O
0O 0 O ©
0O 0O O O

Thus, p = 2V; — ¥, + 0V3, SO p = 2v; — V,. The barycentric
coordinates are (2, —1, 0).
Instructor: vz = 3vy + V,



10.

12.

13.

14.

15.

a. True. Theorem 5 uses the point v, for the translation, but
the paragraph after the theorem points out that any one
of the pointsin the set can be used for the trandation.

b. Fase, by (d) of Theorem 5.

c. False. Theweightsin the linear combination must sum
to zero, not one.

d. False. The only points that have barycentric coordinates
determined by S belong to aff S.

e. True. The barycentric coordinates are zero on the edges
of the triangle and positive for interior points.

a. False. By Theorem 5, the set of homogeneous forms
must be linearly dependent, too.

b. True. If one statement in Theorem 5 is false, the other
statements are fal se, too.

¢. False. Theorem 6 applies only when S is affinely
independent.

d. False. The color interpolation applies only to points
whose barycentric coordinates are nonnegative, since the
colors are formed by nonnegative combinations of red,
green, and blue.

e. True. Seethediscussion of Fig. 5.

. When a set of five pointsistranslated by subtracting, say,

thefirst point, the new set of four points must be linearly
dependent, by Theorem 8 in Section 1.7, because the four
points arein R®. By Theorem 5, the original set of five
pointsis affinely dependent.

Suppose vy, ..., Vv, aeinR" and p > n + 2. Since
p—1>n+1,thepointsv, — vy, V3 —Vyq,...,V, — Vv, ae
linearly dependent, by Theorem 8 in Section 1.7. By
Theorem 5, {vy, vy, ..., Vv, } isaffinely dependent.

If {v1, vo} isaffinely dependent, then there exist ¢; and ¢,
not both zero, such that ¢; + ¢, = 0, and ¢1v4 + covo = 0.
Then 1= —C2 # Oand c1V1 = —CoVo = 1V, which ImpIIeS
that v; = v,. Conversely, if vi =V, letc; =1and ¢, = —1.
Then c1V1 + Vo =V + (—1)V1 =0and c1+c=0, which
shows that {vi, v,} is affinely dependent.

Let S; consist of three (distinct) points on aline through the
origin. The set is affinely dependent because the third point
ison the line determined by the first two points. Let S,
consist of two (distinct) points on aline through the origin.
By Exercise 13, the set is affinely independent because the
two points are distinct. (A correct solution should include a
justification for the sets presented.)

a. Thevectorsvs; — vy = andv; — v, = are

1 3
B .
not multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

16.

17.

18.

Ps < (2,

o (85D b (30
C. pGIS(_’ )

—,+), p7is(0, +, —), and pg is (+, +, —).
1 4
4} andv; — v, = {2} are not

multiples and hence are linearly independent. By
Theorem 5 S is affinely independent.

a. Thevectorsv, — vy = {

b. pre (=2, 2,9, p2e (3, -2, 9),ps - (3,2, 2)
C. pg< (+,— —) pPs < (+,4+, =), Ps < (+,+,+),
p7 < (— 0, +) Seethefigure below. Actualy,

5 12 3
Ps < (ﬂ7 _1*47 —14) Ps < (1*47 > 1)

Ps < (o & ), andpr < (—3,0,3).

Suppose S = {by, ..., b;} isan affinely independent set.
Then (7) has a solution, because p isin aff S. Hence (8) has
asolution. By Theorem 5, the homogeneous forms of the
pointsin S are linearly independent. Thus, (8) has aunique
solution. Then (7) aso has a unique solution, because (8)
encodes both equations that appear in (7).

The following argument mimics the proof of Theorem
7inSection4.4. If S={by,..., b;} isan affinely
independent set, then scalarscy, . . ., ¢, exist that satisfy (7),
by definition of aff S. Suppose p aso has the representation

p:d1b1+--~+dkbk and di+---+d =1 (7a)
for scalarsds, . . ., d;. Then subtraction produces the
equation

O=p—p=(c1—dbi+--+ (cx —dp)by (7b)

Theweightsin (7b) sum to zero because the ¢’sand the d’s
separately sum to one. Thisisimpossible, unless each
weight in (8) is zero, because S is an affinely independent
set. Thisprovesthat ¢; =d; fori =1, ..., k.

T

X
a
0
+ (1 —————— 0 |. Sothe barycentric
0

=

2~
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coordinatesare x /a, y/b, z/c,and 1 — x/a — y/b — z/c. 2. a X
This holds for any nonzero choices of a, b, and c.

19. Leta= {al},bz {bl},andc= {Cl}.Then S A
az b, Cc2
ag bl Cc1 L"v_'
detfa b ¢El=det|ax by | = |===---X
1 1 1
ay ar 1 b. X2
det | by b2 1| by using the transpose property of the
c1 o 1
determinant (Theorem 5 in Section 3.2). By Exercise 30 in P TR Ly
Section 3.3, this determinant equals 2 times the area of the

triangle with vertices at a, b, and c.

20. If pison theline through a and b, then p is an affine
combination of aand b, so p isalinear combination of a
andb. Thus, thecolumnsof [& b {]arelinearly
dependent. So the determinant of this matrix is zero.

-
21. 1f[a b é][s]:f),thenCramer’srulegives

t
r=det[p b &]/det[a b &]. By Exercise 19, the

numerator of this quotient is twice the area of Apbc, and the

denominator is twice the area of Aabc. This provesthe

formulafor r. The other formulas are proved using

Cramer'srulefor s and . 3. Nonearein conv .

22. Letp=(1- x)q+ xa, where g is on the line segment from
b to c. Then, because the determinant is alinear function of
the first column when the other columns are fixed (Section

Solution:
From Exercise 7 in Section 8.1, p; and ps arenot in aff S, so
they certainly are not in conv S. Since

3.2), p2 = 2v; — 4v, + 3vs, and the weights sum to one, p, isin
det[p b &l=det[(l—x)§+xa b &] aff S. However, S is affinely independent (because S is
=(1—x)det[§ b &]+x-det[a b &] linearly independent), so the barycentric coordinates of p,
X~ L . . . . are 2, —4 and 3. Since one coordinate is negative, p, is not
Now,[§ b €]isasingular matrix because g isalinear in conv S.

combination of band & Sodet[§ b &]=0and
det(p b &l=x-detfa b ¢l 4. Pz € conv§
Solution:
From Exercise 6 in Section 8.1, ps isnot in aff S, so it
certainly isnot in conv S. Since p; = —4b; + 2b, + 3bz and
1 X, p2 = 0.2b; + 0.5h, + .3bs, and in each case the weights sum
to one, both p; and p, arein &ff S. However, S is affinely
~ independent (because S is linearly independent), so the
~o weights in these combinations are barycentric coordinates.
i >~ Thus, py isin conv S, because its barycentric coordinates
2 are nonnegative. Thisis not the case for p1, sop; ¢ conv S.

Section 8.3, page 27




12.

13.

14.

15.

. P=3Vi+3Vo+ivaandp=
10.
11.

. P1= —%V1+ %V2+ %V3+ éV4, SO P21 ¢ conv S.

1 1 1 1
P2=3V1i+ 3V2+ 5Va+ 3Va, SOP2 € CONV S.

o

Pr=12vi— Vo +vzedfs
P2 = fVi+3Vo+ V3 € CONV S
ps=Vi+Vy—2v3 e Span §
- PrOjguns Pa=5V1+ 8o + Svg = (-3¢,

SO P4 ¢ Span §
a. The barycentric coordinates of py, p2, p3, and p, are,
r&spectlvely, (13’ 13° 123) (183’ 123’ 13) (g’ 0’ 3) and

9
(13’ 13’13 . L .
b. pyandp, areoutsdeconv T. pzisinsideconv T. pzis

on the edge v,v; of conv T.

aovoT

-3, 2.4 %p,

. p1 and p;3 are outside the tetrahedron conv S. p, ison the

face containing the vertices v,, vz, and v,4. p4 isinside
conv S. ps ison the edge between v, and vs.

;V]_ + 1V2 + ;V3.

p= v2+ v3+ v4andp_

a. False. Inorder for y to be aconvex comb| natl on, thec's
must also all be nonnegative.

b. Fase. If Sisconvex, then conv S isequal to S.

c. False. For example, the union of two distinct pointsis
not convex, but the individual points form convex sets.

. True. Thisisthe definition.

. True. Theorem 9.

c. False. The points do not have to be distinct. For
example, S might consist of two pointsin R®. A pointin
conv S would be a convex combination of these two
points. Caratheodory’s Theorem requiresn + 1 or fewer
points.

V]_ + V2 + V3

oo

pos S is acone with vertex at (0, 0) containing the positive
x-axis, with sideson thelines y = +x.

a. There are many possibilities. For example,
P=Vi+Vy+2V3 SOpP € posS.
p=—2vy+4v, — V3, sop € af S. Itisclear froma
graphthat p ¢ conv S.

b. The set in Exercise 13 consists of exactly two points, say
v and v,. These pointsform abasis for R?. Any other
point p in R? has a unique representation as alinear
combination of v4 and v». If this combination is both
affine and positive, it must be convex. In part (a) above,
there were two different linear combinations giving p,
one &ffine and one positive, but no single linear
combination with both properties.

Lety € pos(conv S). Theny =cyvy + - - - + cx Vi , Where
v; € conv S and ¢; > 0. But by Caratheodory’s Theorem,

16.

17.

18.

19.

20.

21.

22.

Section 8.3 A7

each v; isaconvex combination of n + 1 (or fewer) points

of §,s0

Vi = (dilwil +oeeet di,ll+1wi‘ﬂ+l)3

where

dij >0, Ed,/ =1, and W;; € S

Then

y = ci(duWy + - -
c(dpaWyg + -+ -

+d1 AW p41) + oo+
+ di ne1Wi n+1)

Since all these coefficients are nonnegative, this shows that
y € pos S.
The converseisimmediate since S C conv S.

Suppose S isconvex and lety € pos S. Then
Yy=cVi+ -+ Vi ,Wherev; € Sandc¢; > 0. Let
a=c1+---+c. Ifa=0,thenal ¢; =0. It follows that
y=0,andy = Asfor A =0. If « #0, then

X = ﬁV1+
o o
Thatis, y/a =sforsomese §,andy =as.

Ifp,g e f(S), thenthereexistr,se S suchthat f(r)=p
and f(s) =q. If 0 < ¢ < 1, wemust show that

=@ —-np+tqisin £(S). Since f islinear,
y=A-0p+tq=A-0f)+1f(9 = f((1—Dr +19)
Since Sisconvex, (1 —)r +tse Swhenever 0 <t < 1.
Thus,y € S and f(S) isconvex.

Ck . .
-+ —V, €8, since S isconvex
o

Supposer,se Sand0 < < 1. Then, since f isalinear
transformation,

f@A=Dr+19=Q—-0)f(r)+1f (9

But fr)eTand f(5)eT,0L—0)f(r)+tf(9eT
since T isconvex. It followsthat (1 —#)r +tse S. This
showsthat S is convex.

Suppose A C B, where B isconvex. Then, since B is
convex, Theorem 7 impliesthat B contains all convex
combinations of points of B. Hence B contains all convex
combinations of pointsof A. That is, conv A C B.

Suppose A C B. Then A C B C conv B. Sinceconv B is
convex, Exercise 19 shows that conv A C conv B.

Since A C (A U B), Exercise 20 shows that
conv A C conv (A U B). Similarly,

conv B C conv (A U B). Thus,

[(conv A) U (conv B)] C conv (A U B).

Since (A N B) C A, Exercise 20 shows that
conv (AN B) C conv A. Similarly,
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23.

24.

25.

26.

27.

Answers to Exercises

conv (AN B) C conv B. Thus,
conv (AN B) C [(conv A) N (conv B)].

One possibility isto let A be two adjacent corners of a
sguare and B be the other two corners. Then

(conv A) U (conv B) consists of two opposite sides of the
square, but conv (A U B) isthe whole square.

One possibility isto let A be apair of opposite vertices of a
sguare and B be the other pair of opposite vertices. Then
conv A and conv B areintersecting diagonals of the square.
A N B isthe empty set, so conv (A N B) must be empty,
too. But conv A N conv B contains the single point where
the diagonalsintersect. So conv (A N B) isaproper subset
of conv A N conv B.

a. Hint: Suppose F isnot asubset of G and G isnot a
subset of F. Then there exist points p and g such that
peF,pé¢ G,qe G,andq ¢ F. Consider the point
r= (%)(p + Q). Since F U G isconvex, r belongsto the
line segment between p and g, which is contained in
FUG.Isr € F?lIsr € G?

STUDY GUIDE SOLUTION:
Ifr e F,theng e Fsinceq=2r —pand F isa
subspace. Thiscontradictsq ¢ F. Similarly, if r € G,
we reach the contradiction p € G. Thus, the points p and
g cannot both exist as described, and either F C G or
G C F. The converseisimmediate.

b. Hereisone possibility in R': let A = [1, 4] and
B =1[2,5].

Ps

—h

o
-

—h

(=]
—

_,,
o
—
ENTEN NN N )
N’ N’ N

b. g(t) = (L= )fo(t) +tf1(t) = (L = [(L — 1)po + tPa] +
1[(1 = 1)py+ P2l = (1 — 1)%po + 2 (1 — 1)py + 12Py.
The sum of the weightsin the linear combination for g is
(1—1)2+2t(1—t) +t? which equals
(1 =2t +1?) + (2t — 2¢?) +t? = 1. Theweightsare
each between0and 1when0 <t < 1,s09g(¢) isin
conv {po, P1, P2}.

h(t) = (1 — 1)g1(t) + tg2(¢). Usethe representation for

01 (¢) from Exercise 26, and the anal ogous representation for

02(1), based on the control points py, p2, and ps, and obtain

28.

h(t) = (1 — 0)[(1 = 1)%po + 2t (1 — )Py + 1%ps]

+1[(1—1)%p1 + 2t (1 — 1)pz + 1°P3]

=1 —0%pg+2t(1 =2t +1t?)p1+ (1>~3)p,
+1(1—2t +12)py + 221 — 1)py + 13p3

= (1 — 3t +3t>13pg + (2t — 4% + 2t3)p,
+ (12=3po+ (t = 22+ 13)py + (212 — 2t3)p, + 153p3

= (1— 3t +3t>=t3)py + (3t — 62+ 33)p,
+ (312 = 33)p, + 1%ps

By inspection, the sum of the weightsin this linear
combinationis 1, for al 7. To show that the weights are
nonnegative for 0 < ¢ < 1, factor the coefficients and write
h(r) = (1 — 1)%po + 3t (1 — 1)%py + 3r2(1 — )P

+3pafor <t <1
Thus, h(z) isin the convex hull of the control points po, p1,
p2, and ps.

Fixt,withO < ¢ < 1. If gi(¢) isin Sg and if g»(¢) isin Sy,

then there exist nonnegative weightsco, . . ., ¢ that sumto
one, and nonnegative weightsdy, . . ., di, that also sum to
one, such that

01(f) = coPo + c1P1 + - - - + kP

and

02(t) = dip1 + - - - + diPr + drs1Prs1

Ifh(r) = (@A — 1)g1(t) + 1-g2(¢), then the weights on

Po, - - -, Px+1 in the expression for h(z) are nonnegative
because they are nonnegative ¢; and d; multiplied by (1 — ¢)
and . Further, the sum of these weightsis (1 — #)[co + - -+ +
al+tldi+ - +diil=A—1)1+t-1=1 Thus,

h(r) € conv {po, ..., prs1} for each¢.

(More detailed solution)

Fix ¢, with0 < ¢t < 1. By hypothesis, g;(¢) = Zf.;o ¢;p; and

Go(t) = Y3 d;p; for some nonnegative constants ¢; and

d;, respectively, suchthat Y ¢; =1and ) d; =1. Let

y=@0-00:0¢) +19()
k

k+1
=1-Y cp; +t Zdjpj
i=0 j=1
k+1

k
=> A-tep; + > 1d;p;
=0 =1

The weightsin this linear combination are all nonnegative,
sotoshow y € conv {po, P1, - - - , Prs1}, it SUffices to show
that the weights sum to one. In fact, thissumis

k+1 k+1

k k
SA-tei+d>tdi=A-0) Y i+t d;
i=0 =1 =1

i=0

=1-01+t-1=1



Possible Test Question. Let po, p1, P2, and ps be pointsin
R”. Show that aline segment from apoint in

conv {po, P1, P2} to apoint in conv {p1, p», ps} is contained
inconv {po, P1, P2, P3}.

Solution:

Given p € conv {po, p1, P2} and g € conv {py, Pz, p3}, let
y=(1—-1)p+tqforsomer suchthat 0 <r < 1. Write

P = coPo + c1P1 + c2P2 and o = d1py + doP2 + d3p3, Where
the weights in each case are nonnegative and sum to one.
Etc.

Section 8.4, page 38
1. f(x1,x2) =3x1 +4x, andd = 13
Solution:
VN <1 I O 3 B
2 1= 1 4 - 3" = 4|
f 1, x2) = 3x1 +4xo. f(vy) =3(3) +4(1) =13.
2. f(x1, x2) =5x1 — 3x,andd = -7
Solution:

R I B 2 B 1 O
27T -1|~|5]” " |-3]|

f(x1, x2) =5x1 — 3x2. f(v1) =5(1) —3(4) =—7.

[0
3. a n=|2]| oramultiple
3
2x
4

b. f(X)=2x,+3x3,d =11
4. a. n= 3 | oramultiple
-6
b. f(X)=4x; +3x, — 6xs, d =—8
Solution:
1 3 6
Vi= | —-2|,Vo—Vvi=|[0]|,vz—Vvi=|-2
1 2 3
3 6 X1
0 -2 X2 :4X1+3XZ—6X3:f(X1,X2,X3)
2 3 X3
-4
Son= 3| andd =n-v; =-8.
__6_
-3
-1 .
5. a n= > or amultiple
1

b. f(X)=3x; —x2+2x3+x4,d=5

Section 8.4 A9

-2
3 .
Lan=| ¢ or amultiple
1
b. f(X)=—2X1+3xZ—5X3+X4,d=4
Solution:
1 1 0
Vi = 2 Vo — V= 0 V3 —Vy = L
1= |g|VemVi= | _q['Vsm1= |5 >
0 -3 7
2
Vg — Vi = _2 . Solvethe equations (v, — v1)-n =0,

-1
(V3 —V1)-n =0, (v4 — v1)-n = 0. The augmented matrix is

1 0 -1 -3 0 1 0 0 2 o0
0 1 2 7 O0[~|0 1 0 -3 0f.
2 0 -1 -1 o0 0 0 1 5 0
Thus, x1 = —2x4, x, = 3x4, x3 = —5xy, With x4 free. Take
-2

3

-5

1

b. Let f(x1, x2, x3, X4) = —2x1 + 3x2 — 5x3 + x4. Let
d=f(v)=-2(1)+3(2)+0+0=4.

x4 =1, for example, togetn =

. Vo isonthesameside asO0, v, ison the other side, and v3 is

inH.

Solution:

Computen-p =2. Then H = {x : n-x = 2}. Theoriginis
in Hy = {x : n-x =0}. Computen-v; = 5. Thisismore
than 2, so v; and 0 are on the opposite sides of H. Compute
n-v, = —2, whichislessthan 2, so v, and 0 are on the same
sideof H. Computen-vs=2,s0Vvsisin H.

. LetH = [f 1 d], where f(xl, X2, X3) = 3x1 + Xp — 2x3 and

d = 4. Thereisno hyperplane paralel to H that strictly
separates A and B.

32 10 —4
. One possibility isp = _lg V= _1 V2= é
0 0 1

Solution:

Hy={X:n1-X=dy} and H, = {X : ny-X = d}. Since
P1 € Hiy,dy = nl-p1=4. S|m||ar|y, ds =N2-P2 =22.
Solvethe smultaneoussystem[1 2 4 2]x=4and
[2 3 1 5)x=22

1 2 4 2 4, (1 0 -10 4 3
2 3 1 5 2 0 1 7 -1 -14
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The general solution provides one set of vectors, p, vy, and
V,. Other choices are possible.

32 10 —4
x=| ¥4 7y Ll b+ xavi + xavs, where
= 0 X3 1 X4 0 =P+ x3V1 + x4V2,
| 0] 0 1
327 10 —4
I e e A IV |
p_ 0 s V1 — 1 s V2 = 0
| 0] 0 1
2,3,or4d

a. False. A linear functional goesfrom R” to R.

b. Fase. Seethediscussion of (1) and (4). Thereisalxn
matrix A suchthat f(x) = Ax for al x in R".
Equivalently, thereisapoint n in R" such that
f(X)=n-xforal xinR".

c. True. Seethe comments after the definition of strictly
separate.

d. False. SeethesetsinFig. 4.

. True. Seethe statement after (3).

. Fase. The vector n must be nonzero. If n = 0, then the
given set isempty if d #0 and the set isall of R” if
d=0.

¢. False. Theorem 12 requires that the sets A and B be

convex. For example, A could be the boundary of a
circleand B could be the center of the circle.

d. False. Some other hyperplane might strictly separate

them. See the caution at the end of Example 8.

T o

Letx,y € B(p, §) and supposez = (1 — )X + ty, where
0<t<1 Then

lz—=pll = IA—-DX+ry] —pl
=[A=DX=p)+tly —pll
=A-dlIx—=pl+zlly —pll
<@A—=08+185=6

where the first inequality comes from the Triangle

Inequality (Theorem 17 in Section 6.7) and the second

inequality followsfrom x,y € B(p, 3). It follows that

z € B(p, §) and B(p, 3) isconvex.

Let S be abounded set. Then there existsa$ > 0 such that
S C B(0, §). Since B(0, §) isconvex by Exercise 13,
Theorem 9 in Section 8.3 implies that conv S C B(0, §) and
conv S is bounded.

f(x,y) =4x +y. Anatural choicefor d is12.75, which
equals f(3,.75). Thepaint (3, .75) isthree-fourths of the
distance between the center of B(0, 3) and the center of
B(p, D).

16.

17.

18.

19.

Solution:

Let L bethe line segment from the center of B(0, 3) to the
center of B(p, 1). Thisison the line through the originin
the direction of p. Thelength of L is (4% + 1%)Y/? ~ 4.1231.
This exceeds the sum of the radii of the two disks, so the
disks do not touch. If the disks did touch, the separating
hyperplane (line) would have to be orthogonal to p, the
vector that in this case determines the direction of L. Since
the disks are separated dlightly, the hyperplane need not be
exactly perpendicular, but the easiest oneto findisa
hyperplane H whose normal vector isp. So define f by
f)=p-x.

Tofind d, evaluate f at any point on L that is between
the two disks. If the disks were tangent, that point would be
three-fourths of the distance between their centers, since the
radii are 3 and 1. Since the disks are dlightly separated, the
distance is4.1231. Three-fourths of this distance is greater
than 3, and one-fourth of this distance is greater than 1. A
suitable value of d is f(q), where
ad=(3)0+(3)p=(3,.75). Sod =4(3) + 1(.75) = 12.75.

Note: p = {ﬂ f(x,y) =4x — 2y. A natura choicefor d
is £(5, 1.5) =17.

Solution:
The normal to the separating hyperplane has the direction of
the line segment between p and g. So, let

n=p—q= {_ﬂ . The distance between p and q is /20,
which is more than the sum of theradii of the two balls. The
large ball has center g. A point three-fourths of the distance
from g to p will be greater than 3 units from q and greater
than 1 unit from p. Thispoint is

6 2 5.0
X=.75p +.25q =.75 {1} +.25 {3} = [1.5}

Compute n-x = 17. The desired hyperplaneis

(3] o=

Exercise 2(a) in Section 8.3 gives one possihility. Or let
S={(x,y):x>y>=1and y > 0}. Thenconv S isthe
upper (open) haf-plane.

One possibility isA = {(x, y) : |x] < 1and y = 0} and
B={(x,y):x>y>=1and y > 0}.

Lety € B(p, ) sothat Ly € AB(p, §). Then |ly — pll < 4,

S0 [[Ay — Apll = Ally — pll < A8, and .y € B(Ap, A8).
Conversely, suppose z € B(Ap, A8). Then

Iz = Apll < A8, S0

|2 -p|=Llz—apll < :@x8)=5



20.

21.

22.

23.

Thus, 2 € B(p, ) and z € AB(p, §).
The proof of the second part is similar.

IfpeclS,thenpe SorpebdS. If p € S, then every
open ball centered at p contains the point p, whichisin S. If
p € bd S, then, by definition, every open ball centered at p
intersects S.

On the other hand, suppose every open ball centered at
p containsapoint of S. If pisnotin S, then every open ball
centered at p intersects both S and its complement. Thus,
pehbds.

Letx € cl (cl S). Then, givenany § > 0, there exists a point
p € B(x,8) Ncl S. We must show that some point of
B(x,8)isin S. Sincep e cl S, eitherpe Sorp e bd S. If
p € S, wearedone. Otherwise, p € bd S. Let
e=28 —|Ix —pl|l. Thene > 0 and the open ball
B(p, &) C B(X, 3). Seethefigure below. Sincep € bd S,
there existsapoint sin B(p, ¢) N S. But then
se B(x,§)NSandx ecl S.

Conversely, let x € cl S. Then, givenany § > 0, there
existsapointq € B(x,8§) N S. ButS c cl S, so
ge B 8)Ncl Sandx ecl (cl S).

Assume without loss of generality that y = 0. Then, for any
Asuchthat 0 < A < 1, wehave z= AX. Seethefigure
below. If x € int S, then there exists § > 0 such that
B(x,8) C S. Now B(Ax, A8) = AB(X, §), by Exercise 19.
Since Sisconvexand 0 € S, AB(X,8) C S. Thus,

B(z,A8) C Sandz € int S.

7
— /

7 \ / \

| \

( \ i
- Uz X
y=0 N z// \\ X /
/
B(z, A9) A\ v

~B(x.9)
N\

Letz=ax+ (1 — 1)y, with0 < A < 1. We may assume
without loss of generality that 3y + 3z = 0. Theny = —rx
for somer > 0. Seethefigure below. Sincex € int S, there
existsan open ball U = B(x, §) contained in S. Let

V = —tU. Then V isan open ball of radius#s about y.

24.

25.

26.
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Sincey € cl S, thereexistsapointpin VN S. Thatis,
p=—tuforsomeu e U. Sinceu and —tu arein the
convex set S, it followsthat O € S. But then Exercise 22
impliesz € int S.

_ U=B(x,9)

Let X,y € int S. By Exercise 22, all the points
(1—1)x+ty,where0 < ¢ < 1, areintheinterior of S.
Thus, Xy C int S, andint S is convex.

Letx,y € cl Sandletz=ax + By, wherea > 0, 8 > 0,
and o + B = 1. Furthermore, let B(z, §) be an open ball
centered at z. Seethe figure below. Sincex andy arein
cl S, Exercise 20 implies that there exist points

Xo € B(X,8) NS andyp € B(y, §) N S. Weclaim that

Zo = aXg + BYo € B(z, §). Indeed,

1z = Zoll = [I(eX + BY) — (aXo + BYo)|

lle(X = Xo0) + B(Y — Yo)

lle (X = Xo) | + [1B(Y = Yo)l

allX = Xoll + BllY = Yoll < @b+ B =(a+p)§=3

Al

Since zy € XoYo, Wehavezg € S. Thus,ze ¢l Sandcl Sis
CONVEX.

B(x, 8) B(z, 8) B(y, 8)
AN TN TN
/ pe O ® \
/%o \ / Zy \ / Yo
[ Vo |\ |
\ X 1 z 1 y
A " // A ’ // \ ’ //
\\\ // \\\ // \\\ //

a. Supposex € cl (int S). Then, for every § > 0, B(X, §)
contains at least one point of int S, by Exercise 20. Since
int S C S, thismeans B(x, §) contains at |east one point
of S. Thus,x € cl S.

Conversely, supposex € cl S. Givenany § > 0,
thereexistsapoint sin S N B(x, §). Since||x —s|| < 4§,
wehavee =8 — ||x — s|| > 0. It followsthat
B(s, €) C B(X, 8). Seethefigurebelow. Lety € int S
and consider the line segment Sy. Sincee > 0, there
existsz € Sy such that z € B(s, ¢). But Exercise 22
impliesthat z € int S, s0z € B(x, 8) N (int S), and
x ecl (intS).
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yintS
—_ B 9)

b. Let S bea“lollipop” shapein R?:

27. a. SinceS ccl S,intS cint (cl §). Conversely, suppose
X € int (cl S). Thenthereexists§ > 0 such that
B(x,8) C cl S. Lety € int S. Then there existsapoint z
incl S suchthat x € Zy, with X # z. Seethefigure below.
It follows from Exercise 23 that x € int S.

B8 CdS
N

y dint S

b. LetS=[0,1) U (L, 2]inR? Then
intS=(0,1)U(1,2),butint (cl S)= (0, 2). Orlet S be
asolid square in R? with one diagonal removed. Then
int S consists of two triangular pieces, but int (cl S) is
the whole square (without the boundary).

28. a. IfxebdS,thenx ecl Sandx ¢ int S. But
cl S=cl (cl §), by applying Exercise 21 to cl S inplace
of §S,andint S =int (cl S), by Exercise 27. Thus,
xecl(cS)andx ¢int(cl S),sox € bd (cl S). For the
converse, reverse the argument above.

b. Let S=[0,1)U (1, 2]inR:. Thenbd S = {0, 1, 2}, but
bd (cl S) = {0, 2}. Or let S be asolid square in R? with
one diagonal removed. Then bd S consists of the
diagonal and the four edges of the square, but bd (cl S)
does not include the diagonal.

29. Let H =[f : d] beahyperplane and let
S={x: f(x) > d}. Then S isaclosed half-space, and its
boundary isthe convex set H.

30. Let S bethe convex hull of acirclein R?. Then bd S isthe
circleitself, which is not convex.

Section 8.5, page 47

1. Theorigin isan extreme point, but it is not a vertex.

2. Onepossibility isaray. It has an extreme point at one end.

3. Onepossibility isto let S be a square that includes part of
the boundary but not al of it. For example, include just two
adjacent edges. The convex hull of the profileis atriangle.

-V

4. a fo(S%) =6, f1(8°) =15, f2(5°) =20, f3(5°) = 15,
fa(8%) =6,and 6 — 15+ 20 — 15+ 6= 2.

b. fo [ fo fz Ja
St 2
52 3 3
S8 4 6 4
4 5 10 10 5
S° 6 15 20 15 6

a_ [(n+1 ay al .
fi (8™ = (k+1> , where (b) = bl D) isthe
binomial coefficient.
5. a fo(C® =32, f1(C%) =80, f>(C°) =80, f3(C°) =40,
f4(C% =10,and 32 - 80+80 — 40+ 10=2.

b. fo i fo fz fa
ct| 2
c?| 4 4
c*| 8 12 6
c*|1 16 32 24 8
c°| 32 8 8 40 10

P ay al .
fi(CH =2 (k),where<b)_mlsthe
binomial coefficient.

Notethat fi(C") = 2fi(C"™) + fiea(C"7H).



10.

1.

12.

v

a. X!isaline segment: 5

X2 isaparallelogram: V1

Va

b. fo(X3 =6, (X% =12, fo(X®) =8. X%isan
octahedron.

C. fo(X*) =8, fi(X*) =24, fo(X*) =32, f3(X*) =16,
8-24+32-16=0

d. fi(xm) =2t ( "

k+l),0§k§n—1,where

<“ > — — % isthebinomial coefficient.
b b'(a — b)!

. Jo(P") = fo(Q) +1

- Je(P") = fi(Q) + fia(Q)

- Joa(P") = fua(0) +1

True. Definition.

True. Definition.

False. S must be compact. See Theorem 15.
True. Seethe comment after Fig. 4.

False. It has six facets (faces).

. True. Theorem 14.

. False. The maximum is always attained at some extreme
point, but there may be other points that are not extreme
points at which the maximum is attained.

d. True. Follows from Euler’'s formulawith n = 2.

PO 20T 0T

Let x be an extreme point of the convex set S and let
T={yeS:y#x}.IfyandzaeinT,thenyz C S since
S isconvex. But since x isan extreme point of S, X ¢ ¥z, O
yz C T. Thus, T isconvex.

Conversely, suppose x € S, but x is not an extreme
point of S. Thenthereexisty and zin S such that x € yz,
withx #y and x # z. It followsthat y and z arein 7', but
yZ ¢ T. Hence T isnot convex.

Suppose A and B areconvex. Letx,y € A + B. Then there
exista,ce Aandb,d € B suchthatx =a+ b and
y=c+d. Forany ¢t suchthat0 < ¢ < 1, we have

A-—0)x+ty=A—-1)(@a+b)+r(c+d)
=[1—-0a+tc]+[(1—1b+td]

But (1 —t)a+tc € A since A is convex, and
(1—1t)b+1rd € B since B isconvex. Thus, (1 — )X +ty is
in A + B, which showsthat A + B isconvex.

a. Let Sbeconvex andletx € ¢S +dS, wherec > 0 and
d > 0. Thenthereexist s; and s, in S such that
X = ¢S +dS,. But then

13.

1

Section 8.6 Al3

X=cS +dS,=(c+d) ;51+L52
c+d c+d
Now - and [117 are both nonnegative and sum to one.
Since S is convex, S+ ﬁsg € S. Thus,
X € (c+d)S.
Conversely, let X € (¢ + d)S. Thenx = (¢ + d)sfor
somese S. Butthenx =cs+dse ¢S +dS, asdesired.

a. Since each edge belongs to two facets, kr istwice the
number of edges: kr = 2e. Since each edge has two
vertices, sv = 2e.

b. V—e+r=2,80%—e+%=2:>%+%:%+ -
c. A polygon must have at least three sides, so k > 3. At
least three edges meet at each vertex, sos > 3. But k
and s cannot both be greater than 3, for then the left side

of the equation in (b) could not exceed %

Whenk =3, wegeti —1=1 s05=34,0r5.
For these values, we get e = 6, 12, or 30, corresponding
to the tetrahedron, the octahedron, and the icosahedron,
respectively.

Whens =3, weget: — ;=1 s0k=23,0r5
and e = 6, 12, or 30, respectively. These values
correspond to the tetrahedron, the cube, and the
dodecahedron.

™

Section 8.6, page 58

Given

X(1) = (1= 1)%po + 31 (1 — 1)?py + 3r*(1 — 1)pz + 1°ps,

0 <t <1, letbbeany fixed vector. Observe (by algebraic
computation) that

A-0%+3(1-1)%D+3%1L-—1b+’b=b

Thus,

X()+b=A—-1)3%po+b) +3t(L—1)%(p1+b)
+32(L—t)(p2 + b) +3(pz + b)

This representation of x(¢) + b hasthe form of aBézier
curve, whose control points are translates by b of the
original control points. So translation by b maps a Bézier
curveinto aBézier curve.

. a. The coefficients of pp and pz in (15) match those in (14).

For p1,

Gt —1D2+4-3=3t*—-2t+1)+4—3t
=3 —6r2+3r+4—3¢
=3 —-6r2+4

The verification for p, istrivial. So (15) is an equivalent
description for x(z).

b. Equation (15) reveals that each polynomial weight is
nonnegativefor 0 < ¢ < 1, since4 — 3¢t > 0. For the
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sum of the coefficients, use (15) with the first term
expanded: 1 — 3 + 3t — t3. The 1 here plusthe 4 and 1
in the coefficients of p; and p,, respectively, sumto 6,
while the other terms sum to 0. This explainsthe % inthe
formulafor x(¢), which makes the coefficients sum to 1.
Thus, x(¢) isaconvex combination of the control points
forO<r<1.

. Since the coefficients inside the brackets in equation (14)

sum to 6, it follows that
b= %[Gb]
=1[1-0%+ @ -6+ 4b
+(=33+ 32+ 3 + Db + r°p]

and hence x(¢) + b may be written in asimilar form,
with p; replaced by p; + b for each i. This shows that
X(t) + b isacubic B-spline with control pointsp; + b for
i=0,...,3

. Start with

X(1) = (L —1)3po + 3t (1 — 1)2p1 + 3t2(1 — 1)p + £°p3,
and compute

X' () = (=3 + 6t — 3t?)pg + (3 — 12t + %?)p;
+ (6t — 9P, + 3P

Then x'(0) = —3po + 3p1 = 3(P1 — Po), and

X' (1) = —3p2 + 3p3 = 3(ps — p2). Thisshowsthat the
tangent vector x’(0) pointsin the direction from pg to p;
and is three times the length of p; — po. Likewise, X' (1)
pointsin the direction from p, to ps and is three times
thelength of p3 — p,. In particular, X' (1) = 0if and only
if p3 = pa.

. From part (a), differentiate x'(r) to get

X"(t) = (6 — 6t)po + (—12 + 18¢t)p;
+(6 — 18r)p, + 61p3

Then

X"(0) = 6po — 12p1 + 6p2 = 6(Po — P1) + 6(P2 — P1)
and

X"(1) = 6p1 — 12p; + 6p3 = 6(P1 — P2) + 6(P3 — P2)

For apicture of x”(0), construct a coordinate system with
theorigin at p,, temporarily, label pp aspo — p; and label
p2 asp, — p;. Finaly, construct aline from this new
origin through the sum of py — p; and p, — p1, extended
out ahit. That line pointsin the direction of x”(0).

X)) =3 [(—32+6r —3) po+ (%2 —12) py

+(—9r2 + 61 + 3) p2 + 3r?p3]
X'(0) = 3 (P2 — Po) and X' (1) = 3 (ps — pa) (Verify that,
in thefirst part of Fig. 10, aline drawn through po and p,
is paralle to the tangent line at the beginning of the

B-spline.) When x’(0) and x’(1) are both zero, the figure
collapses and the convex hull of the set of control points
istheline segment between po and ps, in which case x(t)
isastraight line. Where does x(¢) start? In this case,

X(t) = 2 [(—41% + 612 + 2)po + (41° — 617 + 4)pg]

X(0) = po+3ps and X(1) = 3po+ ips

The curve begins closer to ps and finishes closer to po.
Could it turn around during itstravel? Since

X'(t) =2t (1 — 1)(po — P3), the curve travelsin the
direction py — p3, S0 when x'(0) = x'(1) = 0, the curve
always moves away from ps toward po for0 < ¢ < 1.

X' () =1 —=)po+ (—2+3)pr+ (1 — 3t)p2 + 1ps3

X"(0) = po — 2p1 + P2 = (Po — P1) + (P2 — P1)
and
X"(1) =p1 — 2p2 + Pz = (P — P2) + (P3 — P2)

For a picture of x”(0), construct a coordinate
system with the origin at p;, temporarily, label p as
Po — P1, and label p, asp, — p1. Findly, construct aline
from this new origin to the sum of py — p; and p, — p;.
That segment represents x”(0).

For apicture of x”(1), construct a coordinate
system with the origin at p,, temporarily, label p; as
p1 — p2, and label p; asps — p,. Finaly, construct aline
from this new origin to the sum of p; — p, and ps — p..
That segment represents x”(1).

. From Exercise 3(a) or equation (9) in the text,

X'(1) = 3(p3 — p2)

Use the formulafor x’(0), with the control points from
y(t), and obtain

y'(0) = —3p3 + 3ps = 3(Ps — P3)

For C* continuity, 3(ps — P2) = 3(Pa — P3), SO
ps = (P4 + P2)/2, and p3 is the midpoint of the line
segment from p; to py.

. 1fx'(1) =y'(0) =0, then p, = pz and p3 = p4. Thus, the

“line segment” from p, to p4 isjust the point ps. [Note:
In this case, the combined curveisstill C* continuous,
by definition. However, some choices of the other
control points, po, P1, Ps, ad pg, can produce a curve
with avisible “corner” at ps, in which casethe curveis
not G* continuous at pz.]

6. a. Withx(r) asin Exercise 2,

X(0) = (po + 4p1 + P2)/6
and
X(1) = (p1 +4p2 +p3)/6



Use the formulafor x(0), but with the shifted control
pointsfor y(¢), and obtain

y(0) = (p1 + 4p2 + P3)/6

This equals x(1), so the B-splineis G° continuous at the

join point.
b. From Exercise 4(a),
X)) =(ps—p/2 and X (0)=(p2—po)/2

Usethe formulafor x’(0), with the control points for
y(¢), and obtain

Y'(0) = (ps — p1)/2=X(1)
Thus, the B-splineis C* continuous at the join point.
7. From Exercise 3(b),
X"(0) = 6(po — p1) + 6(p2 — P1)
and
X"(1) = 6(p1 — P2) + 6(p3 — P2)

Use the formulafor x”(0), but with the control points for
y(1), to get

y"(0) = 6(p3 — P4) + 6(Ps — Pa)
Set x”(1) = y”(0) and divide by 6, to get
(P1 — P2) + (P3 — P2) = (P3 — P4) + (Ps — Pa)

Since the curve is C?! continuous at ps, the point ps isthe
midpoint of the segment from p; to p4, by Exercise 5(a).
Thus, ps — ps = p3 — p2. Substituting gives

(P1 —P2) + (P3 — P2) = —(P3 — P2) + Ps — Pa
(P1 — P2) +2(P3 — P2) + P4 = Ps

Finally, again from C* continuity, p; = ps + pz — p2. Thus,
Ps = Ps + (P1 — P2) + 3(P3 — P2)
Only pg can be chosen arbitrarily.

8. From Exercise 4(b), x”(0) = po — 2p; + p2 and
X" (1) = p1 — 2p, + p3. Usethe formulafor x”(0), with the
shifted control points for y(¢), to get

y'(0) = p1 — 2pz + p3 = X"(1)
Thus, the curve has C? continuity at x(1).

9. Write avector of the polynomial weights for x(z), expand
the polynomial weights, and factor the vector as Mzu(t):

1—4r+6t%2— 43 +1* 1 -4 6 -4 1
A — 1242 + 1213 — 4¢* 0 4 -12 12 -4
612 — 1273 + 64 =10 0 6 —-12 6
4¢3 — 44 0 0 0 4 -4

4 0 0 0 0 1

1
t
/2
3
4

Section 8.6 Al5
1 -4 6 -4 1
0 4 —-12 12 -4
Mg= 10 0 6 —-12 6
0 0 0 4 -4
0 0 0 0 1

10. Write avector of the polynomial weights for x(¢), expand
the polynomial weights, taking care to write the termsin
ascending powers of ¢, and factor the vector as Msu(z):

1—3r+32—¢3 1 -3 3 -171
1| 4-62+3° | 114 0 -6 3||¢
6 |1+3+3%2-3°| " 6|1 3 3 3|

I 0 0 o0 1|
= Msu(z),
1 -3 3 —1]
1|4 0 -6 3
Ms=%11 3 3 -3
0 0 0 1]
1. a 8+
(4,6) (5,6)

64+

4__

24

1,2 8,2

0 } } } }

0 2 4 6 8
b. g1

2,6
6L (2,6)

(5 4.2)
44
21
2 (4,18)

0 } } } }
0 2 4 6 8

¢. Thegraph for this part must show an inflection point.
The first new control point p, must be on theline
determined by p, and ps, placed so that ps isnot the
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midpoint of the line segment from p, to p4. S0 p4 cannot

6.0 . 55
be {6.6} , but two natural choices are {5.4} and

6.5
78
50] [55] [65 7.0
{4.2}' [5.4}’ {3.3]’“‘0' {5.3]' The MATLAB
inputis[55.56.57; 42543353

} . Thefirst figure below was produced from

7+

(2.6

6T (5.5,5.4) (7,5.3)

51
41

3+ (655,3.3)

21

N @2 (4,18)

oLl

4.2

54

The second graph, from a student, uses [ > } {5'5],

7] a2
9.l
8-+ (9.8

71

61

51

a4l

31

21

N 12 (4,18)

ol

12. a. g4

N

~N -+

~N -+



¢. Three segments combined into one curve:

o

d. Sanpl e bspline. mnodification

98- spl i ne curve
di sp(‘ Sanpl e B-spline Curve')

% nput data points
A = input(‘Enter 2x6 Geonetry Matrix:’);

YSet up the axes and keep them fixed.
axis([0 10 0 10])

%5i npl e default setting
hol d on

% reate the paraneter t and the vector u
that contains the powers of t.

t = linspace(0,1);
u [t.”0; t; t."2;

t.73];

%l ot each segnment of the curve
for i =1:3
G=[A(:,i) A(:,i+1) A(:,i+2) A(:,i+3)]
%Current geonetry matrix

M=[1-33-1; 40-63; 133 -3;
000 1]/6

98- spl i ne basis curve
X = G"Mu;

%rhe B-spline curve

plot(¥1,:),¢2,:), -0ob",

‘ Mar ker Facecol or’, ‘b’ ,‘* Marker Si ze’ , 2)
% his comrent plots the control points
wi th connecting |ines.
% -ob’ draws lines and sets a circle
for each point, in blue.
%Jse ‘ob’ instead,
between the circles.
%var ker FaceCol or fills in each circle
(marker) in blue.
%var ker Si ze specifies the size of the
circle, in points.

if you want no |ines

13.

14.

15.

a.

Section 8.6 Al7

plot(x(1,:), x(2,:),‘r")

o%°l ot the B-sline curve in red
if(i <3)

di sp(‘ Press any key to continue’)

pause
end

end

From (12), d1 — go = (P2 — Po) = 2p1 — 3Po. Since
0o = Po, U1 = 3(P1 + Po)-
From (13), (43 — g2) = —Po — P1 + P2 + P3. SO
803 + Po + P1 — P2 — P3 = 802.
Use (8) to substitute for 8qs, and obtain
802 = (Po + 3p1 + 3P2 + P3) + Po + P1 — P2 — Ps3
= 2po +4p1 + 2P

Then dividing by 8 and using part (a) gives
02 = %po+ %pl + %pz

= (3P0 + 3P1) + (P1+ 3P2)

=101+ 3(P1+P2)

= 2[g1 + 3(P1 + P2)]

3(r3 —ry) =27 (1), by (9) with (1) and r, in place of

X'(1) and p;.

Z (1) = .5¥'(1), by (11) with¢t = 1.

SX'(1) = (:53(ps — p2), by (9).

From part (@), 6(rs — r2) = 3(ps — p2),

f3—r2= %ps - %pzl andrs — %ps + %pz =TI

Sincer; = pz, this equation becomesr, = %(p3 +P2)-

3(r; — ro) = Z/(0), by (9) with Z(0) and r, in place of

X'(0) and p;.

Z/(0) = .5¢'(.5), by (11) withr = 0.

Part (c) and (10) show that 3(r; — ro) =

2(—Po — P1 + P2 + P3). Multiply by £ and rearrange to

obtain 8r; = —pp — P1 + P2 + P3 + 8ro.

From (8), 8ro = po + 3p1 + 3p2 + ps. Substitute into the

equation from part (d), and obtain

8r; = 2p; + 4p, + 2p3. Divide by 8 and use part (b) to

obtain

1= 3p1+3P2+ 2P3=(3Pp1+3P2) + 5 (P2 + Pa)
=33(P1+P2) + 32

Interchange the terms on the right, and obtain

ri=3lr2+3(P1+p2)l

From (11), y'(1) = .5X'(.5) = Z(0).

Observethat y'(1) = 3(qz—q,). Thisfollowsfrom (9),

with y(¢) and its control pointsin place of x(¢) and its

control points. Similarly, for z(r) and its control points,
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Z'(0) = 3(r1 — ro). By part (a), 3(dz — g2) = 3(r1 — ro).
Replacerg by gz, and obtaings — q2 =r; — g, and
hence ds = (2 +r1)/2.

Set o = Po ad rz = pa.

Compute d; = (po + p1)/2and ry = (p2 + P3)/2.
Computem = (p1 + p2)/2.

Computegz = (I + m)/2andr; = (M +r3)/2.
Computeqs = (q2 + r1)/2and setro = Qs.

16. A Bézier curveis completely determined by its four control
points. Two are given directly: po = x(0) and ps = x(1).
From equation (9), x'(0) = 3(p1 — po) and
X'(1) = 3(pz — p2). Solving gives

p1=3X(0)+po and p;=ps— ;X' (1)
17. a. Thequadratic curveis

w(t) = (1 —1)?po + 2t (1 — 1)p1 + t2p,. From Example
1, the tangent vectors at the endpoints are

w'(0) = 2p; — 2po and W'(1) = 2p, — 2p;. Denote the
control points of x(r) by rg, ry, ro, andrz. Then

ro=X0)=w(0)=po and rz=x(1)=w(l) =p;

From equation (9) or Exercise 3(a) (using r; in place of
p;) and Example 1,

—3rp+3r; =x'(0) =w'(0) = 2p; — 2po

5]
2p1— 2
T~
and
2p1 + Po 18.
= ——

3
Similarly, from the tangent data at + = 1, along with
equation (9) and Example 1,

=3r,+3r3=xQ) =w(1) = 2p2 — 2p1,
2p, — 2 2p, — 2
Cry 4Py = pz3 pl,rzng— P23 pl,

_ 2p1+p2

2=

and

. Write the standard formula (7), with r; in place of p; for

i =0,...,3, andthenreplacer, by po, and replacer; by

p2:

X(t) = (1 — 3t + 3t2—t3)po + (3t — 612 + 3t3)r, *)

+ (B2 =3, +13p,

Usethe formulasfor r4 and r, to examine the second and

third termsin (*):

(3t — 612+ 33y = (3t — 612+ 33)po + £(3r — 612 + 3r3)p;
=(t — 22 +13po + (2t — 4% + 2t3)p;

(312 =33, = 2(3r2 — 3¥)py + 2 (32 — 3d)p,
= (2% = 2%)p1 + (12 — 1),
When these two results are substituted in (*), the
coefficient of pg is
A=3+32 -+ —22+)=1— 2t +1>= (1 —1)?
The coefficient of p; is
@t -4+ 2+ (22 -2 =2 - 2=2(1—-1)
The coefficient of p, is (12 — %) + 13 =12. So

X(1) = (1 — 1)2po + 2t (1 — 1)Ppy + 12p,, which shows
that x(r) isthe quadratic Bézier curve w(r).

Po
—3po + 3p1
3po — 6p1 + 3p2
—Po + 3p1 — 3p2 + Ps3



Answers to Exercises
Chapter 8

Section 8.1, page 9

1. Some possible answers. y = 2v; — 1.5v; + .5v3,
y=2V1—2\/3+V4,y=2\/1+3V2—7V3+3V4

STUDY GUIDE SOLUTION:
1 -2 0 3
e i [Zo o ]
5
=13
v—v—_3v—v—_1v—v—2
2 1— 0 3y V3 1— 2 » V4 1— 5 [l

y—Vvi= [4}
1
Solve co(Va — Vi) + c3(Va — V1) + ca(Va — V1) =
y — v by row reducing the augmented matrix:
-3 -1 2 4 (-3 -1 2 4
[0251}012.5.5}

_[-3 0 a5 45
0 1 25 5

~

1 0 -15 -15
0 1 25 5

The genera solutionisc; = 1.5¢4, — 1.5,
c3=—2.5¢c4 + .5, with Ca free. When cs =0,

y — vy = —1.5(vy — vy) + .5(v3 — V1)
and

y =2v; — 1.5v; + .5v;

If cs=1,thenc, =0and

Yy =V =—2(Vg — V1) + 1(v4 — V1)
and

Yy=2V; —2V3+Vy

0T 0T

If ca=3, then

Yy —Vvi =3(Vo — V1) — 7(Vg — V1) + 3(v4 —v;) and
y=2V1+3V2—7V3+3V4

Of course, many other answers are possible. Note that

in al cases, the weights in the linear combination sum
to one.

. Yy = —5v; + 2v, + 4v3. The weights sum to one, so thisisan

affine sum.

. 'y = —3v; + 2V, + 2v3. The weights sum to one, so thisisan

affine sum.

4, y= 2.6V — .4v, — 1.2v;
5 y=—-14v; +2.3v5 + .1v3

p1=—4b1+2b2+3b3,30p1€affs
p2=0.2b1+0.5b2+0.3b3,33p2 caff S
p3=b1+b2+b3,sop3¢affS

p1 € Span S, but p; ¢ aff S

p2 € Span S, and p, € af S

Ps ¢ Span S, sops ¢ aff S

STUDY GUIDE SOLUTION:

7. Thematrix[vy V2 V3 p1 Pz ps]reducesto

1 0 0o 2 2 2

o 1 o0 1 -4 2

o 0 1 -1 3 2

0O O 0O 0 0 -5

Parts (a), (b), and (c) use columns 4, 5, and 6,

respectively, as the “augmented” column.

a. p1=2vi+Vy— Vg SOPp;isinSpan S. Theweights
do not sumto one, so p; ¢ aff S.

b. po=2v; —4v, + 3vz, sopyisinSpan S. The
weights sum to one, so p; € aff S.

Al



A2

8. Thematrix[vy V2 V3 Pp1 P2

10.

1.

12.

13.

Answers to Exercises

C. p3 ¢ Span S because 0# — 5, so ps cannot
possibly bein aff S.

pz ] reducesto

1 0 0 3 0 -2
0 1 0 -1 0 6
o o0 1 1 o0 -3

0o o0 O o 1 O

Parts (@), (b), and (c) use columns 4, 5, and 6, respectively,

asthe “augmented’’ column.

a. pp=3v; —Vy+ V3, S0P isinSpan S. Theweightsdo
not sum to one, so p; ¢ aff S.

b. p, ¢ Span S because 0# 1 (column 5 is the augmented
column), so p, cannot possibly bein aff S.

C. p3= —2v; +6v, — 3vz, SO pzisin Span S. The weights
sum to one, so ps € aff S.

a. True. Thisisthe definition.
b. False. The weightsin the linear combination must sum
to one.
c. True. Seeequation (1).
. Fase. Aflat isatranglate of a subspace.
. True. A hyperplanein R3 hasdimension 2, soitisa
plane.

o

a. Fase. If S ={x}, thenaff § = {x].

b. True. Theorem 2.

c. True. Thisisthe definition.

d. Fase. Aflat of dimension 2 iscalled ahyperplane only if

the flat is considered a subset of R3. In general, a
hyperplaneisaflat of dimensionn — 1.

e. True. A flat through the origin is a subspace trandated by
the O vector.

Span {v, — v1, V3 — vi} isaplaneif and only if

{vo — v1, v3 — vi} islinearly independent. Suppose ¢, and
Cc3 Satlsfy c2(Vo —Vp) + c3(V3 —vp) =0. Then

oV + c3V3 — (2 + c3)V1 = 0. Then cr =c3=0, because
{v1, V2, v3} isalinearly independent set. This shows that
{v2 — vy, v3 — vq} isalinearly independent set. Thus,
Span {v, — Vi, V3 — vi} isaplanein R®.

Since {v1, V», V3} isabasisfor R3, the set

W = Span {v, — V1, Vs — V1} isaplanein R?, by Exercise
11. Thus, W + vy isaplane parallel to W that containsv;.
Sincev, = (Vo — Vi) + Vi, W + vy containsv,. Similarly,
W + vy contains vs. Finally, Theorem 1 shows that

aff {v1, Vo, v3} istheplane W + v, that containsvy, v, and
V3.

Let S = {x : Ax =Db}. Toshow that S isaffine, it sufficesto
show that S isaflat, by Theorem 3. Let W = {x : Ax = 0}.
Then W isasubspace of R", by Theorem 2 in Section 4.2

14.

15.

16.

17.

18.

19.

20.

21.

22.

(or Theorem 12 in Section 2.8). Since S = W + p, wherep
satisfies Ap = b, by Theorem 6 in Section 1.5, S isa
trandate of W, and hence S isaflat.

Supposep, g € S and r € R. Then, by properties of the dot
product (Theorem 1 in Section 6.1),

[(A-Dp+rql-v=(1-0)(p-V)+1(Q-V)
=A-0k+thk=k

Thus, [(1 —1)p +tq] € S, by definition of S. This shows

that S isan affine set.

A suitable set consists of any three vectors that are not
collinear and have 5 as their third entry. If 5istheir third
entry, they liein the plane x3 = 5. If the vectors are not
collinear, their affine hull cannot be aline, so it must be the
plane.

A suitable set consists of any four vectorsthat liein the
plane 2x; + x, — 3x3 = 12 and are not collinear. If the
vectors are not collinear, their affine hull cannot be aline, so
it must be the plane.

If p,g e f(S), thenthereexistr,se S suchthat f(r)=p
and f(s) =q. Givenany ¢t € R, we must show that
z=(1—-1)p+rqisin £(S). Since f islinear,

z=A-0)p+tq=A—=0)fr)+tf(S = f((L—1)r +19)

Since S isaffine, (1 —)r +tse S. Thus, z € f(S) and
f(S) iséffine.

Givenan affineset 7, let S={x e R" : f(x) € T}. Con-
sider x,y € Sandr € R. Then

SQA=Dx+1y)=A—-0)f(X)+1f(Y)
But fx) e Tand f(y) e T, 0o(L—0)f(X)+tf(y) €T

because T isan affine set. It followsthat (1 — £)x + 1y € S.
Thisistrueforal x,y € Sandt € R, so S isan affine set.

Since B is affine, Theorem 2 impliesthat B contains all
affine combinations of points of B. Hence B contains all
affine combinations of pointsof A. Thatis, aff A C B.

Since aff B isan affine set, this result follows from Exercise
19, with B replaced by aff B.

Since A C (A U B), it follows from Exercise 20 that
aff A c aff (AU B). Similarly, aff B c aff (AU B), so
[aff A U aff B] C aff (AU B).

Since (AN B) C A, it follows from Exercise 20 that
aff (AN B) C aff A. Similarly, aff (AN B) C aff B, so
aff (AN B) C (aff AN aff B).



23. OnepossibilityistoletAz{[g}, (1)} and

B= { m , m } Then (aff A) U (aff B) consists of the
two coordinate axes, but aff (A U B) = R?.

24. Onepossibility istolet A = { {8} , H} } and

B:{m , [(ﬂ} Then both aff A and aff B are equal to

the x-axis. ButAN B = { {1} } o

R

Section 8.2, page 19

1. Letvy = {_g}ﬂzz {g},w: [(2)} . Then

-3 -1 ’ .
Vo — V= 9 , V3 — V= 3 . Sincevsz — vy isa

multiple of v, — vq, these two points are linearly dependent.
By Theorem 5, {v1, v, v3} is affinely dependent. Note that
(V2 — V1) — 3(v3 — v1) = 0. A rearrangement produces the
affine dependence relation 2v; + v, — 3vs = 0. (Note that
the weights sum to one.) Geometrically, vy, v,, and vs are
collinear.

o [t 2o ]

-5 .
3l Sincevs — v4 and v, — V4 are not

multiples, they are linearly independent. By Theorem 5,
{v1, V2, v} is affinely independent.

. V=

V3 — Vi =

. The set is affinely independent. If the points are called vy,
Vy, V3, and v, then {vy, V», v3} isabasisfor R® and

V4 = 16v; + 5v, — 3vs, but the weightsin the linear
combination do not sum to one.

Solution:

-3
Name the points vy, v, v3, and v4. Thenv, —v; = [—6] ,
9

12 -8
independence of these points, row reduce the matrix:

-3 1 -1 -3 1 -1
-6 -3 13| ~ 0 -5 15|~

1 -1
V3 — V)= |:—3],V4—V1: { 13].Tostudylinear

9 12 -8 0 15 -1

Section 8.2 A3

-3 1 -1
0 -5 15 |. Thepointsarelinearly independent
0 0 34
because thereisapivot in each column. So {vy, v, V3, V4} iS
affinely independent, by Theorem 5.

Alternative Solution:

Name the points vy, vy, V3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. Thefirst step is
to move the bottom row of ones (in the augmented matrix)
to the top to simplify the arithmetic:

1 1 1 1 1 1 1 1

1 -2 2 0 0 -3 1 -1
2 -4 -1 15 0 -6 -3 13
-1 8 1 -9 0 9 12 -8
11 1 1 11 1 1
o3 1 -1] |0 -3 1 -1
0 0 -5 15 0 0 -5 15
0 0 15 -1 0 0 0 34

The homogeneous points are linearly independent because
thereisapivot in each column. Sothe set {vy, V2, V3, V4} IS
affinely independent, by Theorem 5.

. —6vy+3v, —2v3+5v, =0

Solution:

2
Name the pOintsvl, Vo, V3, and V4. Then Vo — V1 = [ —8] ,
4

-9 —6
independence of the translated points, row reduce the
augmented matrix for Ax = 0:

2 3 0 o0 2 3 0 O
-8 -v 2 0|~|0 5 2 O

3 0
V3 — V= {—7 Va4 — Vi = { 2].Tostudylinear

4 -9 -6 0 0 -15 -6 O

2 3 0 O 1 0 -6 0
~l0 5 2 0|~|0 1 4 O
0O 0 0 ©O 0 O 0 O

The first three columns are linearly dependent, so

{v1, V2, v3, V4} is affinely dependent, by Theorem 5. To find
the affine dependence relation, write the general solution of
thissystem: x; = .6x3, x, = —.4x3, with x3 free. Set x3 =5,
for instance. Then x; =3, x, = —2, and x3 = 5. Thus,

3(Vo —Vy) — 2(V3 — Vp) + 5(v4 — v1) =0. Rearranglng
gives —6v; + 3v, — 2v3 + 5v, = 0.
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Alternative Solution:

Name the points vy, vz, V3, and v4. Use Theorem 5(d) and
study the homogeneous forms of the points. Thefirst step is
to move the bottom row (in the augmented matrix) to the top
to simplify the arithmetic:

1 1 1 1 0

o 2 0 1 -2 0
(i V2 % W O]~| ¢ 5 5 7
' 3 7 6 -3 0]

1 0 0 12 0]

lo 1 0 -6 o0

O 0 1 4 0

0O 0 0 0 O

Row reductionof [v; Vo V3 V4] showsthat

{V1, Vo, V3} isabasisfor R® and v, = —2v; + 1.5V, + 2.5v3,
but the weights in the linear combination do not sum to one.
Instructor: (Possible exam question)

If the last entry of v, is changed from 0 to 1, then row
reductionof [vy Vo V3 V4] showsthat {vi, Vo, V3}isa
basisfor R® and Vg = —3Vq + Vo + 3vs.

. The barycentric coordinates are (—2, 4, —1).

Solution:

Denote the given points as vy, V», V3, and p. Row reduce the
augmented matrix for the equation x;V; + x,V; + x3V3 = p.
Remember to move the bottom row of onesto the top as the
first step, to simplify the arithmetic by hand.

Thus, x1+1.2x4=0, x, — .6x4 =0, and x3+.4x, =0, with
x4 free. Teke x, =5, for example, and get x; = —6, x, = 3,
and x3 = —2. An affine dependencerelationis

—6vy +3vo — 2v3 + 5v, = 0.

. —4v;+5vy, —4v3 +3vy, =0

Solution:

One solution method isto translate the points to the origin.
The following solution uses homogeneous forms. The first
step is to move the bottom row (in the augmented matrix) to
the top to simplify the arithmetic:

1 1 1 1 0
[V ¥, U3 Uy O]~ Lot 00
1Tz s 0 1 5 5 0
-2 1 1 -3 0
1 0 0 4 o0
]o 1 0 -2 0
o 0o 1 4 o0
0 0 0 0 O
Thus, x; = —%’x4, Xy = gx4, X3 = —%x4. An affine

dependence relation is —4v; + 5v, — 4vz + 3v, = 0.

. The set is affinely independent, as the following calculation
with homogeneous forms shows:

1 1

[ \71 \72 \73 \74 } ~

OFRP OO NN
P OOO OUlWwer
]l L

1 1 1 1
1 2 1 5
(Vo % Vs P]~|-1 1 2 4
2 0 -2 -2
1 1 0 2
1 0 0 -2
0 1 0 4
~lo 0 1 -1
0 0 0 0
0 0 0 0

Thus, x; = -2, xp =4, x3=—1, and r) = —2V; + 4V, — V3,
S0 p = —2v; + 4v, — V3, and the barycentric coordinates are

(—=2,4,-1).

Solution:

. The barycentric coordinates are (2, —1, 0).

Denote the given points as vy, V», V3, and p. Row reduce the
augmented matrix for the equation x;V; + x,V; + x3V3 = p.

1 1 1 1
o 1 1 -1
[\71 \72 \73 r)}’\’ 1 1 4 1
-2 0 -6 -4
L1 1 2 5 0
(1L 0 o0 2
0 1 0 -1
~10 0 1 O
0O 0 O ©
0O 0O O O

Thus, p = 2V; — ¥, + 0V3, SO p = 2v; — V,. The barycentric
coordinates are (2, —1, 0).
Instructor: vz = 3vy + V,



10.

12.

13.

14.

15.

a. True. Theorem 5 uses the point v, for the translation, but
the paragraph after the theorem points out that any one
of the pointsin the set can be used for the trandation.

b. Fase, by (d) of Theorem 5.

c. False. Theweightsin the linear combination must sum
to zero, not one.

d. False. The only points that have barycentric coordinates
determined by S belong to aff S.

e. True. The barycentric coordinates are zero on the edges
of the triangle and positive for interior points.

a. False. By Theorem 5, the set of homogeneous forms
must be linearly dependent, too.

b. True. If one statement in Theorem 5 is false, the other
statements are fal se, too.

¢. False. Theorem 6 applies only when S is affinely
independent.

d. False. The color interpolation applies only to points
whose barycentric coordinates are nonnegative, since the
colors are formed by nonnegative combinations of red,
green, and blue.

e. True. Seethediscussion of Fig. 5.

. When a set of five pointsistranslated by subtracting, say,

thefirst point, the new set of four points must be linearly
dependent, by Theorem 8 in Section 1.7, because the four
points arein R®. By Theorem 5, the original set of five
pointsis affinely dependent.

Suppose vy, ..., Vv, aeinR" and p > n + 2. Since
p—1>n+1,thepointsv, — vy, V3 —Vyq,...,V, — Vv, ae
linearly dependent, by Theorem 8 in Section 1.7. By
Theorem 5, {vy, vy, ..., Vv, } isaffinely dependent.

If {v1, vo} isaffinely dependent, then there exist ¢; and ¢,
not both zero, such that ¢; + ¢, = 0, and ¢1v4 + covo = 0.
Then 1= —C2 # Oand c1V1 = —CoVo = 1V, which ImpIIeS
that v; = v,. Conversely, if vi =V, letc; =1and ¢, = —1.
Then c1V1 + Vo =V + (—1)V1 =0and c1+c=0, which
shows that {vi, v,} is affinely dependent.

Let S; consist of three (distinct) points on aline through the
origin. The set is affinely dependent because the third point
ison the line determined by the first two points. Let S,
consist of two (distinct) points on aline through the origin.
By Exercise 13, the set is affinely independent because the
two points are distinct. (A correct solution should include a
justification for the sets presented.)

a. Thevectorsvs; — vy = andv; — v, = are

1 3
B .
not multiples and hence are linearly independent. By
Theorem 5, S is affinely independent.

16.

17.

18.

Ps < (2,

o (85D b (30
C. pGIS(_’ )

—,+), p7is(0, +, —), and pg is (+, +, —).
1 4
4} andv; — v, = {2} are not

multiples and hence are linearly independent. By
Theorem 5 S is affinely independent.

a. Thevectorsv, — vy = {

b. pre (=2, 2,9, p2e (3, -2, 9),ps - (3,2, 2)
C. pg< (+,— —) pPs < (+,4+, =), Ps < (+,+,+),
p7 < (— 0, +) Seethefigure below. Actualy,

5 12 3
Ps < (ﬂ7 _1*47 —14) Ps < (1*47 > 1)

Ps < (o & ), andpr < (—3,0,3).

Suppose S = {by, ..., b;} isan affinely independent set.
Then (7) has a solution, because p isin aff S. Hence (8) has
asolution. By Theorem 5, the homogeneous forms of the
pointsin S are linearly independent. Thus, (8) has aunique
solution. Then (7) aso has a unique solution, because (8)
encodes both equations that appear in (7).

The following argument mimics the proof of Theorem
7inSection4.4. If S={by,..., b;} isan affinely
independent set, then scalarscy, . . ., ¢, exist that satisfy (7),
by definition of aff S. Suppose p aso has the representation

p:d1b1+--~+dkbk and di+---+d =1 (7a)
for scalarsds, . . ., d;. Then subtraction produces the
equation

O=p—p=(c1—dbi+--+ (cx —dp)by (7b)

Theweightsin (7b) sum to zero because the ¢’sand the d’s
separately sum to one. Thisisimpossible, unless each
weight in (8) is zero, because S is an affinely independent
set. Thisprovesthat ¢; =d; fori =1, ..., k.

T

X
a
0
+ (1 —————— 0 |. Sothe barycentric
0

=

2~
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coordinatesare x /a, y/b, z/c,and 1 — x/a — y/b — z/c. 2. a X
This holds for any nonzero choices of a, b, and c.

19. Leta= {al},bz {bl},andc= {Cl}.Then S A
az b, Cc2
ag bl Cc1 L"v_'
detfa b ¢El=det|ax by | = |===---X
1 1 1
ay ar 1 b. X2
det | by b2 1| by using the transpose property of the
c1 o 1
determinant (Theorem 5 in Section 3.2). By Exercise 30 in P TR Ly
Section 3.3, this determinant equals 2 times the area of the

triangle with vertices at a, b, and c.

20. If pison theline through a and b, then p is an affine
combination of aand b, so p isalinear combination of a
andb. Thus, thecolumnsof [& b {]arelinearly
dependent. So the determinant of this matrix is zero.

-
21. 1f[a b é][s]:f),thenCramer’srulegives

t
r=det[p b &]/det[a b &]. By Exercise 19, the

numerator of this quotient is twice the area of Apbc, and the

denominator is twice the area of Aabc. This provesthe

formulafor r. The other formulas are proved using

Cramer'srulefor s and . 3. Nonearein conv .

22. Letp=(1- x)q+ xa, where g is on the line segment from
b to c. Then, because the determinant is alinear function of
the first column when the other columns are fixed (Section

Solution:
From Exercise 7 in Section 8.1, p; and ps arenot in aff S, so
they certainly are not in conv S. Since

3.2), p2 = 2v; — 4v, + 3vs, and the weights sum to one, p, isin
det[p b &l=det[(l—x)§+xa b &] aff S. However, S is affinely independent (because S is
=(1—x)det[§ b &]+x-det[a b &] linearly independent), so the barycentric coordinates of p,
X~ L . . . . are 2, —4 and 3. Since one coordinate is negative, p, is not
Now,[§ b €]isasingular matrix because g isalinear in conv S.

combination of band & Sodet[§ b &]=0and
det(p b &l=x-detfa b ¢l 4. Pz € conv§
Solution:
From Exercise 6 in Section 8.1, ps isnot in aff S, so it
certainly isnot in conv S. Since p; = —4b; + 2b, + 3bz and
1 X, p2 = 0.2b; + 0.5h, + .3bs, and in each case the weights sum
to one, both p; and p, arein &ff S. However, S is affinely
~ independent (because S is linearly independent), so the
~o weights in these combinations are barycentric coordinates.
i >~ Thus, py isin conv S, because its barycentric coordinates
2 are nonnegative. Thisis not the case for p1, sop; ¢ conv S.

Section 8.3, page 27




12.

13.

14.

15.

. P=3Vi+3Vo+ivaandp=
10.
11.

. P1= —%V1+ %V2+ %V3+ éV4, SO P21 ¢ conv S.

1 1 1 1
P2=3V1i+ 3V2+ 5Va+ 3Va, SOP2 € CONV S.

o

Pr=12vi— Vo +vzedfs
P2 = fVi+3Vo+ V3 € CONV S
ps=Vi+Vy—2v3 e Span §
- PrOjguns Pa=5V1+ 8o + Svg = (-3¢,

SO P4 ¢ Span §
a. The barycentric coordinates of py, p2, p3, and p, are,
r&spectlvely, (13’ 13° 123) (183’ 123’ 13) (g’ 0’ 3) and

9
(13’ 13’13 . L .
b. pyandp, areoutsdeconv T. pzisinsideconv T. pzis

on the edge v,v; of conv T.

aovoT

-3, 2.4 %p,

. p1 and p;3 are outside the tetrahedron conv S. p, ison the

face containing the vertices v,, vz, and v,4. p4 isinside
conv S. ps ison the edge between v, and vs.

;V]_ + 1V2 + ;V3.

p= v2+ v3+ v4andp_

a. False. Inorder for y to be aconvex comb| natl on, thec's
must also all be nonnegative.

b. Fase. If Sisconvex, then conv S isequal to S.

c. False. For example, the union of two distinct pointsis
not convex, but the individual points form convex sets.

. True. Thisisthe definition.

. True. Theorem 9.

c. False. The points do not have to be distinct. For
example, S might consist of two pointsin R®. A pointin
conv S would be a convex combination of these two
points. Caratheodory’s Theorem requiresn + 1 or fewer
points.

V]_ + V2 + V3

oo

pos S is acone with vertex at (0, 0) containing the positive
x-axis, with sideson thelines y = +x.

a. There are many possibilities. For example,
P=Vi+Vy+2V3 SOpP € posS.
p=—2vy+4v, — V3, sop € af S. Itisclear froma
graphthat p ¢ conv S.

b. The set in Exercise 13 consists of exactly two points, say
v and v,. These pointsform abasis for R?. Any other
point p in R? has a unique representation as alinear
combination of v4 and v». If this combination is both
affine and positive, it must be convex. In part (a) above,
there were two different linear combinations giving p,
one &ffine and one positive, but no single linear
combination with both properties.

Lety € pos(conv S). Theny =cyvy + - - - + cx Vi , Where
v; € conv S and ¢; > 0. But by Caratheodory’s Theorem,

16.

17.

18.

19.

20.

21.

22.

Section 8.3 A7

each v; isaconvex combination of n + 1 (or fewer) points

of §,s0

Vi = (dilwil +oeeet di,ll+1wi‘ﬂ+l)3

where

dij >0, Ed,/ =1, and W;; € S

Then

y = ci(duWy + - -
c(dpaWyg + -+ -

+d1 AW p41) + oo+
+ di ne1Wi n+1)

Since all these coefficients are nonnegative, this shows that
y € pos S.
The converseisimmediate since S C conv S.

Suppose S isconvex and lety € pos S. Then
Yy=cVi+ -+ Vi ,Wherev; € Sandc¢; > 0. Let
a=c1+---+c. Ifa=0,thenal ¢; =0. It follows that
y=0,andy = Asfor A =0. If « #0, then

X = ﬁV1+
o o
Thatis, y/a =sforsomese §,andy =as.

Ifp,g e f(S), thenthereexistr,se S suchthat f(r)=p
and f(s) =q. If 0 < ¢ < 1, wemust show that

=@ —-np+tqisin £(S). Since f islinear,
y=A-0p+tq=A-0f)+1f(9 = f((1—Dr +19)
Since Sisconvex, (1 —)r +tse Swhenever 0 <t < 1.
Thus,y € S and f(S) isconvex.

Ck . .
-+ —V, €8, since S isconvex
o

Supposer,se Sand0 < < 1. Then, since f isalinear
transformation,

f@A=Dr+19=Q—-0)f(r)+1f (9

But fr)eTand f(5)eT,0L—0)f(r)+tf(9eT
since T isconvex. It followsthat (1 —#)r +tse S. This
showsthat S is convex.

Suppose A C B, where B isconvex. Then, since B is
convex, Theorem 7 impliesthat B contains all convex
combinations of points of B. Hence B contains all convex
combinations of pointsof A. That is, conv A C B.

Suppose A C B. Then A C B C conv B. Sinceconv B is
convex, Exercise 19 shows that conv A C conv B.

Since A C (A U B), Exercise 20 shows that
conv A C conv (A U B). Similarly,

conv B C conv (A U B). Thus,

[(conv A) U (conv B)] C conv (A U B).

Since (A N B) C A, Exercise 20 shows that
conv (AN B) C conv A. Similarly,
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24.

25.
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conv (AN B) C conv B. Thus,
conv (AN B) C [(conv A) N (conv B)].

One possibility isto let A be two adjacent corners of a
sguare and B be the other two corners. Then

(conv A) U (conv B) consists of two opposite sides of the
square, but conv (A U B) isthe whole square.

One possibility isto let A be apair of opposite vertices of a
sguare and B be the other pair of opposite vertices. Then
conv A and conv B areintersecting diagonals of the square.
A N B isthe empty set, so conv (A N B) must be empty,
too. But conv A N conv B contains the single point where
the diagonalsintersect. So conv (A N B) isaproper subset
of conv A N conv B.

a. Hint: Suppose F isnot asubset of G and G isnot a
subset of F. Then there exist points p and g such that
peF,pé¢ G,qe G,andq ¢ F. Consider the point
r= (%)(p + Q). Since F U G isconvex, r belongsto the
line segment between p and g, which is contained in
FUG.Isr € F?lIsr € G?

STUDY GUIDE SOLUTION:
Ifr e F,theng e Fsinceq=2r —pand F isa
subspace. Thiscontradictsq ¢ F. Similarly, if r € G,
we reach the contradiction p € G. Thus, the points p and
g cannot both exist as described, and either F C G or
G C F. The converseisimmediate.

b. Hereisone possibility in R': let A = [1, 4] and
B =1[2,5].

Ps

—h

o
-

—h

(=]
—

_,,
o
—
ENTEN NN N )
N’ N’ N

b. g(t) = (L= )fo(t) +tf1(t) = (L = [(L — 1)po + tPa] +
1[(1 = 1)py+ P2l = (1 — 1)%po + 2 (1 — 1)py + 12Py.
The sum of the weightsin the linear combination for g is
(1—1)2+2t(1—t) +t? which equals
(1 =2t +1?) + (2t — 2¢?) +t? = 1. Theweightsare
each between0and 1when0 <t < 1,s09g(¢) isin
conv {po, P1, P2}.

h(t) = (1 — 1)g1(t) + tg2(¢). Usethe representation for

01 (¢) from Exercise 26, and the anal ogous representation for

02(1), based on the control points py, p2, and ps, and obtain

28.

h(t) = (1 — 0)[(1 = 1)%po + 2t (1 — )Py + 1%ps]

+1[(1—1)%p1 + 2t (1 — 1)pz + 1°P3]

=1 —0%pg+2t(1 =2t +1t?)p1+ (1>~3)p,
+1(1—2t +12)py + 221 — 1)py + 13p3

= (1 — 3t +3t>13pg + (2t — 4% + 2t3)p,
+ (12=3po+ (t = 22+ 13)py + (212 — 2t3)p, + 153p3

= (1— 3t +3t>=t3)py + (3t — 62+ 33)p,
+ (312 = 33)p, + 1%ps

By inspection, the sum of the weightsin this linear
combinationis 1, for al 7. To show that the weights are
nonnegative for 0 < ¢ < 1, factor the coefficients and write
h(r) = (1 — 1)%po + 3t (1 — 1)%py + 3r2(1 — )P

+3pafor <t <1
Thus, h(z) isin the convex hull of the control points po, p1,
p2, and ps.

Fixt,withO < ¢ < 1. If gi(¢) isin Sg and if g»(¢) isin Sy,

then there exist nonnegative weightsco, . . ., ¢ that sumto
one, and nonnegative weightsdy, . . ., di, that also sum to
one, such that

01(f) = coPo + c1P1 + - - - + kP

and

02(t) = dip1 + - - - + diPr + drs1Prs1

Ifh(r) = (@A — 1)g1(t) + 1-g2(¢), then the weights on

Po, - - -, Px+1 in the expression for h(z) are nonnegative
because they are nonnegative ¢; and d; multiplied by (1 — ¢)
and . Further, the sum of these weightsis (1 — #)[co + - -+ +
al+tldi+ - +diil=A—1)1+t-1=1 Thus,

h(r) € conv {po, ..., prs1} for each¢.

(More detailed solution)

Fix ¢, with0 < ¢t < 1. By hypothesis, g;(¢) = Zf.;o ¢;p; and

Go(t) = Y3 d;p; for some nonnegative constants ¢; and

d;, respectively, suchthat Y ¢; =1and ) d; =1. Let

y=@0-00:0¢) +19()
k

k+1
=1-Y cp; +t Zdjpj
i=0 j=1
k+1

k
=> A-tep; + > 1d;p;
=0 =1

The weightsin this linear combination are all nonnegative,
sotoshow y € conv {po, P1, - - - , Prs1}, it SUffices to show
that the weights sum to one. In fact, thissumis

k+1 k+1

k k
SA-tei+d>tdi=A-0) Y i+t d;
i=0 =1 =1

i=0

=1-01+t-1=1



Possible Test Question. Let po, p1, P2, and ps be pointsin
R”. Show that aline segment from apoint in

conv {po, P1, P2} to apoint in conv {p1, p», ps} is contained
inconv {po, P1, P2, P3}.

Solution:

Given p € conv {po, p1, P2} and g € conv {py, Pz, p3}, let
y=(1—-1)p+tqforsomer suchthat 0 <r < 1. Write

P = coPo + c1P1 + c2P2 and o = d1py + doP2 + d3p3, Where
the weights in each case are nonnegative and sum to one.
Etc.

Section 8.4, page 38
1. f(x1,x2) =3x1 +4x, andd = 13
Solution:
VN <1 I O 3 B
2 1= 1 4 - 3" = 4|
f 1, x2) = 3x1 +4xo. f(vy) =3(3) +4(1) =13.
2. f(x1, x2) =5x1 — 3x,andd = -7
Solution:

R I B 2 B 1 O
27T -1|~|5]” " |-3]|

f(x1, x2) =5x1 — 3x2. f(v1) =5(1) —3(4) =—7.

[0
3. a n=|2]| oramultiple
3
2x
4

b. f(X)=2x,+3x3,d =11
4. a. n= 3 | oramultiple
-6
b. f(X)=4x; +3x, — 6xs, d =—8
Solution:
1 3 6
Vi= | —-2|,Vo—Vvi=|[0]|,vz—Vvi=|-2
1 2 3
3 6 X1
0 -2 X2 :4X1+3XZ—6X3:f(X1,X2,X3)
2 3 X3
-4
Son= 3| andd =n-v; =-8.
__6_
-3
-1 .
5. a n= > or amultiple
1

b. f(X)=3x; —x2+2x3+x4,d=5

Section 8.4 A9

-2
3 .
Lan=| ¢ or amultiple
1
b. f(X)=—2X1+3xZ—5X3+X4,d=4
Solution:
1 1 0
Vi = 2 Vo — V= 0 V3 —Vy = L
1= |g|VemVi= | _q['Vsm1= |5 >
0 -3 7
2
Vg — Vi = _2 . Solvethe equations (v, — v1)-n =0,

-1
(V3 —V1)-n =0, (v4 — v1)-n = 0. The augmented matrix is

1 0 -1 -3 0 1 0 0 2 o0
0 1 2 7 O0[~|0 1 0 -3 0f.
2 0 -1 -1 o0 0 0 1 5 0
Thus, x1 = —2x4, x, = 3x4, x3 = —5xy, With x4 free. Take
-2

3

-5

1

b. Let f(x1, x2, x3, X4) = —2x1 + 3x2 — 5x3 + x4. Let
d=f(v)=-2(1)+3(2)+0+0=4.

x4 =1, for example, togetn =

. Vo isonthesameside asO0, v, ison the other side, and v3 is

inH.

Solution:

Computen-p =2. Then H = {x : n-x = 2}. Theoriginis
in Hy = {x : n-x =0}. Computen-v; = 5. Thisismore
than 2, so v; and 0 are on the opposite sides of H. Compute
n-v, = —2, whichislessthan 2, so v, and 0 are on the same
sideof H. Computen-vs=2,s0Vvsisin H.

. LetH = [f 1 d], where f(xl, X2, X3) = 3x1 + Xp — 2x3 and

d = 4. Thereisno hyperplane paralel to H that strictly
separates A and B.

32 10 —4
. One possibility isp = _lg V= _1 V2= é
0 0 1

Solution:

Hy={X:n1-X=dy} and H, = {X : ny-X = d}. Since
P1 € Hiy,dy = nl-p1=4. S|m||ar|y, ds =N2-P2 =22.
Solvethe smultaneoussystem[1 2 4 2]x=4and
[2 3 1 5)x=22

1 2 4 2 4, (1 0 -10 4 3
2 3 1 5 2 0 1 7 -1 -14
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The general solution provides one set of vectors, p, vy, and
V,. Other choices are possible.

32 10 —4
x=| ¥4 7y Ll b+ xavi + xavs, where
= 0 X3 1 X4 0 =P+ x3V1 + x4V2,
| 0] 0 1
327 10 —4
I e e A IV |
p_ 0 s V1 — 1 s V2 = 0
| 0] 0 1
2,3,or4d

a. False. A linear functional goesfrom R” to R.

b. Fase. Seethediscussion of (1) and (4). Thereisalxn
matrix A suchthat f(x) = Ax for al x in R".
Equivalently, thereisapoint n in R" such that
f(X)=n-xforal xinR".

c. True. Seethe comments after the definition of strictly
separate.

d. False. SeethesetsinFig. 4.

. True. Seethe statement after (3).

. Fase. The vector n must be nonzero. If n = 0, then the
given set isempty if d #0 and the set isall of R” if
d=0.

¢. False. Theorem 12 requires that the sets A and B be

convex. For example, A could be the boundary of a
circleand B could be the center of the circle.

d. False. Some other hyperplane might strictly separate

them. See the caution at the end of Example 8.

T o

Letx,y € B(p, §) and supposez = (1 — )X + ty, where
0<t<1 Then

lz—=pll = IA—-DX+ry] —pl
=[A=DX=p)+tly —pll
=A-dlIx—=pl+zlly —pll
<@A—=08+185=6

where the first inequality comes from the Triangle

Inequality (Theorem 17 in Section 6.7) and the second

inequality followsfrom x,y € B(p, 3). It follows that

z € B(p, §) and B(p, 3) isconvex.

Let S be abounded set. Then there existsa$ > 0 such that
S C B(0, §). Since B(0, §) isconvex by Exercise 13,
Theorem 9 in Section 8.3 implies that conv S C B(0, §) and
conv S is bounded.

f(x,y) =4x +y. Anatural choicefor d is12.75, which
equals f(3,.75). Thepaint (3, .75) isthree-fourths of the
distance between the center of B(0, 3) and the center of
B(p, D).

16.

17.

18.

19.

Solution:

Let L bethe line segment from the center of B(0, 3) to the
center of B(p, 1). Thisison the line through the originin
the direction of p. Thelength of L is (4% + 1%)Y/? ~ 4.1231.
This exceeds the sum of the radii of the two disks, so the
disks do not touch. If the disks did touch, the separating
hyperplane (line) would have to be orthogonal to p, the
vector that in this case determines the direction of L. Since
the disks are separated dlightly, the hyperplane need not be
exactly perpendicular, but the easiest oneto findisa
hyperplane H whose normal vector isp. So define f by
f)=p-x.

Tofind d, evaluate f at any point on L that is between
the two disks. If the disks were tangent, that point would be
three-fourths of the distance between their centers, since the
radii are 3 and 1. Since the disks are dlightly separated, the
distance is4.1231. Three-fourths of this distance is greater
than 3, and one-fourth of this distance is greater than 1. A
suitable value of d is f(q), where
ad=(3)0+(3)p=(3,.75). Sod =4(3) + 1(.75) = 12.75.

Note: p = {ﬂ f(x,y) =4x — 2y. A natura choicefor d
is £(5, 1.5) =17.

Solution:
The normal to the separating hyperplane has the direction of
the line segment between p and g. So, let

n=p—q= {_ﬂ . The distance between p and q is /20,
which is more than the sum of theradii of the two balls. The
large ball has center g. A point three-fourths of the distance
from g to p will be greater than 3 units from q and greater
than 1 unit from p. Thispoint is

6 2 5.0
X=.75p +.25q =.75 {1} +.25 {3} = [1.5}

Compute n-x = 17. The desired hyperplaneis

(3] o=

Exercise 2(a) in Section 8.3 gives one possihility. Or let
S={(x,y):x>y>=1and y > 0}. Thenconv S isthe
upper (open) haf-plane.

One possibility isA = {(x, y) : |x] < 1and y = 0} and
B={(x,y):x>y>=1and y > 0}.

Lety € B(p, ) sothat Ly € AB(p, §). Then |ly — pll < 4,

S0 [[Ay — Apll = Ally — pll < A8, and .y € B(Ap, A8).
Conversely, suppose z € B(Ap, A8). Then

Iz = Apll < A8, S0

|2 -p|=Llz—apll < :@x8)=5



20.

21.

22.

23.

Thus, 2 € B(p, ) and z € AB(p, §).
The proof of the second part is similar.

IfpeclS,thenpe SorpebdS. If p € S, then every
open ball centered at p contains the point p, whichisin S. If
p € bd S, then, by definition, every open ball centered at p
intersects S.

On the other hand, suppose every open ball centered at
p containsapoint of S. If pisnotin S, then every open ball
centered at p intersects both S and its complement. Thus,
pehbds.

Letx € cl (cl S). Then, givenany § > 0, there exists a point
p € B(x,8) Ncl S. We must show that some point of
B(x,8)isin S. Sincep e cl S, eitherpe Sorp e bd S. If
p € S, wearedone. Otherwise, p € bd S. Let
e=28 —|Ix —pl|l. Thene > 0 and the open ball
B(p, &) C B(X, 3). Seethefigure below. Sincep € bd S,
there existsapoint sin B(p, ¢) N S. But then
se B(x,§)NSandx ecl S.

Conversely, let x € cl S. Then, givenany § > 0, there
existsapointq € B(x,8§) N S. ButS c cl S, so
ge B 8)Ncl Sandx ecl (cl S).

Assume without loss of generality that y = 0. Then, for any
Asuchthat 0 < A < 1, wehave z= AX. Seethefigure
below. If x € int S, then there exists § > 0 such that
B(x,8) C S. Now B(Ax, A8) = AB(X, §), by Exercise 19.
Since Sisconvexand 0 € S, AB(X,8) C S. Thus,

B(z,A8) C Sandz € int S.

7
— /

7 \ / \

| \

( \ i
- Uz X
y=0 N z// \\ X /
/
B(z, A9) A\ v

~B(x.9)
N\

Letz=ax+ (1 — 1)y, with0 < A < 1. We may assume
without loss of generality that 3y + 3z = 0. Theny = —rx
for somer > 0. Seethefigure below. Sincex € int S, there
existsan open ball U = B(x, §) contained in S. Let

V = —tU. Then V isan open ball of radius#s about y.

24.

25.

26.

Section 8.4 All

Sincey € cl S, thereexistsapointpin VN S. Thatis,
p=—tuforsomeu e U. Sinceu and —tu arein the
convex set S, it followsthat O € S. But then Exercise 22
impliesz € int S.

_ U=B(x,9)

Let X,y € int S. By Exercise 22, all the points
(1—1)x+ty,where0 < ¢ < 1, areintheinterior of S.
Thus, Xy C int S, andint S is convex.

Letx,y € cl Sandletz=ax + By, wherea > 0, 8 > 0,
and o + B = 1. Furthermore, let B(z, §) be an open ball
centered at z. Seethe figure below. Sincex andy arein
cl S, Exercise 20 implies that there exist points

Xo € B(X,8) NS andyp € B(y, §) N S. Weclaim that

Zo = aXg + BYo € B(z, §). Indeed,

1z = Zoll = [I(eX + BY) — (aXo + BYo)|

lle(X = Xo0) + B(Y — Yo)

lle (X = Xo) | + [1B(Y = Yo)l

allX = Xoll + BllY = Yoll < @b+ B =(a+p)§=3

Al

Since zy € XoYo, Wehavezg € S. Thus,ze ¢l Sandcl Sis
CONVEX.

B(x, 8) B(z, 8) B(y, 8)
AN TN TN
/ pe O ® \
/%o \ / Zy \ / Yo
[ Vo |\ |
\ X 1 z 1 y
A " // A ’ // \ ’ //
\\\ // \\\ // \\\ //

a. Supposex € cl (int S). Then, for every § > 0, B(X, §)
contains at least one point of int S, by Exercise 20. Since
int S C S, thismeans B(x, §) contains at |east one point
of S. Thus,x € cl S.

Conversely, supposex € cl S. Givenany § > 0,
thereexistsapoint sin S N B(x, §). Since||x —s|| < 4§,
wehavee =8 — ||x — s|| > 0. It followsthat
B(s, €) C B(X, 8). Seethefigurebelow. Lety € int S
and consider the line segment Sy. Sincee > 0, there
existsz € Sy such that z € B(s, ¢). But Exercise 22
impliesthat z € int S, s0z € B(x, 8) N (int S), and
x ecl (intS).



Al2 Answers to Exercises

yintS
—_ B 9)

b. Let S bea“lollipop” shapein R?:

27. a. SinceS ccl S,intS cint (cl §). Conversely, suppose
X € int (cl S). Thenthereexists§ > 0 such that
B(x,8) C cl S. Lety € int S. Then there existsapoint z
incl S suchthat x € Zy, with X # z. Seethefigure below.
It follows from Exercise 23 that x € int S.

B8 CdS
N

y dint S

b. LetS=[0,1) U (L, 2]inR? Then
intS=(0,1)U(1,2),butint (cl S)= (0, 2). Orlet S be
asolid square in R? with one diagonal removed. Then
int S consists of two triangular pieces, but int (cl S) is
the whole square (without the boundary).

28. a. IfxebdS,thenx ecl Sandx ¢ int S. But
cl S=cl (cl §), by applying Exercise 21 to cl S inplace
of §S,andint S =int (cl S), by Exercise 27. Thus,
xecl(cS)andx ¢int(cl S),sox € bd (cl S). For the
converse, reverse the argument above.

b. Let S=[0,1)U (1, 2]inR:. Thenbd S = {0, 1, 2}, but
bd (cl S) = {0, 2}. Or let S be asolid square in R? with
one diagonal removed. Then bd S consists of the
diagonal and the four edges of the square, but bd (cl S)
does not include the diagonal.

29. Let H =[f : d] beahyperplane and let
S={x: f(x) > d}. Then S isaclosed half-space, and its
boundary isthe convex set H.

30. Let S bethe convex hull of acirclein R?. Then bd S isthe
circleitself, which is not convex.

Section 8.5, page 47

1. Theorigin isan extreme point, but it is not a vertex.

2. Onepossibility isaray. It has an extreme point at one end.

3. Onepossibility isto let S be a square that includes part of
the boundary but not al of it. For example, include just two
adjacent edges. The convex hull of the profileis atriangle.

-V

4. a fo(S%) =6, f1(8°) =15, f2(5°) =20, f3(5°) = 15,
fa(8%) =6,and 6 — 15+ 20 — 15+ 6= 2.

b. fo [ fo fz Ja
St 2
52 3 3
S8 4 6 4
4 5 10 10 5
S° 6 15 20 15 6

a_ [(n+1 ay al .
fi (8™ = (k+1> , where (b) = bl D) isthe
binomial coefficient.
5. a fo(C® =32, f1(C%) =80, f>(C°) =80, f3(C°) =40,
f4(C% =10,and 32 - 80+80 — 40+ 10=2.

b. fo i fo fz fa
ct| 2
c?| 4 4
c*| 8 12 6
c*|1 16 32 24 8
c°| 32 8 8 40 10

P ay al .
fi(CH =2 (k),where<b)_mlsthe
binomial coefficient.

Notethat fi(C") = 2fi(C"™) + fiea(C"7H).



10.

1.

12.

v

a. X!isaline segment: 5

X2 isaparallelogram: V1

Va

b. fo(X3 =6, (X% =12, fo(X®) =8. X%isan
octahedron.

C. fo(X*) =8, fi(X*) =24, fo(X*) =32, f3(X*) =16,
8-24+32-16=0

d. fi(xm) =2t ( "

k+l),0§k§n—1,where

<“ > — — % isthebinomial coefficient.
b b'(a — b)!

. Jo(P") = fo(Q) +1

- Je(P") = fi(Q) + fia(Q)

- Joa(P") = fua(0) +1

True. Definition.

True. Definition.

False. S must be compact. See Theorem 15.
True. Seethe comment after Fig. 4.

False. It has six facets (faces).

. True. Theorem 14.

. False. The maximum is always attained at some extreme
point, but there may be other points that are not extreme
points at which the maximum is attained.

d. True. Follows from Euler’'s formulawith n = 2.

PO 20T 0T

Let x be an extreme point of the convex set S and let
T={yeS:y#x}.IfyandzaeinT,thenyz C S since
S isconvex. But since x isan extreme point of S, X ¢ ¥z, O
yz C T. Thus, T isconvex.

Conversely, suppose x € S, but x is not an extreme
point of S. Thenthereexisty and zin S such that x € yz,
withx #y and x # z. It followsthat y and z arein 7', but
yZ ¢ T. Hence T isnot convex.

Suppose A and B areconvex. Letx,y € A + B. Then there
exista,ce Aandb,d € B suchthatx =a+ b and
y=c+d. Forany ¢t suchthat0 < ¢ < 1, we have

A-—0)x+ty=A—-1)(@a+b)+r(c+d)
=[1—-0a+tc]+[(1—1b+td]

But (1 —t)a+tc € A since A is convex, and
(1—1t)b+1rd € B since B isconvex. Thus, (1 — )X +ty is
in A + B, which showsthat A + B isconvex.

a. Let Sbeconvex andletx € ¢S +dS, wherec > 0 and
d > 0. Thenthereexist s; and s, in S such that
X = ¢S +dS,. But then

13.

1

Section 8.6 Al3

X=cS +dS,=(c+d) ;51+L52
c+d c+d
Now - and [117 are both nonnegative and sum to one.
Since S is convex, S+ ﬁsg € S. Thus,
X € (c+d)S.
Conversely, let X € (¢ + d)S. Thenx = (¢ + d)sfor
somese S. Butthenx =cs+dse ¢S +dS, asdesired.

a. Since each edge belongs to two facets, kr istwice the
number of edges: kr = 2e. Since each edge has two
vertices, sv = 2e.

b. V—e+r=2,80%—e+%=2:>%+%:%+ -
c. A polygon must have at least three sides, so k > 3. At
least three edges meet at each vertex, sos > 3. But k
and s cannot both be greater than 3, for then the left side

of the equation in (b) could not exceed %

Whenk =3, wegeti —1=1 s05=34,0r5.
For these values, we get e = 6, 12, or 30, corresponding
to the tetrahedron, the octahedron, and the icosahedron,
respectively.

Whens =3, weget: — ;=1 s0k=23,0r5
and e = 6, 12, or 30, respectively. These values
correspond to the tetrahedron, the cube, and the
dodecahedron.

™

Section 8.6, page 58

Given

X(1) = (1= 1)%po + 31 (1 — 1)?py + 3r*(1 — 1)pz + 1°ps,

0 <t <1, letbbeany fixed vector. Observe (by algebraic
computation) that

A-0%+3(1-1)%D+3%1L-—1b+’b=b

Thus,

X()+b=A—-1)3%po+b) +3t(L—1)%(p1+b)
+32(L—t)(p2 + b) +3(pz + b)

This representation of x(¢) + b hasthe form of aBézier
curve, whose control points are translates by b of the
original control points. So translation by b maps a Bézier
curveinto aBézier curve.

. a. The coefficients of pp and pz in (15) match those in (14).

For p1,

Gt —1D2+4-3=3t*—-2t+1)+4—3t
=3 —6r2+3r+4—3¢
=3 —-6r2+4

The verification for p, istrivial. So (15) is an equivalent
description for x(z).

b. Equation (15) reveals that each polynomial weight is
nonnegativefor 0 < ¢ < 1, since4 — 3¢t > 0. For the
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sum of the coefficients, use (15) with the first term
expanded: 1 — 3 + 3t — t3. The 1 here plusthe 4 and 1
in the coefficients of p; and p,, respectively, sumto 6,
while the other terms sum to 0. This explainsthe % inthe
formulafor x(¢), which makes the coefficients sum to 1.
Thus, x(¢) isaconvex combination of the control points
forO<r<1.

. Since the coefficients inside the brackets in equation (14)

sum to 6, it follows that
b= %[Gb]
=1[1-0%+ @ -6+ 4b
+(=33+ 32+ 3 + Db + r°p]

and hence x(¢) + b may be written in asimilar form,
with p; replaced by p; + b for each i. This shows that
X(t) + b isacubic B-spline with control pointsp; + b for
i=0,...,3

. Start with

X(1) = (L —1)3po + 3t (1 — 1)2p1 + 3t2(1 — 1)p + £°p3,
and compute

X' () = (=3 + 6t — 3t?)pg + (3 — 12t + %?)p;
+ (6t — 9P, + 3P

Then x'(0) = —3po + 3p1 = 3(P1 — Po), and

X' (1) = —3p2 + 3p3 = 3(ps — p2). Thisshowsthat the
tangent vector x’(0) pointsin the direction from pg to p;
and is three times the length of p; — po. Likewise, X' (1)
pointsin the direction from p, to ps and is three times
thelength of p3 — p,. In particular, X' (1) = 0if and only
if p3 = pa.

. From part (a), differentiate x'(r) to get

X"(t) = (6 — 6t)po + (—12 + 18¢t)p;
+(6 — 18r)p, + 61p3

Then

X"(0) = 6po — 12p1 + 6p2 = 6(Po — P1) + 6(P2 — P1)
and

X"(1) = 6p1 — 12p; + 6p3 = 6(P1 — P2) + 6(P3 — P2)

For apicture of x”(0), construct a coordinate system with
theorigin at p,, temporarily, label pp aspo — p; and label
p2 asp, — p;. Finaly, construct aline from this new
origin through the sum of py — p; and p, — p1, extended
out ahit. That line pointsin the direction of x”(0).

X)) =3 [(—32+6r —3) po+ (%2 —12) py

+(—9r2 + 61 + 3) p2 + 3r?p3]
X'(0) = 3 (P2 — Po) and X' (1) = 3 (ps — pa) (Verify that,
in thefirst part of Fig. 10, aline drawn through po and p,
is paralle to the tangent line at the beginning of the

B-spline.) When x’(0) and x’(1) are both zero, the figure
collapses and the convex hull of the set of control points
istheline segment between po and ps, in which case x(t)
isastraight line. Where does x(¢) start? In this case,

X(t) = 2 [(—41% + 612 + 2)po + (41° — 617 + 4)pg]

X(0) = po+3ps and X(1) = 3po+ ips

The curve begins closer to ps and finishes closer to po.
Could it turn around during itstravel? Since

X'(t) =2t (1 — 1)(po — P3), the curve travelsin the
direction py — p3, S0 when x'(0) = x'(1) = 0, the curve
always moves away from ps toward po for0 < ¢ < 1.

X' () =1 —=)po+ (—2+3)pr+ (1 — 3t)p2 + 1ps3

X"(0) = po — 2p1 + P2 = (Po — P1) + (P2 — P1)
and
X"(1) =p1 — 2p2 + Pz = (P — P2) + (P3 — P2)

For a picture of x”(0), construct a coordinate
system with the origin at p;, temporarily, label p as
Po — P1, and label p, asp, — p1. Findly, construct aline
from this new origin to the sum of py — p; and p, — p;.
That segment represents x”(0).

For apicture of x”(1), construct a coordinate
system with the origin at p,, temporarily, label p; as
p1 — p2, and label p; asps — p,. Finaly, construct aline
from this new origin to the sum of p; — p, and ps — p..
That segment represents x”(1).

. From Exercise 3(a) or equation (9) in the text,

X'(1) = 3(p3 — p2)

Use the formulafor x’(0), with the control points from
y(t), and obtain

y'(0) = —3p3 + 3ps = 3(Ps — P3)

For C* continuity, 3(ps — P2) = 3(Pa — P3), SO
ps = (P4 + P2)/2, and p3 is the midpoint of the line
segment from p; to py.

. 1fx'(1) =y'(0) =0, then p, = pz and p3 = p4. Thus, the

“line segment” from p, to p4 isjust the point ps. [Note:
In this case, the combined curveisstill C* continuous,
by definition. However, some choices of the other
control points, po, P1, Ps, ad pg, can produce a curve
with avisible “corner” at ps, in which casethe curveis
not G* continuous at pz.]

6. a. Withx(r) asin Exercise 2,

X(0) = (po + 4p1 + P2)/6
and
X(1) = (p1 +4p2 +p3)/6



Use the formulafor x(0), but with the shifted control
pointsfor y(¢), and obtain

y(0) = (p1 + 4p2 + P3)/6

This equals x(1), so the B-splineis G° continuous at the

join point.
b. From Exercise 4(a),
X)) =(ps—p/2 and X (0)=(p2—po)/2

Usethe formulafor x’(0), with the control points for
y(¢), and obtain

Y'(0) = (ps — p1)/2=X(1)
Thus, the B-splineis C* continuous at the join point.
7. From Exercise 3(b),
X"(0) = 6(po — p1) + 6(p2 — P1)
and
X"(1) = 6(p1 — P2) + 6(p3 — P2)

Use the formulafor x”(0), but with the control points for
y(1), to get

y"(0) = 6(p3 — P4) + 6(Ps — Pa)
Set x”(1) = y”(0) and divide by 6, to get
(P1 — P2) + (P3 — P2) = (P3 — P4) + (Ps — Pa)

Since the curve is C?! continuous at ps, the point ps isthe
midpoint of the segment from p; to p4, by Exercise 5(a).
Thus, ps — ps = p3 — p2. Substituting gives

(P1 —P2) + (P3 — P2) = —(P3 — P2) + Ps — Pa
(P1 — P2) +2(P3 — P2) + P4 = Ps

Finally, again from C* continuity, p; = ps + pz — p2. Thus,
Ps = Ps + (P1 — P2) + 3(P3 — P2)
Only pg can be chosen arbitrarily.

8. From Exercise 4(b), x”(0) = po — 2p; + p2 and
X" (1) = p1 — 2p, + p3. Usethe formulafor x”(0), with the
shifted control points for y(¢), to get

y'(0) = p1 — 2pz + p3 = X"(1)
Thus, the curve has C? continuity at x(1).

9. Write avector of the polynomial weights for x(z), expand
the polynomial weights, and factor the vector as Mzu(t):

1—4r+6t%2— 43 +1* 1 -4 6 -4 1
A — 1242 + 1213 — 4¢* 0 4 -12 12 -4
612 — 1273 + 64 =10 0 6 —-12 6
4¢3 — 44 0 0 0 4 -4

4 0 0 0 0 1

1
t
/2
3
4

Section 8.6 Al5
1 -4 6 -4 1
0 4 —-12 12 -4
Mg= 10 0 6 —-12 6
0 0 0 4 -4
0 0 0 0 1

10. Write avector of the polynomial weights for x(¢), expand
the polynomial weights, taking care to write the termsin
ascending powers of ¢, and factor the vector as Msu(z):

1—3r+32—¢3 1 -3 3 -171
1| 4-62+3° | 114 0 -6 3||¢
6 |1+3+3%2-3°| " 6|1 3 3 3|

I 0 0 o0 1|
= Msu(z),
1 -3 3 —1]
1|4 0 -6 3
Ms=%11 3 3 -3
0 0 0 1]
1. a 8+
(4,6) (5,6)

64+

4__

24

1,2 8,2

0 } } } }

0 2 4 6 8
b. g1

2,6
6L (2,6)

(5 4.2)
44
21
2 (4,18)

0 } } } }
0 2 4 6 8

¢. Thegraph for this part must show an inflection point.
The first new control point p, must be on theline
determined by p, and ps, placed so that ps isnot the
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midpoint of the line segment from p, to p4. S0 p4 cannot

6.0 . 55
be {6.6} , but two natural choices are {5.4} and

6.5
78
50] [55] [65 7.0
{4.2}' [5.4}’ {3.3]’“‘0' {5.3]' The MATLAB
inputis[55.56.57; 42543353

} . Thefirst figure below was produced from

7+

(2.6

6T (5.5,5.4) (7,5.3)

51
41

3+ (655,3.3)

21

N @2 (4,18)

oLl

4.2

54

The second graph, from a student, uses [ > } {5'5],

7] a2
9.l
8-+ (9.8

71

61

51

a4l

31

21

N 12 (4,18)

ol

12. a. g4

N

~N -+

~N -+



¢. Three segments combined into one curve:

o

d. Sanpl e bspline. mnodification

98- spl i ne curve
di sp(‘ Sanpl e B-spline Curve')

% nput data points
A = input(‘Enter 2x6 Geonetry Matrix:’);

YSet up the axes and keep them fixed.
axis([0 10 0 10])

%5i npl e default setting
hol d on

% reate the paraneter t and the vector u
that contains the powers of t.

t = linspace(0,1);
u [t.”0; t; t."2;

t.73];

%l ot each segnment of the curve
for i =1:3
G=[A(:,i) A(:,i+1) A(:,i+2) A(:,i+3)]
%Current geonetry matrix

M=[1-33-1; 40-63; 133 -3;
000 1]/6

98- spl i ne basis curve
X = G"Mu;

%rhe B-spline curve

plot(¥1,:),¢2,:), -0ob",

‘ Mar ker Facecol or’, ‘b’ ,‘* Marker Si ze’ , 2)
% his comrent plots the control points
wi th connecting |ines.
% -ob’ draws lines and sets a circle
for each point, in blue.
%Jse ‘ob’ instead,
between the circles.
%var ker FaceCol or fills in each circle
(marker) in blue.
%var ker Si ze specifies the size of the
circle, in points.

if you want no |ines

13.

14.

15.

a.

Section 8.6 Al7

plot(x(1,:), x(2,:),‘r")

o%°l ot the B-sline curve in red
if(i <3)

di sp(‘ Press any key to continue’)

pause
end

end

From (12), d1 — go = (P2 — Po) = 2p1 — 3Po. Since
0o = Po, U1 = 3(P1 + Po)-
From (13), (43 — g2) = —Po — P1 + P2 + P3. SO
803 + Po + P1 — P2 — P3 = 802.
Use (8) to substitute for 8qs, and obtain
802 = (Po + 3p1 + 3P2 + P3) + Po + P1 — P2 — Ps3
= 2po +4p1 + 2P

Then dividing by 8 and using part (a) gives
02 = %po+ %pl + %pz

= (3P0 + 3P1) + (P1+ 3P2)

=101+ 3(P1+P2)

= 2[g1 + 3(P1 + P2)]

3(r3 —ry) =27 (1), by (9) with (1) and r, in place of

X'(1) and p;.

Z (1) = .5¥'(1), by (11) with¢t = 1.

SX'(1) = (:53(ps — p2), by (9).

From part (@), 6(rs — r2) = 3(ps — p2),

f3—r2= %ps - %pzl andrs — %ps + %pz =TI

Sincer; = pz, this equation becomesr, = %(p3 +P2)-

3(r; — ro) = Z/(0), by (9) with Z(0) and r, in place of

X'(0) and p;.

Z/(0) = .5¢'(.5), by (11) withr = 0.

Part (c) and (10) show that 3(r; — ro) =

2(—Po — P1 + P2 + P3). Multiply by £ and rearrange to

obtain 8r; = —pp — P1 + P2 + P3 + 8ro.

From (8), 8ro = po + 3p1 + 3p2 + ps. Substitute into the

equation from part (d), and obtain

8r; = 2p; + 4p, + 2p3. Divide by 8 and use part (b) to

obtain

1= 3p1+3P2+ 2P3=(3Pp1+3P2) + 5 (P2 + Pa)
=33(P1+P2) + 32

Interchange the terms on the right, and obtain

ri=3lr2+3(P1+p2)l

From (11), y'(1) = .5X'(.5) = Z(0).

Observethat y'(1) = 3(qz—q,). Thisfollowsfrom (9),

with y(¢) and its control pointsin place of x(¢) and its

control points. Similarly, for z(r) and its control points,
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Z'(0) = 3(r1 — ro). By part (a), 3(dz — g2) = 3(r1 — ro).
Replacerg by gz, and obtaings — q2 =r; — g, and
hence ds = (2 +r1)/2.

Set o = Po ad rz = pa.

Compute d; = (po + p1)/2and ry = (p2 + P3)/2.
Computem = (p1 + p2)/2.

Computegz = (I + m)/2andr; = (M +r3)/2.
Computeqs = (q2 + r1)/2and setro = Qs.

16. A Bézier curveis completely determined by its four control
points. Two are given directly: po = x(0) and ps = x(1).
From equation (9), x'(0) = 3(p1 — po) and
X'(1) = 3(pz — p2). Solving gives

p1=3X(0)+po and p;=ps— ;X' (1)
17. a. Thequadratic curveis

w(t) = (1 —1)?po + 2t (1 — 1)p1 + t2p,. From Example
1, the tangent vectors at the endpoints are

w'(0) = 2p; — 2po and W'(1) = 2p, — 2p;. Denote the
control points of x(r) by rg, ry, ro, andrz. Then

ro=X0)=w(0)=po and rz=x(1)=w(l) =p;

From equation (9) or Exercise 3(a) (using r; in place of
p;) and Example 1,

—3rp+3r; =x'(0) =w'(0) = 2p; — 2po

5]
2p1— 2
T~
and
2p1 + Po 18.
= ——

3
Similarly, from the tangent data at + = 1, along with
equation (9) and Example 1,

=3r,+3r3=xQ) =w(1) = 2p2 — 2p1,
2p, — 2 2p, — 2
Cry 4Py = pz3 pl,rzng— P23 pl,

_ 2p1+p2

2=

and

. Write the standard formula (7), with r; in place of p; for

i =0,...,3, andthenreplacer, by po, and replacer; by

p2:

X(t) = (1 — 3t + 3t2—t3)po + (3t — 612 + 3t3)r, *)

+ (B2 =3, +13p,

Usethe formulasfor r4 and r, to examine the second and

third termsin (*):

(3t — 612+ 33y = (3t — 612+ 33)po + £(3r — 612 + 3r3)p;
=(t — 22 +13po + (2t — 4% + 2t3)p;

(312 =33, = 2(3r2 — 3¥)py + 2 (32 — 3d)p,
= (2% = 2%)p1 + (12 — 1),
When these two results are substituted in (*), the
coefficient of pg is
A=3+32 -+ —22+)=1— 2t +1>= (1 —1)?
The coefficient of p; is
@t -4+ 2+ (22 -2 =2 - 2=2(1—-1)
The coefficient of p, is (12 — %) + 13 =12. So

X(1) = (1 — 1)2po + 2t (1 — 1)Ppy + 12p,, which shows
that x(r) isthe quadratic Bézier curve w(r).

Po
—3po + 3p1
3po — 6p1 + 3p2
—Po + 3p1 — 3p2 + Ps3



