
263

9

Exploring the Shell

This chapter describes the shell and its role in the UNIX system
and explains its features and capabilities. It discusses shell vari-
ables and explains their use and the way they are defined. The
chapter also introduces more shell metacharacters and ways to
make the shell ignore their special meanings and explains UNIX
startup files, internal processes, and process management. This
chapter continues the introduction of new commands (utilities) so
you can build your vocabulary of UNIX commands.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 263

In This Chapter

9.1 THE UNIX SHELL
9.1.1 Starting the Shell
9.1.2 Understanding the Shell’s Major Functions
9.1.3 Displaying Information: The echo Command
9.1.4 Removing Metacharacters’ Special Meanings

9.2 SHELL VARIABLES
9.2.1 Displaying and Removing Variables: The set and unset

Commands
9.2.2 Assigning Values to Variables
9.2.3 Displaying the Values of Shell Variables
9.2.4 Understanding the Standard Shell Variables

9.3 MORE METACHARACTERS
9.3.1 Executing the Commands: Using the Grave Accent Mark
9.3.2 Sequencing the Commands: Using the Semicolon
9.3.3 Grouping the Commands: Using Parentheses
9.3.4 Background Processing: Using the Ampersand
9.3.5 Chaining the Commands: Using the Pipe Operator

9.4 MORE UNIX UTILITIES
9.4.1 Timing a Delay: The sleep Command
9.4.2 Displaying the PID: The ps Command
9.4.3 Keep on Running: The nohup Command
9.4.4 Terminating a Process: The kill Command
9.4.5 Splitting the Output: The tee Command
9.4.6 File Searching: The grep Command
9.4.7 Sorting Text Files: The sort Command
9.4.8 Sorting on a Specified Field

9.5 STARTUP FILES
9.5.1 System Profile
9.5.2 User Profile

9.6 THE KORN AND BOURNE AGAIN SHELLS
9.6.1 The Shell Variables
9.6.2 The Shell Options
9.6.3 Command Line Editing
9.6.4 The alias Command
9.6.5 Commands History List: The history Command
9.6.6 Redoing Commands (ksh): The r (redo) Command
9.6.7 Commands History List: The fc Command
9.6.8 Login and Startup

264 Chapter 9

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 264

9.6.9 Adding Event Numbers to the Prompt
9.6.10 Formatting the Prompt Variable (bash)

9.7 UNIX PROCESS MANAGEMENT
COMMAND SUMMARY
REVIEW EXERCISES

Terminal Session

Exploring the Shell 265

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 265

266 Chapter 9

Figure 9.1
The Components of the UNIX Operating System

shell

resident
modules

kernel

hardware

user

9.1 THE UNIX SHELL

The UNIX operating system consists of two parts: the kernel and the utilities. The
kernel is the heart of the UNIX system and is memory resident (which means that it
stays in the memory from the time you boot the system until the system is shut
down). All the routines that communicate directly with the hardware are concen-
trated in the kernel, which is relatively small in comparison with the rest of the
operating system.

In addition to the kernel, other essential modules are also memory resident. These
modules perform important functions such as input/output control, file management, mem-
ory management, and processor time management. Additionally, UNIX maintains several
memory-resident tables for housekeeping purposes, to keep track of the system’s status.

The rest of the UNIX system resides on the disk and is loaded into the memory
only when necessary. Most of the UNIX commands you know are programs (called util-
ities) that reside on the disk. For those programs, when you type a command (request
the program to be executed), the specified program is loaded into the memory.

You communicate with the operating system through a shell, and hardware-
dependent operations are managed by the kernel. Figure 9.1 shows the components of
the UNIX operating system.

See page x for an explanation of the icons used to highlight information in this chapter.

The shell is itself a program (a utility program). It loads into the memory when-
ever you log in to the system. When the shell is ready to receive commands, it displays
a prompt. The shell itself does not carry out most of the commands that you type; it ex-
amines each command and starts the appropriate UNIX program (utility) to carry out
the requested action. The shell determines what program to start (the name of the pro-
gram is the same as the command you type). For example, when you type Is and press
[Return] to list current directory files, the shell finds and starts a program called ls. The
shell treats your application programs the same way: you type the program’s name as a
command, and the shell executes the program for you. Figure 9.2 shows the user
interaction with the shell program.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 266

Exploring the Shell 267

Figure 9.2
User Interaction with the Shell Program

user logs in

shell shows the prompt

user types a command

shell executes the appropriate program

user interacts with the program

user logs off (Ctrl-d)

9.1.1 Starting the Shell

In Chapters 2 and 3, the shell program was explained and you learned that the shell is the
main method through which a user interacts with the UNIX, and also that there is more than
one shell provided with each UNIX system. But how does the shell get started?

The shell is started after the user is successfully logged in to the system and remains
active until the user logs out. Each user on the system has a default shell. The default
shell for each user is specified in the system password file. This file is called
/etc/passwd. The passwd file is the system password file and contains, among other
things, user ID for each user, an encrypted copy of each user’s password, and the name
of the program to run immediately after a user logs in to the system. This program does
not have to be one of the shell programs; however, it usually is.

When you log in, the system determines what shell to run by looking up your entry
in the /etc/passwd file. The last field of each entry is the name of the program to run
as the default shell. Table 9.1 shows the name of the shell programs and their corre-
sponding shell names.

Table 9.1
The Shells and Shell Program Names

Shell Program Name Prompt Sign Shell Name

/bin/sh $ Bourne shell

/bin/ksh $ Korn shell

/bin/bash $ Bourne Again shell

/bin/csh % C shell

/bin/tcsh % TC shell

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 267

268 Chapter 9

Built-In Shell Commands

The shell command interpreters (sh, ksh, bash, etc.) have special built-in functions (pro-
grams), which are interpreted by the shell as commands. These commands are part of the
shell itself and are recognized and executed internally. You already know some of the built-
in commands such as cd, pwd, and others. Many of these built-in commands are
implemented by more than one of the shells, and some are unique to a particular shell. You
can obtain the full list of the built-in commands by typing the following command line:

$ man shell_builtins [Return] . . . Display the shell built-in
commands.

Table 9.2 lists the shell built-in commands that are covered in this chapter and
shows their availability under different shells.

Command
Built Into

Bourne Shell Korn Shell Bourne Again Shell

alias ksh bash

echo sh ksh bash

history ksh bash

kill sh ksh bash

set sh ksh bash

unalias ksh bash

unset sh ksh bash

Table 9.2
The Built-In Shell Commands

9.1.2 Understanding the Shell’s Major Functions

The standard UNIX system comes with more than 200 utility programs. One of these
programs is sh, the shell itself.

The shell is the most frequently used utility program on the UNIX system. It is a
sophisticated program that manages the dialogue between the user and the UNIX sys-
tem. You interact with it repeatedly during work sessions. The shell is a regular exe-
cutable C/C++ program that is usually stored in the /bin directory. When you log in,
an interactive shell is invoked automatically. However, you can invoke another copy of
the shell by typing sh (or ksh or bash, depending on what shells are available in your
system) at the $ prompt.

The shell includes the following major features. You are already familiar with
some of these features, and the rest of them are explored in this chapter.

Command Execution Command (program) execution is a major function of the shell.
Just about anything you type at the prompt is interpreted by the shell. When you press

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 268

Exploring the Shell 269

[Return] at the end of the command line, the shell starts analyzing your command; if
there are filename substitution characters or input /output redirection signs, it takes care
of them, and then executes the appropriate program.

Filename Substitution If filename substitution (also called filename generation) is
specified on the command line, the shell first performs the substitution and then executes
the program. (The filename substitution characters—metacharacters * and ?—were
discussed in Chapter 8.)

I/O Redirection The input/output redirection is handled by the shell. Again, the shell
program itself is not involved, and the redirection is set up before the command execu-
tion. If input or output redirection is specified on the command line, the shell opens the
file and connects it to the standard input or standard output of the program respectively.
This topic was discussed in Chapter 8.

Pipes Pipes, also called pipelines, let you connect simple programs together to perform
a more complex task. The vertical line on the keyboard (|-) is the pipe operator.

Environment Control The shell lets you customize your environment to suit your needs.
By setting the appropriate variables, you may change your HOME directory, prompt sign,
or other aspects of your working environment.

Background Processing The background processing capability of the shell enables you
to run programs in the background while doing other jobs in the foreground. This is
helpful for time-consuming, noninteractive programs.

Shell Scripts Commonly used sequences of the shell commands can be stored in files
called shell scripts. The name of the file later can be used to execute the stored program,
enabling you to execute the stored commands with a single command. The shell also
includes language constructs that allow you to build shell scripts that perform more
complex jobs. Shell scripts are discussed in Chapter 12.

9.1.3 Displaying Information: The echo Command

You can use the echo command to display messages. It displays its arguments on your
terminal, the standard output device. Without the argument, it produces an empty line
and by default appends a new line to the end of the output. For example, if you type
echo hello there and press [Return] at the prompt, you will see the following:

hello there
$_

The argument string can be any number of characters long. However, if your string con-
tains any metacharacters, the string must be enclosed in quotation marks. (This topic is
discussed later in this chapter.)

echo Options

Table 9.3 lists the echo command options and explains how they are used.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 269

The backslash itself is a shell metacharacter. Therefore, if it is used in your string, it
must be enclosed in quotation marks.

The following command sequences show how to use the echo command, and the result
of incorporating the escape characters in the argument string:

$ echo Hi, this is a test. [Return] Show a simple message on the
screen.

Hi, this is a test.
$ echo Hi, "\n" this is a test. [Return] Show the same message in two

lines.
Hi,
this is a test.
$_ . Prompt.

270 Chapter 9

-e Option This option enables the interpretation of the escaped character such as \n.
The echo command usually is set with this option as the default option. The echo com-
mand is implemented differently in each shell. Particularly for the bash shell, you must
use the -e option in order for bash to recognize the escape characters.

Table 9.4 shows the characters that you can use as part of a string to control the format
of the message. These characters are preceded by a backslash (\) and are interpreted by the
shell to produce the desired output. They are also called escape characters.

Option Operation

-n Disables output of the trailing new line.

-e Enables interpretations of the backslash escaped characters.

Table 9.3
The echo Command Options

Table 9.4
The Escape Characters

Escape
Character

Meaning

\a Audible alert (bell)

\b Backspace

\c Inhibit the terminating newline

\f Form feed

\n Carriage return and a line feed (newline)

\r Carriage return without the line feed

\t Horizontal tab

\v Vertical tab

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 270

Exploring the Shell 271

1. \n must be enclosed in quotation marks to be interpreted as the newline
command.

2. If the echo command does not recognize the escape characters, use the -e option.

$ echo -e Hi, "\n" this is a test [Return] Using the -e option.
$ echo Hi, "\n" this is a test. > test [Return]. . This time save the output in a

file.
$ cat test [Return]. Confirm the contents of test.
Hi,
this is a test.
$_ . Prompt.
$ echo Hi, "\n" this is a test. "\c" [Return]. . . This time do not produce the

blank line at the end of the
message.

Hi,
this is a test.$

The prompt sign ($) appears right after the word test. That is the effect of \c in the
argument string.

In the following command line, the extra spaces between the words are intentional:

$ echo This is a test. [Return] . . . See what happens to the
blanks.

This is a test.

The shell interprets this command line with four arguments, and each argument is
separated with a space in the output.

$ echo "This is a test." [Return] . . See the wonderful effects of
quotation marks; now the
blank spaces are preserved.

This is a test.
$_ And the prompt.

9.1.4 Removing Metacharacters’ Special Meanings

The shell metacharacters have special meanings to the shell. But sometimes you
want to override those meanings. The shell provides you with a set of characters that
remove the meanings of the metacharacters. This process of removing the special
meanings of the metacharacters is called quoting or escaping. The set of quoting
characters is as follows:

• backslash \

• double quotation mark ”

• single quotation mark ’

Table 9.5 lists the characters that can be used for quoting.

The echo command is used in most of the following examples to demonstrate how
this process works. However, the use of quoting is applicable to other commands
when you have to use any of the special characters as part of the command’s
argument.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 271

272 Chapter 9

Backslash The backslash (\) is used to cause the character that follows it to be inter-
preted as an ordinary alphanumeric character. For example, ? is a file substitution char-
acter (wild card) and has a special meaning to the shell. But \? is interpreted as the actual
question mark.

Delete a file called temp? from your current directory:

$ rm temp? [Return]. Remove temp?.

The shell interprets this command as deleting all files whose filenames consist of
temp and one character after it. Therefore, it deletes any file that matches this pattern,
such as temp, temp1, temp2, tempa, tempo, and so on.

But if all you wanted to delete was a single file called temp?, then you would have
typed the following:

$ rm temp\? [Return] Try again, using \? to
represent the ?

This time the shell scans the command line, finds the \, ignores the special mean-
ing of the question mark, and passes the filename temp? to the rm program.

Display the metacharacters:

$ echo \< \> \" \' \$ \? \& \| \\ [Return]. Let’s display them all.

< > "' $? & | \
$_ . Ready for the next

command.

To remove the special meaning of the backslash, precede it with a backslash.

Double Quotation Marks You can use the double quotation marks (") to override the
meaning of most of the special characters. Any special character between a pair of double
quotation marks loses its special meaning, except the dollar sign (before a variable
name), the single quotation mark, and the double quotation marks. (You use the back-
slash to remove their special meanings.)

Double quotation marks also preserve the white-space characters (i.e., the blank
space, tab, and newline characters). The use of double quotation marks for this purpose
was demonstrated in the echo command examples.

Quoting Character Meaning

" " (double quotation marks) Everything between “and” is taken literally, except for $,
` (grave accent quotation mark) and " (double
quotation marks).

' ' (single quotation marks) Everything between ‘and’ is taken literally, except for '
(single back quotation mark).

\ (backslash) Any character following the \ is taken literally.

Table 9.5
Set of Quoting Characters

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 272

Exploring the Shell 273

The following command sequences show the application of the double quotation
marks:

$ echo > [Return] Display the > sign.
syntax error: 'newline or;' unexpected

$_ And the prompt appears.

The shell interprets your command as redirecting the output of the echo command
to a file. It looks for the filename and because none is specified, it responds with a cryp-
tic error message.

$ echo ">" [Return] Enclose the argument with
double quotation marks. The
> is displayed.

>
$ ls -C [Return] Check your current directory files.
memos myfirst REPORTS

$ echo * [Return] Use a metacharacter as the
argument.

memos myfirst REPORTS

The shell substitutes * with the names of all the files in your current directory.

$ echo "*" [Return] Now use the double quotation
marks.

*
$_ And the prompt appears.

No substitution occurs for the character between the double quotation marks.
Therefore, the special meaning of the * is removed.

Display the message “The UNIX System”.

$ echo "\"The UNIX System\"" [Return]
"The UNIX system"
$_ Prompt.

A backslash is necessary before a double quotation mark to override the special
meaning of the double quotation marks.

Single Quotation Marks Single quotation marks (’) work very much like the double
quotation marks. Any special character between a pair of single quotation marks loses its
special meaning, except the single quotation mark. (You use \ to remove its special
meaning.)

Single quotation marks also preserve the white-space characters. The string be-
tween the single quotation marks becomes a single argument, and the space character no
longer has its special meaning as argument separator.

The open and close quotation marks for this purpose are the same character, the
forward quotation mark. Do not use the back quotation mark (the grave accent
character `). This distinction is very important. The shell interprets the string in-
side the grave accent marks as an executable command.

The grave accent mark (`), which is discussed in more detail later in the chapter, is the
lowercase character on the tilde (~) key at the upper left of the keyboard.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 273

274 Chapter 9

Display special characters using a pair of single quotation marks.

$ echo ' < > " $? & |-'[Return]. . Use the echo command and
single quotation marks.

< > " $? & |-
$_ The prompt is back.

The spaces between the characters are preserved.

9.2 SHELL VARIABLES

The shell program handles the user interface and acts as a command interpreter. In order
for the shell to service all your requests (executing commands, manipulating files, etc.),
it needs to have certain information and to keep track of that information (i.e., your
HOME directory, terminal type, and prompt sign).

This information is stored in what are called the shell variables. Variables are
named items you set to specific values to control or customize your environment. The
shell supports two types of variables: environment variables and local variables.

Environment Variables Environment variables are also known as standard variables;
they have names that are known to the system. They are used to keep track of the essen-
tial things the system needs and are usually defined by the system administrator. For
example, the standard variable TERM is assigned to your terminal type:

TERM=ansi

Local Variables Local variables are user defined; they are entirely under your control.
You can define, change, or delete them as you wish.

9.2.1 Displaying and Removing Variables: The set and unset
Commands

You can use the set command to find out what shell variables are set for your shell to use.

Type set at the prompt and press [Return], and the shell displays the list of the variables.
Your list will be similar to but not exactly like that shown in Figure 9.3.

The names of the standard variables on the left of the equal (=) sign are shown
in uppercase letters in Figure 9.3. This is not a requirement; you can use lowercase,
uppercase, or any mixture for variable names. You can use characters, digits, and the
underscore character in variable values, but the first letter must be a character, not a
digit.

On the right side of the equal sign is the value assigned to a variable.

You must specify the exact variable name (including capitalization) when referring
to a variable.

You use the unset command to remove an unwanted variable. If you have a
variable XYZ=10, and you want to remove it, type unset XYZ and press [Return].

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 274

Exploring the Shell 275

Figure 9.3
The Output of the set Command

$ set
HOME=/usr/students/david
IFS=
LOGNAME=david
LOGTTY=/dev/tty06
MAIL=/usr/mail/students/david
MAILCHECK=600
PATH=:/bin:/usr/bin
PS1="$"
PS2=">"
TERM=ansi
TZ=EST=EDT
$_

9.2.2 Assigning Values to Variables

You can create your own variables, and you can also modify the values assigned to stan-
dard variables. You assign a value to a variable by writing the variable name, followed
by an equal (=) sign (the assignment operator), followed by the value you want to assign
to the variable, like this:

age=32

or

SYSTEM=UNIX

The shell treats every value that you assign to a variable as a string of characters.
In the preceding example, the value of the variable age is the string 32, and not the num-
ber 32. If your string contains embedded white-space characters (space, tab, etc.) you
must enclose the entire string in a pair of double quotation marks, like this:

message="Save your files, and log off" [Return]

1. A shell variable name must begin with a lowercase or uppercase letter and not
a digit.

2. There are no spaces on either side of the equal sign.

9.2.3 Displaying the Values of Shell Variables

To access the value stored in a shell variable, you must precede the name of the variable
with a $. Using the previous example, age is the name of the variable, and $age is 32,
the value stored in the age variable.

You use the echo command to display the value assigned to the shell variable.

set displays a list of variables; echo shows the specified variable.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 275

276 Chapter 9

Use the echo command to display text and the values of the shell variables:

$ age=32 [Return] Assign the value 32 to age.
$ echo Hi, nice day [Return] Display the argument string.
Hi, nice day
$ echo age [Return] Display the argument, the word age.
age
$ echo $age [Return] Now the argument is $age, the value stored

in age.
32
$ echo You are $age years old. [Return] . . Add some text to obtain more meaningful

output.
You are 32 years old.
$_ . Ready for the next command.

The shell variables are frequently used as command arguments on a command line, as in
the following:

$ all=-IFa [Return] Create a variable called all and assign the
value (string) -lFa (hyphen, lowercase
letter l, upper-case letter F, lowercase
letter a) to it.

$ ls $all myfirst [Return] Use the variable as part of a command
line.

command's output
$_ . The prompt is displayed.

Variable names are preceded by $. Thus the shell substitutes the value -laF for the
variable all. After substitution, the command becomes ls -lFa myfirst.

Observe the outputs of the following commands. They show the subtle differences in the
way the variables are interpreted when they are between quotation marks.

$ age=32 [Return] 32 is assigned to the variable age.
$ echo $age "$age" '$age' [Return] Display age.
32 32 $age
$_ . Prompt.

9.2.4 Understanding the Standard Shell Variables

The values assigned to the standard shell variables are usually set by the system admin-
istrator. Thus, when you log in, the shell refers to these variables to keep track of things
in your environment. You can change the value of these variables. However, the changes
are temporary and apply only to the current session. The next time you log in, you have
to set them again. If you want the changes to be permanent, place them in a file called
.profile. The .profile file is explained later in this chapter.

HOME

When you log in, the shell assigns the full pathname of your HOME directory to the vari-
able HOME. The HOME variable is used by several UNIX commands to locate the HOME

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 276

Exploring the Shell 277

directory. For example, the cd command with no argument checks this variable to determine
the pathname to the HOME directory and then sets the system to your HOME directory.

To experiment with the HOME variable, try the following command sequences:

$ echo $HOME [Return] Show your HOME directory pathname.
/usr/david

$ pwd [Return] Show the current directory pathname.
/usr/david/source source subdirectory in david.
$ cd [Return] No argument is specified. The default is

your HOME directory.
$ pwd [Return] Check your current directory. You are in

david, your HOME directory.
/usr/david

$ HOME=/usr/david/memos/important [Return] . . Change your HOME directory pathname.
Now your HOME directory is important.

$ cd [Return] Change to your HOME directory.
$ pwd [Return] Display your current directory; your

current directory is important.
/usr/david/memos/important

$_ . And the prompt appears.

IFS

The Internal Field Separator (IFS) variable is set to a list of characters that are inter-
preted by the shell as separators of command line elements. For example, to get a long
list of the files in your directory, you type ls -l and press [Return]. The space character
in your command separates the command word (ls) from its option (-l).

Other separator characters assigned to the IFS variable are the tab character [Tab]
and the newline character [Return].

The IFS characters are invisible (nonprintable) characters, so you do not see them
on the right side of the equal sign. But they are there!

$ echo $IFS [Return] Display characters assigned to IFS.
$_

A blank line and prompt is back. The characters assigned to IFS are nonprintable.

Change the IFS field separator to the : (colon). The original IFS setting is saved before
it is changed and later is restored to the original characters.

$ cd $HOME [Return] Notice here the field separator is a space
between cd and $HOME.

$ old_IFS=$IFS [Return] . . Save IFS characters.
$ IFS=":" [Return] Change filed separator to :.
$ cd:$HOME [Return] Notice that the : is used as a field

separator instead of the space.
$ IFS=$old_IFS [Return] . . Restore the field separators back to the

original ones.
$_ And the prompt is back.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 277

278 Chapter 9

It is not advisable to change the field separators. You usually do this to accommodate spe-
cial circumstances. We are going to use this capability in sample programs in Chapter 13.

MAIL

The MAIL variable is set to the filename of the file that receives your mail. Mail sent to
you is stored in this file, and the shell periodically checks the contents of this file to
notify you if there is mail for you. For example, to set your mailbox to /usr/david/
mbox, you would type MAIL=/usr/david/mbox and press [Return].

MAILCHECK

The MAILCHECK variable specifies how often the shell is to check for arrival of mail in
the file set in the MAIL variable. The default for MAILCHECK is 600 (seconds).

PATH

The PATH variable is set to the directory names that the shell searches for the location of
the commands (programs) in the directory structure. For example, PATH=:/bin:/ usr/bin.

The directories in the path string are separated by colons. If the very first character
in the path string is a colon, the shell interprets that as .: (dot, colon), meaning that your
current directory is first on the list and is searched first.

UNIX usually stores the executable files in a directory called bin. You can create
your own bin directory and store your executable files in it. If you add your bin direc-
tory (or any other name you call it) to the PATH variable, the shell looks there for any
commands that it cannot find in the standard directories.

Suppose all of your executable files are located in a subdirectory called mybin
that is located in your HOME directory. To add it to the PATH variable, you type:
PATH=:/ bin:/usr/bin:$HOME/mybin and press [Return].

PS1

The Prompt String 1 (PS1) variable is set to the string used as your prompt sign. The
Bourne shell primary prompt sign is set to the dollar sign ($).

If you are tired of seeing the $ prompt, you can easily change it by assigning a new value
to the shell variable PS1.

$ PS1=Here: [Return] Change your prompt to Here:
Here:_ There you are.
Here: PS1="Here: " [Return] Add an extra blank space to the

end.
Here: _ It looks nicer!

If your prompt string has embedded spaces, then it must be enclosed in quotation
marks.

Here: PS1="Next Command:"[Return]. . Change the prompt sign again.
Next Command:_. And it is changed.
Next Command: PS1="$ " [Return] . . Change back to the old $

prompt.
$_. And the $ prompt returns.

PS2

The Prompt String 2 (PS2) variable is set to the prompt sign that is displayed whenever
you press [Return] before completion of the command line and the shell expects the

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 278

Exploring the Shell 279

rest of the command. You can change the PS2 variable the same way you change the
PS1 variable. The Bourne shell secondary prompt defaults to the greater than sign (>).

The following command sequences show examples of the second prompt:

$ echo "Good news, UNIX [Return]. . The command line is not
complete; thus the PS2 prompt
sign (>) is displayed.

> is on CDs." [Return]. Now the command line is
complete.

Good news, UNIX is on CDs.

$ ls \ [Return] The command line is not
complete. This is signaled by
the backslash.

> The shell displays the second
prompt sign, and waits for the
rest of the command.

> -l [Return] Now the command line is
complete. The shell puts it
together as ls -l and executes it.

$_. And the prompt is back.

CDPATH

The CDPATH variable is set to a list of absolute pathnames, similar to the PATH vari-
able. The CDPATH affects the operation of the cd (change directory) command. If this
variable is not defined, then cd searches your working directory to find the filename that
matches its argument. If the subdirectory does not exist in your working directory, then
UNIX displays an error message. If this variable is defined, cd searches for the specified
directory according to the pathnames assigned to the CDPATH variable. If the directory
is found, it becomes your working directory.

For example, if you type CDPATH=:$HOME:$HOME/memos and press [Re-
turn], the next time you use the cd command, it will start searching from your current
directory, then your HOME directory, and eventually the memos directory to find a match
to the filename specified as the cd command argument.

SHELL

The SHELL variable is set to the full pathname of your login shell:

SHELL=/bin/sh

TERM

The TERM variable sets your terminal type:

TERM=ansi

TZ

The TZ variable sets the time zone that you are in:

TZ=EST

It is usually set by the system administrator.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 279

280 Chapter 9

9.3 MORE METACHARACTERS

As you remember from Chapter 8, metacharacters, or special characters, are interpreted and
processed in a special manner by the shell. So far, we have discussed the file substitution
and redirection metacharacters. This section explores some more of the metacharacters.

9.3.1 Executing the Commands: Using the Grave Accent Mark

The grave accent mark (`) before and after a command tell the shell to execute the en-
closed command and to insert the command’s output at the same point on the command
line. It is also called command substitution. The format is as follows:

`command`

where command is the name of the command to be executed.

The grave accent mark character is found on the key at the far left of the keyboard, just
below the [Esc] key.

The following command sequences show examples of command substitution:

$ echo The date and time is: `date` [Return] . . Command date is executed.

The date and time is: Mon Nov 28 14:14:14 EDT 2005

$_ . The prompt is back.

The shell scans the command line, finds the grave accent mark, and executes the
command date. It replaces the `date` on the command line with the output from the
date command and executes the echo command.

$ echo "List of filenames in your current directory:\n" `ls -C` > LIST [Return]
$ cat LIST [Return] Check what you have stored in

LIST.

List of filenames in your current directory:
memos myfirst REPORT
$_ . Ready for the next command.

9.3.2 Sequencing the Commands: Using the Semicolon

You can enter a series of commands on a command line, separated by semicolons. The
shell executes them in sequence from left to right.

To experiment with the semicolon metacharacter, try the following:

$ date ; pwd ; ls -C [Return] Three commands in sequence.
Mon Nov 28 14:14:14 EST 2005
/usr/david
memos myfirst REPORT

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 280

Exploring the Shell 281

$ ls -C > list ; date > today; pwd [Return]. . Three commands in sequence, with the
output of two commands redirected to
files.

/usr/david
$ cat list [Return]. Check content of list.
memos myfirst REPORT
$ cat today [Return] Check contents of today.
Mon Nov 28 14:14:14 EST 2001
$_ . Your favorite prompt sign appears.

9.3.3 Grouping the Commands: Using Parentheses

You can group commands together by placing them between a pair of parentheses. The
group of commands can be redirected as if they were a single command.

To experiment with the parentheses as metacharacters, try the following:

$ (ls -C ; date ; pwd) > outfile [Return]. . . Three commands in sequence, grouped
together, with the output redirected to
a file.

$ cat outfile [Return] Check contents of outfile.
memos myfirst REPORT
Mon Nov 28 14:14:14 EST 2005
/usr/david
$_ . And the prompt appears.

9.3.4 Background Processing: Using the Ampersand

UNIX is a multitasking system; it allows you to execute several programs concurrently.
Usually, you type a command and within a few seconds the output of the command is
displayed on the terminal. What if you run a command that takes minutes to execute? In
that case, you have to wait for the command to finish executing before you can proceed
with the next job. However, you do not need to wait during all those unproductive min-
utes. The shell metacharacter ampersand (&) provides you the means to run programs in
the background, as long as the background programs do not require input from the key-
board. If you enter a command followed by &, then that command is sent to the back-
ground for execution, and your terminal is free for the next command.

The following examples show applications of the ampersand metacharacter:

$ sort data > sorted & [Return]. Sort data and store the results in
sorted.

1348 . Process ID is displayed.
$ date [Return] The prompt is immediately displayed,

ready for the next command.

The output of the sort command is redirected to another file in order to prevent
sort from sending its output to the terminal while you are doing other tasks.

1. The background command process ID (PID) number identifies the background
process and can be used to terminate it or obtain its status.

2. You can specify more than one background command on a single command line.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 281

282 Chapter 9

$ date & pwd & ls -C & [Return] Create three background processes;
three PID numbers are displayed.

2215
2217
2216
$ echo "the foreground process" [Return] . . Run the echo command in foreground.
Mon Nov 28 14:14:14 EST 2005 Output from the background process

date is displayed.
the foreground process Output from the foreground process

echo is displayed.
/usr/david Output from the background process

pwd is displayed.
$_ . The prompt appears and then output

from the background process ls -C is
displayed.

memos myfirst REPORT

$_ . Ready for the next command.

By default, the output of the background commands is displayed on your terminal. Thus,
the output of the foreground program is interleaved with the output of the background
program and produces quite a confusing display. You can prevent the confusion by redi-
recting the output of background commands to files.

9.3.5 Chaining the Commands: Using the Pipe Operator

The shell lets you use the standard output of one process as standard input to another
process. You use the pipe metacharacter, |-, between the commands. The general format
is as follows:

command A command B

where command A output is introduced as input to command B. You can chain a
sequence of commands together, creating what is called a pipeline. Let’s look at some
examples that give you an appreciation of this very useful and flexible shell
capability.

Type ls -l|lp and press [Return] to send the output of the ls -l command to the printer.

To count the number of the files in your current directory, do the following:

$ ls -C [Return] Let’s see the files in your current
directory.

memos myfirst REPORT
$ ls -C > count [Return] . . Now save the list of your files in count.
$ wc -w count [Return] . . . Count the number of words. You have

three files in your current directory.
3
ls -C | wc -w [Return] . . . Use the pipe operator to obtain the

number of files in your current directory.
3

The output of the command ls -C (list of the files in your current directory) is
passed as input to the wc -w command.

AFZAMC09_0131194496.qxd 3/20/07 2:31 PM Page 282

Exploring the Shell 283

To save the number of users logged in the system in a file, do the following:

$ echo "Number of logged-in users:" `who |- wc -l` > outfile [Return]
$ cat outfile [Return]. Check what is stored in outfile.
Number of logged-in users: 20

In the previous command, the shell scans the command line, finds the grave accent
marks, executes the who |- wc -l commands, and passes the output of who to wc as input
data. If there are 20 users logged on the system, then the output is 20. The shell replaces
the `who |- wc -l` with 20. Then the shell executes the echo command that reads Number
of the logged in users: 20 and stores the output in outfile.

9.4 MORE UNIX UTILITIES

These utilities give you more flexibility and control in day-to-day usage of the system.
Also, some of the utilities are used in script file (program) examples in Chapters 12 and 13.

Under Linux, the --help and --version options are available for most of the com-
mands in this chapter. Please make a habit of using the --help option and read the help
page to familiarize yourself with the other available options. Regardless of your UNIX
system, you can always use the man command to obtain the full usage explanation for
any of these commands.

9.4.1 Timing a Delay: The sleep Command

The sleep command causes the process executing it to go to sleep for a specified number
of seconds. You can use sleep to delay the execution of a command for a period of time.
For example, if you type sleep 120 ; echo "I am awake!" and press [Return], the sleep
command is executed and causes a two-minute delay; then (after two minutes) the echo
command is executed, and the string argument I am awake! is displayed on the screen.

9.4.2 Displaying the PID: The ps Command

You can use the ps (process status) command to obtain the status of the active processes
in the system. When used without any options, it displays information about your active
processes. This information is arranged in four columns (see Figure 9.4) with the fol-
lowing column headings:

• PID: the process ID number

• TTY: your terminal number that controls the process

• TIME: time duration (in seconds) that your process is running

• COMMAND: the name of the command

Figure 9.4
The ps Command Output Format

$ ps
PID TTY TIME COMMAND
24059 tty11 0:05 sh
24259 tty11 0:02 ps
$_

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 283

284 Chapter 9

Figure 9.5
Output of the ps Command with -a and -f Options

$ PS -a -f
PID TTY TIME COMMAND
24059 tty11 0:05 sh
24259 tty11 0:02 ps
24059 tty12 0:05 ksh
24259 tty12 0:02 ps
$_

ps Options

Only two of the ps options are discussed in this book—the -a option and the -f option—
and they are summarized in Table 9.6.

Option Operation

-a Displays the status of all the active processes, not just the user’s.

-f Displays a full list of information, including the full command line.

Table 9.6
The ps Command Options

-a Option The -a option displays status information for all active processes. Without
this option, only the user’s active processes are displayed.

-f Option The -f option displays a full list of information including the complete
command line under the command column.

Figure 9.5 shows the output of the ps command using both -a and -f options.

To find the process number of a process running in the background, use the following
command sequence:

$ (sleep 120 ; echo "Had a nice long sleep") & [Return]
24259 The background process ID number.
$ ps [Return] Show your processes’ status.
PID TTY TIME COMMAND
24059 tty11 0:05 sh The login shell.
24070 tty11 0:00 sleep 120 . . The sleep command.
24150 tty11 0:00 echo The echo command.
24259 tty11 0:02 ps The ps command.
$ Had a nice long sleep Output from the background process.
$_ And the prompt appears.

The sleep command delays the execution of the echo command for two minutes. The &
at the end of the command line places the commands in the background.

Separate the commands with semicolons, and group them together by placing them
between parentheses.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 284

Exploring the Shell 285

9.4.3 Keep On Running: The nohup Command

When you log out, your background processes are terminated. The nohup command
causes your background processes to be immune to terminating signals. This is useful
when you want your programs to continue processing after you have logged out.

If you type nohup (sleep 120 ; echo "job done") & and press [Return] and then
log out, your command process will continue in the background. Where is the echo
command output displayed? Since you are logged out, the process is not associated with
any terminal, and the output is automatically saved in a file called nohup.out.

When you log in, you can check the contents of this file to determine the output of
your background processes. Alternatively, you can always redirect the output of your
background programs to specified files.

To experiment with the nohup command, try the following command sequence:

$ nohup (sleep 120 ; echo "job done") & [Return]
. Create a background job.

12235 Background job PID.
$ [Ctrl-d] Log out and wait a few minutes.
login: david [Return] Log in again.
password: Enter your password; it is not echoed

to the screen.
$ cat nohup.out [Return] . . . Check the contents of nohup.out file.
job done
$_ Ready for the next command.

9.4.4 Terminating a Process: The kill Command

Not all programs behave normally all the time. A program might be in an infinite loop or
be waiting for resources that are not available. Sometimes an unruly program locks your
keyboard, and then you are in real trouble! UNIX provides you with the kill command
to terminate the unwanted process (a process is a running program). The kill command
sends a signal to the specified process. The signal is an integer number indicating the
kill type (UNIX is a morbid language), and the process is identified by the process ID
number (PID). In order to use the kill command, you must know the PID of the process
that you intend to terminate.

Signals Signals range from 1 to 15 and are mostly implementation dependent. However,
15 is usually the default signal value and causes the receiving process to terminate.

Some processes protect themselves from the kill signals. You use the signal value 9
(sure kill) to terminate these.

You can use the kill command with the -l option to obtain a list of the signals in
your system:

$ kill -l [Return] Display list of the signals.

The following command sequences illustrate the use of the kill command and its
signals.

To issue a simple kill command, try the following:

$ (sleep 120 ; echo Hi) & [Return] . Create a background process.
22515. Process ID number.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 285

286 Chapter 9

$ ps [Return] Check the process’s status. It is there:
PDI TTY TIME COMMAND
24059 tty11 0:05 sh The login shell.
22515 tty11 0:00 sleep 120 . .The sleep command.
24259 tty11 0:02 ps The ps command.
$ kill 22515 [Return] Terminate the background process.
job terminated
Hi Output of the echo command.
$ ps [Return] Check again. The background process

is terminated.
PDI TTY TIME COMMAND
24059 tty11 0:05 sh The login shell.
24259 tty11 0:02 ps The ps command.
$_ And the prompt.

No signal number is specified. The default is signal number 15, which causes the
receiving process to terminate.

To make sure an unruly process has been terminated, try the following:

$ (sleep 120 ; echo Hi) & [Return] . . . Create a background process.
22515 Process ID number.
$ kill 22515 [Return] A simple kill.
$ ps [Return] Check the process’s status. It is still there:
PID TTY TIME COMMAND
24059 tty11 0:05 sh The login shell.
22515 tty11 0:00 sleep 120 The sleep command.
24259 tty11 0:02 ps The ps command.
$ kill -9 22515 [Return] A sure kill; signal value 9 is specified.
$ ps [Return] Check again. Sure enough, the background

process is terminated.
PID TTY TIME COMMAND
24059 tty11 0:05 sh The login shell.
24259 tty11 0:02 ps The ps command.

You can terminate only your own processes. The system administrator is autho-
rized to terminate anybody’s processes.

To terminate all of your processes, do the following:

$ (sleep 120 ; echo "sleep tight" ; sleep 120) & [Return]
11234 Sleep PID.
$ kill -9 0 [Return] You are logged out.

The PID 0 (zero) causes all processes associated with your shell to be terminated. That
includes your login shell itself. Accordingly, when you use the 0 signal, you are logged out.

9.4.5 Splitting the Output: The tee Command

Sometimes you will want to look at the output of a program on the screen and also store
the output in a file for later reference or obtain a hard copy of the output on the printer.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 286

Exploring the Shell 287

You can always do that this way: First run the command and view the output on the screen;
then, using the redirection operator, save the output in a file or send it to the printer.

Alternatively, you can use the tee command to get the same result in less time and
with less typing. The tee command is usually used with the pipe operator. For example,
when you type sort phone.list | tee phone.sort and press [Return], the pipe operator
passes the output of the sort command (the sorted phone.list) to tee. Then tee dis-
plays it on the terminal and also saves it in phone.sort, the specified file.

This is an indispensable command when you want to capture the user/program
dialog while running an interactive program.

Try viewing the contents of your current directory and saving the output in a file as follows:

$ ls -C | tee dir.list [Return] . Display the current directory file-
names and also save the output in
dir.list.

memos myfile REPORT
$ cat dir.list [Return] Check the contents of dir.list.
memos myfile REPORT
$_ The prompt appears.

The output of ls -C is piped to tee. The tee command shows its input on the
screen (displays the input on the default output device) and also saves it in a file
called dir.list.

tee Options

Table 9.7 summarizes the two options of the tee command.

Option Operation

-a Appends output to a file without overwriting an existing file.

-i Ignores interrupts; does not respond to the interrupt signals.

Table 9.7
The tee Command Options

To view the list of the users currently on the system and save the list in an existing file called
dir.list, type who |- tee -a dir.list and press [Return]. If dir.list exists, then the
output of the who command is added to the end of the file. If dir.list does not exist, it is
created.

Linux Alternative Options for the tee Command

Use the Linux alternative options for the tee command, as suggested in the following
command lines:

$ tee --version [Return] Display version information.
$ tee --help [Return] Display the help page.

Read the help page and familiarize yourself with other options available for the tee
command.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 287

9.4.6 File Searching: The grep Command

You can use the grep command to search for a specified pattern in a file or list of files.
The pattern used by the grep command is called regular expression, hence the strange
name of the command (Global Regular Expression Print).

grep is a file searching and selection command. You specify the filename and the
pattern to be looked for in the file, and when grep finds a match, the line containing the
specified pattern is displayed on the terminal. If no file is specified, the system searches
through the input from the standard input device.

Look for the word UNIX in myfile.

$ cat myfile [Return]. Check contents of myfile.
I wish there were a better way to learn
UNIX. Something like having a daily UNIX pill.
$ grep UNIX myfile [Return]. . . Find the lines that contain the word

UNIX.
UNIX. Something like having a daily UNIX pill.

You can specify more than one file or use file substitution (wild cards) in file-
names.

Look for the string "#include <private.h>" in all the C source files:

❏ Type grep "#include <private.h>" *.c and press [Return] to look for the pattern in
all files with extension c in the current directory.

The pattern is a string with embedded spaces and metacharacters, so it is enclosed
in quotation marks.

If you specify more than one file to be searched, grep displays the name of the file
preceding each line of output.

grep Options

If you do not specify any option, grep displays lines in the specified file(s) that contain
a match for the specified pattern. The options give you more control over the output and
the way the pattern search is done. Table 9.8 summarizes the grep options.

Assuming you have the following three files in your current directory, the com-
mand sequences show examples of grep using options. You can create these files using
the vi editor or the cat command. To get organized, create these files under the Chap-
ter9 directory.

FILE1 FILE2 FILE3

UNIX unix Unix system
11122 11122 11122
BBAA CCAA AADD
unix system

Search for the word UNIX:

$ grep UNIX FILE1 [Return] . . . Search for the word UNIX in FILE1.
UNIX
$_ And the prompt appears.

grep matches the exact pattern (whether in uppercase or lowercase letters), so it
finds the word UNIX and not unix or Unix.

288 Chapter 9

AFZAMC09_0131194496.qxd 3/19/07 2:05 PM Page 288

Exploring the Shell 289

Specify more than one file as argument and use the -i option:

$ grep -i UNIX FILE? [Return] . Use the -i option.
FILE1: UNIX
FILE1: unix system
FILE2: unix
FILE3: Unix system
$_ Your prompt appears.

The -i option tries to match the specified letter pattern, regardless of case. Thus, the
specified pattern UNIX matches unix, Unix, and so on.

The name of the file is displayed when you specify more than one file as the argument.

Show the lines that do not contain the word UNIX:

$ grep -vi UNIX FILE1 [Return] . Use options -i and -v.
11122
BBAA
$_ The prompt appears.

Display how many lines in each file do not contain 11:

$ grep -vc 11 FILE? [Return] . . Show a count of the lines in FILE1,
FILE2, and FILE3 that do not
contain 11.

FILE1:3
FILE2:2
FILE3:2
$_ The prompt appears.

Find out whether user david is logged in:

$ who |- grep –i david [Return] . Use grep with the pipe operator.
$_ The prompt appears.

Option
Operation

UNIX Linux Alternative

-c --count Displays only the count of the matching lines in
each file that contains the match.

-i --ignore-case Ignores the distinction between lower- and up-
percase letters in the search pattern.

-l --files-with-matches Displays the names of the files with one or more
matching lines, not the lines themselves.

-n --line-number Displays a line number before each output line.

-v --revert-match Displays only those lines that do not match the
pattern.

--help Displays help page and exits.

--version Displays version information and exits.

Table 9.8
The grep Command Options

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 289

The pipe makes the output of the who command the standard input to grep. Thus,
grep scans the output of who for lines containing the pattern david. In this example,
grep did not produce any output. Thus david is not in the system.

Linux Alternative Options for the grep Command

Use the Linux alternative options for the grep command, as suggested in the following
command lines:

$ grep --ignore-case UNIX file? [Return] Same as grep -i UNIX
file?.

$ grep --revert-match --ignore-case UNIX file? [Return] . Same as grep -vi UNIX
file?.

$ grep --revert-match --count file? [Return] Same as grep -vc 11
file?.

$ grep --version [Return] Display version
information.

$ grep --help [Return] Display the help page.

9.4.7 Sorting Text Files: The sort Command

You can use the sort command to sort the contents of a file into alphabetical or numer-
ical order. By default, the output is displayed on your terminal, but you can specify a
filename as the argument or redirect the output to a file.

The sort command sorts the specified file on a line-by-line basis. If the first char-
acters on two lines are the same, it compares the second characters to determine the
order of the sort. If the second characters are the same, it compares the third characters,
and this process goes on until two characters differ or the line ends. If two lines are iden-
tical, then it does not matter which one is placed first.

This command sorts files alphabetically, but the order of the sort might be different from
one computer to another, depending on the computer’s code set. The most commonly
used code set in UNIX systems is ASCII.

Many options can be used to control the sort order, but let’s start with a simple ex-
ample to explore the sort basic functions.

Suppose you have a file called junk in your working directory. Figure 9.6 shows
the contents of junk. Figure 9.7 shows the output of the sort command, after sorting the
contents of junk.

290 Chapter 9

Figure 9.6
The junk File

This is line one
this is line two
this is a line starting with a space character
4: this is a line starting with a number
11: this is another line starting with a number
End of junk

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 290

Exploring the Shell 291

1. ASCII values for nonalphanumeric characters (space, dash, backslash, etc.) are
less than those for alphanumeric characters. Thus, in Figure 9.7, the line starting
with a blank space is placed at the top of the file.

2. Uppercase letters are sorted before lowercase letters. Thus, in our example, This
appears before this.

3. Numbers are sorted by the first digit. Thus 11 appears before 4.

sort Options

The sort example showed that the result of the sort command, the sorted output, is
probably not what you would consider sorted. The sort command options give you
freedom to sort files in a variety of orders. Table 9.9 summarizes some of the more
useful options.

Figure 9.7
The Sorted junk File

$ sort junk
this is a line starting with a space character
11: this is another line starting with a number
4: this is a line starting with a number
End of junk
This is line one
this is line two
$_

Option Operation

-b Ignores leading blanks.

-d Uses dictionary order for sorting. Ignores punctuation and control characters.

-f Ignores the distinction between lowercase and uppercase letters.

-n Numbers are sorted by their arithmetic values.

-o Stores the output in the specified file.

-r Reverses the order of the sort from ascending to descending order.

Table 9.9
The sort Command Options

-b Option The -b option causes sort to ignore the leading blanks (tabs and space char-
acters). These characters are usually delimiters (field separators) in your file, and when
you use this option, sort does not consider them in sort comparison.

-d Option The -d option, used for dictionary sorting, uses only letters, digits, and blanks
(spaces and tabs) in the sort comparison. It ignores the punctuation and control characters.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 291

-f Option The -f option considers all lowercase characters as uppercase characters; it
ignores the distinction between them in sort comparison.

-n Option The -n option causes numbers to be sorted by their arithmetic values rather
than by their first digit. This includes ascribing minus signs and decimal points to their
arithmetic values.

-o Option The -o option places the output in a specified file instead of the standard output.

-r Option The -r option reverses the order of the sort, such as sorting from z to a instead
of a to z.

Using the junk file again, let’s see the effects of the options on the sorted output:

$ sort -fn junk [Return] Sort junk using the
-f and -n options.

this is a line starting with a space character
End of junk
This is line one
this is line two
4: this is a line starting with a number
11: this is another line starting with a number
$_ The prompt appears.
$ sort -f -r -o sorted junk [Return] . Sort junk using the

-f, -r, and -o options
and save it in sorted.

$ cat sorted [Return] Display sorted.
this is line two
This is line one
End of junk
4: this is a line starting with a number
11: this is another line starting with a number
this is a line starting with a space character
$_ The prompt appears.

A filename (sorted) is specified with the -o option. Thus the output is saved in
sorted, and cat is used to display the contents of sorted.

9.4.8 Sorting on a Specified Field

Real files seldom contain what is in the example file junk. Usually files you want to
sort contain lists of people, items, addresses, phone numbers, mailing lists, and so on.
By default, sort sorts on a line-by-line basis, but you probably will want to sort files by
a particular field, such as last name or area code.

You can direct the sort command to look at a specified field for sort comparison,
provided that the file is set up accordingly. You specify the desired field by a number
that indicates how many fields sort must skip to get to the field by which you want the
file sorted. You set up your file by breaking each line into fields. No extra effort is
needed, because in most list files each line is already divided into fields.

Create a file called phone.list, which contains a list of people and their phone num-
bers, such as the example in Figure 9.8, and then we will use the file to explore the other
capabilities of the sort command.

292 Chapter 9

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 292

Exploring the Shell 293

Each line in phone.list consists of four fields, and the fields are separated by
space or tab characters. Thus, in line one, David is field 1, Brown is field 2, and so on.

You can create the junk file using the vi editor or the cat command.
In sorting phone.list, no particular field is specified. Thus, the list is sorted on

a line-by-line basis.
You may not want to sort the file by the first names. To sort the file in order of the

last names (field 2), you must instruct sort to skip one field (first name) before it starts
the sorting process. You specify the number of fields sort is to skip as part of the com-
mand argument.

To sort phone.list by the last names (field 2), type sort +1 phone.list and press [Re-
turn]. Figure 9.9 shows the result of sorting the file by the last names.

The +1 argument indicates that sort must skip the first field (first name) before
starting the sort process.

Figure 9.8
Original phone.list File and Sorted phone.list File

$ cat phone.list
David Brown (333) 111-1111
Emma Redd (222) 222-2222
Tom Swanson (111) 333-3333
Jim Schmid (444) 444-4444
Bridget Erwin (666) 555-5555
Mary Moffett (555) 666-6666
Amir Afzal (777) 777-7777

$ sort phone.list
Amir Afzal (777) 777-7777
Bridget Erwin (666) 555-5555
David Brown (333) 111-1111
Emma Redd (222) 222-2222
Jim Schmid (444) 444-4444
Mary Moffett (555) 666-6666
Tom Swanson (111) 333-3333
$

Figure 9.9
Sorted (by Last Names) phone.list File

$ sort +1 phone.list
Amir Afzal (777) 777-7777
David Brown (333) 111-1111
Bridget Erwin (666) 555-5555
Mary Moffett (555) 666-6666
Emma Redd (222) 222-2222
Jim Schmid (444) 444-4444
Tom Swanson (111) 333-3333
$_

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 293

If you specify +2, then sort skips the first and second fields and starts from the third field
(in this case, area code).

To sort phone.list by the third field, ignoring blanks, type sort -b +2 phone.list and
press [Return]. Figure 9.10 shows the results.

294 Chapter 9

Figure 9.10
Sorted (by Area Code) phone.list File

$ sort -b +2 phone.list
Tom Swanson (111) 333-3333
Emma Redd (222) 222-2222
David Brown (333) 111-1111
Jim Schmid (444) 444-4444
Mary Moffett (555) 666-6666
Bridget Erwin (666) 555-5555
Amir Afzal (777) 777-7777
$_

Figure 9.11
An Example of a Simple Profile File

$ cat /etc/profile
date
cat /etc/mtd
news
mesg n
stty erase ^H
export erase
$_

9.5 STARTUP FILES

When you log in, the login program verifies your user ID and password against the list
of authorized users stored in the password file. If the login attempt is successful, the
login program brings your HOME directory up on the system, sets up your user ID and
group ID, and finally starts your shell. Before displaying its prompt sign, the shell
checks for two special files. These two files are called profile files, and they contain
shell scripts (programs) that the shell can execute.

9.5.1 System Profile

The system profile file is stored in /etc/profile. The first thing your shell does is ex-
ecute this file. It typically contains commands that display the message of the day, set up
systemwide environment variables, and so on. This file is usually created and main-
tained by the system administrator, and only the superusers can modify it.

Figure 9.11 shows an example of a system profile file. The shell executes the com-
mands in this file, so it displays the current date and time, then the message of the day
(stored in the /etc/motd file), and, finally, the recent news items.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 294

Exploring the Shell 295

1. Usually, the system profile file is complex and incorporates some system admin-
istration commands and requires some programming.

2. You can look at your system profile file by typing cat /etc/profile [Return]. Usu-
ally, this file is a read only file. You can read it, but cannot edit it.

9.5.2 User Profile

Each time you log in, the shell checks for a startup file called .profile in your HOME
directory. If the file is found, then the shell commands in .profile are executed.
Whether or not you have a .profile file in your HOME directory, the shell continues its
process and displays its prompt.

Figure 9.12 shows an example of a .profile file. Usually you have a .profile
file, courtesy of the system administrator. You can modify the existing .profile file or
create a new one using the cat or vi utilities.

1. The echo command displays its argument, welcome to my super Duper UNIX.
2. The standard variable TERM (terminal type) is set to ansi.
3. The standard variable PSI (primary prompt sign) is set to David Brown.
4. The export command makes the variables TERM and PSI available (exported to all

programs).
5. The calendar and du commands are explained in Chapter 14.

1. The name of the file is .profile. The filename starts with a dot; it is a hidden file.

2. The .profile file must be located in your HOME directory. This is the only place
that the shell checks.

3. The .profile file is one of the startup files you can use to customize your UNIX
environment. Other startup files exist in UNIX, such as the .exrc file that cus-
tomizes the vi editor (discussed in Chapter 6) and the .mailrc file that customizes
your mail environment (discussed in Chapter 10).

4. You do not have to have a .profile file in your HOME directory. Your system works
without it. However, your shell usually inherits the setup from the /etc/profile file.

More on the export Command

The export command makes a list of shell variables available to subshells. When you log
in, the standard variables (and variables you may have defined) are known to your login
shell. However, if you run a new shell, these variables are not known to the new shell.

Figure 9.12
An Example of the .profile File

$ cat .profile
echo "welcome to my super Duper UNIX"
TERM=ansi
PS1="David Brown:"
export TERM PS1

calendar
du

$_

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 295

For example, if you want to make the variables VAR1 and VAR2 available to the
new shell, you specify the variable names as arguments for the export command. To see
what variables are already exported, type export without any arguments.

Make variables available to other shell programs:

$ export VAR1 VAR2 [Return] . . Export VAR1 and VAR2.
$ export [Return] Check which variables are exported.
VAR1
VAR2
$_ List of variables, then the prompt

appears.

9.6 THE KORN AND BOURNE AGAIN SHELLS

Chapter 3 introduced the Korn shell (ksh) and Bourne Again shell (bash). Now we ex-
plain a few of the features that differ from those of the standard shell (sh). Once more, it
is strongly recommended to use the man command and learn more about specific fea-
tures of each of these shells. That is as easy as typing one of the following commands:

$ man sh [Return] . . . Display manual pages for standard shell.
$ man ksh [Return] . . Display manual pages for Korn shell.
$ man bash [Return] . . Display manual pages for Bourne Again shell.

9.6.1 The Shell Variables

The Korn shell (ksh) and Bourne Again shell (bash) uses many of the same variables used by
the standard shell (sh). You can define variables, redefine variables, get their values, and in
general manipulate variables to customize your environment just like the sh shell. The fol-
lowing are some important variables that are used by the Korn shell and Bourne Again shell:

ENV The ENV variable is set to the absolute pathname of the environment file that is
read by ksh at startup. In the following example, ENV is set to the pathname ($HOME/
mine/my_env) that tells ksh where to find the environment file:

ENV=$HOME/mine/my_env

HISTSIZE The HISTSIZE variable is set to the number of commands you intend to keep
in your commands history list file. The default size is 128, but you can set it to any
number of entries you wish. For example, the following command line sets the number of
entries in your history list file to 100:

HISTSIZE=100

TMOUT The TMOUT variable is set to the number of seconds you want the system to
wait before timing out if you do not type a command. The shell timeout logs you off if
you do not provide any input within the given number of seconds. For example, the fol-
lowing command line sets timeout to 60 seconds:

TMOUT=60

296 Chapter 9

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 296

Exploring the Shell 297

VISUAL The VISUAL variable is used with command editing. If it is set to vi, shell gives
you vi-style editing capabilities on your command lines. For example, the following com-
mand line sets the command line editing to the vi editor:

VISUAL=vi

Use the set command, just like in the sh shell, to see the current shell variables and their
values.

9.6.2 The Shell Options

The Korn and Bourne Again shells provide a number of options that turn some of their
special features on or off. To turn an option on, you use the set command with -o (op-
tion) followed by the option name. To list your options, simply type set -o.

noclobber The noclobber option prevents you from clobbering your files; that is, it
prevents you from overwriting an existing file if you redirect output from a com-
mand. This can save you from losing important data by inadvertently overwriting
your files.

Suppose a file called xyz exists in your current directory. The following command
sequences demonstrate the use of the noclobber option.

$ set -o noclobber [Return] . . Set the noclobber option.
$ who > xyz Redirect the output to xyz.
xyz: file exists Warning message appears.
$_ The prompt appears.

If you really want to overwrite an existing file, ksh will oblige. Type a |- pipe sym-
bol after the redirection operator.

$ who > | xyz [Return] The xyz file is overwritten.
$_ The prompt appears.

To turn off the noclobber option, you use the set command with the +o option. For
example,

$ set +o noclobber [Return] . . The noclobber option is turned off.
$_ The prompt appears.

ignoreeof The ignoreeof option prevents you from accidentally logging yourself off by
typing [Ctrl-d]. (You already know that [Ctrl-d] typed at the beginning of the command
line terminates your shell, and logs you off from the system.)

If you set this option, you should use the exit command to log off.

$ set -o ignoreeof [Return] Turn on the ignoreeof option.
$ [Ctrl-d] [Ctrl-d] is ignored. You are

not logged off.
$ set +o ignoreeof [Return] Turn off the ignoreeof

option.
$_ The prompt appears.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 297

9.6.3 Command Line Editing

The Korn shell lets you edit your command line, or any of the commands in your
history file, using the special line version of the vi editor. This feature enhances the
use of the history file. It enables you to correct and modify the previous commands
and makes it easier to search for a specific command in your commands history file.
In short, it is good to know this command.

Turning on the Command Line Editing Option

You can turn on the command line editing option by using the set command or by
setting the EDITOR or VISUAL variables to the pathname of your editor command. The
effect of any of the following three commands is the same:

$ set -o vi [Return] Turns on the command line
editing option.

$ EDITOR=/usr/bin/vi [Return] Turns on the command line
editing option.

$ VISUAL=/usr/bin/vi [Return] Turns on the command line
editing option.

Using the vi-Style Command Line Editor

Assuming that you have turned on the command line editing feature, and that it is set to
the vi editor, this section describes how you can use this very useful feature.

The ksh command line editor works on your current command line and your his-
tory file (explained later in this chapter). When you are entering a command, you are
in the vi input (text) mode. This is opposite of the vi editor initial mode when you edit a
file. You press the [Return] key to execute your command. As in the vi editor, you can
switch to command mode at any time by pressing the [Esc] key. While in the command
mode, the vi editor commands are available to change, delete, and correct your
command line.

Now, type a command line and do not press the [Return] key. Instead, press the
[Esc] key. This puts you in vi command mode.

$ This is a test to use the command line editing [Esc]

Let’s say you forgot to type the echo command at the beginning of this command
line. You can use vi editor keys to get to the beginning of the line. In this case, you type $0
and the cursor will go to the letter T. You type i (insert) to return to vi text mode and so on.

1. The command line vi editor is a special built-in vi editor.

2. You can use the j (down) and k (up) keys to access the commands from the
history file.

3. You can use the l (right) and h (left) keys to move the cursor left or right on the com-
mand line.

Remember, vi is in the input mode when you are entering a command. You must
press the [Esc] key to change to the command mode before you can use the vi com-
mand keys such as k or j.

Table 9.10 lists some of the available commands with the built-in vi editor.

298 Chapter 9

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 298

Exploring the Shell 299

You can also invoke the real vi editor to use all the commands and features of it to edit
the command line.

$ cp xyz xyz.bak . . . Suppose you want to modify this command line.
[Esc] Press the [Esc] key to get into the command mode.
v Press the v key to invoke the real vi editor.

Now, you are using the vi editor with a file consisting of one line, your current com-
mand line. You can use vi to edit your command or add new commands. When you leave
vi, the Korn shell will execute your commands.

You can use the vi editor in this manner to create a multiline sequence of com-
mands to be executed.

9.6.4 The alias Command

You can use the alias command for shortening the names of frequently used commands
or changing command names to names easier for you to remember. For example:

$ alias del=rm [Return] Now del is the alias for the rm
command.

$ del xyz Delete the file called xyz.

1. Now you can type del instead of the rm command.

2. The rm command is not changed and you can still use it.

3. Aliases are defined the same way you define variables using the = sign.

Set ll (ell-ell, for long list) as an alias for the command ls -al. Then you can type ll to get
the listing of your current directory in long format.

$ alias ll="ls -al" [Return] Now ll is an alias for the ls -al
command.

$_ The prompt appears.

Key Operation

h and 1 Moves cursor left and right one character on the command line.

k and j Moves up and down one entry in the history list.

b and w Moves cursor left and right one word on the command line.

$ Moves cursor to the end of the line.

x Deletes the current character.

dw Deletes the current word.

I and i Inserts text.

A and a Appends text.

R and r Replaces text.

Table 9.10
The Built-In vi Editor Commands

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 299

1. As with the shell variables, there must be no spaces on either side of the = sign.

2. Also, if the assignment text includes spaces (like the above example, a com-
mand name and options), it must be enclosed in quotation marks.

You can use the alias command with no argument to display the aliases that are set in
your system:

$ alias [Return] Display a list of alias names.
alias ll ls -al All alias names for your system are

displayed.
$_ Back to the shell prompt.

You can use the unalias command to remove an alias name.

$ unalias ll [Return] Remove alias name ll.
$ alias [Return] See if it is removed.
$_ It is removed. The prompt is back.

9.6.5 Commands History List: The history Command

The Korn and Bourne Again shells have a commands history feature that keeps a list of
all the commands you enter during your sessions. Using this very popular feature, you
are able to list your previous commands, search for a particular command that you have
issued, or easily edit and redo your previous commands.

The history command is one of the utilities that works on the commands history
list. The history command or sometimes just letter h (usually an alias for the fc com-
mand) is used. If the history command is not working in your system (ksh or bash), try
the fc command and its options or create your own alias for the history command. The
fc command is explained later in this chapter and some of the examples will show you
how to create aliases for the history, and fc commands.

To display the last few commands you have entered, do the following:

$ history [Return] Issue the command.
101 Who am i
102 ls -l
103 pwd
104 vi myfirst
105 rm myfirst
106 history
$_ The prompt appears.

1. The preceding example displays six lines of commands. The number of command
lines that ksh or bash keep track of is controlled by the HISTSIZE variable.

2. The last item on the list is the last command you issued, and your earlier commands
are higher on the list.

The default history file is called .sh_history for ksh and .bash.history
for bash, and is created by the system in your HOME directory. You may use another file-
name by setting the variable HISTFILE to the pathname of your desired history file-
name. For example:

HISTFILE=$HOME/history/my_hist

300 Chapter 9

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 300

Exploring the Shell 301

Restarting the History File

The history of your commands is kept from one session to another and consequently
the entry numbers will become large and cumbersome to retype or refer to. If you want to
restart your history file, remove your .sh_history or file from your HOME direc-
tory. The next time you log in, the system creates a new .sh_history or .bash.his-
tory file and the entries start from the first command you issue in that session.

Practicing the History Command

You can display the commands history list by starting it from a specified command in
the list:

$ history 104 [Return] Start from command number 104.
104 vi myfirst
105 cat myfirst
106 history
107 history 104

$ history vi [Return] Start from first occurrence of vi in
the list.

104 vi myfirst
105 cat myfirst
106 history
107 history 104
108 history vi

$_

Use the line editor to edit a command from the commands history list:

$ set -o vi
$ history [Return] List the commands.

104 vi myfirst
105 cat myfirst
106 history
107 history 104
108 history vi
109 history

$_ Prompt is back.
[Esc] Press the [Esc] key.
j Press the letter j to get to go one

command up on the list.
history vi
G Show the last command in the

history file.
history
105G Show the 105th command in

the history file.
cat myfirst
[Return] Execute the command.

Your history file probably will be different from the examples shown here. Your
history file does not remain the same, and each command that you type is added to
the list of commands already in the history file. In the following examples no specific
history file is assumed.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 301

302 Chapter 9

9.6.6 Redoing Commands (ksh): The r (redo) Command

You can use the r (redo) command to redo the last command you have issued. For
example, suppose your last command is rm myfirst and you type the following:

$ r [Return] Repeats the last command.
rm myfirst Your last command is repeated.

In this case, your last command is executed. The following command sequences
show the r (redo) command options and features.

You can repeat other commands from the history file by adding the specific command
name as an argument to the r command:

$ r vi [Return] Repeat vi from the history list.
vi myfirst The first occurrence of the vi command in the

history is executed.

You can repeat any command from the history file by indicating the specific com-
mand entry number:

$ r 102 [Return] Repeat command number 102 from the
history list.

ls -l The specified command is executed.

You can also repeat commands from the history file by indicating the number of
entries you want to go back in the list.

$ r -3 [Return] Go back three entries in the history list.
ls -l The specified command is executed.

9.6.7 Commands History List: The fc Command

The fc command provides capability to list, edit, and reexecute commands that were
previously entered and were saved in the commands history list. For example, the fol-
lowing command line lists the previous commands from the history file:

$ fc -l [Return] Same as the history command.

Figure 9.13 shows the output of the fc command. However, your command
history list almost certainly would be different.

Figure 9.13
Output of the fc Command

$ fc -l
101 Who a m I
102 ls -l
103 pwd
104 vi myfirst
105 cat myfirst
106 history
107 fc -l
$_

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 302

Exploring the Shell 303

1. In the commands history list, each command is referenced by a number, and the
list usually starts from 1.

2. When the number of commands reaches the value in HISTSIZE (default is 128), the
shell may wrap the numbers, starting the next command with 1.

3. If the HISTSIZE variable is set when the shell is invoked, then this file is used to
store the commands history.

4. If the HISTSIZE variable is set when the shell is invoked, then this number dictates
the number of entries into the commands history. The default is 128.

fc Options

The fc command is rich with options that provide you with many possibilities for
editing and re-executing previous commands. Table 9.11 lists few of these options.
Please use the man command to see a detailed list of the options.

Option Operation

-l Lists the commands, with each command preceded by the command number.

-n Suppresses command numbers when listing with -l.

-r Reverses the order of the commands listed with -l.

-s Re-executes the command without invoking an editor.

Table 9.11
The fc Command Options

The following examples show the usage of the fc command options:

$ fc -l [Return]. Display the commands history list.
$ fc -l -n [Return] Display the commands history list

without the command numbers.
$ fc -l -r [Return] Display the command history list in

reverse order.
$ fc -s [Return]. Execute the previous command.
$ fc -s 107 [Return]. Execute command number 107 from the

history list.
$ fc -s vi [Return] Execute the first occurrence of vi in the

history list.
$ fc -s c [Return]. Execute the first occurrence of the

command starting with the letter c.

Creating Aliases for the fc Command

The following command lines are suggestions to create aliases for the fc command. In
case your system does not provide the history command, the following two commands
creates aliases that behave like the history command:

$ alias r='fc -e -' [Return]. . . . Same as the r command.
$ alias history='fc -l' [Return]. . Same as the history command.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 303

304 Chapter 9

You can choose any names you want for the aliases and not necessarly the ones that
duplicate the history command. For example:

$ alias hr='fc -e -' [Return] . . . Same as the history r
command.

$ alias h='fc -l' [Return]. Same as the history
command.

Now you can type a command such as:

$ h [Return]. Same as fc -l.
$ r 107 [Return]. Same as fc -s 107.

You can remove any of the aliases by using the unalias command.

9.6.8 Login and Startup

Like the standard shell (sh), the Korn shell (ksh) or Bourne Again shell (bash) reads the
.profile file in your HOME directory when you log in. It executes the commands you
want to run at login time, and initializes the variables that will be in effect for your login
session. The .profile file typically includes commands such as date, who, and
calendar, which provide information at login, terminal settings, and variable definitions
that you want to export to the environment.

In addition to the .profile file (in your HOME directory), ksh or bash also
reads your environment file. The environment file does not have a predefined
name or location that ksh or bash looks for. You define its name and location
with the ENV variable in your .profile file. For example, if your .profile file
contains the line

ENV=$HOME/mine/my_env

shell will look for your environment file in the file named my_env in a subdirectory
called mine in your HOME directory. Although it is not necessary, it is a good prac-
tice to call your environment file .kshrc or .bashrc (a hidden file) in your HOME
directory.

ENV=$HOME/.kshrc

or

ENV=$HOME/.bashrc

1. If your login shell is ksh you can specify all the shell variables and options in the
.profile file in your HOME directory.

2. If your login shell is not ksh or bash, define all the specific shell variables
an options in a file specified by the ENV variable. For the system to read your
environment file, you must have the ENV variable defined in your .profile
file.

Figure 9.14 shows (using the cat command) an example of an environment file
called .kshrc. This .kshrc file contains commands to set the vi-style command line
editing, to turn on the noclobber and ignoreeof options, to set the history file size
to 10 entries, and to set the TMOUT option to 600. You can create a similar file using
the vi editor.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 304

Exploring the Shell 305

9.6.9 Adding Event Numbers to the Prompt

Sometimes, it is useful to know the event number the shell gives to each command you
enter. You can change your prompt to include this information. For example, if you type

PS1="!$"

the exclamation mark (!) will tell the system to read the last event number from your
history file, add one to it, and display it. The prompt will continue displaying the
event numbers as you type your commands.

Change your prompt to display the event numbers:

$ PS1="! $" [Return] Change the prompt.
6 $_ The new prompt appears.

The new prompt indicates that the next command you enter will have the event
number 6.

$ PS1="[!] $ "[Return] Change the prompt this way.
[6] $_ The new prompt appears.

By adding your prompt definition to the .kshrc file, you can make it appear each time
you log in.

9.6.10 Formatting the Prompt Variable (bash)

In addition to displaying static character strings in the prompts, bash provides a list of
predefined special characters that can be used in formatting the prompt. These special
characters place things such as the current time into the prompt. Table 9.12 lists some of
these special character codes.

The following command lines changes the prompt display using the prompt special
character codes:

$ PS1="[\!]$ " [Return] Display the command number.
[72]$_

Figure 9.14
An Example of an Environment File Called .kshrc

$ cat .kshrc
set -o vi
set -o noclobber
set -o ignoreeof
HISTSIZE=10
TMOUT=600

$_

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 305

306 Chapter 9

$ PS1="[\d]$ " [Return] Display the current date between
brackets.

[Thu Nov 2]$_

$ PS1="\d $ " [Return] Display the current date.
Thu Nov 2 $_
$ PS1="[\!][\t]$ " [Return] . . Display the command number and

current time.
[79][20:33:41]$_

Note that the [] are not part of the command syntax or special codes. They are used here
to make the prompt look nicer and more readable.

$PS1="\s$" [Return] Display the shell name.
bash$_

9.7 UNIX PROCESS MANAGEMENT

In Chapter 3, we introduced the process of booting the system. Now let’s go deeper into
the UNIX internal process and see how it manages the running of programs.

In this chapter, you have encountered the word process. The execution of a pro-
gram is called a process: you call it a program, but when your program is loaded into the
memory for execution, UNIX calls it a process.

To keep track of the processes in the system, UNIX creates and maintains a
process table for each process in the system. Among other things, the process table con-
tains the following information:

• Process number

• Process status (ready/waiting)

• Event number that the process is waiting for

• System data area address

A process is created by a system routine called fork. A running process calls fork,
and in response UNIX duplicates that process, creating two identical copies. The
process that calls the fork routine is called the parent, and the copy of the parent created
by fork is called the child. UNIX differentiates between the parent and the child by giv-
ing them different process IDs (PIDs).

Character Meaning

\! Displays the history number of the current command.

\$ Displays a $ in the prompt unless the user directory is root. When user is
root, it displays a #.

\d Displays the current date.

\s Displays the name of the shell that is running.

\t Displays the current time.

Table 9.12
Special Character Codes to Format the Prompt

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 306

Exploring the Shell 307

The following steps are involved in managing a process:

• The parent calls fork, thus starting the process.

• Calling fork is a system call. UNIX gets control, and the address of the calling
process is recorded in the process table’s system data area. This is what is called
the return address, so the parent process knows where to start later when it gets
control again.

• fork duplicates (copies) the process and returns control to the parent.

• The parent receives the PID of the child, a positive integer number, and the
child receives the return code zero. (A negative code indicates an error.)

• The parent receiving a positive PID calls another system routine called wait and
goes to sleep. Now the parent is waiting for the child process to finish (in UNIX
terminology, waiting for the child to die).

• The child process gets control and begins to execute. It checks the return code;
because the return code is zero, the child process calls another system routine
called exec. The exec routine responds by overlaying the child process area
with the new program.

• The new program’s first instruction is executed. When the new program gets to
the end of the instruction, it calls yet another system routine called exit, and the
child process dies. The death of the child awakens the parent, and the parent
process takes over.

This process is depicted in Figures 9.15 through 9.18. An example is in order to
shed some light on this apparently confusing process. Imagine that the shell (the sh pro-
gram) is running, and you type a command, say ls. Let’s explore the steps UNIX takes
to run your command.

The shell is the parent process, and when created, the ls program becomes the
child process. The parent process (shell) calls fork. The fork routine duplicates the par-
ent (shell) process, and if the creation of the child process is successful, assigns the child
process a PID and adds it to the system process table. Next, the parent receives the child
PID, the child receives code zero, and control is returned to the parent. The shell calls
the wait routine and goes to the wait state (goes to sleep). Meanwhile, the child gets
control and calls exec to overlay the child process area with the new program—in this
case ls, the command you typed. Now ls carries out the command. It lists your current
directory filenames, and when it is finished processing, it calls exit. Thus the child dies.
The death of the child generates an event signal. The parent process (shell) is waiting for
this event. It is awakened and gets control. The shell program continues, starting execu-
tion from the same address it was at before going to sleep (recall that this address
was stored in the process table system data area as return address), and the prompt is
displayed.

What happens if the child is a background process? In that case, the parent (shell)
does not call the wait routine; it continues in the foreground, and you see the prompt
right away.

What creates the first parent and child processes? When UNIX is booted, the init
process is activated. Next, init creates one system process for each terminal. Thus, init
is the original ancestor to all the processes in the system. For example, if your system
supports 64 concurrent terminals, then init creates 64 processes. When you log in to one
of these processes, the login process executes the shell. Later, when you log out (when
the shell dies), init creates a new login process.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 307

308 Chapter 9

Figure 9.15
Events Happening When fork is Called

fork wait exec exit

parent

create a new process (child)

send code 0 to child process

return child process ID to parent

return control to parent process

store parent return address in
the process table

system
process

table

wait

exec

rest of the
program

call fork

wait

child

exec

rest of the
program

fork
add child process to the process table

Figure 9.16
Events Happening After wait is Called

fork wait exec exit

give control to the child process

parent goes to sleep until the
child dies

change parent process status to sleep

system
process

table

parent

exec

rest of the
program

fork

call wait wait

child

exec

rest of the
program

fork

change parent process status to sleep

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 308

Exploring the Shell 309

Figure 9.17
Events Happening When exec is Called

fork wait exec exit

load the new program

change child process status to active

start executing the new program

system
process

table

parent

exec

rest of the
program

fork

wait wait

exit

child

new
program

fork

call exec

Figure 9.18
Events Happening When Child Calls exit

system
process

table

fork wait exec exit

parent

exec

rest of the
program

fork

wait

exec

child

new
program

fork

wait

call exit

change status of parent to active

remove child from status table

parent is awakened

parent continues its program

event flag generated by
death of the child

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 309

310 Chapter 9

COMMAND SUMMARY

The following UNIX commands have been discussed in this chapter.

alias
This command creates aliases (names) for commands.

echo
This command displays (echoes) its arguments on the output device.

Escape
Character

Meaning

\a Audible alert (bell)

\b Backspace

\c Inhibit the terminating newline

\f Form feed

\n Carriage return and a line feed (newline)

\r Carriage return without the line feed

\t Horizontal tab

\v Vertical tab

export
This command makes a specified list of variables available to other shells.

fc
This command provides capability to list, edit and re-execute commands that previously
were entered and were saved in the history file.

Option Operation

-l Lists the commands, with each command preceded by the command number.

-n Suppresses command numbers when listing with -l.

-r Reverses the order of the commands listed with -l.

-s Re-executes the command without invoking an editor.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 310

Exploring the Shell 311

grep (Global Regular Expression Print)
This command searches for a specified pattern in file(s). If the specified pattern is found, the
line containing the pattern is displayed on your terminal.

history
This command is a Korn and Bourne Again shell feature that keeps a list of all the com-
mands you enter during your sessions.

Option
Operation

UNIX Linux Alternative

-c --count Displays only the count of the matching
lines in each file that contains the match.

-i --ignore-case Ignores the distinction between lower and
uppercase letters in the search pattern.

-l --files-with-matches Displays the names of the files with one or
more matching lines, not the lines them-
selves.

-n --line-number Displays a line number before each output
line.

-v --revert-match Displays only those lines that do not match
the pattern.

--help Displays help page and exits.

--version Displays version information and exits.

ps (process status)
This command displays the process ID of the programs associated with your terminal.

Option Operation

-a Displays the status of all the active processes, not just the user’s.

-f Displays a full list of information, including the full command line.

kill
This command terminates an unwanted or unruly process. You have to specify the process
ID number. The process ID 0 kills all programs associated with your terminal.

nohup
This command prevents the termination of the background process when you log out.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 311

312 Chapter 9

r (redo)
This command is a Korn shell command that repeats the last command or commands from
the history file.

set
This command displays the environmental/shell variables on the output device. The com-
mand unset removes the unwanted variables.

sleep
This command causes the process to go to sleep (wait) for the specified time in seconds.

sort
This command sorts text file(s) in different orders.

Option Operation

-b Ignores leading blanks.

-d Uses dictionary order for sorting. Ignores punctuation and control characters.

-f Ignores the distinction between lowercase and uppercase letters.

-n Numbers are sorted by their arithmetic values.

-o Stores the output in a specified file.

-r Reverses the order of the sort from ascending to descending.

tee
This command splits the output. One copy is displayed on your terminal, the output device,
and another copy is saved in a file.

Option Operation

-a Appends output to a file without overwriting an existing file.

-i Ignores interrupts; does not respond to the interrupt signals.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 312

Exploring the Shell 313

REVIEW EXERCISES

1. What are the major functions of the shell?

2. What is the name of your system shell program, and where is it stored?

3. What are the metacharacters? How does the shell interpret them?

4. What are the quoting characters?

5. What are the shell variables?

6. What is the command to display the environment/shell variables?

7. What is the command to remove a variable?

8. Name some of the environment/standard variables.

9. What are the variables, and what role do they play?

10. How do you run a program in the background?

11. How do you terminate a background process?

12. What is the process ID number, and how do you know the process ID of a particular
process?

13. What is the pipe operator, and what does it do?

14. How do you prevent termination of your background process after you log off?

15. What is the command for searching for a specified pattern in a file?

16. How do you delay the execution of a process?

17. What is the operator that groups the commands together?

18. What is the startup file?

19. What is the .profile file, and what is the profile file?

20. What are the parent and child in reference to UNIX process management?

21. What is a process?

22. What is the command to activate the command line editor?

23. What variable is set to change the size of the history file?

24. How do you make your history file start from event 1?

25. Which file does the Korn shell read at startup?

26. What is the command to repeat your last command?

27. What is the command to repeat event number 105 from your history file?

28. What is the command to set an alias for a command name?

29. What is the command to export a list of variables to the other shells?

30. What is the command to list aliases?

31. What is the command to display a list of the files in your directory and save a copy
in another file?

32. What is the command to obtain a detailed description of the alias command?

33. What is the effect of setting the shell option noclobber?

34. What is the effect of setting the shell option ignoreeof?

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 313

314 Chapter 9

Terminal Session
In this terminal session, you will practice the commands explained in this chapter.
The following exercises are only some suggestions of how to use the commands.
Use your own examples, and devise different scenarios to master the use of these
commands.

1. Use the echo command to produce the following outputs:

a. Hello There

b. Hello

There

c. "Hello There"

d. These are some of the metacharacters:

? * [] & () ; > <

e. Filename: file? Option: all

2. Use the echo command and other commands to produce the following outputs:

a. Display the contents of your current directory. Have a header that shows a short
prompt and the current date and time before listing your directory.

b. Show the message “I woke up” with a two-minute time delay.

3. Change your primary prompt sign.

4. Create a variable called name and store your first and last names in it.

5. Display the contents of the variable name.

6. Check whether you have a .profile file in your HOME directory.

7. Create a .profile file or modify your existing one to produce the following
output each time you log in:

Hello there
I am at your service David Brown
Current Date and Time: [the current date and time]
Next Command:

8. Create a background process, check its process ID, and then terminate it.

9. Create a background process. Use the nohup command to prevent the termination
of the background process.

10. Create a phone list. Let’s say you gather the names and phone numbers of ten of
your classmates. Use the sort command to sort this list in different orders: by first
name, by last name, by phone number, in reverse order, and so on.

11. Use grep and its options to find a particular name in your phone list.

12. Use the kill command to log off.

13. If your shell is the Korn shell (ksh or bash), set up the following variables and prac-
tice the ksh commands:

a. Set the history file size to 50.

b. Activate the command line editor.

c. Use the built-in vi editor commands to access commands in your history file.

d. Use the built-in vi editor commands to edit/change the command line.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 314

Exploring the Shell 315

e. Repeat your last command.

f. Display the list of your previous commands.

g. Repeat the first command in the history file.

h. Start a new history file.

i. Create an alias for the delete command with the confirmation option (rm -i).

j. Create a .kshrc file that contains the setup for ksh variables and aliases.

14. Change your prompt to show the command number.

15. Change your prompt to show the name of the shell.

16. Create an alias called ls for ls -l.

17. Create an alias called rm for rm -i.

18. Set the online editor shell option. Check it to see if it works.

19. Set the noclobber shell option. Check it to see if it works.

20. Set the ignoreeof shell option. Check it to see if it works.

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 315

AFZAMC09_0131194496.qxd 3/15/07 6:56 PM Page 316

