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B Prefoce IR

Why did we write this book?

We will no doubt be asked many times: why on earth write anew book on computer vision?
Fair question: there are aready many good books on computer vision already out in the
bookshops, as you will find referenced later, so why add to them? Part of the answer isthat
any textbook is a snapshot of material that exists prior to it. Computer vision, the art of
processing images stored within acomputer, has seen a considerable amount of research by
highly qualified people and the volume of research would appear to have increased in
recent years. That means a lot of new techniques have been developed, and many of the
more recent approaches have yet to migrate to textbooks.

But it is not just the new research: part of the speedy advance in computer vision
technique has left some areas covered only in scant detail. By the nature of research, one
cannot publish material on technique that is seen more to fill historical gaps, rather than to
advance knowledge. This is again where a new text can contribute.

Finally, thetechnology itself continuesto advance. This meansthat thereis new hardware,
new programming languages and new programming environments. In particular for computer
vision, the advance of technology means that computing power and memory are now
relatively cheap. It iscertainly considerably cheaper than when computer vision was starting
asaresearch field. One of the authors here notes that the laptop that his portion of the book
was written on has more memory, is faster, has bigger disk space and better graphics than
the computer that served the entire university of his student days. And he is not that old!
One of the more advantageous recent changes brought by progress has been the devel opment
of mathematical programming systems. These allow us to concentrate on mathematical
technique itself, rather than on implementation detail. There are several sophisticated
flavours of which Mathcad and Matlab, the chosen vehicles here, are amongst the most
popular. We have been using these techniques in research and in teaching and we would
argue that they have been of considerable benefit there. In research, they help usto develop
technique faster and to evaluate its final implementation. For teaching, the power of a
modern laptop and a mathematical system combine to show students, in lectures and in
study, not only how techniques are implemented, but also how and why they work with an
explicit relation to conventional teaching material.

We wrote this book for these reasons. There isahost of material we could have included
but chose to omit. Our apologies to other academicsif it was your own, or your favourite,
technique. By virtue of the enormous breadth of the subject of computer vision, werestricted
the focus to feature extraction for this has not only been the focus of much of our research,
but it is also where the attention of established textbooks, with some exceptions, can be
rather scanty. It is, however, one of the prime targets of applied computer vision, so would
benefit from better attention. We have aimed to clarify some of its origins and devel opment,
whilst also exposing implementation using mathematical systems. As such, we have written
this text with our original aims in mind.



The book and its support

Each chapter of the book presents a particular package of information concerning feature
extraction in image processing and computer vision. Each package is developed from its
origins and later referenced to more recent material. Naturally, there is often theoretical
development prior to implementation (in Mathcad or Matlab). We have provided working
implementations of most of the major techniques we describe, and applied them to process
a selection of imagery. Though the focus of our work has been more in analysing medical
imagery or in biometrics (the science of recognising people by behavioural or physiological
characteristic, like face recognition), the techniques are general and can migrate to other
application domains.

You will find a host of further supporting information at the book’s website ht t p: / /
wWww. ecs. sot on. ac. uk/ ~nmen/ book/ . First, youwill find the worksheets (the Matlab
and Mathcad implementations that support the text) so that you can study the techniques
described herein. There are also lecturing versions that have been arranged for display via
a data projector, with enlarged text and more interactive demonstration. The website will
be kept as up to date as possible, for it also contains linksto other material such aswebsites
devoted to techniques and to applications, as well as to available software and on-line
literature. Finally, any errata will be reported there. It is our regret and our responsibility
that these will exist, but our inducement for their reporting concerns a pint of beer. If you
find an error that we don’t know about (not typos like spelling, grammar and layout) then
use the mailto on the website and we shall send you a pint of good English beer, free!

There is a certain amount of mathematics in this book. The target audienceis for third
or fourth year studentsin BSc/BEng/MENg coursesin electrical or electronic engineering,
or in mathematics or physics, and thisisthe level of mathematical analysis here. Computer
vision can be thought of as a branch of applied mathematics, though this does not really
apply to some areas within its remit, but certainly applies to the material herein. The
mathematics essentially concerns mainly calculus and geometry though some of it is rather
more detailed than the constraints of a conventional lecture course might allow. Certainly,
not all the material here is covered in detail in undergraduate courses at Southampton.

Thebook startswith an overview of computer vision hardware, software and established
material, with reference to the most sophisticated vision system yet ‘ developed’ : the human
vision system. Though the precise details of the nature of processing that allows us to see
have yet to be determined, there is a considerable range of hardware and software that
allow us to give a computer system the capability to acquire, process and reason with
imagery, the function of ‘sight’. Thefirst chapter also provides acomprehensive bibliography
of material you can find on the subject, not only including textbooks, but also available
software and other material. As this will no doubt be subject to change, it might well be
worth consulting the website for more up-to-date information. The preference for journal
references are those which are likely to be found in local university libraries, |IEEE
Transactionsin particular. These are often subscribed to asthey arerelatively low cost, and
are often of very high quality.

The next chapter concerns the basics of signal processing theory for use in computer
vision. It introduces the Fourier transform that allows you to look at asignal in anew way,
in terms of its frequency content. It also alows us to work out the minimum size of a
picture to conserve information, to analyse the content in terms of frequency and even
hel ps to speed up some of the later vision algorithms. Unfortunately, it does involve afew
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equations, but it isanew way of looking at dataand at signals, and provesto be arewarding
topic of study in its own right.

We then start to look at basic image processing techniques, where image points are
mapped into a new value first by considering a single point in an original image, and then
by considering groups of points. Not only do we see common operationsto make apicture’s
appearance better, especially for human vision, but also we see how to reduce the effects
of different types of commonly encountered image noise. This is where the techniques are
implemented as algorithms in Mathcad and Matlab to show precisely how the equations
work.

Thefollowing chapter concernslow-level features which are the techniques that describe
the content of an image, at the level of awhole image rather than in distinct regions of it.
One of the most important processes we shall meet is called edge detection. Essentialy,
this reduces an image to a form of a caricaturist’s sketch, though without a caricaturist’s
exaggerations. The major techniques are presented in detail, together with descriptions of
their implementation. Other image properties we can derive include measures of curvature
and measures of movement. These also are covered in this chapter.

These edges, the curvature or the motion need to be grouped in some way so that we can
find shapes in an image. Our first approach to shape extraction concerns analysing the
match of low-level information to a known template of a target shape. As this can be
computationally very cumbersome, we then progress to a technique that improves
computational performance, whilst maintaining an optimal performance. The techniqueis
known as the Hough transform and it has long been a popular target for researchers in
computer vision who have sought to clarify its basis, improve it speed, and to increase its
accuracy and robustness. Essentially, by the Hough transform we estimate the parameters
that govern a shape's appearance, where the shapes range from lines to ellipses and even
to unknown shapes.

Some applications of shape extraction require to determine rather more than the parameters
that control appearance, but require to be able to deform or flex to match the image
template. For this reason, the chapter on shape extraction by matching is followed by one
on flexible shape analysis. This is a topic that has shown considerable progress of late,
especially with the introduction of snakes (active contours). These seek to match a shape
to an image by analysing local properties. Further, we shall see how we can describe a
shape by its symmetry and al so how global constraints concerning the statistics of ashape’'s
appearance can be used to guide final extraction.

Up to this point, we have not considered techniques that can be used to describe the
shape found in an image. We shall find that the two major approaches concern techniques
that describe a shape's perimeter and those that describe its area. Some of the perimeter
description techniques, the Fourier descriptors, are even couched using Fourier transform
theory that allows analysis of their frequency content. One of the major approachesto area
description, statistical moments, also has aform of access to frequency components, but is
of avery different nature to the Fourier analysis.

The final chapter describes texture analysis, prior to some introductory material on
pattern classification. Texture describes patterns with no known analytical description and
has been the target of considerable research in computer vision and image processing. It is
used here more as a vehicle for the material that precedes it, such as the Fourier transform
and area descriptions though references are provided for access to other generic material.
There is also introductory material on how to classify these patterns against known data
but again thisis awindow on a much larger area, to which appropriate pointers are given.
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The appendicesinclude material that is germaneto thetext, such as co-ordinate geometry
and the method of least squares, aimed to be a short introduction for the reader. Other
related materia isreferenced throughout the text, especially to on-line material. The appendices
include a printout of one of the shortest of the Mathcad and Matlab worksheets.

In thisway, the text covers all major areas of feature extraction in image processing and
computer vision. There is considerably more material in the subject than is presented here:
for example, there is an enormous volume of material in 3D computer vision and in 2D
signal processing which is only alluded to here. But to include all that would lead to a
monstrous book that no one could afford, or even pick up! So we admit we give a snapshot,
but hope more that it is considered to open another window on a fascinating and rewarding
subject.

In gratitude

We are immensely grateful to the input of our colleagues, in particular to Dr Steve Gunn
and to Dr John Carter. The family who put up with it are Maria Eugenia and Caz and the
nippers. We are also very grateful to past and present researchersin computer vision at the
Image, Speech and Intelligent Systems Research Group (formerly the Vision, Speech and
Signal Processing Group) under (or who have survived?) Mark’s supervision at the Department
of Electronics and Computer Science, University of Southampton. These include: Dr Hani
Muammar, Dr Xiaoguang Jia, Dr Yan Chen, Dr Adrian Evans, Dr Colin Davies, Dr David
Cunado, Dr Jason Nash, Dr Ping Huang, Dr Liang Ng, Dr Hugh Lewis, Dr David Benn,
Dr Douglas Bradshaw, David Hurley, Mike Grant, Bob Roddis, Karl Sharman, Jamie Shutler,
Jun Chen, Andy Tatem, Chew Yam, James Hayfron-Acquah, Yalin Zheng and Jeff Foster.
We are also very grateful to past Southampton students on BEng and MEng Electronic
Engineering, MENng Information Engineering, BEng and M Eng Computer Engineering and
BSc Computer Science who have pointed out our earlier mistakes, noted areasfor clarification
and in some cases volunteered some of the material herein. To all of you, our very grateful
thanks.

Final message

We ourselves have already benefited much by writing this book. As we already know,
previous students have also benefited, and contributed to it aswell. But it remains our hope
that it does inspire people to join in this fascinating and rewarding subject that has proved
to be such a source of pleasure and inspiration to its many workers.

Mark S. Nixon Alberto S. Aguado
University of Southampton University of Surrey
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I |
INnfroduction

1.1 Overview

Thisiswhere we start, by looking at the human visual system to investigate what is meant
by vision, then on to how a computer can be made to sense pictorial data and then how we
can process it. The overview of this chapter is shown in Table 1.1; you will find a similar
overview at the start of each chapter. We have not included the references (citations) in any
overview, you will find them at the end of each chapter.

Table 1.1 Overview of Chapter 1

Main topic Sub topics Main points
Human How the eye works, how visual Sight, lens, retina, image, colour,
vision information is processed and monochrome, processing, brain,
system how it can fail. illusions.
Computer How electronic images are formed, Picture elements, pixels, video standard,
vision how video is fed into a computer camera technologies, pixel technology,
systems and how we can process the infor- performance effects, specialist cameras,
mation using a computer. video conversion, computer languages,
processing packages.
Mathematical How we can process images using Ease, consistency, support, visualisation
systems mathematical packages; intro- of results, availability, introductory use,
duction to the Matlab and Mathcad example worksheets.
systems.
Literature Other textbooks and other places to Magazines, textbooks, websites and
find information on image proces- this book’s website.
sing, computer vision and feature
extraction.

1.2 Human and computer vision

A computer vision system processes images acquired from an electronic camera, which is
like the human vision system where the brain processes images derived from the eyes.
Compuiter visionisarich and rewarding topic for study and research for electronic engineers,
computer scientists and many others. Increasingly, it has a commercial future. There are
now many vision systems in routine industrial use: cameras inspect mechanical parts to
check size, food is inspected for quality, and images used in astronomy benefit from
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computer vision techniques. Forensic studies and biometrics (ways to recognise people)
using computer vision include automatic face recognition and recognising people by the
‘texture’ of their irises. These studies are paralleled by biologists and psychologists who
continue to study how our human vision system works, and how we see and recognise
objects (and people).

A selection of (computer) imagesis given in Figure 1.1, these images comprise a set of
points or picture elements (usually concatenated to pixels) stored as an array of numbers
in acomputer. To recognise faces, based on an image such as Figure 1.1(a), we need to be
ableto analyse constituent shapes, such as the shape of the nose, the eyes, and the eyebrows,
to make some measurements to describe, and then recognise, a face. (Figure 1.1(a) is
perhaps one of the most famous images in image processing. It is called the Lena image,
and is derived from a picture of Lena Sj6édblom in Playboy in 1972.) Figure 1.1(b) is an
ultrasound image of the carotid artery (which is near the side of the neck and supplies
blood to the brain and the face), taken as a cross-section through it. The top region of the
image is near the skin; the bottom is inside the neck. The image arises from combinations
of the reflections of the ultrasound radiation by tissue. This image comes from a study
aimed to produce three-dimensional models of arteries, to aid vascular surgery. Note that
the image is very noisy, and this obscures the shape of the (elliptical) artery. Remotely
sensed images are often analysed by their texture content. The perceived textureis different
between the road junction and the different types of foliage seen in Figure 1.1(c). Finally,
Figure 1.1(d) is a Magnetic Resonance Image (MRI) of a cross-section near the middle of
ahuman body. The chest is at the top of the image, and the lungs and blood vessels are the
dark areas, the internal organs and the fat appear grey. MRI images are in routine medical
use nowadays, owing to their ability to provide high quality images.

.

_ 3 A"‘
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(a) Face from a camera (b) Artery from ultrasound |(c) Ground by remote-sensing| (d) Body by magnetic
resonance

Figure 1.1 Real images from different sources

There are many different image sources. In medical studies, MRI is good for imaging
soft tissue, but does not reveal the bone structure (the spine cannot be seen in Figure
1.1(d)); this can be achieved by using Computerised Tomography (CT) which is better at
imaging bone, as opposed to soft tissue. Remotely sensed images can be derived from
infrared (thermal) sensors or Synthetic-Aperture Radar, rather than by cameras, as in
Figure 1.1(c). Spatial information can be provided by two-dimensional arrays of sensors,
including sonar arrays. There are perhaps more varieties of sources of spatial data in
medical studiesthan in any other area. But computer vision techniques are used to analyse
any form of data, not just the images from cameras.
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Synthesised images are good for evaluating techniques and finding out how they work,
and some of the bounds on performance. Two synthetic images are shown in Figure 1.2.
Figure 1.2(a) is an image of circles that were specified mathematically. The image is an
ideal case: the circles are perfectly defined and the brightness level s have been specified to
be constant. This type of synthetic imageis good for evaluating techniques which find the
borders of the shape (its edges), the shape itself and even for making a description of the
shape. Figure 1.2(b) is a synthetic image made up of sections of real image data. The
borders between the regions of image data are exact, again specified by a program. The
image data comes from awell-known texture database, the Brodatz album of textures. This
was scanned and stored as computer images. This image can be used to analyse how well
computer vision algorithms can identify regions of differing texture.
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Figure 1.2 Examples of synthesised images

This chapter will show you how basic computer vision systems work, in the context of
the human vision system. It covers the main elements of human vision showing you how
your eyes work (and how they can be deceived!). For computer vision, this chapter covers
the hardware and software used for image analysis, giving an introduction to Mathcad and
Matlab, the software tool s used throughout thistext to implement computer vision algorithms.
Finally, a selection of pointers to other material is provided, especialy those for more
detail on the topics covered in this chapter.

1.3 The human vision system

Human vision is a sophisticated system that senses and acts on visual stimuli. It has
evolved for millions of years, primarily for defence or survival. Intuitively, computer and
human vision appear to have the same function. The purpose of both systemsisto interpret
spatial data, data that is indexed by more than one dimension. Even though computer and
human vision are functionaly similar, you cannot expect a computer vision system to
replicate exactly the function of the human eye. Thisis partly because we do not understand
fully how the eye works, as we shall see in this section. Accordingly, we cannot design a
system to replicate exactly itsfunction. In fact, some of the properties of the human eye are
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useful when devel oping computer vision techniques, whereas others are actually undesirable
in a computer vision system. But we shall see computer vision techniques which can to
some extent replicate, and in some cases even improve upon, the human vision system.

You might ponder this, so put one of the fingers from each of your handsin front of your
face and try to estimate the distance between them. This is difficult, and we are sure you
would agree that your measurement would not be very accurate. Now put your fingersvery
close together. You can still tell that they are apart even when the distance between them
is tiny. So human vision can distinguish relative distance well, but is poor for absolute
distance. Computer vision is the other way around: it is good for estimating absolute
difference, but with relatively poor resolution for relative difference. The number of pixels
in the image imposes the accuracy of the computer vision system, but that does not come
until the next chapter. Let us start at the beginning, by seeing how the human vision system
works.

In human vision, the sensing element is the eye from which images are transmitted via
the optic nerveto the brain, for further processing. The optic nerve hasinsufficient capacity
to carry al the information sensed by the eye. Accordingly, there must be some pre-
processing before the image is transmitted down the optic nerve. The human vision system
can be modelled in three parts:

1. the eye - thisis a physical model since much of its function can be determined by
pathol ogy;

2. theneural system — thisis an experimental model since the function can be modelled,
but not determined precisely;

3. processing by the brain — this is a psychological model since we cannot access or
model such processing directly, but only determine behaviour by experiment and
inference.

1.3.1 The eye

The function of the eye is to form an image; a cross-section of the eye is illustrated in
Figure 1.3. Vision requires an ability to focus selectively on objects of interest. This is
achieved by the ciliary muscles that hold the lens. In old age, it is these muscles which
become slack and the eye loses its ability to focus at short distance. The iris, or pupil, is
like an aperture on a camera and controls the amount of light entering the eye. It is a
delicate system and needs protection, this is provided by the cornea (sclera). The choroid
has blood vessels that supply nutrition and is opaque to cut down the amount of light. The
retina is on the inside of the eye, which is where light falls to form an image. By this
system, muscles rotate the eye, and shape the lens, to form an image on the fovea (focal
point) where the mgjority of sensors are situated. The blind spot is where the optic nerve
starts; there are no sensors there.

Focusing involves shaping the lens, rather than positioning it as in a camera. The lens
isshaped to refract closeimages greatly, and distant objectslittle, essentially by * stretching’
it. The distance of the focal centre of the lens varies from approximately 14 mm to around
17 mm depending on the lens shape. This implies that a world scene is translated into an
area of about 2 mm?. Good vision has high acuity (sharpness), which implies that there
must be very many sensors in the area where the image is formed.

There are actually nearly 100 million sensors dispersed around the retina. Light falls on
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Figure 1.3 Human eye

these sensors to stimulate photochemical transmissions, which results in nerve impulses
that are collected to form the signal transmitted by the eye. There are two types of sensor:
first, the rods—these are used for black and white (scotopic) vision; and secondly, the
cones—these are used for colour (photopic) vision. There are approximately 10 million
cones and nearly al are found within 5° of the fovea. The remaining 100 million rods are
distributed around the retina, with the majority between 20° and 5° of the fovea. Acuity is
actually expressed in terms of spatial resolution (sharpness) and brightness/col our resol ution,
and is greatest within 1° of the fovea
There is only one type of rod, but there are three types of cones. These types are:

1. o —these sense light towards the blue end of the visual spectrum;
2. B —these sense green light;
3. y-these sense light in the red region of the spectrum.

The total response of the cones arises from summing the response of these three types
of cones, this gives a response covering the whole of the visual spectrum. The rods are
sensitive to light within the entire visual spectrum, and are more sensitive than the cones.
Accordingly, when the light level islow, images are formed away from the fovea, to usethe
superior sensitivity of the rods, but without the colour vision of the cones. Note that there
are actually very few of the o cones, and there are many more 3 and y cones. But we can
still see alot of blue (especially given ubiquitous denim!). So, somehow, the human vision
system compensates for the lack of blue sensors, to enable us to perceive it. The world
would be a funny place with red water! The vision response is actually logarithmic and
depends on brightness adaption from dark conditions where the image is formed on the
rods, to brighter conditions where images are formed on the cones.

One inherent property of the eye, known as Mach bands, affects the way we perceive
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images. These areillustrated in Figure 1.4 and are the darker bands that appear to be where
two stripes of constant shade join. By assigning values to the image brightness levels, the
cross-section of plotted brightnessis shown in Figure 1.4(a). This shows that the pictureis
formed from stripes of constant brightness. Human vision perceives an image for which
the cross-section is as plotted in Figure 1.4(c). These Mach bands do not really exist, but
are introduced by your eye. The bands arise from overshoot in the eyes response at
boundaries of regions of different intensity (this aids us to differentiate between objectsin
our field of view). The real cross-section is illustrated in Figure 1.4(b). Note also that a
human eye can distinguish only relatively few grey levels. It actually has a capability to
discriminate between 32 levels (equivalent to five bits) whereas the image of Figure 1.4(a)
could have many more brightness levels. Thisiswhy your perception finds it more difficult
to discriminate between the low intensity bands on the left of Figure 1.4(a). (Note that that
Mach bands cannot be seen in the earlier image of circles, Figure 1.2(a), due to the
arrangement of grey levels.) This is the limit of our studies of the first level of human
vision; for those who areinterested, Cornsweet (1970) provides many more details concerning
visual perception.

(a) Image showing the Mach band effect

200 — 2001
mach, , 100 + seen, 100 +
t } t }
0 50 100 0 50 100
X X
(b) Cross-section through (a) (c) Perceived cross-section through (a)

Figure 1.4 Illustrating the Mach band effect

So we have already identified two properties associated with the eye that it would be
difficult to include, and would often be unwanted, in a computer vision system: Mach
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bands and sensitivity to unsensed phenomena. These properties are integral to human
vision. At present, human vision is far more sophisticated than we can hope to achieve with
acomputer vision system. Infrared guided-missile vision systems can actually have difficulty
in distinguishing between abird at 100 m and a plane at 10 km. Poor birds! (Lucky plane?)
Human vision can handle this with ease.

1.3.2 The neural system

Neural signalsprovided by the eye are essentially the transformed response of the wavelength
dependent receptors, the cones and the rods. One model is to combine these transformed
signalsby addition, asillustrated in Figure 1.5. Theresponse istransformed by alogarithmic
function, mirroring the known response of the eye. This is then multiplied by a weighting
factor that controls the contribution of a particular sensor. This can be arranged to alow a
combination of responses from a particular region. The weighting factors can be chosen to
afford particular filtering properties. For example, in lateral inhibition, the weights for the
centre sensors are much greater than the weights for those at the extreme. This allows the
response of the centre sensors to dominate the combined response given by addition. If the
weights in one half are chosen to be negative, whilst those in the other half are positive,
then the output will show detection of contrast (changein brightness), given by the differencing
action of the weighting functions.

Logarithmic response Weighting functions
Sensor inputs
pp———> log(py) > wy xlog(py)
p, —>  log(p) > W, xlog(po) k
Output

ps ——»|  log(ps) > w;xlog(py) -2 >
Ps ——> log(ps) >l W, xlog(py) 7

J e —— log(ps) > Ws x log(ps)

Figure 1.5 Neural processing

The signals from the cones can be combined in a manner that reflects chrominance
(colour) and luminance (brightness). This can be achieved by subtraction of logarithmic
functions, which is then equivalent to taking the logarithm of their ratio. This allows
measures of chrominance to be obtained. In this manner, the signals derived from the
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sensors are combined prior to transmission through the optic nerve. Thisisan experimental
model, since there are many ways possible to combine the different signals together. For
further information on retinal neural networks, see Ratliff (1965); an aternative study of
neural processing can be found in Overington (1992).

1.3.3 Processing

The neural signals are then transmitted to two areas of the brain for further processing.
These areas are the associative cortex, where links between objects are made, and the
occipital cortex, where patternsare processed. It isnaturally difficult to determine precisely
what happensin this region of the brain. To date, there have been no volunteersfor detailed
study of their brain’s function (though progress with new imaging modalities such as
Positive Emission Tomography or Electrical Impedance Tomography will doubtless help).
For thisreason, there are only psychological modelsto suggest how this region of the brain
operates.

It is well known that one function of the eye is to use edges, or boundaries, of objects.
We can easily read the word in Figure 1.6(a), this is achieved by filling in the missing
boundaries in the knowledge that the pattern most likely represents a printed word. But we
can infer more about thisimage; there is a suggestion of illumination, causing shadows to
appear in unlit areas. If the light source is bright, then the image will be washed out,
causing the disappearance of the boundaries which are interpolated by our eyes. So there
ismore than just physical response, thereis aso knowledge, including prior knowledge of
solid geometry. This situation is illustrated in Figure 1.6(b) that could represent three
‘Pacmen’ about to collide, or a white triangle placed on top of three black circles. Either

o | ®
- ¢ 9

(a) Word? (b) Pacmen?

Figure 1.6 How human vision uses edges

It is also possible to deceive the eye, primarily by imposing a scene that it has not been
trained to handle. In the famous Zollner illusion, Figure 1.7(a), the bars appear to be
slanted, whereasin reality they are vertical (check this by placing a pen between the lines):
the small crossbars mislead your eye into perceiving the vertical bars as slanting. In the
Ebbinghaus illusion, Figure 1.7(b), the inner circle appears to be larger when surrounded
by small circles, than it appears when surrounded by larger circles.
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(a) Zollner (b) Ebbinghaus

Figure 1.7 Static illusions

There are dynamic illusions too: you can always impress children with the ‘see my
wobbly pencil’ trick. Just hold the pencil loosely between your fingers then, to whoops of
childish glee, when the pencil is shaken up and down, the solid pencil will appear to bend.
Benham's disk, Figure 1.8, shows how hard it is to model vision accurately. If you make
up aversion of this disk into a spinner (push a matchstick through the centre) and spin it
anti-clockwise, you do not see three dark rings, you will see three coloured ones. The
outside one will appear to be red, the middle one a sort of green, and the inner one will
appear deep blue. (This can depend greatly on lighting — and contrast between the black
and white on the disk. If the colours are not clear, try it in a different place, with different
lighting.) You can appear to explain this when you notice that the red colours are associated
with the long lines, and the blue with short lines. But thisis from physics, not psychology.
Now spin the disk clockwise. The order of the colours reverses: red is associated with the
short lines (inside), and blue with the long lines (outside). So the argument from physics
isclearly incorrect, since red is now associated with short lines not long ones, revealing the
need for psychological explanation of the eyes' function. Thisis not colour perception, see
Armstrong (1991) for an interesting (and interactive!) study of colour theory and perception.

Figure 1.8 Benham's disk

Naturally, there are many texts on human vision. Marr’s seminal text (Marr, 1982) isa
computational investigation into human vision and visual perception, investigating it from
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acomputer vision viewpoint. For further details on pattern processing in human vision, see
Bruce (1990); for moreillusions see Rosenfeld (1982). One text (Kaiser, 1999) is available
online(htt p: // ww. yor ku. ca/ eye/ t hej oy. ht n) whichisextremely convenient.
Many of the properties of human vision are hard to include in a computer vision system,
but let us now look at the basic components that are used to make computers see.

1.4 Computer vision systems

Given the progress in computer technology, computer vision hardware is now relatively
inexpensive; a basic computer vision system requires a camera, a camera interface and a
computer. These days, some personal computers offer the capability for a basic vision
system, by including a camera and its interface within the system. There are specialised
systems for vision, offering high performance in more than one aspect. These can be
expensive, as any specialist system is.

1.4.1 Cameras

A camera isthe basic sensing element. In simple terms, most cameras rely on the property
of light to cause hole/electron pairs (the charge carriers in electronics) in a conducting
material. When a potential is applied (to attract the charge carriers), this charge can be
sensed as current. By Ohm’s law, the voltage across a resistance is proportional to the
current through it, so the current can be turned into a voltage by passing it through a
resistor. The number of hole/electron pairsis proportional to the amount of incident light.
Accordingly, greater charge (and hence greater voltage and current) is caused by anincrease
in brightness. In this manner cameras can provide as output, avoltage which is proportional
to the brightness of the points imaged by the camera. Cameras are usually arranged to
supply video according to a specified standard. Most will aim to satisfy the CCIR standard
that exists for closed circuit television systems.

There are three main types of camera: vidicons, charge coupled devices (CCDs) and,
more recently, CMOS cameras (Complementary Metal Oxide Silicon — now the dominant
technology for logic circuit implementation). Vidicons are the older (analogue) technology,
which though cheap (mainly by virtue of longevity in production) are now being replaced
by the newer CCD and CMOS digital technologies. The digital technologies, currently
CCDs, now dominate much of the camera market because they are lightweight and cheap
(with other advantages) and are therefore used in the domestic video market.

Vidicons operate in a manner akin to atelevision in reverse. The image is formed on a
screen, and then sensed by an electron beam that is scanned across the screen. This produces
an output which is continuous, the output voltageis proportional to the brightness of points
in the scanned line, and is a continuous signal, a voltage which varies continuously with
time. On the other hand, CCDs and CMOS cameras use an array of sensors; these are
regions where charge is collected which is proportional to the light incident on that region.
Thisis then available in discrete, or sampled, form as opposed to the continuous sensing
of avidicon. Thisis similar to human vision with its array of cones and rods, but digital
cameras use arectangular regularly spaced lattice whereas human vision uses a hexagonal
lattice with irregular spacing.

Two main types of semiconductor pixel sensors are illustrated in Figure 1.9. In the
passive sensor, the charge generated by incident light is presented to a bus through a pass
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transistor. When the signal Tx is activated, the pass transistor is enabled and the sensor
provides a capacitance to the bus, one that is proportional to the incident light. An active
pixel includesan amplifier circuit that can compensatefor limited fill factor of the photodiode.
The select signal again controls presentation of the sensor’s information to the bus. A
further reset signal allows the charge site to be cleared when the image is rescanned.

VDD
Incident Reset
light

Incident

\‘\‘ Column bus light Selea{
o000 \\

@ @@Q CRCIT)
@ @@(;) Column bus
(a) Passive (b) Active

Figure 1.9 Pixel sensors

Thebasis of a CCD sensor isillustrated in Figure 1.10. The number of charge sites gives
the resolution of the CCD sensor; the contents of the charge sites (or buckets) need to be
converted to an output (voltage) signal. In simple terms, the contents of the buckets are
emptied into vertical transport registers which are shift registers moving information towards
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Pixel sensors

Figure 1.10 CCD sensing element

Introduction 11



the horizontal transport registers. Thisisthe column bus supplied by the pixel sensors. The
horizontal transport registers empty the information row by row (point by point) into a
signal conditioning unit which transforms the sensed charge into a voltage which is
proportional to the charge in a bucket, and hence proportional to the brightness of the
corresponding point in the scene imaged by the camera. CMOS cameras are like aform of
memory: the charge incident on a particular sitein atwo-dimensional latticeis proportional
to the brightness at a point. The charge is then read like computer memory. (In fact, a
computer memory RAM chip can act as a rudimentary form of camera when the circuit —
the one buried in the chip — is exposed to light.)

There are many more varieties of vidicon (Chalnicon etc.) than there are of CCD
technology (Charge Injection Device etc.), perhaps due to the greater age of basic vidicon
technology. Vidicons were cheap but had a number of intrinsic performance problems. The
scanning process essentially relied on ‘moving parts'. As such, the camera performance
changed with time, as parts wore; this is known as ageing. Also, it is possible to burn an
image into the scanned screen by using high incident light levels; vidicons also suffered
lag that is a delay in response to moving objects in a scene. On the other hand, the digital
technologies are dependent on the physical arrangement of charge sites and as such do not
suffer from ageing, but can suffer from irregularity in the charge sites’ (silicon) material.
The underlying technology also makes CCD and CMOS cameras less sensitive to lag and
burn, but the signals associated with the CCD transport registers can give rise to readout
effects. CCDs actualy only came to dominate camera technology when technological
difficulty associated with quantum efficiency (the magnitude of response to incident light)
for the shorter, blue, wavelengths was solved. One of the major problemsin CCD cameras
is blooming, where bright (incident) light causes a bright spot to grow and disperse in the
image (this used to happen in the analogue technologies too). This happens much less in
CMOS cameras because the charge sites can be much better defined and reading their data
is equivalent to reading memory sites as opposed to shuffling charge between sites. Also,
CMOS cameras have now overcome the problem of fixed pattern noise that plagued earlier
MOS cameras. CMOS cameras are actually much more recent than CCDs. This begs a
guestion as to which is best: CMOS or CCD? Given that they will both be subject to much
continued development though CMOS is a cheaper technology and because it lends itself
directly to intelligent cameras with on-board processing. Thisis mainly because the feature
size of points (pixels) in a CCD sensor is limited to about 4 um so that enough light is
collected. In contrast, the feature sizein CMOS technology is considerably smaller, currently
at around 0.1 um. Accordingly, it is now possible to integrate signal processing within the
camera chip and thus it is perhaps possible that CMOS cameras will eventually replace
CCD technologies for many applications. However, the more modern CCDs also have
on-board circuitry, and their process technology is more mature, so the debate will
continue!

Finally, there are specialist cameras, which include high-resolution devices (which can
give pictures with a great number of points), low-light level cameras which can operate in
very dark conditions (thisis where vidicon technology is still found) and infrared cameras
which sense heat to provide thermal images. For more detail concerning camerapracticalities
and imaging systems see, for example, Awcock and Thomas (1995) or Davies (1994). For
practical minutiae on cameras, and on video in general, Lenk’s Video Handbook (Lenk,
1991) has awealth of detail. For more detail on sensor development, particularly CMOS,
the article (Fossum, 1997) is well worth a look.
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1.4.2 Computer interfaces

The basic computer interface needs to convert an analogue signal from a camerainto a set
of digital numbers. The interface system is called a framegrabber since it grabs frames of
datafrom avideo sequence, and isillustrated in Figure 1.11. Note that intelligent cameras
which provide digital information do not need this particular interface, just one which
allows storage of their data. However, a conventional camera signal is continuous and is
transformed into digital (discrete) format using an Analogue to Digital (A/D) converter.
Flash converters are usually used due to the high speed required for conversion (say 11
MHz that cannot be met by any other conversion technology). The video signal requires
conditioning prior to conversion; thisincludes DC restoration to ensure that the correct DC
level is attributed to the incoming video signal. Usually, 8-bit A/D converters are used; at
6 dB/bit, this gives 48 dB which just satisfies the CCIR stated bandwidth of approximately
45 dB. The output of the A/D converter is often fed to look-up tables (LUTs) which
implement designated conversion of the input data, but in hardware, rather than in software,
and thisisvery fast. The outputs of the A/D converter are then stored in computer memory.
This is now often arranged to be dual-ported memory that is shared by the computer and
the framegrabber (as such the framestore is memory-mapped): the framegrabber only takes
control of the image memory when it is acquiring, and storing, an image. Alternative
approaches can use Dynamic Memory Access (DMA) or, even, external memory, but
computer memory is now so cheap that such design techniques are rarely used.

Input
video i :
— S|.g'nall » A/D converter > Look-up » Image memory
conditioning table
I i ]
[ J
LN B B B B )
Control - Cpmputer
interface
Computer

Figure 1.11 A computer interface — the framegrabber

There are clearly many different ways to design framegrabber units, especially for
specialist systems. Note that the control circuitry has to determine exactly when image data
isto be sampled. Thisis controlled by synchronisation pulses that are supplied within the
video signal and can be extracted by a circuit known as a sync stripper (essentially a high
gain amplifier). The sync signals actually control the way video information is constructed.
Television pictures are constructed from a set of lines, those lines scanned by a camera. In
order to reduce requirements on transmission (and for viewing), the 625 lines (in the PAL
system) are transmitted in two fields, each of 312.5 lines, as illustrated in Figure 1.12.
(There was a big debate between the computer producers who don’t want interlacing, and
the television broadcasters who do.) If you look at atelevision, but not directly, the flicker
due to interlacing can be perceived. When you look at the television directly, persistence
in the human eye ensures that you do not see the flicker. These fields are called the odd and
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even fields. There is also an aspect ratio in picture transmission: pictures are arranged to
be 1.33 timeslonger than they are high. These factors are chosen to make television images
attractive to human vision, and can complicate the design of aframegrabber unit. Nowadays,
digital video cameras can providethedigital output, in progressive scan (without interlacing).
Life just gets easier!

Aspect ratio

Figure 1.12 Interlacing in television pictures

This completes the material we need to cover for basic computer vision systems. For
more detail concerning practicalities of computer vision systems see, for example, Davies
(1994) and Baxes (1994).

1.4.3 Processing an image

Most image processing and computer vision techniques are implemented in computer
software. Often, only the simplest techniques migrate to hardware; though coding techniques
to maximise efficiency in image transmission are of sufficient commercial interest that
they have warranted extensive, and very sophisticated, hardware devel opment. The systems
include the Joint Photographic Expert Group (JPEG) and the Moving Picture Expert Group
(MPEG) image coding formats. C and C++ are by now the most popular languages for
vision system implementation: C because of its strengthsin integrating high- and low-level
functions, and the availability of good compilers. As systems become more complex, C++
becomes more attractive when encapsulation and polymorphism may be exploited. Many
people now use Java as a devel opment language partly due to platform independence, but
also due to ease in implementation (though some claim that speed/efficiency is not as good
as in C/C++). There is considerable implementation advantage associated with use of the
Java™ Advanced Imaging APl (Application Programming Interface). There are some
textbooks that offer image processing systems implemented in these languages. Also, there
are many commercia packages available, though these are often limited to basic techniques,
and do not include the more sophisticated shape extraction techniques. The Khoros image
processing system has attracted much interest; thisis a schematic (data-flow) image processing
system where a user links together chosen modules. This allows for better visualisation of
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information flow during processing. However, the underlying mathematics is not made
clear to the user, asit can be when a mathematical system isused. Thereisanew textbook,
and a very readable one at that, by Nick Efford (Efford, 2000) which is based entirely on
Javaandincludes, viaaCD, the classes necessary for image processing software devel opment.

A set of WWW links are shown in Table 1.2 for established freeware and commercial
software image processing systems. What is perhaps the best selection can be found at the
general site, from the computer vision homepage software site (repeated later in Table 1.5).

Table 1.2 Software package websites

Packages (freeware or student version indicated by *)

General Site Carnegie Mellon http://ww. cs. cnmu. edu/ af s/ cs/
project/cil/ftp/htm /v-source. htnl

Khoros Khoral Research http://ww. khoral . com

Hannover U http://ww.tnt.uni-hannover. de/

soft/i mgproc/ khor os/

AdOculos* The Imaging Source  http://ww. t hei magi ngsource. com

(+ Textbook) cat al og/ soft/ dbs/ao. ht m

CVIPtools* Southern Illinois U http://ww. ee. si ue. edu/ CVI Pt ool s/

L abol mage* Geneva U http://cui ww. uni ge. ch/ ~vi si on/

Labol mage/ | abo. ht m

TN-Image* Thomas J. Nelson http://1asl. ninds. ni h.gov/tni mage-
manual / t ni mage- manual . ht il

1.5 Mathematical systems

In recent years, a number of mathematical systems have been developed. These offer what
isvirtually aword-processing system for mathematicians and many are screen-based using
aWindows system. The advantage of these systems is that you can transpose mathematics
pretty well directly from textbooks, and see how it works. Code functionality isnot obscured
by the use of data structures, though this can make the code appear cumbersome. A major
advantage is that the system provides the low-level functionality and data visualisation
schemes, allowing the user to concentrate on techniques alone. Accordingly, these systems
afford an excellent route to understand, and appreciate, mathematical systems prior to
development of application code, and to check the final code functions correctly.

1.5.1 Mathematical tools

Mathcad, Mathematica, Maple and Matlab are amongst the most popular of current tools.
There have been surveys that compare their efficacy, but it is difficult to ensure precise
comparison due to the impressive speed of development of techniques. Most systems have
their protagonists and detractors, as in any commercial system. There are many books
which use these packages for particular subjects, and there are often handbooks as addenda
to the packages. We shall use both Matlab and Mathcad throughout this text as they are
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perhaps the two most popular of the mathematical systems. We shall describe Matlab later,
asit isdifferent from Mathcad, though the aim is the same. The website links for the main
mathematical packages are given in Table 1.3.

Table 1.3 Mathematical package websites

General

Math-Net-Linksto the Math-Net http: //ww. mat h- net . de/
Mathematical World (Germany)

Vendors

Mathcad MathSoft http://ww. mat hcad. con!
Mathematica Wolfram Research http://www. wri.com

Matlab Mathworks http://ww. mat hwor ks. conY

1.5.2 Hello Mathcad, Hello images!

The current state of evolution is Mathcad 2001; this adds much to version 6 which was
where the system became useful as it included a programming language for the first time.
Mathcad offers a compromise between many performance factors, and is available at low
cost. If you do not want to buy it, there was a free worksheet viewer called Mathcad
Explorer which operatesin read-only mode. Thereisan image processing handbook available
with Mathcad, but it does not include many of the more sophisticated feature extraction
techniques.

Mathcad uses worksheets to implement mathematical analysis. The flow of calculation
is very similar to using a piece of paper: calculation starts at the top of a document, and
flows left-to-right and downward. Datais available to later calculation (and to calculation
to the right), but is not available to prior calculation, much asis the case when calculation
is written manually on paper. Mathcad uses the Maple mathematical library to extend its
functionality. To ensure that equations can migrate easily from a textbook to application,
Mathcad usesaWY SIWY G (What You See IsWhat You Get) notation (its equation editor
is actually not dissimilar to the Microsoft Equation (Word) editor).

Images are actually spatial data, data which isindexed by two spatial co-ordinates. The
camera senses the brightness at a point with co-ordinates x, y. Usually, x and y refer to the
horizontal and vertical axes, respectively. Throughout thistext we shall work in orthographic
projection, ignoring perspective, where real world co-ordinates map directly to x and y co-
ordinates in an image. The homogeneous co-ordinate system is a popular and proven
method for handling three-dimensional co-ordinate systems (x, y and z where z is depth).
Since it is not used directly in the text, it is included as Appendix 1 (Section 9.1). The
brightness sensed by the camera is transformed to a signal which is then fed to the A/D
converter and stored as a value within the computer, referenced to the co-ordinates x, y in
the image. Accordingly, acomputer image isamatrix of points. For a greyscale image, the
value of each point is proportional to the brightness of the corresponding point in the scene
viewed, and imaged, by the camera. These points are the picture elements, or pixels.
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Consider, for example, the matrix of pixel valuesin Figure 1.13(a). This can be viewed
as a surface (or function) in Figure 1.13(b), or as an image in Figure 1.13(c). In Figure
1.13(c) the brightness of each point is proportional to the value of its pixel. This gives the
synthesised image of a bright square on adark background. The square is bright where the
pixels have a value around 40 brightness levels; the background is dark, these pixels have
avalue near 0 brightness levels. Thisimage is first given alabel, pi ¢, and then pi ¢ is
allocated, :=, to the matrix defined by using the matrix dialog box in Mathcad, specifying
amatrix with 8 rows and 8 columns. The pixel values are then entered one by one until the
matrix is complete (alternatively, the matrix can be specified by using a subroutine, but that
comes later). Note that neither the background, nor the square, has a constant brightness.
This is because noise has been added to the image. If we want to evaluate the performance
of acomputer vision technique on an image, but without the noise, we can simply remove
it (one of the advantages to using synthetic images). The matrix becomes an image when
it is viewed as a picture, as in Figure 1.13(c). This is done either by presenting it as a
surface plot, rotated by zero degrees and viewed from above, or by using Mathcad's picture
facility. As a surface plot, Mathcad allows the user to select a greyscale image, and the
patch plot option allows an image to be presented as point values.
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Figure 1.13 Synthesised image of a square

Mathcad stores matricesin row-column format. The co-ordinate system used throughout
thistext has x asthe horizontal axisand y asthe vertical axis (as conventional). Accordingly,
x is the column count and y is the row count so a point (in Mathcad) at co-ordinates x, y
is actually accessed as pi ¢y . Theoriginisat co-ordinatesx =0andy=0so pi Cg, ¢ is
the magnitude of the point at the origin and pi ¢, , isthe point at the third row and third
column and pi c3 , isthe point at the third column and fourth row, as shown in Code 1.1
(the points can be seen in Figure 1.13(a)). Sincethe originisat (0,0) the bottom right-hand
point, at the last column and row, has co-ordinates (7,7). The number of rows and the
number of columnsin a matrix, the dimensions of an image, can be obtained by using the
Mathcad r ows and col s functions, respectively, and again in Code 1.1.

pl Czy2:38 pl C3y2:45
rows(pic)=8 cols(pic)=8

Code 1.1 Accessing an image in Mathcad
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This synthetic image can be processed using the Mathcad programming language, which
can be invoked by selecting the appropriate dialog box. Thisallows for conventional f or ,
whi | e andi f statements, and the earlier assignment operator which is: = in non-code
sectionsisreplaced by — insections of code. A subroutine that inverts the brightness level
at each point, by subtracting it from the maximum brightness level in the original image,
isillustrated in Code 1.2. Thisusesf or loopsto index the rows and the columns, and then
calculates a new pixel value by subtracting the value at that point from the maximum
obtained by Mathcad's max function. When the whole image has been processed, the new
picture is returned to be assigned to the label newpi c. The resulting matrix is shown in
Figure 1.14(a). When this is viewed as a surface, Figure 1.14(b), the inverted brightness
levels mean that the square appears dark and its surroundings appear white, as in Figure
1.14(c).

New _pic: =|for x00..col s(pic)-1
for yOO..rows(pic)-1
newpi cturey , ~nmax(pic)-picy
newpi cture

Code 1.2 Processing image points in Mathcad

(@4 43 42 41 44 44 43 440
i3 43 42 43 44 43 43 447

2 44 7 6 8 9 42 440

@1 44 0 1 4 3 43 447
new_pic = H443 2 1 5 6 44 423
@3 44 6 4 3 5 43 440

B4 43 44 43 43 42 a4 448

Hi4 43 44 42 44 44 41 438

new_pic
(a) Matrix (b) Surface plot (c) Image

Figure 1.14 Image of a square after inversion

Routines can be formulated as functions, so they can be invoked to process a chosen
picture, rather than restricted to a specific image. Mathcad functions are conventional, we
simply add two arguments (one is the image to be processed, the other is the brightness to
be added), and use the arguments as local variables, to give the add function illustrated in
Code 1.3. To add avalue, we simply call the function and supply an image and the chosen
brightness level as the arguments.

add_val ue(inpic,value):=|for x 0..cols(inpic)-1
for y O0..rows(inpic)-1
newpi cturey y ~inpicy ,+val ue
newpi ct ure

Code 1.3 Function to add a value to an image in Mathcad
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Mathematically, for an image which is a matrix of N x N points, the brightness of the
pixelsin anew picture (matrix), N, is the result of adding b brightness values to the pixels
in the old picture, O, given by:

Nyy=Oxy+b OxyOLN (1.2)

Real images naturally have many points. Unfortunately, the Mathcad matrix dialog box
only alows matrices that are 10 rows and 10 columns at most, i.e. a 10 x 10 matrix. Real
images can be 512 x 512, but are often 256 x 256 or 128 x 128, this implies a storage
requirement for 262 144, 65536 and 16 384 pixels, respectively. Since Mathcad stores all
points as high precision, complex floating point numbers, 512 x 512 images require too
much storage, but 256 x 256 and 128 x 128 images can be handled with ease. Since this
cannot be achieved by the dialog box, Mathcad has to be ‘tricked’ into accepting an image
of thissize. Figure 1.15 shows the image of ahuman face captured by acamera. Thisimage
has been stored in Windows bitmap (.BMP) format. This can be read into a Mathcad
worksheet using the READBMP command (yes, capitals please! — Mathcad can’'t handle
r eadbnp), and is assigned to a variable. It isinadvisable to attempt to display this using
the Mathcad surface plot facility asit can be slow for images, and require alot of memory.

Face =

7875737983 777379797779 78

7471747779716671747979 77

70737977 74 64 55 55 66 78 77 81

7077 837766 5242 47 6374 75 80

7477 79 7053 37 29 37 5368 77 78

76 77 78 64 45 30 22 26 45 66 80 86

7579786043 281620487181 91

76 77 7048 36 24 12 21 5173 84 91

7576614033 2112245579 88 91

777655342716 921568493 95

7770452719 9 726618897 97

7360372618 5 732688895 99

7153342618 6 733678896103

(a) Part of original image as a matrix

New face =

158 155 153 159 163 157 153 159 159

154 151 154 157 159 151 146 151 154

150 153 159 157 154 144 135 135 146

150 157 163 157 146 132 122 127 143

154 157 159 150 133 117 109 117 133

156 157 158 144 125 110 102 106 125

155 159 158 140 123 108 96 100 128

156 157 150 128 116 104 92 101 131

155 156 141 120 113 101 92 104 135

157 156 135114 107 96 89 101 136

157150 125107 90 89 87 106 141

153140 117106 98 85 87 112148

151 133114106 98 86 87 113 147

(b) Part of processed image as a matrix

(c) Bitmap of original image

.r'"': -T-;_. -‘
-y

(d) Bitmap of processed image

Figure 1.15 Processing an image of a face
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It isbest to view animage using Mathcad' s picturefacility or to storeit using the WRI TEBMP
command, and then look at it using a bitmap viewer.

So if we are to make the image of the face brighter, by addition, by the routine in Code
1.3, viathe code in Code 1.4, the result is as shown in Figure 1.15. The matrix listingsin
Figure 1.15(a) and Figure 1.15(b) show that 80 has been added to each point (these only
show the top left-hand section of the image where the bright points relate to the blonde
hair, the dark points are the gap between the hair and the face). The effect will be to make
each point appear brighter as seen by comparison of the (darker) original image, Figure
1.15(c), with the (brighter) result of addition, Figure 1.15(d). In Chapter 3we will investigate
techniques which can be used to manipulate the image brightness to show the face in a
much better way. For the moment though, we are just seeing how Mathcad can be used, in
a simple way, to process pictures.

face :=READBMP(r hdar k)
newf ace :=add_val ue(face, 80)
WRI TEBMP(r hl i gh) :=newface

Code 1.4 Processing an image

Naturally, Mathcad was used to generate the image used to demonstrate the Mach band
effect; the code is given in Code 1.5. First, an image is defined by copying the face image
(from Code 1.4) to animagelabelled mach. Then, thef | oor function (which returnsthe
nearest integer less than its argument) is used to create the bands, scaled by an amount
appropriate to introduce sufficient contrast (the division by 21.5 gives six bands in the
image of Figure 1.4(a)). The cross-section and the perceived cross-section of the image
were both generated by Mathcad’'s X-Y plot facility, using appropriate code for the perceived
Cross-section.

face
for x00..col s(mach) -1
for yOO..rows(mach)-1

machy, x40 f | oor %@

mach
Code 1.5 Creating the Image of Figure 1.4(a)

mach
mach

Thetranglation of the Mathcad code into application can be rather prolix when compared
with the Mathcad version by the necessity to include low-level functions. Since these can
obscure the basic image processing functionality, Mathcad is used throughout this book to
show you how the techniques work. The translation to application code is perhaps easier
via Matlab (it offers direct compilation of the code). There is also an electronic version of
this book which is a collection of worksheets to help you learn the subject; and an example
Mathcad worksheet isgiven in Appendix 3 (Section 9.3). You can download these worksheets
fromthisbook’swebsite (ht t p: / / www. ecs. sot on. ac. uk/ ~nsn/ book/ ) and there
is alink to Mathcad Explorer there too. You can then use the algorithms as a basis for
developing your own application code. This provides a good way to verify that your code
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actually works: you can compare the results of your final application code with those of the
original mathematical description. If your final application code and the Mathcad
implementation are both correct, the results should be the same. Naturally, your application
code will be much faster than in Mathcad, and will benefit from the GUI you’ ve devel oped.

1.5.3 Hello Matlab!

Matlab is rather different from Mathcad. It is not a WY SIWY G system but instead it is
more screen-based. It was originally developed for matrix functions, hencethe ‘Mat’ in the
name. Like Mathcad, it offers a set of mathematical tools and visualisation capabilitiesin
a manner arranged to be very similar to conventional computer programs. In some users
views, aWY SIWY G system like Mathcad is easier to start with but there are a number of
advantages to Matlab, not least the potential speed advantage in computation and the
facility for debugging, together with a considerable amount of established support. Again,
there is an image processing toolkit supporting Matlab, but it is rather limited compared
with the range of techniques exposed in this text. The current version is Matlab 5.3.1, but
these systems evolve fast!

Essentially, Matlab is the set of instructions that process the data stored in aworkspace,
which can be extended by user-written commands. The workspace stores the different lists
of dataand these data can be stored in aMAT file; the user-written commands are functions
that are stored in M-files (files with extension .M). The procedure operates by instructions
at the command line to process the workspace data using either one of Matlab’s own
commands, or using your own commands. The results can be visualised as graphs, surfaces
or as images, as in Mathcad.

The system runs on Unix/Linux or Windows and on Macintosh systems. A student
version is available at low cost. There is no viewer available for Matlab, you have to have
access to a system for which it isinstalled. As the system is not based around worksheets,
we shall use a script which isthe simplest type of M-file, asillustrated in Code 1.6. To start
the Matlab system, type MATLAB at the command line. At the Matlab prompt (>>) type
chapt er 1 to load and run the script (given that the file chapt er 1. mis saved in the
directory you are working in). Here, we can see that there are no text boxes and so
comments are preceded by a%. The first command is one that allocates datato our variable
pi c. There is a more sophisticated way to input this in the Matlab system, but that is not
available here. The points are addressed in row-column format and the origin is at co-
ordinatesy = 1 and x = 1. So we then access these point pi c3 3 asthe third column of the
third row and pi ¢4, 3 is the point in the third column of the fourth row. Having set the
display facility to black and white, we can view the array pi ¢ as a surface. When the
surface, illustrated in Figure 1.16(a), is plotted, then Matlab has been madeto pause until
you press Ret ur n before moving on. Here, when you press Ret ur n, you will next see
the image of the array, Figure 1.16(b).

We can use Matlab’s own command to interrogate the data: these commands find usein
the M-files that store subroutines. An example routine is called after this. This subroutine
isstoredinafilecaledi nver t . mand isafunction that inverts brightness by subtracting
the value of each point from the array’s maximum value. The code is illustrated in Code
1.7. Note that this code uses f or loops which are best avoided to improve speed, using
Matlab’'svectorised operations (asin Mathcad), but are used here to make theimplementations
clearer to those with a C background. The whole procedure can actually be implemented
by the commandi nvert ed=max( max( pi c)) - pi c. Infact, one of Matlab’s assetsis
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%Chapter 1 Introduction (Hello Matlab) CHAPTER1. M
WNitten by: Mark S. Nixon

di sp(‘Wel come to the Chapterl script’)

di sp(‘ This worksheet is the conpanion to Chapter 1 and is an
i ntroduction.’)

disp(‘lIt is the source of Section 1.4.3 Hello Matlab.’)

di sp(‘ The worksheet follows the text directly and allows you to
process basic inmages.’)

di sp(‘Let us define a matrix, a synthetic conputer image called
pic.")

pic =[1 2 3 4 1 1 2 1;
2 2 3 2 1 2 2 1
3 1 38 39 37 36 3 1
4 1 45 44 41 42 2 1
1 2 43 44 40 39 1 3;
2 1 39 41 42 40 2 1;
1 2 1 2 2 3 1 1
1 2 1 3 1 1 4 2]

%i xel s are addressed in row colum format.

%Jsing x for the horizontal axis(a colum count), and y for the
vertical axis (a row

%count) then picture points are addressed as pic(y,x). The origin
is at co-ordinates

% 1,1), so the point pic(3,3) isonthe third rowand third col um;
the point pic(4,3)

%s on the fourth row, at the third colum. Let’s print them
disp (‘The elenment pic(3,3)is")

pic(3,3)

di sp(‘ The el enent pic(4,3)is")

pic(4,3)

%N’ Il set the output display to black and white
col ormap(gray);

%N\e can view the matrix as a surface plot

disp (‘W shall now view it as a surface plot (play with the
controls to see it in relief)’)

di sp(*When you are ready to nove on, press RETURN)
surface(pic);

%et’s hold a while so we can view it

pause;

% view it as an inmage

disp (‘W shall now view the array as an inmage’)

di sp(*When you are ready to nove on, press RETURN)
i mgesc(pic);

%et’s hold a while so we can view it

pause;

%et’s |look at the array’s dinmensions
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di sp(‘ The dinmensions of the array are’)
si ze(pic)

%ow let’s invoke a routine that inverts the inage

i nverted_pic=invert(pic);

%et’s print it out to check it

di sp(‘Wen we invert it by subtracting each point from the
maxi num we get’)

inverted_pic

%And view it

di sp(‘ And when viewed as an inmmge, we see’)

di sp(*When you are ready to nove on, press RETURN)

i mgesc(inverted_pic);

%et’s hold a while so we can view it pause;

di sp(‘We shall now read in a bitmap image, and view it’)

di sp(*When you are ready to nove on, press RETURN)

face=i nread(' rhdark. bnp’, * brp’ ) ;

i mgesc(face);

pause;

%Change fromunsi gned i nteger(unit8) to double precision so we can
process it

face=doubl e(face);

di sp(* Now we shall invert it, and view the inverted inmage’)
inverted_face=invert(face);

i mgesc(inverted_face);

di sp(‘ So we now know how to process inages in Matlab. We shall be
using this later!’)

Code 1.6 Matlab script for chapter 1

1 2 3 4 5 6 7 8
(a) Matlab surface plot (b) Matlab image

Figure 1.16 Matlab image visualisation
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a ‘profiler’ which allows you to determine exactly how much time is spent on different
parts of your programs. Naturally, there is facility for importing graphics files, which is
actually rather more extensive (i.e. it accepts a wider range of file formats) than available
in Mathcad. When images are used, this reveals that unlike Mathcad which stores all
variables as full precision real numbers, Matlab has a range of datatypes. We must move
from the unsigned integer datatype, used for images, to the double precision datatype to
allow processing as a set of real numbers. In these ways Matlab can, and will be used to
process images throughout this book. As with the Mathcad worksheets, there are Matlab
scripts available at the website for on-line tutorial support of the material in this book; an
abbreviated example worksheet is given in Appendix 4 (Section 9.4).

function inverted=invert(inmage)

%Subtract inage point brightness from maxi mum
%

% Usage: [new image] =i nvert (i nage)

%

% Paranmeters: inmage-array of points

%

% Aut hor: Mark S. Nixon

%get di nensi ons

[rows, col s]=size(imge);

% ind the maxinmm
maxi =max( max(i nage)) ;

%subtract inage points from maximum
for x=1:cols %address all colums
for y=1l:rows %address all rows
i nverted(y, x) =maxi -i mage(y, x);
end
end

Code 1.7 Matlab function (invert.m) to invert an image

1.6 Associated literature

1.6.1 Journals and magazines

Asin any academic subject, there are many sources of literature. The professional magazines
include those that are more systems oriented, like Image Processing and Advanced I maging.
These provide more general articles, and are often a good source of information about new
computer vision products. For example, Image Processing often surveys availabl e equi pment,
such as cameras and monitors, and provides a tabul ated listing of those available, including
some of the factors by which you might choose to purchase them. Advanced Imaging is
another professional journal that can cover material of commercial and academic interest.

Thereisawide selection of research journals— probably more than you can find in your
nearest library unlessit is particularly well stocked. These journals have different merits:
some are targeted at short papers only, whereas some have short and long papers; some are
more dedicated to the development of new theory whereas others are more pragmatic and
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focus more on practical, working, image processing systems. But it is rather naive to
classify journals in this way, since al journals welcome good research, with new ideas,
which has been demonstrated to satisfy promising objectives.

Themain research journalsinclude: |EEE Transactions on: Pattern Analysisand Machine
Intelligence (in later references this will be abbreviated to IEEE Trans. on PAMI); Image
Processing (IP); Systems, Man and Cybernetics (SMC); and Medical Imaging (there are
many more |EEE transactions, some of which sometimes publish papers of interest in
image processing and computer vision). The IEEE Transactions are usualy found in
(university) libraries since they are available at comparatively low cost. Computer Vision
and Image Understanding and Graphical Models and Image Processing arose from the
splitting of one of the subject’s earlier journals, Computer Vision, Graphics and Image
Processing (CVGIP), into two parts. Do not confuse Pattern Recognition (Pattern Recog.)
with Pattern Recognition Letters (Pattern Recog. Lett.), published under the aegis of the
Pattern Recognition Society and the International Association of Pattern Recognition,
respectively, since the latter contains shorter papers only. The International Journal of
Computer Visionisamore recent journal whereas Image and Vision Computing was established
in the early 1980s. Finally, do not miss out on the IEE Proceedings — Vision, Image and
Sgnal Processing and |EE Proceedings — Digital Techniques.

Some of the journals are now on-line but usually to subscribers only, in the UK through
Ingenta through BIDS (you need an account at Bath Information and Data Services at
http://ww. bi ds. ac. uk/ ). Academic Press appear to be mostly on-line now, including
Computer Vision and Image Understanding, Graphical Models and Image Processing and
Real-Timelmagingatht t p: / / ww. apnet . comi www/ j ournal /iv. htm http:/
[ www. apnet.com/ www/ journal/ip.htmandhttp:// www.
academ cpress. conf rti respectively.

1.6.2 Textbooks

There are many textbooksin thisarea. Increasingly, there are web versions, or web support,
as summarised in Table 1.4. This text aims to start at the foundation of computer vision,
and ends very close to a research level. Its content specifically addresses techniques for
image analysis, considering shape analysis in particular. Mathcad and Matlab are used as
a vehicle to demonstrate implementation, which is rarely considered in other texts. But
there are other texts, and these can help you to develop your interest in other areas of
computer vision.

This section includes only a selection of some of the texts. There are more than these,
some of which will be referred to in later chapters; each offers a particular view or insight
into computer vision and image processing. The introductory texts include: Fairhurst,
M. C.: Computer Vision for Robotic Systems (Fairhurst, 1988); Low, A.: Introductory
Computer Vision and Image Processing (Low, 1991); Teuber, J.: Digital Image Processing
(Teuber, 1993); and Baxes, G. A.: Digital Image Processing, Principles and Applications
(Baxes, (1994) which includes software and good coverage of image processing hardware.

Some of the main textbooks include: Marr, D.: Vision (Marr, 1982) which concerns
vision and visual perception (as previously mentioned); Jain, A. K.: Fundamentals of
Computer Vision (Jain, 1989) which is stacked with theory and technique, but omits
implementation and some image analysis, Sonka, M., Hllavac, V. and Boyle, R. Image
Processing, Analysis and Computer Vision (Sonka, 1998) offers more modern coverage of
computer vision including many more recent techniques, together with pseudocode
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Table 1.4 Web textbooks and homepages

This book’s Southampton U http://ww. ecs. soton. ac. uk/ ~msn/ book/
homepage

CVOnline Edinburgh U http://ww. dai . ed. ac. uk/ CVonl i ne/

Ad Oculos Imaging Source http://ww.thei magi ngsource.

com prod/|ink/adocul os. htm
Image Processing  Delft University http://ww. ph.tn.tudelft.nl/

Fundamentals Cour ses/ FI P/ nof rames/ fip. htm
World of Wolfram Research  htt p:// mat hwor | d. wol f ram com
Mathematics
Numerical Recipes Cambridge http://ww.nr.com

University Press
The Joy of Visual  York U http://ww.yorku.cal/research/
Perception vi si on/ eye/thejoy. htm
Machine Vision Penn State http://vision.cse.psu. edu/
homepage
Active Contours Oxford U http://ww.robots. ox. ac.
homepage uk/ ~cont our s/

implementation but omitting some image processing theory; Jain, R. C., Kasturi, R. and
Schunk, B. G.: Machine Vision (Jain, 1995) offers concise and modern coverage of 3D and
motion (there is an on-line website at ht t p: / / vi si on. cse. psu. edu/ with code
and images, together with corrections); Gonzalez, R. C. and Wintz, P.: Digital Image
Processing (Gonzal ez, 1987) hasmoretutorial element than many of the basically theoretical
texts; Rosenfeld, A. and Kak, A. C.: Digital Picture Processing (Rosenfeld and Kak, 1982)
is rather dated now, but is a well-proven text for much of the basic material; and Pratt, W.
K.: Digital Image Processing (Pratt, 1992) which was originally one of the earliest books
on image processing and, like Rosenfeld and Kak, is a well-proven text for much of the
basic material, particularly image transforms. Despite its name, the recent text called
Active Contours (Blake, 1998) concentrates rather more on models of motion and deformation
and probabalistic treatment of shape and motion, than on the active contours which we
shall find here. Assuch itisamore research text, reviewing many of the advanced techniques
to describe shapes and their motion. A recent text in this field, Image Processing — The
Fundamentals (Petrou, 1999) surveys the subject (as its title implies) from an image
processing viewpoint covering not only image transforms, but also restoration and
enhancement before edge detection. The latter of these is most appropriate for one of the
major contributorsto that subject. Also, Kasturi, R. and Jain, R. C. (eds): Computer Vision:
Principles (Kasturi, 1991a) and Computer Vision: Advances and Applications (Kasturi,
1991b) presents a collection of seminal papersin computer vision, many of which are cited
intheir original form (rather than inthisvolume) in later chapters. There are other interesting
edited collections (Chellappa, 1992), one edition (Bowyer, 1996) honoursAzriel Rosenfeld’'s
many contributions.

Books which include a software implementation include: Lindley, C. A.: Practical
Image Processing in C (Lindley, 1991) and Pitas, |.: Digital Image Processing Algorithms
(Pitas, 1993) which both cover basic image processing and computer vision algorithms.
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Parker, J. R.: Practical Computer Vision Using C (Parker, 1994) offersan excellent description
and implementation of low-level image processing tasks within awell-devel oped framework,
but again does not extend to some of the more recent and higher level processes in
computer vision and includes little theory though there is more in his later text Image
Processing and Computer Vision (Parker, 1996). A recent text Computer Vision and Image
Processing (Umbaugh, 1998) takes an applications-oriented approach to computer vision
and image processing, offering a variety of techniques in an engineering format, together
with a working package with a GUI. One recent text concentrates on Java only, Image
Processing in Java (Lyon, 1999), and concentrates more on image processing systems
implementation than on feature extraction (giving basic methods only). As already mentioned,
the newest textbook (Efford, 2000) offers Java implementation, though it omits much of
the mathematical detail making it alighter (more enjoyable?) read. Masters, T.: Signal and
Image Processing with Neural Networks — A C++ Sourcebook (Masters, 1994) offers good
guidance in combining image processing technique with neural networks and gives code
for basic image processing technique, such as frequency domain transformation.

There are now a number of books on the web as given in Table 1.4. This book’s
homepage has a link to these web-based texts, and will be kept as up to date as possible.
The CVOnline site describes agreat deal of technique, whereas the Ad Ocul os page describes
the book that supports the software. Image Processing Fundamentals is a textbook for
image processing. The World of Mathematics comes from Wolfram research (the distributors
of Mathematica) and gives an excellent web-based reference for mathematics. Numerical
Recipes is one of the best established texts in signal processing. It is beautifully written,
with examples and implementation and is on the web too. The Joy of Perception gives you
web access to the processes involved in human vision (and the worst title?).

Other textbooks include: Russ, J. C.: The Image Processing Handbook (Russ, 1995)
which contains much basi ¢ technique with excellent visual support, but without any supporting
theory, and has many practical details concerning image processing systems; Davies, E. R.:
Machine Vision: Theory, Algorithms and Practicalities (Davies, 1994) which is targeted
primarily at (industrial) machine vision systems but covers much basic technique, with
pseudocode to describe their implementation; and Awcock, G. J. and Thomas, R.: Applied
Image Processing (Awcock, 1995) which again has much practical detail concerning image
processing systems and implementation.

1.6.3 The web

The web entries continue to proliferate. A list of web pagesis givenin Table 1.5 and these
give you a starting point from which to build up your own list of favourite bookmarks. All
these links, and more are available at this book’s homepage htt p: // www. ecs.

sot on. ac. uk/ ~men/ book/) . This will be checked regularly and kept up to date.
Theweb entriesin Table 1.5 start with the Carnegie Mellon homepage (called the Computer
Vision Homepage). The Computer Vision Online CVOnline homepage has been brought to
us by Bob Fisher from the University of Edinburgh. There's a host of material there,
including its description. Their group a so proves the Hypermedialmage Processing Website
and in their words: ‘HIPR2 is a free www-based set of tutorial materials for the 50 most
commonly used image processing operators. It contains tutorial text, sample results and
Javademonstrations of individual operatorsand collections.’ It coversalot of basic material
and shows you the results of various processing options. A big list of active groups can be
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Table 1.5 Computer vision and image processing websites

Name/Scope Host Address

Vision and its Applications
The Computer Vision  Carnegie MellonU  http://wwv. cs. cnu. edu/ af s/ cs/ proj ect/

Homepage cil/ftp/htm /vision.htm

Computer Vision Edinburgh U http://ww. dai . ed. ac. uk/ CVonl i ne/

Online

Hypermedia Image Edinburgh U http://ww. dai . ed. ac. uk/ H PR2

Processing Reference 2

Image Processing PEIPA http://pei pa. essex. ac. uk/

Archive

Pattern Recognition Delft U http://ww. ph.tn.tudelft.nl/
PRI nf o. ht m

3D Reconstruction Stanford U http://bioconp. stanford. edu/
3dreconstruction/index. htm

Medical Imaging Leeds U http://agora.leeds. ac. uk/comr/
resources/|inks. htm

Face Recognition Groningen U http://ww. cs.rug.nl/~peterkr/
FACE/ f ace. ht ml

General

Signal Processing Rice http://spib.rice.edu/spib.htmnl

Information Base

Image formats and Edinburgh U http://ww. dcs. ed. ac. uk/ % Enxr / gf x/

reading software

Computer Graphics U of Southern http:// manbo. ucsc. edu/ psl/cg. htm

Cdlifornia

Neural Networks Southampton U http://ww.isis.ecs.soton.
ac. uk/ resour ces/ nni nf o/

Human and Animal VisionScience http://ww. vi si onsci ence.

Vision com Vi si onSci ence. htm

Newsgroups

Computer Vision Vision List conp. ai . vision sci.inmage. processing

Image Processing

found at the Computer Vision homepage and searchers like Google or Altavista can be a
boon when trawling the web. If your university has access to the web-based indexes of
published papers, the ISl index gives you journal papers (and allows for citation search),
but unfortunately including medicine and science (where you can get papers with 30+
authors). Alternatively, Compendex and INSPEC include papers more rel ated to engineering,
together with papers in conferences, and hence vision (INSPEC in particular), but without
the ability to search citations. Citeseer is increasingly useful. Two newsgroups can be
found at the addresses given in Table 1.5 to give you what is perhaps the most up-to-date
information.
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2.1 Overview

In this chapter, we shall look at the basic theory which underlies image formation and
processing. We shall start by investigating what makes up a picture and then look at the
consequences of having a different number of points in the image. We shall also look at
images in a different representation, known as the frequency domain. In this, as the name
implies, we consider an image as a collection of frequency components. We can actually
operate on imagesin the frequency domain and we shall al'so consider different transformation
processes. These allow us different insights into images and image processing which will
be used in later chapters not only as a means to develop techniques, but also to give faster
(computer) processing.

Table 2.1 Overview of Chapter 2

Main topic

Sub topics

Main points

Images

Fourier
transform
theory

Conseguences
of transform
approach

Effects of differing numbers of
points and of number range for
those points.

What is meant by the frequency
domain, how it applies to discrete
(sampled) images, how it allows us
to interpret images and the samp-
ling resolution (number of points).

Basic properties of Fourier trans-

forms, other transforms, frequency
domain operations.

Greyscale, colour, resolution, dynamic
range, storage.

Continuous Fourier transform and
properties, sampling criterion, discrete
Fourier transform and properties, image
transformation, transform duals.

Translation (shift), rotation and scaling.
Walsh, Hartley, discrete cosine and wavel et
transforms. Filtering and other operations.

2.2 Image formation

A computer image is amatrix (atwo-dimensional array) of pixels. The value of each pixel
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is proportional to the brightness of the corresponding point in the scene; its value is often
derived from the output of an A/D converter. The matrix of pixels, the image, is usually
square and we shall describe an image as N x N m-bit pixels where N is the number of
points along the axes and m controls the number of brightness values. Using m hits gives
arange of 2™ values, ranging from 0 to 2™ — 1. If mis 8 this gives brightness |evels ranging
between 0 and 255, which are usually displayed as black and white, respectively, with
shades of grey in between, as they are for the greyscale image of awalking man in Figure
2.1(a). Smaller values of mgive fewer available levels reducing the avail able contrast in an
image.

The ideal value of mis actualy related to the signal to noise ratio (bandwidth) of the
camera. Thisis stated as approximately 45 dB and since there are 6 dB per hit, then 8 bits
will cover the available range. Choosing 8-bit pixels has further advantagesin that it isvery
convenient to store pixel values as bytes, and 8-bit A/D converters are cheaper than those
with a higher resolution. For these reasons images are nearly always stored as 8-bit bytes,
though some applications use adifferent range. The relativeinfluence of the 8 bitsis shown
in the image of the walking subject in Figure 2.1. Here, the least significant bit, bit O
(Figure 2.1(b)), carries the least information (it changes most rapidly). As the order of the
bits increases, they change less rapidly and carry more information. The most information
is carried by the most significant bit, bit 7 (Figure 2.1(i)). Clearly, the fact that thereis a
walker in the original image can be recognised much better from the high order bits, much
more reliably than it can from the other bits (notice too the odd effects in the bits which
would appear to come from lighting at the top left corner).

Colour images follow a similar storage strategy to specify pixels’ intensities. However,
instead of using just one image plane, colour images are represented by three intensity
components. These components generally correspond to red, green, and blue (the RGB
model) although there are other colour schemes. For example, the CMYK colour model is
defined by the components cyan, magenta, yellow and black. In any colour mode, the
pixel’s colour can be specified in two main ways. First, you can associate an integer value,
with each pixel, that can be used as an index to a table that stores the intensity of each
colour component. The index is used to recover the actual colour from the table when the
pixel is going to be displayed, or processed. In this scheme, the table is known as the
image's palette and the display is said to be performed by colour mapping. The main
reason for using this colour representation is to reduce memory requirements. That is, we
only store a single image plane (i.e. the indices) and the palette. This is less than storing
the red, green and blue components separately and so makes the hardware cheaper and it
can have other advantages, for example when theimage istransmitted. The main disadvantage
is that the quality of the image is reduced since only a reduced collection of colours is
actually used. An alternative to represent colour is to use several image planes to store the
colour components of each pixel. This schemeisknown astrue colour and it represents an
image more accurately, essentially by considering more colours. The most common format
uses 8 bits for each of the three RGB components. These images are known as 24-hit true
colour and they can contain 16 777 216 different colours simultaneously. In spite of requiring
significantly more memory, the image quality and the continuing reduction in cost of
computer memory make this format a good alternative, even for storing the image frames
from avideo sequence. Of course, agood compression algorithm is always helpful in these
cases, particularly if images need to be transmitted on anetwork. Here we will consider the
processing of grey level images only since they contain enough information to perform
feature extraction and image analysis. Should the image be originally colour, we will
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Figure 2.1 Decomposing an image into its bits
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consider processing its luminance only, often computed in a standard way. In any case, the
amount of memory used is always related to the image size.

Choosing an appropriate value for the image size, N, is far more complicated. We want
N to be sufficiently large to resolve the required level of spatial detail intheimage. If Nis
too small, the image will be coarsely quantised: lines will appear to be very ‘blocky’ and
some of the detail will be lost. Larger values of N give more detail, but need more storage
space and the images will take longer to process, since there are more pixels. For example,
with reference to the image of the walking subject in Figure 2.1(a), Figure 2.2 shows the
effect of taking the image at different resolutions. Figure 2.2(a) is a 64 x 64 image, that
shows only the broad structure. It is impossible to see any detail in the subject’s face.
Figure 2.2(b) is a 128 x 128 image, which is starting to show more of the detail, but it
would be hard to determine the subject’s identity. The original image, repeated in Figure
2.2(c), isa256 x 256 image which shows a much greater level of detail, and the subject can
be recognised from the image. (These images actually come from a research programme
aimed to use computer vision techniques to recognise people by their gait; face recognition
would be of little potential for the low resolution image which is often the sort of image
that security cameras provide.) If the image was a pure photographic image, some of the
much finer detail like the hair would show up in much greater detail. This is because the
grainsin film are very much smaller than the pixels in a computer image. Note that the
images in Figure 2.2 have been scaled to be the same size. As such, the pixelsin Figure
2.2(a) are much larger than in Figure 2.2(c) which emphasises its blocky structure. The
most common choices are for 256 x 256 or 512 x 512 images. These require 64 and 256
Kbytes of storage, respectively. If we take a sequence of, say, 20 images for motion
analysis, we will need more than 1 Mbyte to store the 20 256 x 256 images, and more than
5 Mbytes if the images were 512 x 512. Even though memory continues to become
cheaper, this can still impose high cost. But it isnot just cost which motivates an investigation
of the appropriate image size, the appropriate value for N. The main question is: are there
theoretical guidelines for choosing it? The short answer is‘yes'; the long answer isto ook
at digital signal processing theory.

(a) 64 x 64 (b) 128 x 128 () 256 x 256

Figure 2.2 Effects of differing image resolution

The choice of sampling frequency is dictated by the sampling criterion. Presenting the
sampling criterion requires understanding how we interpret signalsin the frequency domain.
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Theway inistolook at the Fourier transform. Thisis ahighly theoretical topic, but do not
let that put you off. The Fourier transform has found many uses in image processing and
understanding; it might appear to be a complex topic (that’s actually a horrible pun!) but
it is a very rewarding one to study. The particular concern is the appropriate sampling
frequency of (essentially, the valuefor N), or the rate at which pixel values are taken from,
a camera’s video signal.

2.3 The Fourier transform

The Fourier transform is a way of mapping a signal into its component frequencies.
Frequency measuresin hertz (Hz) the rate of repetition with time, measured in seconds (s);
time is the reciprocal of frequency and vice versa (hertz = 1/second; s = 1/Hz).

Consider amusic centre: the sound comes from a CD player (or atape) and is played on
the speakers after it has been processed by the amplifier. On the amplifier, you can change
the bass or the treble (or the loudness which is a combination of bass and treble). Bass
covers the low frequency components and treble covers the high frequency ones. The
Fourier transform is a way of mapping the signal from the CD player, which is a signal
varying continuously with time, into its frequency components. When we have transformed
the signal, we know which frequencies made up the original sound.

So why do we do this? We have not changed the signal, only its representation. We can
now visualise it in terms of its frequencies, rather than as a voltage which changes with
time. But we can now change the frequencies (because we can see them clearly) and this
will change the sound. If, say, there is hiss on the original signal then since hissis a high
frequency component, it will show up as a high frequency component in the Fourier
transform. So we can see how to remove it by looking at the Fourier transform. If you have
ever used a graphic equaliser, then you have done this before. The graphic equaliser is a
way of changing a signal by interpreting its frequency domain representation; you can
selectively control the frequency content by changing the positions of the controls of the
graphic equaliser. The equation which defines the Fourier transform, Fp, of asigna p, is
given by a complex integral:

o) = [ T ptyeietdt 2.1)

where: Fp(w) is the Fourier transform;
w is the angular frequency, w = 2mtf measured in radians/s (where the frequency
f isthe reciprocal of timet, f = (1/t);
j is the complex variable (electronic engineers prefer j to i since they cannot
confuseit with the symbol for current — perhaps they don’t want to be mistaken for
mathematicians!)
p(t) is a continuous signal (varying continuously with time); and
e = cos(wt) — j sin(wt) gives the frequency components in X(t).

We can derive the Fourier transform by applying Equation 2.1 to the signal of interest.
We can see how it works by constraining our analysis to simple signals. (We can then say
that complicated signals are just made up by adding up lots of simple signals.) If we take
a pulse which is of amplitude (size) A between when it starts at time t = — T/2 and when
itendsatt = T/2, and is zero elsewhere, the pulseis:
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A if-T/2<t<T/2

p(t) = (2.2)

0 otherwise

To obtain the Fourier transform, we substitute for p(t) in Equation 2.1. p(t) = A only for a
specified time so we choose the limits on the integral to be the start and end points of our
pulse (it is zero elsewhere) and set p(t) = A, its value in this time interval. The Fourier
transform of this pulse is the result of computing:

T/2

Fp(w) = I Aei9tt (2.3)

-T/2

When we solve this we obtain an expression for Fp(w):

Ae—i0T/2 _ pgioT/2
jw

Fp(@) = -

By simplification, using the relation sin (6) = (¢® — €9)/2j, then the Fourier transform of
the pulseis:

(2.4)

2A . Ol O .
=—9n — if w#z0
AT if w=0

Thisisaversion of the sinc function, sinc(x) = sin(x)/x. The original pulse and itstransform
areillustrated in Figure 2.3. Equation 2.5 (as plotted in Figure 2.3(a)) suggests that a pulse
is made up of alot of low frequencies (the main body of the pulse) and a few higher
frequencies (which give usthe edges of the pulse). (The range of frequenciesis symmetrical
around zero frequency; negative frequency is a necessary mathematical abstraction.) The
plot of the Fourier transform is actually called the spectrum of the signal, which can be
considered akin with the spectrum of light.

Folo)

p() ¢

t w
(a) Pulse of amplitude A=1 (b) Fourier transform

Figure 2.3 A pulse and its Fourier transform

So what actually isthis Fourier transform? It tells us what frequencies make up atime
domain signal. The magnitude of the transform at a particular frequency is the amount of
that frequency in the original signal. If we collect together sinusoidal signals in amounts
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specified by the Fourier transform, then we should obtain the originally transformed signal.
This process is illustrated in Figure 2.4 for the signal and transform illustrated in Figure
2.3. Note that since the Fourier transform is actually a complex number it has real and
imaginary parts, and we only plot the real part here. A low frequency, that for w =1, in
Figure 2.4(a) contributes a large component of the original signal; a higher frequency, that
for w = 2, contributes less as in Figure 2.4(b). This is because the transform coefficient is
lessfor w=2thanitisfor w=1. Thereisavery small contribution for w= 3, Figure 2.4(c),
though there is more for w = 4, Figure 2.4(d). This is because there are frequencies for
which thereisno contribution, where the transform is zero. When these signalsare integrated,
we achieve a signal that looks similar to our original pulse, Figure 2.4(€). Here we have
only considered frequencies from w = —6 to w = 6. If the frequency range in integration

Re (Fp(1)-e/")

Re (Fp(2) 'ej'zlt) \\/i/\i\/

1L t 1 t

(a) Contribution for w=1 (b) Contribution for w=2

Re (Fp(3)-€’*") —F -+ Re (Fp(4)-e"*")

NN\ /N
VNV VN

t

(c) Contribution for w=3

t

(d) Contribution for w =4

6
I Fp(w) De’®%dey
-6

t

(e) Reconstruction by integration

Figure 2.4 Reconstructing a signal from its transform
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waslarger, more high frequencieswould be included, leading to amore faithful reconstruction
of the original pulse.

The result of the Fourier transform is actually a complex number. As such, it is usually
represented in terms of its magnitude (or size, or modulus) and phase (or argument). The
transform can be represented as:

J’_oo p(t)e™'“'dt = Re[ Fp(w)] +j Im[ Fp(w)] (2.6)

where Re(w) and Im(w) are the real and imaginary parts of the transform, respectively. The
magnitude of the transform is then:

Um p(t)e i*dt| = y/Re[Fp(w)]? + Im[Fp(w)]? 2.7)
and the phase is:
” it — gant IMFP(w)]
< I_ ] p(t)e~i“dt = tan 1W (2.8)

where the signs of the real and the imaginary components can be used to determine which
quadrant the phase is in (since the phase can vary from 0 to 21t radians). The magnitude
describes the amount of each frequency component, the phase describes timing, when the
frequency components occur. The magnitude and phase of the transform of a pulse are
shown in Figure 2.5 where the magnitude returns a positive transform, and the phase is
either 0 or 21t radians (consistent with the sine function).

| F(w) | +
_ arg (Fp(w)

(a) Magnitude (b) Phase

Figure 2.5 Magnitude and phase of Fourier transform of pulse

In order to return to the time domain signal, from the frequency domain signal, we
requiretheinverse Fourier transform. Naturally, thisisthe process by which we reconstructed
the pulse from itstransform components. Theinverse FT calculates p(t) from Fp(w) according
to:

p(t) = %{ J‘_ " Fp(w)edw (2.9)
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Together, Equation 2.1 and Equation 2.9 form arelationship known as atransform pair that
allows us to transform into the frequency domain, and back again. By this process, we can
perform operationsin the frequency domain or in the time domain, since we have away of
changing between them. One important process is known as convolution. The convolution
of one signal p4(t) with another signal p,(t), where the convolution process denoted by *,
is given by the integral

PO = [ T () pa(t - 1) (2.10)

Thisisactually the basis of systems theory where the output of a system isthe convolution
of astimulus, say p;, and a system’s response, p,. By inverting the time axis of the system
response, to give po(t — 1) we obtain a memory function. The convolution process then
sums the effect of a stimulus multiplied by the memory function: the current output of the
system isthe cumulative response to astimulus. By taking the Fourier transform of Equation
2.10, where the Fourier transformation is denoted by F, the Fourier transform of the
convolution of two signalsis

F[po(t) 0P, (8)] = J’ @l’ 01 (1) P (t — T)dr Ep‘j“‘dt
2.11
. e e (211)
:J' EI P, (t — T) e~i¢tdt iy (7)dr
- LI O

Now since F[ py(t — T)] = €797 Fp,(w) (to be considered later in Section 2.6.1), then

F[ P1 (t) tp2 (t)] = J._w sz (w) pl(-[)e—jwrd.[

= Fpx (o) " pu (e (2.12)

= Fpy(w) % Fpy(w)

As such, the frequency domain dual of convolution is multiplication; the convolution

integral can be performed by inverse Fourier transformation of the product of the transforms

of the two signals. A frequency domain representation essentially presents signals in a

different way but it also provides a different way of processing signals. Later we shall use

the duality of convolution to speed up the computation of vision algorithms considerably.
Further, correlation is defined to be

PO TR0 = [ (Pt ) (2.13)

where ) denotes correlation (© is another symbol which is used sometimes, but there is
not much consensus on this symbol). Correlation gives a measure of the match between the
two signals p,(w) and p1(w). When p,(w) = p1(w) we are correlating asignal with itself and
the process is known as autocorrelation. We shall be using correlation later, to find things
in images.
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Before proceeding further, we also need to define the delta function, which can be
considered to be a function occurring at a particular time interval:

1 if t=1
delta(t — 1) = . (2.14)
0 otherwise
The relationship between a signal’s time domain representation and its frequency domain
version is also known as atransform pair: the transform of a pulse (in the time domain) is
a sinc function in the frequency domain. Since the transform is symmetrical, the Fourier
transform of a sinc function is a pulse.

There are other Fourier transform pairs, asillustrated in Figure 2.6. First, Figures 2.6(a)
and (b) show that the Fourier transform of a cosine function is two points in the frequency
domain (at the same value for positive and negative frequency) — we expect this since there
isonly one frequency in the cosine function, the frequency shown by itstransform. Figures
2.6(c) and (d) show that the transform of the Gaussian function is another Gaussian function;
this illustrates linearity. Figure 2.6(€) is a single point (the delta function) which has a
transform that is an infinite set of frequencies, Figure 2.6(f), an alternative interpretation
isthat a delta function contains an equal amount of al frequencies. This can be explained
by using Equation 2.5 where if the pulse is of shorter duration (T tends to zero), then the
sinc function iswider; asthe pulse becomesinfinitely thin, the spectrum becomesinfinitely
flat.

Finally, Figures 2.6(g) and (h) show that the transform of a set of uniformly spaced delta
functions is another set of uniformly spaced delta functions, but with a different spacing.
The spacing in the frequency domain is the reciprocal of the spacing in the time domain.
By way of a (non-mathematical) explanation, let us consider that the Gaussian function in
Figure 2.6(c) is actually made up by summing a set of closely spaced (and very thin)
Gaussian functions. Then, since the spectrum for adeltafunction isinfinite, asthe Gaussian
function is stretched in the time domain (eventually to be a set of pulses of uniform height)
we obtain a set of pulsesin the frequency domain, but spaced by the reciprocal of the time
domain spacing. Thistransform pair is actually the basis of sampling theory (whichweaim
to use to find a criterion which guides us to an appropriate choice for the image size).

2.4 The sampling criterion

The sampling criterion specifiesthe condition for the correct choice of sampling frequency.
Sampling concerns taking instantaneous val ues of a continuoussignal, physically these are
the outputs of an A/D converter sampling a camera signal. Clearly, the samples are the
values of the signal at sampling instants. This is illustrated in Figure 2.7 where Figure
2.7(a) concerns taking samples at a high frequency (the spacing between samplesis low),
compared with the amount of change seen in the signal of which the samples are taken.
Here, the samples are taken sufficiently fast to notice the slight dip in the sampled signal.
Figure 2.7(b) concerns taking samples at a low frequency, compared with the rate of
change of (the maximum frequency in) the sampled signal. Here, the slight dip in the
sampled signal is not seen in the samples taken from it.

We can understand the process better in the frequency domain. Let us consider atime-
variant signal which has a range of frequencies between —f,, and f,, as illustrated in
Figure 2.9(b). This range of frequencies is shown by the Fourier transform where the
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Figure 2.6 Fourier transform pairs
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Figure 2.7 Sampling at different frequencies

signal’s spectrum exists only between these frequencies. This function is sampled every
A s thisisasampling function of spikes occurring every A; s. The Fourier transform of the
sampling function is a series of spikes separated by fgmpe = 1/A; Hz. The Fourier pair of
this transform was illustrated earlier, Figures 2.6(g) and (h).

The sampled signal is the result of multiplying the time-variant signal by the sequence
of spikes, this gives samples that occur every A; s, and the sampled signal is shown in
Figure 2.9(a). These are the outputs of the A/D converter at sampling instants. The frequency
domain analogue of this sampling process is to convolve the spectrum of the time-variant
signal with the spectrum of the sampling function. Convolving the signal's, the convolution
process, implies that we take the spectrum of one, flip it aong the horizontal axis and then
dlide it across the other. Taking the spectrum of the time-variant signal and sliding it over
the spectrum of the spikes, results in a spectrum where the spectrum of the original signal
is repeated every 1/A; Hz, fgmpein Figures 2.9(b—d). If the spacing between samplesis 4,
the repetitions of the time-variant signal’s spectrum are spaced at intervals of 1/4;, asin
Figure 2.9(b). If the sample spacing is small, then the time-variant signal’s spectrum is
replicated close together and the spectra collide, or interfere, as in Figure 2.9(d). The
spectra just touch when the sampling frequency is twice the maximum frequency in the
signal. If the frequency domain spacing, fempie, IS More than twice the maximum frequency,
fmax, the spectra do not collide or interfere, asin Figure 2.9(c). If the sampling frequency
exceeds twice the maximum frequency then the spectra cannot collide. Thisisthe Nyquist
sampling criterion:

In order to reconstruct a signal from its samples, the sampling frequency must
be at least twice the highest frequency of the sampled signal.

If we do not obey Nyquist’'s sampling theorem the spectra collide. When we inspect the
sampled signal, whose spectrum is within —f,, to ., Wherein the spectra collided, the
corrupt spectrum impliesthat by virtue of sampling we have ruined some of the information.
If we were to attempt to reconstruct a signal by inverse Fourier transformation of the
sampled signal’s spectrum, processing Figure 2.9(d) would lead to the wrong signal whereas
inverse Fourier transformation of the frequencies between —f ., and f iN Figures 2.9(b)
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and (c) would lead back to the original signal. This can be seen in computer images as
illustrated in Figure 2.8 which show atexture image (a chain-link fence) taken at different
spatial resolutions. The lines in an original version are replaced by indistinct information
in the version sampled at low frequency. Indeed, it would be difficult to imagine what
Figure 2.8(c) represents, whereas it is much more clear in Figures 2.8(a) and (b). Also, the
texturein Figure 2.8(a) appears to have underlying distortion (the fence appears to be bent)
whereas Figures 2.8(b) and (c) do not show this. Thisis the result of sampling at too low
a frequency. If we sample at high frequency, the interpolated result matches the original
signal. If we sample at too low a frequency we get the wrong signal.

(a) Original image (b) Medium resolution (c) Low resolution — aliased

Figure 2.8 Aliasing in sampled imagery

Obtaining the wrong signal is called aliasing: our interpolated signal is an alias of its
proper form. Clearly, we want to avoid aliasing, so according to the sampling theorem we
must sample at twice the maximum frequency of the signal coming out of the camera. The
maximum frequency is defined to be 5.5 MHz so we must sample the camera signal at
11 MHz. (For information, when using a computer to analyse speech we must sample the
speech at aminimum frequency of 12 kHz since the maximum speech frequency is 6 kHz.)
Given thetiming of avideo signal, sampling at 11 MHz implies aminimum image resolution
of 576 x 576 pixels. Thisis unfortunate: 576 is not an integer power of two which has poor
implicationsfor storage and processing. Accordingly, since many image processing systems
have a maximum resolution of 512 x 512, they must anticipate aliasing. This is mitigated
somewhat by the observations that:

1. globaly, the lower frequencies carry more information whereas locally the higher
frequencies contain more information so the corruption of high frequency information
is of less importance; and

2. thereislimited depth of focusin imaging systems (reducing high frequency content).

But aliasing can, and does, occur and we must remember this when interpreting images.
A different form of this argument applies to the images derived from digital cameras. The
basic argument that the precision of the estimates of the high order frequency components
is dictated by the relationship between the effective sampling frequency (the number of
image points) and the imaged structure, naturally still applies.
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The effects of sampling can often be seen in films, especially in the rotating wheels of
cars, asillustrated in Figure 2.10. This shows a wheel with a single spoke, for simplicity.
The film is a sequence of frames starting on the left. The sequence of frames plotted in
Figure 2.10(a) is for awheel which rotates by 20° between frames, asillustrated in Figure
2.10(b). If the wheel is rotating much faster, by 340° between frames, as in Figure 2.10(c)
and Figure 2.10(d) then the wheel will appear to rotate the other way. If the wheel rotates
by 360° between frames, then it will appear to be stationary. In order to perceive the wheel
as rotating forwards, then the rotation between frames must be 180° at most. This is
consistent with sampling at at least twice the maximum frequency. Our eye can resolve this
in films (when watching afilm, | bet you haven’t thrown awobbly because the car’s going
forwards whereas the wheels say it’s going the other way) since we know that the direction
of the car must be consistent with the motion of its wheels, and we expect to see the wheels
appear to go the wrong way, sometimes.

20°

 HIEEEESSEEEEESEESEEEEEESEEEEEEEEEEEEEEEEN] &

DIOOICICICIBION [

(a) Oversampled rotating wheel (b) Slow rotation

340°

OO0 [

(c) Undersampled rotating wheel

(d) Fast rotation

Figure 2.10 Correct and incorrect apparent wheel motion
2.5 The discrete Fourier transform (DFT)

2.5.1 One-dimensional transform

Given that image processing concerns sampled data, we require a version of the Fourier
transform which handles this. Thisis known as the discrete Fourier transform (DFT). The
DFT of a set of N points p, (sampled at a frequency which at least equals the Nyquist
sampling rate) into sampled frequencies Fp, is:

-02nd
_ 1 N “lon o
Fpy = N 2, Pxe (2.15)
This is a discrete analogue of the continuous Fourier transform: the continuous signal is
replaced by a set of samples, the continuous frequencies by sampled ones, and the integral
isreplaced by a summation. If the DFT is applied to samples of a pulse in a window from
sample 0 to sample N/2 — 1 (when the pulse ceases), then the equation becomes:
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Ny
Fp, = —= ZZ ¢ IoN T
JN x=0
And since the sum of a geometric progression can be evaluated according to:
n ag(1—rm)
k — <0
kgo Al =17

the discrete Fourier transform of a sampled pulse is given by:

0, s D
- A M- O

Fp, =
Pu «/WD _jbeng, O
1 e ON D

By rearrangement, we obtain:

Fp, = szggl o sin(ru/2)
u
4/|\| sin(Tu/N)

The modulus of the transform is:

_ sin(tw/2)
IFpu 1= 75 ‘ Sn(u/N)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

since the magnitude of the exponential functionis 1. The original pulseisplotted in Figure
2.11(a) and the magnitude of the Fourier transform plotted against frequency is given in

Figure 2.11(b).

Lifx<5 3 o o o @

0 otherwise | Fpu |
[N N ] [ ]
[N X} -—0—040—0—
T—¢ 90—
X u
(a) Sampled pulse (b) DFT of sampled pulse

Figure2.11 Transform pair for sampled pulse

Thisisclearly comparable with the result of the continuous Fourier transform of a pulse,
Figure 2.3, since the transform involves a similar, sinusoidal, signal. The spectrum is
equivalent to a set of sampled frequencies; we can build up the sampled pulse by adding
up the frequencies according to the Fourier description. Consider a signal such as that
shown in Figure 2.12(a). This has no explicit analytic definition, as such it does not have
a closed Fourier transform; the Fourier transform is generated by direct application of

Equation 2.15. The result is a set of samples of frequency, Figure 2.12(b).
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(a) Sampled signal (b) Transform of sampled signal

Figure 2.12 A sampled signal and its discrete transform

The Fourier transform in Figure 2.12(b) can be used to reconstruct the original signal in
Figure 2.12(a), as illustrated in Figure 2.13. Essentialy, the coefficients of the Fourier
transform tell us how much there is of each of a set of sinewaves (at different frequencies),
in the original signal. The lowest frequency component Fp,, for zero frequency, is called
the d.c. component (it is constant and equivalent to a sinewave with no frequency) and it
represents the average value of the samples. Adding the contribution of the first coefficient
Fpo, Figure 2.13(b), to the contribution of the second coefficient Fp,, Figure 2.13(c), is
shown in Figure 2.13(d). This shows how addition of the first two frequency components
approaches the original sampled pulse. The approximation improves when the contribution
due to the fourth component, Fps, isincluded, as shown in Figure 2.13(e). Finally, adding
up al six frequency components gives a close approximation to the original signal, as
shown in Figure 2.13(f).

This process is, of course, the inverse DFT. This can be used to reconstruct a sampled
signal from its frequency components by:

N-1 po2mn

Py = Z Fpue """ (2.21)

Note that there are several assumptions made prior to application of the DFT. The first is
that the sampling criterion has been satisfied. The second is that the sampled function
replicates to infinity. When generating the transform of a pulse, Fourier theory assumes
that the pulse repeats outside the window of interest. (There are window operators that are
designed specifically to handle difficulty at the ends of the sampling window.) Finally, the
maximum frequency corresponds to half the sampling period. This is consistent with the
assumption that the sampling criterion has not been violated, otherwise the high frequency
spectral estimates will be corrupt.

2.5.2 Two-dimensional transform

Equation 2.15 gives the DFT of a one-dimensional signal. We need to generate Fourier
transforms of images so we need a two-dimensional discrete Fourier transform. Thisis a
transform of pixels (sampled picture points) with atwo-dimensional spatial location indexed
by co-ordinates x and y. This implies that we have two dimensions of frequency, u and v,
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Figure 2.13 Signal reconstruction from its transform components

which are the horizontal and vertical spatial frequencies, respectively. Given an image of
a set of vertical lines, the Fourier transform will show only horizontal spatial frequency.
The vertical spatial frequencies are zero since thereis no vertical variation along they axis.
The two-dimensional Fourier transform evaluates the frequency data, FP,, , from the N x
N pixels Py as:

N-1 N-1 — 2Ty pyy

PPy, =4 2, 2 Pye N0 (222)
The Fourier transform of an image can actually be obtained optically by transmitting a
laser through a photographic slide and forming an image using alens. The Fourier transform
of theimage of the slideisformed in the front focal plane of the lens. Thisis still restricted
to transmissive systems whereas reflective formation would widen its application potential
considerably (since optical computation is just slightly faster than its digital counterpart).
The magnitude of the 2D DFT to an image of vertical bars (Figure 2.14(a)) is shown in
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Figure 2.14(b). This shows that there are only horizontal spatial frequencies; the image is
constant in the vertical axis and there are no vertical spatial frequencies.

(a) Image of vertical bars (b) Fourier transform of bars

Figure 2.14 Applying the 2D discrete fourier transform

The two-dimensional (2D) inverse DFT transforms from the frequency domain back to
the image domain. The 2D inverse DFT is given by:

N-1 N j DEg(ux +vy)

- IoN
A ANT=) v§0 FRupe

P (2.23)
One of the important properties of the FT is replication which implies that the transform
repeats in frequency up to infinity, asindicated in Figure 2.9 for 1D signals. To show this
for 2D signals, we need to investigate the Fourier transform, originally given by FP,,, at
integer multiples of the number of sampled points FP,,.pw »+nn (Where mand n areintegers).
The Fourier transform FPmv »+nn 1S, Dy substitution in Equation 2.22:

N-1 N-1 jo2m
1 ~1 A H(urmN) X+ (0N y)
I:F)u+mN LotnN- N xgo y§0 P><,ye . (224)
%1
N-1 N-1 j02n]
—j 55 A(ux+vy) .
FPumvoe = o 20 2 Pay® 1 x enienmen) (225)

and since e32(™*W) = 1 (since the term in brackets is always an integer and then the
exponent is always an integer multiple of 2m) then

FPuimn, venn = FPyyp (2.26)

which shows that the replication property does hold for the Fourier transform. However,
Equation 2.22 and Equation 2.23 are very slow for large image sizes. They are usually
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implemented by using the Fast Fourier Transform (FFT) which isasplendid rearrangement
of the Fourier transform’s computation which improves speed dramatically. The FFT algorithm
is beyond the scope of this text but is aso a rewarding topic of study (particularly for
computer scientists or software engineers). The FFT can only be applied to square images
whose size is an integer power of 2 (without special effort). Calculation actually involves
the separability property of the Fourier transform. Separability means that the Fourier
transform is calculated in two stages:. the rows are first transformed using a 1D FFT, then
this data is transformed in columns, again using a 1D FFT. This process can be achieved
since the sinusoidal basis functions are orthogonal. Analytically, this implies that the 2D
DFT can be decomposed as in Equation 2.27

N-1 N-1 _jg2mO sy N-1 FN-1 _jbend,, -2 )
Ly 5sp elond™ ™ 17y ?Z P, eJ”ND(y)%e e (2.27)
N x=0 y=0 = ¥ N x=0 QFO 24 g

showing how separability is achieved, since the inner term expresses transformation along
one axis (the y axis), and the outer term transforms this along the other (the x axis).

Since the computational cost of a 1D FFT of N points is O(N log(N)), the cost (by
separability) for the 2D FFT is O(N? log(N)) whereas the computational cost of the 2D
DFT is O(N®). This implies a considerable saving since it suggests that the FFT requires
much less time, particularly for large image sizes (so for a 128 x 128 image, if the FFT
takes minutes, the DFT will take days). The 2D FFT is available in Mathcad using the
i cfft function which gives a result equivalent to Equation 2.22. The inverse 2D FFT,
Equation 2.23, can be implemented using the Mathcad cf ft function. (The difference
between many Fourier transform implementations essentially concerns the chosen scaling
factor.) The Mathcad implementations of the 2D DFT, the inverse 2D DFT, are given in
Code 2.1(a) and Code 2.1(b), respectively. Theimplementations using the Mathcad functions
using the FFT are given in Code 2.1(c) and Code 2.1(d), respectively.

rows(P)-1 col s(P)-1 —j REQUY + viX)
S P, Oe ow®
rows(P) y=o x=0 vx

(a) 2D DFT, Equation 2.22

FP,v:=

rows(FP)-1 col s(FP)-1 j 2AEQuly+vX)

| FR, = FP,,[@ row(FP

u=0 v=0

(b) Inverse 2D DFT, Equation 2.23

Fourier(pic):=icfft(pic)
(c) 2D FFT

inv_Fourier(trans): =cfft(trans)

(d) Inverse 2D FFT

Code 2.1 Implementing Fourier transforms

For reasons of speed, the 2D FFT is the algorithm commonly used in application. One
(unfortunate) difficulty is that the nature of the Fourier transform produces an image
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which, at first, isdifficult to interpret. The Fourier transform of animage givesthe frequency
components. The position of each component reflectsits frequency: low frequency components
are near the origin and high frequency components are further away. As before, the lowest
frequency component — for zero frequency — the d.c. component represents the average
value of the samples. Unfortunately, the arrangement of the 2D Fourier transform places
the low frequency components at the corners of the transform. The image of the squarein
Figure 2.15(a) shows thisin its transform, Figure 2.15(b). A spatial transform is easier to
visualise if the d.c. (zero frequency) component isin the centre, with frequency increasing
towards the edge of the image. This can be arranged either by rotating each of the four
quadrants in the Fourier transform by 180°. An alternative isto reorder the original image
to give a transform which shifts the transform to the centre. Both operations result in the
image in Figure 2.15(c) wherein the transform is much more easily seen. Note that thisis
aimed to improve visualisation and does not change any of the frequency domain information,
only the way it is displayed.

(a) Image of square (b) Original DFT (c) Rearranged DFT

Figure 2.15 Rearranging the 2D DFT for display purposes

To rearrange the image so that the d.c. component is in the centre, the frequency
components need to be reordered. This can be achieved simply by multiplying each image
point Py, by —10%)_ Since cos(-m) = —1, then —1 = €™ (the minus sign in the exponent
keeps the analysis neat) so we obtain the transform of the multiplied image as:

-1 N-1 f2mn0, N—=1 N-1 02 i
1 ‘JDN ) qoey = 1 SO T ey
N g =Z 1 B N x=0 yzzo Px’ye
N-1 N-1 —jb2nogH,, NGO NO,
:iz S P, e DNDEEIL 20 DU2D§(2_28)

According to Equation 2.28, when pixel values are multiplied by —10*¥), the Fourier
transform becomes shifted along each axis by half the number of samples. According to the
replication theorem, Equation 2.26, the transform replicates along the frequency axes. This
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implies that the centre of atransform image will now be the d.c. component. (Another way
of interpreting thisisrather than look at the frequencies centred on where the imageis, our
viewpoint has been shifted so as to be centred on one of its corners — thus invoking the
replication property.) The operator r ear r ange, in Code 2.2, is used prior to transform
calculation and results in the image of Figure 2.15(c), and all later transform images.

rearrange(picture):= | for yOO..rows(picture)-1
for x0OO..col s(picture)-1
rearranged_picy y—picturey s (-1) (y+)
rearranged_pic

Code 2.2 Reordering for transform calculation

The full effect of the Fourier transform is shown by application to an image of much
higher resolution. Figure 2.16(a) shows the image of a face and Figure 2.16(b) shows its
transform. The transform reveals that much of the information is carried in the lower
frequencies since thisiswhere most of the spectral components concentrate. Thisis because
the face image has many regions where the brightness does not change a lot, such as the
cheeksand forehead. The high frequency componentsreflect changeinintensity. Accordingly,
the higher frequency components arise from the hair (and that feather!) and from the
borders of features of the human face, such as the nose and eyes.

(a) Image of face (b) Transform of face image

Figure 2.16 Applying the Fourier transform to the image of a face

As with the 1D Fourier transform, there are 2D Fourier transform pairs, illustrated in
Figure 2.17. The 2D Fourier transform of a two-dimensional pulse, Figure 2.17(a), is a
two-dimensional sinc function, in Figure 2.17(b). The 2D Fourier transform of a Gaussian
function, in Figure 2.17(c), is again atwo-dimensional Gaussian function in the frequency
domain, in Figure 2.17(d).

52 Feature Extraction and Image Processing



Image Domain Transform Domain

square ft_square
(a) Square (b) 2D sinc function

Gauss ft_Gauss
(c) Gaussian (d) Gaussian

Figure 2.17 2D Fourier transform pairs

2.6 Other properties of the Fourier transform

2.6.1 Shift invariance

The decomposition into spatial frequency does not depend on the position of features
within the image. If we shift all the features by a fixed amount, or acquire the image from
adifferent position, the magnitude of its Fourier transform does not change. This property
is known as shift invariance. By denoting the delayed version of p(t) as p(t — 1), where 1
is the delay, and the Fourier transform of the shifted version is F[ p(t — 1)], we obtain the
relationship between a time domain shift in the time and frequency domains as:

F[ p(t—1)] = €T P(w) (2.29)
Accordingly, the magnitude of the Fourier transform is:
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IF [ p(t =011 = 1677 P(w)] = |77 [P(w)] = IP(w)] (2.30)

and since the magnitude of the exponential function is 1.0 then the magnitude of the
Fourier transform of the shifted image equals that of the original (unshifted) version. We
shall use this property later in Chapter 7 when we use Fourier theory to describe shapes.
There, it will alow usto give the same description to different instances of the same shape,
but a different description to a different shape. You do not get something for nothing: even
though the magnitude of the Fourier transform remains constant, its phase does not. The
phase of the shifted transform is:

F [ p(t —1)] = @7°7 P(w) (2.31)

The Mathcad implementation of ashi ft operator, Code 2.3, uses the modulus operation
to enforce the cyclic shift. The arguments fed to the function are: the image to be shifted
(pi c), the horizontal shift along the x axis (x_val ), and the vertical shift down they axis
(y_val).

shift(pic,y_val,x_val):=| NC—col s(pic)

NR—r ows( pi c)

for yOO..NR-1
for x00..NC-1

shift edy, « < Ppi Crod(y+y_val, NR), mod(x+x_val, NO)
shifted

Code 2.3 Shifting an image

This process is illustrated in Figure 2.18. An original image, Figure 2.18(a), is shifted
by 30 pixels along the x and the y axes, Figure 2.18(d). The shift is cyclical, so parts of the
image wrap around; those parts at the top of the original image appear at the base of the
shifted image. The Fourier transform of the original image and the shifted image are
identical: Figure 2.18(b) appears the same as Figure 2.18(e). The phase differs. the phase
of the original image, Figure 2.18(c), is clearly different from the phase of the shifted
image, Figure 2.18(f).

The differing phase implies that, in application, the magnitude of the Fourier transform
of aface, say, will be the same irrespective of the position of the face in theimage (i.e. the
camera or the subject can move up and down), assuming that the face is much larger than
itsimage version. Thisimplies that if the Fourier transform is used to analyse an image of
a human face, to describe it by its spatial frequency, then we do not need to control the
position of the camera, or the face, precisely.

2.6.2 Rotation

The Fourier transform of an image rotates when the source image rotates. This is to be
expected since the decomposition into spatial frequency reflects the orientation of features
within the image. As such, orientation dependency is built into the Fourier transform
process.
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(b) Transform of face (c) Phase of original image

(d) Shifted face image (e) Transform of shifted face (f) Phase of shifted image

Figure 2.18 Illustrating shift invariance

Thisimpliesthat if the frequency domain properties areto be used inimage analysis, via
the Fourier transform, then the orientation of the original image needs to be known, or
fixed. It is often possible to fix orientation, or to estimate its value when a feature's
orientation cannot be fixed. Alternatively, there are techniques to impose invariance
to rotation, say by translation to a polar representation, though this can prove to be
complex.

The effect of rotation is illustrated in Figure 2.19. A face image, Figure 2.19(a), is
rotated by 90° to give the image in Figure 2.19(b). Comparison of the transform of the
original image, Figure 2.19(c), with the transform of the rotated image, Figure 2.19(d),
shows that the transform has been rotated by 90°, by the same amount asthe image. In fact,
close inspection of Figure 2.19(c) shows that the major axis is amost vertical, and is
consistent with the major axis of the face in Figure 2.19(a).

2.6.3 Frequency scaling

By definition, time isthe reciprocal of frequency. So if an image is compressed, equivalent
to reducing time, then its frequency components will spread, corresponding to increasing
frequency. Mathematically the relationship is that the Fourier transform of a function of
time multiplied by a scalar A, p(At), gives a frequency domain function P(w/}), so:
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(a) Face image (b) Rotated face

(c) Transform of face image (d) Transform of rotated face

Figure 2.19 Illustrating rotation

FLpO)] = + PERE (2:32)

Thisisillustrated in Figure 2.20 where the texture image (of a chain-link fence), Figure
2.20(a), is reduced in scale, Figure 2.20(b), thereby increasing the spatial frequency. The
DFT of the original texture image is shown in Figure 2.20(c) which reveals that the large
spatial frequenciesinthe original image are arranged in astar-like pattern. As a consequence
of scaling the original image, the spectrum will spread from the origin consistent with an
increase in spatial frequency, as shown in Figure 2.20(d). This retains the star-like pattern,
but with points at a greater distance from the origin.

The implications of this property are that if we reduce the scale of an image, say by
imaging at agreater distance, then we will alter the frequency components. The relationship
islinear: the amount of reduction, say the proximity of the camerato the target, is directly
proportional to the scaling in the frequency domain.

2.6.4 Superposition (linearity)
The principle of superposition is very important in systems analysis. Essentially, it states

that a system is linear if its response to two combined signals equals the sum of the
responses to the individual signals. Given an output O which is a function of two inputs |1
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(a) Texture image (b) Scaled texture image (c) Transform of original (d) Transform of scaled
texture texture

Figure 2.20 Illustrating frequency scaling

and I,, the responseto signal |, is O(l,), that to signal |, is O(l,), and the responseto I, and
I,, when applied together, is O(I; + 1,), the superposition principle states:

O(ly + 1) = O(1) + O(I2) (2.33)

Any system which satisfies the principle of superposition is termed linear. The Fourier
transform is a linear operation since, for two signals p; and p,:

Flpi+p] =F[pd +F[pal (2.34)

In application this suggests that we can separate images by looking at their frequency
domain components. Given the image of afingerprint in blood on cloth, it is very difficult
to separate the fingerprint from the cloth by analysing the combined image. However, by
translation to the frequency domain, the Fourier transform of the combined image shows
strong components due to the texture (this is the spatial frequency of the cloth’s pattern)
and weaker, more scattered, components due to the fingerprint. I1f we suppress the frequency
components due to the cloth’s texture, and invoke the inverse Fourier transform, then the
cloth will be removed from the original image. The fingerprint can now be seen in the
resulting image.

2.7 Transforms other than Fourier

2.7.1 Discrete cosine transform

The Discrete Cosine Transform (DCT) (Ahmed, 1974) is areal transform that has great
advantages in energy compaction. Its definition for spectral components DP,, , is:

1 N-1 N-1
N—Z ZOPXy if u=0 and v=0
DRy, = Nt ( ) ey (2.35)
L =t NS O@2x + ung y + Do .
NE g 2o Pry X COST—oR X cosg oy otherwise
The inverse DCT is defined by
P 2X + 1)urm 2y + v
Pey = 12 UZO UZ DP,, X cosg%g X COS E%E (2.36)
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A fast version of the DCT is available, like the FFT, and cal culation can be based on the
FFT. Both implementations offer about the same speed. The Fourier transform is not
actually optimal for image coding since the Discrete Cosine transform can give a higher
compression rate, for the same image quality. This is because the cosine basis functions
can afford for high energy compaction. This can be seen by comparison of Figure 2.21(b)
with Figure 2.21(a), which reveals that the DCT components are much more concentrated
around the origin, than those for the Fourier transform. This is the compaction property
associated with the DCT. The DCT has actually been considered as optimal for image
coding, and this is why it is found in the JPEG and MPEG standards for coded image
transmission.

(a) Fourier transform (b) Discrete cosine transform (c) Hartley transform

Figure 2.21 Comparing transforms of lena

The DCT isactually shift variant, due to its cosine basis functions. In other respects, its
properties are very similar to the DFT, with one important exception: it has not yet proved
possible to implement convolution with the DCT. It is actually possible to calculate the
DCT viathe FFT. This has been performed in Figure 2.21(b) since there is no fast DCT
algorithm in Mathcad and, as shown earlier, fast implementations of transform calculation
can take a fraction of the time of the conventional counterpart.

The Fourier transform essentially decomposes, or decimates, a signal into sine and
cosine components, so the natural partner to the DCT is the Discrete Sine Transform
(DST). However, the DST transform has odd basis functions (sine) rather than the even
onesin the DCT. Thislendsthe DST transform some less desirable properties, and it finds
much less application than the DCT.

2.7.2 Discrete Hartley transform

The Hartley transform (Hartley, 1942) is a form of the Fourier transform, but without
complex arithmetic, with result for the face image shown in Figure 2.21(c). Oddly, though
it sounds like a very rational development, the Hartley transform was first invented in
1942, but not rediscovered and then formulated in discrete form until 1983 (Bracewell,
1983). One advantage of the Hartley transform is that the forward and inverse transform
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are the same operation; a disadvantage is that phase is built into the order of frequency
components since it is not readily available as the argument of a complex number. The
definition of the Discrete Hartley Transform (DHT) is that transform components HP,,
are:

NlNl
1

HP, = N & Oy o Pyy ELOS —— X (ux+uy)g+ sing%[x (ux+vy)% (2.37)

The inverse Hartley transform is the same process, but applied to the transformed image.

N-1 N-1
Pyy = e 2 HP,, x EDOSEZW x (ux + vy)D + sm x (ux + vy)% (2.38)

The implementation is then the same for both the forward and the inverse transforms, as
given in Code 2.4.

Hartl ey(pic):=|NC—col s(pic)

NR—r ows( pi c)

for vOO.. NR-1
for ull0.. NC-1

OS[QﬂtUuBHv@)D 0
NRL NG FOET W B0
trans,, « g2 2 pi Cy,xl:E
x=0 RH0uR +v y)
pro)g

NCyO
(Fsin
O

trans

Code 2.4 Implementing the Hartley transform

Again, afast implementation is available, the fast Hartley transform (Bracewell, 1984)
(though some suggest that it should be called the Bracewell transform, eponymously). Itis
actually possibleto calculate the DFT of afunction, F(u), from its Hartley transform, H(u).
The analysis here is based on one-dimensional data, but only for simplicity since the
argument extends readily to two dimensions. By splitting the Hartley transform into its odd
and even parts, O(u) and E(u), respectively we obtain:

H(u) = O(u) + E(u) (2.39)
where:

Eu) = AW+ ;'(N —\) (2.40)
and

o(uy = HW = ';(N —\) (2.41)
The DFT can then be calculated from the DHT simply by

F(u) = E(u) =] x O(u) (2.42)
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Conversely, the Hartley transform can be calculated from the Fourier transform by:
H(u) = Re[F(u)] — Im[F(u)] (2.43)

where Re[ ] and Im[ ] denote thereal and theimaginary parts, respectively. This emphasises
the natural relationship between the Fourier and the Hartley transform. The image of
Figure 2.21(c) has been calculated via the 2D FFT using Equation 2.43. Note that the
transform in Figure 2.21(c) is the complete transform whereas the Fourier transform in
Figure 2.21(a) shows magnitude only. Naturally, as with the DCT, the properties of the
Hartley transform mirror those of the Fourier transform. Unfortunately, the Hartley transform
does not have shift invariance but there are ways to handle this. Also, convolution requires
manipulation of the odd and even parts.

2.7.3 Introductory wavelets; the Gabor wavelet

Wavelets are a comparatively recent approach to signal processing, being introduced only
in the last decade (Daubechies, 1990). Their main advantage is that they allow muilti-
resolution analysis (analysis at different scales, or resolution). Furthermore, wavel ets allow
decimation in space and frequency simultaneously. Earlier transforms actually allow
decimation in frequency, in the forward transform, and in time (or position) in the inverse.
In this way, the Fourier transform gives a measure of the frequency content of the whole
image: the contribution of the image to a particular frequency component. Simultaneous
decimation allows usto describe an image in terms of frequency which occurs at a position,
as opposed to an ability to measure frequency content across the whole image. Clearly this
gives us a greater descriptional power, which can be used to good effect.

First though we need a basis function, so that we can decompose a signal. The basis
functions in the Fourier transform are sinusoidal waveforms at different frequencies. The
function of the Fourier transform is to convolve these sinusoids with a signal to determine
how much of each is present. The Gabor wavelet is well suited to introductory purposes,
sinceit isessentially asinewave modulated by a Gaussian envelope. The Gabor wavel et gw
is given by

~ _Ot=torf
gw(t) = e it g B @ 0 (2.44)

where fj is the modulating frequency, t, dictates position and a controls the width of the
Gaussian envelope which embraces the oscillating signal. An example Gabor wavelet is
shown in Figure 2.22 which shows the real and the imaginary parts (the modulus is the
Gaussian envelope). Increasing the value of fy increases the frequency content within the
envelope whereas increasing the value of a spreads the envelope without affecting the
frequency. So why doesthisallow simultaneous analysis of time and frequency? Given that
this function is the one convolved with the test data, then we can compare it with the
Fourier transform. In fact, if we remove the term on the right-hand side of Equation 2.44
then we return to the sinusoidal basis function of the Fourier transform, the exponential in
Equation 2.1. Accordingly, we can return to the Fourier transform by setting a to be very
large. Alternatively, setting f, to zero removes frequency information. Since we operate in
between these extremes, we obtain position and frequency information simultaneously.
Actualy, an infinite class of wavelets exists which can be used as an expansion basisin
signal decimation. One approach (Daugman, 1988) has generalised the Gabor function to
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(a) Real part (b) Imaginary part

Figure 2.22 An example Gabor wavelet

a 2D form aimed to be optimal in terms of spatial and spectral resolution. These 2D Gabor
wavelets are given by

_O(x=x0)% +(y=-y0)?C
gw2D(X, y) = _1 . 20? Ha-i 211fo (x-x0)cos( 8)+(y-yo)sin( 8) (2.45)
oJm

where Xo, Yo control position, f, controlsthe frequency of modulation along either axis, and
0 controls the direction (orientation) of the wavelet (as implicit in a two-dimensional
system). Naturally, the shape of the area imposed by the 2D Gaussian function could be
elliptical if different variances were allowed along the x and y axes (the frequency can also
be modulated differently along each axis). Figure 2.23, of an example 2D Gabor wavelet,
shows that the real and imaginary parts are even and odd functions, respectively; again,
different values for fy and o control the frequency and envelope's spread respectively, the
extra parameter 6 controls rotation.

Re(Gabor_wavelet) Im(Gabor_wavelet)

(a) Real part (b) Imaginary part

Figure 2.23 Example two-dimensional Gabor wavelet
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The function of the wavelet transform is to determine where and how each wavelet
specified by the range of values for each of the free parameters occurs in the image.
Clearly, there is a wide choice which depends on application. An example transform is
given in Figure 2.24. Here, the Gabor wavel et parameters have been chosen in such away
asto select face features: the eyes, nose and mouth have come out very well. These features
arewherethereislocal frequency content with orientation according to the head’sinclination.
Naturally, these are not the only features with these properties, the cuff of the sleeve is
highlighted too! But this does show the Gabor wavelet’s ability to select and analyse
localised variation in image intensity.

(a) Original image (b) After Gabor wavelet transform

Figure 2.24 An example Gabor wavelet transform

However, the conditions under which a set of continuous Gabor wavelets will provide
acomplete representation of any image (i.e. that any image can be reconstructed) have only
recently been developed. However, the theory is naturally very powerful, since it
accommaodates frequency and position simultaneoudly, and further it facilitates multi-resolution
analysis. Amongst applications of Gabor wavelets, we can find measurement of iristexture
to give a very powerful security system (Daugman, 1993) and face feature extraction for
automatic face recognition (Lades, 1993). Wavelets continue to develop (Debauchies,
1990) and have found applications in image texture analysis (Laine, 1993), in coding
(daSilva, 1996) and in image restoration (Banham, 1996). Unfortunately, the discrete
wavelet transform is not shift invariant, though there are approaches aimed to remedy this
(see, for example, Donoho (1995)). As such, we shall not study it further and just note that
there is an important class of transforms that combine spatial and spectral sensitivity, and
that this importance will continue to grow.

2.7.4 Other transforms

Decomposing asignal into sinusoidal components was actually one of the first approaches
to transform calculus, and thisiswhy the Fourier transform is so important. The sinusoidal
functions are actually called basis functions, the implicit assumption is that the basis
functions map well to the signal components. There is (theoretically) an infinite range of
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basis functions. Discrete signals can map better into collections of binary components
rather than sinusoidal ones. These collections (or sequences) of binary data are called
sequency components and form the basis functions of the Walsh transform (Walsh, 1923).
This has found wide application in the interpretation of digital signals, though it is less
widely used inimage processing. The Karhunen—L oéve transform (Karhunen, 1947) (L oéve,
1948) (also called the Hotelling transform from which it was derived, or more popularly
Principal Components Analysis (Jain, 1989) is a way of analysing (statistical) data to
reduce it to those data which are informative, discarding those which are not.

2.8 Applications using frequency domain properties

Filtering is a magjor use of Fourier transforms, particularly because we can understand an
image, and how to process it, much better in the frequency domain. An analogy is the use
of a graphic equaliser to control the way music sounds. In images, if we want to remove
high frequency information (like the hiss on sound) then we can filter, or remove, it by
inspecting the Fourier transform. If we retain low frequency components, then we implement
alow-passfilter. Thelow-passfilter describesthe areain which weretain spectral components,
the size of the area dictates the range of frequencies retained, and is known as the filter's
bandwidth. If we retain components within acircular region centred on the d.c. component,
and inverse Fourier transform the filtered transform then the resulting image will be
blurred. Higher spatial frequencies exist at the sharp edges of features, so removing them
causes blurring. But the amount of fluctuation is reduced too; any high frequency noise
will be removed in the filtered image.

Theimplementation of alow-passfilter whichretai nsfrequency componentswithinacircle
of specified radiusisthefunctionl ow fil t er, givenin Code 2.5. This operator assumes
that the radius and centre co-ordinates of the circle are specified prior to itsuse. Pointswithin
the circle remain unaltered, whereas those outside the circle are set to zero, black.

low filter(pic) :=|for yOO..rows(pic)-1
for x00..cols(pic)-1
filteredy y«

pi Cyy i f g/_wg%(_mg

—radius®< 0
0 ot herw se

filtered

Code 2.5 Implementing low-pass filtering

When applied to an image we obtain a low-pass filtered version. In application to an
image of aface, the low spatial frequencies are the ones which change slowly as reflected
in the resulting, blurred image, Figure 2.25(a). The high frequency components have been
removed as shown in the transform, Figure 2.25(b). The radius of the circle controls how
much of the original image is retained. In this case, the radiusis 10 pixels (and the image
resolution is 256 x 256). If a larger circle were to be used, more of the high frequency
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detail would be retained (and the image would look more like its original version); if the
circle was very small, an even more blurred image would result, since only the lowest
spatial frequencieswould be retained. This differsfrom the earlier Gabor wavel et approach
which allows for localised spatial frequency analysis. Here, the analysisis global: we are
filtering the frequency across the whole image.

-
J‘ :
-
(a) Low-pass filtered (b) Low-pass filtered (c) High-pass filtered (d) High-pass filtered
image transform image transform

Figure 2.25 |Illustrating low- and high-pass filtering

Alternatively, we can retain high frequency components and remove low frequency
ones. This is a high-pass filter. If we remove components near the d.c. component and
retain al the others, the result of applying the inverse Fourier transform to the filtered
image will be to emphasise the features that were removed in low-pass filtering. This can
lead to a popular application of the high-pass filter: to ‘ crispen’ an image by emphasising
its high frequency components. An implementation using acircular region merely requires
selection of the set of points outside the circle, rather than inside as for the low-pass
operator. The effect of high-pass filtering can be observed in Figure 2.25(c) which shows
removal of the low frequency components: this emphasises the hair and the borders of a
face's features since these are where brightness varies rapidly. The retained components
are those which were removed in low-pass filtering, asillustrated in the transform, Figure
2.25(d).

It isalso possible to retain a specified range of frequencies. Thisis known as band-pass
filtering. It can be implemented by retaining frequency components within an annulus
centred on the d.c. component. The width of the annulus represents the bandwidth of the
band-pass filter.

Thisleadsto digital signal processing theory. There are many considerationsto be made
in the way you select, and the manner in which frequency components are retained or
excluded. Thisis beyond atext on computer vision. For further study in this area, Rabiner
and Gold (Rabiner, 1975), and Oppenheim and Schafer (Oppenheim, 1996), although
published (in their original form) a long time ago, remain as popular introductions to
digital signal processing theory and applications.

Itisactually possibleto recognise the object within the low-passfiltered image. Intuitively,
thisimplies that we could just store the frequency components selected from the transform
data, rather than all the image points. In this manner a fraction of the information would
be stored, and still provide a recognisable image, albeit slightly blurred. This concerns
image coding which isapopular target for image processing techniques; for further information
see Clarke (1985).
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2.9 Further reading

For further study (and entertaining study too!) of the Fourier transform, try The Fourier
Transform and its Applications by R. N. Bracewell (Bracewell, 1986). A number of the
standard image processing texts include much coverage of transform calculus, such as Jain
(Jain, 1989), Gonzalez and Wintz (Gonzalez, 1987), and Pratt (Pratt, 1992). For more
coverage of the DCT try Jain (Jain, 1989); for an excellent coverage of the Walsh transform
try Beauchamp’'s superb text (Beauchamp, 1975). For wavelets, try the new book by
Wornell that introduces wavel ets from a signal processing standpoint (Wornell, 1996). For
general signal processing theory there are introductory texts (see, for example, Meade and
Dillon (Meade, 1986), or Bob Damper’s book (Damper, 1995), for more complete coverage
try Rabiner and Gold (Rabiner, 1975) or Oppenheim and Schafer (Oppenheim, 1996) (as
mentioned earlier). Finally, on the implementation side of the FFT (and for many other
signal processing algorithms) Numerical Recipesin C (Press, 1992) is an excellent book.
It is extremely readable, full of practical detail —well worth alook. Numerical Recipesis
on the web too, together with other signal processing sites, as listed in Table 1.4.
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I 5
Basic image processing
operations

3.1 Overview

We shall now start to process digital images as described in Table 3.1. First, we shall
describe the brightness variation in an image using its histogram. We shall then look at
operations which manipulate the image so as to change the histogram, processes that shift
and scal e the result (making the image brighter or dimmer, in different ways). We shall also
consider thresholding techniques that turn an image from grey level to binary. These are
called single point operations. After, we shall move to group operations where the group
is those points found inside a template. Some of the most common operations on the
groups of points are statistical, providing images where each point is the result of, say,
averaging the neighbourhood of each point in the original image. We shall see how the
statistical operations can reduce noise in the image, which is of benefit to the feature
extraction techniques to be considered later. As such, these basic operations are usually for
pre-processing for later feature extraction or to improve display quality.

3.2 Histograms

The intensity histogram shows how individual brightness levels are occupied in an image;
the image contrast is measured by the range of brightness levels. The histogram plots the
number of pixels with a particular brightness level against the brightness level. For 8-bit
pixels, the brightness ranges from zero (black) to 255 (white). Figure 3.1 shows an image
of an eye and its histogram. The histogram, Figure 3.1(b), shows that not all the grey levels
are used and the lowest and highest intensity levels are close together, reflecting moderate
contrast. The histogram has aregion between 100 and 120 brightness val ues which contains
the dark portions of the image, such as the hair (including the eyebrow) and the eye'siris.
The brighter points relate mainly to the skin. If the image was darker, overall, then the
histogram would be concentrated towards black. If the image was brighter, but with lower
contrast, then the histogram would be thinner and concentrated near the whiter brightness
levels.

This histogram shows us that we have not used all available grey levels. Accordingly, we
can stretch theimage to usethem all, and the image would become clearer. Thisisessentially
cosmetic attention to make the image’s appearance better. Making the appearance better,
especialy inview of later processing, isthe focus of many basic image processing operations,
as will be covered in this chapter. The histogram can also reveal if there is noise in the
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Table 3.1 Overview of Chapter 3

Main topic Sub topics Main points
Image Portray variation in image brightness Histograms, image contrast.
description content as a graph/histogram.
Point Calculate new image points as a Histogram manipulation; intensity
operations function of the point at the same placein ~ mapping: addition, inversion, scaling,
the original image. The functions can logarithm, exponent. Intensity
be mathematical, or can be computed normalisation; histogram equalisation.
from the image itself and will changethe  Thresholding and optimal thresholding.
image's histogram. Finally, thresholding
turns an image from grey level to a
binary (black and white) representation.
Group Calculate new image points as a Template convolution (including
operations function of neighbourhood of the frequency domain implementation):
point at the same place in the original direct averaging, median filter, mode
image. The functions can be statistical filter.
including: mean (average); median
and mode.
F

-

(a) Image of eye

400 +—

p_histogramyigne 200

(b) Histogram of eye image

100 200
Bright

Figure 3.1 Animage and its histogram

image, if the ideal histogram is known. We might want to remove this noise, not only to
improve the appearance of theimage, but to ease the task of (and to present the target better
for) later feature extraction techniques. This chapter concerns these basic operations which
can improve the appearance and quality of images.
The histogram can be evaluated by the operator hi st ogr am in Code 3.1. The operator
first initialises the histogram to zero. Then the operator works by counting up the number
of image points that have an intensity at a particular value. These counts for the different
values form the overall histogram. The counts are then returned as the two-dimensional
histogram (a vector of the count values) which can be plotted as a graph, Figure 3.1(b).
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hi stogram(pic) :=| for brightdO0..255
pi xel s_at _l evel pjgn <0
for x00..cols(pic)-1
for yOO..rows(pic)-1
level —picy
pi xel s_at _| evel |qye) —pi xel s_at _| evel | gye +1
pi xel s_at _I evel

Code 3.1 Evaluating the histogram

3.3 Point operators

3.3.1 Basic point operations

The most basic operations in image processing are point operations where each pixel value
isreplaced with anew value obtained from the old one. If we want to increase the brightness
to stretch the contrast we can simply multiply all pixel values by a scalar, say by 2 to
double the range. Conversely, to reduce the contrast (though this is not usual) we can
divide al point values by a scalar. If the overall brightnessis controlled by alevel, | (e.g.
the brightness of global light), and the rangeis controlled by again, k, the brightness of the
points in a new picture, N, can be related to the brightness in old picture, O, by:

Nyy=kx Oy +1 Ox yO1 N (3.1)

Thisis a point operator that replaces the brightness at points in the picture according to a
linear brightness relation. The level controls overall brightness and is the minimum value
of the output picture. The gain controlsthe contrast, or range, and if the gain is greater than
unity, the output range will be increased, this process is illustrated in Figure 3.2. So the
image of the eye, processed by k= 1.2 and | = 10 will become brighter, Figure 3.2(a), and
with better contrast, though in this case the brighter points are mostly set near to white
(255). These factors can be seen in its histogram, Figure 3.2(b).

400 T T

b_eye_histyign: 200 [~

0 100 200
Bright
(a) Image of brighter eye (b) Histogram of brighter eye

Figure 3.2 Brightening an image
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The basis of the implementation of point operators was given earlier, for addition in
Code 1.3. The stretching process can be displayed as a mapping between the input and
output ranges, according to the specified relationship, as in Figure 3.3. Figure 3.3(a) isa
mapping where the output is a direct copy of the input (this relationship is the dotted line
in Figures 3.3(c) and (d)); Figure 3.3(b) isthe mapping for brightnessinversion where dark
parts in an image become bright and vice versa. Figure 3.3(c) is the mapping for addition
and Figure 3.3(d) is the mapping for multiplication (or division, if the slope was less than
that of the input). In these mappings, if the mapping produces values that are smaller than
the expected minimum (say negative when zero represents black), or larger than a specified
maximum, then a clipping process can be used to set the output values to a chosen level.
For example, if the relationship between input and output aims to produce output points
with intensity value greater than 255, as used for white, the output value can be set to white
for these points, asit isin Figure 3.3(c).

Output brightness Output brightness
A /
White — White —
Black I > Black | >
Black White Input brightness Black White  'Nput brightness
(a) Copy (b) Brightness inversion
Output brightness Output brightness
A
A
White —| - White —

Black —- I Black |

Input briahtness

. Input brightness
Black White Black White

(c) Brightness addition (d) Brightness scaling by multiplication

Figure 3.3 Intensity mappings

The sawtooth operator is an alternative form of the linear operator and uses a repeated
form of the linear operator for chosen intervals in the brightness range. The sawtooth
operator is actually used to emphasise local contrast change (as in images where regions

70 Feature Extraction and Image Processing



of interest can be light or dark). This is illustrated in Figure 3.4 where the range of
brightness levels is mapped into four linear regions by the sawtooth operator, Figure
3.4(b). This remaps the intensity in the eye image to highlight local intensity variation, as
opposed to global variation, in Figure 3.4(a). Theimageis now presented in regions, where
the region selection is controlled by its pixels' intensities.

Saw_Toothpyigh

Bright

(a) Image of ‘sawn’ eye (b) Sawtooth operator

Figure 3.4 Applying the sawtooth operator

Finally, rather than simple multiplication we can use arithmetic functions such aslogarithm
to reduce the range or exponent to increase it. This can be used, say, to equalise the
response of acamera, or to compressthe range of displayed brightnesslevels. If the camera
hasaknown exponential performance, and outputsavaluefor brightnesswhich isproportional
to the exponential of the brightness of the corresponding point in the scene of view, the
application of a logarithmic point operator will restore the original range of brightness
levels. The effect of replacing brightness by a scaled version of its natural logarithm
(implemented as Ny, = 20 In(1000y,)) is shown in Figure 3.5(a); the effect of a scaled
version of the exponent (implemented as N,, = 20 exp(Oy,/100)) is shown in Figure

-

(a) Logarithmic compression (b) Exponential expansion

Figure 3.5 Applying exponential and logarithmic point operators
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3.5(b). The scaling factors were chosen to ensure that the resulting image can be displayed
since the logarithm or exponent greatly reduces or magnifies pixel values, respectively.
This can be seen in the results: Figure 3.5(a) is dark with asmall range of brightness levels
whereas Figure 3.5(b) is much brighter, with greater contrast. Naturally, application of the
logarithmic point operator will change any multiplicative changes in brightness to become
additive. As such, the logarithmic operator can find application in reducing the effects of
multiplicative intensity change. The logarithm operator is often used to compress Fourier
transforms, for display purposes. Thisis because the d.c. component can be very large with
contrast too large to allow the other points to be seen.

In hardware, point operators can be implemented using look-up tables (LUTSs) which
exist in some framegrabber units. LUTs give an output that is programmed, and stored, in
atable entry that corresponds to a particular input value. If the brightness response of the
camera is known, then it is possible to pre-program a LUT to make the camera response
equivalent to a uniform or flat response across the range of brightness levels (in software,
this can be implemented as a CASE function).

3.3.2 Histogram normalisation

Popular techniques to stretch the range of intensities include histogram (intensity)
normalisation. Here, the original histogram is stretched, and shifted, to cover al the 256
available levels. If the original histogram of old picture O starts at O, and extends up to
Onmax brightnesslevels, then we can scale up the image so that the pixelsin the new picture
N lie between a minimum output level N, and a maximum level N.., Smply by scaling
up the input intensity levels according to:

Nmax - Nmin
Omax - Omin

A Matlab implementation of intensity normalisation, appearing to mimic Matlab's
i mgesc function, the nor mal i se function in Code 3.2, uses an output ranging from
Nmin = 0to Npax = 255. Thisis scaled by the input range that is determined by applying the
max and the m n operators to the input picture. Note that in Matlab, a 2-D array needs
double application of the max and nmi n operators whereas in Mathcad max (i mage)
delivers the maximum. Each point in the picture is then scaled as in Equation 3.2 and the
f1 oor function is used to ensure an integer output.

The process is illustrated in Figure 3.6, and can be compared with the original image
and histogram in Figure 3.1. An intensity normalised version of the eye imageis shownin
Figure 3.6(a) which now has better contrast and appears better to the human eye. Its
histogram, Figure 3.6(b), shows that the intensity now ranges across all available levels
(there is actually one black pixel!).

Nx,y = x (Ox,y - Omin) + Nmin DX: y:l 1, N (3-2)

3.3.3 Histogram equalisation

Histogram equalisation is a non-linear process aimed to highlight image brightness in a
way particularly suited to human visual analysis. Histogram equalisation aims to change a
picture in such away as to produce a picture with a flatter histogram, where all levels are
equiprobable. In order to develop the operator, we can first inspect the histograms. For a
range of M levels then the histogram plots the points per level against level. For the input
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functi on nornalised=nornmalise(inage)
% stogram normalisation to stretch from black to white

%Jsage: [new inmage]=normalise(inmage)
%%Paraneters: image-array of integers
%Aut hor: Mark S. Nixon

%get di nensions
[rows, cols]=size(inmage);

%set m ni mum
m ni memi n(m n(i mage)) ;

%wrk out range of input levels
range=max(max(i mage))-mnni m

% ornalise the inmage
for x=1:cols %address all colums
for y=l:rows %address all rows
nor mal i sed(y, x)=floor((inmage(y, x)-m ninm *255/range);
end
end

Code 3.2 Intensity normalisation

400
n_histyign; 200
0 50 100 150 200 250
- bright
(a) Intensity normalised eye (b) Histogram of intensity normalised eye
400
€_histyyign, 200
0 50 100 150 200 250
bright
(c) Histogram equalised eye (d) Histogram of histogram equalised eye

Figure 3.6 lllustrating intensity normalisation and histogram equalisation
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(old) and the output (new) image, the number of points per level isdenoted as O(I) and N(I)
(for 0 < | < M), respectively. For square images, there are N? points in the input and the
output image, so the sum of points per level in each should be equal:

M M
2 0()= 2 N() (3.3)

Also, this should be the same for an arbitrarily chosen level p, since we are aiming for an
output picture with a uniformly flat histogram. So the cumulative histogram up to level p
should be transformed to cover up to the level g in the new histogram:

p q
2 0()= 2 N() (34)

Since the output histogram is uniformly flat, the cumulative histogram up to level p should
be a fraction of the overall sum. So the number of points per level in the output pictureis
the ratio of the number of points to the range of levels in the output image:

N(l) = N (35)
Nmax = Nmin

So the cumulative histogram of the output picture is:

q N2

EO N(l) =qx Noo — N (3.6)
By Equation 3.4 thisis equal to the cumulative histogram of the input image, so:

N2 p

qx m=|§0 o) (3.7)
This gives a mapping for the output pixels at level g, from the input pixels at level p as:

o= Nmaxl\Tszm « |:§oo(|) (38)

This gives amapping function that provides an output image that has an approximately flat
histogram. The mapping function is given by phrasing Equation 3.8 as an equalising
function (E) of the level (g) and the image (O) as

E(qg o)zwxgoa) (3.9
’ N2 1=0 '
The output image is then
Nyy = E(Oxy, O) (3.10)

The result of equalising the eye image is shown in Figure 3.6. The intensity equalised
image, Figure 3.6(c) has much better defined features (especially around the eyes) than in
the original version (Figure 3.1). The histogram, Figure 3.6(d), reveals the non-linear
mapping process whereby white and black are not assigned equal weight, as they were in
intensity normalisation. Accordingly, more pixels are mapped into the darker region and
the brighter intensities become better spread, consistent with the aims of histogram
equalisation.
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Its performance can be very convincing since it is well mapped to the properties of
human vision. If alinear brightness transformation is applied to the original image then the
equalised histogram will be the same. If we replace pixel values with ones computed
according to Equation 3.1 then the result of histogram equalisation will not change. An
aternative interpretation is that if we equalise images (prior to further processing) then we
need not worry about any brightness transformation in the original image. This is to be
expected, since the linear operation of the brightness change in Equation 3.2 does not
change the overall shape of the histogram, only its size and position. However, noisein the
image acquisition process will affect the shape of the original histogram, and hence the
equalised version. So the equalised histogram of a picture will not be the same as the
equalised histogram of a picture with some noise added to it. You cannot avoid noise in
electrical systems, however well you design a system to reduce its effect. Accordingly,
histogram equalisation finds little use in generic image processing systems, though it can
be potent in specialised applications. For these reasons, intensity normalisation is often
preferred when a picture’s histogram requires manipulation.

In implementation, the function equal i se in Code 3.3, we shall use an output range
where Nyin = 0 and N, = 255. The implementation first determines the cumulative
histogram for each level of the brightness histogram. This is then used as a look-up table
for the new output brightness at that level. Thelook-up tableisused to speed implementation
of Equation 3.9, since it can be precomputed from the image to be equalised.

equal ise(pic) := range - 255
number —rows(pic)-col s(pic)
for brightdO0..255

pi xel s_at _l evel pjgn <0
for x0OO0..rows(pic)-1

for y0O..rows(pic)-1

pi xel s_at _| evel Cyx < pi xel s_at _| evel pioyx 1

sum-0
for level 00..255
sum—sumtpi xel s_at _| evel | gye

. range d
h| St|e\,e| <—f| oor %WQEUWO OOOOlE

for x00..col s(pic)-1
for y0OO..rows(pic)-1

newpi cy , < hi st e,

newpi ¢

Code 3.3 Histogram equalisation

An alternative argument against use of histogram equalisation is that it is a non-linear
process and is irreversible. We cannot return to the original picture after equalisation, and
we cannot separate the histogram of an unwanted picture. On the other hand, intensity
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normalisation is alinear process and we can return to the original image, should we need
to, or separate pictures, if required.

3.3.4 Thresholding

The last point operator of major interest is called thresholding. This operator selects pixels
which have a particular value, or are within a specified range. It can be used to find objects
within a picture if their brightness level (or range) is known. Thisimplies that the object’s
brightness must be known as well. There are two main forms. uniform and adaptive
thresholding. In uniform thresholding, pixels above a specified level are set to white, those
below the specified level are set to black. Given the original eye image, Figure 3.7 shows
athresholded image where all pixelsabove 160 brightnesslevels are set to white, and those
below 160 brightness levels are set to black. By this process, the parts pertaining to the
facial skin are separated from the background; the cheeks, forehead and other bright areas
are separated from the hair and eyes. This can therefore provide away of isolating points
of interest.

Figure 3.7 Thresholding the eye image

Uniform thresholding clearly requires knowledge of the grey level, or the target features
might not be selected in the thresholding process. If the level is not known, then histogram
equalisation or intensity normalisation can be used, but with the restrictions on performance
stated earlier. Thisis, of course, a problem of image interpretation. These problems can
only be solved by simple approaches, such as thresholding, for very special cases. In
general, it is often prudent to investigate the more sophisticated techniques of feature
selection and extraction, to be covered later. Prior to that, we shall investigate group
operators, which are a natural counterpart to point operators.

There are more advanced techniques, known as optimal thresholding. These usually
seek to select a value for the threshold that separates an object from its background. This
suggests that the object has a different range of intensities to the background, in order that
an appropriate threshold can be chosen, as illustrated in Figure 3.8. Otsu’s method (Otsu,
1979) is one of the most popular techniques of optimal thresholding; there have been
surveys (Sahoo, 1988; Lee 1990; Glasbey, 1993) which compare the performance different
methods can achieve. Essentially, Otsu’stechnique maximisesthelikelihood that the threshold
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is chosen so as to split the image between an object and its background. This is achieved
by selecting athreshold that gives the best separation of classes, for all pixelsin an image.
The theory is beyond the scope of this section and we shall merely survey its results and
give their implementation. The basisis use of the normalised histogram where the number
of points at each level is divided by the total number of points in the image. As such, this
represents a probability distribution for the intensity levels as

N(l)

p(1) =

(3.11)

No. of points
A

— Background

Object
— |

) Brigh?ness
Optimal threshold value

Figure 3.8 Optimal thresholding

This can be used to compute then zero- and first-order cumulative moments of the
normalised histogram up to the kth level as

k
(k) = Z p() (3.12)
k
and (k)= 2 1 (1) (3.13)

The total mean level of the image is given by

Nmax
uT = |§1 I Tp(l) (3.19)
The variance of the class separability is then the ratio

(LT Cw(k) — p(k))?
o2(k) =
200 =@ - k)
The optimal threshold is the level for which the variance of class separability is at its
maximum, namely the optimal threshold T is that for which the variance

05 (Tow) = _max_ (o3(Kk)) (3.16)

1<k<Nmax

OKJ 1, N e (3.15)

A comparison of uniform thresholding with optimal thresholding is given in Figure 3.9
for the eye image. The threshold selected by Otsu’s operator is actually slightly lower than
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the value selected manually, and so the thresholded image does omit some detail around
the eye, especially in the eyelids. However, the selection by Otsu is automatic, as opposed
to manual and this can be to application advantage in automated vision. Consider, for
example, the need to isolate the human figure in Figure 3.10(a). This can be performed
automatically by Otsu as shown in Figure 3.10(b). Note, however, that there are some extra
points, due to illumination, which have appeared in the resulting image together with the
human subject. It is easy to remove the isolated points, as we will see later, but more
difficult to remove the connected ones. In this instance, the size of the human shape could
be used as information to remove the extra points, though you might like to suggest other
factors that could lead to their removal.

(a) Thresholding at level 160 (b) Thresholding by Otsu (level = 127)

Figure 3.9 Thresholding the eye image: manual and automatic

(a) Walking subject (b) Automatic thresholding by Otsu

Figure 3.10 Thresholding an image of a walking subject

The code implementing Otsu’s technique is given in Code 3.4 which follows Equations
3.11 to 3.16 to directly to provide the results in Figures 3.9 and 3.10. Here, the histogram
function of Code 3.1 is used to give the normalised histogram. The remaining code refers
directly to the earlier description of Otsu’s technique.
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k
w(k, histogram := |§1 hi st ogram _;
k
u(k, hi stograrr):zlg1 | hi st ogram_;

256
UT ( hi st ogram :=|§1 | (hi st ogram

O su(imge): =
hi st ogranm(i nage)
rows(i mage) [eol s(i mage)

i mage_hi st

for k0O1..255

(uT(i mage_hi st)(k, i mage_hist)—p(k, inmage_hist))?
w(k, image_hist){01-w(k, image_hist))

find_val ue(max(val ues), val ues)

val ues

Code 3.4 Optimal thresholding by Otsu’s technique

Also, we have so far considered global techniques, methods that operate on the entire
image. There are also locally adaptive techniques that are often used to binarise document
images prior to character recognition. A recent survey (Trier, 1995) compares global and
local techniques with reference to document image analysis. These techniques are often
used in statistical pattern recognition: the thresholded object is classified according to its
statistical properties. However, these techniques find less use in image interpretation,
where acommon paradigm isthat there is more than one object in the scene, such as Figure
3.7 where the thresholding operator has selected many objects of potential interest. As
such, only uniform thresholding is used in many vision applications, since objects are often
occluded (hidden), and many objects have similar ranges of pixel intensity. Accordingly,
more sophisticated metrics are required to separate them, by using the uniformly thresholded
image, as discussed in later chapters.

3.4 Group operations

3.4.1 Template convolution

Group operations calculate new pixel values from pixels' neighbourhoods by using a
‘grouping’ process. The group operation isusually expressed in terms of template convolution
where the template is a set of weighting coefficients. The template is usually square, and
itssizeisusually odd to ensure that it can be positioned appropriately. The sizeis normally
used to describe the template; a 3 x 3 template is three pixels wide by three pixels long.
New pixel values are calculated by placing the template at the point of interest. Pixel values
are multiplied by the corresponding weighting coefficient and added to an overall sum. The
sum (usually) evaluates anew value for the centre pixel (where the template is centred) and
this becomes the pixel in anew output image. If the template’s position has not yet reached
the end of a line, the template is then moved horizontally by one pixel and the process
repeats.
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Thisisillustrated in Figure 3.11 where a new image is calculated from an original one,
by template convolution. The calculation obtained by template convolution for the centre
pixel of the template in the original image becomes the point in the output image. Since the
template cannot extend beyond the image, the new image is smaller than the original image
since a new value cannot be computed for pointsin the border of the new image. When the
template reaches the end of aline, it is repositioned at the start of the next line. For a 3 x
3 neighbourhood, nine weighting coefficients w; are applied to pointsin the original image
to calculate a point in the new image. To calculate the value in new image N at point with
co-ordinates x, y, thetemplatein Figure 3.12 operates on an original image O according to:

Wo X Oygyg + Wy XOypq Wy XOyygyg +
Nyy =Wg X Oyqy +Wy XOyy +W5 XOyyyy + Ox,yd1 2,N—-1 (3.17)
WG X Ox—l,y+1 + W7 X Ox,y+l + W8 x Ox+1,y+1 +

Original image New image

Figure 3.11 Template convolution process

Wo wy [}
Wy A Ws
W wy A

Figure 3.12 3 x 3 template and weighting coefficents

Note that we cannot ascribe values to the picture’s borders. This is because when we place
the template at the border, parts of the template fall outside the image and we have no
information from which to calculate the new pixel value. The width of the border equals
half the size of the template. To calculate values for the border pixels, we now have three
choices:

1. set the border to black (or deliver a smaller picture);

2. assume (asin Fourier) that the image replicates to infinity along both dimensions and
calculate new values by cyclic shift from the far border; or

3. caculate the pixel value from a smaller area.
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None of these approaches is optimal. The results here use the first option and set border
pixelsto black. Note that in many applications the object of interest isimaged centrally or,
at least, imaged within the picture. As such, the border information is of little consequence
to the remainder of the process. Here, the border points are set to black, by starting
functions with a zero function which sets all the pointsin the pictureinitially to black (0).

The Matlab implementation of a general template convolution operator convol ve is
givenin Code 3.5. Thisfunction accepts, asarguments, the picturei nage and the template
to be convolved with it, t enpl at e. The result of template convolution is a picture
convol ved. The operator first initialises the temporary image t enp to black (zero
brightness levels). Then the size of the template is evaluated. These give the range of

function convol ved=convol ve(i nage, t enpl at e)

%\ew i mage point brightness convolution of tenplate with image
%Jsage: [new inmage] =convol ve(i nage, tenpl ate of point val ues)
%ar aneters: image-array of points

% tenpl ate-array of weighting coefficients

%Aut hor: Mark S. N xon

%get i mage di mensions
[irows,icol s]=size(inage);

%get tenpl ate di nensions
[trows, tcol s]=size(tenplate);

%set a tenporary inmage to black
temp(l:irows, 1:icols)=0;

%alf of tenplate rows is
trhal f=fl oor(trows/2);
9%alf of tenplate cols is
tchal f=fl oor (tcol s/ 2);

% hen convol ve the tenplate
for x=trhal f+1:icols-trhalf %ddress all colums except border
for y=tchal f+1l:irows-tchalf %ddress all rows except border
sun¥0;
for iwin=1:trows %ddress tenplate col ums
for jwin=1:tcols %ddress tenplate rows
sunmeEsum+i nage(y+j wi n-tchal f-1, x+iwin-trhal f-1)*
tenplate(jwn,iwn);
end
end
tenp(y, x) =sum
end
end

%inally, normalise the inage
convol ved=nor nal i se(tenp);

Code 3.5 Template convolution operator
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picture pointsto be processed in the outer f or loopsthat give the co-ordinates of al points
resulting from template convolution. The template is convolved at each picture point by
generating arunning summation of the pixel valueswithin the template’s window multiplied
by the respective template weighting coefficient. Finally, the resulting image is normalised
to ensure that the brightness levels are occupied appropriately.

Template convolution isusually implemented in software. It can of course beimplemented
in hardware and requires a two-line store, together with some further latches, for the
(input) video data. The output is the result of template convolution, summing the result of
multiplying weighting coefficients by pixel values. This is called pipelining, since the
pixels essentially move along a pipeline of information. Note that two line stores can be
used if the video fields only are processed. To process a full frame, one of the fields must
be stored if it is presented in interlaced format.

Processing can be analogue, using operational amplifier circuits and a Charge Coupled
Device (CCD) for storage along bucket brigade delay lines. Finally, an alternative
implementation is to use a parallel architecture: for Multiple Instruction Multiple Data
(MIMD) architectures, the picture can be split into blocks (spatial partitioning); Single
Instruction Multiple Data (SIMD) architectures can implement template convolution as a
combination of shift and add instructions.

3.4.2 Averaging operator

For an averaging operator, the template weighting functions are unity (or 1/9 to ensure that
the result of averaging nine white pixels is white, not more than white!). The template for
a 3 x 3 averaging operator, implementing Equation 3.17, is given by the template in Figure
3.13. The result of averaging the eye image with a 3 x 3 operator is shown in Figure 3.14.
Thisshowsthat much of the detail has now disappeared revealing the broad image structure.
The eyes and eyebrows are now much clearer from the background, but the fine detail in
their structure has been removed.

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Figure 3.13 3 x 3 averaging operator template coefficients

For a general implementation, Code 3.6, we can define the width of the operator as
Wi nsi ze, the template sizeiswi nsi ze x wi nsi ze. We then form the average of all
points within the area covered by the template. Thisis normalised (divided by) the number
of pointsin the template’s window. Thisis a direct implementation of a general averaging
operator (i.e. without using the template convolution operator in Code 3.5).

In order to implement averaging by using the template convol ution operator, we need to
define a template. This is illustrated for direct averaging in Code 3.7, even though the
simplicity of the direct averaging template usually precludes such implementation. The
application of this template is also shown in Code 3.7. (Note that there are averaging
operators in Mathcad and Matlab that can be used for this purpose too.)
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Figure 3.14 Applying direct averaging

ave(pic,w nsize) :=
new- zer o( pi c)

hal f <f1 oor wg

for x0Ohal f..col s(pic)—hal f-1
for yOhal f..rows(pic)—half-1

DNi nsi ze-1 winsize-1 . O
0 ws=0 i wis=0 Pl Cy+ivi n-hal f,x+ wi n—hal f []
newy 1 oor S (Wi nsi zelM nsi ze) E
= =
new
Code 3.6 Direct averaging
averagi ng_tenpl at e(wi nsi ze): = | sum—Ww nsi ze-w nsi ze

for yOO..w nsize-1
for x0OO..w nsize-1
tenplatey 1
tenmpl ate
sum
snoot hed : = tmeconv(p, averagi ng_tenplate(3))

Code 3.7 Direct averaging by template convolution

Theeffect of averaging isto reduce noise, thisisits advantage. An associated disadvantage
is that averaging causes blurring which reduces detail in an image. It is also a low-pass
filter since its effect isto allow low spatial frequencies to be retained, and to suppress high
frequency components. A larger template, say 5 x 5, will remove more noise (high frequencies)
but reduce the level of detail. The size of an averaging operator is then equivalent to the
reciprocal of the bandwidth of a low-pass filter it implements.
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Since smoothing was earlier achieved by |ow-passfiltering the Fourier transform (Section
2.8), the Fourier transform actually gives an alternative method to implement template
convolution. In Fourier transforms, the dual process to convolution is multiplication (asin
Section 2.3). So template convolution can be implemented by multiplying the Fourier
transform of the template with the Fourier transform of the picture to which the template
isto be applied. The result needs to be inverse transformed to return to the picture domain.
The transform of the template and the picture need to be the same size. Accordingly, the
image containing the template is zero-padded prior to itstransform. The processisillustrated
in Code 3.8 and starts by calculation of the transform of the zero-padded template. The
convolution routine then multiplies the transform of the template by the transform of the
picture point by point (using the vectorize operator). When the routine is invoked, it is
supplied with a transformed picture. The resulting transform is re-ordered prior to inverse
transformation, to ensure that the image is presented correctly. (Theoretical study of this
process is presented in Section 5.3.2 where we show how the same process can be used to
find shapes in images.)

conv(pic,tenp):=|pic_spectrum<Fourier(pic)

tenp_spect rum—Fouri er ( t e‘r]rﬂ

convol ved_spectrum—(pi c_spectrum t enp_spectrum
result —inv_Fourier(rearrange(convol ved_spectrum)
resul t

new_snmoot h :=conv(p, square)

Code 3.8 Template convolution by the Fourier transform

Code 3.8 issimply a different implementation of direct averaging. It achieves the same
result, but by transform domain calculus. It can be faster to use the transform rather than
the direct implementation. The computational cost of a2D FFT is of the order of N log(N).
If the transform of the template is precomputed, there are two transforms required and
there is one multiplication for each of the N? transformed points. The total cost of the
Fourier implementation of template convolution is then of the order of

Crer = 4N? log(N) + N2 (3.18)

The cost of the direct implementation for an m x mtemplate is then m? multiplications for
each image point, so the cost of the direct implementation is of the order of

Cqir = N°n? (3.19)
For Cgi; < Cger, We require:
N?m? < 4N? log(N) + N? (3.20)

If the direct implementation of template matching isfaster than its Fourier implementation,
we need to choose m so that

m? < 4 log(N) + 1 (3.21)
This implies that, for a 256 x 256 image, a direct implementation is fastest for 3 x 3 and
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5 x 5 templates, whereas a transform calculation is faster for larger ones. An aternative
analysis (Campbell, 1969) has suggested that (Gonzalez, 1987) ‘if the number of non-zero
terms in (the template) is less than 132 then a direct implementation . . . is more efficient
than using the FFT approach’. Thisimplies aconsiderably larger template than our analysis
suggests. Thisisin part due to higher considerations of complexity than our analysis has
included. There are, naturally, further considerations in the use of transform calculus, the
most important being the use of windowing (such as Hamming or Hanning) operators to
reduce variance in high-order spectral estimates. Thisimpliesthat template convolution by
transform calculus should perhaps be used when large templates are involved, and then
only when speed is critical. If speed isindeed critical, then it might be better to implement
the operator in dedicated hardware, as described earlier.

3.4.3 On different template size

Templates can be larger than 3 x 3. Since they are usually centred on a point of interest, to
produce a new output value at that point, they are usually of odd dimension. For reasons
of speed, the most common sizesare3 x 3, 5x 5and 7 x 7. Beyond this, say 9 x 9, many
template points are used to calculate a single value for a new point, and this imposes high
computational cost, especially for large images. (For example, a9 x 9 operator covers nine
times more points than a 3 x 3 operator.) Square templates have the same properties along
both image axes. Some implementations use vector templates (aline), either because their
properties are desirable in a particular application, or for reasons of speed.

The effect of larger averaging operators is to smooth the image more, to remove more
detail whilst giving greater emphasis to the large structures. This is illustrated in Figure
3.15. A 5 x 5 operator, Figure 3.15(a), retains more detail than a 7 x 7 operator, Figure
3.15(b), and much more than a 9 x 9 operator, Figure 3.15(c). Conversely, the 9 x 9
operator retains only the largest structures such as the eye region (and virtually removing
theiris) whereas thisis retained more by the operators of smaller size. Note that the larger
operators leave a larger border (since new values cannot be computed in that region) and
this can be seen in the increase in border size for the larger operators, in Figures 3.15(b)
and (c).

(@5x5 (b)y7x7 (c)9x9

Figure 3.15 Illustrating the effect of window size
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3.4.4 Gaussian averaging operator

The Gaussian averaging operator has been considered to be optimal for image smoothing.
The template for the Gaussian operator has values set by the Gaussian relationship. The
Gaussian function g at co-ordinates x, y is controlled by the variance o according to:

D)(2+y2 [}
g(x,y)=e 12 © (3.22)
Equation 3.22 gives a way to calculate coefficients for a Gaussian template which is
then convolved with an image. The effects of selection of Gaussian templates of differing
size are shown in Figure 3.16. The Gaussian function essentially removes the influence of
points greater than 30 in (radial) distance from the centre of the template. The 3 x 3
operator, Figure 3.16(a), retains many more of the features than those retained by direct
averaging (Figure 3.14). The effect of larger sizeisto remove more detail (and noise) at the
expense of losing features. Thisisreflected in the loss of internal eye component by the 5
x 5 and 7 x 7 operators in Figures 3.16(b) and (c), respectively.

(@) 3x3 (@) 5x5 (@ 7x7

Figure 3.16 Applying Gaussian averaging

A surface plot of the 2D Gaussian function of Equation 3.22 has the famous bell shape,
as shown in Figure 3.17. The values of the function at discrete points are the values of a
Gaussian template. Convolving this template with an image gives Gaussian averaging: the
point in the averaged picture is calculated from the sum of aregion where the central parts
of the picture are weighted to contribute more than the peripheral points. The size of the
template essentially dictates appropriate choice of the variance. The variance is chosen to
ensure that template coefficients drop to near zero at the template’'s edge. A common
choice for the template size is 5 x 5 with variance unity, giving the template shown in
Figure 3.18.

This template is then convolved with the image to give the Gaussian blurring function.
It is actually possible to give the Gaussian blurring function antisymmetric properties by
scaling the x and y co-ordinates. This can find application when an object’s shape, and
orientation, is known prior to image analysis.
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Gaussian_template (19, 4)

Figure 3.17 Gaussian function

0.02 0.08 0.14 0.08 0.02
0.08 0.37 0.61 0.37 0.08
0.14 0.61 1.0 0.61 0.14
0.08 0.37 0.61 0.37 0.08
0.02 0.08 0.14 0.08 0.02

Figure 3.18 Template for the 5 x 5 Gaussian averaging operator o = 1.0)

By reference to Figure 3.16 it is clear that the Gaussian filter can offer improved
performance compared with direct averaging: more features are retained whilst the noise
isremoved. This can be understood by Fourier transform theory. In Section 2.4.2 (Chapter
2) we found that the Fourier transform of asguare is atwo-dimensional sinc function. This
has a non-even frequency response (the magnitude of the transform does not reduce in a
smooth manner) and has regions where the transform becomes negative, called sidel obes.
These can have undesirable effects since there are high frequencies that contribute more
than some lower ones, a bit paradoxical in low-pass filtering to remove noise. In contrast,
the Fourier transform of a Gaussian function isanother Gaussian function, which decreases
smoothly without these sidel obes. This can lead to better performance since the contributions
of the frequency components reduce in a controlled manner.

In asoftware implementation of the Gaussian operator, we need afunction implementing
Equation 3.22, theGaussi an_t enpl at e functionin Code 3.9. Thisisused to calculate
the coefficients of a template to be centred on an image point. The two arguments are
Wi nsi ze, the (square) operator’'s size, and the standard deviation o that controls its
width, as discussed earlier. The operator coefficients are normalised by the sum of template
values, as before. This summation isstored in sum which isinitialised to zero. The centre
of the square template is then evaluated as half the size of the operator. Then, all template
coefficients are calculated by aversion of Equation 3.22 which specifies a weight relative
to the centre co-ordinates. Finally, the normalised template coefficients are returned as the
Gaussian template. The operator is used in template convolution, viaconvol ve, asin
direct averaging (Code 3.5).
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function tenpl at e=gaussi an_t enpl at e(w nsi ze, si gm)
%lenpl ate for Gaussian averaging

%Jsage: [t enpl at e] =gaussi an_t enpl at e( nunber, number)

%Par aneters: w nsize-size of tenplate (odd, integer)
%si gma-vari ance of Gaussian function
%Aut hor: Mark S. Nixon

%entre is half of w ndow size
centre=fl oor (w nsize/ 2) +1;

%we’ll normalise by the total sum
sunro;

%0 work out the coefficients and the running total
for i=1:wnsize
for j=1:w nsize
tenplate(j,i)=exp(-(((j-centre)*(j-centre))+((i-centre)*
(i-centre)))/(2*si gma*si gm))
sunmrsumt enpl ate(j,i);
end
end

% and then normalise
tenpl at e=t enpl at e/ sum

Code 3.9 Gaussian template specification
3.5 Other statistical operators

3.5.1 More on averaging

The averaging process is actually a statistical operator since it aims to estimate the mean
of alocal neighbourhood. The error in the process is naturally high, for a population of N
samples, the statistical error is of the order of:

_ Mmean

error N (3.23)
Increasing the averaging operator’s size improves the error in the estimate of the mean, but
at the expense of fine detail in the image. The average is of course an estimate optimal for
asignal corrupted by additive Gaussian noise (see Appendix 2.1, Section 8.2). The estimate
of the mean maximised the probability that the noise has its mean value, namely zero.
According to the central limit theorem, the result of adding many noise sources together is
a Gaussian distributed noise source. In images, noise arises in sampling, in quantisation, in
transmission and in processing. By the central limit theorem, the result of these (independent)
noise sources is that image noise can be assumed to be Gaussian. In fact, image noise is not
necessarily Gaussian-distributed, giving rise to more statistical operators. One of these is
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the median operator which has demonstrated capability to reduce noise whilst retaining
feature boundaries (in contrast to smoothing which blurs both noise and the boundaries),
and the mode operator which can be viewed as optimal for a number of noise sources,
including Rayleigh noise, but is very difficult to determine for small, discrete, populations.

3.5.2 Median filter

The median is another frequently used statistic; the median is the centre of arank-ordered
distribution. The median is usually taken from a template centred on the point of interest.
Given the arrangement of pixels in Figure 3.19(a), the pixel values are arranged into a
vector format, Figure 3.19(b). The vector isthen sorted into ascending order, Figure 3.19(c).
The median is the central component of the sorted vector, thisis the fifth component since
we have nine values.

2| 8 7
4 10 6 2 4 3 8 0 5 7 6 7
3 5 7

(a) 3 x 3 template (b) Unsorted vector

0 2 3 4 5 6 7 7 8

f Median

(c) Sorted vector, giving median

Figure 3.19 Finding the median from a 3 x 3 template

The median operator is usually implemented using atemplate, here we shall consider a
3 x 3 template. Accordingly, we need to process the nine pixelsin atemplate centred on a
point with co-ordinates (x, y). In a Mathcad implementation, these nine points can be
extracted into vector format using the operator unsort ed in Code 3.10. Thisrequires an
integer pointer to nine values, x 1. The modulus operator is then used to ensure that the
correct nine values are extracted.

x1 := 0..8

unsortedy; :=
x1 px+mad( x1,3)-1,x+f | oor Q%Q»l

Code 3.10 Reformatting a neighbourhood into a vector

We then arrange the nine pixels, within the template, in ascending order using the
Mathcad sor t function, Code 3.11:

This gives the rank ordered list and the median is the central component of the sorted
vector, in this case the fifth component, Code 3.12.
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sorted := sort (unsorted)

Code 3.11 Using the Mathcad sort function

our_medi an : = sorted,

Code 3.12 Determining the median

These functions can then be grouped to give the full median operator as in Code 3.13.

med(pic) :=|newpic—zero(pic)
for x0O1..cols(pic)-2
for yOl..rows(pic)-2
for x100..8

unsorted,, —pic
x1=P y+nod(x1,3)-1,x+ | oor @%@4
sorted—sort(unsorted)

newpi cy x—sorted,

newpi ¢

Code 3.13 Determining the median

The median can of course be taken from larger template sizes. It is available as the
medi an operator in Mathcad, but only for square matrices. The development here has
aimed not only to demonstrate how the median operator works, but also to provide a basis
for further development. The rank ordering process is computationally demanding (slow)
and this has motivated use of template shapes other than asquare. A selection of alternative
shapes is shown in Figure 3.20. Common alternative shapes include a cross or a line
(horizontal or vertical), centred on the point of interest, which can afford much faster
operation since they cover fewer pixels. The basis of the arrangement presented here could
be used for these alternative shapes, if required.

oo E

(a) Cross (b) Horizontal line (c) Vertical line

Figure 3.20 Alternative template shapes for median operator

The median has a well-known ability to remove salt and pepper noise. This form of
noise, arising from, say, decoding errorsin picture transmission systems, can cause isolated
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white and black points to appear within an image. It can also arise when rotating an image,
when points remain unspecified by a standard rotation operator (Appendix 1), asin a
texture image, rotated by 10° in Figure 3.21(a). When amedian operator is applied, the salt
and pepper noise points will appear at either end of the rank ordered list and are removed
by the median process, as shown in Figure 3.21(b). The median operator has practical
advantage, due to its ability to retain edges (the boundaries of shapes in images) whilst
suppressing the noise contamination. As such, like direct averaging, it remains aworthwhile
member of the stock of standard image processing tools. For further details concerning
properties and implementation, have a peep at Hodgson (1985). (Note that practical
implementation of image rotation is a computer graphics issue, and is usually by texture
mapping; further details can be found in Hearn (1997)).

(a) Rotated fence (b) Median filtered

Figure 3.21 Illustrating median filtering

Finding the background to an image is an example application of statistical operators.
Say we have a sequence of images of awalking subject, and we want to be able to find the
background (so we can then separate the walking subject from it), such as the sequence of
images shown in Figures 3.22(a)—(f) where a subject is walking from left to right. We can
average the images so asto find the background. If we form atemporal average, an image
where each point is the average of the pointsin the same position in each of the six images,
then we achieve a result where the walking subject appears to be in the background, but
very faintly asin Figure 3.22(g). The shadow occurs since the walking subject’s influence
on image brightness is reduced by one-sixth, but it is still there. We could of course use
more images, the ones in between the ones we already have and then the shadow will
become much fainter. We can also include spatial averaging asin Section 3.3.2, to further
reduce the effect of the walking subject, as shownin Figure 3.22(h). This gives spatiotemporal
averaging. For this, we have not required any more images, but the penalty paid for the
better improvement in the estimate of the background is lack of detail. We cannot see the
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numbers in the clock, due to the nature of spatial averaging. However, if we form the
background image by taking the median of the six images, atemporal median, we then get
a much better estimate of the background as shown in Figure 3.22(i). A lot of the image
detail is retained, whilst the walking subject disappears. In this case, for a sequence of
images where the target walks in front of a static background, the median is the most
appropriate operator. If we did not have a sequence, we could just average the singleimage
with a large operator and that could provide some estimate of the background.

(a) Image 1 (b) 2 (c) 3

(d) 4 ()5 (f) Image 6

(g) Temporal averaging (h) Spatiotemporal averaging (i) Temporal median

Figure 3.22 Background estimation by mean and median filtering

3.5.3 Mode filter

The mode is the final statistic of interest. Thisis of course very difficult to determine for
small populations and theoretically does not even exist for acontinuous distribution. Consider,
for example, determining the mode of the pixels within asquare 5 x 5 template. Naturally,
it is possible for all 25 pixels to be different, so each could be considered to be the mode.
As such we are forced to estimate the mode: the truncated median filter, as introduced by
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Davies (1988) aimsto achieve this. The truncated median filter is based on the premise that
for many non-Gaussian distributions, the order of the mean, the median and the mode isthe
samefor many images, asillustrated in Figure 3.23. Accordingly, if we truncate the distribution
(i.e. remove part of it, where the part selected to be removed in Figure 3.23 is from the
region beyond the mean) then the median of the truncated distribution will approach the
mode of the original distribution.

No. of points
A

T

Mode Brightness
Median : ;
Mean

Figure 3.23 Arrangement of mode, median and mean

The implementation of the truncated median, t r un_rmned, operator is given in Code
3.14. The operator first finds the mean and the median of the current window. Thedistribution
of intensity of points within the current window is truncated on the side of the mean so that
the median now bisects the distribution of the remaining points (as such not affecting
symmetrical distributions). So that the median bisects the remaining distribution, if the
median is less than the mean then the point at which the distribution is truncated, upper, is

upper = median + (median — min(distribution))
(3.24)
= 2 - median — min(distribution)

If the median is greater than the mean, then we need to truncate at alower point (before the
mean), lower, given by

lower = 2 - median — max(distribution) (3.25)

The median of the remaining distribution then approaches the mode. The truncation is
performed by storing pixel values in a vector t r un. A pointer, cc, is incremented each
time a new point is stored. The median of the truncated vector is then the output of the
truncated median filter at that point. Naturally, the window is placed at each possible
image point, as in template convolution. However, there can be several iterations at each
position to ensure that the mode is approached. In practice only few iterations are usually
required for the median to converge to the mode. The window size is usually large, say 7
x 7 0or 9 x 9 or more.

The action of the operator isillustrated in Figure 3.24 when applied to a 128 x 128 part
of the ultrasound image (Figure 1.1(c)), from the centre of the image and containing a
cross-sectional view of an artery. Ultrasound results in particularly noisy images, in part
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trun_med(p, wsze): = | newpic«— zero(p)

ha —f I oor @A%Q

for x0Oha..col s(p)—-ha-1

med — medi an(wi n)
ave «mean(w n)

cc-0
for i00..wsze-1
for jOO .wsze-1

newpi c

for yOha..rows(p)-ha-1
Wi n—submatric(p, y-ha,

upper « 2. med—mi n(wi n)
| ower « 2. med—max(wi n)

newpi cy x —medi an(turn)

y+ha, x-ha, x+ha)

truncc—wn; ; if(wn; <upper)-(ned<ave)
truncc—wn,; if(wn; ;> ower): (med>ave)
cC«cc+l

Code 3.14 The truncated median operator

because the scanner is usually external to the body. The noise is actually multiplicative
Rayleigh noise for which the mode is the optimal estimate. This noise obscures the artery
which appears in cross-section in Figure 3.24(a); the artery is basically elliptical in shape.
The action of the 9 x 9 truncated median operator, Figure 3.24(b) isto remove noise whilst
retaining feature boundaries whilst a larger operator shows better effect, Figure 3.24(c).

(a) Part of ultrasound image (b) 9 x 9 operator

(c) 13 x 13 operator

Figure 3.24 Applying truncated median filtering

Close examination of the result of the truncated median filter is that a selection of
boundaries is preserved which is not readily apparent in the original ultrasound image.
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This is one of the known properties of median filtering: an ability to reduce noise whilst
retaining feature boundaries. Indeed, there have actually been many other approaches to
specklefiltering; the most popular include direct averaging (Shankar, 1986), median filtering,
adaptive (weighted) median filtering (Loupas, 1987) and unsharp masking (Bamber, 1986).

3.5.4 Comparison of statistical operators

The different imagefiltering operators are shown by way of comparison in Figure 3.25. All
operatorsare 5 x 5 and are applied to the earlier ultrasound image, Figure 3.24(a). Figure
3.25(a), (b), (c), and (d) are the result of the mean (direct averaging), Gaussian averaging,
median and truncated median, respectively. Each shows a different performance: the mean
operator removes much noise but blurs feature boundaries; Gaussian averaging retains
more features, but showslittle advantage over direct averaging (it is not Gaussian-distributed
noise anyway); the median operator retains some noise but with clear feature boundaries,
whereas the truncated median removes more noise, but along with picture detail. Clearly,
the increased size of the truncated median template, by the results in Figures 3.24(b) and
(c), can offer improved performance. Thisisto be expected since by increasing the size of
the truncated median template, we are essentially increasing the size of the distribution
from which the mode is found.

(a) Mean (b) Gaussian average (c) Median (d) Truncated median

Figure 3.25 Comparison of filtering operators

Asyet, however, we have not yet studied any quantitative meansto eval uate this comparison.
We can only perform subjective appraisal of the imagesin Figure 3.25. This appraisal has
been phrased in terms of the contrast boundaries perceived in the image, and on the basic
shape that the image presents. Accordingly, better appraisal is based on the use of feature
extraction. Boundaries are the low-level features studied in the next chapter; shape is a
high-level feature studied in Chapter 5.

3.6 Further reading

Many texts cover basic point and group operatorsin much detail, in particular the introductory
texts such as Fairhurst (Fairhurst, 1988) and Baxes (Baxes, 1994) (which includes more
detail about hardware implementation); other texts give many more examples (Russ, 1995).
Books with a C implementation often concentrate on more basic techniquesincluding low-
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level image processing (Lindley, 1991) and (Parker, 1994). Some of the more advanced
textsinclude more coverage of low-level operators, such as Rosenfeld and Kak (Rosenfeld,
1982) and Castleman (Castleman, 1996). Parker (1994) includes C code for nearly all the
low-level operationsin this chapter. For study of the effect of the median operator on image
data, see Bovik (1987). The Truncated Median Filter is covered again in Davies (1994). For
further study of the effects of different statistical operators on ultrasound images, see
Evans (1995, 1996).
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B /
Low-level feature
extraction (including
edge detection)

4.1 Overview

We shall define low-level featuresto bethose basic featuresthat can be extracted automatically
from an image without any shape information (information about spatial relationships) as
shown in Table 4.1. As such, thresholding is actually aform of low-level feature extraction
performed as a point operation. Naturally, all of these approaches can be used in high-level
feature extraction, where we find shapesin images. It iswell known that we can recognise
people from caricaturists’ portraits. That isthe first low-level feature we shall encounter. It
is called edge detection and it aims to produce aline drawing, like one of afacein Figures
4.1(a) and (d), something akin to a caricaturist’s sketch though without the exaggeration a
caricaturist would imbue. There are very basic techniques and more advanced ones and we
shall look at some of the most popular approaches. The first-order detectors are equivalent
to first-order differentiation and, naturally, the second-order edge detection operators are
equivalent to a one-higher level of differentiation.

We shall also consider corner detection which can be thought of as detecting those
points where lines bend very sharply with high curvature, as for the aeroplane in Figures
4.1(b) and (e). These are another low-level feature that again can be extracted automatically
from the image. Finally, we shall investigate a technique that describes motion, called
optical flow. Thisisillustrated in Figures 4.1(c) and (f) with the optical flow from images
of awalking man: the bits that are moving fastest are the brightest points, like the hands
and the feet. All of these can provide a set of points, abeit points with different properties,
but all are suitable for grouping for shape extraction. Consider a square box moving though
a sequence of images. The edges are the perimeter of the box; the corners are the apices,
the flow is how the box moves. All these can be collected together to find the moving box.
We shall start with the edge detection techniques, with the first-order operators which
accord with the chronology of development. The first-order techniques date back more
than 30 years.

4.2 First-order edge detection operators

4.2.1 Basic operators
Many approaches to image interpretation are based on edges, since analysis based on edge
99



Table 4.1 Overview of Chapter 4

Main topic Sub topics Main points
First-order What is an edge and how we detect Difference operation; Roberts
edge it. The equivalence of operators to Cross, Smoothing, Prewitt, Sobel,
detection first-order differentiation and the Canny.
insight this brings. The need for
filtering and more sophisticated
first-order operators.
Second- Relationship between first- and Second-order differencing;
order edge second-order differencing operations. Laplacian, Zero-crossing
detection The basis of a second-order operator. detection; Marr—Hildreth,
The need to include filtering and Laplacian of Gaussian.
better operations.
Other edge Alternative approaches and perfor- Other noise models: Spacek.
operators mance aspects. Comparing different Other edge models; Petrou.
operators.
Detecting Nature of curvature. Planar curvature; corners.
image Computing curvature from: edge Curvature estimation by: change
curvature information; by using curve approxi- in edge direction; curve fitting;
mation; by change in intensity; and intensity change; Harris corner
by correlation. detector.
Optical Movement and the nature of optical Detection by differencing. Optical
flow flow. Estimating the optical flow by flow; aperture problem;
estimation differential approach. Need for smoothness constraint.

other approaches (including
matching regions).

Differential approach; Horn and
Schunk method; correlation.

detection isinsensitive to changein the overall illumination level. Edge detection. highlights
image contrast. Detecting contrast, which is difference in intensity, can emphasise the
boundaries of features within an image, since thisis where image contrast occurs. Thisis,
naturally, how human vision can perceive the perimeter of an object, since the object is of
different intensity to its surroundings. Essentially, the boundary of an object is a step-
changein the intensity levels. The edge is at the position of the step-change. To detect the
edge position we can use first-order differentiation since this emphasises change; first-
order differentiation gives no response when applied to signals that do not change. The
first edge detection operators to be studied here are group operators which aim to deliver
an output which approximates the result of first-order differentiation.

A change in intensity can be revealed by differencing adjacent points. Differencing
horizontally adjacent points will detect vertical changes in intensity and is often called a
horizontal edge detector by virtue of its action. A horizontal operator will not show up
horizontal changesin intensity since the differenceis zero. When applied to animage P the
action of the horizontal edge detector formsthe difference between two horizontally adjacent
points, as such detecting the vertical edges, EXx, as.

EXyy = [Pxy = Px1yl OxOLN-LyOLN (4.2)
In order to detect horizontal edges we need a vertical edge detector which differences
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(b) Plane silhouette (c) Consecutive images of
walking subject

(d) Edge detection (e) Curvature detection (c) Motion detection

Figure 4.1 Low-level feature detection

vertically adjacent points. Thiswill determine horizontal intensity changes, but not vertical
ones so the vertical edge detector detects the horizontal edges, Ey, according to:

EVuy = IPay = Peysrl DXOL N;yO1, N-1 (4.2)

Figures 4.2(b) and (c) show the application of the vertical and horizontal operators to
the synthesised image of the square in Figure 4.2(a). The left-hand vertical edge in Figure
4.2(b) appears to be beside the square by virtue of the forward differencing process.
Likewise, the upper edge in Figure 4.2(b) appears above the original square.

Combining the two gives an operator E that can detect vertical and horizontal edges
together. That is

Exy = [Pxy = Pxiry + Pxy = Pxynal Ox,yO1,N-1 (4.3)
which gives:
Exy = [2 % Pyy = Py1y = Pyyaal Ox,yO1,N-1 (4.9

Equation 4.4 gives the coefficients of a differencing template which can be convolved with
an image to detect al the edge points, such as those shown in Figure 4.2(d). Note that the
bright point in the lower right corner of the edges of the square in Figure 4.2(d) is much
brighter than the other points. Thisis because it is the only point to be detected as an edge
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(a) Original image (b) Vertical edges, Equation 4.1

(c) Horizontal edges, Equation 4.2 (d) All edges, Equation 4.4

Figure 4.2 First-order edge detection

by both the vertical and the horizontal operators and is therefore much brighter than the
other edge points. In contrast, the top left hand corner point is detected by neither operator
and so does not appear in the final image.

Figure 4.3 Template for first-order difference

The template in Figure 4.3 is convolved with the image to detect edges. The direct
implementation of this operator, i.e. using Equation 4.4 rather than template convolution,
isgiven in Code 4.1. Naturally, template convolution could be used, but it is unnecessarily
complex in this case.

Uniformthresholding (Section 3.3.4) is often used to select the brightest points, following
application of an edge detection operator. The threshold level controls the number of
selected points; too high a level can select too few points, whereas too low a level can
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edge(pic) = | newpic—zero(pic)
for x0O0..col s(pic)-2
for yOO..rows(pic)-2
newpi Cy,x“l 2 pi Cy, x—Pi Cy, x+1—Pi Cy+1,x|

newpi ¢

Code 4.1 First-order edge detection

select too much noise. Often, the threshold level is chosen by experience or by experiment,
but it can be determined automatically by considering edge data (Venkatesh, 1995), or
empirically (Haddon, 1988). For the moment, let us concentrate on the development of
edge detection operators, rather than on their application.

4.2.2 Analysis of the basic operators

Taylor series analysis reveals that differencing adjacent points provides an estimate of the
first order derivative at a point. If the difference is taken between points separated by Ax
then by Taylor expansion for f (x + AX) we obtain:

f(x+ Ax) =f(x) + Ax x f'(x) + A7 f(x) + O(Ax3) (4.5)

By rearrangement, the first-order derivative f'(x) is:

F1(x) = f(“AAX)z —1() _ oax?) (4.6)

This shows that the difference between adjacent points is an estimate of the first-order
derivative, with error O(Ax?). This error depends on the size of the interval Ax and on the
complexity of the curve. When Ax is large this error can be significant. The error is also
large when the high-order derivatives take large values. In practice, the close sampling of
image pixels and the reduced high frequency content make this approximation adequate.
However, the error can be reduced by spacing the differenced points by one pixel. Thisis
equivalent to computing thefirst-order difference delivered by Equation 4.1 at two adjacent
points, as a new horizontal difference Exx where

EXXx,y = Ex+1,y + Ex,y = Px+1,y - Px,y + I:’x,y - I:’x—l,y = I:’x+l,y - I:’x—l,y (4-7)
This is equivalent to incorporating spacing to detect the edges Exx by:
EXXyy = |Pxs1y = Pyxayl OxO2,N-1;yO1, N (4.8)

To analyse this, again by Taylor series, we expand f (X — AX) as:
f(x = AX) = F(x) = Ax x f'x + BX2 AX x £7(x) — O(Ax3) (4.9)

By differencing Equation 4.9 from Equation 4.5, we obtain the first-order derivative as:

F1(x) = f(x+Ax;;):(x—Ax)

Equation 4.10 suggests that the estimate of the first order difference is now the difference

— O(AX?) (4.10)
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between points separated by one pixel, with error O(AX?). If Ax < 1 then thiserror isclearly
smaller than the error associated with differencing adjacent pixels, in Equation 4.6. Again,
averaging has reduced noise, or error. The template for a horizontal edge detection operator
isgiven in Figure 4.4(a). This template gives the vertical edges detected at its centre pixel.
A transposed version of the template gives avertical edge detection operator, Figure 4.4(b).

(a) Mx (b) My

Figure 4.4 Templates for improved first-order difference

The Roberts cross operator (Roberts, 1965) was one of the earliest edge detection
operators. It implementsaversion of basic first-order edge detection and uses two templ ates
which difference pixel valuesin adiagona manner, as opposed to along the axes' directions.
The two templates are called M* and M~ and are given in Figure 4.5.

+1 0 0 +1

(&) M~ (b) M*

Figure 4.5 Templates for Roberts cross operator

In implementation, the maximum value delivered by application of these templates is
stored as the value of the edge at that point. The edge point Ey is then the maximum of
the two values derived by convolving the two templates at an image point Py

Eyy = Max {|M* 0P|, M~ OP,,} Ox,yO1,N-1 (4.12)

The application of the Roberts cross operator to the image of the square is shown in
Figure 4.6. The two templates provide the results in Figures 4.6(a) and (b) and the result
delivered by the Roberts operator is shown in Figure 4.6(c). Note that the corners of the
square now appear in the edge image, by virtue of the diagonal differencing action, whereas
they were less apparent in Figure 4.2(d) (where the top left corner did not appear).

An alternative to taking the maximum is to simply add the results of the two templates
together to combine horizontal and vertical edges. There are of course more varieties of
edges and it is often better to consider the two templates as providing components of an
edge vector: the strength of the edge along the horizontal and vertical axes. These give
components of a vector and can be added in a vectorial manner (which is perhaps more
usual for the Roberts operator). The edge magnitude is the length of the vector, the edge
direction is the vector’s orientation, as shown in Figure 4.7.
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(a) M~ (b) M* (c)y M

Figure 4.6 Applying the Roberts cross operator

Figure 4.7 Edge detection in vectorial format

4.2.3 Prewitt edge detection operator

Edge detection is akin to differentiation. Since it detects change it is bound to respond to
noise, as well as to step-like changes in image intensity (its frequency domain analogue is
high-pass filtering as illustrated in Figure 2.25(c)). It is therefore prudent to incorporate
averaging within the edge detection process. We can then extend the vertical template, Mx,
along three rows, and the horizontal template, My, along three columns. These give the
Prewitt edge detection operator (Prewitt, 1966) that consists of two templates, Figure 4.8.

This gives two results: the rate of change of brightness along each axis. As such, thisis
the vector illustrated in Figure 4.7: the edge magnitude, M, is the length of the vector and
the edge direction, 8, is the angle of the vector:

M = /MX(x, ¥)? + My(x, y)? (4.12)
8(x,y) = tan"? g—,\'\g& ggg (4.13)

Again, the signs of Mx and My can be used to determine the appropriate quadrant for the
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1 0 -1 1 1 1

1 0 -1 0 0 0
1 0 -1 -1 -1 -1
(a) Mx (b) My

Figure 4.8 Templates for Prewitt operator

edge direction. A Mathcad implementation of the two templates of Figure 4.8 is given in
Code 4.2. In this code, both templates operate on a 3 x 3 sub-picture (which can be
supplied, in Mathcad, using thesubmat r i x function). Again, template convolution could
be used to implement this operator, but (as with direct averaging and basic first-order edge
detection) it is less suited to simple templates. Also, the provision of edge magnitude and
direction would require extension of the template convol ution operator given earlier (Code 3.5).

Prew tt33_x(pic)
2

y=0

(a) Mx

2

i= 2 pi CY'O_ygo piCy.»

Prewi tt33_y(pic)
2

L= z pl CO,x_xgo pl C2,x

x=0

(b) My

2

Code 4.2 Implementing the Prewitt operator

When applied to the image of the square, Figure 4.9(a), we obtain the edge magnitude
and direction, Figures 4.9(b) and (d), respectively (where (d) does not include the border
points, only the edge direction at processed points). The edge direction in Figure 4.9(d) is
shown measured in degrees where 0° and 360° are horizontal, to the right, and 90° is
vertical, upwards. Though the regions of edge points are wider due to the operator’'s
averaging properties, the edge datais clearer than the earlier first-order operator, highlighting
the regions where intensity changed in a more reliable fashion (compare, for example, the
upper left corner of the square which was not revealed earlier). The direction isless clear
in an image format and is better exposed by Mathcad’s vector format in Figure 4.9(c). In
vector format, the edge direction data is clearly less well defined at the corners of the
square (as expected, since the first-order derivative is discontinuous at these points).

4.2.4 Sobel edge detection operator

When the weight at the central pixels, for both Prewitt templates, is doubled, this gives the
famous Sobel edge detection operator which, again, consists of two masksto determinethe
edge in vector form. The Sobel operator was the most popular edge detection operator until
the development of edge detection techniques with a theoretical basis. It proved popular
because it gave, overall, a better performance than other contemporaneous edge detection
operators, such as the Prewitt operator.
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(a) Original image (b) Edge magnitude

N ST 7 [ 313 331 3 3 24 47|
NI %%/( /? 208 315 1 2 42 63
Vo M g | ZEoze 13 a3 s 8
j ) L X N\ 269 268 199 117 91 92
y oo=—= T X 242 225 181 178 133 116
| 225 210 183 179 155 132 |

prewitt_vecy ;, prewitt_vecy o
(c) Vector format (d) Edge direction

Figure 4.9 Applying the Prewitt operator

The Mathcad implementation of these masks is very similar to the implementation of
the Prewitt operator, Code 4.2, again operating on a 3 x 3 sub-picture. Thisis the standard
formulation of the Sobel templates, but how do we form larger templates, say for 5 x 5 or
7 x 7. Few textbooks state its original derivation, but it has been attributed (Heath, 1997)
as originating from a PhD thesis (Sobel, 1970). Unfortunately a theoretical basis, which
can be used to calculate the coefficients of larger templates, is rarely given. One approach
to a theoretical basis is to consider the optimal forms of averaging and of differencing.
Gaussian averaging has already been stated to give optimal averaging. The binomial expansion
givestheinteger coefficients of aseriesthat, in thelimit, approximates the normal distribution.
Pascal’s triangle gives sets of coefficients for a smoothing operator which, in the limit,
approach the coefficients of a Gaussian smoothing operator. Pascal’s triangle is then:

Window size

arowN
[EE
N
[EE

This gives the (unnormalised) coefficients of an optimal discrete smoothing operator (it
is essentially a Gaussian operator with integer coefficients). The rows give the coefficients
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for increasing template, or window, size. The coefficients of smoothing within the Sobel
operator, Figure 4.10, are those for awindow size of 3. In Mathcad, by specifying the size
of the smoothing window aswi nsi ze, then the template coefficientssnoot h, ,;, can
be calculated at each window point x_wi n according to Code 4.3. -

1 0 -1 1 2 1

2 0 -2 0 0 0

1 0 =) -1 2 -1
(a) Mx (b) My

Figure 4.10 Templates for Sobel operator

_ (wi nsi ze-1)!
“(winsize-1-x_win)! Ox_w n!

smoot hy yin:

Code 4.3 Smoothing function

The differencing coefficients are given by Pascal’s triangle for subtraction:

Window size

arowN
[EE
o
|
[N

This can beimplemented by subtracting the templates derived from two adjacent expansions
for a smaller window size. Accordingly, we require an operator which can provide the
coefficients of Pascal’s triangle for arguments which are awindow size n and aposition k.
The operator is the Pascal ( k, n) operator in Code 4.4.

n! .
T—K) TTRT f (k=0)[{ks
Pascal (k,ny=|(N—K)!&! it (k=20)(ksn)

0 ot herwi se

Code 4.4 Pascal’s triangle

The differencing template, di f f, i, is then given by the difference between two
Pascal expansions, as given in Code 4.5.

These give the coefficients of optimal differencing and optimal smoothing. This general
form of the Sobel operator combines optimal smoothing along one axis, with optimal
differencing along the other. This general form of the Sobel operator is then given in Code
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di ff, wn=Pascal (x_wi n, w nsize-2)-Pascal (x_w n-1, wi nsize-2)

Code 4.5 Differencing function

4.6 which combines the differencing function along one axis, with smoothing along the
other.

Wi nsize-1 winsize-1

Sobel _x(pic):= W_Zn:O , W_Zn:O smoot hy yin Wi ffy winiCy win x win
(a) Mx
Wi nsize-1 winsize-1
Sobel _y( p| C) = z Z snoot hx_wi n di ffy_win ml Cy_wi n, x_wn

XWwn=0 ywn=0

(b) My

Code 4.6 Generalised Sobel templates

This generates a template for the Mx template for a Sobel operator, given for 5 x 5in
Code 4.7.

Sobel _tenpl ate_x= 12

o O O o o
|
[
N
|
(=2}
]

ORI R0R

Code 4.7 5 x5 Sobel template Mx

All template-based techniques can be larger than 5 x 5 so, as with any group operator,
thereisa7 x 7 Sobel and so on. The virtue of alarger edge detection template is that it
involves more smoothing to reduce noise but edge blurring becomes a great problem. The
estimate of edge direction can be improved with more smoothing since it is particularly
sensitiveto noise. There are circular edge operators designed specifically to provide accurate
edge direction data.

The Sobel templates can be invoked by operating on a matrix of dimension equal to the
window size, from which edge magnitude and gradient are calculated. The Sobel function
(Code 4.8) convolvesthe generalised Sobel template (of size chosento bewi nsi ze) with
the picture supplied as argument, to give outputs which are the images of edge magnitude
and direction, in vector form.

The results of applying the 3 x 3 Sobel operator can be seenin Figure 4.11. The original
face image Figure 4.11(a) has many edges in the hair and in the region of the eyes. Thisis
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Sobel (pic, wi nsi ze): =

w2 —fl oor winsize@
< @ 2

edge_mag —zero(pic)
edge_dir —zero(pic)
for xOw2..col s(pic)—-1-w2
for yOw2..rows(pic)—-1-w2
X_mag — Sobel _x(submatri x(pi c, y-w2, y+w2, Xx—w2, X+w2) )
y_mag —Sobel _y(submatrix(pic, y-w2, y+w2, x—w2, Xx+w2))

gragni t ude(x_mag, y_nag) [
edge_mmgy ,floor mag_nor mal i se

edge_diry ,~direction(x_mag,y_nag)

(edge_mag edge_dir)

Code 4.8 Generalised Sobel operator

shown in the edge magnitude image, Figure 4.11(b). When thisis thresholded at a suitable
value, many edge points are found, as shown in Figure 4.11(c). Note that in areas of the
image where the brightness remains fairly constant, such as the cheek and shoulder, there
islittle change which is reflected by low edge magnitude and few pointsin the thresholded
data.

(a) Original image (b) Sobel edge magnitude (c) Thresholded magnitude

Figure 4.11 Applying the Sobel operator

The Sobel edge direction data can be arranged to point in different ways, as can the
direction provided by the Prewitt operator. |f the templates are inverted to be of the form
shown in Figure 4.12, the edge direction will be inverted around both axes. If only one of
the templates is inverted, then the measured edge direction will be inverted about the
chosen axis.

This gives four possible directions for measurement of the edge direction provided by
the Sobel operator, two of which (for the templates of Figures4.10 and 4.12) areillustrated
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-1 0 1 -1 -2 -1

-2 0 2 0 0 0

-1 0 1 1 2 1

(a) —Mx (b) -My

Figure 4.12 Inverted templates for Sobel operator

in Figures 4.13(a) and (b), respectively, where inverting the Mx template does not highlight
discontinuity at the corners. (The edge magnitude of the Sobel applied to the square is not
shown, but is similar to that derived by application of the Prewitt operator, Figure 4.9(b).)

sobel_vecy o, sobel_vec, |

(a) Mx, My

R

N - = =7 7

— sobel_vecy o, sobel_vec, ;

(b) — Mx, My

S
<X M 7

< == —= ==
<= == - < <
_ N - 70 I o

£y N JR I Y S .
Vs % \V \J/ N N\

sobel_vecy, ", sobel_vecy ;"

(c) My, Mx

\N\val

— sobel_vecg ', —sobel_vecy ;"

(d) = My, — Mx

Figure 4.13 Alternative arrangements of edge direction
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By swapping the Sobel templates, the measured edge direction can be arranged to be
normal to the edge itself (as opposed to tangential data along the edge). Thisisillustrated
in Figures 4.13(c) and (d) for swapped versions of the templates given in Figures 4.10 and
4.12, respectively. The rearrangement can lead to simplicity in algorithm construction
when finding shapes, to be shown later. Any algorithm which uses edge direction for
finding shapes must know precisely which arrangement has been used, since the edge
direction can be used to speed algorithm performance, but it must map precisely to the
expected image data if used in that way.

Detecting edges by template convolution again has a frequency domain interpretation.
The Fourier transform of a7 x 7 Sobel template of Code 4.7 is given in Figure 4.14. The
Fourier transform is given in relief in Figure 4.14(a) and as a contour plot in Figure
4.14(b). Thetemplateisfor the horizontal differencing action, My, which highlights vertical
change. Accordingly, itstransform revealsthat it selects vertical spatial frequencies, whilst
smoothing the horizontal ones. The horizontal frequencies are selected from aregion near
the origin (low-pass filtering), whereas the vertical frequencies are selected away from the
origin (high-pass). This highlights the action of the Sobel operator; combining smoothing
of the spatial frequencies along one axis with differencing of the other. In Figure 4.14, the
smoothing is of horizontal spatial frequencies whilst the differencing is of vertical spatial
frequencies.

T JEN
H Fourier_of_Sobel E | Fourier_of_Sobel |

(a) Relief plot (b) Contour plot

Figure 4.14 Fourier transform of the Sobel operator

4.2.5 The Canny edge detector

The Canny edge detection operator (Canny, 1986) is perhaps the most popular edge detection
technique at present. It was formulated with three main objectives:

1. optimal detection with no spurious responses;
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2. good localisation with minimal distance between detected and true edge position;
3. single response to eliminate multiple responses to a single edge.

The first requirement aims to reduce the response to noise. This can be effected by
optimal smoothing; Canny was the first to demonstrate that Gaussian filtering is optimal
for edge detection (within his criteria). The second criterion aims for accuracy: edges are
to be detected, in the right place. This can be achieved by a process of non-maximum
suppression (which is equivalent to peak detection). Non-maximum suppression retains
only those points at the top of a ridge of edge data, whilst suppressing all others. This
results in thinning: the output of non-maximum suppression is thin lines of edge points, in
the right place. The third constraint concerns location of a single edge point in response to
a change in brightness. This is because more than one edge can be denoted to be present,
consistent with the output obtained by earlier edge operators.

Recalling that the Gaussian operator g(x, y) is given by:

—(x2+y?)

g(x,y)=e 20° (4.14)

By differentiation, for unit vectors U, = [1, 0] and Uy = [0, 1] along the co-ordinate axes,
we obtain:

09(x.y) |, 99(x.Y)

Dg(xv y) = aX ay \Jy
—(X2 +y2) y —(X2+y2) (415)
— X o 252 5.2
= - F e 20 U, — F e 20 Uy

Equation 4.15 gives a way to calculate the coefficients of a template that combines first-
order differentiation with Gaussian smoothing. This is a smoothed image, and so the edge
will be aridge of data. In order to mark an edge at the correct point (and to reduce multiple
response), we can convolve an image with an operator which gives the first derivative in a
direction normal to the edge. The maximum of this function should be the peak of the edge
data, where the gradient in the original image is sharpest, and hence the location of the
edge. Accordingly, we seek an operator, G,,, which is a first derivative of a Gaussian
function g in the direction of the normal, n:

_ oy
G, = e (4.16)

where np can be estimated from the first-order difference of the Gaussian function g
convolved with the image P, and scaled appropriately as:
h, = DA Q)
ORI g)l
The location of the true edge point is then at the maximum point of G,, convolved with the
image. This maximum is when the differential (along ny) is zero:

9(G, OP) (4.18)
ong

(4.17)
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By substitution of Equation 4.16 in Equation 4.18,

02(GOP) _
ong?

Equation 4.19 provides the basis for an operator which meets one of Canny’s criteria,
namely that edges should be detected in the correct place. Thisis non-maximum suppression,
which is equivalent to retaining peaks (a.k.a. differentiation perpendicular to the edge),
which thins the response of the edge detection operator to give edge points which arein the
right place, without multiple response and with minimal response to noise. However, it is
virtually impossible to achieve an exact implementation of Canny given the requirement to
estimate the normal direction.

A common approximation is, as illustrated in Figure 4.15:

0 (4.19)

use Gaussian smoothing (as in Section 3.4.4), Figure 4.15(a);
use the Sobel operator, Figure 4.15(b);

use non-maximal suppression, Figure 4.15(c);

threshold with hysteresis to connect edge points, Figure 4.15(d).

APWONE

(a) Gaussian smoothing (b) Sobel edge detection (c) Non-maximum (d) Hysteresis
suppression thresholding

Figure 4.15 Stages in Canny edge detection

Note that the first two stages can be combined using aversion of Equation 4.15, but are
separated here so that all stages in the edge detection process can be shown clearly. An
aternative implementation of Canny’s approach (Deriche, 1987) used Canny’s criteria to
develop two-dimensional recursive filters, claiming performance and implementation
advantage over the approximation here.

Non-maximum suppression essentially locates the highest pointsin the edge magnitude
data. Thisis performed by using edge direction information, to check that points are at the
peak of aridge. Given a3 x 3 region, apoint isat amaximum if the gradient at either side
of itislessthan the gradient at the point. Thisimplies that we need values of gradient along
alinewhich isnormal to the edge at apoint. Thisisillustrated in Figure 4.16, which shows
the neighbouring points to the point of interest, Py, the edge direction at P, and the
normal to the edge direction at Pyy. The point P is to be marked as a maximum if its
gradient, M(X, y), exceeds the gradient at points 1 and 2, M; and M, respectively. Since we
have a discrete neighbourhood, M; and M, need to be interpol ated. First-order interpolation
using Mx and My at Py, and the values of Mx and My for the neighbours gives:
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Px—l,y—l PX’I‘FI Px+1,y—1
Edge ‘ ‘ . .
direction M,
atPy
Px+1,y
®
Px—l,yﬂ Px,y+1 Px+1,y+1
M, . ‘
Normal .
to edge \
direction
Figure 4.16 Interpolation in non-maximum suppression
MY Mx - My
M =—MXxX+1y-1)+ ——M(Xy—-1 (4.20)
My M,
and
M, M, — M,
M; = ==M(X-1y+1)+ ————M(xy+1) (4.21)
My M,

The point P, y isthen marked as a maximum if M(X, y) exceeds both M, and M, otherwise
it is set to zero. In this manner the peaks of the ridges of edge magnitude data are retained,
whilst those not at the peak are set to zero. Theimplementation of non-maximum suppression
first requires a function which generates the co-ordinates of the points between which the
edge magnitude is interpolated. This is the function get _coor ds in Code 4.9 which
requires the angle of the normal to the edge direction, returning the co-ordinates of the
points beyond and behind the normal.

The non-maximum suppression operator, non_max in Code 4.10 then interpolates the
edge magnitude at the two points either side of the normal to the edge direction. If the edge
magnitude at the point of interest exceeds these two then it is retained, otherwise it is
discarded. Note that the potential singularity in Equations 4.20 and 4.21 can be avoided by
use of multiplication in the magnitude comparison, as opposed to division in interpolation,
asitisin Code 4.10. In practice, however, this implementation, Codes 4.9 and 4.10, can
suffer from numerical imprecision and ill-conditioning. Accordingly, it is better to implement
a hand-crafted interpretation of Equations 4.20 and 4.21 applied separately to the four
quadrants. This is too lengthy to be included here, but a version is included with the
worksheet for Chapter 4 (to be found on the website, p. 26).

The transfer function associated with hysteresis thresholding is shown in Figure 4.17.
Points are set to white once the upper threshold is exceeded and set to black when the lower
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get _coords(angle):=| d~0.000000000000001

x1 —ceil %os%ngl e+§§5ﬁ§—0. 5—6§
yleceil %—si n%ngl e+8£§5/§§—0. 5—6%
X2 —ceil |éﬂcos%\ngl e—sﬂgﬂﬁg—o- 5—5§

y2 —ceil %—si n%ngl e—é—@[ﬁ@—o. 5—6@

(x1 yl x2 y2)

Code 4.9 Generating co-ordinates for interpolation

Non_nmax(edges): = |for i0l..col s(edgesg o) -2
for jOL..rows(edgesg o) —2
MK —(edgesyg, o) |, i

My —~(edgesg, 1), i

0catan @%Q f My=20

@*%@ it (My=0)(V>0)

Oh%[ ot herwi se

adds —get _coords(0)
My Uedgeso 2); raddso 1.i +addso,0- - -

<
g( M(—M’)Uedgeso,z)j +addsg,3, i+addsp,2
adds —get _coords(0+m)

EM/UEdgeso,z)j +addsp,1, i+addsg,0 - * B
g( M(—M’)Uedgeso,z)j +addsg,3, i+addsp,2 @
i sbigger «[[ Mk- (edgesg ,); i>ML] [ Mx- (edgesg ) i
2MR] ] +[ [ Mk- (edgesg, 5) i <ML] - [ Mk- (edgesy, )i
sme] ]
new_edge; ; —~(edgesy ,);,; if isbigger
new_edge; ; <0 otherw se

O
O
5|

new_edge

Code 4.10 Non-maximum suppression
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threshold is reached. The arrows reflect possible movement: there is only one way to
change from black to white and vice versa.

Thresholded data

A
-
White
>
Black > Brightness
Upper switching threshold

Lower switching threshold

Figure 4.17 Hysteresis thresholding transfer function

The application of non-maximum suppression and hysteresis thresholding is illustrated
in Figure 4.18. This contains aridge of edge data, the edge magnitude. The action of non-
maximum suppression is to select the points along the top of the ridge. Given that the top
of the ridge initially exceeds the upper threshold, the thresholded output is set to white
until the peak of the ridge falls beneath the lower threshold. The thresholded output is then
set to black until the peak of the ridge exceeds the upper switching threshold.

_-

/ ~—— Hysteresis thresholded edge data

"~ Upper switching threshold

N Lower switching threshold

Non-maximum suppression

Figure 4.18 Action of non-maximum suppression and hysteresis thresholding

Hysteresis thresholding requires two thresholds, an upper and a lower threshold. The
process starts when an edge point from non-maximum suppression is found to exceed the
upper threshold. This is labelled as an edge point (usually white, with a value 255) and
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formsthefirst point of aline of edge points. The neighbours of the point are then searched
to determine whether or not they exceed the lower threshold, as in Figure 4.19. Any
neighbour that exceeds the lower threshold is labelled as an edge point and its neighbours
are then searched to determine whether or not they exceed the lower threshold. In this
manner, the first edge point found (the one that exceeded the upper threshold) becomes a
seed point for asearch. Its neighbours, in turn, become seed pointsif they exceed the lower
threshold, and so the search extends, along branches arising from neighbours that exceeded
the lower threshold. For each branch, the search terminates at points that have no neighbours
above the lower threshold.

seed = lower seed = lower seed = lower
seed = lower seed 2 upper seed = lower
seed = lower seed = lower seed = lower

Figure 4.19 Neighbourhood search for hysteresis thresholding

In implementation, hysteresis thresholding clearly requires recursion, since the length
of any branch isunknown. Having found theinitial seed point, the seed point is set to white
and its neighbours are searched. The co-ordinates of each point are checked to see whether
it is within the picture size, according to the operator check, givenin Code 4.11.

check(xc, yc, pic):=|1if(xc=1) - (xc=scol s(pic)-2)-(yc=zl)- (yc<srows(pic)-2)
0 otherw se

Code 4.11 Checking points are within an image

The neighbourhood (asin Figure 4.19) isthen searched by afunctionconnect (Code
4.12) which is fed with the non-maximum suppressed edge image, the co-ordinates of the
seed point whose connectivity isunder analysis and the lower switching threshold. Each of
the neighbours is searched if its value exceeds the lower threshold, and the point has not

connect (X, y, nedg, | ow): = for x10Ox-1..x+1
for ylOy-1..y+1
i f (nedgyq, x12l ow) - (nedgy; x1#255) -
check(x1, yl1, nedg)
nedgy;, x1 <255
nedg —connect (x1, y1, nedg, | ow)

nedg

Code 4.12 Connectivity analysis after seed point location
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already been labelled as white (otherwise the function would become an infinite loop). If
both conditions are satisfied (and the point is within the picture) then the point is set to
white and becomes a seed point for further analysis. Thisimplementation triesto check the
seed point as well, even though it has already been set to white. The operator could be
arranged not to check the current seed point, by direct calculation without the f or loops,
and this would be marginally faster. Including an extra Boolean constraint to inhibit check
of the seed point would only slow the operation. The connect routineis recursive: it is
called again by the new seed point.

The process starts with the point that exceeds the upper threshold. When such a point is
found, it is set to white and it becomes a seed point where connectivity analysis starts. The
calling operator for the connectivity analysis, hyst _t hr, which starts the whole process
isgivenin Code4.13. When hyst _t hr isinvoked, its arguments are the co-ordinates of
the point of current interest, the non-maximum suppressed edge image, n_edg (whichis
eventually delivered asthe hysteresis thresholded image), and the upper and lower switching
thresholds, upp and | ow, respectively. For display purposes, this operator requires a later
operation to remove points which have not been set to white (to remove those points which
are below the upper threshold and which are not connected to points above the lower
threshold). Thisisrarely used in application since the points set to white are the only ones
of interest in later processing.

hyst _t hr (n_edg, upp, |l ow): = for x0O1..col s(n_edg)-2
for yOl..rows(n_edg)-2
i f[(n_edgy x2upp) - (n_edg, x#255)]
n_edgy x 255
n_edg ~connect (x, y, n_edg, | ow)

n_edg

Code 4.13 Hysteresis thresholding operator

A comparison with the results of uniform thresholding is shown in Figure 4.20. Figure
4.20(a) shows the result of hysteresis thresholding of a Sobel edge detected image of the
eye with an upper threshold set to 40 pixels, and a lower threshold of 10 pixels. Figures
4.20(b) and (c) show the result of uniform thresholding applied to theimage with thresholds
of 40 pixels and 10 pixels, respectively. Uniform thresholding can select too few points if
the threshold is too high, and too many if it is too low. Hysteresis thresholding naturally
selectsall the pointsin Figure 4.20(b), and some of those in Figure 4.20(c), those connected
to the points in (b). In particular, part of the nose is partly present in Figure 4.20(a),
whereas it is absent in Figure 4.20(b) and masked by too many edge points in Figure
4.20(c). Also, the eyebrow is more complete in (a) whereas it is only partial in (b) and
complete (but obscured) in (c). Hysteresis thresholding therefore has an ability to detect
major features of interest in the edgeimage, in an improved manner to uniform thresholding.

The action of the Canny operator on alarger imageisshown in Figure 4.21, in comparison
with the result of the Sobel operator. Figure 4.21(a) is the original image of aface, Figure
4.21(b) isthe result of the Canny operator (using a5 x 5 Gaussian operator witho =1 and
with upper and lower thresholds set appropriately) and Figure 4.21(c) is the result of a
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(a) Hysteresis thresholding, (b) Uniform thresholding, (c) Uniform thresholding,
upper level = 40, lower level = 10 level = 40 level = 10

Figure 4.20 Comparing hysteresis thresholding with uniform thresholding

3 x 3 Sobel operator with uniform thresholding. The retention of major detail by the Canny
operator isvery clear; the faceis virtually recognisable in Figure 4.21(b) whereasit isless
clear in Figure 4.21(c).

(a) Original image (b) Canny (c) Sobel

Figure 4.21 Comparing Canny with Sobel

4.3 Second-order edge detection operators

4.3.1 Motivation

First-order edge detection is based on the premise that differentiation highlights change;
image intensity changes in the region of a feature boundary. The process is illustrated in
Figure 4.22 where Figure 4.22(a) is a cross-section through image data. The result of first-
order edge detection, f'(x) = df/dx in Figure 4.22(b), is a peak where the rate of change of
the original signal, f(x) in Figure 4.22(a), is greatest. There are of course higher order
derivatives; applied to the same cross-section of data, the second-order derivative, f"(x) =
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d? fldx? in Figure 4.22(c), is greatest where the rate of change of the signal is greatest and
zero when the rate of change is constant. The rate of change is constant at the peak of the
first-order derivative. Thisis where there is a zero-crossing in the second-order derivative,
where it changes sign. Accordingly, an alternative to first-order differentiation is to apply
second-order differentiation and then find zero-crossings in the second-order information.

2L

(a) Cross-section through image data

1T

d 14 g d?
ax ') axz %) Jo

. ~ _ \ 7
PEd S

(b) First-order edge detection

(c) Second-order edge detection

Figure 4.22 First- and second-order edge detection

4.3.2 Basic operators: the Laplacian

The Laplacian operator is a template which implements second-order differencing. The

second-order differential can be approximated by the difference between two adjacent
first-order differences:

") =1'(x) —f'(x+ 1)
Which, by Equation 4.6, gives
f"X)=-f(X)+2f(x+1) —-f(x+2)

This gives a horizontal second-order template as given in Figure 4.23.

(4.22)

(4.23)

Figure 4.23 Horizontal second-order template
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When the horizontal second-order operator is combined with a vertical second-order
difference we obtain the full Laplacian template, given in Figure 4.24.

0 -1 0
-1 4 -1
0 -1 0

Figure 4.24 Laplacian edge detection operator

Application of the Laplacian operator to the image of the square is given in Figure 4.25.
The original image is provided in numeric form in Figure 4.25(a). The detected edges are
the zero-crossings in Figure 4.25(b) and can be seen to lie between the edge of the square
and its background.

(1 2 3 4 1 2 1] [0 0o o o o 0o 0 0]
2 2 3 0 1 2 1 0 1 -31 -47 -36 -32 0 0
3 0 38 39 37 36 3 0 0O -44 70 37 31 60 -28 O
p= 4 1 40 44 41 42 2 1 L= 0 -42 34 12 1 50 -39 0
1 2 43 44 40 39 1 3 0 37 47 8 -6 33 -42 0
2 0 39 41 42 40 2 0 0 -45 72 37 45 74 -34 0
1 2 2 3 1 1 0 5 44 -38 -40 -31 -6 O
| 0 2 3 1 0 4 2 | 0 0 0 0 0 0 0 0
(a) Image data (b) After Laplacian operator

Figure 4.25 Edge detection via the Laplacian operator

An alternative structure to the template in Figure 4.24 is one where the central weighting
is 8 and the neighbours are all weighted as—1. Naturally, this includes a different form of
image information, so the effects are dlightly different. (In both structures, the central
weighting can be negative and that of the four or the eight neighbours can be positive,
without loss of generality.) Actualy, it is important to ensure that the sum of template
coefficients is zero, so that edges are not detected in areas of uniform brightness. One
advantage of the Laplacian operator isthat it isisotropic (like the Gaussian operator): it has
the same properties in each direction. However, as yet it contains no smoothing and will
again respond to noise, more so than a first-order operator since it is differentiation of a
higher order. As such, the Laplacian operator is rarely used in its basic form. Smoothing
can use the averaging operator described earlier but a more optimal form is Gaussian
smoothing. When thisisincorporated with the Laplacian we obtain a Laplacian of Gaussian
(LoG) operator which isthe basis of the Marr—Hildreth approach, to be considered next. A
clear disadvantage with the Laplacian operator is that edge direction is not available. It
does, however, impose low computational cost, which is its main advantage. Though
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interest in the Laplacian operator abated with rising interest in the Marr—Hildreth approach,
a nonlinear Laplacian operator was developed (Vliet, 1989) and shown to have good
performance, especially in low-noise situations.

4.3.3 The Marr—Hildreth operator

The Marr—Hildreth approach (Marr, 1980) again uses Gaussian filtering. In principle, we
require an image which is the second differential 02 of a Gaussian operator g(x, y) convolved
with an image P. This convolution process can be separated as:

O%g(x, y) OP) = D%g(x, y)) OP (4.24)

Accordingly, we need to compute a template for 0%(g(x, y)) and convolve this with the
image. By further differentiation of Equation 4.15, we achieve a Laplacian of Gaussian
(LoG) operator:

0%g(x, y) 0%g(x,y)
NG Ue + azy Uy

_o09(xY) |, , 0906 Y)
X

O%g(x,y) =

ox oy
=0C _ibe T L BY _gje B (4.25)

1 Ox*+y?) O
2

2
ot b or 2

Thisis the basis of the Marr—Hildreth operator. Equation 4.25 can be used to calculate
the coefficients of a template which, when convolved with an image, combines Gaussian
smoothing with second-order differentiation. The operator is sometimes called a‘Mexican
hat’ operator, since its surface plot is the shape of a sombrero, asillustrated in Figure 4.26.

LoG (4, 31)

Figure 4.26 Shape of Laplacian of Gaussian operator
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The implementation of Equation 4.25 to calculate template coefficients for the LoG
operator is given in Code 4.14. The function includes a normalisation function which
ensures that the sum of the template coefficients is unity, so that edges are not detected in
area of uniform brightness. Thisis in contrast with the earlier Laplacian operator (where
the template coefficients summed to zero) since the LoG operator includes smoothing
within the differencing action, whereas the Laplacian is pure differencing. The template
generated by this function can then be used within template convolution. The Gaussian
operator again suppresses the influence of points away from the centre of the template,
basing differentiation on those points nearer the centre; the standard deviation, g, is chosen
to ensure this action. Again, it is isotropic consistent with Gaussian smoothing.

Lo o, si ze) : = cxk%
size-1
2
for x00..size-1
for yOO..size-1
NX «X—CX
ny <«y-cy

Yy «

Onx2+ny2 O

nx2+ny? “H 22
tenpl ate, P%%izy—zéﬁ et b
o o

tenpl ate—normalize (tenplate)

tenpl ate

Code 4.14 Implementation of the Laplacian of Gaussian operator

Determining the zero-crossing points is a major difficulty with this approach. Thereis
avariety of techniqueswhich can be used, including manual determination of zero-crossing
or aleast squares fit of a plane to local image data, which is followed by determination of
the point at which the plane crosses zero, if it does. The former istoo simplistic, whereas
the latter is quite complex.

The approach hereis much simpler: given alocal 3 x 3 areaof animage, thisissplitinto
quadrants. These are shown in Figure 4.27 where each quadrant contains the centre pixel.

=0 950:0 90000000009 000000000000

- 14 . * -—(—
1 —— . ° . [ ] . ° . 3

. . .

' = 5

. [ ] . ] H [ .

L | - gl et o000 cedog000000000000

|_» ° [ [ -

/ \4

2

Figure 4.27 Regions for zero-crossing detection
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The first quadrant contains the four points in the upper left corner and the third quadrant
contains the four points in the upper right. If the average of the points in any quadrant
differsin sign from the average in any other quadrant, then there must be a zero-crossing
at the centre point. In zer ox, Code 4.16, the average intensity in each quadrant is then
evaluated, giving four valuesandi nt 0,i nt 1,i nt 2, andi nt 3. If the maximum value
of these points is positive, and the minimum value is negative, then there must be a zero-
crossing within the neighbourhood. If one exists, then the output image at that point is
marked as white, otherwise it is set to black.

zerox(pic): = newpi ¢ —zer o( pi c)
for x0O1..col s(pic)-2
for yOl..rows(pic)-2
X

y
intg— 2 2 ic
0 x1=x-1 yl=y-1 P yl.x1

X y+1

int, « 2 > pic
1 x1=x-1 yl=y P yl.x1

X+1 y

int, - 2 2 ic
2 x1=x yl=y-1 p yi.x1

x+1 y+1

intg- 2 ylgy Pi Cy1x1

maxval —max(int)
m nval —m n(int)
newpi cy <255 if (maxval >0) - (m nval <0)

newpi c

Code 4.15 Zero-crossing detector

The action of the Marr—Hildreth operator is given in Figure 4.28, applied to the face
image in Figure 4.21(a). The output of the LoG operator is hard to interpret visually and
is not shown here (remember that it is the zero-crossings which mark the edge points and
it is hard to see them). The detected zero-crossings (for a 3 x 3 neighbourhood) are shown
in Figures 4.28(b) and (c) for LoG operators of size and variance 11 x 11 with 0 = 0.8 and
15 x 15 with o = 1.8, respectively. These show that the selection of window size and
variance can be used to provide edges at differing scales. Some of the smaller regions in
Figure 4.28(b) join to form larger regions in Figure 4.28(c). Note that one virtue of the
Marr—Hildreth operator is its ability to provide closed edge borders which the Canny
operator cannot. Another virtue is that it avoids the recursion associated with hysteresis
thresholding that can require a massive stack size for large images.

The Fourier transform of a LoG operator is shown in Figure 4.29, in relief in Figure
4.29(a) and as a contour plot in Figure 4.29(b). The transform is circular-symmetric, as
expected. Sincethetransform reveal sthat the Lo Goperator emitslow and high frequencies
(those closeto the origin, and those far away from the origin) it is equival ent to a band-pass
filter. Choice of the value of o controlsthe spread of the operator in the spatial domain and
the ‘width’ of the band in the frequency domain: setting o to a high value gives
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(a) Face image (b) 11 x 11 LoG

Figure 4.28 Marr—Hildreth edge detection

low-passfiltering, as expected. Thisdiffersfrom first-order edge detection templates which
offer a high-pass (differencing) filter along one axis with a low-pass (smoothing) action
along the other axis.

| Fourier_of_LoG | | Fourier_of_LoG |
(a) Relief plot (b) Contour plot

Figure 4.29 Fourier transform of LoG operator

The Marr—Hildreth operator has stimulated much attention, perhaps in part because it
has an appealing relationship to human vision, and its ability for multiresolution analysis
(the ability to detect edges at differing scales). In fact, it has been suggested that the
original image can be reconstructed from the zero-crossings at different scales. One early
study (Haralick, 1984) concluded that the Marr—Hildreth could give good performance.
Unfortunately, the implementation appeared to be different from the original LoG operator
(and has actually appeared in some textsin thisform) as noted by one of the Marr—Hildreth
study’s originators (Grimson, 1985). Thisled to asomewhat spirited reply (Haralick, 1985)
clarifying concern but also raising issues about the nature and operation of edge detection

126 Feature Extraction and Image Processing



schemes which remain relevant today. Given the requirement for convolution of large
templates, attention quickly focused on frequency domain implementation (Huertas, 1986),
and speed improvement was later considered in some detail (Forshaw, 1988). L ater, schemes
were developed to refine the edges produced via the LoG approach (Ulupinar, 1990).
Though speed and accuracy are major concerns with the Marr—Hildreth approach, it isalso
possible for zero-crossing detectors to mark as edge points ones which have no significant
contrast, motivating study of their authentication (Clark, 1989). More recently, Gunn studied
the relationship between mask size of the LoG operator and its error rate (Gunn, 1999).
Essentially, an acceptable error rate defines a truncation error which in turn gives an
appropriate mask size. Gunn also observes the paucity of studies on zero-crossing detection
and offers a detector slightly more sophisticated than the one here (as it includes the case
where a zero-crossing occurs at a boundary whereas the one here assumes that the zero-
crossing can only occur at the centre). The similarity is not coincidental: Mark developed
the one here after conversations with Steve Gunn, with whom he works!

4.4 Other edge detection operators

There have been many approaches to edge detection. Thisis not surprising since it is often
the first stage in a vision process. The most popular operators are the Sobel, Canny and
Marr—Hildreth operators. Clearly, in any implementation there is a compromise between
(computational) cost and efficiency. In some cases, it isdifficult to justify the extracomplexity
associated with the Canny and the Marr—Hildreth operators. This is in part due to the
images. few images contain the adverse noisy situations that complex edge operators are
designed to handle. Also, when finding shapes, it is often prudent to extract more than
enough low-level information, and to let the more sophisticated shape detection process
use, or discard, the information as appropriate. For these reasons we will study only two
more edge detection approaches, and only briefly. These operators are the Spacek and the
Petrou operators: both are designed to be optimal and both have different properties and a
different basis (the smoothing functional in particular) to the Canny and Marr—Hildreth
approaches. The Spacek and Petrou operators will be reviewed briefly, by virtue of their
optimality. Of the other approaches, Korn developed a unifying operator for symbolic
representation of grey level change (Korn, 1988).

4.4.1 Spacek operator

Canny derived an operator to satisfy performance measures describing maximum signal to
noise ratio and with good localisation and chose a filter functional which maximised a
composite measure of these parameters, whilst maintaining the suppression of false maxima.
Spacek used a performance measure that included all three factors (Spacek, 1986). Essentially,
whilst Canny maximised the ratio of the signal to noise ratio with the localisation, Spacek
maximised the ratio of the product of the signal to noise ratio and the peak separation with
the localisation. In Spacek’s work, since the edge was again modelled as a step function,
the ideal filter appeared to be of the same form as Canny’s. After simplification, this
resulted in a one-dimensional optimal noise smoothing filter given by:

f(r) = (Cy sin(r) + C, cos(r))e + (C3 sin(r) + C,cos(r))e” + 1 (4.26)
By numerical solution, Spacek determined optimal valuesfor the constantsas C; = 13.3816,
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C, = 2.7953, C; = 0.0542 and C, = —3.7953. Spacek also showed how it was possible to
derive operators which optimise filter performance for different combinations of the
performance factors. In particular, an operator with the best possible noise suppression
formulated by optimising the noise suppression performance alone, without the other two
measures, is given by:

fo(r) = 28n(Tr)

—cos(mir) +2r +1 (4.27)
Spacek then showed how these operators could give better performance than Canny’s
formulation, as such challenging the optimality of the Gaussian operator for noise smoothing
(in step edge detection). In application, such an advantage can be assessed only by
experimentation. For example, one study (Jia, 1995) found the Spacek operator to be
advantageous in automatic face recognition by its ability to retain a greater proportion of
feature points to edge points than found by the Canny operator.

One difficulty with optimal smoothing functionals expressed in one-dimensional form
is their extension to become a two-dimensional image operator. For the Spacek operator,
one approach is to consider Equation 4.26 as a circularly symmetric functional expressed
in terms of radius r and to generate the coefficients of a template-smoothing operator in
this manner. For the Spacek operator, thisis followed by Sobel edge detection and then by
non-maximum suppression and hysteresis thresholding. The application of the Spacek
operator is shown in Figure 4.30(b) in comparison with the result achieved by the Canny
operator, in Figure 4.30(a). Clearly, there are differences between these images, the crease
in the skin below the eye has appeared, as has some more detail. Clearly, the thresholds
could be altered on the Canny operator to reveal different edge regions. However, some of
these differences can becritical in particular applications, mativating choice of the appropriate
operator.

(a) Canny (b) Spacek (c) Petrou

Figure 4.30 Comparison of advanced first-order edge detection operators

4.4.2 Petrou operator

Petrou questioned the validity of the step edge model for real images (Petrou, 1991). Given
that the composite performance of an image acquisition system can be considered to be
that of alow-passfilter, any step-changesin theimage will be smoothed to become aramp.
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As such, a more plausible model of the edge is a ramp rather than a step. For a ramp
function given by:

1-05e* >
uxy=gro oo x=20 (4.28)
0 0.5e¥ x<0
where ais apositive constant depending on the image acquisition system’s characteristics.
A suggested range for a is between 0.5 and 3.0. The derived filter (which is optimal for
these ramp edges) is:

(B (K, sin(Ar) + K, cos(Ar)) + e (K3 sin(Ar) + K, cos(Ar)) + Kg + Kge™
g

f(r)=0 -wsr<0 (4.29)
El—f(—r) O<rsw

wherew isthe size of the filtering operator. Optimal valuesfor the constants K, K, Ks, K4,
Ks, Kg, A and w were determined, leading to templates which can be used to detect ramp
edges. In application, the window size w is fixed first, followed by appropriate choice of
athat leads to appropriate selection of the template coefficients. Since the processis based
on ramp edges, and because of limitsimposed by its formulation, the Petrou operator uses
templates that are 12 pixels wide at minimum, in order to preserve optimal properties. As
such, the operator can impose greater computational complexity but is a natural candidate
for applications with the conditions for which its properties were formulated. The operator
has been implemented in a similar manner to the Spacek operator. An example showing
application of the Petrou operator is shown in Figure 4.30(c). The scale of the action of the
operator is clear since many small features are omitted, leaving only large-scale image
features, as expected. Note that the (black) regions at the border of the picture are larger,
due to the larger size of windowing operator.

45 Comparison of edge detection operators

Naturally, the selection of an edge operator for a particular application depends on the
application itself. As has been suggested, it is not usual to require the sophistication of the
advanced operators in many applications. This is reflected in analysis of the performance
of the edge operators on the eyeimage. In order to provide adifferent basisfor comparison,
we shall consider the difficulty of low-level feature extraction in ultrasound images. As has
been seen earlier (Section 3.5.4), ultrasound images are very noisy and require filtering
prior to analysis. Figure 4.31(a) is part of the ultrasound image which could have been
filtered using the truncated median operator (Section 3.5.3). The image contains a feature
called the pitus (it's the ‘splodge’ in the middlie) and we shall see how different edge
operators can be used to detect its perimeter, though without noise filtering. Earlier, in
Section 3.5.4, we considered a comparison of statistical operators on ultrasound images.
The median is actually perhaps the most popular of these processes for general (i.e. non-
ultrasound) applications. Accordingly, it is of interest that one study (Bovik, 1987) has
suggested that the known advantages of median filtering (the removal of noise with the
preservation of edges, especially for salt and pepper noise) are shown to good effect if used
as a prefilter to first- and second-order approaches, though naturally with the cost of the
median filter. However, we will not consider median filtering here: its choice depends more
on suitability to a particular application.
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(a) Original image (b) First order (c) Prewitt (d) Sobel

(e) Laplacian (f) Marr-Hildreth (g) Canny (h) Spacek

Figure 4.31 Comparison of edge detection operators

The results for all edge operators have been generated using hysteresis thresholding
where the thresholds were selected manually for best performance. The basic first-order
operator, Figure 4.31(b), responds rather nicely to the noise and it is difficult to select a
threshold which reveals amajor part of the pitus border. Some is present in the Prewitt and
Sobel operators’ results, Figure 4.31(c) and Figure 4.31(d), respectively, but there is still
much noise in the processed image, though there is less in the Sobel. The Laplacian
operator, Figure 4.31(e), gives very little information indeed, which is to be expected with
such noisy imagery. However, the more advanced operators can be used to good effect. The
Marr—Hildreth approach improves matters, Figure 4.31(f), but suggeststhat it is difficult to
choose a LoG operator of appropriate size to detect a feature of these dimensions in such
noisy imagery. However, the Canny and Spacek operators can be used to good effect, as
shown in Figures4.31(g) and (h), respectively. These reveal much of the required information,
together with data away* from the pitus itself. In an automated analysis system, for this
application, the extra complexity of the more sophisticated operators would clearly be
warranted.

4.6 Detecting image curvature

Edges are perhaps the low-level image features that are most obvious to human vision.
They preserve significant features, so we can usually recognise what an image contains
from its edge-detected version. However, there are other low-level features that can be
used in computer vision. One important feature is curvature. Intuitively, we can consider
curvature as the rate of change in edge direction. This rate of change characterises the
points in a curve; points where the edge direction changes rapidly are corners, whereas
points where there is little change in edge direction correspond to straight lines. Such
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extreme points are very useful for shape description and matching, since they represent
significant information with reduced data.

Curvature is normally defined by considering a parametric form of a planar curve. The
parametric contour v(t) = x(t)U, + y(t)U, describes the points in a continuous curve as the
end points of the position vector. Here, the values of t define an arbitrary parameterisation,
the unit vectors are again U, = [1, 0] and U, = [0, 1]. Changes in the position vector are
given by the tangent vector function of the curve v(t). That is, v(t) = X(t)Uy + y(t)U,.
This vectorial expression has a simple intuitive meaning. If we think of the trace of the
curve as the motion of apoint and t is related to time, then the tangent vector defines the
instantaneous motion. At any moment, the point moves with a speed given by

()] = 4 X2 (t) + y2(t) inthe direction ¢(t) = tan~2 (y(t)/x(t)). The curvature at a point
v(t) describes the changes in the direction ¢(t) with respect to changes in arc length. That
is,

K(t) = dq(’jg) (4.30)

where sis arc length, along the edge itself. Here ¢ is the angle of the tangent to the curve.
That is, =0 + 90°, where 6 is the gradient direction defined in Equation 4.13. That is, if
we apply an edge detector operator to an image, then we have for each pixel a gradient
direction value that represents the normal direction to each point in a curve. The tangent to
a curve is given by an orthogonal vector. Curvature is given with respect to arc length
because a curve parameterised by arc length maintains a constant speed of motion. Thus,
curvature represents changes in direction for constant displacements along the curve. By
considering the chain rule, we have

do(t) dt
dt ds
The differential ds/dt defines the change in arc length with respect to the parameter t. If we

again consider the curve asthe motion of apoint, then thisdifferential definestheinstantaneous
change in distance with respect to time. That is, the instantaneous speed. Thus,

ds/dt = [o(t)| = /X2 (1) + V2 (1) (4.32)

K(t) = (4.31)

and
dt/ds = 1/ X2 (t) + y2(t) (4.33)

By considering that ¢(t) = tan™* (y(t)/x(t)), then the curvature at a point v(t) in Equation
4.31 is given by

(1) = XY =IO @3
[x=(t) +y=(1)]
Thisrelationship is called the curvature function and it is the standard measure of curvature
for planar curves (Apostol, 1966). An important feature of curvature is that it relates the
derivative of atangential vector to anormal vector. This can be explained by the simplified
Serret—Frenet equations (Goetz, 1970) as follows. We can express the tangential vector in
polar form as

v(t) = [u(t) [(cos(p (1)) +j sin(d(t))) (4.35)
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If the curve is parameterised by arc length, then [v(t)] is constant. Thus, the derivative of
atangential vector is simply given by

v(t) = [u()[(=sin (§(1)) + ] cos (¢(1))) (d(t)/dt) (4.36)

Since we are using a normalised parameterisation, then d¢(t)/dt = dd(t)/ds. Thus, the
tangential vector can be written as

o(t) = k(t) n(t) (4.37)

wheren(t) = |v(t)|(~=sin(d(t)) +j cos(d(t))) definesthedirection of v(t) whilst the curvature
K(t) defines its modulus. The derivative of the normal vector is given by
n(t) = [v(t)| (—cos(dp(t)) —j sin(d (t)))(db (t)/ds) that can be written as

n(t) = —k(t)o(t) (4.38)

Clearly n(t) is normal to v(t). Therefore, for each point in the curve, there is a pair of
orthogonal vectors v(t) and n(t) whose moduli are proportionally related by the curvature.

Generally, the curvature of a parametric curveis computed by evaluating Equation 4.34.
For a straight line, for example, the second derivatives X(t) and y(t) are zero, so the
curvature function is nil. For acircle of radiusr, we have x(t) =r cos(t) and y(t) =—r
sin(t). Thus, y(t) =—r cos(t), x(t) =—r sin(t) and k(t) = 1/r. However, for curvesin digital
images, the derivatives must be computed from discrete data. This can be done in four
main ways. The most obvious approach isto calculate curvature by directly computing the
difference between angul ar direction of successive edge pixelsin acurve. A second approach
is to apply the curvature function to a continuous approximation to the discrete data. In a
third approach, a measure of curvature can be derived from changes in image intensity.
Finally, a measure of curvature can be obtained by correlation.

4.6.1 Computing differences in edge direction

Perhaps the easier way to compute curvature in digital images is to measure the angular
change along the curve's path. This approach was considered in early corner detection
techniques (Bennett, 1975), (Groan, 1978), (Kitchen, 1982) and it merely computes the
difference in edge direction between connected pixels forming a discrete curve. That is, it
approximates the derivative in Equation 4.30 as the difference between neighbouring pixels.
As such, curvature is simply given by

K(t) = Q1 — s (4.39)

wherethe sequence. . . ¢i_1, Oy, Pir1, Prio - - - representsthe gradient direction of asequence
of pixels defining a curve segment. Gradient direction can be obtained as the angle given
by an edge detector operator. Alternatively, it can be computed by considering the position
of pixelsin the sequence. That is, by defining ¢; = (Viu1 — Yir1)/ (X1 — X+1) Where (X, Vi)
denotes pixel t in the sequence. Since edge points are only defined at discrete points, this
angle can only take eight values, so the computed curvature is very ragged. This can be
smoothed out by considering the difference in mean angular direction of n pixels on the
leading and trailing curve segment. That is,

n -1
k() =20 Z b =7 Z G (4.40)
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Averaging also gives someimmunity to noise and it can be replaced by aweighted average
if Gaussian smoothing is required. The number of pixels considered, the value of n, defines
a compromise between accuracy and noise sensitivity. Notice that filtering techniques may
also be used to reduce the quantisation effect when angles are obtained by an edge detection
operator. As we have already discussed, the level of filtering is related to the size of the
template (as in Section 3.4.3).

In order to compute angular differences, we need to determine connected edges. This
can easily be implemented with the code already developed for hysteresis thresholding in
the Canny edge operator. To compute the difference of points in a curve, the connect
routine (Code 4.12) only needs to be arranged to store the difference in edge direction
between connected points. Code 4.16 shows an implementation for curvature detection.
First, edges and magnitudes are determined. Curvature is only detected at edge points. As
such, we apply maximal suppression. The function Cont returns a matrix containing the
connected neighbour pixels of each edge. Each edge pixel is connected to one or two
neighbours. The matrix Next stores only the direction of consecutive pixels in an edge.
We use a value of —1 to indicate that there is no connected neighbour. The function
Next Pi xel obtainsthe position of aneighbouring pixel by taking the position of a pixel
and the direction of its neighbour. The curvature is computed as the difference in gradient
direction of connected neighbour pixels.

%Curvature detection
function outputi mage=Curve Connect (i nputinage)

[rows, colums]=size(inputinmage); % nmage size

out puti mage=zer os(rows, col ums); %Result inmge

[ Mag, Ang] =Edges(i nputi mage); %Edge Detection
Mag=MaxSupr ( Mag, Ang) ; Magni tude and Angle
Next =Cont ( Mag, Ang) ; %vaxi mal Suppression

%\ext connected pixels

%Conmpute curvature in each pixel
for x=1: colums-1
for y=1. rows-1
if Mag(y, x)~=0
n=Next (y, X, 1); nFNext (y, X, 2);
if(n~=-1 & m-=-1)
[ px, py] =Next Pi xel (x,y,n);
[ ax, gqy] =Next Pi xel (x,y, m;
out putimage(y, x)=abs(Ang(py, px)-Ang(qy, adx));
end
end
end
end

Code 4.16 Curvature by differences

The result of applying this form of curvature detection to an image is shown in Figure
4.32. Here Figure 4.32(a) containsthe silhouette of an object; Figure 4.32(b) isthe curvature
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obtained by computing the rate of change of edge direction. In this figure, curvature is
defined only at the edge points. Here, by its formulation the measurement of curvature K
gives just a thin line of differences in edge direction which can be seen to track the
perimeter points of the shapes (at points where there is measured curvature). The brightest
points are those with greatest curvature. In order to show the results, we have scaled the
curvature values to use 256 intensity values. The estimates of corner points could be
obtained by a uniformly thresholded version of Figure 4.32(b), well in theory anyway!

(a) Image (b) Detected corners

Figure 4.32 Curvature detection by difference

Unfortunately, as can be seen, this approach does not provide reliable results. It is
essentially areformulation of afirst-order edge detection process and presupposes that the
corner information lies within the threshold data (and uses no corner structure in detection).
One of the major difficulties with this approach is that measurements of angle can be
severely affected by quantisation error and accuracy is limited (Bennett, 1975), a factor
which will return to plague us later when we study methods for describing shapes.

4.6.2 Approximation to a continuous curve

An alternative way to obtain a measure of curvature is to evaluate Equation 4.34 for small
continuous curves that approximate curves in discrete data (Tsai, 1994), (Lee, 1993).
Continuous curves are estimated by fitting a curve to points given by the known position
of image edges. A reliable value of curvature is obtained when the fitting process gives a
good approximation of image segments. The main advantage of this approach is that it
reduces (or at least averages) bias due to small variations between the true position of the
pointsin the curve and the discrete position of theimage pixels. That is, it reduces digitisation
errors.

Small segments are generally defined by cubic polynomial functions. Cubic polynomials
areagood compromise between generality of the representation and computational complexity.
The fitting can be achieved by considering a parametric, or implicit, fitting equation.
However, implicit forms do not provide asimple solution leading to excessive computational
requirement. Thisis an important deterrent if we consider that it is necessary to fit a curve
for each pixel forming an edge in the image. In a parametric representation, the contour
v(t) can be approximated by the two polynomials given by,
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X(t) = a, + byt + ¢, t?

y(O) = a, + byt + ¢ t°

A simplification can be obtained by considering that v(0) is the point where we want to
evaluate curvature. Thus, the lower order values of the polynomial are known and are given
by the pixel’s co-ordinates. That is, a, = X(0) and a, = y(0). If the parameter t enumerates
the pointsin the sequence, then this means that the pixels must be indexed by negative and
positive values of t in the trailing and leading curve segments, respectively. That is, we
need to index a sequence of pixelsrelative to the pixel where we are computing curvature.

We can obtain a definition of curvature at the point v(0) by considering the derivatives
of Equations 4.41 within Equation 4.34. Accordingly, the value of curvature for the pixel
v(0) is given by

(4.41)

cyb, —csby

K(O) = 2—[b3 n b;]?’lz

(4.42)

In order to evaluate this expression, we need to estimate a pair of parameters for each
component in Equation 4.41. These parameters can be obtained by least squares fitting
(Appendix 2, Section 9.2). This fitting strategy will minimise the average error when the
error in the position of the points in the digital curve has a Gaussian distribution with
constant standard deviation. The main advantage of thisfitting processisits simplicity and
in practice even when the error assumption is not completely true, the result can provide
auseful value. To estimate the four parameters of the curve it is necessary to minimise the
squared error given by

£, = ZW()(X(0) + byt + ¢, t? — x(t))?
! (4.43)
gy = 2w(t)(y(0) + byt + c,t? — y(1))?

where the weighting function w(t) takes values between 0 and 1. Generally, these values
are used to limit the fitting to a small rectangular area in the image (i.e. a window). That
is, for aregion of size 2w + 1, the weight takes a value of one when x(t) —x(0) < w or y(t)
—y(0) £ wand zero otherwise. Alternatively, weights with a Gaussian distribution can also
be used to increase the importance of points close to the fitting curve. By considering that
the derivatives with respect to the four unknown parameters vanish at the minimum of
Equation 4.43, we have that

0S: Ss OO 0S¢ O dDSp Ss ObyO OSt O

= = 4.44
Est3 St4 %H:xa %xtz %an %%3 Sa %H:YE %ytz % ( )
where
SPE %W(t)tz Ss = tZw(t)t3 Ss = tZw(t)t4
Se = %W(t)(X(t) -x@O)t S = tZW(t)(X(t) - x(O)t? (4.45)

Sy = 2w(t)(y(t) —y(O)t S = 2w(t)(y(t) - y(O)t?

Therefore, the solution for the best-fit model parametersis given by
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Code 4.17 shows the implementation of Equation 4.41. First, we obtain the edges and the
matrix Next that stores the direction of the connected pixels. For each edge pixel, we
compute the leading and trailing curve segments. These segments are stored in the vectors
Lchai n and Rchai n. These segments are obtained by following the curve until it goes
out of apredefined square region. Then, we use Equations 4.44 and 4.45 to obtain the mean
square fit. Finally, based on the fitted curve we compute the curvature. Figure 4.33 shows
the result of the curvature obtained by this approach. Here we use awindow 7 pixelswide.

(4.46)

%Curvature via fitting
function outputimage=CurvFit (inputimage)

%onpute curvature for pixel (x,y)
for x=wtl:colums-w
for y=wtl:rows-w
%onpute | eading curve segnent
i =0; n=Next (y, x, 1); p=[x,y];

Lchain=[];

while i<w & n~=-1
i=i+1;
[ ax, qy] =Next Pi xel (p(1),p(2),n);
p=[ax, ay];

Lchai n=[ Lchai n; p] ;
mer em( n+4, 8) ;

if(Next(p(2),p(1l),1)~=-1 & Next(p(2),
n=Next (p(2),p(1),1);

el seif Next(p(2),p(1),2)~=m
n=Next (p(2),p(1),2);

el se
n=-1;

end

end

%onpute trailing curve segnent
i =0; n=Next(y,x,2); p=[x,y];
Rchai n=[];
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W=3; oPar amet er w ndow si ze=2w+1
[rows, colums]=size(inputinage); % nmage size

out put i nage=zer os(rows, col ums); %Result inmge

[ Mag, Ang] =Edges(i nputi mage) ; %Edge Detection

Mag=MaxSuper ( Mag, Ang) ; %vaxi mal Suppression

Next =Cont ( Mag, Ang) ; %N\Next connected pixels

p(1),1)~=m




while i<w & n~=-1
i=i+1;
[ ax, qy] =Next Pi xel (p(1),p(2),n);
p=[ax, qy];
Rchai n=[ Rchai n; p] ;
mer em( n+4, 8) ;

if(Next(p(2),p(1),1)~=-1 & Next(p(2),p(1),1)~=m
n=Next (p(2),p(1),1);

el seif Next(p(2),p(1),2)~=m
n=Next (p(2),p(1),2);

el se
n=-1;

end

end

%vean Squares
st 2=0; st3=0; st4=0;sxt=0; sxt2=0; syt2=0; syt2=0;
[n, M =si ze(Lchain);
for t=1:n
st 2=st 2+t *t; st 3=st 3+t *3; st 4=st4+t"4;
sxt =sxt +(Lchain(t,1)-x)*t; syt=syt+(Lchain(t,2)-y)*t;
sxt 2=sxt 2+(Lchai n(t, 1) —x) *t*t; syt2=syt2+(Lchain(t, 2)-y)*t*t;
end
[n, M =si ze(Rchai n);
for t=1;n
st 2=st 2+t *t; st3=st3-t~"3; std=st4+t"4;
sxt =sxt—(Rchain(t, 1)-x)*t; syt=syt-(Rchain(t,2)-y)*t;
sxt 2=sxt 2+(Rchai n(t, 1) —x) *t *t; syt 2=syt 2+ (Rchai n(t, 2)-y)*t*t;
end

i f((st2*st4—st 3*st 3)~=0)
bx=(sxt*st4—sxt 2*st 3)/ (st 2*st 4-st 3*st 3);
by=(syt*st4—syt 2*st 3)/ (st 2*st 4—st 3*st 3);
cxX=(st2*sxt 2—st 3*sxt)/ (st 2*st 4-st 3*st 3);
cy=(st2*syt2-st 3*syt)/ (st2*st4-st3*st3);
d=sqrt ((bx*bx+ by*by)~3);

i f(d~=0)
d=abs(2*(cy*bx—-cx*by)/d);
out put i mage(y, x) =d;

end

end

end
end

Code 4.17 Curvature by curve fitting

The main problem with this approach is that it depends on the extraction of sequences
of pixels. In some cases it is very difficult to trace a digital curve in the image. Thisis
because noise in the data can cause edges to be missed or to be found inaccurately. This
problem may be handled by using arobust fitting technique. However, the implementation
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Figure 4.33 Curvature detection via curve fitting (via K(t))

isnot evident. In the next chapters we will show how to find simple curvesin arobust way.
We shall show, for example, how to find circular arcs. By using this robust fitting for each
image pixel, then the curvature could be computed as the inverse ratio of acircle.

4.6.3 Measuring curvature by changes in intensity

As an alternative way of measuring curvature, we can define the curvature as a function of
changesinimageintensity. This derivation can be based on the measure of angular changes
in the discrete image. We can represent the direction at each image point as the function
®(x, y). Thus, according to the definition of curvature, we should compute the change in
these direction values along the image edge (i.e. along the curvesin an image). The curve
at an edge can be locally approximated by the points given by the parametric line defined
by x(t) = x + t cos(¢(x, y)) and y(t) =y + t sin(dp(X, y)). Thus, the curvature is given by the
change in the function ¢(x, y) with respect to t. That is,

o0 (X, od(x,y) o ,y) 0
(o) = S0 B006) X0, d66) O/ a7

where 9x(t)/ot = cos(¢$) and dy(t)/ot = sin($). By considering the definition of the gradient
angle in Equation 4.13, we have that the tangent direction at a point in alineis given by
d(x, y) = tan"}(Mx/(-My)). From where we can observe that

cos($) = —My/yMx? + My? and sin(¢) = Mx/y/Mx? + My? (4.48)
By derivation of ¢(x, y) and by considering these definitions we obtain
Ko (X,Y)
=1 Huy _ag/:(x — MxMy 62/)I(y + Mx? —a(';"y - MxMy_ag"XE
(Mx2 + My2)2 y y O
(4.49)

This defines a forward measure of curvature along the edge direction. We can actually use
an alternative direction to measure of curvature. We can differentiate backwards (in the
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direction of —(x, y)) giving K_4(X, ). In this case we consider that the curve is given by
X(t) = x + t cos(— ¢(x, y)) and y(t) = y + t sin(=p(x, y)). Thus,

Ko (X, Y)
_ 1 DMyZ 0MX_M I\/lyaMy Mx 26My+M MyaMxE
30 0X 0X oy oy
(Mx2 + My?)2
(4.50)

Two further measures can be obtained by considering aforward and abackward differential
along the normal to the edge. These differentials cannot be related to the actual definition
of curvature, but can be explained intuitively. If we consider that curves are more than one
pixel wide, then differentiation along the edge will measure the difference between the
gradient angle between interior and exterior borders of awide curve. In theory, the tangent
angle should be the same. However, in discrete images there is a change due to the
measures in awindow. If the curve is a straight line, then the interior and exterior borders
are the same. Thus, gradient direction normal to the edge does not change locally. As we
bend a straight line, we increase the difference between the curves defining the interior and
exterior borders. Thus, we expect the measure of gradient direction to change. That is, if
we differentiate along the normal direction, we maximise detection of gross curvature. The
valueKg (X, y) isobtained when x(t) = x + t sin($(x, y)) and y(t) = y + t cos(d(x, y)). In this
case,

Kmp (X, Y)
= —1 %Mx al‘;/)l(y MxMy a{;vly MxMy agny + My? ag/IXD
(MXZ + My )2 y y O
(4.51)
In a backward formulation along a normal direction to the edge, we obtain:
K_p (X,Y)
=1 3 E}—sz agil(y+MxMyag/|X MxMyag/ly+My2 —BQAXE
(MXZ + MyZ)E U y y ]
(4.52)

Thiswas originally used by Kass (1988) as a means to detect line terminations, as part of
a feature extraction scheme called snakes (active contours) which are covered in Chapter
6. Code 4.18 shows an implementation of the four measures of curvature. The function
Gr adi ent isused to obtain the gradient of the image and to obtain its derivatives. The
output image is obtained by applying the function according to the selection of parameter
op.

L et us see how the four functions for estimating curvature from image intensity perform
for the image given in Figure 4.32. In general, points where the curvature is large are
highlighted by each function. Different measures of curvature, Figure 4.34, highlight differing
points on the feature boundary. All measures appear to offer better performance than that
derived by reformulating hysteresisthresholding, Figure 4.32, and by fitting cubic polynomials,
Figure4.33. Though thereislittle discernible performance advantage between the direction
of differentiation. As the results in Figure 4.34 suggest, detecting curvature directly from
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% adi ent Corner Detector
Y%op=T tangent direction
Y%p=Tl tangent inverse
%op=N normal direction
%p=Nl normal inverse

function outputimge = G adCorner (inputinmage, op)

[rows, col ums] =si ze(i nputi mage); % nage size
out put i mage=zer os(rows, col ums); %esult inmage

[ Mk, My] =Gr adi ent (i nputi nage) ; %G adi ent i nages
[ M A] =Edges(i nputi mage) ; %&dge Suppression
M=MaxSupr (M A) ;
[ Mkx, Mky] =Gr adi ent ( M) ; %Der i vatives of the gradi ent i mage

[ Myx, Myy] =Gr adi ent (M) ;

%conpute curvature
for x=l:colums
for y=l:rows
if(My, x)~=0)
My2=My(y, x) "2;  M2=MK(y, x) *2; MKMy=MK(y, X) *M/(y, X);
i f((M2+My2)~=0)
i f(op=='TIl")
out puti mage(y, x) =( 1/ ( Mk2+My2) *1. 5) * ( My2* Mkx(y, X) -
MM * Myx(y, X) =Mk2* My (y, X) +MKMy* MKy (Y, X) ) ;
el sei f (op=='N)
out puti mage(y, x) =( 1/ ( Mk2+My2) *1. 5) * ( Mk2* Myx(y, X) -
MMy * MKX (Y, X) MKMW MYy (Y, X) + M2 MKy (Y, X)) ;
el seif (op=="N")
out puti mage(y, x) =(1/ (Mk2+My2) ~1. 5) * (- Mk2* Myx(y, X)
+MKMY* MK (Y, X) - MKMW MYy (y, X) +M 25 WKy (Y, X)) ;
el se % tangential as default
out puti mage(y, x) =( 1/ ( Mk2+My2) *1. 5) * ( My2* Mkx(y, X) -
g/kM/*M/X(y, X) +MK2* My (y, X) =MKMy* MKy (Y, X) ) ;
en
end
end
end
end

Code 4.18 Curvature by measuring changes in intensity

animageisnot atotaly reliable way of determining curvature, and hence corner information.
Thisisin part due to the higher order of the differentiation process. (Also, scale has not
been included within the analysis.)

4.6.4 Autocorrelation as a measure of curvature

In the previous section, we measured curvature as the derivative of the function ¢(x, y)
along a particular direction. Alternatively, a measure of curvature can be obtained by
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considering changes along a particular direction in theimage P itself. Thisisthe basic idea
of Moravec’s corner detection operator. This operator computes the average change in
image intensity when awindow is shifted in several directions. That is, for a pixel with co-
ordinates, (X, y), and a window size of 2w + 1 we have that

w w
EU’U(X, Y) = iZW j=z—w [Px+i,y+i - F)x+i+u,y+i+v]2 (4-53)

(a) Ky (b) Ky

(€) K (d) K

Figure 4.34 Comparing image curvature detection operators

This equation approximates the autocorrelation function in the direction (u, v). A measure
of curvature is given by the minimum value of E, ,(X, y) obtained by considering the shifts
(u,v) inthefour main directions. That is, by (1, 0), (1, 1), (0, 1) and (-1, —1). The minimum
is chosen because it agrees with the following two observations. First, if the pixel isin an
edge defining a straight line, then E, ,(x, y) is small for a shift along the edge and large for
a shift perpendicular to the edge. In this case, we should choose the small value since the
curvature of the edge is small. Secondly, if the edge defines a corner, then al the shifts
produce alarge value. Thus, if we also chose the minimum, then this value indicates high
curvature. The main problem with this approach is that it considers only a small set of
possible shifts. This problem is solved in the Harris corner detector (Harris, 1988) by
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defining an analytic expression for the autocorrelation. This expression can be obtained by
considering the local approximation of intensity changes.

We can consider that the points Py y+j and Pyyj1y y+j+, defineavector (u, v) in theimage.
Thus, in asimilar fashion to the development given in Equation 4.53, the increment in the
image function between the points can be approximated by the directional derivative
UOPyj y4+j/0X + 0OPyy; 4 10y. Thus, the intensity at Pyyjyy 4+, CaN be approximated as

_ OPysiy+ OPysiy+
Px+i+u,y+j+v = Px+i,y+j + Ox u+ dy v

where this expression corresponds to the three first terms of the Taylor expansion around
Py+iy+j (@n expansion to first-order). If we consider this approximation in Equation 4.53 we
have that

(4.54)

(4.55)

B w W [OPyy VH OPysi ad ﬁ
Eu,v(x' y) - i:zw j:z—w E 1) u+ ay v%

By expansion of the squared term (and since u and v are independent of the summations),
we obtain,

Euo(X Y) = A%, Y)U? + 2C(X, y)uv + B(X, y)v? (4.56)
where
_ w w Dan+i,y+j D2 _ jid jd Dapx+i Y+ D2
A= 2, 2, FS0 Bo0y)= 3, 8, (s
(4.57)

_ w w Dapx+i Y+ D]apxﬂ %3] O

Clxy) =2, J=z—w H ax H oy

That is, the summation of the squared components of the gradient direction for all the
pixels in the window. In practice, this average can be weighted by a Gaussian function to
make the measure less sensitive to noise (i.e. by filtering the image data). In order to
measure the curvature at apoint (X, y), it is necessary to find the vector (u, v) that minimises
Eu (X y) given in Equation 4.56. In a basic approach, we can recall that the minimum is
obtained when the window is displaced in the direction of the edge. Thus, we can consider
that u = cos (¢(x, y)) and v = sin(d(X, y)). These values were defined in Equation 4.48.
Accordingly, the minima values that define curvature are given by

A(X,y)M$ + 2C(X, Y)MxM, + B(X, y)M?
MZ +M]

Kup (X, Y) =minEy, (X, y) =

(4.58)

In a more sophisticated approach, we can consider the form of the function E,,(x, y). We
can observe that thisis a quadratic function, so it has two principal axes. We can rotate the
function such that its axes have the same direction as the axes of the co-ordinate system.
That is, we rotate the function E, (X, y) to obtain

Fuo(X y) = ax, y)?u? + B(x, y)?? (4.59)
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The values of a and 3 are proportional to the autocorrelation function along the principal
axes. Accordingly, if the point (X, y) isin aregion of constant intensity, then we will have
that both values are small. If the point defines a straight border in the image, then one value
is large and the other is small. If the point defines an edge with high curvature, then both
values are large. Based on these observations a measure of curvature is defined as

Ke(X y) = 0B —k(a + B)? (4.60)

The first term in this equation makes the measure large when the values of a and 3
increase. The second term isincluded to decrease the valuesin flat borders. The parameter
k must be selected to control the sensitivity of the detector. The higher the value, the more
sensitive to changes in the image (and therefore to noise) computed curvature will be.

In practice, in order to compute K (X, y) it is not necessary to compute explicitly the
values of a and 3, but the curvature can be measured from the coefficient of the quadratic
expression in Equation 4.56. This can be derived by considering the matrix forms of
Equations 4.56 and 4.59. That is,

Euo(X,y) = P{,MP,, and F,,(x,y) =Py} QPyy (4.61)
where T denotes the transpose and where
_ DA Y)  C(xy) O
He(xy)  B(x.y)
In order to relate the matrices M and Q we consider the rotation transformation

Pry = RPyy (4.63)

Thus, the rotated system is obtained by substitution of the rotated point in E, (X, y). That
is,

and Q = g ZE (4.62)

Fuu (X, y) = [RPxyI"TMRP;, (4.64)

By arranging terms, we obtain F, , (x, y) = PxJRTMRPy ,. By comparison with Equation
4.61, we have that

Q=R'™MR (4.65)
which means that Q is an orthogonal decomposition of M. If we compute the determinant
of the matricesin each side of this equation, we have that det(Q) = det(R") det(M) det(R).
Since det(R") det(R) = 1, thus,

aB = A(x, Y)B(x, ¥) — C(x, y)? (4.66)

which defines the first term in Equation 4.60. The second term can be obtained by taking
the trace of the matrices in each side of this equation. Thus, we have that

o+ B=AKXY) +B(XY) (4.67)
If we substitute these values in Equation 4.60, we have that curvature is measured by
KX, ¥) = A% Y)B(X, ¥) = C(x, y)* = K(A(X, y) + B(X, ))? (4.68)

Code 4.19 shows an implementation for Equations 4.57 and 4.67. The equation to be used
is selected by the op parameter. Curvature is only computed at edge points. That is, at
pixels whose edge magnitude is different of zero after applying maximal suppression. The
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first part of the code computes the coefficients of the matrix M according to Equation 4.56.
Then, these values are used in the curvature computation.

%Harris Corner Detector

Y%op=H Harris

%p=M M ni mum direction

function outputimge=Harris(inputinage, op)

w=4; 9N ndow si ze=2w+1
k=100; Y$Second t er mconst ant
[rows, columms]=size(inputinage); % mage size

out puti mage=zeros(rows, colums); %Result inmage

[difx, dify]=Gadient(inputimge); o%Di fferential

[ M A] =Edges(i nputi mage) ; %Edge Suppression

M=MaxSupr (M A) ;

%conpute correlation
for x=wt+l: colums-w %pi xel (x,y)
for y=wtl:rows-w
if My, x)~=0
%onput e wi ndow aver age

A=0; B=0; C=0;
for i=—ww
for j=—ww

A=A+di fxX(y+i, x+j)"2;
B=B+di fy(y+i, x+j)"2;
C=C+di f x(y+i, x+j)*di fy(y+i, x+j);
end
end

i f(op=="H)

out puti mage(y, x) =A* B-C"2-k* ( A+B) ;
el se

dx=di f x(y, x);

dy=di fy(y,x);

i f dx*dx+dy*dy~=0
out puti mage(y, x) =(( A*dy*Dy—
2* Cxdx*dy+B*dx*dx) / (dx*dx+dy*dy));

end

end
end
end
end

Code 4.19 Curvature by autocorrelation

Figure 4.35 shows the results of computing curvature using this implementation. The
results are capable of showing the different curvature along the border. We can observe that
Kk(X, y) produces more contrast between lines with low and high curvature than K, ,(X, y).
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Thereason is theinclusion of the second term in Equation 4.68. In general, the measure of
correlation is not only useful to compute curvature, but this technique has much wider
application in finding points for matching pairs of images.

(3) Ky X, Y) (b) kilx, ¥)

Figure 4.35 Curvature via the Harris operator

4.7 Describing image motion

We have looked at the main low-level features that we can extract from a single image. In
the case of motion, we must consider more than oneimage. If we have two images obtained
at different times, then the simplest way in which we can detect motion is by image
differencing. That is, changes of motion can be located by subtracting the intensity values;
when there is no motion, the subtraction will give a zero value and when an object in the
image moves their pixel’s intensity changes, so the subtraction will give a value different
from zero.

In order to denote a sequence of images, we include a time index in our previous
notation. That is, P(t),,. Thus, the image at the origin of our time is P(0),,, and the next
image is P(1),,. As such the image differencing operation which delivers the difference
image D is given by

D() = P(t) - P(t— 1) (4.69)

Figure 4.36 shows an example of this operation. The image in Figure 4.36(a) is the result
of subtracting the image in Figure 4.36(b) from the one in Figure 4.36(c). Naturally, this
shows rather more than just the bits which are moving, we have not just highlighted the
moving subject, we have also highlighted bits above the subject’s head and around his feet.
Thisisdue mainly to change in the lighting (the shadows around the feet are to do with the
subject’s interaction with the lighting). However, perceived change can also be due to
motion of the camera and to the motion of other objectsin the field of view. In addition to
these inaccuracies, perhaps the most important limitation of differencing is the lack of
information about the movement itself. That is, we cannot see exactly how image points
have moved. In order to describe the way the pointsin an image actually move, we should
study how the pixel’s position changes in each image frame.
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(a) Difference image D (b) First image (c) Second image

Figure 4.36 Detecting motion by differencing

4.7.1 Area-based approach

When a scene is captured at different times, 3D elements are mapped into corresponding
pixelsin the images. Thus, if image features are not occluded, they can be related to each
other and motion can be characterised as a collection of displacements in the image plane.
The displacement corresponds to the project movement of the objects in the scene and it
isreferred to asthe optical flow. If you were to take animage, and its optical flow, then you
should be able to construct the next frame in the image sequence. So optical flow islike a
measurement of velocity, the movement in pixels/unit of time, more simply pixels/frame.
Optical flow can befound by looking for corresponding featuresin images. We can consider
aternative features such as points, pixels, curves or complex descriptions of objects.

The problem of finding correspondences in images has motivated the development of
many techniques that can be distinguished by the features, the constraints imposed and by
the optimisation or searching strategy (Dhond, 1989). When features are pixels, the
correspondence can be found by observing the similarities between intensities in image
regions (local neighbourhood). This approach is known as area-based matching and it is
one of the most common techniques used in computer vision (Barnard, 1987). In general,
pixels in non-occluded regions can be related to each other by means of a general
transformation of the form by

P(t + 1)x+6x,y+6y = F)(t)x,y + H(t)x,y (4.70)

where the function H(t),, compensates for intensity differences between the images, and
(3%, dy) defines the displacement vector of the pixel at timet + 1. That is, the intensity of
the pixel in the frame at time t + 1 is equal to the intensity of the pixel in the position
(X, y) in the previous frame plus some small change due to physical factors and temporal
differences that induce the photometric changes in images. These factors can be due, for
example, to shadows, specular reflections, differencesinillumination or changesin observation
angles. Inageneral case, itisextremely difficult to account for the photometric differences,
thus the model in Equation 4.70 is generally simplified by assuming that

1. that the brightness of a point in an image is constant; and
2. that neighbouring points move with similar velocity.

According to the first assumption, we have that H(x) = 0. Thus,
P(t + D)weaxy+sy = P(Dxy (4.71)
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Many techniques have used thisrelationship to express the matching process as an optimisation
or variational problem (Jordan, 1992). The objective is to find the vector (0%, dy) that
minimises the error given by

Exy = S(P(t + 1)x+5x,y+6ya P(t)x,y) (4.72)

where ) represents a function that measures the similarity between pixels. As such, the
optimum is given by the displacement that minimises the image differences. There are
alternative measures of similarity that can be used to define the matching cost (Jordan,
1992). For example, we can measure the difference by taking the absolute of the arithmetic
difference. Alternatively, we can consider the correlation or the squared values of the
difference or an equivalent normalised form. In practice, it is difficult to try to establish a
conclusive advantage of a particular measure, since they will perform differently depending
on the kind of image, the kind of noise and the nature of the motion we are observing. As
such, one is free to use any measure as long as it can be justified based on particular
practical or theoretical observations. The correlation and the squared difference will be
explained in more detail in the next chapter when we consider how a template can be
located in an image. We shall see that if we want to make the estimation problem in
Equation 4.72 equivalent to maximum likelihood estimation then we should minimise the
squared error. That is,

ex,y = (P(t + l)x+5x,y+5y - F’(t)x,y)2 (4-73)

In practice, the implementation of the minimisation is extremely prone to error since the
displacement is obtained by comparing intensities of single pixels; it isvery likely that the
intensity changes, or that a pixel can be confused with other pixels. In order to improve
performance, the optimisation includes the second assumption presented above. If
neighbouring points move with similar velocity, then we can determine the displacement
by considering not just a single pixel, but pixels in a neighbourhood. Thus,

ex,y = (x’,y’z)EIW (P(t + 1)x'+5x,y’+5y - p(t)x’,y’)2 (474)
That is, the error in the pixel at position (X, y) is measured by comparing al the pixels
(X, y) in awindow W. This makes the measure more stable by introducing an implicit
smoothing factor. The size of the window is a compromise between noise and accuracy.
Naturaly, the automatic selection of the window parameter has attracted some interest
(Kanade, 1994). Another important problem is the amount of computation involved in the
minimisation when the displacement between frames is large. This has motivated the
development of hierarchical implementations. As you can envisage, other extensions have
considered more elaborate assumptions about the speed of neighbouring pixels.

A straightforward implementation of the minimisation of the squared error is presented
in Code 4.20. Thisfunction hasapair of parametersthat define the maximum displacement
and the window size. The optimum displacement for each pixel is obtained by comparing
the error for al the potential integer displacements. In a more complex implementation, it
is possibleto obtain displacements with sub-pixel accuracy (Lawton, 1983). Thisisnormally
achieved by a post-processing step based on sub-pixel interpolation or by matching surfaces
obtained by fitting the data at the integer positions. The effect of the selection of different
window parameters can be seen in the example shown in Figure 4.37. Figures 4.37(a) and
4.37(b) show an object moving up into a static background (at least for the two frames we
are considering). Figures 4.37(c), 4.37(d) and 4.37(e) show the displacements obtained by
considering windows of increasing size. Here, we can observe that as the size of the
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%Optical flow by correlation
%l: max displacenment., w w ndow size 2w+l
function FlowCorr (inputimagel,inputinage2,d,w)

% . oad i nmages
L1=doubl e(i nread(i nputi mage 1, ‘bnp’'));
L2=doubl e(i nread(i nputi nage2, ‘bnmp’));

% mage size
[rows, colums]=size(Ll); %2 nust have the sanme size

% esult inmage
u=zeros(rows, colums);
v=zeros(rows, colums);

%orrel ation for each pixel
for x1=w+d+1:col ums—w-d
for yl=wt+d+1:rows—w-d
m n=99999; dx=0; dy=0;
%despl acenent position
for x2=x1-d:x1+d
for y2=yl-d:yl+d
sumF0;
for i=-w w¥% wi ndow
for j=—ww
sumFsum+( doubl e( L1(y1+j, x1+i))—
doubl e(L2(y2+j, x2+i)))"2;
end
end
if (sunmsnm n)
m n=sum
dx=x2-x1; dy=y2-y1;
end
end
end
u(yl, x1) =dx;
v(yl, x1) =dy;
end
end

%li spl ay result
qui ver(u,v,.1);

Code 4.20 Implementation of area-based motion computation

window increases, the result is smoother, but we lose detail about the boundary of the
object. We can also observe that when the window is small, they are noisy displacements
near the object’s border. This can be explained by considering that Equation 4.70 supposes
that pixels appear in both images, but thisis not true near the border since pixels appear and
disappear (i.e. occlusion) from and behind the moving object. Additionally, there are
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problemsin regions that lack intensity variation (texture). Thisis because the minimisation
function in Equation 4.72 is ailmost flat and there is no clear evidence of the motion. In
general, there is no effective way of handling these problems since they are due to the lack
of information in the image.

(a) Firstimage (b) Second image
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Figure 4.37 Example of area-based motion computation

4.7.2 Differential approach

Another popular way to estimate motion focuses on the observation of the differential
changes in the pixel values. There are actually many ways of calculating the optical flow
by this approach (Nagel, 1987; Barron, 1994). We shall discuss one of the more popular
techniques (Horn, 1981). We start by considering the intensity relationship in Equation
4.71. According to this, the brightness at the point in the new position should be the same
asthe brightness at the old position. Like Equation 4.5, we can expand P(t + 8t),.sxy+5y DY
using a Taylor series as

P(t)y, - OP(L)x, - OP(t)y,
x ¥t 5t
(4.75)

where & contains higher order terms. If we take the limit as 6t - O then we can ignore §
as it also tends to zero which leaves

P(t + 6t)x+6x,y+6y = P(t)x,y + 6X

P(t)x, - Py, - OP()y,
x ¥ 5 T g

P(t + 51:)x+6x,y+(’3y = P(t)x.y + OX (4-76)
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Now by Equation 4.71 we can substitute for P(t + dt),, sy y+5y t0 give

_ OP(t)y OP(t)xy OP(t)
P(t)xy = P(t)x, +0X 3 + Oy 3y + & 5 4.77)

which with some rearrangement gives the motion constraint equation
Ox P, ®y 0P _ _ 9P (4.78)

ot ox ot dy ot

We can recognise sometermsin this equation. dP/0x and dP/dy are the first-order differentials
of the image intensity along the two image axes. dP/dt is the rate of change of image
intensity with time. The other two factors are the ones concerned with optical flow, as they
describe movement along the two image axes. Let us call

_Ox _ oy
u= E and v = a
These are the optical flow components: u isthe horizontal optical flow and v isthe vertical
optical flow. We can write these into our equation to give

JOP L, 0P 0P

ox oy T ot
This equation suggests that the optical flow and the spatial rate of intensity change together
describe how an image changes with time. The equation can actually be expressed more
simply in vector form in terms of the intensity change COP =[x [y] = [0P/ox 0P/dy] and
the optical flow v = [u v]", as the dot product

OP-v=—P (4.80)

We already have operators that can estimate the spatial intensity change, [0x = dP/dx and
Oy = dP/dy, by using one of the edge detection operators described earlier. We also have
an operator which can estimate the rate of change of image intensity, [t = dP/ot, as given
by Equation 4.69. Unfortunately, we cannot determine the optical flow components from
Equation 4.79 since we have one equation in two unknowns (there are many possible pairs
of valuesfor u and v that satisfy the equation). Thisis actually called the aperture problem
and makes the problem ill-posed. Essentially, we seek estimates of u and v that minimise
error in Equation 4.86 over the entire image. By expressing Equation 4.79 as,

udx + o0y + 0Ot =0 (4.81)

(4.79)

we then seek estimates of u and v that minimise the error ec for all the pixelsin an image

ec= udx+ 4o yH t)2dxd (4.82)
H( yB t)2dxdy

We can approach the solution (egquations to determine u and v) by considering the second
assumption we made earlier, namely that neighbouring points move with similar velocity.
Thisisactually called the smoothness constraint as it suggests that the vel ocity field of the
brightness varies in a smooth manner without abrupt change (or discontinuity). If we add
thisin to the formulation, we turn a problem that is ill-posed, without unique solution, to
onethat iswell posed. Properly, we define the smoothness constraint as an integral over the
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area of interest, as in Equation 4.82. Since we want to maximise smoothness, we seek to
minimise the rate of change of the optical flow. Accordingly, we seek to minimise an
integral of the rate of change of flow along both axes. Thisis an error es as

es:ﬂ @%‘:g ¥ %g ¥ @%g ¥ @g—;ggdxdy (4.83)

The total error is the compromise between the importance of the assumption of constant
brightness and the assumption of smooth velocity. If this compromise is controlled by a
regularisation parameter A then the total error e is

e=Axec+es

I R RTT AT o e e
(4.84)

There is a number of ways to approach the solution (Horn, 1986), but the most appealing
is perhaps also the most direct. We are concerned with providing estimates of optical flow
at image points. So we are actually interested in computing the values for u,, and v, . We
can form the error at image points, like es,,. Since we are concerned with image points,
then we can form es, , by using first-order differences, just like Equation 4.1 at the start of
this chapter. Equation 4.83 can be implemented in discrete form as

eSx,y = % %% ((ux+1,y_ ux,y)2+(ux,y+1_ux,y)2+ (Ux+1,y _Ux,y)2+ (Ux,y+1_vx,y)2)
(4.85)

The discrete form of the smoothness constraint is then that the average rate of change of
flow should be minimised. To obtain the discrete form of Equation 4.84 we then add in the
discrete form of ec (the discrete form of Equation 4.82) to give

Cyy = 2 g(“xvy DXy + U Yay B ty)? (4.86)

where [x,, = 0Py /0X, Oy, = 0Py /0y and [t,, = 0P, , /0t are local estimates, at the point
with co-ordinates x, y, of the rate of change of the picture with horizontal direction, vertical
direction and time, respectively. Accordingly, we seek values for u, , and v, that minimise
the total error e as given by

ex,y = % %(A x er,y + %X,y)

A x (Ux,yDXx,y +Ux ] Yyy B tx,y)2 U
=>>0 1 O
< H"' 2 ((ux+1,y_ ux,y)2+(ux,y+1_ux,y)z"'(vxﬂ,y _Ux,y)2+ (Ux,y+1_vx,y)2)H
(4.87)

Since we seek to minimise this equation with respect to u,, and v, then we differentiate
it separately, with respect to the two parameters of interest, and the resulting equations
when equated to zero should yield the equations we seek. As such
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ey

()\ x 2(ux,yDXx,y + Ux,w yx|y # txg) Xx,y + 2(ux,y - UX,y)) =0

ouy
(4.88)
and
oe
avxyy = (A x 2uyyOxxy + oy fd Yy B th) Yey + 2(vxy — Uxy)) = 0 (4.89)
X,y

This gives a pair of equations in uy, and vy,
(1 +A(OXxy)?) Uxy + A XL YyyUxy = Uy BN By tyy
DX B Yaegly + (1 + KL Yiy)?) Dy = Oy BN Ry Ly
Thisis apair of equations in u and v with solution
L+ A(Oxxy) 2+ Yxy)?)) ey =1+ AL Yxy))UuyBA Bxy ViyOkh =M Xxy ey
(LA ((Oxxy)2+0 Yuy)?)) Uy =B Xhy Yuy Uxy +(1+A(O%cy)?) vxy=A Y&, ey
(4.91)

The solution to these equations is in iterative form where we shall denote the estimate of
u at iteration n as u™™ so each iteration calculates new values for the flow at each point

(4.90)

according to
00Xy Uy y Yy Oy Bty O
m+10 _ =01 X,yUXy X,y X,y X,y
u =Ugy — Ox
X,y X,y (1 + )\(DX)%&/ 'H:l y)%yy)) H( x,y) (4 92)
00X, Uy y + Oy, 0y y H t, O
m+10 _ =01 X,y Xy X,y¥ X,y X,y
= A O
POy AT NGE, O ygy) B

Now we have it, the pair of equations gives iterative means for calculating the images of
optical flow based on differentials. In order to estimate the first-order differentials, rather
than use our earlier equations, we can consider neighbouring pointsin quadrantsin successive
images. This gives approximate estimates of the gradient based on the two frames. That is,

(P(o)x+1,y + I:)(:I-)x+1,y + I:)(O)x+1,y+1 + P(l)x+1,y+l) -
(P(o)x,y + P(l)x,y + P(O)x,y+1 + I:)(:I-)x,y+l)

Xy y =
’ 8 (4.93)
(P(O)x,y+l + F)(:I-)x,y+1 + I:)(o)x+l,y+l + P(l)x+1,y+l) -
_ (P(O)xy + P(l)x,y + F)(O)x+1,y + P(l)x+1,y)
Dyx,y - 8

In fact, in a later reflection (Horn, 1993) on the earlier presentation, Horn noted with
rancour that some difficulty experienced with the original technique had actually been
caused by use of simpler methods of edge detection which are not appropriate here, as the
simpler versions do not deliver a correctly positioned result between two images. The time
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differential is given by the difference between the two pixels along the two faces of the
cube, as

(P(l)x,y + P(:]-)x+1,y + P(l)x,y+l + P(l)x+1,y+1) -

Otey = (P(Q)xy *+ P(0)ys1,y + Ps(o)x,y+1 + P(0) x41,y+1) (4.94)

Note that if the spacing between the images is other than one unit, this will change the
denominator in Equations 4.93 and 4.94, but this is a constant scale factor. We also need
means to calculate the averages. These can be computed as

_ Uxay FlUgya T Uggy ¥ Uy + Uxgy-1 F Uxgy+1 + Uxigy1 + Uxsg ysa

0. . =

xy 2 4
__ Uyay FUxya tUxay T Ups1 Uxaay1 T Uxcgyer F Uxary-1 F Uxa y
Uxy = 2 + 4

(4.95)

Theimplementation of the computation of optical flow by theiterative solution in Equation
4.92 ispresented in Code 4.21. This function has two parameters that define the smoothing
parameter and the number of iterations. In the implementation, we use the matrices u, v, uu
and vu to store the old and new estimatesin each iteration. The values are updated according
to Equation 4.92. Derivatives and averages are computed by using Equations 4.93, 4.94
and 4.95. In a more elaborate implementation, it is convenient to include averages as we
discussed in the case of single image feature operators. Thiswill improve the accuracy and
will reduce noise. Additionally, since derivatives can only be computed for small
displacements, generally, gradient algorithms areimplemented with ahierarchical structure.
This will enable the computation of displacements larger than one pixel.

Figure 4.38 shows some examples of optical flow computation. In these examples, we
used the same images as in Figure 4.37. The first row in the figure shows three results
obtained by different numbers of iterations and a fixed smoothing parameter. In this case,
the estimates converged quite quickly. Note that at the start, the estimates of flow in are
quite noisy, but they quickly improve; as the algorithm progresses the results are refined
and a more smooth and accurate motion is obtained. The second row in Figure 4.38 shows
the results for a fixed number of iterations and a variable smoothing parameter. The
regularisation parameter controls the compromise between the detail and the smoothness.
A highvalue of A will enforce the smoothness constraint whereas alow value will make the
brightness constraint dominate the result. In the results we can observe that the largest
vectors point in the expected direction, upwards, whilst some of the smaller vectors are not
exactly correct. Thisis because there is occlusion and some regions have similar textures.
Clearly, we could select the brightest of these points by thresholding according to magnitude.
That would leave the largest vectors (the ones which point in exactly the right direction).

Optical flow has been used in automatic gait recognition (Huang, 1999; Little, 1998),
amongst other applications, partly because the displacements can be large between successive
images of a walking subject, which makes the correlation approach suitable. Figure 4.39
shows the result for awalking subject where brightness depicts magnitude (direction is not
shown). Figure 4.39(a) shows the result for the differential approach, where the flow is
clearly more uncertain than that produced by the correlation approach shown in Figure
4.38(b). Another reason for using the correlation approach is that we are not concerned
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%Optical flow by gradient nethod

%s=snoot hi ng par aneter

Y% =nunber of iterations

function Optical Fl ow(i nputimage 1,inputinage2,s,n)

% .oad i nmages
L1=doubl e(i nread(i nputi nage 1, bnmp’));
L2=doubl e(i nread(i nputi nmage2, ‘bnmp’));

% mage size
[rows, colums]=size(ll); %2 nust have the sanme size

%Result flow
u=zeros(rows, colums);
v=zeros(rows, colums);

%renporal flow
tu=zeros(rows, colums);
tv=zeros(rows, colums);

%1 ow conputation
for k=1.n %terations
for x=2:colums-1
for y=2:rows-1
Y%erivatives
Ex=(L1(y,x+1)-L1(y,x)+L2(y,x+1)-L2(y, x)+L1(y+1, x+1) -
L1(y+1, x) +L2(y+1, x+1)-L2(y+1, x))/ 4;
Ey=(L1(y+1,x)-L1(y, x)+L2(y+1,x)-L2(y, x)+L1(y+1, x+1) -
L1(y, x+1) +L2(y+1, x+1)-L2(y, x+1))/ 4;
Et =(L2(y, x)-L1(y, x)+L2(y+1, x)-L1(y+1, x)+L2(y, x+1) L1(y, x+1)
+L2(y+1, x+1) - L1(y+1, x+1))/ 4;
Y%aver age
AU=(u(y, x-1) +u(y, x+1) +u(y- 1, x) +u(y+1, x) )/ 4;
AV=(v(y, x-1) +v(y, x+1) +v(y-1, x) +v(y+1, x) )/ 4;
Y%update estimates
A=( Ex* AU+Ey* AV+Et ) ;
B=(1+s* ( Ex* Ex+Ey*Ey) ) ;
tu(y, xX) =AU- (Ex*s* A/ B) ;
tv(y, X) =AV- (Ey*s*A/ B) ;
end %or (x,Yy)
end
Y%updat e
for x=2:colums-1
for y=2:rows-1
u(y, x)=tu(y, x); v(y,x)=tv(y, x);
end %or (x,Yy)
end
end % terations

%li splay result
qui ver (u,v,1);

Code 4.21 Implementation of gradient-based motion
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(a) 2 iterations

(b) 4 iterations

(c) 10 iterations

(d) A = 0.001

(e)A=0.1

(f) A =100

Figure 4.38 Example of area-based motion computation

(a) Flow by differential approach

(b) Flow by correlation

Figure 4.39 Optical flow of walking subject
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with rotation as people (generally!) walk along flat surfaces. If 360° rotation is to be
considered then you have to match regions for every rotation value and this can make the
correlation-based techniques computationally very demanding indeed.

4.8 Further reading

Few computer vision and image processing texts omit detail concerning edge detection
operators, though few give explicit details concerning implementation. Naturally, many of
the earlier texts omit the more recent techniques. (Parker, 1994) only includes C code for
some of the most basic edge detection techniques. Further information can be found in
journal papers; Petrou’s excellent study of edge detection Petrou (1994) highlights study of
the performance factorsinvolved in the optimality of the Canny, Spacek and Petrou operators
with extensive tutorial support (though we suspect Petrou junior might one day be embarrassed
by the frequency with which his youthful mugshot is used — his teeth show up very well!).
There have been anumber of surveys of edge detection highlighting performance attributes
in comparison. See, for example, Torre (1986) which gives a theoretical study of edge
detection and considers some popular edge detection techniques in light of this analysis.
One survey (Heath, 1997) surveys many of the more recent approaches, comparing them
in particular with the Canny operator (and states where code for some of the techniques
they compared can be found). This showed that best results can be achieved by tuning an
edge detector for a particular application and highlighted good results by the Bergholm
operator (Bergholm, 1987). Marr (1982), considers the Marr—Hildreth approach to edge
detection in the light of human vision (and its influence on perception), with particular
reference to scale in edge detection. Since edge detection is one of the most important
vision techniques, it continues to be a focus of research interest. Accordingly, it is aways
worth looking at recent conference proceedings to see any new techniques, or perhaps
more likely performance comparison or improvement, that might help you solve aproblem.

Many of these arguments apply to corner detection as well, so the same advice applies
there. There is much less attention paid by established textbooks to corner detection,
though Davies (1990) devotes a chapter to the topic. Van Otterloo’s fine book on shape
analysis (Van Otterloo, 1991) contains a detailed analysis of measurement of (planar)
curvature. Equally, determining optical flow does not get much of amention in the established
textbooks, even though it is a major low-level feature description. Rather naturally, it isto
be found in depth in one of its early proponent’s textbooks (Horn, 1986), but there is not
agreat deal elsewhere. It is often mentioned in the literature as it has led to considerable
research such as computation of three-dimensional surfaces, but that is not of concern here.

There are other important issues in corner detection. It has been suggested that corner
extraction can be augmented by local knowledge to improve performance (Rosin, 1996).
There are actually many other corner detection schemes, each offering different attributes
though with differing penalties. Important work has focused on characterising shapes using
corners. In a scheme analogous to the primal sketch introduced earlier, thereis a curvature
primal sketch (Asada, 1986), which includes a set of primitive parameterised curvature
discontinuities (such as termination and joining points). There are many other approaches:
one (natural) suggestion is to define a corner as the intersection between two lines, this
requires a process to find the lines; other techniques use methods that describe shape
variation to find corners. We commented that filtering techniques can be included to
improve the detection process, however, filtering can aso be used to obtain a multiple
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detail representation. This representation isvery useful to shape characterisation. A curvature
scale space has been developed (Mokhtarian, 1986) and (Mokhtarian, 1992) to give a
compact way of representing shapes, and at different scales, from coarse (low-level) to fine
(detail).

Another approach to motion estimation has considered the frequency domain (Adelson,
1985) (yes, Fourier transforms get everywhere!). For a further overview of dense optical
flow see Bulthoff (1989) and for implementation see Little (1988). The major survey
(Beauchemin, 1995) of the approaches to optical flow is rather dated now, but the authors
did produce freely available software (ft p: // csd. uwo. ca/ pub/ vi si on) for the
techniques that they also compared in a performance appraisal (Barron, 1994). Such an
(accuracy) appraisal is particularly useful in view of the number of ways there are to
estimate it. The nine techniques studied included the differential approach we have studied
here, a Fourier technique and a correl ation-based method. Their conclusion was that alocal
differential method (Lucas, 1981) and a phase-based method (Fleet, 1990) offered the most
consistent performance on the datasets studied. However, there are many variables, not
only in the data but also in implementation, that might lead to preference for a particular
technique. Clearly, there are many impediments to the successful calculation of optical
flow such as change in illumination or occlusion (and by other moving objects). In fact,
there have been a number of studies on performance, e.g. of affine flow in Grossmann
(1997). More recently, a thorough analysis of correlation techniques has been devel oped
(Giachetti, 2000) with new algorithms for sub-pixel estimation. One of the more recent
studies (Liu, 1998) notes how the more recent devel opments have been for fast or accurate
techniques, without consideration of the trade-off between these two factors. The study
compared the techniques mentioned previously with two newer approaches (one fast and
one accurate), and also surveys real-time implementations that include implementation via
parallel computers and special purpose VLSI chips.
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I 5
Feafure extraction by
shape mafching

5.1 Overview

High-level feature extraction concerns finding shapes in computer images. To be able to
recognise faces automatically, for example, one approach is to extract the component
features. This requires extraction of, say, the eyes, the ears and the nose, which are the
major face features. To find them, we can use their shape: the white part of the eyesis
ellipsoidal; the mouth can appear as two lines, as do the eyebrows. Shape extraction
impliesfinding their position, their orientation and their size. Thisfeature extraction process
can be viewed as similar to the way we perceive the world: many books for babies describe
basic geometric shapes such as triangles, circles and squares. More complex pictures can
be decomposed into a structure of simple shapes. In many applications, analysis can be
guided by the way the shapes are arranged. For the example of face image analysis, we
expect to find the eyes above, and either side of, the nose and we expect to find the mouth
below the nose.

In feature extraction, we generally seek invariance properties so that the extraction
process does not vary according to chosen (or specified) conditions. That is, techniques
should find shapes reliably and robustly whatever the value of any parameter that can
control the appearance of a shape. As a basic invariant, we seek immunity to changesin
the illumination level: we seek to find a shape whether it is light or dark. In principle, as
long asthereis contrast between a shape and its background, the shape can be said to exist,
and can then be detected. (Clearly, any computer vision technique will fail in extreme
lighting conditions, you cannot see anything when it is completely dark.) Following
illumination, the next most important parameter is position: we seek to find a shape
wherever it appears. This is usually called position-, location- or translation-invariance.
Then, we often seek to find a shape irrespective of its rotation (assuming that the object or
the camera has an unknown orientation): this is usually called rotation- or orientation-
invariance. Then, we might seek to determine the object at whatever size it appears, which
might be due to physical change, or to how close the object has been placed to the camera.
This requires size- or scale-invariance. These are the main invariance properties we shall
seek from our shape extraction techniques. However, nature (as usual) tends to roll balls
under our feet: there is always noise in images. Also since we are concerned with shapes,
note that there might be more than one in the image. If oneis on top of the other, it will
occlude, or hide, the other, so not all the shape of one object will be visible.

But before we can devel op image analysis techniques, we need techniques to extract the
shapes. Extraction is more complex than detection, since extraction implies that we have
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adescription of ashape, such asits position and size, whereas detection of a shape merely
implies knowledge of its existence within an image.

The techniques presented in this chapter are outlined in the table below. In order to
extract a shape from an image, it is necessary to identify it from the background elements.
This can be done by considering the intensity information or by comparing the pixels
against agiven template. In the first approach, if the brightness of the shape is known, then
the pixelsthat form the shape can be extracted by classifying the pixels according to afixed
intensity threshold. Alternatively, if the background image is known, then this can be
subtracted to obtain the pixels that define the shape of an object superimposed on the
background. Template matching is a model-based approach in which the shape is extracted
by searching for the best correlation between a known model and the pixels in an image.
There are alternative ways to compute the correlation between the template and the image.
Correlation can beimplemented by considering theimage or frequency domains. Additionally,
the template can be defined by considering intensity values or a binary shape. The Hough
transform defines an efficient implementation of template matching for binary templates.
This technique is capable of extracting simple shapes such as lines and quadratic forms as
well as arbitrary shapes. In any case, the complexity of the implementation can be reduced
by considering invariant features of the shapes.

Table5.1 Overview of Chapter 5

Shape extraction method Technique
Pixel brightness Image thresholding
Image subtraction
Template matching Intensity template
Image and Fourier domains Binary Hough Lines
templates transform Quadratic forms Invariance

Arbitrary shapes

5.2 Thresholding and subtraction

Thresholding is a simple shape extraction technique, as illustrated in Section 3.3.4 where
theimages could be viewed as the result of trying to separate the eye from the background.
If it can be assumed that the shape to be extracted is defined by its brightness, then
thresholding an image at that brightness level should find the shape. Thresholding is
clearly sensitive to change in illumination: if the image illumination changes then so will
the perceived brightness of the target shape. Unless the threshold level can be arranged to
adapt to the change in brightness level, any thresholding technique will fail. Its attraction
is simplicity: thresholding does not require much computational effort. If the illumination
level changesin alinear fashion, then using histogram equalisation will result in an image
that does not vary. Unfortunately, the result of histogram equalisation is sensitive to noise,
shadows and variant illumination: noise can affect the resulting image quite dramatically
and this will again render a thresholding technique useless.

Thresholding after intensity normalisation (Section 3.3.2) is less sensitive to noise,
sincethe noiseis stretched with the original image, and cannot affect the stretching process
by much. It is, however, still sensitive to shadows and variant illumination. Again, it can
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only find application where the illumination can be carefully controlled. This requirement
is germane to any application that uses basic thresholding. If the overall illumination level
cannot be controlled, then it is possible to threshold edge magnitude data since this is
insensitiveto overall brightnesslevel, by virtue of theimplicit differencing process. However,
edge datais rarely continuous and there can be gaps in the detected perimeter of a shape.
Another mgjor difficulty, which applies to thresholding the brightness data as well, is that
there are often more shapes than one. If the shapes are on top of each other, one occludes
the other and the shapes need to be separated.

An alternative approach is to subtract an image from a known background before
thresholding (we saw how we can estimate the background in Section 3.5.2). This assumes
that the background is known precisely, otherwise many more details than just the target
feature will appear in the resulting image; clearly the subtraction will be unfeasibleif there
isnoise on either image, and especially on both. In this approach, thereis no implicit shape
description, but if the thresholding process is sufficient, then it is simple to estimate basic
shape parameters, such as position.

The subtraction approach isillustrated in Figure 5.1. Here, we seek to separate or extract
the walking subject from the background. We saw earlier, in Figure 3.22, how the median
filter can be used to provide an estimate of the background to the sequence of images that
Figure 5.1(a) comes from. When we subtract the background of Figure 3.22(i) from the
image of Figure 5.1(a), we obtain most of the subject with some extra background just
behind the subject’s head. Thisis due to the effect of the moving subject on lighting. Also,
removing the background removes some of the subject: the horizontal barsin the background
have been removed from the subject by the subtraction process. These aspects are highlighted
in the thresholded image, Figure 5.1(c). It is not a particularly poor way of separating the
subject from the background (we have the subject but we have chopped out his midriff) but
it is not especially good either.

(a) Image of walking subject (b) After background subtraction (c) After thresholding

Figure 5.1 Shape extraction by subtraction and thresholding

Even though thresholding and subtraction are attractive (because of simplicity and
hence their speed), the performance of both techniquesis sensitive to partial shape data, to
noise, variation in illumination and to occlusion of the target shape by other objects.
Accordingly, many approaches to image interpretation use higher level information in
shape extraction, namely how the pixels are connected within the shape. This can resolve
these factors.
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5.3 Template matching

5.3.1 Definition

Template matching is conceptually a simple process. We need to match a template to an
image, where the template is a sub-image that contains the shape we are trying to find.
Accordingly, we centre the template on an image point and count up how many pointsin
the template match those in the image. The procedure is repeated for the entire image and
the point which led to the best match, the maximum count, is deemed to be the point where
the shape (given by the template) lies within the image.

Consider that we want to find the template of Figure 5.2(b) in the image of Figure
5.2(a). The template is first positioned at the origin and then matched with the image to
give a count which reflects how well the template matched that part of the image at that
position. The count of matching pixels is increased by one for each point where the
brightness of the template matches the brightness of the image. This is similar to the
process of template convolution, illustrated earlier in Figure 3.11. The difference here is
that points in the image are matched with those in the template, and the sum is of the
number of matching points as opposed to the weighted sum of image data. The best match
is when the template is placed at the position where the rectangle is matched to itself.
Obviously, this process can be generalised to find, for example, templates of different size
or orientation. In these cases, we have to try al the templates (at expected rotation and
size) to determine the best match.

td‘r N vy
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(a) Image containing shapes (b) Template of target shape
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Figure 5.2 Illustrating template matching

Formally, template matching can be defined as a method of parameter estimation. The
parameters define the position (and pose) of the template. We can define a template as a
discrete function T, . This function takes values in awindow. That is, the co-ordinates of
the points (x, y) O W. For example, for a2 x 2 template we have that the set of points W
={(0,0), (0, 1), (1,0, (1, 1)}.
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Let us consider that each pixel intheimage |, y is corrupted by additive Gaussian noise.
The noise has a mean value of zero and the (unknown) standard deviation is g. Thus the
probability that apoint in the template placed at coordinates (i, j) matches the corresponding
pixel at position (X, y) O W is given by the normal distribution

10N+ y+j —Txy ?

P (X, y) = L e° ’ (5.

2o

Since noise affecting each pixel isindependent, then the probability that the templateis at
the position (i, j) is the combined probability of each pixel that the template covers. That is,

pij (X, Y) (5.2

By substitution of Equation 5.1, we have that

Lij = I_I
' (x.y)ow

1 D|x+i,+'—Tx, [f2
Ly = L R (53
YT H 210 '

where n is the number of pixels in the template. This function is called the likelihood
function. Generally, it is expressed in logarithmic form to simplify the analysis. Notice that
the logarithm scales the function, but it does not change the position of the maximum.
Thus, by taking the logarithm the likelihood function is redefined as

_ 041 0 1 Ol iy = Ty
|n(|_i’j ) =N |n%H—E(X’%EWWE (54)

In maximum likelihood estimation, we have to choose the parameter that maximises the
likelihood function. That is, the positions that minimise the rate of change of the objective
function

oln(L; ; oln (L ;
% =0 and % =0 (5.5
That is,
al X+, y+]
o ey =) =52 =0
5 | T al XH, Y+ _ 0 (5:6)
(x.y)EW ( X+, y+j T x,y) aJ -

We can observe that these equations are also the solution of the minimisation problem
given by

min e = (x,%DN (Isiyej — Ty)? (5.7)
That is, maximum likelihood estimation is equivalent to choosing the template position
that minimises the squared error (the squared val ues of the differences between the template

points and the corresponding image points). The position where the template best matches
the image is the estimated position of the template within the image. Thus, if you measure
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the match using the squared error criterion, then you will be choosing the maximum
likelihood solution. This implies that the result achieved by template matching is optimal
for images corrupted by Gaussian noise. A more detailed examination of the method of
least squares is given in Appendix 2, Section 9.2. (Note that the central limit theorem
suggests that practically experienced noise can be assumed to be Gaussian distributed,
though many images appear to contradict this assumption.) Of course you can use other
error criteria such as the absolute difference rather than the squared difference or, if you
feel more adventurous, then you might consider robust measures such as M-estimators.
We can derive alternative forms of the squared error criterion by considering that Equation
5.7 can be written as
min e = (x,%D\N (i yei = 2y Ty + TEy) (5.8)
The last term does not depend on the template position (i, j). As such, it is constant and
cannot be minimised. Thus, the optimum in this equation can be obtained by minimising

m|n e= (x’)%DN I )2(+i Yt - 2 (X,y%W I x+i,y+j Tx,y (59)
If the first term
2
oo Ve (5.10)

is approximately constant, then the remaining term gives a measure of the similarity
between the image and the template. That is, we can maximise the cross-correlation
between the template and the image. Thus, the best position can be computed by

max e = (X’yZ)DN |ty Ty (5.11)
However, the squared term in Equation 5.10 can vary with position, so the match defined
by Equation 5.11 can be poor. Additionally, the range of the cross-correlation function is
dependent on the size of the template and it is non-invariant to changes in image lighting
conditions. Thus, in an implementation it is more convenient to use either Equation 5.7 or
Equation 5.9 (in spite of being computationally more demanding than the cross-correlation
in Equation 5.11). Alternatively, the cross-correlation can be normalised as follows. We
can rewrite Equation 5.8 as

| Y Tx,y
mine=1-2 W (5.12)
(xyyw Xy
Here the first term is constant and thus the optimum value can be obtained by
2 iy Ty
max e = &YW > (5.13)

(X,¥)OW I X+ Y+

In general, it is convenient to normalise the grey level of each image window under the
template. That is,
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Z (I XH,y+] T I_i,j)(Tx,y - T)

max e = &YW — (5.14)
(X’%EW (g = 1ij)
where 1 j isthe mean of the pixels |, .; for points within the window (i.e. (x, y) O W)

and T isthe mean of the pixels of the template. An alternative form to Equation 5.14 is
given by normalising the cross-correlation. This does not change the position of the optimum
and gives an interpretation as the normalisation of the cross-correlation vector. That is, the
cross-correlation is divided by its modulus. Thus,

2 (I XH,y+j T I_i,')(Tx, — T)
maxe = — W v _ 12 y — 615
\/(x,yz)gw (Mg = 1)) (Txy = T)

However, this equation has a similar computational complexity to the original formulation
in Equation 5.7.

A particular implementation of template matching is when the image and the template
are binary. In this case, the binary image can represent regions in the image or it can
contain the edges. These two cases are illustrated in the example in Figure 5.3. The
advantage of using binary images is that the amount of computation can be reduced. That
is, each term in Equation 5.7 will take only two values: it will be one when I, y4j = Ty,
and zero otherwise. Thus, Equation 5.7 can be implemented as

maxe = (nyZ)[W Leiy+j O Ty (5.16)

2
i,f:# £

(a) Binary image (b) Edge image
(c) Binary template (d) Edge template

Figure 5.3 Example of binary and edge template matching
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where the symbol T denotes the exclusive NOR operator. This equation can be easily
implemented and requires significantly fewer resources than the original matching function.

Template matching devel ops an accumulator space that stores the match of the template
to the image at different locations, this corresponds to an implementation of Equation 5.7.
It is called an accumulator, since the match is accumulated during application. Essentially,
the accumulator is atwo-dimensional array that holds the difference between the template
and the image at different positions. The position in the image gives the same position of
match in the accumulator. Alternatively, Equation 5.11 suggests that the peaks in the
accumulator resulting from template correlation give the location of the template in an
image: the co-ordinates of the point of best match. Accordingly, template correlation and
template matching can be viewed as similar processes. The location of a template can be
determined by either process. The binary implementation of template matching, Equation
5.16, usually is concerned with thresholded edge data. This equation will be reconsidered
in the definition of the Hough transform, the topic of the following section.

The Matlab code to implement template matching is the function TiVat chi ng givenin
Code5.1. Thisfunction first clears an accumulator array, ac cum then searches the whole
picture, using pointersi and j , and then searches the whole template for matches, using
pointers x and y. Notice that the position of the template is given by its centre. The
accumulator elements are incremented according to Equation 5.7. The accumulator array

%lenpl ate Matching | nplementation
functi on accum=TMat chi ng(i nputi mage, t enpl at e)

% mage size & tenplate size
[rows, col ums] =si ze(i nputi mage) ;
[rowsT, col umsT] =si ze(tenpl ate);

%Centre of the tenplate
cx=f 1 oor (col umsT/ 2) +1; cy=floor(rowsT/2)+1;

%Accunul at or
accumrzer os(rows, col ums);
%lenpl ate Position
for i=cx:colums-cx
for j=cy:rows-cy
%lenpl ate el enents
for x=1-cx:cx-1
for y=1l-cy:cy-1
err=(doubl e(i nputi mage(j +y, i +x))-doubl e(t enpl at e
(y+ey, x+cx))) "2;
accum(j,i)=accum(j,i)+err;
end
end
end
end

Code 5.1 Implementing template matching
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isdelivered astheresult. The match for each positionis stored in the array. After computing
all the matches, the minimum element in the array defines the position where most pixels
in the template matched those in the image. As such, the minimum is deemed to be the co-
ordinates of the point where the template’s shape is most likely to lie within the original
image. It is possible to implement a version of template matching without the accumulator
array, by storing the location of the minimum alone. This will give the same result though
it requires little storage. However, this implementation will provide a result that cannot
support later image interpretation that might require knowledge of more than just the best
match.

The results of applying the template matching procedure are illustrated in Figure 5.4.
This example shows the accumulator arrays for matching the images shown in Figure
5.2(a), 5.3(a) and 5.3(b) with their respective templates. The dark pointsin each image are
at the co-ordinates of the origin of the position where the template best matched the image
(the minimum). Note that there is a border where the template has not been matched to the
image data. At these border points, the template extended beyond the image data, so no
matching has been performed. This is the same border as experienced with template
convolution, Section 3.4.1. We can observe that a better minimum is obtained, Figure
5.4(c), from the edge images of Figure 5.3. This is because for grey level and binary
images, there is some match when the template is not exactly in the best position.

- 1 .
" »
) , J-
- : - v -
(a) For the grey level image (b) For the binary image (c) For the edge image

Figure 5.4 Accumulator arrays from template matching

Most applications require further degrees of freedom such as rotation (orientation),
scale (size), or perspective deformations. Rotation can be handled by rotating the templ ate,
or by using polar co-ordinates; scaleinvariance can be achieved using templates of differing
size. Having more parameters of interest implies that the accumulator space becomes
larger; its dimensions increase by one for each extra parameter of interest. Position-
invariant template matching, as considered here, implies a 2D parameter space, whereas
the extension to scale and position invariant template matching requires a 3D parameter
space.

The computational cost of template matching is large. If the template is square and of
sizemx mand is matched to an image of size N x N then since the n? pixels are matched
at all image points (except for the border) the computational cost is O(N’n?). This is the
cost for position invariant template matching. Any further parameters of interest increase
the computational cost in proportion to the number of values of the extra parameters. This
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is clearly alarge penalty and so a direct digital implementation of template matching is
slow. Accordingly, this guarantees interest in techniques that can deliver the same result,
but faster, such as using a Fourier implementation based on fast transform calculus.

5.3.2 Fourier transform implementation

We can implement template matching via the Fourier transform by using the duality
between convolution and multiplication. This duality establishes that a multiplication in
the space domain corresponds to a convolution in the frequency domain and vice versa.
This can be exploited for faster computation by using the frequency domain, given the fast
Fourier transform algorithm. Thus, in order to find a shape we can compute the cross-
correlation as a multiplication in the frequency domain. However, the matching processin
Equation 5.11 is actually correlation (Section 2.3), not convolution. Thus, we need to
express the correlation in terms of a convolution. This can be done as follows. First, we
can rewrite the correlation in Equation 5.11 as

10T = 3 by Teoiyo (5.17)

where X' = x+1i andy =y +j. Convolution is defined as

10T=_ 5 1, T

5.18
(X, y)ow ( )

=X ,j-y
Thus, in order to implement template matching in the frequency domain, we need to
express Equation 5.17 in terms of Equation 5.18. This can be achieved by considering that

1OT=10T'= (x,%[WIX"y' Tix iy (5.19)

where
T =T,y (5.20)

That is, correlation is equivalent to convolution when the template is changed according to
Equation 5.20. This equation reverses the co-ordinate axes and it correspondsto a horizontal
and a vertical flip.

In the frequency domain, convolution corresponds to multiplication. As such, we have
that Equation 5.19 can be implemented by

| * T' = FY(F(1)F(T")) (5.21)

where F denotes Fourier transformation as in Chapter 2 (and calculated by the FFT) and
F ! denotestheinverse FFT. This can be computational ly faster than its direct implementation,
given the speed advantage of the FFT. There are two ways of implementing this equation.
In the first approach, we can compute T' by flipping the template and then computing its
Fourier transform F(T'). In the second approach, we compute the transform of F(T) and
then we compute the complex conjugate. That is,

F(T") = [F(M)]* (5.22)

where [ ]* denotes the complex conjugate of the transform data (yes, we agree it's an
unfortunate symbol clash with convolution, but both are standard symbols). So conjugation
of the transform of the template implies that the product of the two transforms leads to
correlation. That is,
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| OT' = FXF®) [F(T)]*) (5.23)

For both implementations, Equations 5.21 and 5.23 will evaluate the match and, more
quickly for large templates than by direct implementation of template matching. Note that
one assumption is that the transforms are of the same size, even though the template’'s
shape is usually much smaller than the image. Thereis actually a selection of approaches,
asimple solution is to include extra zero values (zero-padding) to make the image of the
template the same size as the image.

The code to implement template matching by Fourier, FTConv, is given in Code 5.2.
The implementation takes the image and the flipped template. The template is zero-padded
and then transforms are evaluated. The required convolution is obtained by multiplying the
transforms and then applying the inverse. The resulting image is the magnitude of the
inverse transform. This could naturally be invoked as a single function, rather than as
procedure, but the implementation is less clear. This process can be formulated using
brightness or edge data, as appropriate. Should we seek scale invariance, to find the
position of atemplate irrespective of its size, then we need to formulate a set of templates
that range in size between the maximum expected variation. Each of the templates of
differing sizeisthen matched by frequency domain multiplication. The maximum frequency
domain value, for all sizes of template, indicates the position of the template and, naturally,
gives a value for its size. This can of course be a rather lengthy procedure when the
template ranges considerably in size.

%-ourier Transform Convol ution
function FTConv(inputi mage,tenpl ate)

% mage size
[rows, col ums] =si ze(i nputi nmage) ;

%WT
Fi mage=fft2(i nputi mage, rows, col ums);
Ftenmpl ate=fft2(tenpl at e, rows, col uMms) ;

%Convol ution
G=Fi mage. *Ft enpl at e;

%Vvbdul us
Z=l og(abs(fftshift(Q));

% nverse
R=real (ifft2(Q);

Code 5.2 Implementing convolution by the frequency domain

Figure 5.5 illustrates the results of template matching in the Fourier domain. This
exampl e uses the image and template shown in Figure 5.2. Figure 5.5(a) shows the flipped
and padded template. The Fourier transforms of the image and of the flipped template are
given in Figures 5.5(b) and 5.5(c), respectively. These transforms are multiplied, point by

Feature extraction by shape matching 171



point, to achieve the image in Figure 5.5(d). When this is inverse Fourier transformed, the
result, Figure 5.5(¢), shows where the template best matched the image (the co-ordinates
of thetemplate'stop left-hand corner). The resultant image contains several local maximum
(inwhite). This can be explained by the fact that thisimplementation does not consider the
term in Equation 5.10. Additionally, the shape can partially match several patternsin the
image. Figure 5.5(f) shows azoom of the region where the peak is located. We can see that
this peak is well defined. In contrast to template matching, the implementation in the
frequency domain does not have a border. This is due to the fact that Fourier theory
assumes picture replication to infinity. Note that in application, the Fourier transforms do
not need to berearranged (f f t shi f) sothat the d.c. is at the centre, since this has been
done here for display purposes only.

<

(a) Flipped and padded template (b) Fourier transform of template (c) Fourier transform of image

(d) Multiplied transforms (e) Result (f) Location of the template

Figure 5.5 Template matching by Fourier transformation

There are severa further difficultiesin using the transform domain for template matching
in discreteimages. If we seek rotation invariance, then an image can be expressed in terms
of its polar co-ordinates. Discretisation gives further difficulty since the pointsin arotated
discrete shape can map imperfectly to the original shape. This problem is better manifest
when an image is scaled in size to become larger. In such a case, the spacing between
points will increase in the enlarged image. The difficulty is how to alocate values for
pixels in the enlarged image which are not defined in the enlargement process. There are
several interpolation approaches, but it can often appear prudent to reformulate the original
approach. Further difficulties can include the influence of the image borders: Fourier
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theory assumes that an image replicates spatially to infinity. Such difficulty can be reduced
by using window operators, such asthe Hamming or the Hanning windows. These difficulties
do not obtain for optical Fourier transforms and so using the Fourier transform for position-
invariant template matching is often confined to optical implementations.

5.3.3 Discussion of template matching

The advantages associated with template matching are mainly theoretical since it can be
very difficult to develop a template matching technique that operates satisfactorily. The
results presented here have been for position invariance only. If invariance to rotation and
scale is also required then this can cause difficulty. This is because the template is stored
as a discrete set of points. When these are rotated, gaps can appear due to the discrete
nature of the co-ordinate system. If the template is increased in size then again there will
be missing pointsin the scaled-up version. Again, thereis afrequency domain version that
can handle variation in size, since scale invariant template matching can be achieved using
the Mellin transform (Bracewell, 1986). This avoids using many templates to accommodate
the variation in size by evaluating the scale-invariant match in a single pass. The Mellin
transform essentially scales the spatial co-ordinates of the image using an exponential
function. A point is then moved to a position given by alogarithmic function of its original
co-ordinates. The transform of the scaled image is then multiplied by the transform of the
template. The maximum again indicates the best match between the transform and the
image. This can be considered to be equivalent to a change of variable. The logarithmic
mapping ensuresthat scaling (multiplication) becomes addition. By the logarithmic mapping,
the problem of scale invariance becomes a problem of finding the position of a match.

The Méllin transform only provides scale-invariant matching. For scale and position
invariance, the Méellin transform is combined with the Fourier transform, to give the
Fourier—Mellin transform. The Fourier—Meéllin transform has many disadvantages in a
digital implementation, due to the problemsin spatial resolution, though there are approaches
to reduce these problems (Altmann, 1984), as well as the difficulties with discrete images
experienced in Fourier transform approaches.

Again, the Médllin transform appearsto be much better suited to an optical implementation
(Casasent, 1977), where continuous functions are available, rather than to discrete image
analysis. A further difficulty with the Mellin transform is that its result is independent of
the formfactor of the template. Accordingly, arectangle and a square appear to be the same
to thistransform. Thisimplies aloss of information since the form factor can indicate that
an object has been imaged from an oblique angle.

So there areinnate difficulties with template matching whether it isimplemented directly,
or by transform calculus. For these reasons, and because many shape extraction techniques
require more than just edge or brightness data, direct digital implementations of feature
extraction are usually preferred. This is perhaps also influenced by the speed advantage
that one popular technique can confer over template matching. Thisisthe Hough transform,
which is covered next.

5.4 Hough transform (HT)

5.4.1 Overview
The Hough Transform (HT) (Hough, 1962) is atechnique that locates shapesin images. In
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particular, it has been used to extract lines, circles and ellipses (or conic sections). In the
case of lines, its mathematical definition is equivalent to the Radon transform (Deans,
1981). The HT was introduced by Hough (Hough, 1962) and then used to find bubble
tracks rather than shapes in images. However, Rosenfeld noted its potential advantages as
an image processing algorithm (Rosenfeld, 1969). The HT was thus implemented to find
linesinimages (Duda, 1972) and it has been extended greatly, since it has many advantages
and many potential routes for improvement. Its prime advantage is that it can deliver the
same result as that for template matching, but faster (Princen, 1992), (Sklansky, 1978)
(Stockman, 1977). This is achieved by a reformulation of the template matching process,
based on an evidence gathering approach where the evidence is the votes cast in an
accumulator array. The HT implementation defines a mapping from the image points into
an accumulator space (Hough space). The mapping is achieved in acomputationally efficient
manner, based on the function that describes the target shape. This mapping requires much
less computational resources than template matching. However, it still requires significant
storage and high computational requirements. These problems are addressed later, since
they give focus for the continuing development of the HT. However, the fact that the HT
is equivalent to template matching has given sufficient impetus for the technique to be
amongst the most popular of al existing shape extraction techniques.

5.4.2 Lines

We will first consider finding lines in an image. In a Cartesian parameterisation, collinear
points in an image with co-ordinates (X, y) are related by their slope m and an intercept ¢
according to:

y=mx+c (5.24)
This equation can be written in homogeneous form as
Ay+Bx+1=0 (5.25)

where A = —1/c and B = n/c. Thus, a line is defined by giving a pair of values (A, B).
However, we can observe a symmetry in the definition in Equation 5.25. This equation is
symmetric since apair of co-ordinates (X, y) also definesaline in the space with parameters
(A, B). That is, Equation 5.25 can be seen as the equation of aline for fixed co-ordinates
(X, y) or as the equation of aline for fixed parameters (A, B). Thus, pairs can be used to
define points and lines simultaneously (Aguado, 2000a). The HT gathers evidence of the
point (A, B) by considering that all the points (X, y) define the same line in the space (A,
B). That is, if the set of collinear points {(x, y;)} defines the line (A, B), then

Ayi + BXi +1=0 (526)

This equation can be seen as a system of equations and it can simply be rewritten in terms
of the Cartesian parameterisation as
C=—Xm+y, (5.27)

Thus, to determine the line we must find the values of the parameters (m, c) (or (A, B) in
homogeneous form) that satisfy Equation 5.27 (or 5.26, respectively). However, we must
notice that the system is generally overdetermined. That is, we have more equations that
unknowns. Thus, we must find the solution that comes close to satisfying all the equations
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simultaneously. Thiskind of problem can be solved, for example, using linear least squares
techniques. The HT uses an evidence gathering approach to provide the solution.

The relationship between a point (x;, y;) in an image and the line given in Equation 5.27
isillustrated in Figure 5.6. The points (x;, y;) and (X;, y;) in Figure 5.5(a) define the lines U;
and U; in Figure 5.6(b), respectively. All the collinear elementsin animage will define dual
lineswith the same concurrent point (A, B). Thisisindependent of the line parameterisation
used. The HT solvesit in an efficient way by simply counting the potential solutionsin an
accumulator array that stores the evidence, or votes. The count is made by tracing all the
dual lines for each point (x;, y;). Each point in the trace increments an element in the array,
thus the problem of line extraction is transformed in the problem of locating a maximum
in the accumulator space. This strategy is robust and has demonstrated to be able to handle
noise and occlusion.

(a) Image containing a line (b) Lines in the dual space

Figure 5.6 Illustrating the Hough transform for lines

The axes in the dual space represent the parameters of the line. In the case of the
Cartesian parameterisation m can actually take an infinite range of values, since lines can
vary from horizontal to vertical. Since votes are gathered in a discrete array, then this will
produce bias errors. It is possible to consider arange of votesin the accumulator space that
cover all possible values. This corresponds to techniques of antialiasing and can improve
the gathering strategy (Brown, 1983), (Kiryati, 1991).

The implementation of the HT for lines, HTLi ne, isgiven in Code 5.3. It isimportant
to observe that Equation 5.27 is not suitable for implementation since the parameters can
take an infinite range of values. In order to handle the infinite range for c, we use two
arraysin the implementation in Code 5.3. When the slope mis between —45° and 45°, then
c does not take a large value. For other values of m the intercept ¢ can take a very large
value. Thus, we consider an accumul ator for each case. In the second case, we use an array
that stores the intercept with the x axis. This only solves the problem partially since we
cannot guarantee that the value of ¢ will be small when the slope m is between —45° and
45°.

Figure 5.7 shows three examples of locating lines using the HT implemented in Code
5.3. In Figure 5.7(a) there is a single line which generates the peak seen in Figure 5.7(b).
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%Hough Transform for Lines
function HTLi ne(i nputi mage)

% mage size
[rows, col ums] =si ze(i nputi mage) ;

%accunul at or
accl=zeros(rows, 91);
acc2=zeros(col ums, 91);

% mage
for x=1:col ums
for y=1l:rows
i f(inputimge(y, x)==
for me-45:45
b=r ound(y-tan((ntpi)/180)*x);
i f(b<rows & b>0)
accl(b, m45+1) =accl(b, m45+1) +1;
end
end
for mF45: 135
b=r ound(x-y/tan((ntpi)/180));
i f (b<colums & b>0)
acc2(b, m45+1) =acc2(b, m 45+1) +1;
end
end
end
end
end

Code 5.3 Implementing the Hough transform for lines

The magnitude of the peak is proportional to the number of pixelsin the line from which
it was generated. The edges of the wrench in Figures 5.7(b) and 5.7(c) define two main
lines. Image 5.7(c) contains much more noise. This image was obtained by using a lower
threshold value in the edge detector operator which gave rise to more noise. The accumulator
results of the HT for the images in Figures 5.7(b) and 5.7(c) are shown in Figures 5.7(e)
and 5.7(f), respectively. We can observe the two accumulator arrays are broadly similar in
shape, and that the peak in each is at the same place. The co-ordinates of the peaks are at
combinations of parameters of the lines that best fit the image. The extra number of edge
points in the noisy image of the wrench gives rise to more votes in the accumul ator space,
as can be seen by the increased number of votes in Figure 5.7(f) compared with Figure
5.7(e). Since the peak isin the same place, this shows that the HT can indeed tolerate noise.
The results of extraction, when superimposed on the edge image, are shown in Figures
5.7(g) to (i). Only the two lines corresponding to significant peaks have been drawn for the
image of the wrench. Here, we can see that the parameters describing the lines have been
extracted well. Note that the end points of the lines are not delivered by the HT, only the
parameters that describe them. You have to go back to the image to obtain line length.
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(a) Line (b) Wrench (c) Wrench with noise

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

(g) Line from (d) (h) Lines from (e) (i) Lines from (f)

Figure 5.7 Applying the Hough transform for lines

We can see that the HT delivers a correct response, correct estimates of the parameters
used to specify the line, so long as the number of collinear points along that line exceeds
the number of collinear points on any other line in the image. However, the non-linearity
of the parameters and the discretisation produce noisy accumulators. A major problem in
implementing the basic HT for linesis the definition of an appropriate accumulator space.
In application, Bresenham'’s line drawing algorithm (Bresenham, 1965) can be used to
draw the lines of votesin the accumulator space. This ensures that lines of connected votes
are drawn as opposed to use of Equation 5.27 that can lead to gapsin the drawn line. Also,
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backmapping (Gerig, 1986) can be used to determine exactly which edge points contributed
to aparticular peak. Backmapping is an inverse mapping from the accumul ator spaceto the
edge data and can allow for shape analysis of the image by removal of the edge points
which contributed to particular peaks, and then by re-accumulation using the HT. Note that
the computational cost of the HT depends on the number of edge points (ng) and the length
of the lines formed in the parameter space (1), giving a computational cost of O(ngl). This
is considerably less than that for template matching, given earlier as O(n’ny).

Oneway to avoid the problems of the Cartesian parameterisationinthe HT isto basethe
mapping function on an alternative parameterisation. One of the most proven techniquesis
called the foot-of-normal parameterisation. This parameterises a line by considering a
point (X, y) as afunction of an angle normal to the line, passing through the origin of the
image. Thisgivesaform of the HT for lines known asthe polar HT for lines (Duda, 1972).
The point where this line intersects the line in the image is given by

p = x cos(8) + y sin(B) (5.28)

where 6 is the angle of the line normal to the line in an image and p is the length between
the origin and the point where the lines intersect, as illustrated in Figure 5.8.

Figure 5.8 Polar consideration of aline

By recalling that two lines are perpendicular if the product of their slopesis—1, and by
considering the geometry of the arrangement in Figure 5.8, we obtain

_p _
““sn@® M " @@ (529)

By substitution in Equation 5.24 we obtain the polar form, Equation 5.28. This provides a
different mapping function: votes are now cast in asinusoidal manner, in a2D accumulator
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array in terms of 6 and p, the parameters of interest. The advantage of this alternative
mapping is that the values of the parameters 6 and p are now bounded to lie within a
specific range. The range for p is within 180°; the possible values of p are given by the
image size, since the maximum length of thelineis +/2 x N,where N isthe (square) image
size. The range of possible values is now fixed, so the technique is practicable.

Theimplementation of the polar HT for linesisthefunction HTPLi ne in Code5.4. The
accumulator array is aset of 180 bins for value of 6 in the range 0 to 180°, and for values
of pintherange0to v N? + M2, where N x M isthe picture size. Then, for image (edge)
points greater than a chosen threshold, the angle relating to the bin size is evaluated (as
radiansin the range 0 to ) and then the value of p is evaluated from Equation 5.28 and the
appropriate accumulator cell is incremented so long as the parameters are within range.
The accumulator arrays obtained by applying this implementation to the images in Figure
5.8 isshown in Figure 5.9. Figure 5.9(a) shows that a single line defines a well-delineated
peak. Figures 5.9(b) and 5.9(c) show aclearer peak compared to the implementation of the
Cartesian parameterisation. This is because discretisation effects are reduced in the polar
parameterisation. This feature makes the polar implementation far more practicable than
the earlier, Cartesian, version.

%ol ar Hough Transform for Lines
function HTPLi ne(i nputinage)

% mage size
[rows, col ums] =si ze(i nputi nmage);

Y%accunul at or
rmax=round(sqrt (rows”2+col unms~2));
acc=zer os(rmax, 180);

% nmage
for x=1:col ums
for y=1:rows
i f(inputimge(y, x)==0)
for nel:180
r=round(x*cos((ntpi)/180)+y*si n(m pi)/180));
if(r<rmax & r>0) acc(r, m=acc(r,m+1;, end
end
end
end
end

Code 5.4 Implementation of the polar Hough transform for lines

5.4.3 HT for circles

The HT can be extended by replacing the equation of the curve in the detection process.
The equation of the curve can be given in explicit or parametric form. In explicit form, the
HT can be defined by considering the equation for a circle given by
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(a) Accumulator for 5.7(a) (b) Accumulator for 5.7(b) (c) Accumulator for 5.7(c)

Figure 5.9 Applying the polar Hough transform for lines

(X—X)? + (y —yo)* =12 (5.30)

This equation defines a locus of points (X, y) centred on an origin (Xo, Yo) and with radius
r. This equation can again be visualised in two dual ways: as alocus of points (X, y) in an
image, or as alocus of points (X, Yg) centred on (x, y) with radiusr.

Figure 5.10 illustrates this dual definition. Each edge point defines a set of circlesin the
accumulator space. These circles are defined by all possible values of the radius and they
are centred on the co-ordinates of the edge point. Figure 5.10(b) shows three circles
defined by three edge points. These circles are defined for a given radius value. Actually,
each edge point defines circles for the other values of the radius. This implies that the
accumulator space isthree dimensional (for the three parameters of interest) and that edge
points map to a cone of votes in the accumulator space. Figure 5.10(c) illustrates this
accumulator. After gathering evidence of all the edge points, the maximum in the accumul ator
space again corresponds to the parameters of the circlein the original image. The procedure
of evidence gathering is the same as that for the HT for lines, but votes are generated in
cones, according to Equation 5.30.

Equation 5.30 can be defined in parametric form as

X=Xg+rcos(B) y=yg+rsin(0) (5.31)

The advantage of this representation is that it allows us to solve for the parameters. Thus,
the HT mapping is defined by

Xo=X—rcos(8) Yyg=-rsin(O) (5.32)

These equations define the points in the accumulator space (Figure 5.10(b)) dependent on
theradiusr. Note that 0 is not afree parameter, but defines the trace of the curve. The trace
of the curve (or surface) is commonly referred to as the point spread function.

The implementation of the HT for circles, HTCi r cl e, is shown in Code 5.5. Thisis
similar to the HT for lines, except that the voting function corresponds to that in Equation
5.32 and the accumulator space is for circle data. The accumulator in the implementation
isactualy 2D, in terms of the centre parameters for a fixed value of the radius given as an
argument to the function. This function should be called for al potential radii. A circle of
votesis generated by varying ang (i.e. 6, but Matlab does not allow Greek symbols!) from
0° to 360°. The discretisation of ang controls the granularity of voting, too small an
increment gives very fine coverage of the parameter space, too large avalue resultsin very
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Figure 5.10 lllustrating the Hough transform for circles

sparse coverage. The accumulator space, acc (initially zero), is incremented only for
points whose co-ordinates lie within the specified range (in this case the centre cannot lie
outside the original image).

The application of the HT for circlesisillustrated in Figure 5.11. Figure 5.11(a) shows
an image with a synthetic circle. In this figure, the edges are complete and well defined.
Theresult of theHT processis shown in Figure5.11(d). The peak of the accumulator space
is at the centre of the circle. Note that votes exist away from the circle’'s centre, and rise
towards the locus of the actual circle, though these background votes are much less than
the actual peak. Figure 5.11(b) shows an example of data containing occlusion and noise.
The image in Figure 5.11(c) corresponds to the same scene, but the noise level has been
increased by changing the threshold value in the edge detection process. The accumulators
for these two images are shown in Figures 5.11(e) and 5.11(f) and the circlesrelated to the
parameter space peaks are superimposed (in black) on the edge images in Figures 5.11(g)
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%-Hough Transform for Circles
function HTCircle(inputinmage,r)

% mage size
[rows, col ums] =si ze(i nputi nmage) ;

%accunul at or
acc=zer os(rows, col ums);

% mage
for x=1:col ums
for y=1:rows
i f(inputimge(y, x)==0)
for ang=0: 360
t=(ang*pi )/ 180;
x0=round(x-r*cos(t));
yO=round(y-r*sin(t));
i f(x0<colums & x0>0 & yO<rows & y0>0)
acc(yO0, x0) =acc(yO0, x0) +1;
end
end
end
end
end

Code 5.5 Implementation of the Hough transform for circles

to (i). We can see that the HT has the ability to tolerate occlusion and noise. Note that we
do not have the earlier problem with the start and the end of the lines since the circleis a
closed shape. In Figure 5.11(c), there are many edge points which implies that the amount
of processing timeincreases. The HT will detect the circle (provide the right result) aslong
as more points are in a circular locus described by the parameters of the target circle than
there are on any other circle. Thisis exactly the same performance as for the HT for lines,
as expected, and is consistent with the result of template matching.

In application code, Bresenham's algorithm for discrete circles (Bresenham, 1977) can
be used to draw the circle of votes, rather than use the polar implementation of Equation
5.32. This ensures that the complete locus of pointsis drawn and avoids the need to choose
avauefor increasein the angle used to trace the circle. Bresenham'’s algorithm can be used
to generate the pointsin one octant, since the remaining points can be obtained by reflection.
Again, backmapping can be used to determine which points contributed to the extracted
circle.

An additional example of the circle HT extraction is shown in Figure 5.12. Figure
5.12(a) is again a real image (albeit, one with low resolution) which was processed by
Sobel edge detection and thresholded to give the points in Figure 5.12(b). The circle
detected by application of HTCi r cl e with radius 5 pixels is shown in Figure 5.12(c)
superimposed on the edge data. The extracted circle can be seen to match the edge data
well. This highlights the two major advantages of the HT (and of template matching): its
ability to handle noise and occlusion. Note that the HT merely finds the circle with the
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(a) Circle (b) Soccer ball edges (c) Noisy soccer ball edges

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

(g) Circle from (d) (h) Circle from (e) (i) Circle from (f)

Figure5.11 Applying the Hough transform for circles

maximum number of points; it is possible to include other constraints to control the circle
selection process, such as gradient direction for objects with known illumination profile. In
the case of the human eye, the (circular) irisis usually darker than its white surroundings.

Figure 5.12 also shows some of the difficulties with the HT, namely that it is essentially
an implementation of template matching, and does not use some of the richer stock of
information available in an image. For example, we might know constraints on size; the
largest size and iris would be in an image like Figure 5.12. Also, we know some of the
topology: the eye region contains two ellipsoidal structures with a circle in the middle.

Feature extraction by shape matching 183



Also, we might know brightness information: the pupil is darker than the surrounding iris.
These factors can be formulated as constraints on whether edge points can vote within the
accumulator array. A simple modification isto make the votes proportional to edge magnitude,
in this manner, points with high contrast will generate more votes and hence have more
significance in the voting process. In this way, the feature extracted by the HT can be
arranged to suit a particular application.

(a) Image of eye (b) Sobel edges (c) Edges with HT detected circle

Figure5.12 Using the HT for circles

5.4.4 HT for ellipses

Circles are very important in shape detection since many objects have a circular shape.
However, because of the camera’'s viewpoint, circles do not aways look like circles in
images. Images are formed by mapping ashape in 3D space into a plane (the image plane).
This mapping performs a perspective transformation. In this process, a circle is deformed
to look like an ellipse. We can define the mapping between the circle and an ellipse by a
similarity transformation. That is,

XO Ocos(p) sn(p)OSO0X'O0 OxO
go=0 . o. 0g,0t0Q O (5.33)
vo Gsnp) cosp)odyoy'o ovOo

where (X, y') define the co-ordinates of the circle in Equation 5.31, p represents the
orientation, (S, §) a scale factor and (t,, t,) atranslation. If we define

a =t a=Scos(p) b= sin(p)

_ (5.34)
bo=t, a,=-Ssin(p) by=S cos(p)
then we have that the circle is deformed into
X = ag *+ a, coy0) + b, sin(6)
) * (5.35)

y = bp + a, cos(6) + by sin(6)

This equation correspondsto the polar representation of an ellipse. This polar form contains
SiX parameters (a, by, ay, by, a,, by) that characterise the shape of the ellipse. 6 isnot afree
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parameter and it only addresses a particular point in the locus of the ellipse (just as it was
used to trace the circle in Equation 5.32). However, one parameter is redundant sinceit can
be computed by considering the orthogonality (independence) of the axes of the ellipse
(the product asb, + a/b, = 0 which is one of the known properties of an ellipse). Thus, an
ellipse is defined by its centre (ag, by) and three of the axis parameters (a,, by, a, by). This
gives five parameters which is intuitively correct since an ellipse is defined by its centre
(two parameters), it size along both axes (two more parameters) and its rotation (one
parameter). In total this states that five parameters describe an ellipse, so our three axis
parameters must jointly describe size and rotation. In fact, the axis parameters can be
related to the orientation and the length along the axes by

a
tan(p) = a—i a= . aZ+a2 b= .bZ+b2 (5.36)
where (a, b) are the axes of the ellipse, as illustrated in Figure 5.13.

bx ax X

Figure 5.13 Definition of ellipse axes

In asimilar way to Equation 5.31, Equation 5.35 can be used to generate the mapping
function in the HT. In this case, the location of the centre of the ellipse is given by

ap = X — a, cos(8) + b, sin(6)
by =y —ay cos(B) + by sin(6)

The location is dependent on three parameters, thus the mapping defines the trace of a
hypersurface in a 5D space. This space can be very large. For example, if there are 100
possible values for each of the five parameters, then the 5D accumulator space contains
10'° values. This is 10 GB of storage, which is of course tiny nowadays (at least, when
someone el se pays!). Accordingly there has been much interest in ellipse detection techniques
which use much less space and operate much faster than direct implementation of Equation
5.37.

(5.37)
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Code 5.6 shows the implementation of the HT mapping for ellipses. The function
HTEI | i pse computesthe centre parametersfor an ellipse without rotation and with fixed
axis length given as arguments. Thus, the implementation uses a 2D accumulator. In
practice, in order to locate an ellipseit is necessary to try all potential values of axislength.
This is computationally impossible unless we limit the computation to a few values.

%Hough Transform for Ellipses
function HTElIipse(inputinmage, a, b)

% mage size
[rows, col ums] =si ze(i nputi nmage) ;

%accunul at or
acc=zer os(rows, col ums);

% mage
for x=1:col ums
for y=1:rows
i f(inputimge(y, x)==0)
for ang=0: 360
t=(ang*pi )/ 180;
x0=round(x-a*cos(t));
y0=round(y-b*sin(t));
i f(x0<colums & x0>0 & yO<rows & y0>0)
acc(yO0, x0) =acc(yO0, x0) +1;
end
end
end
end
end

Code 5.6 Implementation of the Hough transform for ellipses

Figure 5.14 shows three examples of the application of the ellipse extraction process
described in Code 5.6. The first example (Figure 5.14(a)) illustrates the case of a perfect
ellipse in a synthetic image. The array in Figure 5.14(d) shows a prominent peak whose
position corresponds to the centre of the ellipse. The examples in Figures 5.14(b) and
5.14(c) illustrate the use of the HT to locate a circular form when the image has an oblique
view. Each example was obtained by using a different threshold in the edge detection
process. Figure 5.14(c) contains more noise data that in turn gives rise to more noise in the
accumulator. We can observe that there is more than one ellipse to be located in these two
figures. Thisgivesriseto the other high valuesin the accumulator space. Aswith the earlier
examplesfor line and circle extraction, there is again scope for interpreting the accumulator
space, to discover which structures produced particular parameter combinations.

5.4.5 Parameter space decomposition

The HT gives the same (optimal) result as template matching and even though it is faster,
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(a) Ellipse (b) Rugby ball edges (c) Noisy rugby ball edges

(d) Accumulator for (a) (e) Accumulator for (b) (f) Accumulator for (c)

Figure 5.14 Applying the Hough transform for ellipses

it still requires significant computational resources. In the previous sections, we saw that
asweincrease the complexity of the curve under detection, the computational requirements
increase in an exponential way. Thus, the HT becomes less practical. For this reason, most
of the research in the HT has focused on the development of techniques aimed to reduce
its computational complexity (lllingworth, 1988), (Leavers, 1993). One important way to
reduce the computation has been the use of geometric properties of shapes to decompose
the parameter space. Severa techniques have used different geometric properties. These
geometric properties are generally defined by the relationship between points and derivatives.

5.4.5.1 Parameter space reduction for lines

For aline, the accumulator space can be reduced from 2D to 1D by considering that we can
compute the slope from the information of the image. The slope can be computed either by
using the gradient direction at a point or by considering a pair of points. That is

- _Y2—%

m=¢ or m= Yo =%, (5.38)
where ¢ isthe gradient direction at the point. In the case of take two points, by considering
Equation 5.24 we have that,

c = XoY1 = XiYo (5.39)

X2 —Xg

Thus, according to Equation 5.29 we have that one of the parameters of the polar representation
for lines, 6, is now given by

= _t 0 =tan 1= X2 [ 5.40
g @ NS, B (5.40)

Feature extraction by shape matching 187



These equations do not depend on the other parameter p and they provide alternative
mappings to gather evidence. That is, they decompose the parametric space, such that the
two parameters 8 and p are now independent. The use of edge direction information
constitutes the base of the line extraction method presented by O’ Gorman and Clowes
(O’ Gorman, 1976). The use of pairs of points can be related to the definition of the
randomised Hough transform (Xu, 1990). Obviously, the number of feature points considered
correspondsto all the combinations of pointsthat form pairs. By using statistical techniques,
it is possible to reduce the space of pointsin order to consider a representative sample of
the elements. That is, a subset which provides enough information to obtain the parameters
with predefined and small estimation errors.

Code 5.7 shows the implementation of the parameter space decomposition for the HT
for lines. The slope of the line is computed by considering a pair of points. Pairs of points
are restricted to a neighbourhood of 5 by 5 pixels. The implementation of Equation 5.40
gives values between —90° and 90°. Since our accumulators only can store positive values,
then we add 90° to all values. In order to compute p we use Equation 5.28 given the value
of 8 computed by Equation 5.40.

Figure 5.15 shows the accumulators for the two parameters 8 and p as obtained by the
implementation of Code 5.7 for the images in Figure 5.7(a) and Figure 5.7(b). The
accumulators are now one dimensional as in Figure 5.15(a) and show a clear peak. The
peak in the first accumulator is close to 135°. Thus, by subtracting the 90° introduced to
make all values positive, we find that the slope of the line 8 = —45°. The peaks in the
accumulators in Figure 5.15(b) define two lines with similar slopes. The peak in the first
accumulator represents the value of 8, whilst the two peaks in the second accumulator
represent the location of the two lines. In general, when implementing parameter space
decomposition it is necessary to follow a two step process. First, it is necessary to gather
datain one accumulator and search for the maximum. Second, the location of the maximum
value is used as a parameter value to gather data of the remaining accumulator.

5.4.5.2 Parameter space reduction for circles

In the case of lines the relationship between local information computed from an image
and the inclusion of a group of points (pairs) is in an alternative analytical description
which will be readily established. For more complex primitives, it is possible to include
several geometric relationships. These relationships are not defined for an arbitrary set of
points but include angular constraints that define rel ative positions between them. In general,
we can consider different geometric properties of the circle to decompose the parameter
space. This has motivated the development of many methods of parameter space
decomposition (Aguado, 1996b). An important geometric relationship is given by the
geometry of the second directional derivatives. This relationship can be obtained by
considering that Equation 5.31 defines a position vector function. That is,

(8 =x(OF. B+y(9. 5 (5.41)
00 0 0l o
where
X(0) =Xy +r cos(B) y(B) =yy+rsin(B) (5.42)

In this definition, we have included the parameter of the curve as an argument in order to
highlight the fact that the function defines a vector for each value of 6. The end-points of
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%Par anet er Deconposition for the Hough Transform for Lines
functi on HTDLi ne(i nputi nage)

% mage size
[rows, col ums] =si ze(i nputi mage) ;

%accunul at or

rmax=round(sqrt (rows”2+col ums”2));
accro=zeros(rmax, 1);

acct =zeros(180, 1);

% mage
for x=1:col ums
for y=1:rows
i f(inputimge(y, x)==0)
for Nx=x-2:x+2
for Ny=y-2:y+2
i (x~=Nx| y~=Ny)
i f(Nx>0 & Ny>0 &Nx<col umms &Ny<rows)
i f(inputimge(Ny, Nx)==0)
if (Ny-y~=0)
t=atan((x-Nx)/ (Ny-y)); %Equation (5.40)
el se t=pil/?2;
end
r=round(x*cos(t)+y*sin(t)); %equation (5.28)

t=round((t+pi/2)*180/pi);
acct (t)=acct(t)+1;

if(r<rmax & r>0)
accro(r)=accro(r)+1;
end
end
end
end
end
end
end
end
end

Code 5.7 Implementation of the parameter space reduction for the Hough transform for lines

all the vectors trace a circle. The derivatives of Equation 5.41 with respect to 8 define the
first and second directional derivatives. That is,

000
0 0 (5.431)
0l

0lo
v'(B)=x(6)g_. o*ry ()
0o g 0
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(a) Accumulators for Figure 5.7(a)
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Figure 5.15 Parameter space reduction for the Hough transform for lines

0l g 00 O
v"®)=x"(®)g_ n+ry" (0o, O (5.43Db)
00 o 010

where

X' (8) = —r sin(0) y'(8) = r cos(6)
(5.44)
X"(0) = —r cos(6) y'(B) =-r sin(6)

Figure 5.16 illustrates the definition of the first and second directional derivatives. The
first derivative defines a tangential vector while the second one is similar to the vector
function, but it has reverse direction. In fact, that the edge direction measured for circles
can be arranged so as to point towards the centre was actually the basis of one of the early
approaches to reducing the computational load of the HT for circles (Kimme, 1975).

According to Equation 5.42 and Equation 5.44, we observe that the tangent of the angle
of the first directional derivative denoted as @'(8) is given by
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(X0, Y0)*

Figure 5.16 Definition of the first and second directional derivatives for a circle

o=y ® 1

Angles will be denoted by using the symbol ». That is,

¢'(8) = tan™(¢( 9) (5.46)
Similarly, for the tangent of the second directional derivative we have that,

¢ (8= Y =tn(®) ad ¥(9=tn(¢(Q) (5.47)

By observing the definition of ¢"(0), we have that

vy = Y (0) _y(B) -y
¢"(9) =371 = (0 —xz

This equation defines a straight line passing through the points (x(8), y(6)) and (Xo, Yo) and
it is perhaps the most important relation in parameter space decomposition. The definition
of the line is more evident by rearranging terms. That is,

¥(8) = @"(B)(x(8) —x0) + Yo (5.49)

This equation is independent of the radius parameter. Thus, it can be used to gather
evidence of the location of the shape in a2D accumulator. The HT mapping is defined by
the dual form given by

Yo = @"(8)(%o — X(8)) + y(8) (5.50)

That is, given an image point (X(0), y(6)) and the value of ¢"(6) we can generate aline of
votes in the 2D accumulator (Xg, Yo). Once the centre of the circle is known, then a 1D
accumulator can be used to locate the radius. The key aspect of the parameter space
decomposition is the method used to obtain the value of @"(6) from image data. We will
consider two alternative ways. First, we will show that ¢"(8) can be obtained by edge

(5.48)
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direction information. Second, how it can be obtained from the information of a pair of
points.

In order to obtain @"(0), we can use the definitionsin Equation 5.46 and Equation 5.47.
According to these equations, the tangents ¢"(8) and ¢'(0) are perpendicular. Thus,

@'(6) = —ﬁ (5.51)

Thus, the HT mapping in Equation 5.50 can be written in terms of gradient direction ¢'(8)
as

_ X(6) — x
Yo =Y(6) + T@)O (5.52)

This equation has a simple geometric interpretation illustrated in Figure 5.17(a). We can
see that the line of votes passes through the points (x(8), y(8)) and (xo, o). The slope of the
line is perpendicular to the direction of gradient direction.

(x(8), ¥(62))

(x(8), ¥(6)) (x(6), ()

(x(82), y(62))

0" (6)

@' (6)

(a) Relationship between angles (b) Two point angle definition

Figure 5.17 Geometry of the angle of the first and second directional derivatives

An alternative decomposition can be obtained by considering the geometry shown in
Figure 5.17(b). In the figure we can see that if we take a pair of points (X, y;) and (X, ¥»),
where x; = X(6;) then the line that passes through the points has the same slope as the line
at a point (x(0), y(6)). Accordingly,

, _ YoV
@' (0) = Xy =% (5.53)
where =1(6,+8,) (5.54)

Based on Equation 5.53 we have that

Xo — X
" e:_ 2 1
¥(9) Yo =V

The problem with using a pair of pointsis that by Equation 5.53 we cannot determine the
location of the point (x(8), y(8)). Fortunately, the voting line also passes through the
midpoint of the line between the two selected points. Let us define this point as

(5.55)
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Xm = %(Xl +X2) Ym = %(yl +Y5) (5.56)

Thus, by substitution of Equation 5.53 in 5.52 and by replacing the point (x(6), y(6)) by
(Xm» Ym), We have that the HT mapping can be expressed as

(Xm = Xo)(X2 — X1)
(Y2 —=y1)

This equation does not use gradient direction information, but is based on pairs of points.
This is analogous to the parameter space decomposition of the line presented in Equation
5.40. In that case, the slope can be computed by using gradient direction or, aternatively,
by taking a pair of points. In the case of the circle, the tangent (and therefore the angle of
the second directional derivative) can be computed by the gradient direction (i.e. Equation
5.51) or by apair of points (i.e. Equation 5.55). However, it isimportant to notice that there
are some other combinations of parameter space decomposition (Aguado, 1996a).

Code 5.8 shows the implementation of the parameter space decomposition for the HT
for circles. Theimplementation only detectsthe position of the circleand it gathers evidence
by using the mapping in Equation 5.57. Pairs of points are restricted to a neighbourhood
between 10 x 10 pixels and 12 x 12 pixels. We avoid using pixels that are close to each
other since they do not produce accurate votes. We also avoid using pixelsthat are far awvay
from each other, since by distance it is probable that they do not belong to the same circle
and would only increase the noise in the accumulator. In order to trace the line, we use two
equations that are selected according to the slope.

Figure 5.18 shows the accumulators obtained by the implementation of Code 5.8 for the
images in Figure 5.11(a) and Figure 5.11(b). Both accumulators show a clear peak that
represents the location of the circle. Small peaks in the background of the accumulator in
Figure5.11(b) correspondsto circleswith only afew points. In general, thereisacompromise
between the spread of the peak and the noise in the accumulator. The peak can be made
narrower by considering pairs of points that are more widely spaced. However, this can
also increases the level of background noise. Background noise can be reduced by taking
points that are closer together, but this makes the peak wider.

Yo = Ym *+ (5.57)

5.4.5.3 Parameter space reduction for ellipses

Part of the simplicity in the parameter decomposition for circles comes from the fact that
circles are (naturally) isotropic. Ellipses have more free parameters and are geometrically
more complex. Thus, geometrical properties involve more complex relationships between
points, tangents and angles. However, they maintain the geometric relationship defined by
the angle of the second derivative. According to Equation 5.41 and Equation 5.43, the
vector position and directional derivativesof an ellipsein Equation (5.35) have the components

X'(8) = —a, sin(8) + b, cos(6) y'(0) =—a, sin(6) + by cos(0)

(5.58)
X" (6) = —a, cos(B) — b, sin(6) y' (0) = —a, cos(B) — by sin(6)
The tangent of angle of the first and second directional derivatives is given by
(0) = y'(8) _ -3y cos(B) + by sin(B)
? x'(8) _ —a, cos(8) + b, Sn(0) (559

. y"(8) _ —a, cos(8) —b, sin(6)
9 (8) = 6) = “a cos(8) ~b. §n(8)
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%Par anet er Deconposition for the Hough Transform for
function HTDCircl e(inputimge)

% mage size
[rows, col ums] =si ze(i nputi mage) ;

%accunul at or
acc=zer os(rows, col ums);

%gat her evi dence
for x1=1:colums
for yl=1:rows
i f(inputinmge(yl, x1)==0)
for x2=x1-12:x1+12
for y2=yl-12:y1+12
i f (abs(x2-x1)>10| abs(y2-y1)>10)
if(x2>0 & y2>0 & x2<colums & y2<rows)
i f(inputinmge(y2,x2)==0)

xme(x1+x2)/ 2; yme(yl+y2)/ 2;
if(y2-y1~=0) nE((x2-x1)/7(y2-y1));
el se m~99999999;
end

if(m-1 & nxl)
for x0=1:col ums
yO0=r ound( ymtn¥ (xm x0) ) ;
if(y0>0 & yO<rows)
acc(yo0, x0) =acc(y0, x0) +1;
end
end
el se
for yO0=1:rows
x0=r ound(xmt(ymy0)/ m;
i f(x0>0 & x0<col umms)
acc(yo0, x0) =acc(y0, x0) +1;
end
end
end
end
end
end
end
end
end
end
end

Circles

Code 5.8 Parameter space reduction for the Hough transform for circles
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(a) Accumulator for Figure 5.11(a) (b) Accumulator for Figure 5.11(b)

Figure 5.18 Parameter space reduction for the Hough transform for circles

By considering Equation 5.58 we have that Equation 5.48 is also valid for an ellipse. That
is,

y(®) -Yo _ .
OE X‘; =" () (5.60)

The geometry of the definition in this equation is illustrated in Figure 5.19(a). As in the
case of circles, this equation defines a line that passes through the points (x(6), y(6)) and
(X0, Yo)- However, in the case of the ellipse the angles ¢'(0) and ¢ ( § are not orthogonal.
This makes the computation of ¢"(6) more complex. In order to obtain ¢"(6) we can
extend the geometry presented in Figure 5.17(b). That is, we take a pair of pointsto define
aline whose slope defines the value of @'(6) at another point. Thisisillustrated in Figure
5.19(b). The line in Equation 5.60 passes through the middle point (X, Y). However, itis
not orthogonal to the tangent line. In order to obtain an expression of the HT mapping, we
will first show that the relationship in Equation 5.54 is also valid for ellipses. Then we will
use this equation to obtain @"(6).

The relationships in Figure 5.19(b) do not depend on the orientation or position of the
ellipse. Thus, we have that three points can be defined by

(x(8), ¥(©)

(a) Relationship between angles (b) Two point angle definition

Figure 5.19 Geometry of the angle of the first and second directional derivative
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Xy = ay cos(6,) Xo = ay cos(6,) x(8) = a, cos(B)
y1 =besin(®)  y, =b,sin(6y) y(8) = by sin(B)

The point (x(6), y(8)) is given by the intersection of the line in Equation 5.60 with the
ellipse. That is,

y(0) —Yo _ 8 —Ym
X(8) —Xo B, "Xy (562)

(5.61)

By substitution of the values of (X, Ym) defined as the average of the co-ordinates of the
points (Xq, Y1) and (X, ¥») in Equation 5.56, we have that

a, _b,sin(8;) + b, sin(6,)

tan(®) = b_; Dax cos(6,) + a, cos(0,) (5.63)
Thus, tan(8) = tan(3 (8, + 65)) (5.64)

From this equation it is evident that the relationship in Equation 5.54 is also valid for
ellipses. Based on this result, the tangent angle of the second directional derivative can be
defined as

b
¢"(6) = - tan() (5.65)
By substitution in Equation 5.62 we have that
Xm

This equation is valid when the ellipseis not translated. If the ellipse is translated then the
tangent of the angle can be written in terms of the points (X, V) and (X, Y1) as

" —_ yT - ym
9" (0) = e (5.67)
By considering that the point (X1, yt) isthe intersection point of the tangent lines at (x4, Y1)
and (x,, y,) we obtain

AC + 2BD

(9= Zav8C (568)

A=y, — B =X —X
where 1T Y2 17 (5.69)

C=q+@ D=0 ¢

and @, @, are the slope of the tangent to the points. Finally, by considering Equation 5.60,
the HT mapping for the centre parameter is defined as

AC + 2BD
Yo=Ym * SATBC (Xo = Xm) (5.70)

This equation can be used to gather evidence that is independent of rotation or scale. Once

the location is known, a 3D parameter space is needed to obtain the remaining parameters.
However, these parameters can also be computed independently using two 2D parameter

196 Feature Extraction and Image Processing



spaces (Aguado, 1996b). Of course you can avoid using the gradient direction in Equation
5.68 by including more points. In fact, the tangent ¢"(6) can be computed by taking four
points (Aguado, 1996a). However, the inclusion of more points generally leads to more
background noise in the accumulator.

Code 5.9 shows the implementation of the ellipse location mapping in Equation 5.57. As
in the case of the circle, pairs of points need to be restricted to a neighbourhood. In the
implementation, we consider pairs at a fixed distance given by the variable i. Since we are
including gradient direction information, the resulting peak is generally quite wide. Again,
the sel ection of the distance between pointsisacompromise between the level of background
noise and the width of the peak.

%Par anet er Deconposition for Ellipses
function HTDElli pse(i nputi mage)

% mage size
[rows, col ums] =si ze(i nputi nmage) ;

Y%edges
[ M Ang] =Edges(i nputi mage) ;
MeMax Supr (M Ang) ;

Y%accunul at or
acc=zer os(rows, col ums);

%gat her evi dence
for x1=1:col ums
for yl=1:1:rows
if(Myl, x1)~=0)
for i=60:60
x2=x1-i; y2=yl-1;
i ncx=1; incy=0;
for k=0: 8*i-1
i f(x2>0 & y2>0 & x2<colums & y2<rows)
if My2,x2)~=0

ml=Ang(y1l, x1); m2=Ang(y2, x2);
i f(abs(ml-nR)>. 2)

xmeE(x1+x2)/2; yme(yl+y2)/2;
ml=t an(ml) ; n2=t an( n2);

A=yl-y2; B=x2-x1;
C=mL+n2; D=ml*nP
N=( 2* A+B* C)
if N-=0

m=( A*C+2*B*D) / N,
el se

m=99999999;
end
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if(m-1 & nxl)
for x0=1:col ums
yO0=r ound( ymtnt ( x0-xm ) ;
if(y0>0 & yO<rows)
acc(yo0, x0) =acc(y0, x0) +1;
end
end
el se
for yO0=1:rows
x0=round(xm+(y0-ym/nm.
i f(x0>0 & x0<col umms)
acc(yo0, x0) =acc(y0, x0) +1
end
end
end % f abs
end %f M
end

X2=X2=i ncx; y2=y2+i ncy,;

if x2>x1+l
X2=x1+i ;
i ncx=0; i ncy=1;
y2=y2+i ncy;

end

if y2>yl+i
y2=yl+i;
incx=-1; i ncy=0;
X2=X2+i ncx;

end

if x2<x1-i
x2=x1-1i;
i ncx=0 incy=-1;
y2=y2+i ncy;
end
end % or k
end % or |
end % f(x1,yl)
end %1
end %1

Code 5.9 Implementation of the parameter space reduction for the Hough transform for ellipses

Figure 5.20 shows the accumul ators obtained by the implementation of Code 5.9 for the
images in Figure 5.14(a) and Figure 5.14(b). The peak represents the location of the
ellipses. In general, there is noise and the accumulator is wide. This is for two main
reasons. First, when the gradient direction is not accurate, then the line of votes does not
pass exactly over the centre of the ellipse. This forces the peak to become wider with less
height. Second, in order to avoid numerical instabilities we need to select points that are
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well separated. However, this increases the probability that the points do not belong to the
same ellipse, thus generating background noise in the accumulator.

(a) Accumulators for Figure 5.10(a) (b) Accumulators for Figure 5.10(b)

Figure 5.20 Parameter space reduction for the Hough transform for ellipses

5.5 Generalised Hough transform (GHT)

Many shapes are far more complex than lines, circles or ellipses. It is often possible to
partition a complex shape into several geometric primitives, but this can lead to a highly
complex data structure. In general it is more convenient to extract the whole shape. This
has motivated the development of techniques that can find arbitrary shapes using the
evidence-gathering procedure of the HT. These techniques again give results equivalent to
those delivered by matched template filtering, but with the computational advantage of the
evidence gathering approach. An early approach offered only limited capability for arbitrary
shapes (Merlin, 1975). The full mapping is called the Generalised HT (GHT) (Ballard,
1981) and can be used to locate arbitrary shapeswith unknown position, size and orientation.
The GHT can be formally defined by considering the duality of a curve. One possible
implementation can be based on the discrete representation given by tabular functions.
These two aspects are explained in the following two sections.

5.5.1 Formal definition of the GHT

Theformal analysis of the HT providesthe route for generalising it to arbitrary shapes. We
can start by generalising the definitionsin Equation 5.41. In thisway amodel shape can be
defined by a curve

00
.0 (5.71)

0lo 0
v(B)=x(0)g g+ Yy(0)Q
0o g 0

For a circle, for example, we have that x(8) = r cos(6) and y(8) = r sin(6). Any shape can
be represented by following a more complex definition of x(8) and y(8).
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In general, we are interested in matching the model shape against a shape in an image.
However, the shape in the image has a different location, orientation and scale. Originally
the GHT defines a scale parameter in the x and y directions, but due to computational
complexity and practical relevance the use of asingle scale has become much more popular.
Analogous to Equation 5.33, we can define the image shape by considering translation,
rotation and change of scale. Thus, the shape in the image can be defined as

w(®, b, A, p) = b + AR(p)u(B) (5.72)

where b = (g, Vo) is the translation vector A is a scale factor and R(p) is a rotation matrix
(asin Equation 5.31). Here we have included explicitly the parameters of the transformation
as arguments, but to simplify the notation they will be omitted later. The shape of w(0, b,
A, p) depends on four parameters. Two parameters define the location b, plus the rotation
and scale. It is important to notice that s does not define a free parameter, but only traces
the curve.

In order to define a mapping for the HT we can follow the approach used to obtain
Equation 5.35. Thus, the location of the shape is given by

b = w(6) — AR(p)u(6) (5.73)

Given a shape w(0) and a set of parameters b, A and p, this equation defines the location
of the shape. However, we do not know the shape w(0) (since it depends on the parameters
that we are looking for), but we only have apoint in the curve. If we call w; = (wy;, w;) the
point in the image, then

b = w — AR(P)u(B) (5.74)

defines a system with four unknowns and with as many equations as points in the image.
In order to find the solution we can gather evidence by using afour-dimensiona accumulator
space. For each potential value of b, A and p, wetrace a point spread function by considering
al the values of 6. That is, al the points in the curve u(6).

In the GHT the gathering process is performed by adding an extra constraint to the
system that allows us to match points in the image with points in the model shape. This
constraint is based on gradient direction information and can be explained as follows. We
said that ideally we would like to use Equation 5.73 to gather evidence. For that we need
to know the shape w(8) and the model v(8), but we only know the discrete points w;, and
we have supposed that these are the same as the shape, i.e. that w(6) = w;. Based on this
assumption, we then consider all the potential points in the model shape, v(6). However,
thisis not necessary since we only need the point in the model, v(0), that corresponds to
the point in the shape, «(8). We cannot know the point in the shape, v(8), but we can
compute some properties from the model and from theimage. Then, we can check whether
these properties are similar at the point in the model and at a point in theimage. If they are
indeed similar, then the points might correspond: if they do we can gather evidence of the
parameters of the shape. The GHT considers as feature the gradient direction at the point.
We can generalise Equation 5.45 and Equation 5.46 to define the gradient direction at a
point in the arbitrary model. Thus,

#(8 =200 ad ¥(9=tn(¢(9) (5.75)
Thus Equation 5.73 istrue only if the gradient direction at a point in the image matches the
rotated gradient direction at a point in the (rotated) model, that is
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@=¢(9-p (5.76)

where fﬂ is the angle at the point wy. Note that according to this egquation, gradient
direction is independent of scale (in theory at least) and it changes in the same ratio as
rotation. We can constrain Equation 5.74 to consider only the points u(6) for which

@-¢(9+ p=0 (5.77)

That is, a point spread function for a given edge point wy is obtained by selecting a subset
of points in v(B) such that the edge direction at the image point rotated by p equals the
gradient direction at the model point. For each point w; and selected point in v(6) the point
spread function is defined by the HT mapping in Equation 5.74.

5.5.2 Polar definition

Equation 5.74 defines the mapping of the HT in Cartesian form. That is, it defines the votes
in the parameter space as a pair of co-ordinates (x, y). Thereis an alternative definition in
polar form. The polar implementation is more common than the Cartesian form Hecker
(1994) and Sonka (1994). The advantage of the polar form is that it is easy to implement
since changes in rotation and scale correspond to addition in the angle-magnitude
representation. However, ensuring that the polar vector has the correct direction incurs
more complexity.
Equation 5.74 can be written in a form that combines rotation and scale as
b =w(B) —y(A, p) (5.78)

where y'(A, p) = [y, p) Yy(A, p)] and where the combined rotation and scale is

Yx(A, p) = A(X(6) cos(p) — () sin(p))
YA, p) = A(X(6) sin(p) + y(B) cos(p))
This combination of rotation and scale defines a vector, y(A, p), whose tangent angle and
magnitude are given by
Yy (A p)
Yx (A p)

The main idea here is that if we know the values for a and r, then we can gather evidence
by considering Equation 5.78 in polar form. That is,

b =w(B) —re” (5.81)

Thus, we should focus on computing values for a and r. After some algebraic manipulation,
we have that

a=@0) +p r=A(6) (5.82)

(5.79)

tan(ar) = r=Jy2(\p)+vi(A p) (5.80)

where

— o y(0) O = /x2(8) +y2(8)
@(6) =tan Ox(0) Dr(e) = \/X%(0) +y*(0) (5.83)
In this definition, we must include the constraint defined in Equation 5.77. That is, we
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gather evidence only when the gradient direction is the same. Notice that the square root
in the definition of the magnitude in Equation 5.83 can have positive and negative values.
The sign must be selected in a way that the vector has the correct direction.

5.5.3 The GHT technique

Equations 5.74 and 5.81 define an HT mapping function for arbitrary shapes. The geometry
of these equations is shown in Figure 5.21. Given an image point w;, we have to find a
displacement vector y(A, p). When the vector is placed at wy, then itsend is at the point b.
Inthe GHT jargon, this point is called the reference point. The vector y(A, p) can be easily
obtained asAR(p) u(0) or aternatively asre”. However, in order to eval uate these equations,
we need to know the point u(0). Thisisthe crucia step in the evidence gathering process.
Notice the remarkable similarity between Figures5.17(a), 5.19(a) and Figure 5.21(a). This
is not a coincidence, but Equation 5.60 is a particular case of Equation 5.73.

Edge vector
0y y=(r,a)
o (o, 0g), (11, Ag), (1, A3)
d A(p .
) 200
Reference point
™~ Target shape
(a) Displacement vector (b) R-table

Figure 5.21 Geometry of the GHT

The process of determining v(8) centres on solving Equation 5.76. According to this
equation, since we know @', then we need to find the point u(6) whose gradient direction
is @ + p=0. Then we must use v(6) to obtain the displacement vector y(A, p). The GHT
pre-computes the solution of this problem and storesit an array called the R-table. The R-
table stores for each value of @' the vector y(A, p) for p =0and A = 1. In polar form, the
vectors are stored as amagnitude direction pair and in Cartesian form as a co-ordinate pair.

The possible range for @' is between —172 and 172 radians. This range is split into N
equispaced dlots, or bins. These slots become rows of datain the R-table. The edge direction
at each border point determines the appropriate row in the R-table. The length, r, and
direction, a, from the reference point is entered into anew column element, at that row, for
each border point in the shape. In this manner, the N rows of the R-table have elements
related to the border information, elements for which there is no information contain null
vectors. The length of each row is given by the number of edge points that have the edge
direction corresponding to that row; the total number of elements in the R-table equals the
number of edge points above a chosen threshold. The structure of the R-table for N edge
direction bins and m template border points isillustrated in Figure 5.21(b).

The process of building the R-tableisillustrated in Code 5.10. In this code, we implement

202 Feature Extraction and Image Processing



9R- Tabl e
functi on T=RTabl e(entries,inputinage)

% mage size
[rows, col ums] =si ze(i nputi nmage) ;

%edges
[ M Ang] =Edges(i nputi mage) ;
M=Max Supr (M Ang) ;

%onpute reference point
Xr=0; yr=0; p=0;
for x=1:col ums
for y=1:rows
if(My, x)~=0)
XTI =Xr +X;
yr=yr+y,
p=p+1;
end
end
end
xr=round(xr/p);
yr=round(yr/p);

%accunul at or
D=pi/entries;

s=0; % unber of entries in the table
t=[];
F=zeros(entries,1); %unber of entries in the row
% or each edge point
for x=1:col ums
for y=1:rows
if(My, x)~=0)
phi =Ang(y, x);
i =round( (phi +(pi/2))/D);
if(i==0) i=1; end;
V=F(i) +1;
i f(V>s)
s=s+1;
T(:,:,s)=zeros(entries, 2);
end;
T(i,1,V)=x-xr;

T(irzvv):y_yr;
F(i)=F(1)+1;

end % f
end %
end %

Code 5.10 Implementation of the construction of the R-table
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the Cartesian definition given in Equation 5.74. According to this equation the displacement
vector is given by

(1, 0) = w(®) —b (5.84)

The matrix T stores the co-ordinates of y(1, 0). This matrix is expanded to accommodate
all the computed entries.

Code 5.11 shows the implementation of the gathering process of the GHT. In this case
we use the Cartesian definition in Equation 5.74. The co-ordinates of points given by

%eneral i sed Hough Transform
function GHT(inputinage, RTabl e)

% mage size
[rows, col ums] =si ze(i nputi nmage) ;

% abl e size
[rowsT, h, col umsT] =si ze( RTabl e) ;
D=pi / r owsT;

Y%edges
[ M Ang] =Edges(i nputi mage) ;
M=Max Supr (M Ang) ;

Y%accunul at or
acc=zer os(rows, col ums);

% or each edge point
for x=1:colums
for y=1:rows

i f(My, x) ~=0)

phi =Ang(y, X);
i =round( (phi +(pi/2))/D);
if(i==0) i=1; end,

for j=1:columsT
i f(RTable(i,1,j)==0 & RTable(i, 2,j)==0)
j =col umsT; %o nore entries
el se
a0=x- RTable(i,1,j); bO=y-RTable (1, 2, j);
i f(a0>0 & alO<columms & b0>0 & bO<rows)
acc(b0, a0) =acc(b0, a0) +1;
end
end
end
end % f
end %
end %

Code 5.11 Implementing the GHT
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evaluation of all R-table points for the particular row indexed by the gradient magnitude
are used to increment cellsin the accumulator array. The maximum number of votes occurs
at the location of the original reference point. After all edge points have been inspected, the
location of the shape is given by the maximum of an accumulator array.

Note that if we want to try other values for rotation and scale, then it is necessary to
compute atabley(A, p) for all potential values. However, this can be avoided by considering
that y(A, p) can be computed from y(1, 0), That is, if we want to accumulate evidence for
Y(A, p), then we use the entry indexed by @' + p and we rotate and scale the vector y(1, 0).
That is,

YA, P) = A(v(1, 0) cos(p) — (1, 0) sin(p)) (5.85)

Yy(As p) = A (Yx(L, 0) sin(p) + yy(1, 0) cos(p))

In the case of the polar form, the angle and magnitude need to be defined according to
Equation 5.82.

The application of the GHT to detect an arbitrary shape with unknown translation is
illustrated in Figure 5.22. We constructed an R-table from the template shown in Figure
5.2(a). The table contains 30 rows. The accumulator in Figure 5.22(c) was obtained by
applying the GHT to the image in Figure 5.22(b). Since the table was obtained from a
shape with the same scale and rotation as the primitive in the image, then the GHT
produces an accumulator with a clear peak at the centre of mass of the shape.

(a) Model (b) Image (c) Accumulator space

Figure 5.22 Example of the GHT

Although the example in Figure 5.22 shows that the GHT is an effective method for
shape extraction, there are several inherent difficultiesin its formulation (Grimson, 1990),
(Aguado, 2000). The most evident problem is that the table does not provide an accurate
representation when objects are scaled and translated. This is because the table implicitly
assumes that the curveis represented in discrete form. Thus, the GHT maps a discrete form
into a discrete parameter space. Additionally, the transformation of scale and rotation can
induce other discretisation errors. This is because when discrete images are mapped to be
larger, or when they are rotated, loci which are unbroken sets of points rarely map to
unbroken sets in the new image. Another important problem is the excessive computation
required by the four-dimensional parameter space. This makes the technique impractical.
Also, the GHT is clearly dependent on the accuracy of directional information. By these
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factors, the results provided by the GHT can become less reliable. A solution is to use an
analytic form instead of a table (Aguado, 1998). This avoids discretisation errors and
makes the technique more reliable. This also allows the extension to affine or other
transformations. However, this technique requires solving for the point u(6) in an analytic
way, increasing the computational load. A solution is to reduce the number of points by
considering characteristic points defined as points of high curvature. However, this still
requiresthe use of afour-dimensional accumulator. An alternative to reduce this computational
load is to include the concept of invariance in the GHT mapping.

5.5.4 Invariant GHT

The problem with the GHT (and other extensions of the HT) is that they are very general.
That is, the HT gathers evidence for a single point in the image. However, a point on its
own provides little information. Thus, it is necessary to consider a large parameter space
to cover all the potential shapes defined by a given image point. The GHT improves
evidence gathering by considering a point and its gradient direction. However, since gradient
direction changes with rotation, then the evidence gathering isimproved in terms of noise
handling, but little is done about computational complexity.

In order to reduce computational complexity of the GHT, we can consider replacing the
gradient direction by another feature. That is, by afeature that is not affected by rotation.
Let us explain thisideain more detail. The main aim of the constraint in Equation (5.77),
is to include gradient direction to reduce the number of votes in the accumulator by
identifying a point u(8). Once this point is known, then we obtain the displacement vector
Y(A, p). However, for each value of rotation, we have a different point in v(6). Now let us
replace that constraint in Equation 5.76 by a constraint of the form

Q(wy) = Q(u(6)) (5.86)

The function Q is said to be invariant and it computes a feature at the point. This feature
can be, for example, the colour of the point, or any other property that does not change in
the model and in the image. By considering Equation 5.86, we have that Equation 5.77 is
redefined as

Q(w) —Q(u(8)) =0 (5.87)

That is, instead of searching for a point with the same gradient direction, we will search for
the point with the same invariant feature. The advantage is that this feature will not change
with rotation or scale, so we only require a 2D space to locate the shape. The definition of
Q depends on the application and the type of transformation. The most general invariant
properties can be obtained by considering geometric definitions. In the case of rotation and
scale changes (i.e. similarity transformations) the fundamental invariant property is given
by the concept of angle. An angle isdefined by three points and its value remains unchanged
when it isrotated and scaled. Thus, if we associate to each edge point wy a set of other two
points {w;, wr} then we can compute a geometric feature that is invariant to similarity
transformations. That is,

XiYi = XY,

Q(wy) = W (5.88)

where X, = oy — Wr, Y = Wy — wr. Equation 5.88 defines the tangent of the angle at the point
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wr. Ingeneral, we can define the points [y, wy] in different ways. An aternative geometric
arrangement is shown in Figure 5.23(a). Given the points ¢y and a fixed angle 9, then we
determine the point w, such that the angle between the tangent line at «y and the line that
joins the points is 9. The third point is defined by the intersection of the tangent lines at
w; and wy. The tangent of the angle B is defined by Equation 5.88. This can be expressed
in terms of the points and its gradient directions as

_9-9

Q(wy) = T+qq (5.89)
We can replace the gradient angle in the R-table by the angle . The form of the new
invariant table is shown in Figure 5.23(c). Since the angle 3 does not change with rotation
or change of scale, then we do not need to change the index for each potential rotation and
scale. However, the displacement vector changes according to rotation and scale (i.e.
Equation 5.85). Thus, if we want an invariant formulation, then we must also change the
definition of the position vector.

0 Ko, ky, Ko, ...
AQ :
20

(a) Displacement vector (b) Angle definition (c) Invariant R-table

Figure 5.23 Geometry of the invariant GHT

In order to locate the point b we can generalise the ideas presented in Figure 5.17(a) and
Figure 5.19(a). Figure 5.23(b) shows this generalisation. As in the case of the circle and
ellipse, we can locate the shape by considering aline of votes that passes through the point
b. Thislineis determined by the value of @". We will do two things. First, we will find an
invariant definition of this value. Second, we will include it on the GHT table.

We can develop Equation 5.73 as

X0 [xO _Ocos(p)  sin(p)dx(6)O
O Oo=0. OtAQ . g , .0 (5.90)
oO O Fsin(p)  cos(p)Oy(6)O
Thus, Equation 5.60 generalises to
Wy Yo _ [-sin(p) cos(p)]y(6) (5.9)
Wy —Xo  [cos(p) sin(p)]x(B) '
By some algebraic manipulation, we have that

@ =tan(&— p) (5.92)

(ﬂ" =
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where

_ y(6)
£= 25 (5.93)

In order to define " we can consider the tangent angle at the point w. By considering the
derivative of Equation 5.72 we have that

. [=sin(p) cos(p)] y'(8)

= : 5.94

Y= Teos(p) sn()]x'(9) (599
Thus,

@ =tan(p— P (5.95)
where

_Yy'(6)

0= X:(e) (596)
By considering Equation 5.92 and Equation 5.95 we define

Q=K+ ¢ (5.97)

The important point in this definition is that the value of k isinvariant to rotation. Thus, if
we use this value in combination with the tangent at a point we can have an invariant
characterisation. In order to see that k is invariant, we solve it for Equation 5.97. That is,

k=q - ¢ (5.98)
Thus,

k=&-p—(¢—p) (5.99)
That is,

k=& - (5.100)

That is, independent of rotation. The definition of k has a simple geometric interpretation
illustrated in Figure 5.23(b).

In order to obtain an invariant GHT, it is necessary to know for each point w, the
corresponding point v(6) and then compute the value of @". Then evidence can be gathered
by the line in Equation 5.91. That is,

Yo = @"(Xo — W) + Wy (5.101)
In order to compute " we can obtain k and then use Equation 5.100. In the standard
tabular form the value of k can be precomputed and stored as function of the angle .
Code 5.12 illustrates the implementation to obtain the invariant R-table. This code is
based on Code 5.10. The value of a is set to W4 and each element of the table stores a
single value computed according to Equation 5.98. The more cumbersome part of the code
isto search for the point w,. We search in two directions from wy and we stop once an edge
point has been located. This search is performed by tracing aline. The trace is dependent
on the slope. When the slope is between —1 and +1 we then determine a value of y for each
value of x, otherwise we determine a value of x for each value of y.
Code 5.13 illustrates the evidence gathering process according to Equation 5.101. This
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% nvariant R-Table
functi on T=RTabl el nv(entries,inputimage)

% mage size
[rows, col ums] =si ze(i nputi mage) ;

%edges
[ M Ang] =Edges(i nputi mage) ;
M=Max Supr (M Ang) ;

al fa=pi/4;

D=pi/entries;

s=0; % unber of entries in the table

t =0;

F=zeros(entries, 1); %munmber of entries in the row

%conpute reference point
xr=0; yr=0; p=0;
for x=1:col ums
for y=1:rows
if(My, x)~=0)
XTI =XT +X;
yr=yr+y,
p=p+1;
end
end
end
xr=round(xr/p);
yr=round(yr/p);

% or each edge point
for x=1:col ums
for y=1:rows
if(My, x)~=0)

Y%search for the second point
x1=-1; yl=-1,
phi =Ang(y, x) ;
met an( phi -al fa);

if(m-1 & nxl)
for i=3:colums
C=X+i ;
j =round(nt(c—x) +y);
if(j>0 & j<rows & ¢c>0 & c<colums & Mj, c)~=0)

xl=c; yl=j;
i =col ums;
end
C=X—I;

j =round(nt(c—x) +y);
if(j>0 & j<rows & ¢c>0 & c<colums & Mj, c)~=0)
xl=c; yl=j;
i =col ums;
end
end
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el se
for j=3:rows
C=y+j;
i =round(x+(c-y)/ m;
if(c>0 & c<rows & i>0 & i<colums & Mc,i)~=0)
x1=i ; yl=c;
i =rows;
end
c=y—j;
i =round(x+(c-y)/ m;
if(c>0 & c<rows & i>0 & i<colums & Mc,i)~=0)
x1=i; yl=c;
i =rows;
end
end
end

if(x1l~=-1)
%conpute beta
phi =tan(Ang(y, x));
phj =tan(Ang(y1, x1));
i f ((1+phi*phj)~=0)
bet a=at an( (phi -phj )/ (1+phi *phj));

el se
bet a=1. 57;
end
%onpute k
i f((x-xr)~=0)
ph=atan((y-yr)/ (x-xr));
el se
ph=1.57:
end

k=ph- Ang(y, x) ;

% nsert in the table
i =round( (beta+(pi/2))/D
if (i==0)i=1; end;

V=F(i) +1;
i f(V>s)
s=s+1;
T(:,s)=zeros(entries, 1);
end;
T(i,V)=k;
F(i)=F(i)+1;
end
end % f
end %

end %

Code 5.12 Constructing of the invariant R-table
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% nvari ant Generalised Hough Transform
function GHTInv(inputimage, RTabl e)

% mage size
[rows, col ums] =si ze(i nputi mage) ;

% abl e size
[rowsT, h, col umsT] =si ze( RTabl e) ;
D=pi / rowsT;

% edges
[ M Ang] =Edges(i nputi mage) ;
M=Max Supr (M Ang) ;

al fa=pi/ 4;

%accunul at or
acc=zer os(rows, col ums);

% or each edge point
for x=1:col ums
for y=1:rows
if(My, x)~=0)

Y%search for the second point
x1=-1; yl=-1,
phi =Ang(y, x) ;
m=t an( phi -al fa);

if(m-1 & nxl)
for i=3:colums
C=X+i ;
j =round(nt(c—x) +y);
if(j>0 & j<rows & ¢c>0 & c<colums & Mj, c)~=0)

x1l=c; yl=sj;
i =col ums;
end
C=X—I;

j =round(nt(c—x) +y);
if(j>0 & j<rows & ¢c>0 & c<colums & Mj, c)~=0)
x1l=c; yl=sj;
i =col ums;
end
end
el se
for j=3:rows
C=y+;
i =round(x+(c-y)/ m;
if(c>0 & c<rows & i>0 & i<colums & Mc,i)~=0)
x1=i; yl=c;
i =rows;
end
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c=y-j;

i =round(x+(c-y)/ m;

if(c>0 & c<rows & i>0 & i<colums & Mc,i)~=0)
x1l=i; yl=c;
i =rows;

end

end
end

if(x1l~=-1)
%conpute beta
phi =tan(Ang(y, x));
phj =tan(Ang(y1, x1));
i f ((1+phi*phj)~=0)
bet a=at an( (phi -phj )/ (1+phi *phj));
el se
bet a=1. 57;
end

i =round((beta+(pi/2))/D);
if(i==0) i=1; end;

Y%search for k
for j=1:columsT
i f (RTabl e(i,j)==0)
j =columsT; % no nore entries
el se
k=RTabl e(i,j);
% i nes of votes
met an( k+Ang(y, x));
if(m-1 & nxl)
for x0=1:col ums
yO=r ound(y+nt(x0-x));
if(y0>0 & yO<rows)
acc(yO0, x0) =acc(y0, x0) +1;
end
end
el se
for yO0=1:rows
x0=round(x+(yO0-y)/ m;
i f(x0>0 & x0<col umms)
acc(yO0, x0) =acc(y0, x0) +1;
end
end
end
end
end
end
end % f
end %
end %

Code 5.13 Implementation of the invariant GHT
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code is based in the implementation presented in Code 5.11. We use the value of (3 defined
in Equation 5.89 to index the table passed as a parameter to the function GHTI nv. The data
k recovered from the table is used to compute the slope of the angle defined in Equation
5.97. Thisis the slope of the line of votes traced in the accumulators.

Figure 5.24 shows the accumul ator obtained by the implementation of Code5.13. Figure
5.24(a) shows the template used in this example. This template was used to construct the
R-Table in Code 5.12. The R-table was used to accumulate evidence when searching for
the piece of the puzzle in the image in Figure 5.24(b). Figure 5.24(c) shows the result of
the evidence gathering process. We can observe a peak at the location of the object.
However, this accumulator contains significant noise. The noise is produced since rotation
and scale change the value of the computed gradient. Thus, the line of votes is only an
approximation. Another problem is that pairs of points w and wy might not be found in an
image, thus the technique is more sensitive to occlusion and noise than the GHT.

(a) Edge template (b) Image (c) Accumulator

Figure 5.24 Applying the invariant GHT

5.6 Other extensions to the HT

The motivation for extending the HT is clear: keep the performance, but improve the speed.
There are other approaches to reduce the computational load of the HT. These approaches
aim to improve speed and reduce memory by focusing on smaller regions of the accumul ator
space. These approaches have included: the Fast HT (Li, 1986) which successively splits
the accumulator space into quadrants and continues to study the quadrant with most evidence;
the Adaptive HT (Illingworth, 1987) which uses a fixed accumulator size to iteratively
focus onto potential maximain the accumulator space; and the Randomised HT (Xu, 1990)
which uses a random search of the accumulator space; and pyramidal techniques. One
main problem with techniques which do not search the full accumulator space, but a
reduced version to save speed, is that the wrong shape can be extracted (Princen, 1989), a
problem known as phantom shape |ocation. These approaches can also be used (with some
variation) to improve speed of performance in template matching. There have been many
approaches aimed to improve performance of the HT and of the GHT.

Alternative approachesto the GHT include two Fuzzy HTs:. (Philip, 1991) which (Sonka,
1994) includes uncertainty of the perimeter pointswithin aGHT structure and (Han, 1994)
which approximately fits a shape but which requires application-specific specification of
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a fuzzy membership function. There have been two major reviews of the state of research
inthe HT (lllingworth, 1988), (Leavers, 1993) and atextbook (L eavers, 1992) which cover
many of these topics. The analytic approaches to improving the HTs performance use
mathematical analysisto reduce size, and moreimportantly dimensionality, of the accumulator
space. This concurrently improves speed. A review of HT-based techniques for circle
extraction (Yuen, 1990) covered some of the most popular techniques available at the time.

5.7 Further reading

The magjority of further reading in finding shapes concerns papers, many of which have
already been referenced. An excellent survey of the techniques used for feature extraction
(including template matching, deformable templates etc.) can be found in (Trier, 1996).
Few of the textbooks devote much space to shape extraction. One text alone is dedicated
to shape analysis (Van Otterloo, 1991) and contains many discussions on symmetry. For
implementation, (Parker, 1994) only includes C code for template matching and for the HT
for lines, but no more. Other techniques use asimilar evidence gathering processto the HT.
Thesetechniques are referred to as Geometric Hashing and Clustering Techniques (Lamdan,
1988), (Stockman, 1987). In contrast with the HT, these techniques do not define an
analytic mapping, but they gather evidence by grouping a set of features computed from
the image and from the model.
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I 0
Flexible shape extraction
(snakes and other
technigques)

6.1 Overview

The previous chapter covered finding shapes by matching. This implies knowledge of a
model (mathematical or template) of the target shape (feature). The shape is fixed in that
it is flexible only in terms of the parameters that define the shape, or the parameters that
define a template’'s appearance. Sometimes, however, it is not possible to model a shape
with sufficient accuracy, or to provide a template of the target as needed for the GHT. It
might be that the exact shape is unknown or it might be that the perturbation of that shape
isimpossible to parameterise. In this case, we seek techniques that can evolve to the target
solution, or adapt their result to the data. Thisimpliesthe use of flexible shape formulations.
This chapter presents four techniques that can be used to find flexible shapes in images.
These are summarised in Table 6.1 and can be distinguished by the matching functional
used to indicate the extent of match between image dataand a shape. If the shapeisflexible
or deformable, so as to match the image data, we have a deformable template. This is
where we shall start. Later, we shall move to techniques that are called snakes, because of
their movement. We shall explain two different implementations of the snake model. The
first one is based on discrete minimisation and the second one on finite element analysis.
We shall also look at finding shapes by the symmetry of their appearance. This technique
finds any symmetric shape by gathering evidence by considering features between pairs of
points. Finally, we shall consider approaches that use the statistics of a shape's possible
appearance to control selection of the final shape, called active shape models.

Table 6.1 Overview of Chapter 6

Deformable templates

Discrete minimisation

Snakes
Flexible shape extraction Finite elements

Symmetry operations

Active shape models
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6.2 Deformable templates

One of the earlier approaches to deformable template analysis (Yuille, 1991) was aimed to
find facial features for purposes of recognition. The approach considered an eye to be
comprised of an iriswhich sits within the sclera (the white bit) and which can be modelled
as acombination of acircle that lies within a parabola. Clearly, the circle and aversion of
the parabola can be extracted by using Hough transform techniques, but this cannot be
achieved in combination. When we combine the two shapes and allow them to change in
size and orientation, whilst retaining their spatial relationship (that theiris or circle should
reside within the sclera or parabola), then we have a deformable template.
The parabolais a shape described by a set of points (X, y) related by

y=a- b—a;xz (6.1)
where, asillustrated in Figure 6.1(a), a is the height of the parabolaand b isitsradius. As
such, the maximum height is a and the minimum height is zero. A similar equation
describes the lower parabola, it terms of b and c. The *centre’ of both parabolae is c,. The
circleis as defined earlier, with centre co-ordinates c. and radius r. We then seek values of
the parameters which give a best match of this template to the image data. Clearly, one
match we would like to make concerns matching the edge data to that of the template, like
in the Hough transform. The set of values for the parameters which give a template
matches the most edge points (since edge points are found at the boundaries of features)
could then be deemed to be the best set of parameters describing the eye in an image. We
then seek values of parameters that maximise

{cp.a b, c,cc,r} = max ﬁ 2E,y E (6.2)

,y(kircle.peri meter,pérabol ae.perimeter

A

(b) Deformable template match
(a) Eye template to an eye

Figure 6.1 Finding an eye with a deformable template

Naturally, this would prefer the larger shape to the smaller ones, so we could divide the
contribution of the circle and the parabolae by their perimeter to give an edge energy
contribution E,
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2E,y 2E,,
_ x,yCkircleperimeter X, ¥ parabolae.perimeter
¢ circleperimeter ~ parabolae.perimeter

(6.3)

and we seek a combination of values for the parameters{c,, a, b, c, ¢, r} which maximise
this energy. This, however, implies little knowledge of the structure of the eye. Since we
know that the sclerais white (usually) and theirisis darker than it, then we could build this
information into the process. We can form an energy E, for the circular region which
averages the brightness over the circle area as

E, = — 2Py, /circlearea (6.4)
x,yLkircle
Thisisformed in the negative, since maximising its value gives the best set of parameters.
Similarly, we can form an energy functional for the light regions where the eye is white as
E
p

Ep= 2Py / parabolae-circle.area (6.5)
x,yCparabolae-circle

where parabolae-circle implies points within the parabolae but not within the circle. We

can then choose a set of parameters which maximise the combined energy functional

formed by adding each energy when weighted by some chosen factors as

E=cCe-Ectc,-E, +¢ - E (6.6)

where ¢, ¢, and ¢, are the weighting factors. In this way, we are choosing values for the
parameters which simultaneously maximise the chance that the edges of the circle and the
perimeter coincide with the image edges, that the inside of the circle is dark and that the
inside of the parabolae are light. The value chosen for each of the weighting factors
controls the influence of that factor on the eventual result.

The energy fieldsare shown in Figure 6.2 when computed over the entireimage. Naturally,
the valley image shows up regions with low image intensity and the peak image shows
regions of high image intensity, like the whites of the eyes. Inits original formulation, this
approach actually had five energy terms and the extratwo are associated with the points Py
and P, either side of the irisin Figure 6.1(a).

(a) Original image (b) Edge image (c) Valley image (d) Peak image

Figure 6.2 Energy fields over whole face image
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Thisiswherethe problem starts, aswe now have 11 parameters (eight for the shapes and
three for the weighting coefficients). We could of course simply cycle through every
possible value. Given, say, 100 possible values for each parameter, we then have to search
10%? combinations of parameters which would be no problem given multithread computers
with Terrahertz processing speed achieved via optical interconnect, but that is not now.
Naturally, we can reduce the number of combinations by introducing constraints on the
relative size and position of the shapes, e.g. the circle should lie wholly within the parabol ae,
but this will not reduce the number of combinations much. We can seek two alternatives:
one is to use optimisation techniques. The original approach (Yuille, 1991) favoured the
use of gradient descent techniques; currently, the genetic algorithm approach (Goldberg,
1988) seems to be most favoured and this has been shown to good effect for deformable
template eye extraction on a database of 1000 faces (Benn, 1999) (thisis the source of the
images shown here). The alternativeisto seek adifferent technique that usesfewer parameters.
This is where we move to snakes that are a much more popular approach. These snakes
evolve a set of points (a contour) to match the image data, rather than evolving a shape.

6.3 Active contours (snakes)

6.3.1 Basics

Active contours or snakes (Kass, 1988) are a completely different approach to feature
extraction. An active contour is a set of points which aims to enclose a target feature, the
feature to be extracted. It isabit like using aballoon to ‘find’ a shape: the balloon is placed
outside the shape, enclosing it. Then by taking air out of the balloon, making it smaller, the
shape is found when the balloon stops shrinking, when it fits the target shape. By this
manner, active contours arrange a set of points so asto describe atarget feature by enclosing
it. Snakes are actually quite recent and their original formulation was as an interactive
extraction process, though they are now usually deployed for automatic feature extraction.

An initial contour is placed outside the target feature, and is then evolved so as to
encloseit. The processisillustrated in Figure 6.3 where the target feature is the perimeter
of theiris. First, an initial contour is placed outside the iris, Figure 6.3(a). The contour is
then minimised to find a new contour which shrinks so as to be closer to the iris, Figure
6.3(b). After seven iterations, the contour points can be seen to match the iris perimeter
well, Figure 6.3(d).

(a) Initial contour

(b) After the first iteration

o

(c) After four iterations

o~

(d) After seven iterations

Figure 6.3 Using a snake to find an eye's iris

220 Feature Extraction and Image Processing




Active contours are actually expressed as an energy minimisation process. The target
feature is a minimum of a suitably formulated energy functional. This energy functional
includes more than just edge information: it includes properties that control the way the
contour can stretch and curve. In this way, a snake represents a compromise between its
own properties (like its ability to bend and stretch) and image properties (like the edge
magnitude). Accordingly, the energy functional isthe addition of afunction of the contour’s
internal energy, its constraint energy, and the image energy: these are denoted E;;, Ejmage:
and E,, respectively. These are functions of the set of points which make up a snake, v(s),
which is the set of x and y co-ordinates of the points in the snake. The energy functional
is the integral of these functions of the snake, given s O [0, 1] is the normalised length
around the snake. The energy functional Eg4e is then:

1
Esnake = I=O Eint (V(S)) + Eimage (V(S)) + Econ (V(S)) ds (6-7)

In this equation: the internal energy, E;., controls the natural behaviour of the snake and
hence the arrangement of the snake points; the image energy, Ejmage, attracts the snake to
chosen low-level features (such as edge points); and the constraint energy, E.q,, alows
higher level information to control the snake’'s evolution. The aim of the snake isto evolve
by minimising Equation 6.7. New snake contours are those with lower energy and are a
better match to the target feature (according to the values of iy, Ejmage, and Egyy,) than the
original set of points from which the active contour has evolved. In this manner, we seek
to choose a set of points v(s) such that

d Esnake
dv

This can of course select amaximum rather than a minimum, and a second-order derivative
can be used to discriminate between a maximum and a minimum. However, this is not
usually necessary asaminimum isusually the only stable solution (on reaching amaximum,
it would then belikely to pass over the top to then minimise the energy). Prior to investigating
how we can minimise Equation 6.7, let usfirst consider the parameters which can control
a snake's behaviour.

The energy functionals are expressed in terms of functions of the snake, and of the
image. These functions contribute to the snake energy according to values chosen for
respective weighting coefficients. In this manner, the internal image energy is defined to be
aweighted summation of first- and second-order derivatives around the contour

-0 (6.8)

dv(s) |2 d2v(s)

En = a(9) T (6.9

+B( )‘

The first-order differential, dv(s)/ds, measures the energy due to stretching which is the
elastic energy since high values of this differential imply a high rate of change in that
region of the contour. The second-order differential, d?v(s)/ds?, measures the energy dueto
bending, the curvature energy. Thefirst-order differential isweighted by a(s) which controls
the contribution of the elastic energy due to point spacing; the second-order differential is
weighted by [(s) which controls the contribution of the curvature energy due to point
variation. Choice of the values of a and 3 controls the shape the snake aimsto attain. Low
values for a imply the points can change in spacing greatly, whereas higher values imply
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that the snake aims to attain evenly spaced contour points. Low values for 3 imply that
curvature is not minimised and the contour can form cornersin its perimeter whereas high
values predispose the snake to smooth contours. These are the properties of the contour
itself, which isjust part of a snake's compromise between its own properties and measured
features in an image.

The image energy attracts the snake to low-level features, such as brightness or edge
data. The original formulation suggested that lines, edges and terminations could contribute
to the energy function. Their energy is denoted Ejjne, Eqyge aNd Eierm, respectively, and are
controlled by weighting coefficients Wiine, Wegge aNd Wiery, respectively. The image energy
is then:

Eimage = Wiine EIine + Wedge Eedge + Wierm Eterm (6-10)

The line energy can be set to the image intensity at a particular point. If black has a lower
value than white, then the snake will be extracted to dark features. Altering the sign of
WiineWill attract the snake to brighter features. The edge energy can be that computed by
application of an edge detection operator, the magnitude, say, of the output of the Sobel
edge detection operator. The termination energy, E;om as measured by Equation 4.52, can
include the curvature of level image contours (as opposed to the curvature of the snake,
controlled by B(s)), but this is rarely used. It is most common to use the edge energy,
though the line energy can find application.

6.3.2 The Greedy algorithm for snakes

The implementation of asnake, to evolve a set of points to minimise Equation 6.7, can use
finite elements, or finite differences, which is complicated and follows later. It is easier to
start with the Greedy algorithm (Williams, 1992) which implements the energy minimisation
process as a purely discrete algorithm, illustrated in Figure 6.4. The process starts by
specifying an initial contour. Earlier, Figure 6.3(a) used a circle of 16 points along the
perimeter of acircle. Alternatively, these can be specified manually. The Greedy algorithm
then evolvesthe snake in an iterative manner by local neighbourhood search around contour
points to select new ones which have lower snake energy. The processis called Greedy by
virtue of the way the search propagates around the contour. At each iteration, all contour
points are evolved and the processis actually repeated for thefirst contour point. The index
to snake points is computed modulo S (the number of snake points).

For a set of snake points v, Os [0 0, S— 1, the energy functional minimised for each
snake point is:

Esnake(s) = Eint(vs) + Eimage(vs) (6-11)

Thisis expressed as
2

+Y(S) Eedge (6.12)

2

2
+B(9| L

ds?

where thefirst-order and second-order differentials are approximated for each point searched
intheloca neighbourhood of the currently selected contour point. The weighting parameters,
a, B andy, are all functions of the contour. Accordingly, each contour point has associated
values for a, B and y. An implementation of the specification of an initial contour by a
function poi nt isgiven in Code 6.1. In this implementation, the contour is stored as a

avs
ds

Esnake(s) =a (S)
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Define snake points and
parameters a, 3 and y

[
v

Start with first snake point

:

Initialise minimum energy and
co-ordinates

:

Determine co-ordinates of
neighbourhood point with
lowest energy

:

Set new snake point co-
ordinates to new minimum

More
snake
points?

lNo

Finish iteration

Yes

Figure 6.4 Operation of the Greedy algorithm

matrix of vectors. Each vector has five elements. two are the x and y co-ordinates of the
contour point, the remaining three parameters are the values of o, 3 and y for that contour
point, set here to be 0.5, 0.5 and 1.0, respectively. The no contour points are arranged to
beinacircle, radiusr ad and centre (xc, yc). Assuch, avector isreturned for each snake
point, poi nt ¢, where (poi nt ), (poi nt )4, (pPoi nt o),, (POi Nt 3, (pOi Nt ), arethe
X co-ordinate, the y co-ordinate and a, 3 and y for the particular snake point s: X, Vs, O,
Bs, and ys, respectively.

Thefirst-order differential is approximated as the modulus of the difference between the
average spacing of contour points (evaluated as the Euclidean distance between them), and
the Euclidean distance between the currently selected image point v and the next contour
point. By selection of an appropriate value of a(s) for each contour point v, this can
control the spacing between the contour points.

2 Vi = Viall

dv
: PR v = Vall

ds

i=0

S-1 Y. 2 Y 2
i:zo \/(X| X|+1) S+(y| y|+1) _ \/(Xs —Xs+1)2 +(ys _ys+l)2 (6.13)
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poi nts(rad, no, xc,yc):=|for s00..no-1
a 20 a
Xs « xc+fl oor Hados gﬁ@o. SH
a . 20Ot a
ys « yc+fl oor Had 8in %@0. 55
0s<0.5
Bs 0.5
Vs <1
OXs 0O
a 0
OoY¥s O
poi nt *E O g
a 0
O s O
Hys B
poi nt

Code 6.1 Specifying in initial contour

as evaluated from the x and y co-ordinates of the adjacent snake point (Xs: 1, Ys+1) and the
co-ordinates of the point currently inspected (X, yo). Clearly, thefirst-order differential, as
evaluated from Equation 6.13, dropsto zero when the contour is evenly spaced, as required.
Thisis implemented by the function Econt in Code 6.2 which uses afunctiondi ff to
evaluate the average spacing and a function di f f 2 to evaluate the Euclidean distance
between the currently searched point (v¢) and the next contour point (vg.1). The arguments
to E.o are the x and y co-ordinates of the point currently being inspected, x and y, the
index of the contour point currently under consideration, s, and the contour itself, cont .

di st (s, contour):=
sl —nod(s, rows(contour))
s2 —nod(s+1, rows(contour))

\/t (contourg;)o—contourg,)e]?H (contourg,); { contourg,),]?

di st 2(x,y,s,contour):=|s2«—nod(s+1, rows(contour))

\/t (cont ourg,)o—x]%24 (cont ourg,), —y]?

rows(cont)-1

1 .
DEFOV\B(Cont)D slzzo di st(sl,cont)

| D—di st 2(x,y,s,cont)|

Econt(x,y,s,cont) :=

Code 6.2 Evaluating the contour energy
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The second-order differential can beimplemented as an estimate of the curvature between
the next and previous contour points, Vg, 1 and vg_4, respectively, and the point in the local
neighbourhood of the currently inspected snake point vy

2
= I(Vs+1 - 2V5 + Vs—l) |2

d?v,
ds?

(6.14)

= (Xs+1 - 2Xs + Xs—l)2 + (ys+l - 2ys + ys—1)2

Thisisimplemented by afunction Ecur in Code 6.3, whose arguments again are the x and
y co-ordinates of the point currently being inspected, x and y, the index of the contour
point currently under consideration, s, and the contour itself, cont .

Ecur(x,y,s,con) :=| sl nod(s—1+rows(con),rows(con))
s3 <« nod(s+1,rows(con))
[(cong1)o—2XH congs)o] 4 (cong;); —2[y H congz),]?

Code 6.3 Evaluating the contour curvature

Eedge CaN be implemented as the magnitude of the Sobel edge operator at point X, y. This
is normalised to ensure that its value lies between zero and unity. This is also performed
for the elastic and curvature energies in the current region of interest and is achieved by
normalisation using Equation 3.2 arranged to provide an output ranging between 0 and 1.
The edge image could also be normalised within the current window of interest, but this
makes it more possible that the result is influenced by noise. Since the snake is arranged
to be a minimisation process, the edge image is inverted so that the points with highest
edge strength are given the lowest edge value (0) whereas the areas where the image is
constant are given a high value (1). Accordingly, the snake will be attracted to the edge
points with greatest magnitude. The normalisation process ensures that the contour energy
and curvature and the edge strength are balanced forces and eases appropriate selection of
values for a, B and y.

The Greedy algorithm then uses these energy functionals to minimise the composite
energy functional, Equation 6.12, given in the function gr dy in Code 6.4. This gives a
single iteration in the evolution of a contour wherein al snake points are searched. The
energy for each snake point is first determined and is stored as the point with minimum
energy. This ensures that if any other point is found to have equally small energy, then the
contour point will remain in the same position. Then, the local 3 x 3 neighbourhood is
searched to determine whether any other point has alower energy than the current contour
point. If it does, then that point is returned as the new contour point.

A verbatim implementation of the Greedy algorithm would include three thresholds.
Oneisathreshold on tangential direction and another on edge magnitude. If an edge point
were adjudged to be of direction above the chosen threshold, and with magnitude above its
corresponding threshold, then 3 can be set to zero for that point to allow corners to form.
This has not been included in Code 6.4, in part because there is mutual dependence
between a and . Also, the original presentation of the Greedy algorithm proposed to
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grdy(edg,con) := |for s100..rows(con)
s —nmod(sl, rows(con))
Xm n—(cong) g
ym n—(cong),
forces —bal ance[ (cong) ¢, (cong) 1, €dg, s, con]
Em n—(cong),. Econt (xm n,ym n, s, con)
Em n ~Em n+(cong) 3- Ecur (xm n, ym n, s, con)
Enmi n — Em n+( COI"IS)4 UEdgo)(cons)l,(cons)o
for x0O(cong)o—1..(cong) o+l

for y[(cong),—1..(cong) +1

i f check(x,y, edgp)

XX «X—(cong) o+1
yy —y—(cong) ;+1
Ej —(cong) - (forcesg, o) yy, xx
Ej - Ej +( Cons)s Uf or CeSO,l)yy,xx
Ej - Ej +(Cons)4 Uedgo)y,x
if E <Emin

Emi n — Ej

Xm n <X

ymney

00 Xmn
S ymn
cong « O(cong),
g(cons)s

H(cons)s

o o

con

Code 6.4 The Greedy algorithm

continue evolving the snake until it becomes static, when the number of contour points
moved in asingle iteration are below the third threshold value. This can lead to instability
sinceit can lead to a situation where contour points merely oscill ate between two solutions
and the process would appear not to converge. Again, this has not been implemented here.

The effect of varying a and (3 is shown in Figure 6.5 and Figure 6.6. Setting a to zero
removes influence of spacing on the contour points’ arrangement. In this manner, the
points will become unevenly spaced, Figure 6.5(b), and eventually can be placed on top of
each other. Reducing the control by spacing can be desirable for features that have high
localised curvature. Low values of a can allow for bunching of points in such regions,
giving a better feature description.

Setting 3 to zero removes influence of curvature on the contour points arrangement,
allowing corners to form in the contour, asillustrated in Figure 6.6. Thisis manifest in the
first iteration, Figure 6.6(b), and since with 3 set to zero for the whole contour, each
contour point can become a corner with high curvature, Figure 6.6(c), leading to the rather
ridiculousresult in Figure 6.6(d). Reducing the control by curvature can clearly be desirable
for features that have high localised curvature. This illustrates the mutual dependence
between a and 3, since low values of a can accompany low values of 3 in regions of high
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(a) Initial contour (b) After iteration 1 (c) After iteration 2 (d) After iteration 3

Figure 6.5 Effect of removing control by spacing

localised curvature. Setting y to zero would force the snake to ignore image data and
evolve under its own forces. This would be rather farcical. The influence of y is reduced
in applications where the image data used is known to be noisy. Note that one fundamental
problem with a discrete version is that the final solution can oscillate when it swaps
between two sets of points which are both with equally low energy. This can be prevented
by detecting the occurrence of oscillation. A further difficulty isthat asthe contour becomes
smaller, the number of contour points actually constrains the result as they cannot be
compressed into too small a space. The only solution to this is to resample the contour.

(a) Initial contour

(b) After iteration 1

ﬁ-.

(c) After iteration 2

e

(d) After iteration 3

Figure 6.6 Effect of removing low curvature control

6.3.3 Complete (Kass) snake implementation

The Greedy method iterates around the snake to find local minimum energy at snake
points. This is an approximation, since it does not necessarily determine the ‘best’ local
minimum in the region of the snake points, by virtue of iteration. A complete snake
implementation, or Kass snake, solves for all snake points in one step to ensure that the
snake moves to the best local energy minimum. We seek to choose snake points (v(s) =
(X(s), y(9))) in such a manner that the energy is minimised, Equation 6.8. Calculus of
variations shows how the solution to Equation 6.7 reducesto a pair of differential equations
that can be solved by finite difference analysis (Waite, 1990). This results in a set of
equations that iteratively provide new sets of contour points. By calculus of variations, we
shall consider an admissible solution \9(5) perturbed by a small amount, €dv(s), which
achieves minimum energy, as.

e (V(S) + £8V(S)) _

5 (6.15)
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where the perturbation is spatial, affecting the x and y co-ordinates of a snake point:

dv(s) = (34(9), B(9)) (6.16)
This gives the perturbed snake solution as
V(s) + £dv(S) = (X(s) + £3,(),y(S) + €5,()) (6.17)

where x(s and"y y(S) ae the x and y co-ordinates, respectively, of the snake points at the
solution (V(s) = (X(s), y(s)) By setting the constraint energy E.,, to zero, the snake
energy, Equation 6.7, becomes:

1
Eake (V(9)) = .I—o {Eint (V(8)) * Eimage (V(8))} ds (6.18)

Edge magnitude information is often used (so that snakes are attracted to edges found by
an edge detection operator) so we shal replace Ejyage bY Eeqge: By substitution for the
perturbed snake points, we obtain

1
Eqake (V(S) + £3V(S)) = I i {Ein (V(5) + £3V(S)) + Ecgge(V(S) + £3v(S))} ds
S=
(6.19)
By substitution from Equation 6.9, we obtain

Eqake (V(S) + £3V(S))

=
= ()
J. s=0 éﬂ

2

2
+B() d2 (V(s)+£dv(Ss)

ds?

d(V(s) + £dv(s)

ds +Eegge (\D/(s)+s6v(s)) s

H
(6.20)
By substitution from Equation 6.17,
Exake (V(S) + €3v(5))
5 Bhafed . dx(9 45, (9 Esdéx(s)mz B
D @7 0
gﬂ © % d % ds ds ds @ S
o B Wi, de 4,6, 0 ds,(9c D O
E 0 ds % ds ds H "ds EH B
— Fl E 2 2 2 2 EH
_J' i d x(s) 4 0g 47X(s) d28,(s) , O d 5,(s)F [ds (6.22)
0 E % ds? ds? dsz o %
ol i:
. 2§) (S) (S) d23,(s) O d25,(s)f
0 D@ as? [ %% de a H e H
0 U (o
0 : 0
E + Eedge (V (5) +Edv (S)) E
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By expanding Eqyqe at the perturbed solution by Taylor series, we obtain
Eegge (V(S) + £3V(S) = Eqgge %ﬁx(s) +£8,(s),y(s) + eay(s)g

edge edge

+0(&2) (6.22)

= Eogge X (5), Y(9) 5 + €3, (92 +e8,(5)

18 %9

Thisimplies that the image information must be twice differentiable which holds for edge
information, but not for some other forms of image energy. Ignoring higher order termsin
€ (since € is small), by reformulation Equation 6.21 becomes

Eake (V(S) + £3V(S)) = Eqe (V (8))

=1 dX(s) d6 (s) dzx(s)dzé (S) , Bu(S) OFuuge
+2£J;:0 a(s) —5q + B(s) o 5 axg B ds
X,y
=1 dy(s) d6 (S) ol2D (s)d25 () , 8y(S) OEce
+2¢ J’ a(s) +B(s) a2 T2 ey o
X,y
(6.23)

Since the perturbed solution is at a minimum, the integration terms in Equation 6.23 must
be identically zero:

s=1 20 2 aE e

_LO a(s) d)((j(ss) do, (s) + (s )d x(s) d C?Sz(s) 6X2(s) ae)((jg ) ds=0
" 629

=1 dd d2s, 5, (S) OEee

[[a@R B0 g U IO 5 B g
)

By integration we obtain

g g u| 51
() T 8 (9 - 459 PO (s
: L E E

s=0 dS dS
3 0B 4 d
é@( 9 x(S) dd, (S)EF _ EF%QB(S)dd)gS) %6)((3)['
0

0

s=1 2 1 aE
d> %3( )d X(S) : X(s)ds+ 1 e |5 (s)ds=0  (6.26)
s=0 d 2 s=0 aX
%y
Since the first, third and fourth terms are zero (since for a closed contour, 8,(1) — 8,(0) =
0 and &,(1) - 8,(0) = 0), this reduces to
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HaH dslH, g d?%(s)H, 1 0| E
x(s)ds=0
[ Tos (9 7ds o e ast g2 ok |29
(6.27)
Since this equation holds for all ,(s) then,
2 0Eegge
_%%( )dx(s)H %( )d x(s)H 1% | (6.29)
B %9
Similarly, by a similar development of Equation 6.25 we obtain
28 0 Ecgoe
gpt(s)“'y(s)E %(s)d YO, AT (629
X,y

This has reformulated the original energy minimisation framework, Equation 6.7, into a
pair of differential equations. To implement a complete snake, we seek the solution to
Equation 6.28 and Equation 6.29. By the method of finite differences, we substitute for
dx(s)/ds Oxeq — X, the first-order difference, and the second-order difference is d?x(s)/ds?
OXe1 — 2Xs + X5 1 (asin Equation 6.12), which by substitution into Equation 6.28, for a
contour discretised into S points equally spaced by an arc length h (remembering that the
indices s 0 [1, S to snake points are computed modulo S), gives

_lﬁl (Xs+1 _q (Xs _Xs—l)ﬁ

h s h

+i Xs+2_2Xs+l+Xs) _28 (Xs+1_2Xs+Xs—l) B (Xs_2X3—1+Xs—2)
h2 stl h2 s h2 s-1 h2
J:aEﬂme _
53y =0 (6.30)

Xs,Ys

By collecting the coefficients of different points, Equation 6.30 can be expressed as

fs = agXs o + bsXs—l + CXs + dsXs+l + E€Xsi2 (6-31)
where
f _laEedge a :& b :_Z(BS+BS—1)_&
s 2 9x S h4 s h4 h2
Xs.Ys
— Bs+1 + 4Bs + Bs—l sy +a S — Z(Bsﬂ + Bs) sy — Bs+1
+ d - e
s~ h4 h2 s~ h4 h2 s~ h4
Thisis now in the form of alinear (matrix) equation:
Ax = fx(x,y) (6.32)
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where fx(X, y) is the first-order differential of the edge magnitude along the x axis and
where

0 C d, € 0 a b O
O O
0O b2 Co d2 [SH) 0 a; O
A= B as b, C3 ds €; 0 E
a - O
O g
Bes—l 0 as—l bs—l Cs—l ds—l E
g ds e 0 .. a b, cs g

Similarly, by analysis of Equation 6.29 we obtain:
Ay =fy(x, y) (6.33)

where fy (x, y) is the first-order difference of the edge magnitude along the y axis. These
equations can be solved iteratively to provide a new vector v?"**“from an initia vector v
where i is an evolution index. The iterative solution is

(XU+1D _ XDD)
A

where the control factor A isascalar chosen to control convergence. The control factor, A,
actually controls the rate of evolution of the snake: large values make the snake move
quickly, small values make for slow movement. As usual, fast movement implies that the
snake can pass over features of interest without noticing them, whereas slow movement
can be rather tedious. So the appropriate choice for Ais again a compromise, this time
between selectivity and time. The formulation for the vector of y co-ordinates is:

+ Ax B = fx(xHD, yU) (6.34)

o+0 _ 00
(y A y ) + Ay[ﬂ+1D = fy(XDD, yDIII) (6.35)
By rearrangement, this gives the final pair of equations that can be used iteratively to
evolve a contour; the complete snake solution is then:

-1
ao_ Oy . 1, 0(1 oo 0
XM= A+ T 15 (AX +fx(xXY, y )) (6.36)
where | istheidentity matrix. Thisimplies that the new set of x co-ordinatesis a weighted
sum of theinitial set of contour points and theimage information. Thefraction is calculated
according to specified snake properties, the values chosen for a and (3. For the y co-
ordinates we have

-1 )
yo = (A + 2 1) EEy e fyoct, v (637)
The new set of contour points then becomes the starting set for the next iteration. Note that
thisis a continuous formulation, as opposed to the discrete (Greedy) implementation. One
penalty is the need for matrix inversion, affecting speed. Clearly, the benefits are that co-
ordinates are calculated as real functions and the complete set of new contour points is
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provided at each iteration. The result of implementing the complete solution is illustrated
in Figure 6.7. Theinitialisation, Figure 6.7(a), is the same as for the Greedy algorithm, but
with 32 contour points. At the first iteration, Figure 6.7(b), the contour beginsto shrink and
moves towards the eye's iris. By the sixth iteration, Figure 6.7(c) some of the contour
points have snagged on strong edge data, particularly in the upper part of the contour. At
this point, however, the excessive curvature becomes inadmissible, and the contour rel eases
these points to achieve a smooth contour again, one which is better matched to the edge
data and the chosen snake features. Finally, Figure 6.7(€) is where the contour ceases to
move. Part of the contour has been snagged on strong edge datain the eyebrow whereas the
remainder of the contour matches the chosen feature well.

(a) Initialisation (b) Iteration 1 (c) Iteration 6 (d) lteration 7 (e) Final

Figure 6.7 lllustrating the evolution of a complete snake

Clearly, a different solution could be obtained by using different values for the snake
parameters; in application the choice of valuesfor a, 3 and A must be made very carefully.
Infact, thisis part of the difficulty in using snakesfor practical feature extraction; afurther
difficulty isthat the result depends on where theinitial contour is placed. These difficulties
are called parameterisation and initialisation, respectively. These problems have motivated
much research and devel opment.

6.3.4 Other snake approaches

There are many further considerations to implementing snakes and there is a great wealth
of material. One consideration is that we have only considered closed contours. There are,
naturally, open contours. These require slight difference in formulation for the Kass snake
(Waite, 1990) and only minor modification for implementation in the Greedy algorithm.
One difficulty with the Greedy algorithm is its sensitivity to noise due to its local
neighbourhood action. Also, the Greedy algorithm can end up in an oscillatory position
where the final contour simply jumps between two equally attractive energy minima. One
solution (Lai, 1994) resolved this difficulty by increasing the size of the snake neighbourhood,
but this incurs much greater complexity. In order to allow snakes to expand, as opposed to
contract anormal force can beincluded which inflates asnake and pushesit over unattractive
features (Cohen, 1991; Cohen, 1993). The force is implemented by addition of

Frorma = pn(s) (6.38)

to the evolution equation, where n(s) is the normal force and p weights its effect. Thisis
inherently sensitive to the magnitude of the normal force that, if too large, can force the
contour to pass over features of interest. Another way to allow expansion is to modify the
elasticity constraint (Berger, 1991) so that the internal energy becomes
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En = a(9) ] S

where the length adjustment € when positive, € > 0, and added to the contour length L
causes the contour to expand. When negative, € < 0, this causes the length to reduce and
so the contour contracts. To avoid imbalance due to the contraction force, the technique can
be modified to remove it (by changing the continuity and curvature constraints) without
losing the controlling properties of the internal forces (Xu, 1994) (and which, incidentally,
allowed corners to form in the snake). This gives a contour no prejudice to expansion or
contraction as required. The technique allowed for integration of prior shape knowledge;
methods have also been developed to allow local shape to influence contour evolution
(Williams, 1992; Berger, 1991).

Some snake approaches have included factors that attract contours to regions using
statistical models (Ronfard, 1994) or texture (lvins, 1995), to complement operators that
combine edge detection with region-growing. Also, the snake model can be generalised to
higher dimensions and there are 3D snake surfaces (Wang, 1992; Cohen, 1992). Finally, an
approach hasintroduced snakes for moving objects, by including velocity (Peterfreund, 1999).

d?v(s)
ds?

- (L +€)g +B(s)

(6.39)

6.3.5 Further snake developments

Snakes have been formulated not only to include local shape, but also phrased in terms of
regularisation (Lai, 1995) where a single parameter controls snake evolution, emphasising
asnake's natural compromise between its own forces and the image forces. Regularisation
involves using a single parameter to control the balance between the external and the
internal forces. Given a regularisation parameter A, the snake energy of Equation 6.7 can
be given as

1
Equke (V(8)) = J;O {AEin (v(S)) + (1 = A) Eimage (V(5))} ds (6.40)

Clearly, if A = 1 then the snake will use the internal energy only whereasif A = 0, then the
snake will be attracted to the selected image function only. Usually, regularisation concerns
selecting avalue in between zero and one guided, say, by knowledge of the likely confidence
in the edge information. In fact, Lai’s approach cal culates the regularisation parameter at
contour points as

2
_ Oy

=1 6.41
o? + o} (6.41)

I
where o7 appearsto be the variance of the point i and o3 isthe variance of the noise at the
point (even digging into Lai’s PhD thesis provided no explicit clues here, save that ‘these
parameters may be learned from training samples’ — if thisisimpossible a procedure can
be invoked). As before, A; lies between zero and one, and where the variances are bounded
as

1,1

<+ 1= (6.42)
aq

of

This does actually link these generalised active contour models to an approach we shall
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meet later, where the target shape is extracted conditional upon its expected variation. Lai’s
approach also addressed initialisation, and showed how a GHT could be used to initialise
an active contour and built into the extraction process. Thereis, however, natural limitation
on using a single contour for extraction, since it is never known precisely where to stop.

In fact, many of the problems with initialisation with active contours can be resolved by
using adual contour approach (Gunn, 1997) that also includeslocal shape and regularisation.
This approach aims to enclose the target shape within an inner and an outer contour. The
outer contour contracts whilst the inner contour expands. A balance is struck between the
two contours to allow them to alow the target shape to be extracted. Gunn showed how
shapes could be extracted successfully, even when the target contour was far from the two
initial contours. Further, the technique was shown to provide better immunity to initialisation,
in comparison with the results of a Kass snake, and Xu's approach.

Later, the dual approach was extended to a discrete space (Gunn, 1998), using an
established search algorithm. The search used dynamic programming which has already
been used within active contoursto find a global solution (Lai, 1995) and in matching and
tracking contours (Geiger, 1995). Although only relatively recent, Gunn’'s approach has
already been used within an enormous study (using a database of over 20 000 images no
less) on automated cell segmentation for cervical cancer screening (Bamford, 1998), achieving
more than 99% accurate segmentation. The approach is formulated as a discrete search
using a dual contour approach, illustrated in Figure 6.8. The inner and the outer contour
aim to beinside and outside the target shape, respectively. The space between theinner and
the outer contour is divided into lines (like the spokes on the wheel of a bicycle) and M
points are taken along each of the N lines. We then have a grid of M x N points, in which
the target contour (shape) is expected to lie. The full lattice of pointsis shown in Figure
6.9(a). Should we need higher resolution, then we can choose large values of M and N, but
thisin turn implies more computational effort. One can envisage strategies which allow for
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30of N radialllinyv

-
am
*

Inner contour

-
-
-
R T
"EemaL, -
TEams

Figure 6.8 Discrete dual contour point space
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linearisation of the coverage of the space in between the two contours, but these can make
implementation much more complex.

The approach again uses regularisation, where the snake energy is a discrete form to
Equation 6.40 so the energy at a snake point (unlike earlier formulations, e.g. Equation
6.11) is

E(vi) = AEin(vi) + (1 = A)Eeq(Vi) (6.43)
where the internal energy is formulated as

E' (V_)=|:||Vi+l_2Vi+Vi—l|D2
e O [Vik-Vvial| O

(6.44)

The numerator expresses the curvature, seen earlier in the Greedy formulation. It is scaled
by afactor that ensures the contour is scale invariant with no prejudice asto the size of the
contour. If there is no prejudice, the contour will be attracted to smooth contours, given
appropriate choice of the regularisation parameter. As such, the formulation is simply a
more sophisticated version of the Greedy algorithm, dispensing with several factors of
limited value (such as the need to choose values for three weighting parameters: one only
now need be chosen; the elasticity constraint has also been removed, and that is perhaps
more debatable). The interest hereis that the search for the optimal contour is constrained
to be between two contours, asin Figure 6.8. By way of a snake’s formulation, we seek the
contour with minimum energy. When this is applied to a contour which is bounded, then
we seek a minimum cost path. Thisis anatural target for the well-known Viterbi (dynamic
programming) algorithm (for its application in vision, see, for example, Geiger (1995)).
Thisisdesigned precisely to do this: to find a minimum cost path within specified bounds.
In order to formulate it by dynamic programming we seek a cost function to be minimised.
When we formulate a cost function C between one snake element and the next as

Ci(Vi+1, Vi) = min[Ciy(Vi, Vi) + ABin(Vi) + (1 = A)Ee(Vi)] (6.45)

In this way, we should be able to choose a path through a set of snakes that minimises the
total energy, formed by the compromise between internal and external energy at that point,
together with the path that led to the point. As such, we will need to store the energies at
points within the matrix, which corresponds directly to the earlier tessellation. We also
require a position matrix to store for each stage (i) the position (v;_;) that minimises the
cost function at that stage (C;(Vvi+1, Vi)). This also needs initialisation to set the first point,
Ci(v1, Vo) = 0. Given a closed contour (one which is completely joined together) then for
an arbitrary start point, we separate the optimisation routine to determine the best starting
and end points for the contour. The full search spaceisillustrated in Figure 6.9(a). Ideally,
this should be searched for a closed contour, the target contour of Figure 6.8. It is
computationally less demanding to consider an open contour, where the ends do not join.
We can approximate a closed contour by considering it to be an open contour in two stages.
Inthefirst stage, Figure 6.9(b), the mid-points of the two lines at the start and end are taken
as the starting conditions. In the second stage, Figure 6.9(c), the points determined by
dynamic programming half way round the contour (i.e. for two lines at N/2) are taken as
the start and the end points for a new open-contour dynamic programming search, which
then optimises the contour from these points. The premiseisthat the points half way round
the contour will be at, or close to, their optimal position after the first stage and it is the
points at, or near, the starting points in the first stage that require refinement. This reduces
the computational requirement by a factor of M2.
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Figure 6.9 Discrete dual contour point space

The technique was originally demonstrated to extract the face boundary, for feature
extraction within automatic face recognition, asillustrated in Figure 6.10. The outer boundary
(Figure 6.10(a)) was extracted using a convex hull which in turninitialised an inner and an
outer contour (Figure 6.10(b)). The final extraction by the dual discrete contour is the
boundary of facial skin, Figure 6.10(c). The number of pointsin the mesh naturally limits
the accuracy with which the final contour is extracted, but application could naturaly be
followed by use of a continuous Kass snake to improve final resolution. In fact, it was
shown that human faces could be discriminated by the contour extracted by thistechnique,
though the study highlighted potential difficulty with facial organs and illumination. As
already mentioned, it was later deployed in cell analysis where the inner and the outer
contours were derived by analysis of the stained-cell image.

Snakes, or evolutionary approachesto shape extraction, remain an attractive and stimulating
area of research, so as ever it is well worth studying the literature to find new, accurate,
techniques with high performance and low computational cost. We shall now move to
determining symmetry which, though more a low-level operation, actually uses evidence
gathering in some implementations thus motivating its later inclusion.

6.4 Discrete symmetry operator

The discrete symmetry operator (Reisfeld, 1995) uses a totally different basis to find
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(a) Outer boundary initialisation (b) Outer and inner contours (c) Final face boundary

Figure 6.10 Extracting the face outline by a discrete dual contour

shapes. Rather than rely on finding the border of a shape, or its shape, it locates features
according to their symmetrical properties. The operator essentially forms an accumulator
of points that are measures of symmetry between image points. Pairs of image points are
attributed symmetry values that are derived from a distance weighting function, a phase
weighting function and the edge magnitude at each of the pair of points. The distance
weighting function controls the scope of the function, to control whether points which are
more distant contribute in a similar manner to those which are close together. The phase
weighting function shows when edge vectors at the pair of points point to each other. The
symmetry accumulation is at the centre of each pair of points. In thisway the accumulator
measures the degree of symmetry between image points, controlled by the edge strength.
The distance weighting function D is

|Pi —Pjl
- _ 1

D(,j,0) me (6.46)
wherei and j are the indices to two image points P; and P; and the deviation o controls the
scope of the function, by scaling the contribution of the distance between the points in
the exponential function. A small value for the deviation o implies local operation and
detection of local symmetry. Larger values of ¢ imply that points that are further apart
contribute to the accumulation process, as well as ones that are close together. In, say,
application to the image of aface, large and small values of o will aim for the whole face
or the eyes, respectively.

The effect of the value of o on the distance weighting function is illustrated in Figure
6.11. Figure 6.11(a) shows the effect of asmall value for the deviation, c = 0.6, and shows
that the weighting is greatest for closely spaced points and drops rapidly for points with
larger spacing. Larger values of o imply that the distance weight drops less rapidly for
points that are more widely spaced, as in Figure 6.11(b) where o = 5, alowing points
which are spaced further apart to contribute to the measured symmetry. The phase weighting
function P is

Flexible shape extraction (snakes and other techniques) 237



0.5 0571

2609 209 \\
1 ]
I 1 T 1
0 5 10 0 5 10
J J
(a) Small o (b) Large o

Figure 6.11 Effect of o on distance weighting

P(i, j) = (1 —cos(6; + 6, — 2ay)) x (1 —cos(6; - 6;)) (6.47)

where 8 is the edge direction at the two points and where a;; measures the direction of a
line joining the two points:

L ay(P;) —y(P) O

%i =P —x(P)H

(6.48)
where x(P,) and y(P;) are the x and y co-ordinates of the point P;, respectively. Thisfunction
is minimum when the edge direction at two pointsisin the same direction (6; = 6;), and is
a maximum when the edge direction is avay from each other (8; = ; + 1), along the line
joining the two points, (6; = aj).

The effect of relative edge direction on phase weighting is illustrated in Figure 6.12
where Figure 6.12(a) concerns two edge points that point towards each other and describes
the effect on the phase weighting function by varying a;;. This shows how the phase weight
is maximum when the edge direction at the two pointsisalong the line joining them, in this
case when a;; = 0 and 6; = 0. Figure 6.12(b) concerns one point with edge direction along
the line joining two points, where the edge direction at the second point is varied. The
phase weighting function is maximum when the edge direction at each point is towards
each other, in this case when | 6; | = Tt

4

(1 - cos(m— 8))- 2 (1 —cos(®)) - (1 - cos(- )

-2 0 2
6

(a) §;=m and 6;=0, varying a; (b) 6;=a;=0, varying 6;

Figure 6.12 Effect of relative edge direction on phase weighting
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The symmetry relation between two points is then defined as

C(, j, o) = D(i, j, 0) x P(i, j) x E(i) x E() (6.49)
where E is the edge magnitude expressed in logarithmic form as
E(i) = log(1 + M(i)) (6.50)

where M is the edge magnitude derived by application of an edge detection operator. The
symmetry contribution of two pointsisaccumulated at the mid-point of the line joining the
two points. The total symmetry S at point Py, is the sum of the measured symmetry for
all pairs of points which have their mid-point at P, i.e. those points I"(P,,) given by

.| P+ P g
M(Pm) = %I,J) =P, Oz jg (6.51)
0 2 0
and the accumulated symmetry is then
Sn(0)=, 2 C(i.],0) (6.52)

The result of applying the symmetry operator to two images is shown in Figure 6.13, for
small and large values of o. Figures 6.13(a) and (d) show the image of a square and the
edge image of a heart, respectively, to which the symmetry operator was applied; Figures
6.13(b) and (e) are for the symmetry operator with alow value for the deviation parameter,

(a) Original shape (b) Small o (c) Large o

(d) Shape edge magnitude (e) Small o (f) Large ©

Figure 6.13 Applying the symmetry operator for feature extraction

Flexible shape extraction (snakes and other techniques) 239



showing detection of areas with high localised symmetry; Figures 6.13(c) and (e) are for
alarge value of the deviation parameter which detects overall symmetry and places a peak
near the centre of the target shape. In Figures 6.13(c) and (e) the symmetry operator acts
as a corner detector where the edge direction is discontinuous. In Figure 6.13(e), the
discrete symmetry operator provides a peak close to the position of the accumulator space
peak in the GHT. Note that if the reference point specified in the GHT is the centre of
symmetry, the results of the discrete symmetry operator and the GHT would be the same
for large values of deviation.

Thisisadiscrete operator, recently acontinuous version has been devel oped (Zabrodsky,
1995), and a later clarification (Kanatani, 1997) was aimed to address potential practical
difficulty associated with hierarchy of symmetry (namely that symmetrical shapes have
subsets of regions, also with symmetry). There have also been a number of sophisticated
approaches to detection of skewed symmetry (Gross, 1994) and (Cham, 1995), with later
extension to detection in orthographic projection (Vangool, 1995). Another generalisation
addresses the problem of scale (Reisfeld, 1996) and extracts points of symmetry, together
with scale. Recently (Parsons, 1999) a focusing ability has been added to the discrete
symmetry operator by reformulating the distance weighting function. None as yet has
alleviated the computational burden associated with the discrete symmetry operator. (Neither
Matlab nor Mathcad is particularly advantageous here, the associated worksheets read in
bitmaps of the results rather than calculate them!)

6.5 Flexible shape models

So far, our approaches to analysing shape have concerned a match to image data. This has
concerned usually a match between amodel (either atemplate that can deform, or a shape
that can evolve) and a single image. An active contour is flexible, but its evolution is
essentially controlled by local properties, such asthelocal curvature or edge strength. The
chosen value for, or the likely range of, the parameters to weight these functionals may
have been learnt by extensive testing on a database of images of similar type to the one
used in application, or selected by experience. A completely different approach is to
consider that if the database contains all possible variations of a shape, like its appearance
or pose, then the database can form a model of the likely variation of that shape. As such,
if we can incorporate this as aglobal constraint, whilst also guiding the match to the most
likely version of a shape, then we have a deformable approach which is guided by the
statistics of the likely variation in a shape. These approaches are termed flexible templates
and use global shape constraints formulated from exemplars in training data.

Thismajor new approach is called active shape modelling. The essence of this approach
concernsapoint model of ashape: the variation in these pointsis called the point distribution
model. The chosen landmark points are |abelled on the training images. The set of training
images aimsto capture all possible variations of the shape. Each point describes a particul ar
point on the boundary, so order isimportant in the labelling process. Example choices for
these points include where the curvature is high (e.g. the corner of an eye) or at the apex
of an arch where the contrast is high (e.g. the top of an eyebrow). The statistics of the
variations in position of these points describe the ways in which a shape can appear.

Naturaly, thereis alot of data. If we choose lots of points and we have lots of training
images, then we shall end up with an enormous number of points. That is where principal
components analysis comes in as it can compress data into the most significant items.
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Principal components analysis is an established mathematical tool unfortunately beyond
the scope of thistext, but help is availablein Numerical Recipes (Press, 1992). Essentially,
it rotates a co-ordinate system so as to achieve maximal discriminatory capability: we
might not be able to see something if we view it from two distinct points, but if we view
it from some point in between then it is quite clear. That is what is done here: the co-
ordinate system is rotated so as to work out the most significant variations in the morass
of data. Given a set of N training examples where each example is a set of n points, for the
ith training example x; we have

Xi = (Xaiy Xair - - - X)) 1TOLN (6.53)

where x,; is the kth variable in the ith training example. When this is applied to shapes,
each element is the two co-ordinates of each point. The average is then computed over the
whole set of training examples as

Mz

1
L3y (6.54)

The deviation of each example from the mean dx; is then

X =

1

6Xi =X — X (655)

This difference reflects how far each example is from the mean at a point. The 2n x 2n
covariance matrix S shows how far all the differences are from the mean as

1 N
S= W igl 6Xi 6X|T (656)

Principal components analysis of this covariance matrix shows how much these examples,
and hence ashape, can change. Infact, any of the exemplars of the shape can be approximated
as

Xi =X + Pw (6.57)

where P = (py, o, - . . Py) isamatrix of the first t eigenvectors, and w = (Wy, Wy, . . . Wy)"
is a corresponding vector of weights where each weight value controls the contribution of
a particular eigenvector. Different values in w give different occurrences of the model, or
shape. Given that these changes are within specified limits, then the new model or shape
will be similar to the basic (mean) shape. This is because the modes of variation are
described by the (unit) eigenvectors of S, as

Spk = AP (6.58)
where A, denotes the eigenvalues and the eigenvectors obey orthogonality such that
ppg =1 (6.59)

and wherethe eigenvalues are rank ordered such that A, > A,;. Here, the largest eigenvalues
correspond to the most significant modes of variation in the data. The proportion of the
variance in the training data, corresponding to each eigenvector, is proportional to the
corresponding eigenvalue. As such, alimited number of eigenval ues (and eigenvectors) can
be used to encompass the majority of the data. The remaining eigenval ues (and eigenvectors)
correspond to modes of variation that are hardly present in the data (like the proportion of
very high frequency contribution of an image; we can reconstruct an image mainly from
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the low frequency components, as used in image coding). Note that in order to examine the
statistics of the labelled landmark points over the training set applied to a new shape, the
points need to be aligned and established procedures are available (Cootes, 1995).

The process of application (to find instances of the modelled shape) involves aniterative
approach to bring about an increasing match between the points in the model and the
image. This is achieved by examining regions around model points to determine the best
nearby match. This provides estimates of the appropriate translation, scale rotation and
eigenvectors to best fit the model to the data, and is repeated until the model converges to
the data, when there is little change to the parameters. Since the models only change to
better fit the data, and are controlled by the expected appearance of the shape, they were
called active shape models. The application of an active shape model to find the brain stem
in amagnetic Resonance image is shown in Figure 6.14 where the initial position is shown
at the top left and the final extraction, after 14 iterations, is at the bottom right, with the
results at four and eight iterations in between.

Figure 6.14 Finding the brain stem using an active shape model (© BMVA Press 1997)

Active shape models have been applied in face recognition (Lanitis, 1997), medical
image analysis (Cootes, 1994) (including 3D analysis (Hill, 1994), and in industrial inspection
(Cootes, 1995). Recently, a similar theory has been used to develop a new approach that
incorporatestexture, called active appearance models (AAMs) (Cootes, 1998). Thisapproach
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again represents a shape as a set of landmark points and uses a set of training data to
establish the potential range of variation in the shape. One mgjor differenceisthat AAMs
explicitly include texture and updates model parametersto move landmark points closer to
image points by matching texture in an iterative search process. The essential differences
between ASMs and AAMs include:

1. thatASMsusetextureinformation local to apoint, whereasAAMsusetextureinformation
in awhole region;

2. that ASMs seek to minimise the distance between model points and the corresponding
image points, whereas AAMss seek to minimise distance between a synthesised model
and a target image;

3. that AAMs search around the current position — typically aong profiles normal to the
boundary, whereas AAMs consider the image only at the current position.

A recent comparison (Cootes, 1999) has shown that although ASMs can be faster in
implementation than AAMs, theAAMs can require fewer landmark points and can converge
to a better result, especialy in terms of texture (wherein the AAM was formulated). We
await with interest further developments in these approaches to flexible shape modelling.

6.6 Further reading

The magjority of further reading in finding shapes concerns papers, many of which have
already been referenced. An excellent survey of the techniques used for feature extraction
(including template matching, deformable templates etc.) can be found in Trier (1996)
whilst a broader view was taken later (Jain, 1998). A comprehensive survey of flexible
extractions from medical imagery (Mclnerney, 1996) reinforces the dominance of snakes
in medical image analysis, to which they are particularly suited given a target of smooth
shapes. (An excellent survey of history and progress of medical image analysis has appeared
recently (Duncan, 2000).) Few of the textbooks devote much space to shape extraction and
snakes are too recent a development to be included in many textbooks. One text alone is
dedicated to shape analysis (Otterloo, 1991) and contains many discussions on symmetry.
For implementation, Parker (1994) only includes C code for template matching and for the
HT for lines, but no more. A visit to Dr Cootes’ website suggests that a text might be on
the way on flexible shape modelling, so we can await that with interest.
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I /
Object description

7.1 Overview

Objectsarerepresented as acollection of pixelsinanimage. Thus, for purposes of recognition
we need to describe the properties of groups of pixels. The description is often just a set of
numbers — the object’s descriptors. From these, we can compare and recognise objects by
simply matching the descriptors of objects in an image against the descriptors of known
objects. However, in order to be useful for recognition, descriptors should have four important
properties. First, they should define acomplete set. That is, two objects must have the same
descriptorsif and only if they have the same shape. Secondly, they should be congruent. As
such, we should be able to recognise similar objects when they have similar descriptors.
Thirdly, it isconvenient that they have invariant properties. For example, rotation invariant
descriptorswill be useful for recognising objectswhatever their orientation. Other important
invariance properties naturally include scale and position and also invariance to affine and
perspective changes. These |ast two properties are very important when recognising objects
observed from different viewpoints. In addition to these three properties, the descriptors
should be a compact set. Namely, a descriptor should represent the essence of an object in
an efficient way. That is, it should only contain information about what makes an object
unique, or different from the other objects. The quantity of information used to describe
this characterisation should be less than the information necessary to have a complete
description of the object itself. Unfortunately, there is no set of complete and compact
descriptorsto characterise general objects. Thus, the best recognition performanceis obtained
by carefully selected properties. As such, the process of recognition is strongly related to
each particular application with a particular type of object.

In this chapter, we present the characterisation of objects by two forms of descriptors.
These descriptors are summarised in Table 7.1. Region and shape descriptors characterise

Table 7.1 Overview of Chapter 7

Chain codes

Shape boundary Cumulative angular function

Fourier descriptors
Elliptic descriptors

Object description Area
Perimeter
Compactness
Region Dispersion

Basic

First order
Centralised
Zernike

Moments
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an arrangement of pixels within the area and the arrangement of pixelsin the perimeter or
boundary, respectively. This region versus perimeter kind of representation is common in
image analysis. For example, edges can be located by region growing (to label area) or by
differentiation (to label perimeter), as covered in Chapter 4. There are actually many
techniques that can be used to obtain descriptors of an object’s boundary. Here, we shall
just concentrate on three forms of descriptors: chain codes and two forms based on Fourier
characterisation. For region descriptors we shall distinguish between basic descriptors and
statistical descriptors defined by moments.

7.2 Boundary descriptions

7.2.1 Boundary and region

A region usually describes contents (or interior points) which are surrounded by aboundary
(or perimeter) which is often caled the region’s contour. The form of the contour is
generally referred to as its shape. A point can be defined to be on the boundary (contour)
if it is part of the region and there is at least one pixel in its neighbourhood that is not part
of the region. The boundary itself is usually found by contour following: we first find one
point on the contour and then progress round the contour either in a clockwise direction,
or anti-clockwise, finding the nearest (or next) contour point.

In order to define the interior pointsin aregion and the pointsin the boundary, we need
to consider neighbouring relationships between pixels. These relationships are described
by means of connectivity rules. There are two common ways of defining connectivity: 4-
way (or 4-neighbourhood) where only immediate neighbours are analysed for connectivity;
or 8-way (or 8-neighbourhood) where all the eight pixels surrounding a chosen pixel are
analysed for connectivity. These two types of connectivity are illustrated in Figure 7.1. In
this figure, the pixel is shown in light grey and its neighbours in dark grey. In 4-way
connectivity, Figure 7.1(a), a pixel has four neighbours in the directions north, east, south
and west, its immediate neighbours. The four extra neighbours in 8-way connectivity,
Figure 7.1(b), are those in the directions north east, south east, south west and north west,
the points at the corners.

(a) 4-way connectivity (b) 8-way connectivity

Figure 7.1 Main types of connectivity analysis
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A boundary and a region can be defined using both types of connectivity and they are
aways complementary. That is, if the boundary pixels are connected in 4-way, then the
region pixels will be connected in 8-way and vice versa. This relationship can be seen in
the example shown in Figure 7.2. In the example in this figure, the boundary is shown in
dark grey and the region in light grey. We can observe that for a diagonal boundary, the 4-
way connectivity gives a staircase boundary whereas 8-way connectivity gives a diagonal
line formed from the points at the corners of the neighbourhood. Notice that all the pixels
that form the region in Figure 7.2(b) have 8-way connectivity, whilst the pixelsin Figure
7.2(c) have 4-way connectivity. This is complementary to the pixels in the border.

(a) Original region (b) Boundary and region for (c) Boundary and region for
4-way connectivity 8-way connectivity

Figure 7.2 Boundaries and regions

7.2.2 Chain codes

In order to obtain a representation of a contour, we can simply store the co-ordinates of a
sequence of pixels in the image. Alternatively, we can just store the relative position
between consecutive pixels. This is the basic idea behind chain codes. Chain codes are
actually one of the oldest techniquesin computer vision originally introduced in the 1960s
(Freeman, 1961) (an excellent review came later (Freeman, 1974). Essentially, the set of
pixelsin the border of a shape is translated into a set of connections between them. Given
a complete border, one that is a set of connected points, then starting from one pixel we
need to be able to determine the direction in which the next pixel isto be found. Namely,
the next pixel is one of the adjacent points in one of the major compass directions. Thus,
the chain code is formed by concatenating the number that designates the direction of the
next pixel. That is, given a pixel, the successive direction from one pixel to the next pixel
becomes an element in the final code. Thisis repeated for each point until the start point
is reached when the (closed) shape is completely analysed.

Directionsin 4-way and 8-way connectivity can be assigned as shownin Figure 7.3. The
chain codes for the example region in Figure 7.2(a) are shown in Figure 7.4. Figure 7.4(a)
shows the chain code for the 4-way connectivity. In this case, we have that the direction
from the start point to the next is south (i.e. code 2), so the first element of the chain code
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(a) 4-way connectivity (b) 8-way connectivity

Figure 7.3 Connectivity in chain codes

describing the shape is 2. The direction from point P1 to the next, P2, is east (code 1) so
the next element of the code is 1. The next point after P2 is P3 that is south giving a code
2. This coding isrepeated until P23 that is connected eastwards to the starting point, so the
last element (the twenty-fourth element) of the codeis 1. The code for 8-way connectivity
shown in Figure 7.4(b) is obtained in an analogous way, but the directions are assigned
according to the definition in Figure 7.3(b). Notice that the length of the code is shorter for
this connectivity, given that the number of boundary pointsissmaller for 8-way connectivity
than it is for 4-way.

code = {2,1,2,2,1,2,2,3,2,2,3,0,3,0,3,0,3,0,0,1,0,1,0,1} code = {3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2}

(a) Chain code given 4-way connectivity (b) Chain code given 8-way connectivity

Figure 7.4 Chain codes by different connectivity
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Clearly this code will be different when the start point changes. Accordingly, we need
start point invariance. This can be achieved by considering the elements of the code to
constitute the digits in an integer. Then, we can shift the digits cyclically (replacing the
least significant digit with the most significant one, and shifting all other digits left one
place). The smallest integer is returned as the start point invariant chain code description.
Thisisillustrated in Figure 7.5 where the original chain code is that from the shape in
Figure 7.4. Here, the result of the first shift is given in Figure 7.5(b) — thisis equivalent to
the code that would have been derived by using point P1 as the starting point. The result
of two shifts, in Figure 7.5(c) is the chain code equivalent to starting at point P2, but this
is not a code corresponding to the minimum integer. The minimum integer code, as in
Figure 7.5(d), isthe minimum of all the possible shiftsand is actually the chain code which
would have been derived by starting at point P8. That fact could not be used in application
since we would need to find P8, naturally, it is much easier to shift to achieve a minimum
integer.

In addition to starting point invariance, we can also obtain a code that does not change
with rotation. This can be achieved by expressing the code as a difference of chain code:
relative descriptions remove rotation dependence. Change of scale can complicate matters
greatly, since we can end up with a set of points which is of different size to the original
set. As such, the boundary needs to be resampled before coding. This is a tricky issue.
Furthermore, noise can have drastic effects. |f salt and pepper noise were to remove or add
some points then the code would change. Clearly, such problems can lead to great difficulty
with chain codes. However, their main virtue is their simplicity and as such they remain a
popular technique for shape description. Further developments of chain codes have found
application with corner detectors (Seeger, 1994; Liu, 1990). However, the need to be able
to handle noise, the requirement of connectedness, and the local nature of description
naturally motivates aternative approaches. Noise can be reduced by filtering, which naturally
leads back to the Fourier transform, with the added advantage of a global description.

code ={3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2} code ={4,3,4,4,5,4,6,7,7,7,0,0,1,1,2,3}
(a) Initial chain code (b) Result of one shift

code = {3,4,4,5,4,6,7,7,7,0,0,1,1,2,3,4} code ={0,0,1,1,2,3,4,3,4,4,5,4,6,7,7,7}
(c) Result of two shifts (d) Minimum integer chain code

Figure 7.5 Start point invariance in chain codes

7.2.3 Fourier descriptors

Fourier descriptors, often attributed to early work by Cosgriff (1960), allow usto bring the
power of Fourier theory to shape description. The main ideaisto characterise a contour by
aset of numbersthat represent the frequency content of awhole shape. Based on frequency
analysis we can select a small set of numbers (the Fourier coefficients) that describe a
shape rather than any noise (i.e. the noise affecting the spatial position of the boundary
pixels). The general recipe to obtain a Fourier description of the curve involves two main
steps. First, we have to define a representation of a curve. Secondly, we expand it using
Fourier theory. We can obtain aternative flavours by combining different curve representations
and different Fourier expansions. Here, we shall consider Fourier descriptors of angular
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and complex contour representations. However, Fourier expansions can be developed for
other curve representations (Van Otterloo, 1991).

In addition to the curve' sdefinition, afactor that influences the devel opment and properties
of the description isthe choice of Fourier expansion. If we consider that the trace of acurve
defines aperiodic function, then we can opt to use a Fourier series expansion. However, we
could aso consider that the description isnot periodic. Thus, we could devel op arepresentation
based on the Fourier transform. In this case, we could use alternative Fourier integral
definitions. Here, we will develop the presentation based on expansion in Fourier series.
This is the common way used to describe shapes in pattern recognition.

Itisimportant to notice that although a curve in an image is composed of discrete pixels,
Fourier descriptors are developed for continuous curves. This is convenient since it leads
to adiscrete set of Fourier descriptors. Additionally, we should remember that the pixelsin
the image are actually the sampled points of a continuous curve in the scene. However, the
formulation leads to the definition of the integral of a continuous curve. In practice, we do
not have a continuous curve, but a sampled version. Thus, the expansion is actually
approximated by means of numerical integration.

7.2.3.1 Basis of Fourier descriptors
In the most basic form, the co-ordinates of boundary pixels are x and y point co-ordinates.
A Fourier description of these essentially gives the set of spatial frequencies that fit the
boundary points. The first element of the Fourier components (the d.c. component) is
simply the average value of the x and y co-ordinates, giving the co-ordinates of the centre
point of the boundary, expressed in complex form. The second component essentially gives
the radius of the circle that best fits the points. Accordingly, a circle can be described by
its zero- and first-order components (the d.c. component and first harmonic). The higher
order componentsincreasingly describe detail, asthey are associated with higher frequencies.
This isillustrated in Figure 7.6. Here, the Fourier description of the ellipse in Figure
7.6(a) is the frequency components in Figure 7.6(b), depicted in logarithmic form for
purposes of display. The Fourier description has been obtained by using the ellipse boundary
points’ co-ordinates. Here we can see that the low order components dominate the description,

log (IFeval) T

(a) Original ellipse (b) Fourier components

Figure 7.6 An ellipse and its Fourier description
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as to be expected for such a smooth shape. In this way, we can derive a set numbers that
can be used to recognise the boundary of a shape: asimilar ellipse should give asimilar set
of numbers whereas a completely different shape will result in a completely different set
of numbers.

We do, however, need to check the result. One way is to take the descriptors of acircle,
since the first harmonic should be the circle’sradius. A better way though is to reconstruct
the shape from its descriptors, if the reconstruction matches the original shape then the
description would appear correct. Naturally, we can reconstruct a shape from this Fourier
description since the descriptors are regenerative. The zero-order component gives the
position (or origin) of a shape. The ellipse can be reconstructed by adding in al spatial
components, to extend and compact the shape along the x and y axes, respectively. By this
inversion, we return to the original ellipse. When we include the zero and first descriptor,
then we reconstruct a circle, as expected, shown in Figure 7.7(b). When we include all
Fourier descriptors the reconstruction, Figure 7.7(c), is very close to the original, Figure
7.7(a), with dlight difference due to discretisation effects.

——————

<

J/_ -\\l

1\\_~—F//r

st Lyt T

(a) Original ellipse (b) Reconstruction by zero- (c) Reconstruction by all
and first-order components Fourier components

Figure 7.7 Reconstructing an ellipse from a Fourier description

But this is only an outline of the basis to Fourier descriptors, since we have yet to
consider descriptors which give the same description whatever an object’s position, scale
and rotation. Here we have just considered an object’s description that is achieved in a
manner that allows for reconstruction. In order to develop practically useful descriptors,
we shall need to consider more basic properties. As such, we first turn to the use of Fourier
theory for shape description.

7.2.3.2 Fourier expansion
In order to define a Fourier expansion, we can start by considering that a continuous curve
c(t) can be expressed as a summation of the form

c(t) = % c fic (1) (7.1)

where ¢, define the coefficients of the expansion and the collection of functions and f,(t)
define the basis functions. The expansion problem centres on finding the coefficients given
aset of basisfunctions. This equation is very general and different basis functions can also
be used. For example, f(t) can be chosen such that the expansion defines a polynomial.
Other bases define splines, Lagrange and Newton interpolant functions. A Fourier expansion
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represents periodic functions by a basis defined as a set of infinite complex exponentials.
That is,

c(t) = kim c el (7.2)

Here, w defines the fundamental frequency and it is equal to T/2rtwhere T is the period of
the function. The main feature of the Fourier expansion is that it defines an orthogonal
basis. This simply means that

IT fi (1) f; (1)dt =0 (7.3)
0

for k#j. Thisproperty isimportant for two main reasons. First, it ensuresthat the expansion
does not contain redundant information (each coefficient is unique and contains no information
about the other components). Secondly, it simplifies the computation of the coefficients.
That is, in order to solve for ¢, in Equation 7.1, we can simply multiply both sides by f,(t)
and perform integration. Thus, the coefficients are given by

T T
C = IO c(t) f (t) dt / IO f2(t) dt (7.4)

By considering the definition in Equation 7.2 we have that

1 |
C = TJ; c(t)e ikt dt (7.5)

In addition to the exponential form given in Equation 7.2, the Fourier expansion can aso
be expressed in trigonometric form. Thisform showsthat the Fourier expansion corresponds
to the summation of trigonometric functions that increase in frequency. It can be obtained
by considering that

c(t) =co+ 2, (el + c_ e lkat) (7.6)

In this equation the values of &k and e3“** define pairs of complex conjugate vectors.
Thus ¢, and c_, describe a complex number and its conjugate. L et us define these numbers
as

Ck=Ck1—JC2 and C4 =0 +]jCy2 (7.7)

By substitution of this definition in Equation 7.6 we obtain

Dejkwt + e—JkuI Jkut +e jkob ED

c(t)=co+2 él Epklgigﬂckzgi% (7.8)

That is,

c(t) = Gy + 2 él (Cr 1 cos(ket) + ¢, » Sin(kat)) (7.9)
If we define

a=2c; and by =2¢; (7.10)
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then we obtain the standard trigonometric form given by

c(t) = a_20 + él (a cos (kwt) + b, sin (ko)) (7.12)

The coefficients of this expansion, a, and by, are known as the Fourier descriptors. These
control the amount of each frequency that contributes to make up the curve. Accordingly,
these descriptors can be said to describe the curve since they do not have the same values
for different curves. Notice that according to Equations 7.7 and 7.10 the coefficients of the
trigonometric and exponential form are related to by
A ‘Zjbk and ¢ = 2 +2ka (7.12)
The coefficients in Equation 7.11 can be obtained by considering the orthogonal property
in Equation 7.3. Thus, one way to compute values for the descriptorsis

Cx =

ak=%IOT c(t) cog(kwt)dt and by = %IOT c(t) sin(kat) dt (7.13)

In order to obtain the Fourier descriptors, a curve can be represented by the complex
exponential form of Equation 7.2 or by the sin/cos relationship of Equation 7.11. The
descriptors obtained by using either of the two definitions are equivalent, and they can be
related by the definitions of Equation 7.12. Generally, Equation 7.13 is used to compute the
coefficients since it has a more intuitive form. However, some works have considered the
complex form (e.g. Granlund (1972)). The complex form provides an elegant devel opment
of rotation analysis.

7.2.3.3 Shift invariance

Chain codes required special attention to give start point invariance. Let us see if that is
required here. The main question is whether the descriptors will change when the curveis
shifted. In addition to Equations 7.2 and 7.11, a Fourier expansion can be written in
another sinusoidal form. If we consider that

lc|=az+b2 and ¢,=tan(b,/ay) (7.14)

then the Fourier expansion can be written as

c(t)y =2 + go | ¢ cos(kat + ¢, (7.15)

Here | ¢ | is the amplitude and ¢, is the phase of the Fourier coefficient. An important
property of the Fourier expansion is that | ¢, | does not change when the function c(t) is
shifted (i.e. translated), as in Section 2.6.1. This can be observed by considering the
definition of Equation 7.13 for a shifted curve c(t + a). Here, a represents the shift value.
Thus,

T T
a{(:%J; c(t' + a) cos(kwt' )dt and bk=%Io c(t + a) sin(keot ) dt

(7.16)
By defining a change of variable by t = t' + a, we have

T T
a{(:%J' c(t) cos(kat — kwa)dt and b,'(:%.[ c(t) sin(kat — k wa) dt
0 0
(7.17)
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After some algebraic manipulation we obtain

ay = a, cos(kwa) + b, sin(kwa) and by = by, cos(kwa) — g, sin(kwa)
(7.18)

The amplitude | ¢ | is given by

| ci | = +/(a cos(kwa) + by sin(kwa))2 + (by cos(kwa) — ay sin(kwa))?

(7.19)
That is,

lci| = yaZ +b? (7.20)

Thus, the amplitude is independent of the shift a. Although shift invariance could be
incorrectly related to tranglation invariance, actually, as we shall see, this property is
related to rotation invariance in shape description.

7.2.3.4 Discrete computation

Before defining Fourier descriptors, we must consider the numerical procedure necessary
to obtain the Fourier coefficients of a curve. The problem is that Equations 7.11 and 7.13
are defined for a continuous curve. However, given the discrete nature of the image, the
curve c(t) will be described by a collection of points. This discretisation has two important
effects. First, it limits the number of frequencies in the expansion. Secondly, it forces
numerical approximation to the integral defining the coefficients.

Figure 7.8 shows an example of a discrete approximation of a curve. Figure 7.8(a)
shows a continuous curve in aperiod, or interval, T. Figure 7.8(b) shows the approximation
of the curve by a set of discrete points. If we try to obtain the curve from the sampled
points, we will find that the sampling process reduces the amount of detail. According to
the Nyquist theorem, the maximum frequency f; in a function is related to the sample
period T by

T= 7.21
21, (7.21)
A
c(t) c(t)
Fourier approximation
/
/
Sampling points
> L .
0 T 0 JA— T
T
(a) Continuous curve (a) Discrete approximation

Figure 7.8 Example of a discrete approximation
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Thus, if we have msampling points, then the sampling period isequal to t = T/m. Accordingly,
the maximum frequency in the approximation is given by
_m
fo= >T (7.22)
Each term in Equation 7.11 defines a trigonometric function at frequency f, = k/T. By
comparing thisfrequency with therelationship in Equation 7.15, we have that the maximum
frequency is obtained when

—_m
k=13 (7.23)

Thus, in order to define a smooth curve that passes through the m regularly-sampled points,
we need to consider only m/2 coefficients. The other coefficients define frequencies higher
than the maximum frequency. Accordingly, the Fourier expansion can be redefined as

m/2

c(t) = % + 3 (a cos(kat) + by sin(ka) (7.24)

In practice, Fourier descriptors are computed for fewer coefficients than the limit of m/2.
This is because the low frequency components provide most of the features of a shape.
High frequencies are easily affected by noise and only represent detail that is of little value
to recognition. We can interpret Equation 7.22 the other way around: if we know the
maximum freguency in the curve, then we can determine the appropriate number of samples.
However, the fact that we consider c(t) to define a continuous curve implies that in order
to obtain the coefficientsin Equation 7.13, we need to evaluate an integral of a continuous
curve. The approximation of the integral is improved by increasing the sampling points.
Thus, as apractical rule, in order to improve accuracy, we must try to have alarge number
of samples even if it is theoretically limited by the Nyquist theorem.

Our curve is only a set of discrete points. We want to maintain a continuous curve
analysis in order to obtain a set of discrete coefficients. Thus, the only alternative is to
approximate the coefficients by approximating the value of the integralsin Equation 7.13.
We can approximate the value of the integral in several ways. The most straightforward
approach isto use a Riemann sum. Figure 7.9 illustrates this approach. In Figure 7.9(b), the
integral is approximated as the summation of the rectangular areas. The middle point of
each rectangle corresponds to each sampling point. Sampling points are defined at the
points whose parameter ist = it wherei is an integer between 1 and m. We consider that
¢; defines the value of the function at the sampling point i. That is,

* c(t) cos(kwf) B 2 (T/m)c; cos(kw,T) ! 2 (TIm)c; cos(kwit)

0 —_— 0 —_—

(a) Continuous curve (b) Rieman sum (c) Linear interpolation

Figure 7.9 Integral approximation
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¢ =c(iT1) (7.25)
Thus, the height of the rectangle for each pair of coefficientsis given by ¢; cos(kwit) and

C; sin (kwit). Each interval has alength T = T/m. Thus,

T m
J’ c(t) cos(kwt)dt = _Zl% ¢, cos(kai 1)
0 1=

T m
and I c(t)sin(kwt)dtzizl%cisin(koj D (7.26)
. 2

Accordingly, the Fourier coefficients are given by
2 3 : 2 3 -
ay = El ci cos(kwit) and by = - El ¢ sin(kwi 1) (7.27)

Here, the error due to the discrete computation will be reduced with increase in the
number of points used to approximate the curve. These equations actually correspond to a
linear approximation to the integral. This approximation is shown in Figure 7.9(c). In this
case, the integral is given by the summation of the trapezoidal areas. The sum of these
areas leads to Equation 7.26. Notice that by is zero and &, is twice the average of the ¢
values. Thus, the first term in Equation 7.24 is the average (or centre of gravity) of the
curve.

7.2.3.5 Cumulative angular function

Fourier descriptors can be obtained by using many boundary representations. In a
straightforward approach we could consider, for example, that t and c(t) define the angle
and modulus of a polar parameterisation of the boundary. However, this representation is
not very general. For some curves, the polar form does not define a single valued curve,
and thus we cannot apply Fourier expansions. A more general description of curves can be
obtained by using the angular function parameterisation. Thisfunction was already defined
in Chapter 4 in the discussion about curvature.

Theangular function ¢(s) measures the angular direction of the tangent line asafunction
of arc length. Figure 7.10 illustrates the angular direction at a point in a curve. In Cosgriff
(1960) this angular function was used to obtain a set of Fourier descriptors. However, this
first approach to Fourier characterisation has some undesirable properties. The main problem
isthat the angular function has discontinuities even for smooth curves. Thisis because the
angular direction is bounded from zero to 21t Thus, the function has discontinuities when
the angular direction increases to a value of more than 2rtor decreases to be less than zero
(since it will change abruptly to remain within bounds). In Zahn and Roskies approach
(Zahn, 1972), this problem is eliminated by considering anormalised form of the cumulative
angular function.

The cumulative angular function at a point in the curve is defined as the amount of
angular change from the starting point. It is called cumulative, since it represents the
summation of the angular change to each point. Angular change is given by the derivative
of the angular function ¢(s). We discussed in Chapter 4 that this derivative corresponds to
the curvature k(s). Thus, the cumulative angular function at the point given by s can be
defined as
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y(s) = L ) K(r)dr — k(0) (7.28)

Here, the parameter stakes values from zeroto L (i.e. thelength of the curve). Thus, the
initial and final values of the function are y(0) = 0 and y(L) = -2, respectively. It is
important to notice that in order to obtain the final value of —211, the curve must be traced
in a clockwise direction. Figure 7.10 illustrates the relation between the angular function
and the cumulative angular function. In thefigure, z(0) definestheinitial point in the curve.
The value of y(s) is given by the angle formed by the inclination of the tangent to z(0) and
that of the tangent to the point z(s). If we move the point z(s) along the curve, this angle
will change until it reaches the value of —21t In Equation 7.28, the cumulative angle is
obtained by adding the small angular increments for each point.

o(s) $(0)
1

Figure 7.10 Angular direction

The cumulative angular function avoids the discontinuities of the angular function.
However, it still has two problems. First, it has a discontinuity at the end. Secondly, its
value depends on the length of curve analysed. These problems can be solved by defining
the normalised function y* (t) where

L
y*(t) = Vgﬁ tg+t (7.29)

Heret takes values from 0 to 21t The factor L/2mtnormalises the angular function such that
it does not change when the curveis scaled. That is, when t = 211, the function evaluates the
final point of the function y(s). Theterm t isincluded to avoid discontinuities at the end of
the function (remember that the function is periodic). That is, it enforces y*(0) = y*(2m) =
0. Additionally, it causes the cumulative angle for a circle to be zero. Thisis consistent as
acircleis generally considered the simplest curve and, intuitively, simple curves will have
simple representations.

Figure 7.11 illustrates the definitions of the cumulative angular function with two examples.
Figures 7.11(b) to (d) define the angular functions for a circle in Figure 7.11(a). Figures
7.11(f) to (h) define the angular functions for the rose in Figure 7.11(e). Figures 7.11(b)
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Figure 7.11 Angular function and cumulative angular function
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and (f) define the angular function ¢(s). We can observe the typical toroidal form. Once the
curveisgreater than 2mthereis adiscontinuity whilst its value returnsto zero. The position
of the discontinuity actually depends on the selection of the starting point. The cumulative
function y(s) shown in Figures 7.11(c) and (g) inverts the function and eliminates
discontinuities. However, the start and end points are not the same. If we consider that this
function is periodic, then there is a discontinuity at the end of each period. The normalised
form y* (t) shownin Figures 7.11(d) and (h) has no discontinuity and the period is normalised
to 21

The normalised cumulative functions are very nice indeed. However, it is tricky to
compute them from images. Additionally, since they are based on measures of changesin
angle, they are very sensitive to noise and difficult to compute at inflexion points (e.g.
corners). Code 7.1 illustrates the computation of the angular functions for a curve given by
a sequence of pixels. The matrices X and Y store the co-ordinates of each pixel. The code
has two important steps. First, the computation of the angular function stored in the matrix
A. Generally, if we use only the neighbouring points to compute the angular function, then
the resulting function is useless due to noise and discretisation errors. Thus, it is necessary
to include a procedure that can obtain accurate measures. For purposes of illustration, in
the presented code we average the position of pixelsin order to filter out noise; however,
other techniques such as the fitting process discussed in Section 4.7.2 can provide a
suitable alternative. The second important step isthe computation of the cumulative function.
In this case, the increment in the angle cannot be computed as the simple difference
between the current and precedent angular values. This will produce a discontinuous
function. Thus, we need to consider the periodicity of the angles. In the code, this is
achieved by checking the increment in the angle. If it is greater than a threshold, then we
consider that the angle has exceeded the limits of zero or 21t

Figure 7.12 shows an example of the angular functions computed using Code 7.1, for a
discrete curve. These are similar to those in Figures 7.11(a) to (d), but show noise due to
discretisation which produces aragged effect on the computed values. The effects of noise
will be reduced if we use more points to compute the average in the angular function.
However, this reduces the level of detail in the curve. Additionally, it makes it more
difficult to detect when the angle exceeds the limits of zero or 21t In a Fourier expansion,
noise will affect the coefficients of the high frequency components, as seen in Figure
7.12(d).

In order to obtain a description of the curve we need to expand y*(t) in Fourier series.
In a straightforward approach we can obtain y*(t) from an image and apply the definition
in Equation 7.27 for c(t) = y* (t). However, we can obtain a computationally more attractive
development with some algebraic simplifications. By considering the form of the integral
in Equation 7.13 we have that

2m 2Tt
a;:%fo y*(t) cos(kt)dt and b[i:%[L y*(t) sin(kt)dt (7.30)

By substitution of Equation 7.29 we obtain

2T

=L yLzntdi+ L [ td
aO_TTJ; y((L/2Tt) t+ﬁj; tdt

ap= T_]:[ I:n y((L/2mt) cos(kt)dt + %[J':nt cos(kt)dt (7.31)
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%Angul ar function
functi on AngFuncDescrp(curve)

%-unction
X=curve(l,:);Y=curve(2,:);
Mesi ze( X, 2) ; %unber points

%Arc | ength
S=zeros(1,m;
S(1)=sqrt ((X(1)-X(m)"2+(Y(1)-Y(m)"2);
for i=2:m
S(i)=S(i=1)+sqgrt ((X(i)=X(i-=21))"2+(Y(i)=Y(i=-1))"2);
End
L=S(m;

9%Nor mal i sed Par aneter
t=(2*pi *S)/L;

% aph of the curve
subpl ot (3, 3,1);

plot (X Y);
mx=max ( max( X) , max(Y)) +10;
axis([0,m, 0,nx]); axis square; %Aspect ratio

%G aph of the angular function y' /X’

avrg=10;
A=zeros(1, m;
for i=1l:m
x1=0; x2=0; y1=0; y2=0;
for j=1:avrg
pa=i-j; pb=i+j;

i f(pa<l) pa=mtpa; end
i f(pb>m pb=pb-m end
x1=x1+X(pa); yl=yl+Y(pa);
x2=x2+X(pb); y2=y2+Y(pb);
end
x1=x1/avrg; yl=yl/avrg;
x2=x2/ avrg; y2=y2/avrg;
dx=x2-x1; dy=y2-y1,

i f (dx==0) dx=.00001; end
if dx>0 & dy>0
A(i)=atan(dy/dx);
el seif dx>0 & dy<O
A(i)=atan(dy/dx) +2*pi ;
el se
A(i)=atan(dy/dx) +pi ;
end
end

subpl ot (3, 3, 2);
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pl ot (S, A);
axis([0,S(m, -1, 2*pi +1]);

%Cunul ati ve angul ar G s) =-2pi
G=zeros(1,m;
for i=2:m
d=m n(abs(A(i)-A(i-1)), abs(abs(A(i)-A(i-1))-2*pi));

if d>.5
)= i-1);
elseif (A(I)-A(i-1))<-pi
i) = i-1)—(A(i)-A(i-1)+2%pi);
el seif (A(I)-A(i-1))>pi
)= i-1)-(A(i)-A(i-1)-2%pi);
el se
Ai)=i-1)-(A(i)-A(i-1));
end
end

subpl ot (3, 3, 3);

plot (S, G;
axis([0,S(m),-2%pi-1,1]);

%Cunul ati ve angul ar Nornalised
F=Gt+t ;

subpl ot (3, 3, 4);
plot(t,F);
axis([0,2*pi,-2*pi,2*pi]);

Code 7.1 Angular functions

1211 12ﬂ
m:ﬁL wummnwwnm+ﬁL t sin(kt) dt

By computing the second integrals of each coefficient, we obtain a simpler form as

1 21
%:2n+—f y((L/2mt)dt

T Jo

1 2T
ﬁz%f y((L/2Tt) cos (kt)dt (7.32)
0
2 1 2T
m=—F+—I y((L/2mt) sin (kt)dt
T Jo

In an image, we measure distances, thus it is better to express these equations in arc-length
form. For that, we know that s = (L/2m)t. Thus,
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Figure 7.12 Discrete computation of the angular functions

dt = ZT” ds (7.33)

Accordingly, the coefficients in Equation 7.32 can be rewritten as,

2 L
a5:2n+t.[ y(s)ds
0
.2t 2k
=+ S) cos ——— s—ds (7.34)

L
s_ 2.2 021k [
b= —§ T |O ¥(s) Sin = s

Inasimilar way to Equation 7.26, the Fourier descriptors can be computed by approximating
theintegral asasummation of rectangular areas. Thisisillustrated in Figure 7.13. Here, the
discrete approximation is formed by rectangles of length 1; and height y;. Thus,
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where s is the arc length at the ith point. Note that

i
S = rgl‘[r

(7.35)

(7.36)

It is important to observe that although the definitions in Equation 7.35 only use the
discrete values of y(t), they obtain a Fourier expansion of y*(t). In the original formulation
(Zahn, 1972), an alternative form of the summationsis obtained by rewriting the coefficients
in terms of the increments of the angular function. In this case, the integrals in Equation
7.34 are evaluated for each interval. Thus, the coefficients are represented as a summation

of integrals of constant values as,

. 2 m Si
ao=2n+ti§l y;ds
S

. 2. 2@ A8 . 02k
b=—j LAl vsngD s
By evaluating the integral we obtain

. 2D
ao=2”+ti§1 Yi(Si—Si1)

(7.37)
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L

sID sin 0L Si_1 (7.38)

. DN 27K 2 1K
bk:_%+#§ %cosD—sg congs_1%

A further simplification can be obtained by considering that Equation 7.28 can be expressed
in discrete form as

i
Yi= rgl KrTr =Ko (7-39)

wherek, isthe curvature (i.e. the difference of the angular function) at the rth point. Thus,

* 2 m

dp = —ZH—EE KiSi—1

. m . RTK O

a=— # El KiTi N5~ S (7.40)

. 2 1o P2k . 0O, 1 &

bk = —E —miz KiT; COSD_L S_1D+ migle[,
Since

m

2 KT =21 (7.41)
thus,

* 2 n

ap = —2Tr—ti§l KiSi—1

. o 21K

ak:—%gll(irismg 3 s_lg (7.42)

b= — 1 E cosD 21k o O

T Tk e L S0

These equations were originally presented in Zahn (1972) and are algebraically equivalent
to Equation 7.35. However, they express the Fourier coefficients in terms of incrementsin
the angular function rather than in terms of the cumulative angular function. In practice,
both implementations (Equations 7.35 and 7.40) produce equivalent Fourier descriptors.

It is important to notice that the parameterisation in Equation 7.21 does not depend on
the position of the pixels, but only on the change in angular information. That is, shapesin
different position and with different scale will be represented by the same curve y* (t).
Thus, the Fourier descriptors obtained are scal e and translation invariant. Rotation invariant
descriptors can be obtained by considering the shift invariant property of the coefficients
amplitude. Rotating a curve in an image produces a shift in the angular function. Thisis
because the rotation changes the starting point in the curve description. Thus, according to
Section 7.2.3.2, the values
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[kl =+ (a)? + (bi)? (7.43)

provide a rotation, scale and translation invariant description. The function Ang
Fouri er Descr p in Code 7.2 computes the Fourier descriptorsin this equation by using
the definitions in Equation 7.35. This code uses the angular functions in Code 7.1.

%-ourier descriptors based on the Angular function
functi on AngFuncDescrp(curve, n, scal e)
%=nunber coefficients
%f n=0 then n=m 2
%Scal e anplitude out put
%Angul ar functions
AngFuncDescr p(curve);

%-ourier Descriptors

i f(n==0) n=floor(m2); end; %unber of coefficients
a=zeros(1l,n); b=zeros(1l,n); %-ourier coefficients
for k=1:n

a(k)=a(k)+G(1)*(S(1))*cos(2*pi *k*S(1)/L);
b(k)=b(k)+G(1)*(S(1))*sin(2*pi *k*S(1)/L);
for i=2:m
a(k)=a(k)+G(i)*(S(i)-S(i-1))*cos(2*pi*k*S(i)/L);
b(k)=b(k)+G(i)*(S(i)-S(i-1))*sin(2*pi*k*S(i)/L);
end
a(k)=a(k)*(2/L);
b(k)=b(k)*(2/L)-2/k;
end
%5 aphs
subpl ot (3,3,7);
bar (a);
axi s([0,n,-scal e,scale]);

subpl ot (3, 3, 8);
bar (b);
axis([0,n,-scal e,scale]);

%Rot ati on invariant Fourier descriptors
CA=zeros(1,n);
for k=1:n
CA(k) =sqgrt (a(k)"2+b(k)"2);
end

% aph of the angular coefficients
subpl ot (3, 3,9);
bar (CA) ;
axis([0,n,-scal e,scale]);

Code 7.2 Angular Fourier descriptors
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Figure 7.14 shows three examples of the results obtained using Code 7.2. In each
example, we show the curve, the angular function, the cumulative normalised angular
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(d) Fourier descriptors
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Figure 7.14 Example of angular Fourier descriptors
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function and the Fourier descriptors. The curves in Figures 7.14(a) and (€) represent the
same object (the contour of an F-14 fighter), but the curvein Figure 7.14(e) was scaled and
rotated. We can see that the angular function changes significantly, whilst the normalised
function is very similar but with a shift due to the rotation. The Fourier descriptors shown
in Figures 7.14(d) and (h) are quite similar since they characterise the same object. We can
see a clear difference between the normalised angular function for the object presented in
Figure 7.14(i) (the contour of a different plane, a B1 bomber). These examples show that
Fourier coefficients are indeed invariant to scale and rotation, and that they can be used to
characterise different objects.

7.2.3.6 Elliptic Fourier descriptors

The cumulative angular function transforms the two-dimensional description of a curve
into a one-dimensional periodic function suitable for Fourier analysis. In contrast, elliptic
Fourier descriptors maintain the description of the curve in a two-dimensional space
(Granlund, 1972). Thisisachieved by considering that the image space defines the complex
plane. That is, each pixel isrepresented by acomplex number. Thefirst co-ordinate represents
the real part whilst the second co-ordinate represents the imaginary part. Thus, a curve is
defined as

c(t) = x(©) +jy(® (7.44)

Here we will consider that the parameter t is given by the arc-length parameterisation.
Figure 7.15 shows an example of the complex representation of a curve. This example

y(@
Imaginary

/i(-/ x(t)

>

NPl W Wl b

-/

Figure 7.15 Example of complex curve representation
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illustrates two periods of each component of the curve. Generdly, T = 2, thusthe fundamental
frequency isw = 1. It isimportant to notice that this representation can be used to describe
open curves. In this case, the curve is traced twice in opposite directions. In fact, this
representation is very general and can be extended to obtain the elliptic Fourier description
of irregular curves (i.e. those without derivative information) (Montiel, 1996), (Montiel,
1997).

In order to obtain the elliptic Fourier descriptors of a curve, we need to obtain the
Fourier expansion of the curve in Equation 7.44. The Fourier expansion can be performed
by using the complex or trigonometric form. In the original work (Granlund, 1972), the
expansion isexpressed in the complex form. However, other works have used the trigonometric
representation (Kuhl, 1982). Here, we will pass from the complex form to the trigonometric
representation. The trigonometric representation is more intuitive and easier to implement.

According to Equation 7.5 we have that the elliptic coefficients are defined by

Ck = Cuk + JCyk (7.45)
where

T T
ka:%J.o X(t)e—jkwtdt and Cyk:%'[) y(t)e-]kwtdt (746)

By following Equation 7.12, we notice that each term in this expression can be defined by
apair of coefficients. That is,

a,—jb ay—jb
Coc = xk 2] xk Cyk= yk 2] 'yk
(7.47)
_ axk"'jbxk _ ayk"'jbyk
Ok="3 e
Based on Equation 7.13 the trigonometric coefficients are defined as
2 2
axk:TJ' x(t) cos(kot) dt and bxk:TJ' x(t) sin(k wt) dt
0 0 (7.48)

- T
ay = %J‘o y(t) cos(kwt)dt and by, = % J; y(t) sin(kax) dt

That according to Equation 7.27 can be computed by the discrete approximation given by

Ay = % ig X; cos(kwiT) and by, = % igl X; sin(koi 1) (7.49)
ay = % igl yi cos(kwiT) and by = % ig yi sin(kai T)

where x; and y; define the value of the functions x(t) and y(t) at the sampling point i. By
considering Equations 7.45 and 7.47 we can express ¢, as the sum of a pair of complex
numbers. That is,

C=A— B and cy = A+ B (7.50)
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where
Axk + jayk bxk + jbyk
2 2

Based on the definition in Equation 7.45, the curve can be expressed in the exponential
form given in Equation 7.6 as

Ak = and Bk = (751)

ct) =co+ 2 (A= BN + I (Ac+[B el (7.52)

Alternatively, according to Equation 7.11 the curve can be expressed in trigonometric form
as

c(t) =

w Sin(kat)
E (7.53)

Ca ®
+j E%O + kgl %ayk cos(kwt) + byksin(kui)%
Generally, this egquation is expressed in matrix form as
X()O_ 1 Bxo O $ B by Creos (koot) O

HmH 2 El‘F‘yOD & By by N (kaot) (7549

Each term in this equation has an interesting geometric interpretation as an elliptic phasor
(arotating vector). That is, for afixed value of k, the trigonometric summation defines the
locus of an ellipse in the complex plane. We can imagine that as we change the parameter
t the point traces ellipses moving at a speed proportional to the harmonic number k. This
number indicates how many cycles (i.e. turns) give the point in the time interval from zero
to T. Figure 7.16(a) illustrates this concept. Here, a point in the curve is given as the
summation of three vectors that define three terms in Equation 7.54. As the parameter t
changes, each vector defines an elliptic curve. In thisinterpretation, the values of a,/2 and
ayo/2 define the start point of the first vector (i.e. the location of the curve). The major axes
of each ellipse are given by the values of | A, | and | By |. The definition of the ellipse locus
for a frequency is determined by the coefficients as shown in Figure 7.16(b).

Ca,, a0
H2"72H

(a) Sum of three frequencies (b) Elliptic phasor

Figure 7.16 Example of a contour defined by elliptic Fourier descriptors
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7.2.3.7 Invariance
As in the case of angular Fourier descriptors, elliptic Fourier descriptors can be defined
such that they remain invariant to geometric transformations. | n order to show these definitions
we must first study how geometric changes in a shape modify the form of the Fourier
coefficients. Transformations can be formulated by using both the exponential or trigonometric
form. We will consider changes in translation, rotation and scale using the trigonometric
definition in Equation 7.54.

Let us denote c'(t) = X'(t) + jy'(t) as the transformed contour. This contour is defined as

X'(HO0 1 %a;(OE+ @ Ea;(k bk %os(kwt)g
O =24, 2 L, O, 0
MO 2 Red R b Esn(ket) 0

If the contour is translated by t, and t, along the real and the imaginary axes, respectively,
we have that

(7.55)

xX'Mo 1 Eﬁxo E_'_ © Eaxk By %Os(kwt)ﬂ_‘_ ng (7.56)
| =5 c . O .
YMa 2 By Rk by rsin(kot) O ay 0
That is,
"(t + 2t o X b, os( kwt
X'()0_ 1 Bxo* 260 Bk k Creos(kwt) O (757)

0.,..0=50 0+ 2 0 . 0
V'O 2 @Ryo*2tyg “ras bucsin(ket)

Thus, by comparing Equation 7.55 and Equation 7.57, we have that the rel ationship between
the coefficients of the transformed and original curves is given by
a’xk = Ay b;(k = ka a.'yk = ayk byk = byk fork#z0 (758)
ag(o = Ayo + 2tX a.'yo = a.yo + 2ty

Accordingly, all the coefficients remain invariant under translation except a,o and ayo. This
result can be intuitively derived by considering that these two coefficients represent the
position of the centre of gravity of the contour of the shape and tranglation changes only
the position of the curve.

The change in scale of a contour c(t) can be modelled as the dilation from its centre of
gravity. That is, we need to translate the curve to the origin, scale it and then return it to its
original location. If s represents the scale factor, then these transformations define the
curve as,

X'(1)O 1 Pxo D+ s E [k by [TTos(kwt)
0 O=50 0O 2. [ 0. O
VMO 2o R bycrsn(kot) O
Notice that in this equation the scale factor does not modify the coefficients a,, and ayo
since the curve is expanded with respect to its centre. In order to define the relationships
between the curve and its scaled version, we compare Equation 7.55 and Equation 7.59.
Thus,

(7.59)

a;(k = SAyk b;<k = bek a.'yk = Sa.yk Uyk = Sbyk fork#0
(7.60)
Ayo = ayp Ayg = Ayo

272 Feature Extraction and Image Processing



That is, under dilation, all the coefficients are multiplied by the scale factor except a,q and
ayo Which remain invariant.

Rotation can be defined in a similar way to Equation 7.59. If p represents the rotation
angle, then we have that

X'(1)O 1 @x0 Ocos(p) sn(P)Oe @Bk b (OTos(kot)O
0,050 00 _ 0z, o o 0 (761
o' (o Myo] G-Sn(p)  cos(p)Oxt Ay by sin(kowt) 0

This equation can be obtained by translating the curve to the origin, rotating it and then
returning it to its original location. By comparing Equation 7.55 and Equation 7.61, we
have that

Ak = 8y COS(P) + ay, sin(p) %k = by cos(p) + by sin(p)

aj = —ay sin(p) + ay cos(p) by = —bysin(p) + by cos(p) (7.62)
Ayo = ayp Ayo = Ayo

That is, under translation, the coefficients are defined by a linear combination dependent
on the rotation angle, except for a,g and ayo Which remain invariant. It isimportant to notice
that rotation relationships are also applied for a change in the starting point of the curve.

Equations 7.58, 7.60 and 7.62 define how the elliptic Fourier coefficients change when
the curve is translated, scaled or rotated, respectively. We can combine these results to
define the changes when the curve undergoes the three transformations. In this case,
transformations are applied in succession. Thus,

Ak = S(@x Cos(P) + ay sin(p))  bi = s(by cos (p) + by sin(p))

aji = S(=ay Sn(p) + ay cos(p)) by = s(=bysin(p) + by cos(p))  (7.63)
a;(o =ay t 2tx a'yo = ayo + 2ty

Based on this result we can define alternative invariant descriptors. In order to achieve
invariance to translation, when defining the descriptors the coefficient for k = 0 is not used.
In Granlund (1972) invariant descriptors are defined based on the complex form of the
coefficients. Alternatively, invariant descriptors can be simply defined as

|Ak|+|Bk|
|Al | By

The advantage of these descriptors with respect to the definition in Granlund (1972) is that
they do not involve negative frequencies and that we avoid multiplication by higher frequencies
that are more prone to noise. By considering the definitions in Equations 7.51 and 7.63 we
can prove that,

| ALl 3%+ ag
| A laz + a}z,l
These equations contain neither the scale factor, s, nor the rotation, p. Thus, they are
invariant. Notice that if the square roots are removed then invariance properties are still

maintained. However, high-order frequencies can have undesirable effects.
ThefunctionEl | i pti cDescr p inCode 7.3 computes the elliptic Fourier descriptors

(7.64)

, b2 + b3
and :3: = sz 2" (7.65)
1 b2 + b2
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%l |iptic Fourier Descriptors
function EllipticDescrp(curve,n, scal e)
% =num coefficients
% f n=0 then n=m 2
%Scal e anplitude out put
%-unction from imge
X=curve(1l,:);
Y=curve(2,:);
nmesi ze( X, 2) ;

% aph of the curve
subpl ot (3, 3,1);
plot (X Y);
mx=max( max( X), max(Y)) +10;
axis([0,nx,0,nx]); %Axis of the graph pf the curve
axi s square; %Aspect ratio

% aph of X
p=0: 2*pi / m 2*pi-pi / m %Par anet er
subpl ot (3, 3, 2);
pl ot (p, X);
axis([0,2*pi,0,nx]); %xis of the graph pf the curve

% aph of Y
subpl ot (3, 3, 3);
plot(p,Y);
axis([0,2*pi,0,nx]); %xis of the graph pf the curve
%l |iptic Fourier Descriptors
i f(n==0) n=floor(m?2); end;, %wunber of coefficients

%-ourier Coefficients
ax=zeros(1,n); bx=zeros(1,n);
ay=zeros(1,n); by=zeros(1,n);

t=2*pi /' m

for k=1:n
for i=1l:m
ax (k) =ax(k)+X(i)*cos(k*t*(i-1));
bx (k) =bx(k)+X(i)*sin(k*t*(i-1));
ay (k) =ay(k)+Y(i)*cos(k*t*(i-1));
by (k) =by(k) +Y(i)*sin(k*t*(i-1));
end

ax(k)=ax(k)*(2/m;

bx( k) =bx(k)*(2/m;

ay(k)=ay(k)*(2/m;

by (k) =by(k)*(2/ m;
end

%G aph coefficient ax
subpl ot (3, 3, 4);
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bar (ax);
axis([0,n,-scal e,scale]);

% aph coefficient ay
subpl ot (3, 3,5);

bar (ay);

axis([0,n,-scal e,scale]);

% aph coefficient bx
subpl ot (3, 3, 6);

bar (bx);

axis([0,n,-scal e,scale]);

% aph coefficient by
subpl ot (3,3,7);

bar (by);

axis([0,n,-scal e,scale]);

% nvari ant
CE=zeros(1,n);
for k=1:n
CE(k) =sqgrt ((ax(k)"2+ay(k)"2)/ (ax(1)"2+ay(1)"2))
+sqrt ((bx(k) " 2+by(k)”~2)/ (bx(1)"2+by(1)"2));
end

% aph of Elliptic descriptors
subpl ot (3, 3, 8);
bar (CE) ;
axis([0,n,0,2.2]);

Code 7.3 Elliptic Fourier descriptors

of a curve. The code implements Equations 7.49 and 7.64 in a straightforward way. By
default, the number of coefficients is half of the number of points that define the curve.
However, the number of coefficients can be specified by the parameter n. The number of
coefficients used defines the level of detail of the characterisation. In order to illustrate this
idea, we can consider the different curves that are obtained by using a different number of
coefficients. Figure 7.17 shows an example of the reconstruction of a contour. In Figure
7.17(a) we can observe that the first coefficient represents an ellipse. When the second
coefficient is considered (Figure 7.17(b)), then the €ellipse changes into a triangular shape.
When adding more coefficients the contour isrefined until the curve represents an accurate
approximation of the original contour. In this example, the contour is represented by 100
points. Thus, the maximum number of coefficients is 50.

Figure 7.18 shows three examples of the results obtained using Code 7.3. Each example
shows the original curve, the x and y co-ordinate functions and the Fourier descriptors
defined in Equation 7.64. The maximum in Equation 7.64 is equal to two and is obtained
when k = 1. In the figure we have scaled the Fourier descriptors to show the differences
between higher order coefficients. In this example, we can see that the Fourier descriptors
for the curves in Figures 7.18(a) and (e) (F-14 fighter) are very similar. Small differences
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Figure 7.17 Fourier approximation

can be explained by discretisation errors. However, the coefficients remain the same after
changing its location, orientation and scale. The descriptors of the curve in Figure 7.18(i)
(B1 bomber) are clearly different, showing that elliptic Fourier descriptorstruly characterise
the shape of an object.

Fourier descriptors are one of the most popular boundary descriptions. As such, they
have attracted considerable attention and there are many further aspects. Naturally, we can
use the descriptions for shape recognition (Aguado, 1998). It is important to mention that
some work has suggested that there is some ambiguity in the Fourier characterisation.
Thus, an alternative set of descriptors has been designed specifically to reduce ambiguities
(Crimmins, 1982). However, it is well known that Fourier expansions are unique. Thus,
Fourier characterisation should uniquely represent a curve. Additionally, the mathematical
opacity of the techniquein Crimmins (1982) does not lend itself to tutorial type presentation.
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Figure 7.18 Example of elliptic Fourier descriptors

Interestingly, there has not been much study on alternative decompositions to Fourier,
though Walsh functions have been suggested for shape representation (Searle, 1970) and
recently wavel ets have been used (Kashi, 1996) (though these are not an orthonormal basis
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function). 3D Fourier descriptors were introduced for analysis of simple shapes (Staib,
1992) and have recently been found to give good performance in application (Undrill,
1997). Fourier descriptors have been also used to model shapes in computer graphics
(Aguado, 2000). Naturally, Fourier descriptors cannot be used for occluded or mixed
shapes, relying on extraction techniques with known indifference to occlusion (the HT,
say). However, there have been approaches aimed to classify partial shapes using Fourier
descriptors (Lin, 1987).

7.3 Region descriptors

So far, we have concentrated on descriptions of the perimeter, or boundary. The natural
counterpart is to describe the region, or the area, by regional shape descriptors. Here,
there are two main contenders that differ in focus. basic regional descriptors characterise
the geometric properties of the region; moments concentrate on density of the region. First,
though, we shall look at the simpler descriptors.

7.3.1 Basic region descriptors

A region can be described by considering scalar measures based on its geometric properties.
The simplest property is given by its size or area. In general, the area of a region in the
plane is defined as

A(S):J'J’ 1 (x, y)dydx (7.66)
xJy

where I(x, y) = 1 if the pixel is within a shape, (X, y) O S, and 0 otherwise. In practice,
integrals are approximated by summations. That is,

A(S) = ZZ1(x,y)AA (7.67)

where AA isthe area of one pixel. Thus, if AA = 1, then the areais measured in pixels. Area
changes with changes in scale. However, it is invariant to image rotation. Small errorsin
the computation of the area will appear when applying a rotation transformation due to
discretisation of the image.

Another simple property is defined by the perimeter of theregion. If x(t) and y(t) denote
the parametric co-ordinates of acurve enclosing aregion S, then the perimeter of the region
is defined as

P(S):J: X2 (1) +y2 (1) dt (7.68)

This equation corresponds to the sums of al the infinitesimal arcs that define the curve. In
the discrete case, x(t) and y(t) are defined by a set of pixelsin the image. Thus, Equation
7.68 is approximated by

P(S) = Z (% = %i0)?+ (¥ = ¥ia)? (7.69)

where x; and y; represent the co-ordinates of the ith pixel forming the curve. Since pixels
are organised in a square grid, then the terms in the summation can only take two values.
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When the pixels (x;, y;) and (X1, Yi—q) are 4-neighbours (as shown in Figure 7.1(a)), the
summation term is unity. Otherwise, the summation term is equal to +/2. Notice that the
discrete approximation in Equation 7.69 produces small errors in the measured perimeter.
As such, it is unlikely that an exact value of 2mr will be achieved for the perimeter of a
circular region of radiusr.

Based on the perimeter and area it is possible to characterise the compactness of a
region. Compactness is an oft-expressed measure of shape given by the ratio of perimeter
to area. That is,

ATIA(S)
C(9) = 7.70
(9= 29 (7.70)
In order to show the meaning of this equation, we can rewrite it as
A(s)
C(S) = —~21 7.71
(S P2(s)/4m (7.71)

Here, the denominator represents the area of a circle whose perimeter is P(S). Thus,
compactness measures the ratio between the area of the shape and the circle that can be
traced with the same perimeter. That is, compactness measures the efficiency with which
a boundary encloses an area. For acircular region (Figure 7.19(a)) we have that C(S) = 1
(Figure 7.20). This represents the maximum compactness value. Figures 7.19(b) and (c)
show two examples in which compactness is reduced. If we take the perimeter of these
regions and draw a circle with the same perimeter, then we can observe that the circle
contains more area. This means that the shapes are not compact. A shape becomes more
compact if we move region pixels far away from the centre of gravity of the shape to fill
empty spaces closer to the centre of gravity. Note that compactness alone is not a good
discriminator of aregion; low values of C are associated with involuted regions such as the
onein Figure 7.19(b) and also with simple though highly elongated shapes. This ambiguity
can be resolved by employing additional shape measures.

(a) Circle (b) Convoluted region (c) Ellipse

Figure 7.19 Examples of compactness

Another measure that can be used to characterise regions is dispersion. Dispersion
(irregularity) has been measured as the ratio of major chord length to area (Chen, 1995).
A simple version of this measure can be defined as
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mmax((x —X)% + (¥ —¥)?)
A(S)

where (X, y) represent the co-ordinates of the centre of mass of the region. Notice that the
numerator defines the area of the maximum circle enclosing the region. Thus, this measure
describes the density of the region. An alternative measure of dispersion can actually also
be expressed as the ratio of the maximum to the minimum radius. That is,

1(S) = (7.72)

max({/(x %)% + (% - ¥)? )
min{{/( = %)2+ (yi— 7))

This measure defines the ratio between the radius of the maximum circle enclosing the
region and the maximum circle that can be contained in the region. Thus, the measure will
increase as the region spreads. One disadvantage of the irregularity measures is that they
are insensitive to slight discontinuity in the shape, such as a thin crack in a disk. On the
other hand, these discontinuities will be registered by the earlier measures of compactness
since the perimeter will increase disproportionately with the area.

Code 7.4 showstheimplementation for the region descriptors. The codeisastraightforward
implementation of Equations 7.67, 7.69, 7.70, 7.72 and 7.73. A comparison of these measures
for the three regions shown in Figure 7.19 is shown in Figure 7.20. Clearly, for the circle
the compactness and dispersion measures are close to unity. For the ellipse the compactness
decreases whilst the dispersion increases. The convol uted region has the lowest compactness
measure and the highest dispersion values. Clearly, these measurements can be used to
characterise and hence discriminate between areas of differing shape.

Other measures, rather than focus on the geometric properties, characterise the structure
of aregion. Thisisthe case of the Poincarré measure and the Euler number. The Poincarré
measure concerns the number of holes within a region. Alternatively, the Euler number is
the difference between the number of connected regions and the number of holesin them.
There are many more potential measures for shape description in terms of structure and
geometry. We could evaluate global or local curvature (convexity and concavity) as a
further measure of geometry; we could investigate proximity and disposition as a further
measure of structure. However, these do not have the advantages of a unified structure. We
are simply suggesting measures with descriptive ability but this ability is reduced by the
correlation between different measures. We have already seen the link between the Poincarré
measure and the Euler number. There is anatural link between circularity and irregularity.
As such we shall now look at a unified basis for shape description which aims to reduce
this correlation and provides a unified theoretical basis for region description.

IR(S) = (7.73)

7.3.2 Moments

Moments describe a shape’s layout (the arrangement of its pixels), a bit like combining
area, compactness, irregularity and higher order descriptions together. Moments are a
global description of a shape, accruing this same advantage as Fourier descriptors since
there is an in-built ability to discern, and filter, noise. Further, in image analysis, they are
statistical moments, as opposed to mechanical ones, but the two are anal ogous. For example,
the mechanical moment of inertia describes the rate of change in momentum; the statistical
second-order moment describes the rate of change in a shape’s area. In this way, statistical
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%Regi on descriptors (conpactness)
function Regi onDescrp(inputi mage)

% nmage size
[rows, col ums] =si ze(i nputi nmage);

%ar ea
A=0;
for x=1:col ums
for y=1:rows
if inputimge(y,x)==0 A=A+1l; end
end
end

%Obt ai n Cont our
C=Cont our (i nputi nmage) ;

%erineter & nean
X=C(1,:); Y=C(2,:); mFsize(X 2);

mk=X(1); ny=Y(1);

P=sqrt ((X(1)-X(m )" 2+(Y(1)-Y(m))"2);

for i=2:m
P=P+sqrt ((X(i)-X(i-1))"22+(Y(i)-Y(i-1))"2);
mx=mx+X(i); nmy=ny+Y(i);

end

mx=nx/ n  nmy=ny/ m

%Conpact ness
Cp=4*pi * Al P"2;

%Di sper si on
max=0; nm n=99999;

for i=1:m
d=((X(i)-m)"2+(Y(i)-ny)"2);
if (d>max) max=d; end
if (d<min) mn=d; end

end

I =pi *max/ A;
| R=sqrt (max/ mn);

%Resul ts

di sp(‘ perimeter="); di sp(P);
di sp(‘area="); di sp(A);
di sp(‘ Conpact ness="); di sp(Cp);
di sp(‘ Di spersion="); disp(l);

di sp(‘ Di spersionR="); disp(IR);

Code 7.4 Evaluating basic region descriptors

Object description 281



A(S) = 4917 A(S) = 2316 A(S) = 6104
P(S) = 259.27 P(S) = 498.63 P(S) = 310.93
C(S)=0.91 C(S)=0.11 C(S)=0.79
I(S) = 1.00 I(S) = 2.24 I(S)=1.85
IR(S) = 1.03 IR(S) = 6.67 IR(S) = 1.91
(a) Descriptors for the circle (b) Descriptors for the convoluted (c) Descriptors for the ellipse
region

Figure 7.20 Basic region descriptors

moments can be considered as a global region description. Moments for image analysis
were again originally introduced in the 1960s (Hu, 1962) (an exciting time for computer
vision researcherstoo!) and an excellent and fairly up-to-date review is available (Prokop,
1992).

Moments are actually often associated more with statistical pattern recognition than
with model-based vision since a major assumption is that there is an unoccluded view of
the target shape. Target images are often derived by thresholding, usualy one of the
optimal formsthat can require asingle object in thefield of view. More complex applications,
including handling occlusion, could presuppose feature extraction by some means, with a
model to in-fill for the missing parts. However, moments do provide a global description
with invariance properties and with the advantages of acompact description aimed to avoid
the effects of noise. As such, they have proved popular and successful in many applications.

The two-dimensional Cartesian moment is actually associated with an order that starts
from low (where the lowest is zero) up to higher orders. The moment of order p and g, My,
of afunction I(X, y), is defined as

mpq:J' J' xPydl(x,y)dxdy (7.74)

For discrete images, Equation 7.74 is usually approximated by
Mpq = %%xpyql(x,y)AA (7.75)

These descriptors have auniqueness property inthat if the function satisfies certain conditions,
then moments of all orders exist. Also, and conversely, the set of descriptors uniquely
determines the original function, in a manner similar to reconstruction via the inverse
Fourier transform. However, these moments are descriptors, rather than a specification
which can be used to reconstruct a shape. The zero-order moment, My, is

Moo = % § I(x,y)AA (7.76)

which represents the total mass of afunction. Notice that this equationis equal to Equation
7.67 when I(x, y) takes values of zero and one. However, Equation 7.76 is more general
since the function I(x, y) can take a range of values. In the definition of moments, these
values are generally related to density. The two first-order moments, mg; and my, are given

by
My = %%xl(x, Y)AA mg = ;yZyl(x, y)AA (7.77)

For binary images, these values are proportional to the shape’s centre co-ordinates (the
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values merely require division by the shape's area). In general, the centre of mass (X, y)
can be calculated from the ratio of the first-order to the zero-order components as

My Moy

y=—— 7.78
Moo y Moo ( )

X =

The first ten x-axis moments of a smooth shape are shown in Figure 7.21. The moments
rise exponentially so are plotted in logarithmic form. Evidently, the moments provide a set
of descriptions of the shape: measures that can be collected together to differentiate between
different shapes.

30 1

20

log (ellipse_moment o)

10 4~

Figure 7.21 Horizontal axis ellipse moments

Should there be an intensity transformation that scales brightness by a particular factor,
say a, such that a new image I'(X, y) is a transformed version of the original one I(X, y)
given by

I'(x, y) = al(x, y) (7.79)
Then the transformed moment values my,, are related to those of the original shape my, by
Mg = 0 Mpg (7.80)

Should it be required to distinguish mirror symmetry (reflection of a shape about a chosen
axis), then the rotation of a shape about the, say, x axis gives a new shape I'(x, y) whichis
the reflection of the shape 1(x, y) given by

', y) =1(=X%Y) (7.81)
The transformed moment values can be given in terms of the original shape's moments as
Mg = (1) P My, (7.82)

However, we are usually concerned with more basic invariants than mirror images, namely
invariance to position, size and rotation. Given that we now have an estimate of a shape's
centre (in fact, a reference point for that shape), the centralised moments, Ly, Which are
invariant to translation, can be defined as

Hp = 22 (X=X)P(y = 9)71 (x, Y)AA (7.83)
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Clearly, the zero-order centralised moment is again the shape’s area. However, the first-
order centralised moment Ly, is given by

o= 22 (Y =9)' (X, y)AA

=2 2YI(x, Y)AA - 2 271(x,y)AA

= Mo =9 2T 1(x,Y)AA (7.84)
_ Moy

= Mo — Moy Moo

=0

= H1o

Clearly, neither of the first-order centralised moments has any description capability since
they are both zero. Going to higher order, one of the second-order moments, Ly, iS

M20 = %% (x=%)21(x,y)AA
= %% (X2=2xX + X2) I (X, y)AA

IOD2

=My — 2m10 P %E 00 (7.85)
_ UMy D2
=My — Moo

and this has descriptive capability.
The use of moments to describe an ellipse is shown in Figure 7.22. Here, an original

(a) Original ellipse

(b) Translated ellipse

(c) Rotated ellipse

Uop = 2.4947 - 108
Lo = 6.4217 - 10°

(d) 2nd order centralised moments
of original ellipse

Lop = 2.4947 - 108
Lo = 6.4217 - 10°

(e) 2nd order centralised moments
of translated ellipse

Loy = 6.4217 - 10°
Lo = 2.4947 - 108

(f) 2nd order centralised moments
of rotated ellipse

Figure 7.22 Describing a shape by centralised moments
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ellipse, Figure 7.22(a), gives the second-order moments in Figure 7.22(d). In all cases, the
first-order moments are zero, as expected. The moments, Figure 7.22(e), of the translated
ellipse, Figure 7.22(b), are the same as those of the original ellipse. In fact, these moments
show that the greatest rate of change in mass is around the horizontal axis, as consistent
with the ellipse. The second-order moments, Figure 7.22(f), of the ellipse when rotated by
90°, Figure 7.22(c), are simply swapped around, as expected: the rate of change of massis
now greatest around the vertical axis. Thisillustrates how centralised moments areinvariant
to translation, but not to rotation.

However, centralised moments are as yet only translation invariant. In order to accrue
invariance to scale, we require normalised central moments, Ny, defined as (Hu, 1962).

K
Npq = —v (7.86)
Moo
where
V:%” Up+e 2 (7.87)
Seven rotation invariant moments can be computed from these given by
M1 =Nz + No2

M2=(Nxp-Ne)*+4n5
M3 = (N30 — 3N12)* + (3N21 — Noa)®
M4 = (N + N12)* + (N2t + Noa)?
M5 = (N30 — 3N12)(N30 + N12) + (N30 + N12)* = 3(N21 — Noa)?)
+ (3N21 — Noa)(N21 + Noa)(3(N30 + N12)* — (N1 + No3)?) (7.88)
M6 = (N20 — No2)((N30 + N12)* = (N2 + Noa)?) + 4N11(N3o + N12)(N21 + Noa)
M7 = (3N21 — No3)(N30 + N12) (N30 + N12)* — 3(N21 + Noa)?)
+ (3N12 — Nao)(N21 + Noa)(3(N12 + N30)* — (N1 + No3)?)

Thefirst of these, M1 and M2, are second-order moments, those for which p + q = 2. Those
remaining are third-order moments, since p + q = 3. (The first-order moments are of no
consequence since they are zero.) The last moment M7 is introduced as a skew invariant
designed to distinguish mirror images.

Code 7.5 shows the Mathcad implementation that computes the invariant moments M1,
M2 and M3. The code computes the moments by straight implementation of Equations
7.81 and 7.86. The use of these invariant moments to describe three shapesisillustrated in
Figure 7.23. Figure 7.23(b) corresponds to the same plane in Figure 7.23(a) but with a
change of scale and a rotation. Thus, the invariant moments for these two shapes are very
similar. In contrast, the invariant moments for the plane in Figure 7.23(c) differ.

These invariant moments have the most important invariance properties. However,
these moments are not orthogonal, as such there is potential for reducing the size of the set
of moments required to describe a shape accurately. This can be achieved by using Zernike
moments (Teague, 1980) that give an orthogonal set of rotation-invariant moments. Rotation
invariance is achieved by using polar representation, as opposed to the Cartesian
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u(p, q, shape): =|cnmom-0

rows(shape)-1

1 b (shape; )o

XC — T ows(shape) 0%

rows(shape)-1

1
Y€ < T ows(shape) . igo (shape; ),

for sOO0..rows(shape)-1
cnmome—cnom+[ (shapeg) —xc] P- [ (shapeg) 1—yc] 9 (shapeg) »
cnom

H(p.g.i m
AL I
W0,0,im 2

ML(im:=n(2,0,im+n(0,2,im
M(im:=(n(2,0,imM-n(0,2,im)%+4-n(1,1,im?2
MB(im:=(n(3,0,imM-3-n(1,2,imM)?+(3-n(2,1,im-n(0,3,im)?

n(p.a,im:=

Code 7.5 Computing M1, M2 and M3

(a) F-14 fighter

(b) F-14 fighter rotated and scaled

(c) B1 bomber

M1=0.2199
M2 = 0.0035
M3 = 0.0070

(d) Invariant moments for (a)

M1=0.2202
M2 = 0.0037
M3 = 0.0070

(e) Invariant moments for (b)

M1 = 0.2264
M2 =0.0176
M3 = 0.0083

(f) Invariant moments for (c)

Figure 7.23 Describing a shape by invariant moments

parameterisation for centralised moments. The complex Zernike moment, Zy, is

27T o
zpq:%l‘[o IO Viq (1, O)* £(r, B)rdrde

where p is how the radial magnitude and q is the radial direction and where * denotes the

complex conjugate of a Zernike polynomial, Vy,, given by

(7.89)

Vpo(r, 8) = Ryg(1€® where p-gisevenand 0<qg<p (7.90)
where Ry, is areal-valued polynomial given by
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p—q
— z _1\ym (p m)' p-2m
D 2 RN 2

These polynomials are orthogonal within the unit circle, so an analysed shape hasto bere-
mapped to be of this size before calculation of its moments. The orthogonality of these
polynomials assures the reduction in the set of numbers used to describe a shape. More
simply, the radial polynomials can be expressed as

P
Roq () = 2 B (7.92)

where the Zernike coefficients are

o ((p+K)/2)
Boak = 1) 2 {0 —R72)1(k + )72) (K = 072! (7.93)

for p—k = even. The Zernike moments can actually be cal culated from centralised moments
as

p+tl s t LSO00a0
Zpa= Z 15 2 .2 (_J) HHHT,HBWK“(k—2l—q+m)(q+2I—m) (7.94)
where t = (k — g)/2 and where
a0 t!
HH™ =y (7.95)

Analysis (and by using Equation 7.83, assuming X, y are constrained to theinterval [-1, 1])
gives

Zw= 0
Zy = %(Hm—julo) =0 (7.96)

Zy= % (Moz = j2H11 = H2)

which can be extended further (Teague, 1980), and with remarkable similarity to the Hu
invariant moments (Equation 7.88).

The magnitude of these Zernike moments remains invariant to rotation which affects
only the phase; the Zernike moments can be made scale invariant by normalisation. An
additional advantageisthat thereisareconstruction theorem. For Nm moments, the original
shape f can be reconstructed from its moments and the Zernike polynomials as

Nm
f(x,y) = p§0% ZpqVpq (X, Y) (7.97)
These descriptors have been shown to good effect in application by reconstructing a good
approximation to a shape with only few descriptors (Boyce, 1983) and in recognition

(Khotanzad, 1990). There are pseudo Zernike moments (Teh, 1988) aimed to relieve the
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restriction on normalisation to the unit circle, as well as complex moments (Abu-Mostafa,
1985), again aimed to provide a simpler moment description with invariance properties.
Finally, there are affine invariant moments which do not change with position, rotation and
different scales along the co-ordinate axes, as aresult, say, of a camera not being normal
to the object plane. Here, the earliest approach appears to be by Flusser and Suk (Flusser,
1993). One of the reviews (Teh, 1988) concentrates on information content (redundancy),
noise sensitivity and on representation ability, comparing the performance of several of the
more popular moments in these respects.

7.4 Further reading

Thischapter has essentially been based on unified techniques for border and region description.
Thereisactually much moreto contour and region analysisthan indicated at the start of the
chapter, for thisis one the start points of morphological analysis. The neighbourhood can
be extended to belarger (Marchand, 1997) and thereis consideration of appropriate distance
metricsfor this (Das, 1988). A much more detail ed study of boundary-based representation
and application can be found in Van Otterloo’s fine text (Van Otterloo, 1991). Naturally,
there are many other ways to describe features, though few have the unique attributes of
moments and Fourier descriptors. Naturally, there is an inter-relation between boundary
and region description: curvature can be computed from a chain code (Rosenfeld, 1974);
Fourier descriptors can also be used to calculate region descriptions (Kiryati, 1989). There
have been many approaches to boundary approximation by fitting curvesto the data. Some
of these use polynomial approximation, or there are many spline-based techniques. A
splineisalocal function used to model afeature in sections. There are quadratic and cubic
forms (for a good review of spline theory, try Ahlberg et al. (1967) or Dierckx (1995)), of
interest, snakes are actually energy minimising splines. There are many methodsfor polygonal
approximations to curves, and recently a new measure has been applied to compare
performance on a suitable curve of techniques based on dominant point analysis (Rosin,
1997). To go with the earlier-mentioned review (Prokop and Reeves, 1992) there is a book
available on moment theory (Mukundan and Ramakrishnan, 1998) showing the whole
moment picture and even how to cal culate moments from Fourier and Hartley transforms.
The skeleton of a shape can be derived by the medial axistransform (Blum, 1967) and then
used for recognition. This is a natural target for thinning techniques that have not been
covered here. An excellent survey of these techniques, as used in character description
following extraction, can be found in Trier et al. (1996) — describing use of moments and
Fourier descriptors.
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I S
INnfroduction to texture
descripftion,
segmentation and
classification

8.1 Overview

Thischapter is concerned with how we can use many of the feature extraction and description
techniques presented earlier to characteriseregionsin animage. The aim hereisto describe
how we can collect measurements for purposes of recognition, using texture.

We shall first look at what is meant by texture and then how we can use Fourier
transform techniques, statistics and region measures to describe it. We shall then look at
how the measurements provided by these techniques, the description of the texture, can be
collected together to recognise it. Finally, we shall label an image according to the texture
found within it, to give a segmentation into classes known to exist within the image. Since
we could be recognising shapes described by Fourier descriptors, or by region measures,
the material isactually general and could be applied for purposes of recognition to measures
other than texture.

Table 8.1 Overview of Chapter 8

Fourier Transform Energy

Texture description Co-occurrence Entropy

Regions Inertia

Texture classification k nearest neighbour rule

Convolution

Texture segmentation Tiling

Thresholding
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8.2 What is texture?

Textureis actually avery nebulous concept, often attributed to human perception, as either
the feel or the appearance of (woven) fabric. Everyone has their own interpretation as to
the nature of texture; there is no mathematical definition for texture, it simply exists. By
way of reference, let us consider one of the dictionary definitions Oxford (1996):

texturen., & v.t. 1. n. arrangement of threads etc. in textile fabric. characteristic feel
dueto this; arrangement of small constituent parts, perceived structure, (of skin, rock,
soil, organic tissue, literary work, etc.); representation of structure and detail of
objectsinart; . ..

That covers quite alot. If we change ‘threads for ‘pixels then the definition could apply
to images (except for the bit about artwork). Essentially, texture can be what we define it
to be. Why might we want to do this? By way of example, analysis of remotely sensed
images is now amajor application of image processing techniques. In such analysis, pixels
are labelled according to the categories of a required application, such as whether the
ground isfarmed or urban in land-use analysis, or water for estimation of surface analysis.
An example of aremotely sensed imageis given in Figure 8.1(a) which is of an urban area
(in the top left) and some farmland. Here, the image resolution is low and each pixel
corresponds to alarge area of the ground. Square groups of pixels have then been labelled
either as urban, or as farmland, according to their texture properties as shown in Figure
8.1(b) where black represents the area classified as urban and white is for the farmland. In
this way we can assess the amount of areathat urban areas occupy. As such, we have used
real textures to label pixels, the perceived textures of the urban and farming areas.

As an alternative definition of texture, we can consider it as a database of images that
researchers use to test their algorithms. Many texture researchers have used a database of

(a) Remotely sensed image (b) Classification result

Figure 8.1 Example of texture analysis
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pictures of textures (Brodatz, 1968), produced for artists and designers, rather than for
digital image analysis. Parts of three of the Brodatz texture images are given in Figure 8.2.
Here, the French canvas (Brodatz index D20) in Figure 8.2(a) is adetail of Figure 8.2(b)
(Brodatz index D21) taken at four times the magnification. The beach sand in Figure
8.2(c), (Brodatz index D29) is clearly of a different texture to that of cloth. Given the
diversity of texture, there are now many databases available on the Web, at the sites given
in Chapter 1 or at this book’s website. Alternatively, we can define texture as a quantity for
which texture extraction algorithms provide meaningful results. One study (Karru, 1996)
suggests

The answer to the question ‘is there any texture in the image? depends not only on
the input image, but also on the goal for which the image texture is used and the
textural features that are extracted from the image.
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French canvas (detail (b) French canvas D21 (c) Beach sand D29

Figure 8.2 Three Brodatz textures

Essentially, there is no unique definition of texture. There is no unique mathematical
model to synthesise texture; there are many waysto describe and extract it. It isavery large
and exciting field of research and there continue to be many new devel opments.

Clearly, images will usually contain samples of more than one texture. Accordingly, we
would like to be able to describe texture (texture descriptions are measurements which
characterise a texture) and then to classify it (classification is attributing the correct class
label to a set of measurements) and then perhaps to segment an image according to its
texture content. We have used similar classification approaches to characterise the shape
descriptions in the previous chapter. Actually these are massive fields of research that
move on to the broad subject of pattern recognition. We shall look at an introduction here,
later referenceswill point you to topics of particular interest and to some of the more recent
developments. The main purpose of thisintroduction isto show how the measurements can
be collected together to recognise objects. Texture is used as the vehicle for thissinceit is
aregion-based property that has not as yet been covered. Since textureitself isan enormous
subject, you will find plenty of references to established approaches and to surveys of the
field. First, we shall ook at approaches to deriving the features (measurements) which can
be used to describe textures. Broadly, these can be split into structural (transform-based),

Introduction to texture description, segmentation and classification 293



statistical and combination approaches. Clearly the frequency content of an image will
reflect its texture; we shall start with Fourier. First though we shall consider some of the
required properties of the descriptions.

8.3 Texture description

8.3.1 Performance requirements

The purpose of texture description is to derive some measurements that can be used to
classify aparticular texture. Assuch, there are invariance requirements on the measurements,
astherewerefor shape description. Actually, theinvariance requirementsfor feature extraction,
namely invariance to position, scale and rotation, can apply equally to texture extraction.
After all texture is afeature, abeit arather nebulous one as opposed to the definition of a
shape. Clearly we require position invariance: the measurements describing a texture
should not vary with the position of the analysed section (of a larger image). Also, we
require rotation invariance but this is not as strong a requirement as position invariance;
the definition of texture does not imply knowledge of orientation, but could be presumed
to. The least strong requirement is that of scale, for this depends primarily on application.
Consider using texture to analyse forests in remotely sensed images. Scale invariance
would imply that closely spaced young trees should give the same measure as widely
spaced mature trees. This should be satisfactory if the purpose is only to analyse foliage
cover. It would be unsatisfactory if the purpose was to measure age for purposes of
replenishment, since a scale-invariant measure would be of little use as it could not, in
principle, distinguish between young trees and old ones.

Unlike feature extraction, texture description rarely depends on edge extraction since
one main purpose of edge extraction is to remove reliance on overall illumination level.
The higher order invariants, such as perspective invariance, are rarely applied to texture
description. This is perhaps because many applications are like remotely sensed imagery,
or are in constrained industrial application where the camera geometry can be controlled.

8.3.2 Structural approaches

The most basic approach to texture description is to generate the Fourier transform of the
image and then to group the transform datain some way so asto obtain aset of measurements.
Naturaly, the size of the set of measurements is smaller than the size of the image's
transform. In Chapter 2 we saw how the transform of a set of horizontal lines was a set of
vertical spatial frequencies (since the point spacing varies along the vertical axis). Here,
we must remember that for display we rearrange the Fourier transform so that the d.c.
component is at the centre of the presented image.

The transforms of the three Brodatz textures of Figure 8.2 are shown in Figure 8.3.
Figure 8.3(a) shows a collection of frequency components which are then replicated with
the same structure (consistent with the Fourier transform) in Figure 8.3(b). (Figures 8.3(a)
and (b) also show the frequency scaling property of the Fourier transform: greater
magnification reduces the high frequency content.) Figure 8.3(c) is clearly different in that
the structure of the transform data is spread in a different manner to that of Figures 8.3(a)
and (b). Naturally, these images have been derived by application of the FFT which we
shall denote as
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(a) French canvas (detail) (b) French canvas (c) Beach sand

Figure 8.3 Fourier transforms of the three Brodatz textures

FP = FFT(P) (8.1)

where FP,,, and Py, are the transform and pixel data, respectively. One clear advantage of
the Fourier transform is that it possesses shift invariance (Section 2.6.1): the transform of
a bit of (large and uniform) cloth will be the same, whatever segment we inspect. Thisis
consistent with the observation that phase is of little use in Fourier-based texture systems
(Pratt, 1992), so the modulus of the transform (its magnitude) isusually used. Thetransform
is of the same size as the image, even though conjugate symmetry of the transform implies
that we do not need to use all its components as measurements. As such we can filter the
Fourier transform (Section 2.8) so as to select those frequency components deemed to be
of interest to aparticular application. Alternatively, it is convenient to collect the magnitude
transform datain different waysto achieve areduced set of measurements. First though the
transform data can be normalised by the sum of the squared values of each magnitude
component (excepting the zero-frequency components, those for u = 0 and v = 0), so that
the magnitude datais invariant to linear shiftsin illumination to obtain normalised Fourier
coefficients NFP as

N
upv — 2
\/(u:to%(z; 0)|Fpu‘v|

Alternatively, histogram equalisation (Section 3.3.3) can provide such invariance but is
more complicated than using Equation 8.2. The spectral data can then be described by the
entropy, h, as

(8.2)

N N
h= Zl 1NFPUVU log(NFP,,) (8.3)
u=1 v=
or by their energy, €, as
N N
e= 21 %(NFPU,U)Z (8.9)

Another measure is their inertia, i, defined as
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=1
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(8.5)

u=1

<

These measures are shown for the three Brodatz textures in Code 8.1. In a way, they are
like the shape descriptionsin the previous chapter: the measures should be the same for the
same object and should differ for a different one. Here, the texture measures are actually
different for each of the textures. Perhaps the detail in the French canvas, Code 8.1(a),
could be made to give a closer measure to that of the full resolution, Code 8.1(b), by using
the frequency scaling property of the Fourier transform, discussed in Section 2.6.3. The
beach sand clearly gives a different set of measures from the other two, Code 8.1(c). In
fact, the beach sand in Code 8.1(c) would appear to be more similar to the French canvas
in Code 8.1(b), since the inertia and energy measures are much closer than those for Code
8.1(a) (only the entropy measurein Code 8.1(a) is closest to Code 8.1(b)). Thisis consistent
with the images. each of the beach sand and French canvas has alarge proportion of higher
frequency information, since each is a finer texture than that of the detail in the French
canvas.

ent r opy( FD20) =—253. 11
i nertia( FD20) =5. 55- 10°
ener gy( FD20) =5. 41

(a) French canvas (detail)

entropy(FD21) =-196. 84
inertia(FD21)=6.86-10°
ener gy(FD21) =7. 49

(b) French canvas

entropy(FD29)=-310. 61
i nertia( FD29) =6. 38- 10°
ener gy( FD29) =12. 37

(c) Beach sand

Code 8.1 Measures of the Fourier transforms of the three Brodatz textures

By Fourier analysis, the measures are inherently position-invariant. Clearly, the entropy,
inertia and energy are relatively immune to rotation, since order is not important in their
calculation. Also, the measures can be made scale invariant, as a consequence of the
frequency scaling property of the Fourier transform. Finally, the measurements (by virtue
of the normalisation process) are inherently invariant to linear changes in illumination.
Naturally, the descriptions will be subject to noise. In order to handle large data sets we
need a larger set of measurements (larger than the three given here) in order to better
discriminate between different textures. Other measures can include:

the energy in the major peak;
the Laplacian of the major peak;
the largest horizontal frequency;
the largest vertical frequency.

APONE

Amongst others, these are elements of Liu's features (Liu, 1990) chosen in away aimed to
give Fourier transform-based measurements good performance in noisy conditions.
Naturaly, there are many other transforms and these can confer different attributes in
analysis. The wavelet transform is very popular since it allows for localisation in time and
frequency (Laine, 1993) and (Lu, 1997). Other approaches use the Gabor wavelet (Bovik,
1990), (Jain, 1991) and (Daugman, 1993), as introduced in Section 2.7.3. One comparison
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between Gabor wavel ets and tree- and pyramidal-structured wavel ets suggested that Gabor
has the greater descriptional ability, but a penalty of greater computational complexity
(Pichler, 1996). There has also been renewed resurgence of interest in Markov random
fields (Gimmel’ farb, 1996) and (Wu, 1996). Others, such as the Walsh transform (where
the basis functions are 1s and 0s) appear yet to await application in texture description, no
doubt due to basic properties. In fact, a recent survey (Randen, 2000) includes use of
Fourier, wavelet and discrete cosine transforms (Section 2.7.1) for texture characterisation.
These approaches are structural in nature: an image is viewed in terms of a transform
applied to awholeimage as such exposing its structure. Thisislike the dictionary definition
of an arrangement of parts. Another part of the dictionary definition concerned detail: this
can of course be exposed by analysis of the high frequency components but these can be
prone to noise. An alternative way to analyse the detail is to consider the statistics of an
image.

8.3.3 Statistical approaches

The most famous statistical approach is the co-occurrence matrix. This was the result of
the first approach to describe, and then classify, image texture (Haralick, 1973). It remains
popular today, by virtue of good performance. The co-occurrence matrix contains elements
that are counts of the number of pixel pairs for specific brightness levels, when separated
by some distance and at some relative inclination. For brightness levels b1 and b2 the co-
occurrence matrix C is

N N

Couve= 2, 2 (Pry = b O(Py = b2) (86)

where the x co-ordinate X' is the offset given by the specified distance d and inclination 6
by

X' =x+dcos(6) 0O (dO21 max(d)) O(601OO0,2m (8.7)
and the y co-ordinate y' is
y =y+dsin0) 0O (dO1, max(d)) d(® OO0, 2m) (8.8)

When Equation 8.6 is applied to an image, we obtain a square, symmetric, matrix whose
dimensions equal the number of grey levelsin the picture. The co-occurrence matrices for
the three Brodatz textures of Figure 8.2 are shown in Figure 8.4. In the co-occurrence
matrix generation, the maximum distance was 1 pixel and the directions were set to select
the four nearest neighbours of each point. Now the result for the two samples of French
canvas, Figures 8.4(a) and (b), appear to be much more similar and quite different to the
co-occurrence matrix for sand, Figure 8.4(c). As such, the co-occurrence matrix looks like
it can better expose the underlying nature of texture than can the Fourier description. This
is because the co-occurrence measures spatial relationships between brightness, as opposed
to frequency content. This clearly gives alternative results. To generate results faster, the
number of grey levels can be reduced by brightness scaling of the whole image, reducing
the dimensions of the co-occurrence matrix, but this reduces discriminatory ability.
These matrices have been achieved by the implementation in Code 8.2. The subroutine
t ex_cc generates the co-occurrence matrix of an imagei mgiven a maximum distanced
and a number of directionsdi rs. If d and di r s are set to 1 and 4, respectively (as was
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(a) French canvas (deail)

(c) Beach sand

(b) French canvas

Figure 8.4 Co-occurrence matrices of the three Brodatz textures

used to generate the results

in Figure 8.4), then the co-occurrence will be evaluated from

apoint and itsfour nearest neighbours. First, the co-occurrence matrix is cleared. Then, for
each point in the image and for each value of distance and relative inclination (and so long

as the two points are withi

n the image), then the element of the co-occurrence matrix

indexed by the brightnesses of the two points is incremented. Finally, the completed co-
occurrence matrix isreturned. Note that even though the co-occurrence matrix is symmetric,
this factor cannot be used to speed its production.

for
fo

for

cocc

tex_cc(imdist,dirs):

for

x0O0. . maxbri

r y0OO. . maxbri
coccy 40

x0O0. . col s(im-1
ydo. . rows(im-1

for r0O1..dist

for 600 2—ﬂtﬂ.z.rr

"dirs
xc «fl oor(x+r-cos(0))
yc ~floor(y+r-sin(0))

if (0Osyc)-(yc<rows(im)-(0=sxc):-(xc<cols(im)
| COCCimy ximyexe — COCCimy y.imye.xe+l

Code 8.2 Co-occurrence matrix generation

Again, we need measurements that describe these matrices. We shall use the measures
of entropy, inertia and energy defined earlier. The results are shown in Code 8.3. Unlike
visual analysis of the co-occurrence matrices, the difference between the measures of the
three texturesisless clear: classification from them will be discussed later. Clearly, the co-
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occurrence matrices have been reduced to only three different measures. In principle, these
measurements are again invariant to linear shift in illumination (by virtue of brightness
comparison) and to rotation (since order is of no consequence in their description and
rotation only affects co-occurrence by discretisation effects). As with Fourier, scale can
affect the structure of the co-occurrence matrix, but the description can be made scale
invariant.

ent r opy( CCD20) =7. 052- 10°
i nerti a( CCD20) =5. 166- 10°
ener gy( CCD20) =5. 16- 108

(a) French canvas (detail)

ent ropy( CCD21) =5. 339- 10°
i nertia(CCD21)=1.528-10°
ener gy(CCD21) =3. 333- 107

(b) French canvas

ent r opy( CCD29) =6. 445- 10°
i nertia(CCD29)=1.139- 108
ener gy( CCD29) =5. 315- 107

(c) Beach sand

Code 8.3 Measures of co-occurrence matrices of the three Brodatz textures

Grey level difference statistics (a first-order measure) were later added to improve
descriptional capability (Weszka, 1976). Other statistical approaches include the statistical
feature matrix (Wu, 1992) with the advantage of faster generation.

8.3.4 Combination approaches

The previous approaches have assumed that we can represent textures by purely structural,
or purely statistical description, combined in some appropriate manner. Since textureis not
an exact quantity, and ismore anebul ous one, there are naturally many alternative descriptions.
One approach (Chen, 1995) suggested that texture combines geometrical structures (as,
say, in patterned cloth) with statistical ones (as, say, in carpet) and has been shown to give
good performance in comparison with other techniques, and using the whole Brodatz data
set. Thetechniqueis called Statistical Geometric Features (SGF), reflecting the basis of its
texture description. Thisis not adominant texture characterisation: the interest here is that
we shall now see the earlier shape measures in action, describing texture. Essentially,
geometric features are derived from images, and then described by using statistics. The
geometric quantities are actually derived from NB — 1 binary images B which are derived
from the original image P (which has NB brightness levels). These binary images are given

by
1 ifRy,=a

~0Odl 1,NB
0 otherwise

B(a)yy= (8.9)

Then, the points in each binary region are connected into regions of 1s and Os. Four
geometrical measures are made on these data. First, in each binary plane, the number of
regions of 1s and Os (the number of connected sets of 1s and 0s) is counted to give NOC1
and NOCO. Then, in each plane, each of the connected regionsis described by itsirregularity
whichisalocal shape measure of aregion R of connected 1sgiving irregularity |1 defined

by
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1+ «/?rm[gx\/(xi -X)?+(yi —Y)?
I1(R) = ' -1 (8.10)
+N(R)

where x; and y; are co-ordinates of points within the region, X andy are the region’'s
centroid (its mean x and y co-ordinates), and N is the number of points within (i.e. the area
of) the region. The irregularity of the connected 0Os, I0(R), is similarly defined. When this
isapplied to theregions of 1sand Osit gives two further geometric measures, IRGL1(i) and
IRGLO(i), respectively. To balance the contributions from different regions, the irregularity
of the regions of 1sin a particular plane is formed as a weighted sum WI1(a) as

S N(R)I(R)

Wi l(a) = REB(“% NR) (8.11)
RCP

giving a single irregularity measure for each plane. Similarly, the weighted irregularity of
the connected Os is WI0. Together with the two counts of connected regions, NOC1 and
NOCO, the weighted irregularities give the four geometric measures in SGF. The statistics
are derived from these four measures. The derived statistics are the maximum value of each
measure across all binary planes, M. Using m(a) to denote any of the four measures, the
maximum is

M= max (m(a)) (8.12)

aill,NB

the average m is

1 NB
m= == El m(a) (8.13)

the sample mean S is

1 NB
S=g—— El am(a) (8.14)
2 m(a)
a=1
and the final statistic is the sample standard deviation ssd as
1 NB
ssd= | aél (a —=35)?m(a) (8.15)
Zl m(a)
o=

The irregularity measure can be replaced by compactness (Section 7.3.1) but compactness
varies with rotation, though this was not found to influence results much (Chen, 1995).
In order to implement these measures, we need to derive the sets of connected 1s and Os
in each of the binary planes. This can be achieved by using a version of the connect
routine in hysteresis thresholding (Section 4.2.5). The reformulation is necessary because
theconnect routinejust labels connected points whereas theirregularity measuresrequire
a list of points in the connected region so that the centroid (and hence the maximum
distance of a point from the centroid) can be calculated. The resultsfor four of the measures
(for the region of 1s, the maximum and average values of the number of connected regions
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and of the weighted irregularity) are shown in Code 8.4. Again, the set of measures is
different for each texture. Of note, the last measure, m(W 1), does not appear to offer
much discriminatory capability here whereas the measure M(WI1) appears to be a much
more potent descriptor. Classification, or discrimination, isto select which classthe measures
refer to.

M NOC1) =52. 0 M NOC1) =178 M NOC1) =81
m(NOC1) =8. 75 m(NOC1) =11. 52 m(NOC1) =22. 14
MW 1)=1.50 MW 1)=1.42 MW 1)=1. 00
m(W 1) =0. 40 m(W 1) =0. 35 m(W 1) =0. 37
(a) French canvas (detail) (b) French canvas (c) Beach sand

Code 8.4 Four of the SGF measures of the three Brodatz textures
8.4 Classification

8.4.1 The k-nearest neighbour rule

In application, usually we have a description of atexture sample and we want to find which
element of a database best matches that sample. Thus is classification: to associate the
appropriate class label (type of texture) with the test sample by using the measurements
that describe it. One way to make the association is by finding the member of the class (the
sample of a known texture) with measurements which differ by the least amount from the
test sample’s measurements. In terms of Euclidean distance, the difference d between the
M descriptions of a sample, s, and the description of a known texture, k, is

d=, i%l (s — ki)z (8.16)

which is also called the L, norm. Alternative distance metrics include: the L; norm which
is the sum of the modulus of the differences between the measurements

M
L= lesi - kil (8.17)

and the Bhattacharyya distance B

M
B= —Inzl S X ki (818)

but this appears to be used less, like other metrics such as the Matusita difference.

If we have M measurements of N known samples of textures and we have O samples of
each, then we have an M-dimensional feature space that contains the N x O points. If we
select the point, in the feature space, which is closest to the current sample, then we have
selected the sampl€e’s nearest neighbour. Thisisillustrated in Figure 8.5 where we have a
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two-dimensional feature space produced by the two measures made on each sample, measure
1 and measure 2. Each sample gives different values for these measures but the samples of
different classes give rise to clusters in the feature space where each cluster is associated
with a single class. In Figure 8.5 we have seven samples of two known textures: Class A
and Class B depicted by X and O, respectively. We want to classify atest sample, depicted
by +, as belonging either to Class A or to Class B (i.e. we assume that the training data
contains representatives of all possible classes). Its nearest neighbour, the sample with
least distance, is one of the samples of Class A so we could then say that our test appears
to be another sample of ClassA (i.e. the class |abel associated with it is ClassA). Clearly,
the clusterswill be far apart for measures that have good discriminatory ability whereasthe
clusterswill overlap for measures that have poor discriminatory ability. That is how we can
choose measures for particular tasks. Before that, let us look at how best to associate a
class label with our test sample.

Measure 2
A

7 samples (X)
of class A

XX/

Test sample

Nearest neighbour

3-nearest neighbours

7 samples (O)
O of class B

Measure 1

Figure 8.5 Feature space and classification

Classifying a test sample as the training sample it is closest to in feature space is
actually a specific case of a general classification rule known as the k-nearest neighbour
rule. Inthisrule, the class selected is the mode of the sample’s nearest k neighbours. By the
k-nearest neighbour rule, for k = 3, we select the nearest three neighbours (those three with
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the least distance) and their mode, the maximally represented class, is attributed to the
sample. In Figure 8.5, the 3-nearest neighbour is actually Class B since the three nearest
samples contain one from Class A (its nearest neighbour) and two from Class B. Since
there are two elements of Class B, then the sample is attributed to this class by the 3-
nearest neighbour rule. As such, selection from more than one point introduces a form of
feature space smoothing and allows the classification decision not to be affected by noisy
outlier points. Clearly, this smoothing has greater effect for larger values of k. (Further
details concerning a more modern view of the k-nearest neighbour rule can be found in
Michie et al. (1994).

A Mathcad implementation of the k-nearest neighbour rule is given in Code 8.5. The
arguments are t est (the vector of measurements of the test sample), dat a (the list of
vectors of measurements of al samples), si ze (thevalue of k) and no. Thefinal parameter
no dictatesthe structure of the presented dataand is the number of classes within that data.
The training data is presumed to have been arranged so that samples of each class are all
stored together. For two classes in the training data, no = 2, where each occupies one-half
(the same situation asin Figure 8.5). If no = 3 then there are three classes, each occupying
one-third of the compl ete data set and the first third contains the first class, the second third
contains samples of another class whilst the remaining third contains samples of the final
class. In application, first the distances between the current sample, t est , and all other
samples are evaluated by using thefunctiondi st ance. Thenthek nearest neighbours are
selected to form avector of distancesm n, these are the k neighbours which are closest (in
the feature space) to the sample test. The number of feature space splitsf sp isthe spacing
between the classesin the dat a. The class which occurs the most number of timesin the
set of si ze nearest neighboursisthen returned as the k-nearest neighbour, by incrementing
the class number to which each of the k neighbours is associated. (If no such decision is
possible, i.e. there is no maximally represented class, then the technique can be arranged
to return the class of the nearest neighbour, by default.)

k_nn(test, data, size,no): =
for i00..rows(data)-1
dist; -0
for jOO..cols(date)-1
di st; —~di stance(test, data,i)
or i00..size-1
posm n—coord(m n(dist), dist)
di Sposmin—Max(dist)+1
nm n; —posm n
rows(data)
no
for jO1..no
class; -0
for i00..size-1
for jO1..no
class;~class;j+1 if [mnj=(j-1)-fsp]-(min;<j-fsp)
test_class—coord(max(cl ass), cl ass)
test_cl ass

—h

fsp«

Code 8.5 Implementing the k-nearest neighbour rule
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The result of testing the k-nearest neighbour routine is illustrated on synthetic data in
Code 8.6. Here there are two different data sets. The first, Code 8.6(a), has three classes of
which there are three samples (each sample is arow of data, so this totals nine rows) and
each sample is made up of three measurements (the three columns). As this is synthetic
data, it can be seen that each class is quite distinct: the first class is for measurements
around [1, 2, 3]; the second class is around [4, 6, 8]; and the third is around [8, 6, 3]. A
small amount of noise has been added to the measurements. We then want to see the class
associated with atest sample with measurements[4, 6, 8], Code 8.6(b). The result is either
class1, class2 or class 3. Naturally, the 1-nearest nearest neighbour, Code 8.6(c), associates
the test sample with the class with the closest measurements which is class 2 as the test
sample’'s nearest neighbour isthe fourth row of data. The 3-nearest neighbour, Code 8.6(d),
isagain class 2 as the nearest three neighbours are the fourth, fifth and sixth rows and each
of these is from class 2.

01 3 0
g a
-1 3.1 ) . 6 o
g g 0 0
0 1 2.1 3 0 0 0
04 6 g O k-1 3.9 7.8
a a 0 0
popul ationli= (3.9 6.1 8 10 popul ationz;=0> > 38 58830
O O 2.5 4.5 6.5 8.5U
.1 5.9 8.2 O 0
8.8 6.1 2.8 844 8.6
%78 5.9 3.30 023 4.6 8.58
a a
F8.8 6.4 3.1H
(a) 3 classes, 3 samples, 3 features (e) 2 classes, 3 samples, 4 features
test _pointl:=(4 6 8) test_point2:=(2.5 3.8 6.4 8.3)
(b) First test sample (f) Second test sample
k_nn(test_pointl, populationl,1,3)=2| k_nn(test_point2, population2,1,2)=1
(c) 1-nearest neighbour (g) 1-nearest neighbour
k_nn(test_pointl, popul ationl, 3,3)=2| k_nn(test_point2, popul ation2, 3, 2)=2
(d) 3-nearest neighbour (h) 3-nearest neighbour

Code 8.6 Applying the k-nearest neighbour rule to synthetic data

The second data set, Code 8.6(€), istwo classes with three samples each made up of four
measures. The test sample, Code 8.6(f), is actually associated with class 1 by the 1-nearest
neighbour, Code 8.6(g), but with class 2 for the 3-nearest neighbour, Code 8.6(h). Thisis
because the test sample is actually closest to the sample in the third row. After the third
row, the next two closest samples are in the fourth and sixth rows. Asthe nearest neighbour
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is in a different class (class 1) to that of the next two nearest neighbours (class 2); a
different result has occurred when there is more smoothing in the feature space (when the
value of k isincreased).

The Brodatz database actually contains 112 textures, but few descriptions have been
evaluated on the whole database, usually concentrating on a subset. It has been shown that
the SGF description can afford better classification capability than the co-occurrence matrix
and the Fourier transform features (described by Liu'sfeatures) (Chen, 1995). For experimental
procedure, the Brodatz pictures were scanned into 256 x 256 images which were split into
16 64 x 64 sub-images. Nine of the sub-images were selected at random and results were
classified using leave-one-out cross-validation (Lachenbruch, 1968). Leave-one-out refers
to a procedure where one of the samples is selected as the test sample, the others form the
training data (this is the leave-one-out rule). Cross-validation is where the test is repeated
for all samples. each sample becomes the test data once. In the comparison, the eight
optimal Fourier transform features were used (Liu, 1990), and the five most popular
measures from the co-occurrence matrix. The correct classification rate, the number of
samples attributed to the correct class, showed better performance by the combination of
statistical and geometric features (86%), as opposed to use of single measures. The enduring
capability of the co-occurrence approach was reflected by their (65%) performance in
comparison with Fourier (33% —whose poor performanceisrather surprising). Anindependent
study (Walker, 1996) has confirmed the experimental advantage of SGF over the co-
occurrence matrix, based on a (larger) database of 117 cervical cell specimen images.
Another study (Ohanian, 1992) concerned the features which optimised classification rate
and compared co-occurrence, fractal-based, Markov random field and Gabor-derived features.
By analysis on synthetic and real imagery, via the k-nearest neighbour rule, the results
suggested that co-occurrence offered the best overall performance. More recently (Porter,
1996), wavelets, Gabor wavel ets and Gaussian Markov random fields have been compared
(on alimited subset of the Brodatz database) to show that the wavelet-based approach had
the best overal classification performance (in noise as well) together with the smallest
computational demand.

8.4.2 Other classification approaches

Classification is the process by which we attribute a class label to a set of measurements.
Essentially, thisisthe heart of pattern recognition: intuitively, there must be many approaches.
These include statistical and structural approaches: a review can be found in Shalkoff
(1992) and a more modern view in Cherkassky and Mulier (1998). One major approach is
to use a neural network which is a common alternative to using a classification rule.
Essentially, modern approaches centre around using multi-layer perceptronswith artificial
neural networks in which the computing elements aim to mimic properties of neurons in
the human brain. These networks require training, typically by error back-propagation,
aimed to minimise classification error on the training data. At this point, the network
should have learnt how to recognise the test data (they aim to learn its structure): the output
of a neural network can be arranged to be class labels. Approaches using neural nets
(Muhamad, 1994) show how texture metrics can be used with neural nets as classifiers,
another uses cascaded neural nets for texture extraction (Shang, 1994). Neural networks
are within aresearch field that has shown immense growth in the past two decades, further
details may befound in Michie (1994), Bishop (1995) (often a student favourite), and more
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targeted at vision in Zhou and Chellappa (1992). Support Vector Machines (SVMs) (Vapnik,
1995) are one of the more popular new approaches to data modelling and classification.
Amongst SVMs advantagesis excellent generalisation capabilty which concernsthe ability
to classify correctly samples which are not within feature space used for training. SVMs
are aready finding application in texture classification (Kim, 1999).

Also, there are methods aimed to improve classification capability by pruning the data
to remove that which does not contribute to the classification decision. Principle components
analysis (the Karhunen—Loeve transform) can reduce dimensionality, orthogonalise and
remove redundant data. There is also linear discriminant analysis (also called canonical
analysis) to improve class separability, whilst concurrently reducing cluster size (it is
formulated to concurrently minimise the within-class distance and to maximise the between-
class distance). There are also algorithms aimed at choosing a reduced set of features for
classification: feature selection for improved discriminatory ability; a recent comparison
can befound in Jain and Zongker (1997). Alternatively, the basis functionals can be chosen
in such away as to improve classificatiion capability. Recently, interest in biometrics has
focused on combining different classifiers, such asface and speech, and there are promising
new approaches to accommodate this (Kittler, 1998a) and (Kittler, 1998b).

8.5 Segmentation

In order to segment an image according to its texture, we can measure the texture in a
chosen region and then classify it. Thisis equivalent to template convolution but where the
result applied to pixelsis the class to which they belong, as opposed to the usual result of
template convolution. Here, we shall use a7 x 7 template size: the texture measures will
be derived from the 49 points within the template. First though we need data from which
we can make a classification decision, the training data. Naturally, this depends on a
chosen application. Here we shall consider the problem of segmenting the eye image into
regions of hair and skin.

Thisis atwo class problem for which we need samples of each class, samples of skin
and hair. We will take samples of each of the two classes, in this way the classification
decision is as illustrated in Figure 8.5. The texture measures are the energy, entropy and
inertia of the co-occurrence matrix of the 7 x 7 region, so the feature space is three-
dimensional. The training data is derived from regions of hair and from regions of skin, as
shown in Figures 8.6(a) and (b), respectively. The first half of this data is the samples of
hair, the other half is samples of the skin, as required for the k-nearest neighbour classifier
of Code 8.5.

We can then segment the image by classifying each pixel according to the description
obtained from its 7 x 7 region. Clearly, the training samples of each class should be
classified correctly. The result is shown in Figure 8.7(a). Here, the top left corner is first
(correctly) classified as hair, and the top row of theimage is classified as hair until the skin
commences (note that the border inherent in template convolution reappears). In fact,
much of the image appears to be classified as expected. The eyeregionis classified as hair,
but thisis a somewhat arbitrary decision; it issimply that hair is the closest texture feature.
Also, some of the darker regions of skin are classified as hair, perhaps the result of training
on regions of brighter skin.

Naturaly, this is a computationally demanding process. An alternative approach is
simply to classify regions as opposed to pixels. This is the tiled approach, with the result
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(a) Hair (b) Skin

Figure 8.6 Training regions for classification

(a) Convolved (b) Tiled (c) Thresholded

Figure 8.7 Segmenting the eye image into two classes

shown in Figure 8.7(b). The resolution is clearly very poor: the image has effectively been
reduced to aset of 7 x 7 regions but it is much faster, requiring only 2% of the computation
of the convolution approach.

A comparison with the result achieved by uniform thresholding is given, for comparison,
in Figure 8.7(c). Thisisequivalent to pixel segmentation by brightness alone. Clearly, there
are no regions where the hair and skin are mixed and in some ways the result appears
superior. Thisis in part due to the simplicity in implementation of texture segmentation.
But the result of thresholding depends on illumination level and on appropriate choice of
the threshold value. The texture segmentation method is completely automatic and the
measures are known to have invariance properties to illumination, as well as other factors.
Also, in uniform thresholding there is no extension possible to separate more classes
(except perhaps to threshold at differing brightness levels).

8.6 Further reading

Clearly, there is much further reading in the area of texture description, segmentation, and
classification as evidenced by the volume of published work in thisarea. Thereisonefairly
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recent survey (Reed, 1993), which is certainly more recent than the earlier surveys (Wechsler,
1980; Davis, 1981), but it is alarge field of work to survey with many applications. Even
though it isalarge body of work, itisstill only asubset of the field of pattern recognition.
In fact, a recent review of pattern recognition gives many pointers to this fascinating and
extensive field (Jain, 2000). In this text, the general paradigm is to extract features that
describe the target and then to classify it for purposes of recognition. In vision-based
systems such approaches are used in biometrics. ways to recognise a person’s identity by
some innate human properties. The biometrics of major recent interest are signatures,
speech, irises and faces, though there is work in other areas including hand geometry (as
used in USimmigration) and gait. Thefirst text on biometrics appeared only recently (Jain,
1999) and surveys al major biometric approaches. Naturally, there is much interest in
automatic target recognition both in military and commercial applications. This naturally
translates to medical studies, where the interest is either in diagnosis or therapy. Here,
researchers seek to be able to identify and recognise normal or abnormal features within
one of the many medical imaging modalities, for surgical purposes. This is the world of
image processing and computer vision. But all these operations depend on feature extraction,
that iswhy thistext has concentrated on these basic methods, for no practical vision-based
system yet exists without them. We finish here, we hope you enjoyed the book and will find
it useful in your career or study. Certainly have a look at our website, htt p://

www. ecs. sot on. ac. uk/ ~nmsn/ book/ , asyou will find more material there. Don’t
hesitate to send us comments or suggestions. A bientot!
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B O I
Appendices

9.1 Appendix 1: Homogeneous co-ordinate system

The homogeneous co-ordinate system is essentially the mathematics of how we relate
camera co-ordinatesto ‘real world’ co-ordinates: the relation between image and physical
space. Its major advantages are that it is linear, consistent and easy to use. Image
transformations become simple matrix operations, as opposed to geometric calculations. It
includes perspective (distance) and as such finds use in stereo and 3D vision applications
and in camera control. It is not mainstream to shape analysis, since in many applications
we use orthographic projections where spatial physical co-ordinates map directly to image
space co-ordinatesignoring projection. But there are occasions when perspective is extremely
important; as such it is necessary to have a co-ordinate system which can handle it. The
homogeneous co-ordinate system has proved popular for this task for many years.

It is common to represent position as a set of X, y and z co-ordinates where x and y
usually index spatial position and z is depth. By reference to the system arrangement
illustrated in the figure below, by triangulation, the image point co-ordinate y; is related to
the focal length f and the X, y, z co-ordinate of the physical point x,, y,, z, by

Image plane World plane
Image point Centre of projection (lens) =[0 0 f]"
X
— T
x;=[xi y; 0] Optical axis

z
World point

X = DX Yp 2"

\\\/

Co-ordinate system arrangement
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Yo _ Vi
z,-f ~ f ©1)

Similar equations can be developed for the x and z co-ordinates. For z, >> f, asis often
the case with short focal lengths, y; = fy,/z, is a simple approximation to Equation 9.1.
(Notethat theratio z,/f is often called the magnification ratio.) Unfortunately, Equation 9.1
is non-linear in z, and f. Also, the ‘world’ co-ordinates are fixed to the image co-ordinates
and translation and perspective are different mathematical functions (addition and
multiplication, respectively). Because of these factors, many applications use the homogeneous
co-ordinate system.

A Cartesian vector of co-ordinates X, is given by

=[xy 47 (9.2)
and the homogeneous co-ordinate vector X, includes an extra element
Xp=[wx wy wz w]' (9.3)

where w is an, arbitrary scalar. Accordingly, there is no unique representation for a point
using homogeneous co-ordinates (which is consistent with imaging real-world data anyway).
Conversion between the homogeneous and Cartesian co-ordinates can be achieved by
division by w. A perspective transformation matrix P can be used to transform apparent
distance to obtain a set of transformed co-ordinates x; as

Xt = P(f)xp (9.4)
where
m O 0[O
O [l
0 1
O O
P(f)= 0 0 (9.5)
DO 0 1 0
H o vf -1f
S0
X; = wa wy Wz % —-W ET
- (9.6)
w(z —
= é/vx wy Wz —( ; ) E
giving
ofx fy fz d

Xe = Hz=f z-f z-1 9.7)

To shift the data (for tranglation), we need to add the amount of shift to each co-ordinate
value. A set of transformed co-ordinates x;, each by an amount d, is given by

X;=Xp—d (9.8)

so this can be achieved in matrix form by multiplying x;, by atranslation matrix T according
to:
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Ml 0 0 -—-dx[g
EO 1 0 -dy g
X; = T(d)xp = O o 1 a4z O (9.9)
0 o
HO 0 o 1 H

for clockwise rotation about the z axis by an angle 6, the new vector of co-ordinates x, is
obtained from a rotation matrix R, as:
0[O

jcos(0) sin(0)
0

0
o .
msin(@) cos(B) 0 Of
X, = R, (O)xy, = X 9.10
Opn=g o 1 0% (9.10)

0 O
H o 0 0 1f

If this rotation matrix is applied to an image then points will be unspecified in the rotated
image, and appear as (say) black, asin Figure 3.21(a). Thisiswhy practical implementation
of image rotation is usually by texture mapping; further details can be found in Parker
(1994). The matrix in Equation 9.10 can be used to rotate a shape, notwithstanding inherent
discretisation difficulties. Other rotation matrices can be similarly defined for rotation
about the x and y axes, R, and Ry, respectively. Finally, for image scaling, we derive anew
set of co-ordinates xs according to ascale factor s by multiplication by ascaling matrix S(s)
as.

s 0 O 0
BO s 0 OE
Xi = S(s)Xy, = B o s o Xh (9.11)

O
Hb o o 1H{

Each transform, perspective, translation, rotation and scaling is expressed in matrix form.
Accordingly, in general, a set of co-ordinates of image points first transformed by d, then
scaled by s, then rotated about the z axis by g; and, finally, with perspective change by f;,
is expressed as

X = P(f)RAA)S(s) T (d1)xn (9.12)

Note that these operations do not commute and that order is important. This gives a linear
and general co-ordinate system where image transformations are expressed as simple
matrix operations. Furthermore, the conventional Cartesian system can easily be recovered
from them. Naturally, homogeneous co-ordinates are most usually found in texts which
include 3D imaging (a good coverageis given in Shalkoff (1989) and naturally in texts on
graphics (see, for example, Parker (1994)).
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9.2 Appendix 2: Least squares analysis

9.2.1 The least squares criterion

Theleast squarescriterion isone of the foundations of estimation theory. Thisisthe theory
that concerns extracting the true value of signals from noisy measurements. Estimation
theory techniques have been used to guide Exocet missiles and astronauts on moon missions
(where navigation data was derived using sextants!), all based on techniques which employ
the least squares criterion. The least squares criterion was originally developed by Gauss
when he was confronted by the problem of measuring the six parameters of the orbits of
planets, given astronomical measurements. These measurements were naturally subject to
error, and Gauss realised that they could be combined together in some way in order to
reduce a best estimate of the six parameters of interest.

Gauss assumed that the noise corrupting the measurements would have a normal
distribution, indeed such distributions are often now called Gaussian to honour his great
insight. As a consequence of the central limit theorem, it may be assumed that many real
random noise sources are normally distributed. In cases where this assumption is not valid,
the mathematical advantages that accrue from its use generally offset any resulting loss of
accuracy. Also, the assumption of normality is particularly invaluable in view of the fact
that the output of a system excited by Gaussian-distributed noise is Gaussian-distributed
also (as seen in Fourier analysis, Chapter 2). A Gaussian probability distribution of a
variable x is defined by

—(xx)?2
o? (9.13)

-1
p(x) = o—\/ﬁe

where X isthe mean (loosely the average) of the distribution and o? isthe second moment
or variance of the distribution. Given many measurements of a single unknown quantity,
when that quantity is subject to errors of a zero-mean (symmetric) normal distribution, it
is well known that the best estimate of the unknown quantity is the average of the
measurements. In the case of two or more unknown quantities, the requirement is to
combine the measurements in such a way that the error in the estimates of the unknown
quantities is minimised. Clearly, direct averaging will not suffice when measurements are
a function of two or more unknown quantities.

Consider the case where N equally precise measurements, fi, o . . . fy, are made on a
linear function f(a) of a single parameter a. The measurements are subject to zero-mean
additive Gaussian noise v;(t) as such the measurements are given by

f.=f(a) +vi(t) 0i 01, N (9.14)

The differences f between the true value of the function and the noisy measurements of
it are then

f=f(a)—-f, OO 1,N (9.15)
By Equation 9.13, the probability distribution of these errorsis
. 1 ~fi)?
f) = e OO LN 9.16
p(fi) ova (9.16)
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Since the errors are independent, the compound distribution of these errors is the product
of their distributions, and is given by

B 1« f1)2+( fz>2+(2fs)2+...+( fn)?)
fy=——=—¢e o 9.17
p(f) = N (9.17)
Each of the errors is a function of the unknown quantity, a, which is to be estimated.
Different estimates of a will give different values for p(f). The most probable system of
errors will be that for which p( ) isamaximum, and this corresponds to the best estimate
of the unknown quantity. Thus to maximise p(f)

E —((f)2+(F2)%+(f3)%+.4(fn)?) E
1 — 1 2
max{p(f)} = max3 e o 0
O~/ 2Tt
H H
E —((f)?+(F2)?+(3)%+.+(n)2) E
= max[e o? 0 (9.18)
H H

= max{—((f1)2 + (F,)2+ (fa)2+ ...+ (fy)2}

=min{(f)2 + ()2 + (F3)2+ ... + (f\)3

Thus the required estimate is that which minimises the sum of the differences squared and
this estimate is the one that is optimal by the least squares criterion.

This criterion leads on to the method of |east squares which follows in the next section.
Thisis amethod commonly used to fit curves to measured data. This concerns estimating
the values of parameters from a complete set of measurements. There are also techniques
which provide estimate of parametersat timeinstants, based on a set of previous measurements.
These techniquesinclude the Weiner filter and the Kalman filter. The Kalman filter wasthe
algorithm chosen for guiding Exocet missiles and moon missions (an extended square root
Kaman filter, no less).

9.2.2 Curve fitting by least squares

Curve fitting by the method of least squares concerns combining a set of measurements to
derive estimates of the parameters which specify the curve which best fits the data. By the
least squares criterion, given a set of N (noisy) measurements f; i 01, N which are to be
fitted to a curve f(a) where a is a vector of parameter values, we seek to minimise the
square of the difference between the measurements and the values of the curve to give an
estimate of the parameters a according to

N
é:mingl(fi —f(xi,yi,a))? (9.19)
Since we seek a minimum, by differentiation we obtain

ai%(fi _f(xifyi’a))2
> 0 (9.20)
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which implies that

S of(a) _
2 igl ( fi ~f (Xi i a)) da =0 (921)
The solution is usually of the form
Ma=F (9.22)

where M is a matrix of summations of products of the index i and F is a vector of
summations of products of the measurements and i. The solution, the best estimate of the
values of a, is then given by

a=M71F (9.23)
By way of example, let us consider the problem of fitting a two-dimensional surface to a
set of data points. The surface is given by

f(x,y, @) =a+ bx + cy + dxy (9.24)

where the vector of parametersa=[a b ¢ d]" controls the shape of the surface, and (x,
y) are the co-ordinates of a point on the surface. Given a set of (noisy) measurements of the
value of the surface at points with co-ordinates (x, y), f = f(X, y) + v;, we seek to estimate
values for the parameters using the method of least squares. By Equation 9.19 we seek

a=[a b ¢ a]T:mini%(fi—f(xi,yi,a))z (9.25)

By Equation 9.21 we require

N

22 (fi—(a+bx +oy, sy Y 8)

da

By differentiating f(x, y, @) with respect to each parameter we have

0 (9.26)

W —1 (9.27)
of (Xi, i) (;B i) _ (9.28)
of (Xi ’ yl) —
S -y (9.29)
and
of (xi,yi) _
K3 2y (9.30)

and by substitution of Equations 9.27, 9.28, 9.29 and 9.30 in Equation 9.26, we obtain four
simultaneous equations:

N
2 (fi—(a+bx+oy+dxy))x1=0 (9.31)
N
Zl(fi —(a+bx +cy +dxy)) xx =0 (9.32)
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N
Zl(fi —(a+bx; +cy +dxy)) xy; =0 (9.33)
and

N
.Zl(fi —(a+bx;+cy +dxy)) x Xy =0 (9.34)
1=

N

since Zl a = Na Equation 9.31 can be reformulated as:

1=
N N N N
Zlfi—Na—bglxi—c._zlyi—d__zlxiyi =0 (9.35)

and Equations 9.32, 9.33 and 9.34 can be reformulated likewise. By expressing the
simultaneous equations in matrix form,

0 N N N 0 N 0
g N % 5V 5%y 0 g &f o
0 N N N N E O N O
05y 2 (x)? 2 XY 2 (%)?Yy, U5y U
iz™ =R CRabd G\ O =z '™ 0
0 0= g [19.36)
N N N N 0 N
Oy v 2 ()2 Os¢,, O
Ei§1y. 2 XY, 2 (yi) 2% (%) i Ei§lf.y. 0
Ty ZO0Py ZxO0? Z00P6?EE0 B2y D
= 1)1 i1 | I i=1 I | i=1 | | B:ll 1 IE

and thisis the same form as Equation 9.22 and can be solved by inversion, as in Equation
9.23. Note that the matrix is symmetric and itsinversion, or solution, does not impose such
agreat computational penalty as appears. Given a set of data points, the values need to be
entered in the summations, thus completing the matrices from which the solution is found.
This technique can replace the one used in the zero-crossing detector within the Marr—
Hildreth edge detection operator (Section 4.3.3), but appeared to offer no significant advantage
over the (much simpler) function implemented there.

9.3 Appendix 3: Example Mathcad worksheet for Chapter 3

The appearance of the worksheets actually depends on the configuration of your system
and of the Mathcad set-up. To show you how they should look, here's atypeset version of
the shortest worksheet. Note that the real worksheet’s appearance will depend largely on
your machine’s setup.

Chapter 3 Basic Image Processing Operations: Chapter 3. MCD Written by: Mark S.
Nixon, 10/11/95, Last Revision: 7 August 1997

Thisworksheet isthe companion to Chapter 3 and implements the basic image processing
operations described therein. The worksheet follows the text directly and allows you to
process the eye image.

This chapter concerns basic image operations, essentially those which alter a pixel’s
value in a chosen way. We might want to make an image brighter (if it is too dark), or to
remove contamination by noise. For these, we would need to make the pixel values larger
(in some controlled way) or to change the pixel’s value if we suspect it to be wrong,
respectively. Let’s start with images of pixels, by reading in the image of a human eye.
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eye: =READBMP( eye_ori g)

We can view (part) of the image asamatrix of pixelsor we can view it asan image (viewed
using Mathcad's picture facility) as

115 117 130 155 155 146 146 135 115 132

135 130 139 155 141 146 146 115 115 135
139 146 146 152 152 155 117 117 117 139
139 144 146 155 155 146 115 114 117 139

139 146 146 152 150 136 117 115 135 139

eye = 146 146 146 155 149 130 115 137 135 145

147 146 142 150 136 115 132 146 146 146
146 141 155 152 130 115 139 139 146 146
136 145 160 141 115 129 139 147 146 141

117 146 155 130 115 115 137 149 141 139
132 152 150 130 115 115 142 149 141 118

137 149 136 130 130 114 135 139 141 139

137 145 130 117 115 115 117 117 132 132

(a) (b)

This image is 64 pixels wide and 64 pixels in height. Let’s check: col s(eye) =64
rows(eye) =64

This gives us 4096 pixels. Each pixel is an 8-bit byte (n.b. it's stored in .BMP format)
so this gives us 256 possible intensity levels, starting at zero and ending at 255. It's more
common to use larger (say 256 x 256) images, but you won'’t be tempted to use much larger
onesin Mathcad. It's very common to use 8 bitsfor pixels, asthisiswell suited to digitised
video information.

We describe the occupation of intensity levels by a histogram. This is a count of all
pixels with a specified brightness level, plotted against brightness level. As afunction, we
can calculate it by:

hi stogram(pic):= |for brightOO0..255 8 hits give 256 levels, 0..255
pi xel s_at _| evel prjgnt <0 Initialise histogram
for x00..col s(pic)-1 Cover whole picture
for y0O..rows(pic)-1
l'evel —picy « Find level
pi xel s_at _| evel | qyel Increment points at
—pixels_at_level e+l  specified levels
pi xel s_at _| evel Return histogram
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So let’s work out the histogram of our eye image:
eye_hi st ogram =hi st ogran( eye)
To display it, we need a horizontal axis which gives the range of brightness levels

bri ght:=0..255

400 T T

eye_histogram bright 200 — ]

0 100 200
Bright

So here’'s the histogram of our picture of the eye image, p. The bright pixels relate mainly
to the skin, the darker ones to the hair.

The most common point operator replaces each pixel by a scaled version of the original
value. We therefore multiply each pixel by anumber (like again), by specifying afunction
scale which is fed the picture and the gain, or a level shift (upwards or downwards). The
function scal e takes a picture pi ¢ and multipliesit by gai n and adds al evel

scal e(pic,gain,level):=|for x00..col s(pic)-1 Address the whole picture
for yOO..rows(pic)-1
newpi c, xfl oor Multiply pixel
(gain-picy «+level) bygainand add level
newpi ¢ QOutput the picture
bri ghter:=scal e(eye, 1.2, 10) So let’s apply it:

You can change the settings of the parameters to see their effect, that’s why you've got
this electronic document. Try making it brighter and darker. What happens when the gain
istoo big (>1.23)?

So our new picture looks like the one overleaf (using Mathcad's picture display facility):

The difference is clear in the magnitude of the pixels, those in the ‘brighter’ image are
much larger than those in the original image, as well as by comparison of the processed
with the original image. The difference between the images is much clearer when we look
at the histogram of the brighter image. So let’s have a look at our scaled picture:
b _eye_ hist:=histogranm(brighter)
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Processed

148 150 166 196 196 185 185 172 148 168

172 166 176 196 179 185 185 148 148 172

176 185 185 192 192 196 150 150 150 176

176 182 185 196 196 185 148 146 150 176

176 185 185 192 190 173 150 148 172 176

brighter = 185 185 185 196 188 166 148 174 172 184

186 185 180 190 173 148 168 185 185 185

185 179 196 192 166 148 176 176 185 185 Original

173 184 202 179 148 164 176 186 185 179

150 185 196 166 148 148 174 188 179 176

168 192 190 166 148 148 180 188 179 151

174 188 173 166 166 146 172 176 179 176

174 184 166 150 148 148 150 150 168 168

(a) )
400 T I
b_eye_histyign 200 |
0 0 100 200
Bright

Which is what we expect; it's just been moved along the brightness axis (it now starts
well after 100), and reveals some detail in the histogram which was obscured earlier.

Generally, for point operators we generate a function which is used as a look-up table
to find the new value of a point. Pure scaling is alook-up table whose graph is a straight
line with offset set by the level. The slope of this line can be:

(i) positive and >1 for magnification;

(if) positive and <1 for reduction;
and (iii) negative ( + constant) for inversion.
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Try these out!
We might also want to use a more specialised form of look-up table, say the saw-tooth
operator. For this, we split the brightness range up into bands, and use a linear look-up
table in each.

saw_t 0ot hy,j gne - =mod( bri ght, 60) and usethe modulus operator to giveasaw_tooth
function

50 — —

saw_tooth igne

0 100 200
Bright

So we'll define a saw-tooth function as:
saw_t oot h(bri ght ness, factor): =nod(bri ght ness, factor)

And as afunction it is

saw( pi ¢, modul us): = |[for x0O0..col s(pic)-1 Addressthewholepicture
for yOO..rows(pic)-1
newpi cy y—~saw_tooth Apply saw_tooth
(pi cy x,modul us)
newpi ¢ Output the picture

So let’'s saw it: sawn: =saw( eye, 60)

A common use of point functions is to equalise the intensity response of a camera. We
work out the histogram of the camera response. This gives a function which can equalise
the combined response of function* camera equal to unity, to give a constant intensity
response. Let us suggest that the known performance of the camera is exponential. The
equalising function is logarithmic since log(exp(q))=q. So let’'s see what it's like:
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lo[af2]3]as[e|7[8]o]a0]

2 19 26 26 32 32 3 57 57 57 19 24
3 19 24 26 35 35 26 55 54 57 19 25
4 19 26 26 32 30 16 57 55 15 19 33

sawn=|5 26 26 26 35 29 10 55 17 15 25 35

7| 26 21 3 32 10 55 19 19 26 26 16

10 12 32 30 10 55 55 22 29 21 658 15

11 17 29 16 10 10 54 15 19 21 19 16

12 17 25 10 57 55 55 57 57 12 12 15

@)

for x00..cols(pic)-1 Address the whole picture
for yOO..rows(pic)-1
newpi cy  ~fl oor
(11 n(picy «+0.000001)|) Apply afunction (log)
newpi c Output the picture

apply(pic):

So let’stry it out: new_pi c: =appl y(eye)

J[oJa]2]3[af[s5][6][7][8]09]
27 32 67 135 135 111 111 81 27 73
81 67 92 135 97 111 111 27 27 81
92 111 111 127 127 135 32 32 32 92
92 105 111 135 135 111 27 24 32 92
92 111 111 127 122 84 32 27 81 92

111 111 111 135 119 67 27 86 81 108
113 111 100 122 84 27 73 111 111 111
111 97 135 127 67 27 92 92 111 111
84 108 149 97 27 65 92 113 111 97
32 111 135 67 27 27 86 119 97 92
73 127 122 67 27 27 100 119 97 35
86 119 84 67 67 24 81 92 97 92
86 108 67 32 27 27 32 32 73 73

new_pic =

© |0 |IN o (g~ W |N |- |O

=
o

[=Y
[N

[=Y
N

(@
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Now we can’'t see anything! This is because there are only two brightness levels in the
image (it wasn’t acquired by a camera with exponential performance). In order to show up
more clearly what happens to images, we need to be able to manipulate their histograms.
Intensity normalisation stretches a picture’s histogram so that all available brightness
levels are used. Having shifted the origin to 0, by subtracting the minimum brightness, we
then scale up the brightness, by multiplying by some fraction of full range. It's also called
histogram normalisation. Let's say we have 8-bit pixels, giving 256 brightness levels
(0..255), our function is:

normal i se(pic):=|mn_val «m n(pic) Find maximum
max_val —. . max(pic) Find minimum
range —. . max_val —m n_val Find range of intensity

for x00..cols(pic)-1
for yOO..rows(pic)-1
newpi c, , ~fl oor

. . 255 g ; :
@pl Cyx—M n_val )EngeH)' 000001B Map intensity values

Solet’snormalisethe eyeimage: new_pi c: =nor el i se( eye) . Thismakes maximal
use of the available grey levels.

[oJ1]2]3]als]e6[7][8]9]
27 32 67 135 135 111 111 81 27 73
81 67 92 135 97 111 111 27 27 81
92 111 111 127 127 135 32 32 32 92
92 105 111 135 135 111 27 24 32 92
92 111 111 127 122 84 32 27 81 92

111 111 111 135 119 67 27 86 81 108
113 111 100 122 84 27 73 111 111 111
111 97 135 127 67 27 92 92 111 111
84 108 149 97 27 65 92 113 111 97
32 111 135 67 27 27 86 119 97 92
73 127 122 67 27 27 100 119 97 35
86 119 84 67 67 24 81 92 97 92
86 108 67 32 27 27 32 32 73 73

new_pic =

© (00 N |o ||~ |[wWw ([N |- O

=y
o

=
[N

=y
N

(@) (b)

Let's see the normalised histogram:n_hi st : =hi st ogr am( new_pi ¢)
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400

n;hiSt bright 200 —

N

Al AA NPT M\A”\AM MN\ AA A

50 100 150
Bright

The histogram now occupies the whole available range, as required.

Histogram equalisation is a nonlinear histogram-stretching process. The equalised
histogram is a resampled cumulative histogram. We first work out the histogram of the
picture, then we work out the cumulative histogram. Finally, we resample the cumulative
histogram, giving a look-up table to map original intensity levels to the equalised ones.

The main difference between equalisation and normalisation is that in normalisation all
grey levels have the same ‘weight’: the process stretches the histogram to occupy the
available range. In equalisation, the histogram is resampled or manipulated, again to cover
the available range. Since the histogram is manipulated, brightness values do not have the

same weight.

equal ise(pic): =

range — 255
nunber —rows(pic)-col s(pic)
for brightO0..255

pi xel s_at _l evel prignt .0
for x0O0..col s(pic)-1

for yOO..rows(pic)-1

pi xel s_at _| evel picyx <
pi xes_at _| evel picy, t1

sum-0
for |evel 00.. 255
sume—sumtpi xel s_at _| evel | qye

. range
hi st |eve «floor nunber EE m

+0. 00001@

for x 0..cols(pic)-1
for y 0..rows(pic)-1

newpi ¢y, « histpic,

newpi ¢

Define output range
Number of points

Initialise histogram

Determine histogram

Form cumulative histogram

Make |ook-up table

Map input to output
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So we'll equalise our eye: new _pi ¢: =equal i se(eye)

new_pic =

loJ1]2[3[afs5[e6[7]8]9]10]

26

35

43 78 78 64 64 47 26 45 59

a7

43

54 78 57 64 64 26 26 47 59

54

64

64 73 73 78 35 35 35 54 59

54

59

64 78 78 64 26 13 35 54 61

54

64

64 73 70 51 35 26 47 54 73

64

64

64 78 68 43 26 52 47 61 78

65

64

59 70 51 26 45 64 64 64 64

64

57

78 73 43 26 54 54 64 64 51

51

61

86 57 26 38 54 65 64 57 35

© |0 |IN|o |ga|hd|w (N |k |O

35

64

78 43 26 26 52 68 57 54 47

=
(=)

45

73

70 43 26 26 59 68 57 36 47

[
[N

52

68

51 43 43 13 47 54 57 54 51

[
N

52

61

43 35 26 26 35 35 45 45 47

(@ (b)

This is how Mathcad displays images when you display them using the surface plot
facility (which is why we're using the picture facility instead, it's faster too!). Now try
equalising the image br i ght er (as defined earlier) — do you expect the result you get?

The histogram tellsus what hasreally happened to the picture: e_hi st : =hi st ogr am

(new_pi c)
i AM L J\AMQOAMAM{?AJ\/\MMM nﬁ A

One way of interpreting this is that the histogram is now balanced between black and

white.
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If we want to find pixels with brightness above a specified level, we use thresholding.
The operator is:

threshol d(pic,value):= [for x0O0..cols(pic)-1 Cover the whole picture
for yOO..rows(pic)-1
newpi cy x <255 if Set any point above the
pi cy y=2val ue threshold to white,
newpi cy 0 otherw se otherwisesetitto
black
newpi c Return the new picture

Let'stry it out: new _pi c: =t hr eshol d(eye, 161) by picking out points in the
eye image brighter than 160.
So all points above the threshold are set to 255 (white), those below are set to 0 (black).

o O |o|o|o|lo|o|o|lo|o|o o o |w

o O |0 |0 |o|lo|o|o|o|o |o o o (&
o |0 |o|o|o|lo|o|o|o|o|o o o (N

=
o

new_pic =

© |0 |IN|o |ga|hd|w (N (kO

ﬁ:\

[y
o

[
[N

o |0 |o|o|o|lo|o|o|lo|o|o o o (o
O O |0 |0 |o|lo|o|o|o |0 |o |o o |-
O O |0 |0 |0o|lo|o|o|o |0 |o o |o(N
o O |0 |o|o|lo|o|o|o|o |o o o |ua
o O |0 |o|o|lo|o|o|o|o |o |o oo
o O |0 |0 |o|lo|o|o|o|o |o |o o |
o O |0 |o|o|lo|o|o|o|o |o |o o |©
o |O |0 |0 |o|lo|lo|o|o |o|o |o o

[
N

(b)

_
2

Try different values for the threshold, other than 160.

We'll now move on to group operators where the new pixel values are the result of
analysing points in a region, rather than point operators which operate on single points.
First, we have a template which describes the region of interest and we then convolve this
by summing up, over the region of the template, the result of multiplying pixel values by
the respective template (weighting) coefficient. We can’t process the borders since part of
the template falls outside the picture. Accordingly, we need an operator which sets an
image to black, so that the borders in the final image are set to black. Black is zero
brightness values, so the operator which sets a whole image to black is:
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zero(pic): = for x0OO0..rows(pic)-1
for yOO..rows(pic)-1
newpi cy x <0
newpi c

We shan’t bother to display the results of this operator!
The generalised template convolution operator is then:

tm.conv(pic,temp):= | conv—zero(pic)
[col s(temp)O
wfl oor O 2 .

for yOw .rows(pic)—-w1
for x0Ow. .cols(pic)—-w1
convy 0
for yydoO..rows(tenp)-1
for xx0OO..col s(tenp)-1
P? C_y «y-wtyy
pi C_X —X—WHXX
CONVy y «CONVy ,+

(I
f1 oor(conv)

(Pi Cpic y, pic x €My yx)

Set output picto black
Find size of template

Cover whole picture

Initialise sum
Cover whole
template

Find x co-ordinate
Find y co-ordinate
Add product to sum

Return (integer)
picture

A 3x3 averaging (mean) operator sums the pointsin the 3x3 neighbourhood centred on the
point of interest. This means we can’t process a 1 pixel wide picture border so the operator
first sets the whole output picture to black and then replaces points by the average of their

3x3 neighbourhood. A direct implementation of this process is

ave33(pic): =

newpi ¢ —zer o( pi c)

for xO1..rows(pic)-2
for yOl..rows(pic)-2

+PiCy 1 +Pi Cyyg +PiCy yag. - .

newpi ¢, , «floor . . )
Wp o +p| Cy+l.x—1+pI Cy+1,x +p| Cy+1,x+l

D:pl Cy—l,x—l"’pi Cy—l,x +p| Cy—l,x+1- t

od

| 9

newpi c

od
o0
B

Set output picture
to black

Address the
whole picture

Calculate average

Output it

Let's apply the 3x3 averaging operator snmoot h: =ave33(eye)
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So our smoothed picture looks like:

133 141 147 150 144 135 124 124 131
140 145 149 150 141 130 119 123 132
143 148 150 150 138 125 118 125 136
144 148 150 147 134 125 122 130 140
144 147 147 141 131 127 130 138 144
146 148 146 136 129 129 137 142 144
146 148 142 131 127 133 142 144 141
144 147 139 126 126 134 142 143 138
143 145 134 122 124 135 143 141 134
141 142 132 121 124 132 141 139 136
140 137 128 120 122 127 134 134 134
136 130 122 118 121 125 130 131 133

smooth =

0
0
0
0
0
0
0
0
0
0
0
0
0

(@

This is equivalent to convolving a template which has all elements set to unity and then
dividing the result by the sum of the template coefficients. A general form of an averaging
template operator (which can accept any template size) is

ave(pic,w nsize): =
new.zero(pic)

hal f —f1 oor @W'nzi'zeg

for x0Ohal f..col s(pic)-hal f-1
for yOhal f..rows(pic)-hal f-1

DNi nsize-1 winsize-1 0
new, , —fl oor B iwizn=0 jw%w PI Cy+i vi n-hal f,x+j wi n-hal f E
0 (Wi nsi ze[wi nsi ze) O

new

So let’s apply it: snoot h: =ave(eye, 3)
With result:

328 Feature Extraction and Image Processing



[oJaf2[3]4a]s]6[7][8]9]

0

0

0

0

0O 0O O O 0 o0

133

141

147

150 144 135 124 124 131

140

145

149

150 141 130 119 123 132

143

148

150

150 138 125 118 125 136

144

148

150

147 134 125 122 130 140

smooth =

144

147

147

141 131 127 130 138 144

146

148

146

136 129 129 137 142 144

146

148

142

131 127 133 142 144 141

144

147

139

126 126 134 142 143 138

© |0 |N[(o|lga|dw|N |- O

143

145

134

122 124 135 143 141 134

=3
o

141

142

132

121 124 132 141 139 136

=
[N

140

137

128

120 122 127 134 134 134

oO|o|lo|jo|o|o|o|o|o |o|o |o

=Y
N

136

130

122

118 121 125 130 131 133

(@)

Note the blurring in the result, as well as the increased uniformity of the background;
thisis equivalent to reducing the background noise. Try other (odd) numbers for the size,
say 5, 7 or 9. Do you expect the observed effects? There is amean operator in Mathcad
which we shall use for future averaging operations, as:

ave(pic,w nsi ze): =

newpi c —zero( pi c)

for x[floor W% col s(pi c)—f 1 oor D‘Mm—ng' ze1

for yIr 1 oor gUOSLEE L. v ows(pi c)f | oor UNSIZEH 1

W nsize[]
hal f —fl oor T > O

newpi ¢, x~floor(nmean(submatrix
(pic,y-half,y+hal f,x—hal f, x+hal f)))

newpi ¢

with the same result. An aternative is to use the centre smoothing operation in Mathcad,
put cent snoot h in place of mean. To use the template convolution operator, t nconv,
we need to define an averaging template:

averagi ng_t enpl at e(wi nsi ze) : = sSum—w nsi ze- wi nsi ze

for yOO..w nsize-1
for x00..w nsize-1
tenplatey (1
tenpl ate
sum
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So a 3x3 template is:

averagi ng_tenplate(3)= B) 111 0.111 0.1117

0.111 0.111 0.1110
0

M.111  0.111 0. 1111

and to apply it: snoot hed: =t m conv(eye, averagi ng_tenpl ate(3))

Since there is a duality between convolution in the time domain and multiplication in
the frequency domain, we can implement template convol ution by using the Fourier transform.
Template convolution is the inverse Fourier transform of the product of Fourier transform
of theimage with the transform of the template. First we need a picture of the template, this
picture must be the same size as the image we want to convolve it with. For averaging, we
need a 3x3 square in the centre of an image of the same size as the eye image:

square: =

for

for yOO..rows(eye)-1

pic

x00. . cods(eye) -1

0 2 2 O

[col s(eye) col s(eye) .0
feletsore yg ool slere) 10

picy x<0 otherw se

pi Cy x k% if ﬁ»ﬂw_l%%erM(eye)ﬂm

Then, template convolution is given by:

conv(pic,tenp):=|pic_spectrum~Fourier(pic) Take transform of image

tenp_spectrum—Fouri er (tenp) Transform template
convol ved_spect rum-

(pi c_spectrunflenp_spect rum Form product
result —«inv_Fourier

(rearrange(convol ved_spect rum)) Inverse transform
resul t Supply result

Let's see what happens. Fsnoot hed: =conv(eye, squar e)
To check the result, we need to scale its magnitude:

sc_snoot h: = col s(eye) - | Fsnoot hed|
Now, let’s see the difference
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[oJa]2a]s]a]s5]6][7]8]9]
142 123 130 135 138 135 130 123 121 125
151 0 0 0 0 0 0 0 0
157
160
161
162
162
161
157
157
157
159
159

floor(sc_smooth—smoothed) =

© |0 |IN o (o~ W |N |- |O

(=Y
o

(=Y
[N

O |0 |0O|0o|o|o|o|o |Oo |o |o
o |0 || |0 |r |O|O |0 |O |O
O |0 |0O|o|o|o|o|o |0 |o |o
O |0 |0O|o|o|o|o|o |o |o |o
O |k |O|O |k |O|lO|O |O |O |O
O |k |O|O|O|O|O |O |k |O|O
O |0 ||| |o|o|o |0 |o |o
O |0 |0O|o|o|o|o|o |o |o |o
o |0 |0o|o|o|o|lo|o|o |0 |o |o

(=Y
N

which shows that the difference isin the borders, the small differencesin pixels values are
due to numerical considerations.

In image processing, we often use a Gaussian smoothing filter which can give a better
smoothing performance than direct averaging. Here the template coefficients are set according
to the Gaussian distribution which for a two-dimensional distribution controlled by a
variance o2 is, for a template size defined by wi nsi ze:

Gaussi an_t enpl at e(wi nsi ze, 0) : =|sum-0
Wi nsi ze)[
O 2 O
for yOO..w nsize-1

for x00..w nsize-1

centrefl oor

—[(y-centre)2H{ x—centre)?]
2002
tenplate, e
sum—sumtt enpl at ey
tenpl ate
sum

So let’s have a peep at the normalised template we obtain:

[00.003 0.013 0.022 0.013 0.003 O
So. 013 0.06 0.098 0.06 0.013 B
Gaussi an_t enpl at e(5,1)=%0. 022 0.098 0.162 0.098 0.022 B
%0. 013 0.06 0.098 0.06 0.013 %

HO0.003 0.013 0.022 0.013 0.003{
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This gives the famous bell-shaped function shown here for a 19x19 window with a
standard deviation of 4. Try changing the standard deviation from 4 to, say, 2 and 8 so you
can see its effect on the width.

Gaussian_template (19, 4)

Solet’'sapply it: Gaussi an_snoot hed: =t m conv(eye, Gaussi an_t enpl ate
(3,0.8))
And the result is:

ise (Gaussian_smoothed)

This can keep much more detail concerning image features; note here its ability to retain
detail in the eye region which was lost in the earlier direct averaging. Again, it can be
implemented in the frequency domain, as can any template convolution process.

The mean and Gaussian operators are actually statistical operators since they provide
estimates of the mean. There are other statistics; let’s go for a median operator. This gives
the midpoint of a sorted list. The list is derived from the pixel values within a specified
area. We need to provide the sort function with a vector, so for a 3x3 neighbourhood
centred on a point with co-ordinates x, y, we get

y:=3 x:=3
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And a pointer to the nine elementsis: x1: = 0..8

And we get a vector of unsorted values: unsorted,; : = eye

Ox10]

x+nod(x1,3)-1,x+ | oor o3 o

unsorted’™=(146 146 146 152 155 152 152 155 150)

We need to sort these into ascending order: sorted: =sort (unsort ed)

sorted” =(146 146 146 150 152 152 155 155)

And our median is the middle of the list: our _nedi an: =sort ed,

our _nedi an=152

So let's implement it as a general 3x3 median operator:

med(pic):=

newpi c —zero(pi c)
for x0OL..col s(pic)-2
for yOl..rows(pic)-2
for x100..8

unsorted,; « pic
x1 P y+nmod(x1,3)-1,x+f | oor H%lg—l

sorted<sort (unsorted)
newpi ¢, y—sorted,

newpi c

So let's apply it: our _ned: =ned( eye)

135 146 152 152 146 146 117 117 135

139 146 152 152 146 117 117 117 139

146 146 152 152 146 117 117 117 139

146 146 150 150 136 117 117 135 139

our_med =

146 146 149 149 132 130 135 139 146

146 146 149 136 130 132 139 146 146

146 146 142 130 130 139 146 146 146

146 146 141 129 129 139 141 146 141

146 146 130 115 115 139 142 141 139

146 146 130 115 115 137 141 141 139

137 136 130 115 115 117 139 139 135

0
0
0
0
0
0
0
0
0
0
0
0
0

137 130 117 115 115 117 135 135 135

@
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The main function of the median operator is to remove noise (especially salt and pepper
noise) whilst retaining the edges of features in an image. You can't see that here, thereis
little image noise. So let’s add some in:

noi sy p: =addcondi nent s(eye, 0. 1)

If you make the value supplied as an argument to addcondi ment s smaller, you'll get
less noise, larger values (0.3 say) result in greater noise contamination.

10/10 for the label of thisimage! Now we have introduced light (salt) and dark (pepper)
points into the image. This type of noise is quite common in satellite image transmission
decoding errors.

So let’s see what our median operator can do with thisimage, in comparison with direct
and Gaussian averaging:

Median Mean = Direct Averaging Gaussian Averaging

nmed: =ned(noi sy_p) nnean: =ave(noi sy_p,3) gnmean:=tm conv(noisy_p,
Gaussi an_tenpl ate(3,0.8))

CY

The median operator clearly has a better ability to remove this type of noise. This is
because it is removed when it is placed at either end of the rank sorted list. However, in
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direct and Gaussian averaging, the salt and pepper contributes to the final result. To run it
again, with a different selection of noise points, just select the function noi sy _p
: =addcondi nent s() and run it again. Each time, you'll get a different pattern of
noise. Check the filtering still works.

There is of course a median operator in Mathcad, but we thought we'd show you how
it worked. Median filters can be implemented in an adaptive manner, or using non-square
templates (e.g. cross or line, usually for computational reasons). We can get a Mathcad

median by:

their_med(pic,w nsize):=|newpi c—zero(pic)

OW nsi ze[J
a 2 a
for x0Ohalf..cols(pic)-half-1
for yOhalf..rows(pic)-half-1
newpi cy y —nMedi an(submatrix
(pic,y-half,y+hal f,x—hal f, x+half))

newpi c

hal f —fl oor

This gives you a median operator for an arbitrary template size.

Finally, the last statistic is the mode. Thisisthe peak of the probability distribution (the
value most likely to occur). One way to estimate its value is to use the truncated median
filter. It operates by taking the median of the distribution resulting from truncation of the
distribution within a window at a point beyond the mean.

Let’s have a picture of an artery to work on:

noi sy p: =READBMP( art ery)

Now, here's the code:

trun_ned(p, wsze): =

newpi c —zer o( p)

ha —fl oor

for yOha..rows(p)-ha-1

newpi c

owsze(
o2 O
xOha. . col s(p)-ha-1

W n—submatrix(p, y-ha, ytha, x—ha, x+ha)
med —nedi an(w n)
ave —mean(wi n)
upper «2- med—m n(w n)
| ower —~2- med—max(w n)
cc-0
for i00..wsze-1
for jOO..wsze-1

trunge<win; ; if(wn; <upper)-(med<ave)
truncc<win; ; if(wn; > ower)-(med>ave)
cc—cc+l

newpi cy y —nedi an(trun)
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Toseehow itworks: tfilt=trun_med(noisy_p,5)

It's actually switched off here. To switch it on, select it, press: and then press return.
Then go and make a cup of tea. It should be finished after that! So to save your time, we'll
read in a processed bitmap for a 13 x 13 operator.

This completes our study of low-level image operators. Why not follow some of the
suggestions below to extend/improve your knowledge?

Suggestions: (i) investigate the effects of different window sizes,
(if) try out different values for the control parameters;
(iii) try adding your own noise to the original image, and see the effects;
(iv) try different template shapes for averaging and median operators;
(v) try different images.

Now we'll move on to finding objects in images. So far, we've modified brightness so as
to control an object’s appearance in an image. But the change in brightness signifies an
object’s perimeter or border. So this can be used as afirst step in finding the object. This
is a basic feature, the subject of Chapter 4, Low-Level Feature Extraction.

9.4 Appendix 4: Abbreviated Matlab worksheet

This is an abbreviated version of the worksheet for Chapter 4. Essentially, the text is a
Matlab script and the subroutines called and the images provided are set into figures.

%Chapter 4 Low Level Feature Extraction and Edge Detection: CHAPTER4. M
%WNitten by: Mark S. Nixon

disp (‘Welcome to the Chapter4 script’)

disp (‘This worksheet is the conpanion to Chapter 4 and is an
i ntroduction.’)

disp (‘The worksheet follows the text directly and allows you to
process basic inmages.’)

%et’s first enpty the menory
cl ear
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%et’s initialise the display colour

col ormap(grey);

disp (" )
disp (‘Let us use the inmage of

disp (‘When you are ready to nove on,

% ead in the inmage
eye=inread(‘eye.jpg’,"jpg’);
% mages are stored as integers,

%we al so need to ensure we have a greyscal e,

eye=doubl e(eye(:,:,1));
%0 let’'s display it
subplot(1,1,1), imgesc(eye);

plotedit on, title ('Image of an eye'),

pause;

press RETURN )

Image of an eye

Image of an eye

disp(* ")

so we need to double them for Matl ab
not three col our planes

disp (‘W detect vertical edges by differencing horizontally adjacent’)

disp (‘points. Note how clearly the edge of
%0 we'll call the edge_x operator.

vertical =edge_x(eye);
i mgesc(vertical);

plotedit on, title (‘Vertical edges of

pause;

the face appears’)

plotedit off
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function vertical _edges=edge_x (i nage)
%-i nd edges by horizontal differencing
0,

f;;Jsage: [ new i mage] =edge_x (i mage)

0,

fQPar anmeters: image-array of points

0,

f;;\ut hor: Mark S. Nixon

%get di nensi ons
[rows, cols]=size (inage);

%et the output image to black
vertical _edges=zeros (rows, cols);
% his is equivalent to

vertical _edges (1:rows, 1:cols)=0

% hen formthe difference between horizontal
successi ve points
for x=1: cols-1 %ddress all colums except border

for y=1: rows %address all rows

vertical _edges (y,X)=
abs (image (y, x)-image (y, x+1));

end

end

Vertical edges of an eye

Vertical edge detection

disp (* ")

disp (‘W detect horizontal edges by differencing vertically adjacent

points’)

disp (‘Notice how the side of the face now disappears,

disp (‘eyebrows appear’)

%0 we'll call the edge_y operator
subplot(1,2,2), horizontal =edge_y(eye);
subplot(1,2,1), inmgesc(horizontal);

plotedit on, title ('Horizontal edges of an eye'),

subplot(1,2,2), imgesc(vertical);
plotedit on, title (‘Vertical edges of
pause;

an eye'),

wheras the')

pl otedit off

plotedit off

function horizontal _edges=edge_y(i nmage)
Z/ADFi nd edges by vertical differencing
Z/Usage: [ new i nage] =edge(i nage)

Z/AZDar aneters: inmage-array of points

f;;\ut hor: Mark S. Nixon

%get di mensi ons
[rows, cols]=size (inage);

%et the output inmage to black
hori zont al _edges=zer os(rows, col s);

% hen formthe difference between vertical
successi ve points
for x=1:cols %ddress all colums

for y=1l:rows-1 %ddress all rows except border

hori zontal _edges (y, x)=
abs(image(y, x)-image(y+1,x));

end

end

Horizontal edges of an eye

10
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30

40

50

60

1020304050 60

Vertical edges of an eye
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20
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60

1020304050 60

Horizontal edge detection (in comparison with vertical)
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disp (* ")

disp (‘W detect all edges by conmbining the vertical and horizontal
edges’)

%0 we'll call the edge operator

al | _edges=edge(eye);

subplot(1,1,1), imgesc(all_edges);

plotedit on, title (‘All edges of an eye’'), plotedit off

pause;

function edges=edge(i mage)

%ind all edges by first order differencing
v)

O;ZJsage: [ new i mage] =edge(i mage)

v)

0;OParaneters: i mge-array of points

0,

";;\ut hor: Mark S. Nixon

%et di mensions
[rows, cols]=size (image); All edges of an eye

%et the output image to black
edges=zeros (rows, cols);

% hen formthe difference between horizontal and
vertical points
for x=1: cols-1 %ddress all col ums

for y=1: rows-1 %address all rows except border

edges (y, x)=abs(2*i mage(y, x)
image (y+1, x)-imge (y, x+1));

end

end

Detecting all edges

disp (" ')

disp (‘The Roberts operator is actually one of the oldest edge
detection’)

disp (‘operators. The edges are the maxi numof the di fference between’)
disp (‘points on the two diagonals.’)

%0 we'll call the Roberts cross operator
roberts_edges=roberts(eye);

i mgesc(roberts_edges);

plotedit on, title (‘Eye edges by Roberts cross operator’), plotedit
of f

pause;
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Functi on edges=roberts(inage)

%-ind all edges by roberts cross operator
0,

0;stage: [ new i mage] =r obert s(i mage)

0,

0;()F’arar'reters: i mge-array of points

0,

0;:\uthor: Mark S. Ni xon

%et di mensions
[rows, cols]=size(inmage);

Eye edges by Roberts cross operator

%et the output image to black
edges=zeros (rows, cols);

for x=1: cols-1 %ddress all col ums
except right border
for y=1: rows-1 %address all rows
except bottom border
% op right mnus bottomleft point
M pl us=abs(i nage (y, x+1)-i mage (y+1, x));
%op left mnus bottomright point
M m nus=abs(i nmage(y, x) -i mage (y+1, x+1));
% et urn maxi mum
edges(y, x) =max(M pl us, M m nus);
end
end

Edges by Roberts operator

disp (" )
disp ('The Prewitt operator includes snmoothing in horizontal and
vertical’)

disp (‘tenplates’)

prewi tt_edges=prewitt(eye);

disp (‘From these, we calculate the magnitude and direction. The
magni tude’)

disp (‘shows the ampunt of contrast, as revealed by its inmage’)
pmagni t ude=prew tt_edges(:,:,1);

subplot (1,2,1), imgesc(pnagnitude);
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Function edges=prew tt (i nage)

%lerive edges by 3*3 Prewitt operator
v)

O;ZJsage: [new i mage] =prew tt (i mage)

v)

0;OParaneters: i mge-array of points

0,

";;\ut hor: Mark S. Nixon

%et di mensions
[rows, cols]=size(inmage);

%et the output image to black(0)
edges(1: rows, 1:col s)=0;

for x=2: cols-1 %ddress all colums
except border
for y=2: rows-1 %ddress all rows
except border
Yapply Mk tenplate
x_mag=i mage (y-1, x-1)+inmage(y-1,x)...
+i mage(y-1, x+1)-image(y+1,x-1)-...
i mge(y+1l, x)-image(y+1l, x+1);
Yapply My tenplate
y_mag=i nage(y- 1, x- 1) +i nage(y, x-1) ...
+i mage(y+1, x-1)-i mage(y-1, x+1)-...
i mage(y, x+1) -i mage(y+1, x+1);

Magnitude of eye edges Eye edges by Roberts
by Prewitt operator cross operator

%val uat e edge magni tude
edges(y, x, 1) =sqgrt ((x_nmag* x_nag)
+(y_mag*y_mag) ) ;
%val uate edge direction
if x_mag==0
edges(y, x, 2) =si gn(y_nag) *1. 5708;
| d , X, 2) =at / ;
Ca ges(y. x, 2) zatan(y_nag/ x_nag) 10 20 30 40 50 60 10 20 30 40 50 60
end
end

Magnitude of Prewitt edges (in comparison with Roberts)

plotedit on, title (‘Magnitude of eye edges by Prewitt operator’),
pl otedit off

subplot(1,2,2), imgesc(roberts_edges);

plotedit on, title (‘Eye edges by Roberts cross operator’), plotedit
of f

disp (‘W can see that the effect of smpothing is to reduce noise in')
disp (‘the edge detection process’)

pause;

disp (‘The direction is how the edge is changing, but this is nuch
| ess’)

disp (‘easy to see in the displayed imge.")

direction=prew tt_edges(:,:,2);

i mgesc(direction);

plotedit on, title (‘Direction of eye edges by Prewitt operator’),
pl otedit off

pause;
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Magnitude of eye edges Direction of eye edges
by Prewitt operator by Prewit operator

R TR

10
304
a0

5081

60 | = b :
iy, TR
10 20 30 40 50 60 10 20 30 40 50 60

Magnitude and Direction of Prewitt Edges

disp (" )

di sp (‘* The Sobel operator includes better snmoothing than the Prewitt’)
disp (‘operator.It is harder to see here, but is gereally experienced )
sobel _edges=sobel 33(eye);

disp (*Again, we calculate the nmagnitude and direction. Again, The')
di sp (‘ magni tude shows the ampunt of contrast, as shown in the inmage’)
disp (‘for a 3*3 Sobel operator.’)

smagni t ude=sobel _edges(:,:,1);

subplot(1,2,1), inmgesc(smagnitude);

plotedit on, title (‘Magnitude of eye edges by Sobel’), plotedit off
subpl ot (1, 2,2), inmgesc(pnmagnitude);

plotedit on, title (‘Magnitude of eye edges by Prewitt’), plotedit off
pause;
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Functi on edges=sobel 33(i nage)
Z;derive edges by 3*3 Sobel operator
E/ZUsage: [ new i nage] =sobel 33(i nage)
22 Paraneters: inage-array of points
O;ZAut hor: Mark S. N xon

%get di mensions
[rows, cols]=size(inage);

%et the output image to black(0)
edges (l:rows, 1l:cols)= 0;
Magnitude of eye edges Magnitude of eye edges

%t’'s like Prewitt, but the central by Sobel by Prewitt

wei ghts are doubl ed
for x=2:cols-1 %ddress all colums
except border
for y=2: rows-1 %address all rows
except border
Y%apply Mk tenplate
x_mag=i mage(y-1, x-1)+2*inage(y-1,x)...
+i mage(y+1, x-1)-image(y+1,x-1)-...
2*i mage(y+1, x)-image(y+1, x+1);
Yapply My tenpl ate
y_nmag=i mage(y- 1, x- 1) +i mage(y, x-1) . ..
+i mage(y+1, x-1)-i mage(y-1, x+1)-...
2*i mage(y, x+1) -i mage(y+1, x+1) ;

%eval uat e edge magni tude
edges(y, x, 1) =sqgrt ((x_mag*x_mag)
+(y_mag*y_mag));

%eval uate edge direction

' ;J;:sg(y’OX’ 2)=si gn(y_mag) * 1. 5708: 10 20 30 40 50 60 10 20 30 40 50 60
el se edges(y, x, 2) =at an(y_nmag/ x_nag) ;
end

end

end

Magnitude of Sobel edges (in comparison with Prewitt)

disp (‘The direction is still nuch less easy to see!’)
subplot(1,1,1), direction=sobel _edges(:,:, 2);

i mgesc(direction);

plotedit on, title (‘Direction of eye edges by Sobel’), plotedit off
pause;

Title:
lalgaia/export/ecs/isis/users/msn/mlab/chapter4/f949.eps
Creator:

MATLAB, The Mathworks, Inc.
Preview:

This EPS picture was not saved
with a preview included in it.
Comment:

This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Direction of Sobel edges
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EEN | Ndex IS

Accumulator array, 168-169, 174-179 scaling, 70
Active contours (see snakes), 220-236 Brodatz texture images, 293
Active pixel, 11 Burn, 12

Active shape models, 240-243
comparison, 243

Active appearance models, 242 C implementation, 14
Acuity, 4 C++, 14
Adaptive Hough transform, 213 Camera, 10-12
Addition, 70 ageing, 12
Affine moments, 288 bandwidth, 23
Ageing, 12 blooming, 12
Aliasing, 43 burn, 12
Analysis of first order edge operators, 103-112 CCD, 10
Antidiasing, 175 CMOQOS, 10
Aperture problem, 150 digital video, 14
Arbitrary shape extraction, 164-173, 199-212 high resolution, 12
Area, 278 infrared, 12
Artificial neural networks, 305 interlacing, 13
Associative cortex, 8 lag, 12
Autocorrelation, 39, 141 low-light, 12
Averaging error, 88 progressive scan, 14
Averaging operator, 82—87 readout effects, 112
vidicon, 10
Canny edge detection operator, 112-119
Backmapping, 178, 182 Canonical analysis, 306
Background estimation, 91, 163 CCD camera, 10
Band-pass filter, 64, 125 CCIR standard, 10
Bandwidth, 13, 23, 83 CMOS camera, 10
Basis functions, 58 Central limit theorem, 88, 166, 314
Benham's disk, 9 Centralised moments, 283
Bhattacharyya distance, 301 Chain codes, 249-251
Biometrics, 2, 308 Choroid, 4
Blind spot, 4 Chrominance, 7
Blooming, 12 images, 32
Boundary descriptors, 248-277 luminance, 7
Bresenham’s algorithm: mapping, 32
circles, 182 true, 32
lines, 177 Ciliary muscles, 4
Brightness, 17, 32 Circle drawing, 182
addition, 70 Circle finding, 179-184, 188-193, 214
clipping, 70 Classification, 301-305
division, 70 Clipping, 70
inversion, 70 Coding, 58, 64
multiplication, 70 Colour, 32-34
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Compactness, 279, 300 Fourier, 251-278

Complete snake implementation, 227 real Fourier, 256-258
Complex magnitude, 38 region, 278-287, 299
Complex moments, 288 texture, 294-301
Complex phase, 38 Deriche operator, 114
Computer software, 14 Differential optical flow, 149-155
Computer vision system, 10-14 Discrete cosine transform, 57-58, 297
Computerised tomography, 2 Discrete Fourier transform, 45-53, 251, 291
Cones, 5 Discrete Hartley transform, 58-60
Connectivity analysis, 118, 248 Discrete sine transform, 58
Continuous Fourier transform, 35-40 Discrete symmetry operator, 236239
Continuous signal, 35 Discrimination, 301
Continuous symmetry operator, 240 Dispersion, 279
Convolution duality, 39 Distance measures, 310
Convolution, 39, 58, 84, 170-173 Drawing lines, 177
Co-occurrence matrix, 297—298 Drawing circles, 182
Co-ordinate systems, 16, 311-313 Dual snake, 234
Compactness, 279, 300
Comparison:
circle extraction, 214 Ebbinghaus illusion, 8
deformable shapes, 243 Edge detection, 99-130
edge detection, 129 comparison, 129-130
Hough transform, 187, 213 first order, 99-120
image filtering, 95 horizontal, 100
moments, 282, 288 second order, 120-126
optical flow, 157 surveys, 156
template matching, 214 vertical, 100
texture, 297, 305 Edge detector:
Complex moments, 286 Canny, 112-120
Corner detection, 130-144 Deriche, 114
chain code, 251, 288 Laplacian of Gaussian, 123
curve fitting, 134 Laplacian, 121
differencing, 132 Marr-Hildreth, 123-127
differentiation, 138 Petrou, 128-129
Harris operator, 141 Prewitt, 104—106
improvement, 156 Roberts cross, 104
Moravec operator, 141 Sobel, 106-112
Correlation, 39, 166, 170-173 Spacek, 127-128
function, 167 surveys, 156
Correlation optical flow, 157 Edge:
Cross-correlation, 167 direction, 104, 110, 122
Cubic splines, 288 magnitude, 104
Curvature, 130, 221, 288 vectorial representation, 105
Curvature operator, 130 Eigenvector, 241
Curvature primal sketch, 156 Ellipse finding, 184-186, 193-199
Curve fitting, 134, 315 Elliptic Fourier descriptors, 269278
Energy, 295
Energy minimisation, 221
d.c. component, 47, 51, 63 Entropy, 295
Delta function, 40 Estimation theory, 314
Descriptors: Euclidean distance, 310
3D Fourier, 278 Euler number, 280
elliptic Fourier, 269-278 Evidence gathering, 175
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Example worksheets, 317-344
Eye, 4-7

Face recognition, 2, 236

Fast Fourier transform, 50, 84, 170, 295

Fast Hough transform, 213
Feature space, 301
Feature extraction, 2—308!
FFT application, 170, 295
Fields, 13
Filter averaging, 82—87
band-pass, 64, 125
high-pass, 64, 105
low-pass, 63, 83, 87, 112
median, 89-92
mode, 92-95
truncated median, 93-95
Filtering image comparison, 95
First order edge detection, 99-120
Fixed pattern noise, 12
Flash A/D converter, 13
Flexible shape models, 240
Flow detection, 145-155
Foot-of-normal description, 178
Form factor, 173
Fovea, 4
Fourier descriptors, 251-278
3D, 278
elliptic, 269-278
real Fourier, 256-258
Fourier transform, 35-39
applications, 63-64, 84, 112, 251
display, 51, 72
frequency scaling, 55-56
of Sobel, 112
ordering, 51
pair, 40, 46, 52
pulse, 36
rotation, 54-55
separability, 50
shift invariance, 53-54, 255256
superposition, 56
Fourier—Méllin transform, 173
Framegrabber, 13
Frequency domain, 35
Frequency scaling, 55
Frequency, 35
Fuzzy Hough Transform, 213

Gabor wavelet, 60-62, 296

Gaussian:
function, 40, 52, 61, 86
noise, 88, 166, 314
operator, 86-88
smoothing, 107, 122

General form of Sobel operator, 108

Generalised Hough transform, 199-212

Genetic algorithm, 220
Greedy algorithm, 222

Greedy snake implementation, 222—-227

Greyscale, 32
Group operations, 79-95

Hamming window, 87, 173
Hanning window, 87, 173
High resolution camera, 12
High-pass filter, 64, 105
Histogram, 67
equalisation, 72-75, 162, 295
normalisation, 72

Homogeneous co-ordinate system, 16, 311-313

Horizontal edge detection, 100
Horizontal optical flow, 150
Harris operator, 140
Hotelling transform, 63
Hough transform, 173-213
adaptive, 213
antialiasing, 175
backmapping, 178, 182
fast, 213
fuzzy, 213
generalised, 199-212
invariant, 206-213
mapping, 174
randomised, 213
reviews, 187, 213
Human eye, 3
Human vision, 1-10
Hysteresis thresholding, 114-120
implementation, 117

Illumination invariance, 100, 161
Image coding, 58, 64

Image filtering comparison, 95
Image texture, 43, 56, 62, 291-301
Inertia, 295

Infrared camera, 12

Interlacing, 13

Intensity normalisation, 72, 162

Invariance properties, 161, 206, 247, 273, 295
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Invariance properties, (Cont’d)
illumination, 100, 161
position, 161, 169, 173, 199, 294
rotation, 161, 172, 199, 266
shift, 53-54, 161, 255-256, 266
scale, 161, 173, 199
Invariant Hough transform, 206-213
Inverse discrete Fourier transform, 47
Inverse Fourier transform, 38, 45
Inverse 2D Fourier transform, 49
Inversion, 70
Iris, 4
Irregularity, 280, 299

Java, 14
JPEG coding, 14, 58

Karhunen-Loeve transform, 63, 240
Kass snake, 227-231
k-nearest neighbour rule, 301-304

L, and L, norms, 301

Lag, 12

Laplacian edge detection operator, 121-123
Laplacian of Gaussian, 123

Laplacian operator, 121

Lateral inhibition, 7

Least squares criterion, 124, 135, 166, 314-315
Lens, 4

Line drawing, 177

Line finding, 174-179, 187188

Line terminations, 139, 222

Linearity, 56

Location invariance, 169, 173, 294
Logarithmic point operators, 71

Look-up table, 13, 72

Low-light camera, 12

Low-pass filter, 63, 83, 87, 112
Luminance, 7

Mach bands, 5, 20
Magnetic resonance, 2
Magnification ratio, 312
Maple mathematical system, 15
Marr—Hildreth edge detection operator, 123-127
Matching optical flow, 157
Mathcad, 15-21
example worksheet, 317-336
Mathematical systems, 15
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Maple, 15
Mathcad, 15-21
Mathematica, 15
Matlab, 15, 21-24
Matlab mathematical system, 15, 21-24
example worksheet, 336-343
Matusita distance, 301
Medial axis, 288
Median filter, 89-92, 163
Mellin transform, 173
Mexican hat, 123
Mode, 92, 302
Mode filter, 92-95
Moments, 280-287
affine, 288
Cartesian, 282—283
complex, 286
centralised, 283-285
normalised central, 285
pseudo-Zernike, 287
reviews, 282, 288
statistical, 280
Zernike, 285-287
Moravec corner operator, 141
Motion detection, 145-155
area, 146-148
differencing, 149-155
optical flow, 146-155
MPEG coding, 14, 58

Nearest neighbour, 301
Neighbours, 248
Neural model, 8
Neural networks, 8, 305
Neural signas, 7
Noise:
Gaussian, 88, 166, 314
Rayleigh, 89, 94
salt and pepper, 90
speckle, 89
Non-maximum suppression 113-115
Norms (distance), 301
Normalised central moments, 285
Normal distribution, 107, 165, 314
Nyquist sampling criterion, 34, 256

Occipital cortex, 8

Occlusion, 163, 175, 181

Open contour, 232

Optical flow, 146-155
area, 146-149



comparison, 157

differential, 149-156

correlation, 153

horizontal, 150

implementation, 157

matching, 153

vertical, 150
Optical Fourier transform, 48, 173
Optimal smoothing, 108
Optimal thresholding, 76-79
Optimisation, 220
Orthogonality, 241, 253, 287
Orthographic projection, 16, 311

PAL system, 13
Pallette, 32
Passive pixel, 11
Pattern recognition, 25, 293, 305
statistical, 293, 305
structural, 293, 305
Perimeter, 248
Perspective, 16, 311
Petrou operator, 128-129
Phase, 38, 54
Photopic vision, 5
Picture elements, 2
Pixels, 2, 11, 12, 16, 19
active, 11
passive, 11
Poincarré measure, 280
Point operators, 69-78
Point distribution model, 240
Polar co-ordinates 169, 172
Polar HT lines, 178-179
Position invariance, 169, 173, 199, 294
Prewitt edge detection operator, 105-106
Principal components analysis, 63, 240-242
Progressive scan camera, 14
Pseudo Zernike moments, 287
Pulse, 35

Quadratic splines, 288
Quantisation, 31-35
Quantum efficiency, 12

Radon transform, 174
Randomised HT, 188
Rayleigh noise, 89, 94
Readout effects, 12

Real computer images, 2

Real Fourier descriptors, 256258
Region descriptors, 278-287, 299
Regularisation, 233
Remote sensing, 2
Replication, 49
Research journals, 24
Retina, 4
Reviews:
chain codes, 249:
circle extraction, 214
deformable shapes, 243
edge detection, 129
Hough transform, 187, 213
moments, 282, 288
optical flow, 157
template matching, 214
texture, 297, 305
thresholding, 76
Roberts cross edge detector, 104-105
Rods, 5
Rotation invariance, 161, 172, 199, 266
Rotation matrix, 313
R-table, 202

Salt and pepper noise, 90, 251
Sampling criterion, 34, 4045, 256
Sampling, 13, 34
Sawtooth operator, 70
Scale invariance, 161, 173, 199
Scaling, 72, 86
Scotopic vision, 5
Second order edge operators, 120-126
Segmentation, 306-307
Separability, 50
Shape descriptions, 247
Shape extraction, 161

circles, 174-178

ellipses, 179-183

lines, 174-178
Shape reconstruction, 252, 275, 282
Shift invariance, 53-54, 161, 255-256, 266
Sinc function, 36, 53
Skewed symmetry, 240
Smoothness constraint, 150
Snake, 220

3D, 233

dual, 234

normal force, 232

regularisation, 233
Sobel edge detection operator, 106112
Spacek operator, 127-128
Speckle noise, 89

Index

349



Spectrum, 36

Splines, 253, 288

Statistical geometric features, 299

Statistical moments, 280

Superposition, 56

Survey:
chain codes, 249
deformable shapes, 243
edge detection, 129
Hough transform, 187, 213
moments, 282, 288
optical flow, 157
template matching, 214
texture, 297, 305
thresholding, 76

Symmetry:
continuous operator, 240
discrete operator, 236-239
focus, 240
skewed, 240

Synthetic computer images, 3

Television:
aspect ratio, 14
interlacing, 13
signal, 13

Template convolution, 79-82, 84, 102, 112, 164

Template matching, 164-173
optimality, 166

Template shape, 90

Template size, 85, 90

Terminations, 139, 222

Textbooks, 25

Texture, 292—294
classification, 301-306
description, 294-299

Texture mapping, 91

Thinning, 288

Thresholding, 76-78, 102, 162—163
hysteresis, 114-120
optimal, 76-79
uniform, 76, 102, 119

Transform:
adaptive Hough, 213
continuous Fourier, 3540
discrete cosine, 57-58, 297
discrete Fourier, 45-53, 251, 291
discrete Hartley, 58-60
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discrete sine, 58
fast Fourier, 50, 84, 170, 295
fast Hough, 213
Fourier-Méellin, 173
generalized Hough, 199-212
Hotelling, 63
Hough, 173-213
inverse discrete Fourier, 47
inverse Fourier, 38, 45
inverse two-dimensional Fourier, 49
Karhunen Loéve, 63, 240
Mellin, 173
optical Fourier, 173
Radon, 174
two-dimensional Fourier, 47-53
Walsh, 63, 297, 310
Transform pair, 39, 46, 52
Transformation matrix, 312
Translation invariance, 161, 256
Translation matrix, 312
True colour, 32
Truncated median filter, 93-95
Two-dimensional Fourier transform, 47-53

Ultrasound, 2, 93-94, 129
filtering, 95
Uniform thresholding, 76, 102, 119

Velocity, 146

Vertical edge detection, 100
Vertical optical flow, 150
Vidicon camera, 10

Walsh transform, 63, 297, 310
Wavelets, 60-62, 277, 296, 305
Wavelet transform, 296

Gabor, 60-62, 296
Windowing operators, 47, 87, 172-173
Workshesets, 21, 24, 317-344

Zernike moments, 287

Zero crossing detection, 121, 124, 317
Zero padding, 171

Zollner illusion, 8
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