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PREFACE

Regardless of the branch of science or engineering, theoreticians have always
been enamored with the notion of expressing their results in the form of
closed-form expressions. Quite often, the elegance of the closed-form solution
is overshadowed by the complexity of its form and the difficulty in evaluating
it numerically. In such instances, one becomes motivated to search instead for
a solution that is simple in form and simple to evaluate. A further motivation
is that the method used to derive these alternative simple forms should also be
applicable in situations where closed-form solutions are ordinarily unobtainable.
The search for and ability to find such a unified approach for problems dealing
with evaluation of the performance of digital communication over generalized
fading channels is what provided the impetus to write this book, the result of
which represents the backbone for the material contained within its pages.

For at least four decades, researchers have studied problems of this type, and
system engineers have used the theoretical and numerical results reported in the
literature to guide the design of their systems. Whereas the results from the earlier
years dealt mainly with simple channel models (e.g., Rayleigh or Rician multipath
fading), applications in more recent years have become increasingly sophisticated,
thereby requiring more complex models and improved diversity techniques.
Along with the complexity of the channel model comes the complexity of the
analytical solution that enables one to assess performance. With the mathematical
tools that were available previously, the solutions to such problems, when
possible, had to be expressed in complicated mathematical form which provided
little insight into the dependence of the performance on the system parameters.
Surprisingly enough, not until recently had anyone demonstrated a unified
approach that not only allows previously obtained complicated results to be
simplified both analytically and computationally but also permits new results
to be obtained for special cases that heretofore had resisted solution in a simple
form. This approach, which the authors first presented to the public in a tutorial-
style article that appeared in the September 1998 issue of the IEEE Proceedings,
has spawned a new wave of publications on the subject that, we foresee based
on the variety of applications to which it has already been applied, will continue
well into the new millennium. The key to the success of the approach relies

xv
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on employing alternative representations of classic functions arising in the error
probability analysis of digital communication systems (e.g., the Gaussian Q-
function1 and the Marcum Q-function) in such a manner that the resulting
expressions for average bit or symbol error rate are in a form that is rarely more
complicated than a single integral with finite limits and an integrand composed of
elementary (e.g., exponential and trigonometric) functions. By virtue of replacing
the conventional forms of the above-mentioned functions by their alternative
representations, the integrand will contain the moment generating function (MGF)
of the instantaneous fading signal-to-noise ratio (SNR), and as such, the unified
approach is referred to as the MGF-based approach.

In dealing with application of the MGF-based approach, the coverage in
this book is extremely broad, in that coherent, differentially coherent, partially
coherent and noncoherent communication systems are all handled, as well as
a large variety of fading channel models typical of communication links of
practical interest. Both single- and multichannel reception are discussed, and
in the case of the latter, a large variety of diversity types are considered. For
each combination of communication (modulation/detection) type, channel fading
model, and diversity type, the average bit error rate (BER) and/or symbol error
rate (SER) of the system is obtained and represented by an expression that is in
a form that can readily be evaluated.2 All cases considered correspond to real
practical channels, and in many instances the BER and SER expressions obtained
can be evaluated numerically on a hand-held calculator.

In accomplishing the purpose set forth by the discussion above, the book
focuses on developing a compendium of results that to a large extent are not
readily available in standard textbooks on digital communications. Although
some of these results can be found in the myriad of contributions that have
been reported in the technical journal and conference literature, others are new
and as yet unpublished. Indeed, aside from the fact that a significant number
of the reference citations in this book are from 1999 publications, many others
refer to papers that will appear in print in the new millennium. Whether or
not published previously, the value of the results found in this book is that
they are all colocated in a single publication with unified notation and, most
important, a unified presentation framework that lends itself to simplicity of
numerical evaluation. In writing this book, our intent was to spend as little space
as possible duplicating material dealing with basic digital communication theory
and system performance evaluation, which is well documented in many fine
textbooks on the subject. Rather, this book serves to advance the material found
in these books and so is of most value to those desiring to extend their knowledge

1 The Gaussian Q-function has a one-to-one mapping with the complementary error function erfc x
[i.e., Q
x� D 1

2 erfc
x/
p

2�] commonly found in standard mathematical tabulations. In much of the
engineering literature, however, the two functions are used interchangeably and as a matter of
convenience we shall do the same in this text.
2 The terms bit error probability (BEP) and symbol error probability (SEP) are quite often used as
alternatives to bit error rate (BER) and symbol error rate (SER). With no loss in generality, we shall
employ both usages in this book.
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beyond what ordinarily might be covered in the classroom. In this regard, the
book should have a strong appeal to graduate students doing research in the
field of digital communications over fading channels as well as to practicing
engineers who are responsible for the design and performance evaluation of
such systems. With regard to the latter, the book contains copious numerical
evaluations that are illustrated in the form of parametric performance curves
(e.g., average error probability versus average SNR). The applications chosen
for the numerical illustrations correspond to real practical channels, therefore
the performance curves provided will have far more than academic value. The
availability of such a large collection of system performance curves in a single
compilation allows the researcher or system designer to perform trade-off studies
among the various communication type/fading channel/diversity combinations so
as to determine the optimum choice in the face of his or her available constraints.

The book is composed of four parts, each with an express purpose. The
first part contains an introduction to the subject of communication system
performance evaluation followed by discussions of the various types of fading
channel models and modulation/detection schemes that together form the overall
system. Part 2 starts by introducing the alternative forms of the classic functions
mentioned above and then proceeds to show how these forms can be used
to (1) evaluate certain integrals characteristic of communication system error
probability performance, and (2) find new representations for certain probability
density and distribution functions typical of correlated fading applications.
Part 3 is the “heart and soul” of the book, since in keeping with its title, the
primary focus of this part is on performance evaluation of the various types of
fading channel models and modulation/detection schemes introduced in Part 1
for both single- and multichannel (diversity) reception. Before presenting this
comprehensive performance evaluation study, however, Part 3 begins by deriving
the optimum receiver structures corresponding to a variety of combinations
concerning the knowledge or lack thereof of the fading parameters (i.e.,
amplitude, phase, delay). Several of these structures might be deemed as too
complex to implement in practice; nevertheless, their performances serve as
benchmarks against which many suboptimum but practical structures discussed
in the ensuing chapters might be compared. In Part 4, which deals with practical
applications, we consider first the problem of optimum combining (diversity) in
the presence of co-channel interference and then apply the unified approach to
studying the performance of single- and multiple-carrier direct-sequence code-
division multiple-access (DS-CDMA) systems typical of the current digital
cellular wireless standard. Finally, in Part 5 we extend the theory developed in the
preceding parts for uncoded communication to error-correction-coded systems.

In summary, the authors know of no other textbook currently on the market
that addresses the subject of digital communication over fading channels in as
comprehensive and unified a manner as is done herein. In fact, prior to the
publication of this book, to the authors’ best knowledge, there existed only two
works (the textbook by Kennedy [1] and the reprint book by Brayer [2]) that like
our book are totally dedicated to this subject, and both of them are more than a
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quarter of a century old. Although a number of other textbooks [3–11] devote
part of their contents3 to fading channel performance evaluation, by comparison
with our book the treatment is brief and therefore incomplete. In view of the
above, we believe that our book is unique in the field.

By way of acknowledgment, we wish to thank Dr. Payman Arabshahi of the
Jet Propulsion Laboratory, Pasadena, CA for providing his expertise in solving
a variey of problems that arose during the preparation of the electronic version
of the manuscript. Mohamed-Slim Alouini would also like to express his sincere
acknowledgment and gratitude to his PhD advisor Prof. Andrea J. Goldsmith
of Stanford University, Palo Alto, CA for her guidance, support, and constant
encouragement. Some of the material presented in Chapters 9 and 11 is the result
of joint work with Prof. Goldsmith. Mohamed-Slim Alouini would also like to
thank Young-Chai Ko and Yan Xin of the University of Minnesota, Minneapolis,
MN for their significant contributions in some of the results presented in Chapters
9 and 7, respectively.

MARVIN K. SIMON

MOHAMED-SLIM ALOUINI

Jet Propulsion Laboratory
Pasadena, California
University of Minnesota
Minneapolis, Minnesota
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1

INTRODUCTION

As we step forward into the new millennium with wireless technologies leading
the way in which we communicate, it becomes increasingly clear that the
dominant consideration in the design of systems employing such technologies
will be their ability to perform with adequate margin over a channel perturbed
by a host of impairments not the least of which is multipath fading. This is not
to imply that multipath fading channels are something new to be reckoned with,
indeed they have plagued many a system designer for well over 40 years, but
rather, to serve as a motivation for their ever-increasing significance in the years
to come. At the same time, we do not in any way wish to diminish the importance
of the fading channel scenarios that occurred well prior to the wireless revolution,
since indeed many of them still exist and will continue to exist in the future. In
fact, it is safe to say that whatever means are developed for dealing with the
more sophisticated wireless application will no doubt also be useful for dealing
with the less complicated fading environments of the past.

With the above in mind, what better opportunity is there than now to
write a comprehensive book that provides simple and intuitive solutions to
problems dealing with communication system performance evaluation over fading
channels? Indeed, as mentioned in the preface, the primary goal of this book
is to present a unified method for arriving at a set of tools that will allow
the system designer to compute the performance of a host of different digital
communication systems characterized by a variety of modulation/detection types
and fading channel models. By set of tools we mean a compendium of analytical
results that not only allow easy, yet accurate performance evaluation but at the
same time provide insight into the manner in which this performance depends
on the key system parameters. To emphasize what was stated above, the set of
tools developed in this book are useful not only for the wireless applications
that are rapidly filling our current technical journals but also to a host of others,
involving satellite, terrestrial, and maritime communications.

Our repetitive use of the word performance thus far brings us to the purpose
of this introductory chapter: to provide several measures of performance related
to practical communication system design and to begin exploring the analytical

3



4 INTRODUCTION

methods by which they may be evaluated. While the deeper meaning of these
measures will be truly understood only after their more formal definitions are
presented in the chapters that follow, the introduction of these terms here serves to
illustrate the various possibilities that exist, depending on both need and relative
ease of evaluation.

1.1 SYSTEM PERFORMANCE MEASURES

1.1.1 Average Signal-to-Noise Ratio

Probably the most common and best understood performance measure charac-
teristic of a digital communication system is signal-to-noise ratio (SNR). Most
often this is measured at the output of the receiver and is thus related directly to
the data detection process itself. Of the several possible performance measures
that exist, it is typically the easiest to evaluate and most often serves as an excel-
lent indicator of the overall fidelity of the system. Although traditionally, the
term noise in signal-to-noise ratio refers to the ever-present thermal noise at the
input to the receiver, in the context of a communication system subject to fading
impairment, the more appropriate performance measure is average SNR, where
the word average refers to statistical averaging over the probability distribution
of the fading. In simple mathematical terms, if � denotes the instantaneous SNR
[a random variable (RV)] at the receiver output, which includes the effect of
fading, then

�
D
∫ 1

0
�p���� d� �1.1�

is the average SNR, where p���� denotes the probability density function (PDF)
of � . To begin to get a feel for what we will shortly describe as a unified
approach to performance evaluation, we first rewrite (1.1) in terms of the moment
generating function (MGF) associated with � , namely,

M��s� D
∫ 1

0
p����es� d� �1.2�

Taking the first derivative of (1.2) with respect to s and evaluating the result at
s D 0, we see immediately from (1.1) that

� D dM��s�

ds

∣∣∣∣
sD0

�1.3�

That is, the ability to evaluate the MGF of the instantaneous SNR (perhaps
in closed form) allows immediate evaluation of the average SNR via a simple
mathematical operation: differentiation.

To gain further insight into the power of the foregoing statement, we note
that in many systems, particularly those dealing with a form of diversity
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(multichannel) reception known as maximal-ratio combining (MRC) (discussed
in great detail in Chapter 9), the output SNR, � , is expressed as a sum
(combination) of the individual branch (channel) SNRs (i.e., � D ∑L

lD1 �l,
where L denotes the number of channels combined). In addition, it is often
reasonable in practice to assume that the channels are independent of each
other (i.e., the RVs �ljLlD1 are themselves independent). In such instances, the
MGF M��s� can be expressed as the product of the MGFs associated with
each channel [i.e., M��s� D ∏L

lD1 M�l�s�], which for a large variety of fading
channel statistical models can be computed in closed form.1 By contrast, even
with the assumption of channel independence, computation of the probability
density function (PDF) p����, which requires convolution of the various PDFs
p�l��l�jLlD1 that characterize the L channels, can still be a monumental task. Even
in the case where these individual channel PDFs are of the same functional
form but are characterized by different average SNR’s, �l, the evaluation of
p���� can still be quite tedious. Such is the power of the MGF-based approach;
namely, it circumvents the need for finding the first-order PDF of the output SNR
provided that one is interested in a performance measure that can be expressed
in terms of the MGF. Of course, for the case of average SNR, the solution
is extremely simple, namely, � D ∑L

lD1 �l, regardless of whether the channels
are independent or not, and in fact, one never needs to find the MGF at all.
However, for other performance measures and also the average SNR of other
combining statistics [e.g., the sum of an ordered set of random variables typical
of generalized selection combining (GSC) (discussed in Chapter 9)], matters are
not quite this simple and the points made above for justifying an MGF-based
approach are, as we shall see, especially significant.

1.1.2 Outage Probability

Another standard performance criterion characteristic of diversity systems oper-
ating over fading channels is the outage probability denoted by Pout and defined as
the probability that the instantaneous error probability exceeds a specified value
or equivalently, the probability that the output SNR, � , falls below a certain
specified threshold, �th. Mathematically speaking,

Pout D
∫ �th

0
p���� d� �1.4�

which is the cumulative distribution function (CDF) of � , namely, P����,
evaluated at � D �th. Since the PDF and the CDF are related by p���� D

1 Note that the existence of the product form for the MGF M��s� does not necessarily imply that the
channels are identically distributed [i.e., each MGF M�l �s� is allowed to maintain its own identity
independent of the others]. Furthermore, even if the channels are not assumed to be independent,
the relation in (1.3) is nevertheless valid, and in many instances the MGF of the (combined) output
can still be obtained in closed form.
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dP����/d� , and since P��0� D 0, the Laplace transforms of these two functions
are related by2

OP��s� D Op��s�

s
�1.5�

Furthermore, since the MGF is just the Laplace transform of the PDF with
argument reversed in sign [i.e., Op��s� D M���s�], the outage probability can
be found from the inverse Laplace transform of the ratio M���s�/s evaluated at
� D �th, that is,

Pout D 1

2�j

∫ �Cj1

��j1

M���s�

s
es�th ds �1.6�

where � is chosen in the region of convergence of the integral in the complex
s plane. Methods for evaluating inverse Laplace transforms have received
widespread attention in the literature. (A good summary of these can be found
in Ref. 1.) One such numerical technique that is particularly useful for CDFs
of positive RVs (such as instantaneous SNR) is discussed in Appendix 9B and
applied in Chapter 9. For our purpose here, it is sufficient to recognize once
again that the evaluation of outage probability can be performed based entirely
on knowledge of the MGF of the output SNR without ever having to compute
its PDF.

1.1.3 Average Bit Error Probability

The third performance criterion and undoubtedly the most difficult of the three
to compute is average bit error probability (BEP).3 On the other hand, it is the
one that is most revealing about the nature of the system behavior and the one
most often illustrated in documents containing system performance evaluations;
thus, it is of primary interest to have a method for its evaluation that reduces the
degree of difficulty as much as possible.

The primary reason for the difficulty in evaluating average BEP lies in the
fact that the conditional (on the fading) BEP is, in general, a nonlinear function
of the instantaneous SNR, the nature of the nonlinearity being a function of
the modulation/detection scheme employed by the system. For example, in the
multichannel case, the average of the conditional BEP over the fading statistics
is not a simple average of the per channel performance measure as was true
for average SNR. Nevertheless, we shall see momentarily that an MGF-based
approach is still quite useful in simplifying the analysis and in a large variety of
cases allows unification under a common framework.

2 The symbol “^” above a function denotes its Laplace transform.
3 The discussion that follows applies, in principle, equally well to average symbol error probability
(SEP). The specific differences between the two are explored in detail in the chapters dealing with
system performance. Furthermore, the terms bit error rate (BER) and symbol error rate (SER) are
often used in the literature as alternatives to BEP and SEP. Rather than choose a preference, in this
book we use these terms interchangeably.
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Suppose first that the conditional BEP is of the form

Pb�Ej�� D C1 exp��a1�� �1.7�

such as would be the case for differentially coherent detection of phase-shift-
keying (PSK) or noncoherent detection of orthogonal frequency-shift-keying
(FSK) (see Chapter 8). Then the average BEP can be written as

Pb�E�
D
∫ 1

0
Pb�Ej��p���� d�

D
∫ 1

0
C1 exp��a1��p���� d� D C1M���a1� �1.8�

where again M��s� is the MGF of the instantaneous fading SNR and depends
only on the fading channel model assumed.

Suppose next that the nonlinear functional relationship between Pb�Ej�� and �
is such that it can be expressed as an integral whose integrand has an exponential
dependence on � in the form of (1.7), that is,4

Pb�Ej�� D
∫ �2

�1

C2h��� exp[�a2g����] d� �1.9�

where for our purpose here h��� and g��� are arbitrary functions of the integration
variable, and typically both �1 and �2 are finite (although this is not an
absolute requirement for what follows).5 Although not at all obvious at this
point, suffice it to say that a relationship of the form in (1.9) can result from
employing alternative forms of such classic nonlinear functions as the Gaussian
Q-function and Marcum Q-function (see Chapter 4), which are characteristic of
the relationship between Pb�Ej�� and � corresponding to, for example, coherent
detection of PSK and differentially coherent detection of quadriphase-shift-keying
(QPSK), respectively. Still another possibility is that the nonlinear functional
relationship between Pb�Ej�� and � is inherently in the form of (1.9); that is,
no alternative representation need be employed. An example of such occurs
for the conditional symbol error probability (SEP) associated with coherent
and differentially coherent detection of M-ary PSK (M-PSK) (see Chapter 8).
Regardless of the particular case at hand, once again averaging (1.9) over the
fading gives (after interchanging the order of integration)

Pb�E� D
∫ 1

0
Pb�Ej��p���� d� D

∫ 1

0

∫ �2

�1

C2h��� exp[�a2g����] d�p���� d�

4 In the more general case, the conditional BEP might be expressed as a sum of integrals of the type
in (1.9).
5 In principle, (1.9) includes (1.7) as a special case if h��� is allowed to assume the form of a Dirac
delta function located within the interval �1 � � � �2.
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D C2

∫ �2

�1

h���
∫ 1

0
exp[�a2g����]p���� d� d�

D C2

∫ �2

�1

h���M� [�a2g���] d� �1.10�

As we shall see later in the book, integrals of the form in (1.10) can, for many
special cases, be obtained in closed form. At the very worst, with rare exceptions,
the resulting expression will be a single integral with finite limits and an integrand
composed of elementary functions.6 Since (1.8) and (1.10) cover a wide variety
of different modulation/detection types and fading channel models, we refer to
this approach for evaluating average error probability as the unified MGF-based
approach and the associated forms of the conditional error probability as the
desired forms. The first notion of such a unified approach was discussed in Ref. 2
and laid the groundwork for much of the material that follows in this book.

It goes without saying that not every fading channel communication problem
fits the foregoing description; thus, alternative, but still simple and accurate tech-
niques are desirable for evaluating system error probability in such circumstances.
One class of problems for which a different form of MGF-based approach is
possible relates to communication with symmetric binary modulations wherein
the decision mechanism constitutes a comparison of a decision variable with a
zero threshold. Aside from the obvious uncoded applications, the class above
also includes the evaluation of pairwise error probability in error-correction-
coded systems, as discussed in Chapter 12. In mathematical terms, letting Dj�
denote the decision variable,7 the corresponding conditional BEP is of the form
(assuming arbitrarily that a positive data bit was transmitted)

Pb�Ej�� D PrfDj� < 0g D
∫ 0

�1
pDj� �D� dD D PDj� �0� �1.11�

where pDj� �D� and PDj� �D� are, respectively, the PDF and CDF of this variable.
Aside from the fact that the decision variable Dj� can, in general, take on
both positive and negative values whereas the instantaneous fading SNR, � ,
is restricted to positive values, there is a strong resemblance between the binary
probability of error in (1.11) and the outage probability in (1.4). Thus, by analogy
with (1.6), the conditional BEP of (1.11) can be expressed as

Pb�Ej�� D 1

2�j

∫ �Cj1

��j1

MDj� ��s�

s
ds �1.12�

6 As we shall see in Chapter 4, the h��� and g��� that result from the alternative representations of
the Gaussian and Marcum Q-functions are composed of simple trigonometric functions.
7 The notation Dj� is not meant to imply that the decision variable explicitly depends on the fading
SNR. Rather, it is merely intended to indicate the dependence of this variable on the fading statistics
of the channel. More about this dependence shortly.
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where MDj� ��s� now denotes the MGF of the decision variable Dj� [i.e., the
bilateral Laplace transform of pDj� �D� with argument reversed].

To see how MDj� ��s� might explicitly depend on � , we now consider the
subclass of problems where the conditional decision variable Dj� corresponds to a
quadratic form of independent complex Gaussian RVs (e.g., a sum of the squared
magnitudes of, say, L independent complex Gaussian RVs, or equivalently, a
chi-square RV with 2L degrees of freedom). Such a form occurs for multiple
(L)-channel reception of binary modulations with differentially coherent or
noncoherent detection (see Chapter 9). In this instance, the MGF MDj� �s� happens
to be exponential in � and has the generic form

MDj� �s� D f1�s� exp[�f2�s�] �1.13�

If, as before, we let � D ∑L
lD1 �l, then substituting (1.13) into (1.12) and

averaging over the fading results in the average BEP:8

Pb�E� D 1

2�j

∫ �Cj1

��j1

MD��s�

s
ds �1.14�

where

MD�s�
D
∫ 1

0
MDj� �s�p���� d�

D f1�s�
∫ 1

0
exp[�f2�s�]p���� dy D f1�s�M��f2�s�� �1.15�

is the unconditional MGF of the decision variable, which also has the product
form

MD�s� D f1�s�
L∏

lD1

M�l�f2�s�� �1.16�

Finally, by virtue of the fact that the MGF of the decision variable can be
expressed in terms of the MGF of the fading variable (SNR) as in (1.15) [or
(1.16)], then analogous to (1.10), we are once again able to evaluate the average
BEP based solely on knowledge of the latter MGF.

It is not immediately obvious how to extend the inverse Laplace transform
technique discussed in Appendix 9B to CDFs of bilateral RVs; thus other methods
for performing this inversion are required. A number of these, including contour
integration using residues, saddle point integration, and numerical integration
by Gauss–Chebyshev quadrature rules, are discussed in Refs. 3, through 6 and
covered later in the book.

8 The approach for computing average BEP as described by (1.13) was also described by Biglieri
et al. [3] as a unified approach to computing error probabilities over fading channels.
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Despite the fact that the methods dictated by (1.14) and (1.8) or (1.10) cover a
wide variety of problems dealing with the performance of digital communication
systems over fading channels, there are still some situations that don’t lend
themselves to either of these two unifying methods. An example of this is
evaluation of the bit error probability performance of an M-ary noncoherent
orthogonal system operating over an L-path diversity channel (see Chapter 9).
However, even in this case there exists an MGF-based approach that greatly
simplifies the problem and allows for a more general result [7] than that reported
by Weng and Leung [8]. We now outline the method, briefly leaving the more
detailed treatment to Chapter 9.

Consider an M-ary communication system where rather than comparing a
single decision variable with a threshold, one decision variable U1j� is compared
with the remaining M � 1 decision variables Um, m D 2, 3, . . . ,M, all of which
do not depend on the fading statistics.9 Specifically, a correct symbol decision is
made if U1j� is greater than Um, m D 2, 3, . . . , M. Assuming that the M decision
variables are independent, then in mathematical terms, the probability of correct
decision is given by

Ps�Cj�; u1� D PrfU2 < u1, U3 < u1, . . . , UM < u1jU1j� D u1g

D [PrfU2 < u1jU1j� D u1g]M�1 D
[∫ u1

0
pU2�u2� du2

]M�1

D [1 � �1 � PU2�u1��]
M�1 �1.17�

Using the binomial expansion in (1.17), the conditional probability of error
Ps�Ej�; u1� D 1 � Ps�Cj�; u1� can be written as

Ps�Ej�; u1� D
M�1∑
iD1

(
M � 1

i

)
��1�iC1[1 � PU2�u1�]

i D g �u1� �1.18�

Averaging over u1 and using the Fourier transform relationship between the PDF
pU1j� �u1� and the MGF MU1j� �jω�, we obtain

Ps�Ej�� D
∫ 1

0
g�u1�pU1j� �u1� du1

D
∫ 1

0

1

2�

∫ 1

�1
MU1j� �jω�e�jωu1g�u1� dω du1 �1.19�

Again noting that for a noncentral chi-square RV (as is the case for U1j�) the
conditional MGF MU1j� �jω� is of the form in (1.13), then averaging (1.19) over �

9 Again the conditional notation on � for U1 is not meant to imply that this decision variable is
explicitly a function of the fading SNR but rather, to indicate its dependence on the fading statistics.
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transforms MU1j� �jω� into MU1�jω� of the form in (1.15), which when substituted
in (1.19) and reversing the order of integration produces

Ps�E� D 1

2�

∫ 1

�1
f1�jω�M��f2�jω��

[∫ 1

0
e�jωu1g�u1� du1

]
dω �1.20�

Finally, because the CDF PU2�u1� in (1.18) is that of a central chi-square RV
with 2L degrees of freedom, the resulting form of g�u1� is such that the integral
on u1 in (1.20) can be obtained in closed form. Thus, as promised, what remains
again is an expression for average SEP (which for M-ary orthogonal signaling
can be related to average BEP by a simple scale factor) whose dependence on
the fading statistics is solely through the MGF of the fading SNR.

All of the techniques considered thus far for evaluating average error
probability performance rely on the ability to evaluate the MGF of the
instantaneous fading SNR � . In dealing with a form of diversity reception referred
to as equal-gain combining (EGC) (discussed in great detail in Chapter 9),
the instantaneous fading SNR at the output of the combiner takes the form
� D [

1/
p

L
∑L

lD1
p

�l
]2

. In this case it is more convenient to deal with the MGF
of the square root of the instantaneous fading SNR

x
D p

� D 1p
L

L∑
lD1

p
�l D 1p

L

L∑
lD1

xl

since if the channels are again assumed independent, then again this MGF takes
on a product form, namely, Mx�s� D ∏L

lD1 Mxl�s/
p

L�. Since the average BER
can alternatively be computed from

Pb�E� D
∫ 1

0
Pb�Ejx�px�x� dx �1.21�

then if, analogous to (1.9), Pb�Ejx� assumes the form

Pb�Ejx� D
∫ �2

�1

C2h��� exp
[ � a2g���x2]d� �1.22�

a variation of the procedure in (1.10) is needed to produce an expression for
Pb�E� in terms of the MGF of x. First, applying Parseval’s theorem [9, p. 27] to
(1.21) and letting G�jω� D FfPb�Ejx�g denote the Fourier transform of Pb�Ejx�,
then independent of the form of Pb�Ejx�, we obtain

Pb�E� D 1

2�

∫ 1

�1
G�jω�Mx�jω� dω

D 1

�

∫ 1

0
RefG�jω�Mx�jω�g dω �1.23�
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where we have recognized that the imaginary part of the integral must be equal
to zero since Pb�E� is real, and that the even part of the integrand is an even
function of ω. Making the change of variables & D tan�1 ω, (1.23) can be written
in the form of an integral with finite limits:

Pb�E� D 1

�

∫ �/2

0

1

cos2 &
RefG�j tan &�Mx�j tan &�g d&

D 2

�

∫ �/2

0

1

sin 2&
Reftan & G�j tan &�Mx�j tan &�g d& �1.24�

Now, specifically for the form of Pb�Ejx� in (1.22), G�jω� becomes

G�jω� D
∫ �2

�1

C2h���
∫ 1

0
exp

[ � a2g���x2 C jωx
]
dx d� �1.25�

The inner integral on x can be evaluated in closed form as

∫ 1

0
exp

[ � a2g���x2 C jωx
]
dx D 1

2a2g���

{√
�a2g��� exp

[
�jω�2

4a2g���

]

Cjω 1F1

[
1,

3

2
;

�jω�2

4a2g���

]}
�1.26�

where 1F1�a, b; c� is the confluent hypergeometric function of the first kind [10,
Eq. (9.210)]. Therefore, in general, evaluation of the average BER of (1.24)
requires a double integration. However, for a number of specific applications
[i.e., particular forms of the functions h��� and g���], the outer integral on � can
also be evaluated in closed form; thus, in these instances, Pb�E� can be obtained
as a single integral with finite limits and an integrand involving the MGF of
the fading. Methods of error probability evaluation based on the type of MGF
approach described above have been considered in the literature [11–13] and are
presented in detail in Chapter 9.

1.2 CONCLUSIONS

Without regard to the specific application or performance measure, we have
briefly demonstrated in this chapter that for a wide variety of digital communi-
cation systems covering virtually all known modulation/detection techniques and
practical fading channel models, there exists an MGF-based approach that simpli-
fies the evaluation of this performance. In the biggest number of these instances,
the MGF-based approach is encompassed in a unified framework which allows
the development of a set of generic tools to replace the case-by-case analyses
typical of previous contributions in the literature. It is the authors’ hope that
by the time the reader reaches the end of this book and has experienced the
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exhaustive set of practical circumstances where these tools are useful, he or she
will fully appreciate the power behind the MGF-based approach and as such will
generate for themselves an insight into finding new and exciting applications.
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2

FADING CHANNEL
CHARACTERIZATION

AND MODELING

Radio-wave propagation through wireless channels is a complicated phenomenon
characterized by various effects, such as multipath and shadowing. A precise
mathematical description of this phenomenon is either unknown or too complex
for tractable communications systems analyses. However, considerable efforts
have been devoted to the statistical modeling and characterization of these
different effects. The result is a range of relatively simple and accurate
statistical models for fading channels which depend on the particular propagation
environment and the underlying communication scenario.

The primary purpose of this chapter is to review briefly the principal
characteristics and models for fading channels. More detailed treatment of this
subject can be found in standard textbooks, such as Refs. 1,3. This chapter
also introduces terminology and notation that are used throughout the book.
The chapter is organized as follows. A brief qualitative description of the main
characteristics of fading channels is presented in the next section. Models for
frequency-flat fading channels, corresponding to narrowband transmission, are
described in Section 2.2. Models for frequency-selective fading channels that
characterize fading in wideband channels are described in Section 2.3.

2.1 MAIN CHARACTERISTICS OF FADING CHANNELS

2.1.1 Envelope and Phase Fluctuations

When a received signal experiences fading during transmission, both its envelope
and phase fluctuate over time. For coherent modulations, the fading effects on the
phase can severely degrade performance unless measures are taken to compensate
for them at the receiver. Most often, analyses of systems employing such
modulations assume that the phase effects due to fading are perfectly corrected

15
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at the receiver, resulting in what is referred to as ideal coherent demodulation.
For noncoherent modulations, phase information is not needed at the receiver
and therefore the phase variation due to fading does not affect the performance.
Hence performance analyses for both ideal coherent and noncoherent modulations
over fading channels requires only knowledge of the fading envelope statistics
and is the case most often considered in this book. Furthermore, for slow fading
(discussed next), wherein the fading is at least constant over the duration of a
symbol time, the fading envelope random process can be represented by a random
variable (RV) over the symbol time.

2.1.2 Slow and Fast Fading

The distinction between slow and fast fading is important for the mathematical
modeling of fading channels and for the performance evaluation of communica-
tion systems operating over these channels. This notion is related to the coherence
time Tc of the channel, which measures the period of time over which the fading
process is correlated (or equivalently, the period of time after which the correla-
tion function of two samples of the channel response taken at the same frequency
but different time instants drops below a certain predetermined threshold). The
coherence time is also related to the channel Doppler spread fd by

Tc ' 1

fd
�2.1�

The fading is said to be slow if the symbol time duration Ts is smaller than the
channel’s coherence time Tc; otherwise, it is considered to be fast. In slow fading
a particular fade level will affect many successive symbols, which leads to burst
errors, whereas in fast fading the fading decorrelates from symbol to symbol. In
the latter case and when the communication receiver decisions are made based
on an observation of the received signal over two or more symbol times (such
as differentially coherent or coded communications), it becomes necessary to
consider the variation of the fading channel from one symbol interval to the
next. This is done through a range of correlation models that depend essentially
on the particular propagation environment and the underlying communication
scenario. These various autocorrelation models and their corresponding power
spectral density are tabulated in Table 2.1, in which for convenience the variance
of the fast-fading process is normalized to unity.

2.1.3 Frequency-Flat and Frequency-Selective Fading

Frequency selectivity is also an important characteristic of fading channels. If
all the spectral components of the transmitted signal are affected in a similar
manner, the fading is said to be frequency nonselective or, equivalently, frequency
flat. This is the case for narrowband systems in which the transmitted signal
bandwidth is much smaller than the channel’s coherence bandwidth fc. This
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TABLE 2.1 Correlation and Spectral Properties of Various Types of Fading Processes of
Practical Interest

Type of Fading Spectrum Fading Autocorrelation, 	 Normalized PSD

Rectangular
sin�2
fdTs�

2
fdTs
�2fd��1, jfj � fd

Gaussian exp[��
fdTs�2] exp

[
�
(

f
fd

)2
]
�
p

fd��1

Land mobile J0�2
fdTs� [
2�f2 � f2
d �]

�1/2, jfj � fd

First-order Butterworth exp��2
jfdTsj�
[

fd

(
1 C f

fd

)2
]�1

Second-order Butterworth exp
(

�
jfdTsjp
2

) [
1 C 16

(
f
fd

)4
]�1

ð
(

cos

fdTsp

2
C sin


jfdTsjp
2

)

Source: Data from Mason [4].
aPSD is the power spectral density, fd the Doppler spread, and Ts the symbol time.

bandwidth measures the frequency range over which the fading process is
correlated and is defined as the frequency bandwidth over which the correlation
function of two samples of the channel response taken at the same time but
at different frequencies falls below a suitable value. In addition, the coherence
bandwidth is related to the maximum delay spread 
max by

fc ' 1


max
�2.2�

On the other hand, if the spectral components of the transmitted signal are affected
by different amplitude gains and phase shifts, the fading is said to be frequency
selective. This applies to wideband systems in which the transmitted bandwidth
is bigger than the channel’s coherence bandwidth.

2.2 MODELING OF FLAT FADING CHANNELS

When fading affects narrowband systems, the received carrier amplitude is
modulated by the fading amplitude ˛, where ˛ is a RV with mean-square value
� D ˛2 and probability density function (PDF) p˛�˛�, which is dependent on the
nature of the radio propagation environment. After passing through the fading
channel, the signal is perturbed at the receiver by additive white Gaussian noise
(AWGN), which is typically assumed to be statistically independent of the fading
amplitude ˛ and which is characterized by a one-sided power spectral density
N0 (W/Hz). Equivalently, the received instantaneous signal power is modulated
by ˛2. Thus we define the instantaneous signal-to-noise power ratio (SNR) per
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symbol by � D ˛2Es/N0 and the average SNR per symbol by � D �Es/N0,
where Es is the energy per symbol.1 In addition, the PDF of � is obtained by
introducing a change of variables in the expression for the fading PDF p˛�˛� of
˛, yielding

p���� D p˛�
p
��/��

2
p
��/�

. �2.3�

The moment generating function (MGF) M��s� associated with the fading
PDF p���� and defined by

M��s� D
∫ 1

0
p����e

s� d� �2.4�

is another important statistical characteristic of fading channels, particularly in
the context of this book. In addition, the amount of fading (AF), or “fading
figure,” associated with the fading PDF is defined as

AF D var�˛2�

�E[˛2]�2
D E[�˛2 ���2]

�2
D E��2�� �E[�]�2

�E[�]�2
�2.5�

with E[Ð] denoting statistical average and var�Ð� denoting variance. This figure
was introduced by Charash [5, p. 29; 6] as a unified measure of the severity of
the fading and is typically independent of the average fading power �.

We now present the various radio propagation effects involved in fading
channels, their corresponding PDF’s, MGF’s, AF’s, and their relation to physical
channels. A summary of these properties is tabulated in Table 2.2.

2.2.1 Multipath Fading

Multipath fading is due to the constructive and destructive combination of
randomly delayed, reflected, scattered, and diffracted signal components. This
type of fading is relatively fast and is therefore responsible for the short-term
signal variations. Depending on the nature of the radio propagation environment,
there are different models describing the statistical behavior of the multipath
fading envelope.

2.2.1.1 Rayleigh Model. The Rayleigh distribution is frequently used to
model multipath fading with no direct line-of-sight (LOS) path. In this case
the channel fading amplitude ˛ is distributed according to

p˛�˛� D 2˛

�
exp

(
�˛

2

�

)
, ˛ ½ 0 �2.6�

1 Our performance evaluation of digital communications over fading channels will generally be a
function of the average SNR per symbol � .
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and hence, following (2.3), the instantaneous SNR per symbol of the channel, � ,
is distributed according to an exponential distribution given by

p���� D 1

�
exp

(
��
�

)
, � ½ 0 �2.7�

The MGF corresponding to this fading model is given by

M��s� D �1 � s���1 �2.8�

In addition, the moments associated with this fading model can be shown to be
given by

E[�k] D �1 C k��k �2.9�

where �Ð� is the gamma function. The Rayleigh fading model therefore has
an AF equal to 1 and typically agrees very well with experimental data for
mobile systems, where no LOS path exists between the transmitter and receiver
antennas [3]. It also applies to the propagation of reflected and refracted paths
through the troposphere [7] and ionosphere [8,9] and to ship-to-ship [10] radio
links.

2.2.1.2 Nakagami-q (Hoyt) Model. The Nakagami-q distribution, also
referred to as the Hoyt distribution [11], is given in Nakagami [12, Eq. (52)]
by

p˛�˛� D �1 C q2�˛

q�
exp

[
� �1 C q2�2˛2

4q2�

]
I0

(
�1 � q4�˛2

4q2�

)
, ˛ ½ 0 �2.10�

where I0�Ð� is the zeroth-order modified Bessel function of the first kind, and q is
the Nakagami-q fading parameter which ranges from 0 to 1. Using (2.3), it can
be shown that the SNR per symbol of the channel, � , is distributed according to

p���� D 1 C q2

2q�
exp

[
� �1 C q2�2�

4q2�

]
I0

(
�1 � q4��

4q2�

)
, � ½ 0 �2.11�

It can be shown that the MGF corresponding to (2.11) is given by

M��s� D
[

1 � 2s� C �2s��2q2

�1 C q2�2

]�1/2

�2.12�

Also, the moments associated with this model are given by [12, Eq. (52)]

E��k� D �1 C k� 2F1

(
�k � 1

2
,�k

2
; 1,
(

1 � q2

1 C q2

)2
)
�k �2.13�
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where 2F1�Ð, Ð; Ð, Ð� is the Gauss hypergeometric function, and the AF of the
Nakagami-q distribution is therefore given by

AFq D 2�1 C q4�

�1 C q2�2
, 0 � q � 1 �2.14�

and hence ranges between 1 (q D 1) and 2 (q D 0). The Nakagami-q distribution
spans the range from one-sided Gaussian fading (q D 0) to Rayleigh fading
(q D 1). It is typically observed on satellite links subject to strong ionospheric
scintillation [13,14]. Note that one-sided Gaussian fading corresponds to the
worst-case fading or, equivalently, the largest AF for all multipath distributions
considered in our analyses.

2.2.1.3 Nakagami-n (Rice) Model. The Nakagami-n distribution is also
known as the Rice distribution [15]. It is often used to model propagation
paths consisting of one strong direct LOS component and many random weaker
components. Here the channel fading amplitude follows the distribution [12,
Eq. (50)]

p˛�˛� D 2�1 C n2�e�n2
˛

�
exp

[
� �1 C n2�˛2

�

]
I0


2n˛

√
1 C n2

�


 , ˛ ½ 0

�2.15�
where n is the Nakagami-n fading parameter which ranges from 0 to 1 and
which is related to the Rician K factor by K D n2. Applying (2.3) shows that
the SNR per symbol of the channel, � , is distributed according to a noncentral
chi-square distribution given by

p���� D �1 C n2�e�n2

�
exp

[
� �1 C n2��

�

]
I0


2n

√
�1 C n2��

�


 , � ½ 0

�2.16�
It can also be shown that the MGF associated with this fading model is given by

M��s� D �1 C n2�

�1 C n2�� s�
exp

[
n2s�

�1 C n2�� s�

]
�2.17�

and that the moments are given by [12, Eq. (50)]

E��k� D �1 C k�

�1 C n2�k
1F1��k, 1; �n2��k �2.18�

where 1F1�Ð, Ð; Ð� is the Kummer confluent hypergeometric function. The AF of
the Nakagami-n distribution is given by

AFn D 1 C 2n2

�1 C n2�2
, n ½ 0 �2.19�
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and hence ranges between 0 (n D 1) and 1 (n D 0). The Nakagami-n distribution
spans the range from Rayleigh fading (n D 0) to no fading (constant amplitude)
(n D 1). This type of fading is typically observed in the first resolvable
LOS paths of microcellular urban and suburban land-mobile [16], picocellular
indoor [17], and factory [18] environments. It also applies to the dominant LOS
path of satellite [19,20] and ship-to-ship [10] radio links.

2.2.1.4 Nakagami-m Model. The Nakagami-m PDF is in essence a central
chi-square distribution given by [12, Eq. (11)]

p˛�˛� D 2mm˛2m�1

�m�m�
exp

(
�m˛

2

�

)
, ˛ ½ 0 �2.20�

where m is the Nakagami-m fading parameter which ranges from 1
2 to 1.

Figure 2.1 shows the Nakagami-m PDF for � D 1 and various values of the
m parameter. Applying (2.3) shows that the SNR per symbol, � , is distributed
according to a gamma distribution given by

p���� D mm�m�1

�m�m�
exp

(
�m�
�

)
, � ½ 0 �2.21�
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Figure 2.1. Nakagami PDF for � D 1 and various values of the fading parameter m.
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It can also be shown that the MGF is given in this case by

M��s� D
(

1 � s�

m

)�m
�2.22�

and that the moments are given by [12, Eq. (65)]

E[�k] D �m C k�

�m�mk
�k �2.23�

which yields an AF of

AFm D 1

m
, m ½ 1

2
�2.24�

Hence, the Nakagami-m distribution spans via the m parameter the widest range of
AF (from 0 to 2) among all the multipath distributions considered in this book. For
instance, it includes the one-sided Gaussian distribution (m D 1

2 ) and the Rayleigh
distribution (m D 1) as special cases. In the limit as m ! C1, the Nakagami-m
fading channel converges to a nonfading AWGN channel. Furthermore, when
m < 1, equating (2.14) and (2.24), we obtain a one-to-one mapping between the
m parameter and the q parameter, allowing the Nakagami-m distribution to closely
approximate the Nakagami-q (Hoyt) distribution, and this mapping is given by

m D �1 C q2�2

2�1 C 2q4�
, m � 1 �2.25�

Similarly, when m > 1, equating (2.19) and (2.24) we obtain another one-to-one
mapping between the m parameter and the n parameter (or, equivalently, the
Rician K factor), allowing the Nakagami-m distribution to closely approximate
the Nakagami-n (Rice) distribution, and this mapping is given by

m D �1 C n2�2

1 C 2n2
, n ½ 0

n D
√ p

m2 � m

m� p
m2 � m

, m ½ 1

�2.26�

Finally, the Nakagami-m distribution often gives the best fit to land-
mobile [21–23] and indoor-mobile [24] multipath propagation, as well as
scintillating ionospheric radio links [9,25–28].

2.2.2 Log-Normal Shadowing

In terrestrial and satellite land-mobile systems, the link quality is also affected
by slow variation of the mean signal level due to the shadowing from
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terrain, buildings, and trees. Communication system performance will depend
on shadowing only if the radio receiver is able to average out the fast multipath
fading or if an efficient microdiversity system is used to eliminate the effects of
multipath. Based on empirical measurements, there is a general consensus that
shadowing can be modeled by a log-normal distribution for various outdoor and
indoor environments [21,29–33], in which case the path SNR per symbol � has
a PDF given by the standard log-normal expression

p���� D �p
2
��

exp
[
� �10 log10 � � ��2

2�2

]
�2.27�

where � D 10/ ln 10 D 4.3429, and � (dB) and � (dB) are the mean and standard
deviation of 10 log10 � , respectively.

The MGF associated with this slow-fading effect is given by

M��s� ' 1p



Np∑
nD1

Hxn exp�10�
p

2�xnC��/10s� �2.28�

where xn are the zeros of the Np-order Hermite polynomial, and Hxn are the
weight factors of the Np-order Hermite polynomial and are given by Table 25.10
of Ref. 50. In addition, the moments of (2.27) are given by

E[�k] D exp

[
k

�
�C 1

2

(
k

�

)2

�2

]
�2.29�

yielding an AF of

AF� D exp
(
�2

�2

)
� 1 �2.30�

From (2.30) the AF associated with a log-normal PDF can be arbitrarily high.
However, as noted by Charash [5, p. 29], in practical situations the standard
deviation of shadow fading does not exceed 9 dB [3, p. 88]. Hence, the AF of
log-normal shadowing is bounded by 73. This number exceeds the maximal AF
exhibited by the various multipath PDFs studied in Section 2.2.1 by several order
of magnitudes.

2.2.3 Composite Multipath/Shadowing

A composite multipath/shadowed fading environment consists of multipath fading
superimposed on log-normal shadowing. In this environment the receiver does
not average out the envelope fading due to multipath but rather, reacts to the
instantaneous composite multipath/shadowed signal [3, Sec. 2.4.2]. This is often
the scenario in congested downtown areas with slow-moving pedestrians and
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vehicles [21,34,35]. This type of composite fading is also observed in land-
mobile satellite systems subject to vegetative and/or urban shadowing [36–40].
There are two approaches and various combinations suggested in the literature
for obtaining the composite distribution. Here, as an example, we present the
composite gamma/log-normal PDF introduced by Ho and Stüber [35]. This PDF
arises in Nakagami-m shadowed environments and is obtained by averaging the
gamma distributed signal power (or, equivalently, the SNR per symbol) of (2.21)
over the conditional density of the log-normally distributed mean signal power
(or equivalently, the average SNR per symbol) of (2.27), giving the following
channel PDF:

p���� D
∫ 1

0

mm�m�1

wm�m�
exp

(
�m�
w

)
�p

2
�w
exp

[
� �10 log10 w � ��2

2�2

]
dw

�2.31�

For the special case where the multipath is Rayleigh distributed (m D 1), (2.31)
reduces to a composite exponential/log-normal PDF which was initially proposed
by Hansen and Meno [34].

The MGF is given in this case by

M��s� ' 1p



Np∑
nD1

Hxn�1 � 10�
p

2�xnC��/10s/m��m �2.32�

and the moments associated with a gamma/log-normal PDF are given by

E[�k] D �m C k�

�m�mk
exp

[
k

�
�C 1

2

(
k

�

)2

�2

]
�2.33�

and the resulting AF is given by

AFm� D 1 C m

m
exp

(
�2

�2

)
� 1 �2.34�

Note that when shadowing is absent (� D 0), (2.34) reduces to (2.24), as expected.
Similarly, as the fading is reduced (m ! 1), (2.34) reduces to (2.30), as
expected.

2.2.4 Combined (Time-Shared) Shadowed/Unshadowed Fading

From their land-mobile satellite channel characterization experiments, Lutz
et al. [39] and Barts and Stutzman [41] found that the overall fading process for
land-mobile satellite systems is a convex combination of unshadowed multipath
fading and a composite multipath/shadowed fading. Here, as an example, we
present in more detail the Lutz et al. model [39]. When no shadowing is present,
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the fading follows a Rice (Nakagami-n) PDF. On the other hand, when shadowing
is present, it is assumed that no direct LOS path exists and the received signal
power (or, equivalently, SNR per bit) is assumed to be an exponential/log-
normal (Hansen–Meno) PDF [34]. The combination is characterized by the
shadowing time-share factor, which is denoted by A, 0 � A � 1; hence, the
resulting combined PDF is given by

p���� D �1 � A�
�1 CK�e�K

�u
exp

[
� �1 CK��

�u

]
I0

[
2

√
K�1 CK��

�u

]

C A
∫ 1

0

1

w
exp

(
� �
w

)
�p

2
�sw
exp

[
� �10 log10 w� �s�2

2��s�2

]
dw

�2.35�

where �u is the average SNR per symbol during the unshadowed fraction of time,
and �s and �s are the average and standard deviation of 10 log10 � during the
shadowed fraction of time, respectively. The overall average SNR per symbol,
� , is then given by

� D �1 � A��u C A Ð 10�
s/10C�ln 10���s�2/200 �2.36�

Finally, the MGF can be shown to be given by

M��s� ' �1 � A�
�1 CK�

1 CK� s�u
exp

[
Ks�u

�1 CK�� s�u

]

C A
1p



Np∑
nD1

Hxn�1 � 10�
p

2�sxnC�s�/10s��1 �2.37�

2.3 MODELING OF FREQUENCY-SELECTIVE FADING CHANNELS

When wideband signals propagate through a frequency-selective channel, their
spectrum is affected by the channel transfer function, resulting in a time
dispersion of the waveform. This type of fading can be modeled as a linear
filter characterized by the following complex-valued lowpass equivalent impulse
response:

h�t� D
Lp∑
lD1

˛le
�j-lυ�t � 
l� �2.38�

where υ�Ð� is the Dirac delta function, l the channel index, and f˛lgLplD1, f-lgLplD1,
and f
lgLplD1 the random channel amplitudes, phases, and delays, respectively.
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In (2.38) Lp is the number of resolvable paths (the first path being the reference
path whose delay 
1 D 0) and is related to the ratio of the maximum delay
spread to the symbol time. Under the slow-fading assumption, Lp is assumed
to be constant over a certain period of time, and f˛lgLplD1, f-lgLplD1, and f
lgLplD1
are all constant over a symbol interval. If the various paths of a given impulse
response are generated by different scatterers, they tend to exhibit negligible
correlations [33,42] and it is reasonable in that case to assume that the f˛lgLplD1

are statistically independent RV’s. Otherwise, the f˛lgLplD1 have to be considered
as correlated RV’s and various fading correlation models of interest will be
presented in Section 9.6.

Extending the flat fading notations, the fading amplitude ˛l of the lth resolved
path is assumed to be a RV whose mean-square value ˛2

l is denoted by �l and
whose PDF p˛l�˛l� can be any one of the PDFs presented above. Also as in the
flat fading case, after passing through the fading channel, a wideband signal is
perturbed by AWGN with a one-sided power spectral density N0 (W/Hz). The
AWGN is assumed to be independent of the fading amplitudes f˛lgLlD1. Hence
the instantaneous SNR per symbol of the lth channel is given by �l D ˛2

l Es/N0,
and the average SNR per symbol of the lth channel is given by �l D �lEs/N0.

The first arriving path in the impulse response typically exhibits a lower
amount of fading than subsequent paths, since it may contain the LOS
path [16,23,42] Furthermore, since the specular power component typically
decreases with respect to delay, the last arriving paths exhibit higher amounts
of fading [23,42]. The f�lgLplD1 are related to the channel’s power delay profile
(PDP), which is also referred to as the multipath intensity profile (MIP ) and
which is typically a decreasing function of the delay. The PDP model can
assume various forms, depending on whether the model is for indoor or outdoor
environments and for each environment, the general propagation conditions.
PDP’s for indoor partitioned office buildings, indoor factory buildings with heavy
machinery, high-density office buildings in urban areas, low-density residential
houses in suburban areas, open rural environment, hilly or mountainous regions,
and maritime environment are described in Ref. 43. For example, experimental
measurements indicate that the mobile radio channel is well characterized by an
exponentially decaying PDP for indoor office buildings [33] and congested urban
areas [29,44]:

�l D �1e
�
l/
max, l D 1, 2, . . . , Lp �2.39�

where �1 is the average fading power corresponding to the first (reference)
propagation path and 
max is the channel maximum delay spread. In the literature
the delays are often assumed to be equally spaced (
lC1 � 
l is constant and equal
to the symbol time Ts) [1, Sec. 14-5-1; 45], and with this assumption, we get the
equally spaced exponential profile given by

�l D �1e
��l�1�υ, υ ½ 0 and l D 1, 2, . . . , Lp �2.40�
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where the parameter υ is the power decay factor, which reflects the rate at which
the average fading power decays. Other idealized PDP profiles reported or used in
the literature include the constant (flat) [46], the flat exponential [47], the double
spike [46], the Gaussian [46], the power function (polynomial) [48], and other
more complicated composite profiles [49].
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3

TYPES OF COMMUNICATION

Digital modulation techniques are typically classified based on (1) the carrier
attribute (e.g., phase, amplitude, frequency) that is being modulated, (2) the
number of levels assigned to the modulated attribute, and (3) the degree to which
the receiver extracts information about the unknown carrier phase in performing
the data detection function (e.g., coherent, partially coherent, differentially
coherent, noncoherent). Although most combinations of these classification
categories are possible, some are more popular than others. In the simplest
case, only a single carrier attribute is modulated, whereas a more sophisticated
modulation scheme would allow for modulating more than one attribute (e.g.,
amplitude and phase), the latter affording additional degrees of freedom in
satsifying the power and bandwidth requirements of the system.

Our goal in this chapter is to review the most popular digital modulation
techniques (i.e., those that are most often addressed in the literature) and
discuss their transmitted signal form as well as their detection over the additive
white Gaussian noise (AWGN) channel. In all cases we limit our consideration
to receivers that implement the maximum a posteriori (MAP) decision rule
[maximum-likelihood (ML) for equiprobable signal hypotheses] and as such
are optimum from the standpoint of minimizing error probability. Emphasis is
placed on those modulations that might be used in applications where the channel
exhibits multipath fading.

3.1 IDEAL COHERENT DETECTION

Consider a complex sinusoidal carrier, Qct�t� D Acej�2�fctC
c�, which in the simplest
case is amplitude, phase, or frequency modulated by an M-level �M D 2m ½ 2�
digital waveform, a�t�, 
�t�, or f�t�, respectively, in accordance with the
digital data to be transmitted over the channel (Fig. 3.1). The corresponding
bandpass complex transmitted signal then becomes Qs�t� D QS�t�ej�2�fctC
c�, where
QS�t� is the equivalent baseband complex transmitted signal and takes on the
specific forms QS�t� D Aca�t�, QS�t� D Acej
�t�, and QS�t� D Acejf�t�t, respectively.

31
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Figure 3.1. Generic complex form of transmitter and receiver for ideal coherent detection over
the AWGN. (The asterisk on the multiplier denotes complex conjugate multiplication.)

When more than one attribute of the carrier is modulated (e.g., amplitude and
phase), the transmitted signal would have the form Qs�t� D Aca�t�ej[2�fctC
cC
�t�].
Corresponding to any of the cases above, the total received complex signal
is Qr�t� D ˛chQs�t� C Qn�t�, where Qn�t� is a complex white bandpass Gaussian
noise process with single-sided power spectral density (PSD) N0 (W/Hz) [i.e.,
Ef Qn�t� QnŁ�t C ��g D N0υ�t � ��] and ˛ch is the attenuation introduced by the
channel. For the case of a pure AWGN channel as considered here, ˛ch is a
deterministic constant and for our purposes can be set equal to unity. For the
fading channel considered later in the book, ˛ch is a complex random variable
whose statistics depend on the particular type of fading (e.g., for a Rayleigh or
Rician channel, ˛ch would be a complex Gaussian random variable).

In the case of ideal phase coherent detection (often called simply coherent
detection), the receiver reconstructs the carrier with perfect knowledge of
the phase and frequency. Thus, the receiver forms the signal1 Qcr�t� D
ej�2�fctC
c� D Qct�t� and uses this to perform a complex conjugate demodula-
tion of the received signal (Fig. 3.1). The output of this demodulation is then
Qx�t� D Qr�t�QcŁ

r �t� D QS�t� C Qn�t�QcŁ
r �t� which depending on the particular form of

modulation corresponding to the three simple cases above is either Qx�t� D
Aca�t� C Qn�t�QcŁ

r �t�, Qx�t� D Acej
�t� C Qn�t�QcŁ
r �t�, or Qx�t� D Acej[2�f�t�t] C Qn�t�QcŁ

r �t�.
The optimum receiver then performs matched filtering operations on Qx�t� during
each successive transmitted interval corresponding to the M possible transmitted
information symbols in that interval and proceeds to make a decision based on
the largest of the resulting M outputs. We now discuss a number of specific
cases of the foregoing generic signal model along with the characteristics of the
corresponding ideal coherent receiver.

1 Again since we are considering here only the pure AWGN channel with idealized demodulation,
the amplitude of the carrier reference signal is deterministic and may be normalized to unity with
no loss in generality. Later when considering the fading channel, we shall see that the statistics of
the fading channel must be taken into account in modeling the demodulation reference signal.
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3.1.1 Multiple Amplitude-Shift-Keying or Multiple Amplitude
Modulation

A multiple amplitude-shift-keyed (M-ASK) signal [more often referred to as
multiple amplitude modulation (M-AM)] occurs when a�t� takes on equiprobable
symmetric2 values ˛i D 2i � 1 � M, i D 1, 2, . . . ,M, in each symbol interval Ts
which is related to the bit time Tb by Ts D Tb log2 M. As such, a�t� is modeled
as a random pulse stream, that is,

a�t� D
1∑

nD�1
anp�t � nTs� �3.1�

where an is the information (data) amplitude in the nth symbol interval nTs 

t 
 �n C 1�Ts ranging over the set of M possible values ˛i as above, and p�t� is a
unit amplitude rectangular pulse of duration Ts seconds. The signal constellation
(i.e., the locus of points of the baseband complex signal in two dimensions) is a
straight line along the horizontal axis with points spaced uniformly by two units.
In the nth symbol interval the transmitted complex signal is

Qs�t� D Acane
j�2�fctC
c� �3.2�

Note that because of the rectangular pulse shape, the complex baseband signal
QS�t� D Acan is constant in this same interval. At the receiver, after complex-
conjugate demodulation by the ideal phase coherent reference Qcr�t� D ej�2�fctC
c�,
we obtain

Qx�t� D Acan C QN�t� �3.3�

where QN�t� D Qn�t�cŁ
r �t� is a zero-mean baseband complex Gaussian process.

Passing Qx�t� through M matched filters [integrate-and-dump (I&D) circuits for
the assumed rectangular pulse shape of the modulation]3 results in the M outputs
(Fig. 3.2a)

Qynk D ˛kanAcTs C ˛k QNn, k D 1, 2, . . . ,M, QNn D
∫ �nC1�Ts

nTs

QN�t� dt
�3.4�

whereupon a decision corresponding to the largest Ref Qynkg D ˛kanAcTs C
Ref˛k QNng is made on the transmitted amplitude. Alternatively, the amplitude
scaling by the M possible levels ˛i and maximum selection can be replaced by
an M-level quantizer acting on the single real decision variable (see Fig. 3.2b)

yn D anAcTs C Nn, Nn D Ref QNng �3.5�

2 In our discussions of AM, we consider only the case wherein the amplitude levels are distributed
symmetrically around the zero level. For a discussion of asymmetric AM, see Ref. 1.
3 As is well known, only a single matched filter is required whose output is scaled by the M possible
values of ˛i.
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Figure 3.2. Complex forms of optimum receiver for ideal coherent detection of M-AM over the
AWGN: (a) conventional maximum-likelihood form; (b) simpler decision threshold form.

3.1.2 Quadrature Amplitude-Shift-Keying or Quadrature Amplitude
Modulation

A quadrature amplitude-shift-keyed (QASK) signal [more commonly referred to
as quadrature amplitude modulation (QAM)] is a two-dimensional generalization
of M-AM which can be viewed as a combined amplitude/phase modulation
or more conveniently as a complex amplitude-modulated carrier. The signal
constellation is a rectangular grid with points uniformly spaced along each axis
by 2 units. Letting M still denote the number of possible transmitted waveforms,
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then in the nth symbol interval a QAM signal can be expressed as4

Qs�t� D Ac�aIn C jaQn�e
j�2�fctC
c� �3.6�

where the information amplitudes aIn and aQn range independently over the
sets of equiprobable values ˛i D 2i � 1 � p

M, i D 1, 2, . . . ,
p
M, and ˛l D

2l � 1 � p
M, l D 1, 2, . . . ,

p
M, respectively, and the I and Q subscripts denote

the in-phase and quadrature channels. Here again, because of the assumed
rectangular pulse shape, the complex baseband signal QS�t� D Ac�aIn C jaQn� is
constant in this same interval. At the receiver the signal is again first complex-
conjugate demodulated by Qcr�t�, which results in

Qx�t� D Ac�aIn C jaQn� C QN�t� �3.7�

Performing matched filter operations on Qx�t� and recognizing the independence
of the I and Q channels produces the decision variables (Fig. 3.3a)

yInk D Ref Qykg D ˛kaInAcTs C ˛kNIn, k D 1, 2, . . . ,
p
M/2,

NIn D Re
{∫ �nC1�Ts

nTs

QN�t� dt
}

yQnk D Imf Qykg D ˛kaQnAcTs C ˛kNQn, k D 1, 2, . . . ,
p
M/2,

NQn D Im
{∫ �nC1�Ts

nTs

QN�t� dt
}

�3.8�

whereupon separate decisions corresponding to the largest yInk and yQnk are
made on the I and Q components of the amplitude transmitted in the zeroth
signaling (symbol) interval 0 
 t 
 Ts. Alternatively, the scaling by the M
possible amplitude levels and maximum selection for the real and imaginary parts
of the complex decision variable can be replaced by separate M-level quantizers
acting on the single pair of I and Q decision variables

yIn D aInAcTs C NIn

yQn D aQnAcTs C NQn �3.9�

in which case the complex receiver of Fig. 3.3a can be redrawn in the I–Q form
of Fig. 3.3b.

3.1.3 M-ary Phase-Shift-Keying

An M-ary phase-shift-keyed (M-PSK) signal occurs when 
�t� takes on equiprob-
able values ˇi D �2i � 1��/M, i D 1, 2, . . . ,M, in each symbol interval Ts. As

4 Again, one can think of the complex carrier as being modulated now by a complex random pulse
stream, namely, Qa�t� D ∑1

nD�1�aIn C jaQn�p�t � nTs�.
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Figure 3.3. Complex forms of optimum receiver for ideal coherent detection of QAM over the
AWGN: (a) conventional maximum–likelihood form; (b) simpler decision threshold form.

such, 
�t� is modeled as a random pulse stream, that is,


�t� D
1∑

nD�1

np�t � nTs� �3.10�

where 
n is the information phase in the nth symbol interval nTs 
 t 
 �n C 1�Ts
ranging over the set of M possible values ˇi as above, and p�t� is again a unit
amplitude rectangular pulse of duration Ts seconds. The signal constellation is
a unit circle with points uniformly spaced by 2�/M radians. Thus, the complex
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signal transmitted in the nth symbol interval is

Qs�t� D Ace
j�2�fctC
cC
n� �3.11�

Note again that because of the assumed rectangular pulse shape, the complex
baseband signal QS�t� D Acej
n is constant in this same interval. After demodu-
lating with the complex conjugate of Qcr�t� at the receiver, we obtain

Qx�t� D Ace
j
n C QN�t� �3.12�

Passing (3.12) through an I&D and then multiplying the output by e�jˇk ,
k D 1, 2, . . . ,M, produces the decision variables (Fig. 3.4)

Qynk D AcTse
j�
n�ˇk� C e�jˇk QNn, k D 1, 2, . . . ,M,

QNn D
∫ �nC1�Ts

nTs

QN�t� dt �3.13�

from which a decision corresponding to the largest Ref Qynkg D AcTs cos�
n �
ˇk� C Refe�jˇk QNng is made on the information phase transmitted in the nth
signaling interval.

A popular special case of M-PSK modulation is binary PSK (BPSK), which
corresponds to M D 2. Since ideally the detection of M-PSK is independent of
the location of the points around the unit circle (as long as they remain uniformly
spaced by 2�/M radians), we can alternatively take as the possible values for 
n
the set ˇi D 2i�/M, i D 0, 1, 2, . . . ,M � 1, which for M D 2 become ˇi D 0, �.
Since ej0 D 1 and ej� D �1, the transmitted signal of (3.11) can be written in the
form (3.2), where, in each transmission interval (now a bit interval Tb), an takes
on the pair of equiprobable values š1. Thus, we observe that BPSK is the same
as M-AM with M D 2. That is, binary amplitude and binary phase modulation
are identical and are referred to as antipodal signaling. The receiver for BPSK is
a special case of Fig. 3.4 which takes on the simpler form illustrated in Fig. 3.5
wherein the š1 amplitude scaling and maximum selection are replaced by a
two-level quantizer (hard limiter) acting on the single real decision variable

yn D anAcTb C Nn, Nn D Ref QNng �3.14�

Another special case of M-PSK which because of its throughput efficiency
(bits/second per unit of bandwidth) is quite popular is QPSK, which corre-
sponds to M D 4. Here it is conventional to assume the phase set ˇi D
�/4, 3�/4, 5�/4, 7�/4. Projecting these information phases on the quadrature
amplitude axes, we can equivalently write QPSK in the I–Q form of (3.6),
where aIn and aQn each take on values š1.5 We thus see that QPSK can also be
looked upon as a special case of QAM with M D 4, and thus the detection of an

5 The actual projections of the unit circle on the I and Q coordinate axes are 1/
p

2. However, since
the carrier amplitude is arbitrary, it is convenient to rescale the carrier amplitude such that the
equivalent I and Q data amplitudes take on š1 values.
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information phase can be obtained by combining the detections on the I and Q
components of this phase. The receiver for QPSK is illustrated in Fig. 3.6 and
is a two-dimensional version of that for BPSK and a special case of that for
QAM. The decision variables that are input to the hard-limiting threshold
devices are

yIn D Ref Qyng D aInAcTs C NIn, NIn D Re
{∫ �nC1�Ts

nTs

QN�t� dt
}

yQn D Imf Qyng D aQnAcTs C NQn, NQn D Im
{∫ �nC1�Ts

nTs

QN�t� dt
} �3.15�
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While for M-PSK with M D 2m and m arbitrary, one can also project the
information phases on the I and Q coordinates and thus make decisions on each
of these multilevel amplitude signals, it should be noted that these decisions
are not independent, and furthermore each pair of amplitude decisions does not
necessarily render one of the transmitted phases. That is, the number of possible
I–Q amplitude pairs obtained from the projections of the M possible transmitted
phases exceeds M. Thus, for M ½ 8 it is not practical to view M-PSK in an I–Q
form.

3.1.4 Differentially Encoded M-ary Phase-Shift-Keying

In an actual coherent communication system transmitting M-PSK modulation, a
means must be provided at the receiver for establishing the local demodulation
carrier reference signal. This means is tradionally accomplished with the aid of a
suppressed carrier tracking loop [1, Chap. 2]. Such a loop for M-PSK modulation
exhibits an M-fold phase ambiguity in that it can lock with equal probability at
the transmitted carrier phase plus any of the M information phase values. Hence,
the carrier phase used for demodulation can take on any of these same M phase
values, namely, 
c C ˇi D 
c C 2i�/M, i D 0, 1, 2, . . . ,M � 1. Clearly, coherent
detection cannot be successful unless this M-fold phase ambiguity is resolved.

One means for resolving this ambiguity is to employ differential phase
encoding (most often simply called differential encoding) at the transmitter
and differential phase decoding (most often simply called differential decoding)
at the receiver following coherent detection. That is, the information phase
to be communicated is modulated on the carrier as the difference between
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Figure 3.7. Complex form of optimum receiver for ideal coherent detection of OQPSK over the
AWGN.

two adjacent transmitted phases, and the receiver takes the difference of two
adjacent phase decisions to arrive at the decision on the information phase.6

In mathematical terms, if 
n was the information phase to be communicated
in the nth transmission interval, the transmitter would first form 
n D 
n�1 C

n modulo 2� (the differential encoder) and then modulate 
n on the carrier.7

At the receiver, successive decisions on 
n�1 and 
n would be made and then
differenced modulo 2� (the differential decoder) to give the decision on 
n.
A block diagram of such a differentially encoded M-PSK system is illustrated
in Fig. 3.7. It should be clear from this diagram that since the decision on the
true information phase is obtained from the difference of two adjacent phase
decisions, a performance penalty is associated with the inclusion of differential
encoding/decoding in the system. The quantification of this performance penalty
is discussed later in the book.

3.1.4.1 p=4-QPSK. Depending on the set of M phases fˇig used to represent
the information phase 
n in the nth transmission interval, the actual transmitted
phase 
n in this same transmission interval can range either over the same set

6 We note that this receiver (i.e., the one that makes optimum coherent decisions on two successive
symbol phases and then differences these to arrive at the decision on the information phase) is
suboptimum when M > 2 [3]. However, this receiver structure, which is the one classically used for
coherent detection of differentially encoded M-PSK, can be arrived at by a suitable approximation
of the likelihood function used to derive the true optimum receiver and at high SNR the difference
between the two becomes mute.
7 Note that we have shifted our notation here insofar as the information phases are concerned so as
to keep the same notation for the actual transmitted phases.
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fˇig D fˇig or over another phase set. If for M D 4 we choose the set ˇi D
0, �/2, �, 3�/2 to represent the information phases, then starting with an initial
transmitted phase chosen from the set �/4, 3�/4, 5�/4, 7�/4, the subsequent
transmitted phases f
ng will also range over the set �/4, 3�/4, 5�/4, 7�/4
in every transmission interval. This is the conventional form of differentially
encoded QPSK. Now suppose instead that the set ˇi D �/4, 3�/4, 5�/4, 7�/4
is used to represent the information phases f
ng. Then, starting, for example,
with an initial phase chosen from the set �/4, 3�/4, 5�/4, 7�/4, the transmitted
phase in the next interval will range over the set 0, �/2, �, 3�/2. In the following
interval the transmitted phase will range over the set �/4, 3�/4, 5�/4, 7�/4,
and in the interval following that one the transmitted phase will once again
range over the set 0, �/2, �, 3�/2. Thus we see that for this choice of phase set
corresponding to the information phases f
ng, the transmitted phases f
ng will
alternatively range over the sets 0, �/2, �, 3�/2 and �/4, 3�/4, 5�/4, 7�/4. Such
a modulation scheme, referred to as �/4-QPSK [4], has an advantage relative to
conventional differentially encoded QPSK as follows.

In the case of conventional differentially encoded QPSK, the maximum change
in phase from transmission to transmission (which occurs when both I- and Q-
channel data streams switch polarity) is � radians, which results in a complete
reversal (maximum fluctuation) of the instantaneous amplitude of the transmitted
waveform. In the case of �/4-QPSK, the maximum change in phase from
transmission to transmission is 3�/4 radians, which clearly results in a smaller
instantaneous amplitude fluctuation. On nonlinear transmission channels the
fluctuation of the instantaneous amplitude is related to the regeneration of spectral
sidelobes of the modulation after bandpass filtering and nonlinear amplification at
the transmitter — the smaller the instantaneous amplitude fluctuation, the smaller
the sidelobe regeneration, and vice versa. On a linear AWGN channel with
ideal coherent detection, there is theoretically no advantage of �/4-QPSK over
conventional differentially encoded QPSK; in fact, the two have identical error
probability performance.

3.1.5 Offset QPSK or Staggered QPSK

For the same reason as using �/4-QPSK versus conventional differentially
encoded QPSK on a nonlinear channel, another form of QPSK, namely, offset
QPSK (OQPSK) [alternatively called staggered QPSK (SQPSK)] has become
quite popular. OQPSK or SQPSK is a form of QPSK wherein the I and Q signals
components are misaligned with respect to one another by half a symbol time
(i.e., a bit time) interval. In mathematical terms, the complex carrier is amplitude
modulated by aI�t� C jaQ�t�, where

aI�t� D
1∑

nD�1
aInp�t � nTs�, aQ�t� D

1∑
nD�1

aQnp�t � nTs � Ts/2� �3.16�

where aIn and aQn are the I and Q data symbols for the nth transmission interval
that take on equiprobable š1 values. Thus, in the nth transmission interval
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corresponding to the I channel, the transmitted signal has the complex form

Qs�t� D
{
Ac�aIn C jaQ,n�1�ej�2�fctC
c�, nTs 
 t 
 (n C 1

2

)
Ts

Ac�aIn C jaQn�ej�2�fctC
c�,
(
n C 1

2

)
Ts 
 t 
 �n C 1�Ts.

�3.17�

Similarly, for the nth transmission interval corresponding to the Q channel, the
transmitted signal has the complex form

Qs�t� D
{
Ac�aIn C jaQn�ej�2�fctC
c�,

(
n C 1

2

)
Ts 
 t 
 �n C 1�Ts

Ac�aI,nC1 C jaQn�ej�2�fctC
c�, �n C 1�Ts 
 t 
 (n C 3
2

)
Ts.

�3.18�

At the receiver the signal Qx�t� D Qs�t� C Qn�t� is complex-conjugate demodulated
by Qcr�t� and then matched filtered producing the I and Q decision variables
(Fig. 3.7)

yIn D aInAcTs C NIn, NIn D Re
{∫ �nC1�Ts

nTs

QN�t� dt
}

yQn D aQnAcTs C NQn, NQn D Im



∫ (nC 3

2

)
Ts(

nC 1
2

)
Ts

QN�t� dt

 �3.19�

each of which is hard-limited to produce decisions on the I and Q transmitted
amplitudes. Note that independent of the time offset between the I and Q channels,
the decision variables of (3.19) have statistics identical to those of conventional
QPSK as given by (3.15). Thus, for ideal coherent detection, QPSK and OQPSK
have identical error probability performance, as will be reiterated later in the
book.

Returning now to the issue of spectral sidelobe regeneration on a nonlinear
channel, since the I and Q channels do not change phase at the same time instant
(i.e., they are staggered by half a symbol with respect to each other), a phase
change of � radians cannot occur instantaneously. Rather, if both the I and Q
channels switch data polarities, the � radians that ultimately results occurs in
two steps: after half a symbol the phase changes by �/2 radians, and then after
the next half a symbol the phase changes by another �/2 radians. Thus we see
that at any given time instant, the maximum change in phase that can occur is
�/2 radians, which results in a smaller instantaneous amplitude fluctuation than
either �/4-QPSK or conventional differentially encoded QPSK.

In summary, on a linear AWGN channel with ideal coherent detection, all
three types of differentially encoded QPSK (i.e., conventional, �/4, and offset)
perform identically. The differences among the three types on a linear AWGN
channel occur when the carrier demodulation phase reference is not perfect (i.e.,
nonideal coherent detection).
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3.1.6 M-ary Frequency-Shift-Keying

An M-ary frequency-shift-keyed (M-FSK) signal occurs when f�t� takes on
equiprobable values (i D �2i � 1 � M�f/2, i D 1, 2, . . . ,M, in each symbol
interval Ts where the frequency spacing f is related to the frequency modulation
index h by h D fTs. As such, f�t� is modeled as a random pulse stream, that is,

f�t� D
1∑

nD�1
fnp�t � nTs� �3.20�

where fn is the information frequency in the nth symbol interval nTs 
 t 

�n C 1�Ts ranging over the set of M possible values (i as above, and p�t� is
again a unit amplitude rectangular pulse of duration Ts seconds. Thus the complex
signal transmitted in the nth symbol interval is

Qs�t� D Ace
j[2��fctCfn�t�nTs��C
c] �3.21�

Note here that in contrast to the amplitude- and phase-shift-keying modulations
discussed previously, the complex baseband modulation QS�t� D Acejfn�t�nTs� is
not constant over this same interval but rather has a sinusoidal variation. After
demodulating with the complex conjugate of Qcr�t� at the receiver, we obtain

Qx�t� D Ace
j2�fn�t�nTs� C QN�t� �3.22�

Multiplying (3.22) by the set of harmonics e�j2�(k�t�nTs�, k D 1, 2, . . . ,M, and
then passing each resulting signal through an I&D produces the decision variables
(Fig. 3.8)

Qynk D Ac

∫ �nC1�Ts

nTs

ej2��fn�(k��t�nTs� dt C QNnk, k D 1, 2, . . . ,M,

QNnk D
∫ �nC1�Ts

nTs

e�j2�(k�t�nTs� QN�t� dt �3.23�

from which a decision corresponding to the largest Ref Qynkg is made on the
information frequency transmitted in the nth signaling interval.

For orthogonal signaling wherein the cross-correlation Ref∫ �nC1�Ts
nTs

Qsk�t�QsŁ
l �t� dtg

D 0, k 6D l, the frequency spacing is chosen such that f D N/2Ts with
N integer. If, for example, the transmitted frequency fn is equal to (l D
�2l � 1 � M�f/2, then (3.23) can be expressed as

Qynk D AcTse
j��l�k�N/2 sin[��l � k�N/2]

��l � k�N/2
C QNnk, k D 1, 2, . . . ,M,

QNnk D
∫ Ts

0
e�j��2k�1�M�Nt/2Ts QN�t C nTs� dt �3.24�
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Figure 3.8. Complex form of optimum receiver for ideal coherent detection of M-FSK over the
AWGN.

or, taking the real part,

Ref Qynkg D AcTs
sin[��l � k�N]

��l � k�N
C Ref QNnkg, k D 1, 2, . . . ,M �3.25�

Thus we observe that for orthogonal M-FSK, only one decision variable has a
nonzero mean: the one corresponding to the transmitted frequency. That is,

Ref Qynlg D AcTs, Ref Qynkg D 0, k 6D l �3.26�

A popular special case of M-FSK modulation is binary FSK (BFSK),
which corresponds to M D 2. In addition to orthogonal signaling (zero cross-
correlation), it is possible to choose the modulation index so as to achieve the
minimum cross-correlation that results in the minimum error probability (see
Chapter 8). Since for arbitrary f we have

Re
{∫ �nC1�Tb

nTb

Qs1�t�QsŁ
2�t� dt

}
D Re

{
A2
c

∫ Tb

0
e�j2�ft dt

}

D A2
cTb

sin 2�fTb

2�fTb
�3.27�

the minimum of this cross-correlation is achieved when h D fTb D 0.715 [1],
which results in a minimum normalized cross-correlation value



IDEAL COHERENT DETECTION 45

*
D

Re
{∫ �nC1�Tb

nTb

Qs1�t�QsŁ
2�t� dt

}
∫ �nC1�Tb

nTb

jQs1�t�j2 dt
D

Re
{∫ �nC1�Tb

nTb

Qs1�t�QsŁ
2�t� dt

}
∫ �nC1�Tb

nTb

jQs2�t�j2 dt

D sin 2�fTb

2�fTb
jfTbD0.715 D �0.217 ' � 2

3�
�3.28�

3.1.7 Minimum-Shift-Keying

Consider a BFSK signal whose phase is maintained continuous from bit interval to
bit interval, called continuous phase frequency-shift-keying (CPFSK) [5]. Because
of this phase continuity, such a modulation has memory, and thus data bit
decisions should be based on an observation longer than a single bit interval. A
special case of CPFSK corresponds to a modulation index h D 1

2 and is referred
to as minimum-shift-keying (MSK) [6,7]. For this special case, the transmitted
signal in the nth bit interval takes the form

Qs�t� D Ace
j[2�fctCdn��t/2Tb�Cxn], nTb 
 t 
 �n C 1�Tb �3.29�

where dn is the binary �š1� information bit and xn is chosen to maintain the phase
continuous at t D nTb. Writing (3.29) in the form that characterizes the �n � 1�st
bit interval, to maintain the phase continuous at t D nTb it is straightforward to
show that, assuming an initial condition x�1 D 0, the phase xn satisfies the
relation

xn D xn�1 C �n

2
�dn�1 � dn� �3.30�

and thus can only take on values �0, �� (modulo 2�). Substituting (3.30) into
(3.29) and applying simple trigonometry it can be shown that MSK has an
equivalent I–Q form that resembles OQPSK with, however, a pulse shape that
is not rectangular. Specifically, an MSK signal has the pulse-shaped OQPSK
representation

Qs�t� D Ac[aI�t� C jaQ�t�]e
j�2�fctC
c� �3.31�

where aI�t� and aQ�t� are random data streams of the form in (3.16), with binary
�š1� data symbols (each of duration Ts D 2Tb)

aIn D cos xn, aQn D dn cos xn D dnaIn �3.32�

and p�t� is a half sinusoid of duration Ts, that is,

p�t� D
{

cos
�t

Ts
, �Ts

2

 t 
 Ts

2
0, otherwise.

�3.33�
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Note that the pulse shape for the Q data stream is

p

(
t � Ts

2

)
D
{

sin
�t

Ts
, 0 
 t 
 Ts

0, otherwise.
�3.34�

There exists a direct relation between the binary data bits fdng of the frequency
modulation form of MSK in (3.29) and the equivalent binary data bits faIng and
faQng of the I–Q form in (3.31). In particular, faIng and faQng are the odd
and even bits of the differentially encoded version of fang (Fig. 3.9). That is, if
vn D dnvn�1 is the differentially encoded version of dn, the equivalent I and Q
data bits are given by

aIn D ��1�nC1v2nC1, aQn D ��1�nC1v2n �3.35�

Thus, if the MSK modulation is implemented by continuous phase frequency
modulating the carrier oscillator with the sequence fdng and the data are to
be recovered by implementing a pulse-shaped OQPSK receiver (Fig. 3.10), then
following the interleaving of the I and Q decisions fOaIng and fOaQng, one must undo
the implicit differential encoding operation at the transmitter and thus employ
a differential decoder to obtain the decisions on the information bits fdng. To
get around the need for differential decoding at the receiver and the associated
performance penalty (discussed in Chapter 8), one can precode the data entering
the MSK modulator with a differential decoder, resulting in precoded MSK [1,
Chap. 10]. The combination of differential decoder and MSK modulator is then
identically equivalent to a pulse-shaped OQPSK modulator whose equivalent I
and Q binary data bits faIng and faQng are now just the odd and even bits of
fdng itself (Fig. 3.11). That is, if prior to frequency modulating the carrier the
information bits fdng are first differentially decoded to the sequence fung, where
un D dndn�1, the equivalent I and Q bits for the pulse-shaped OQPSK modulator
would be

aIn D ��1�nC1d2nC1, aQn D ��1�nC1d2n �3.36�

Thus, for precoded MSK, no differential decoder is needed at the receiver in order
to recover the decisions on fdng (Fig. 3.12). Since the precoder has no effect on
the power spectral density of the transmitted waveform, then from a spectral point
of view, MSK and pulse-shaped OQPSK are identical. Thus, from this point on,
when discussing MSK modulation and demodulation, we shall assume implicitly
that we are referring to precoded MSK or equivalently, pulse-shaped OQPSK.

3.2 NONIDEAL COHERENT DETECTION

In Section 3.1 we considered the ideal case of phase coherent detection wherein
it was assumed that the attributes of the local carrier used to demodulate the
received signal were perfectly matched to those of the transmitted carrier [i.e.,
cr�t� D ct�t�]. In practice, this ideal condition is never met since the local
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Figure 3.11. Equivalent real forms of precoded MSK transmitters.

carrier must be derived from the received signal itself, which contains the
random perturbations introduced by the channel (e.g., the additive noise, fading,
Doppler shift, etc.). Regardless of the manner in which the receiver creates its
demodulation reference, there will result a mismatch between the phase and
frequency of the received carrier and that of the locally generated carrier. Ignoring
any frequency mismatch, if, as before, 
c denotes the phase of the received carrier
and O
c now denotes the phase of the locally generated carrier at the receiver, the

phase error ,c
D 
c � O
c would be a random variable with a specified PDF p�,c�,

which, in general, depends on the scheme used for extracting the phase estimate
O
c. We shall have more to say about the form of this PDF momentarily. For the
special case of ideal phase coherent detection treated in Section 3.1, the phase
error PDF was assumed to be a delta function [i.e., p�,c� D υ�,c�].

When the nonideal carrier reference signal as above is used to demodulate
the received signal, two possibilities exist with regard to the manner in which
detection is subsequently performed. On the one hand, the detector can be
designed assuming a perfect carrier reference (i.e., ideal coherent detection) with
the nonideal nature of the demodulation reference accounted for in evaluating
receiver performance. This is the case to which we direct our attention in this
section. On the other hand, given the PDF of the phase error, p�,c�, the remainder
(baseband portion) of the receiver can be designed to exploit this statistical
information, thereby coming up with an improved detection scheme. Such a
scheme, which makes use of the available statistical information on the carrier
phase error to optimize the design of the detector, is referred to as partially
coherent detection and is discussed in Section 3.4.
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Returning now to the manner in which the locally generated carrier is obtained
at the receiver, the most common method for accomplishing this purpose is to
employ a carrier synchronization loop8 (e.g., a Costas loop), decision-directed
loop, or form thereof [2, Chap. 2] that regenerates a carrier by continuously
estimating the phase and frequency of the data-bearing received signal. Such
loop structures are motivated by the MAP estimate of the carrier phase of a
suppressed carrier signal and precede the data detection portion of the receiver.
For a broad class of carrier reconstruction loops of the type mentioned above,
the PDF of the modulo 2�-reduced phase error can be modeled as a Tikhonov
distribution [10] which has the generic form9

p�,c� D exp�*c cos,c�

2�I0�*c�
, j,cj 
 � �3.37�

with *c called the loop SNR.
Another method for producing the necessary carrier synchronization at the

receiver is to transmit a separate unmodulated carrier along with the data-
modulated carrier and extract it at the receiver for use as the demodulation
reference. Detection schemes based on such a transmitted reference are referred
to as pilot tone–aided detection techniques and have the advantage that the
method of extraction [e.g., a phase-locked loop (PLL) or narrowband filter] is
not encumbered by the presence of the unknown data. On the other hand, for a
given amount of total power, a portion of it must be allocated to the pilot signal
and thus is not available for purposes of data detection.

In yet another method, a combination of the received signals in the previous
intervals, the simplest case being just that from the previous interval, is used
directly as the demodulation reference. Such detection schemes are based on
observation of the received signal for more than a single symbol interval and
are referred to as differential detection. Since these schemes in effect integrate
the carrier demodulation as part of the detection operation, they are usually
considered to form a class of their own, and we treat them as such in Section 3.5.

In accordance with the discussion above, the mathematical model used to
define the demodulation reference signal is a complex carrier with a phase equal
to the estimate of the received carrier phase [i.e., Qcr�t� D ej�2�fctCO
c�]. Thus,
for any of the complex bandpass transmitted signals Qs�t� D Aca�t�ej�2�fctC
c�,
Qs�t� D Acej[2�fctC
cC
�t�], or Qs�t� D Acej[2��fcCf�t��tC
c], the received signal after
complex-conjugate demodulation becomes Qx�t� D QS�t�ej,c C QN�t�, which takes
on the specific forms Qx�t� D Aca�t�ej,c C QN�t�, Qx�t� D Aca�t�ej[
�t�C,c] C QN�t�,
and Qx�t� D Aca�t�ej[f�t�tC,c] C QN�t�, respectively, where QN�t� D n�t�QcŁ

r �t� is again
a zero-mean baseband complex Gaussian process. Since ,c is constant over

8 Open-loop carrier synchronization techniques are also possible (see, e.g., Refs. 8 and 9), but are
beyond the scope of our discussion here.
9 The modeling of the phase error PDF for a phase-locked loop (PLL) in the form of (3.37) was also
arrived at independently by Viterbi [11].
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the symbol (bit) interval10 the outputs of the matched filter for each of these
types of modulation are as given in Section 3.1 [e.g., (3.4), (3.13), and (3.23),
multiplied by ej,c ]. As such, one can view the receiver structures for nonideal
phase coherent detection as having baseband equivalents to those of ideal phase
coherent detection with the addition of a phase rotation ,c. Thus, if as before
Qynk, k D 1, 2, . . . ,M, denotes the set of matched filter outputs for ideal phase
coherent detection of the nth symbol, the decision variables for nonideal phase
coherent detection in that same interval become Qynkej,c , k D 1, 2, . . . ,M, where
,c is distributed according to (3.37) or an appropriate variation thereof and is
assumed to be independent of the Qynk’s. Equivalently, one can postulate a complex
baseband receiver model where the kth matched filter output in the nth symbol
interval is

Qynk D Qskej
c C QNnk �3.38�

which is then complex-conjugate demodulated by the complex baseband nonideal
reference Qcr D ejO
c . Here Qsk represents the signal component of the matched filter
output under ideal phase-coherent conditions [i.e., the kth matched filter response
to the complex baseband transmitted signal QS�t�].

Another mathematical model for nonideal phase coherent detection, which
is based on the complex baseband equivalent receiver above, is to treat the
randomness of the phase of the demodulation reference Qcr D ejO
c as an equivalent
AWGN source. As such, Qcr is modeled as the sum of an ideal phase coherent
reference and a Gaussian random variable, that is,

Qcr D
p
GAre

j
c C QNr �3.39�

where G is a normalized gain factor intended to reflect the SNR of the carrier
synchronization technique used to produce O
c in the actual physical model.
Although few carrier synchronizers produce a complex Gaussian reference signal,
pragmatically, the mathematical nonideal reference model described by (3.39)
has been demonstrated by Fitz [9,12] to be an accurate approximation of
a large class of nonlinear phase estimation techniques (including the above-
mentioned carrier synchronization architectures) in evaluating the average error
probability performance of the system for moderate- to high-SNR applications.
The advantage of the representation in (3.39) is that it affords a unified analysis
akin to that suggested by Stein [13] wherein the demodulation phase reference
signal and the matched filter output are both complex Gaussian processes and
thus includes as a special case conventional (two-symbol observation) differential
detection corresponding to G D 1 (see Section 3.5). This representation has a
similar unifying advantage when evaluating the average error probability of such
nonideal phase coherent systems in the presence of certain types of fading (see
Chapter 8).

10 We assume here the case where the data rate is sufficiently high relative to the carrier
synchronization loop bandwidth that the phase of the demodulation reference produced by this
loop is essentially constant over the duration of the data symbol.
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3.3 NONCOHERENT DETECTION

In the preceding two sections it was assumed that either the carrier phase
reference was provided to the receiver exactly (idealistically, by a genie), or
at the very least an attempt was made to estimate it. At the other extreme,
one can make the much simpler assumption that the receiver is designed
not to make any attempt at estimating the carrier phase at all. Thus the
local carrier used for demodulation is assumed to have an arbitrary phase
which, without any loss in generality, can arbitrarily be set to zero. Detection
techniques based on the absence of any knowledge of the received carrier
phase are referred to as noncoherent detection techniques. In mathematical
terms, the receiver observes the equivalent baseband signal QR�t� D Qr�t�e�j2�fct DQS�t�ej
c C Qn�t�e�j2�fct, where 
c is unknown [and thus may be assumed to be
uniformly distributed in the interval ���, ��] and attempts to make a decision
on QS�t�.

The optimum receiver under such a scenario is well known [1] to be a
structure that incorporates a form of square-law detection. Specifically, in each
symbol interval the receiver first complex-conjugate demodulates the received
signal with the zero-phase reference signal cr�t� D ej2�fct, then passes the
result of this demodulation through M matched filters, one each corresponding
to the transmitted baseband signals. The decision variables are then formed
from the magnitudes (or equivalently, the squares of these magnitudes) of
the matched filter outputs and the largest one is selected (see Fig. 3.13). In
mathematical terms, the decision variables (assuming square-law detection) are
given by

znk D jQynkj2 D
∣∣∣∣
∫ �nC1�Ts

nTs

QR�t�QSŁ
k �t� dt

∣∣∣∣
2

, k D 1, 2, . . . ,M �3.40�

where QSk�t�, k D 1, 2, . . . ,M, is the set of possible realizations of QS�t� and the
decision is made in favor of the largest of the znk’s.

Suppose now that the modulation was, in fact, M-PSK and one attempted to
use the receiver above for detection. Since in the absence of noise the matched
filter outputs in the nth symbol interval would be given by [see Eq. (3.13),
now with the addition of the unknown carrier phase 
c] Qynk D AcTsej�
n�ˇk�ej
c ,
k D 1, 2, . . . ,M, the magnitudes of these outputs would all be identical and hence
cannot be used for making a decision on the transmitted phase 
n. Stated another
way, since for M-PSK the information is carried in the phase of the carrier, then
since the noncoherent receiver is designed to ignore this phase, it certainly cannot
be used to yield a decision on it. In summary, noncoherent detection cannot be
employed with M-PSK modulation.

Having ruled out M-PSK modulation (which would also rule out binary AM
because of its equivalence with BPSK), the next most logical choice is M-FSK.
Based on the results obtained in Section 3.1.6 for the matched filter outputs under



. . .

.2 .2 .2

∫(n
+

1)
T

s

nT
s

(•
)d

t

∫(n
+

1)
T

s

nT
s

(•
)d

t

∫(n
+

1)
T

s

nT
s

(•
)d

t

R
ec

ei
ve

d
C

ar
rie

r
O

sc
ill

at
or

C
ho

os
e

S
ig

na
l

C
or

re
sp

on
di

ng
to

D
at

a
D

ec
is

io
n

m
ax

 z
ni

i

S∼ * 1(
t)

S∼ * 2(
t)

S∼ * M
(t

)

y∼ n1

y∼ n2

y∼ nM
z n

M

z n
2

z n
1

r(
t)

~
*

R
(t

)
~

c r
(t

) 
= 

e
j(2

πf
ct

)
~

Fi
g

ur
e

3.
13

.
C

om
p

le
x

fo
rm

of
op

tim
um

re
ce

iv
er

fo
r

no
nc

oh
er

en
t

d
et

ec
tio

n
ov

er
th

e
A

W
G

N
.

54



PARTIALLY COHERENT DETECTION 55

ideal phase coherent conditions, we immediately write these same outputs for the
noncoherent case as

Qynk D Ace
j
c

∫ �nC1�Ts

nTs

ej2��fn�(k��t�nTs� dt C QNnk, k D 1, 2, . . . ,M,

QNnk D
∫ �nC1�Ts

nTs

e�j2�(k�t�nTs� QN�t� dt �3.41�

where now QN�t� D Qn�t�ej2�fct. Taking the absolute value (or its square) of the
Qynk’s in (3.41) in the absence of noise removes the unknown carrier phase but
leaves the data information, which is now carried in the frequency fn, unaltered.
Thus it is feasible to use noncoherent detection with M-FSK modulation. Note,
however, that the additional use of an envelope (or square-law) detector following
the matched filters in the noncoherent case will result in a performance penalty
relative to the coherent case, where the decision is made based on the matched
filter outputs alone (see Chapter 8).

3.4 PARTIALLY COHERENT DETECTION

3.4.1 Conventional Detection: One-Symbol Observation

In Section 3.2, the assumption was made that although the true carrier demodu-
lation was accomplished prior to data detection, the design of the detector was
not in any way influenced by the randomness of the phase error statistics at the
output of the demodulator (i.e., the form of the detector that is optimum for ideal
phase coherent detection was still employed). When the statistics of the phase
error are taken into account in the design of the detector, then based on observa-
tion of a single symbol interval, it can be shown [1,14] that the optimum detector
is a linear combination of the coherent and noncoherent detectors discussed in
Sections 3.1 and 3.3, respectively. In mathematical terms, the decision variables
fznkg are formed from the matched filter outputs as

znk D �Ref Qynkg C *cN0/2�2 C �Imf Qynkg�2, k D 1, 2, . . . ,M �3.42�

or ignoring the term �*cN0/2�2, which is common to all M znk’s, we have the
equivalent decision variables (keeping the same notation)

znk D
(

1

N0
Ref Qynkg

)2

C
(

1

N0
Imf Qynkg

)2

C *c

(
1

N0
Ref Qynkg

)

D
∣∣∣∣ 1

N0
Qynk
∣∣∣∣
2

C *c

(
1

N0
Ref Qynkg

)
, k D 1, 2, . . . ,M �3.43�
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where the first term is characteristic of noncoherent detection and the second
term is characteristic of coherent detection. A receiver implementation based
on (3.43) is illustrated in Fig. 3.14. Note that knowledge of both *c and N0

is required to implement this receiver. Such knowledge must be obtained by
measurements taken on the channel and the accuracy of this knowledge will
have an impact on the ultimate performance of the receiver. Since as mentioned
in Section 3.3 for M-PSK modulation the first (noncoherent) term of (3.43) does
not aid in the decision-making process, it can be ignored and hence the optimum
partially coherent receiver of M-PSK reduces to the coherent receiver (Fig. 3.8
with a nonideal reference signal) whose performance is determined on the basis
of the decision variables in Section 3.2. Regardless of the type of modulation,
for *c D 0, the receivers of Fig. 3.14 reduce to those for noncoherent detection
whereas for *c D 1 they reduce to those for coherent detection.

3.4.2 Multiple Symbol Detection

Suppose now that we consider partially coherent detection of M-PSK based
on an observation greater than a single symbol interval. If the phase error, ,c,
between the received carrier phase and the receiver’s estimate of it is sufficiently
slowly varying that it can be assumed constant over say Ns symbol intervals
�Ns ½ 2�, then an Ns-symbol observation of the received signal now contains
memory, and the receiver should be able to exploit this property in arriving at an
optimum design with improved performance [1, Chap. 6; 15]. As in any optimum
(ML) receiver for a modulation with memory transmitted over the AWGN, the
structure should employ sequence detection [i.e., joint (rather than symbol-by-
symbol) decisions should be made on groups of Ns symbols on a block-by-block
basis].

Analogous to the results in Section 3.4.1, the optimum detector based on an
observation of the received signal now spanning Ns symbols, is again a linear
combination of coherent and noncoherent detectors in which a set of MNs decision
variables is formed from the matched filter outputs to enable selection of the most
likely Ns-symbol sequence of phases. In mathematical terms, the MNs symbol-
by-symbol matched filter outputs

Qyn�i,ki D
∫ �n�iC1�Ts

�n�i�Ts

QR�t�QSŁ
ki �t� dt, ki D 1, 2, . . . ,M,

i D 0, 1, . . . Ns � 1 �3.44�

with
QSki �t� D Ace

jˇki D Ace
j�2ki�1��/M, ki D 1, 2, . . . ,M �3.45�

are summed over i in groups of size Ns and then used to produce the MNs

decision variables
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znk D
(

Re

{
Ns�1∑
iD0

1

N0
Qyn�i,ki

})2

C
(

Im

{
Ns�1∑
iD0

1

N0
Qyn�i,ki

})2

C *c

(
Re

{
Ns�1∑
iD0

1

N0
Qyn�i,ki

})
D
∣∣∣∣∣
Ns�1∑
iD0

1

N0
Qyn�i,ki

∣∣∣∣∣
2

C *c

(
Re

{
Ns�1∑
iD0

1

N0
Qyn�i,ki

})
, ki D 1, 2, . . . ,M �3.46�

The notation ki in (3.44), (3.45), and (3.46) is used to indicate the fact that for each
value of the transmission interval index i in the range 0 to Ns � 1, the transmitted
signal index k can range over the set 1, 2, . . . ,M. Also, the boldface subscript
k on the variable zn denotes the vector �k1, k2, . . . , kNs�1�. Finally, a decision is
made on the transmitted phase sequence in the observation interval in accordance
with the largest of the znk’s. Clearly, for Ns D 1, (3.46) reduces to (3.43).

Note that for Ns > 1, the first (noncoherent) term in (3.46) in the absence
of noise is not identical for all phase sequences and thus contributes to the
decision-making process. This term does, however, have an associated phase
ambiguity in that multiplication of each term in the sum by e�j
a where 
a is
an arbitrary fixed phase, does not change the value of the term. Hence, based
on the first term alone (i.e., for *c D 0), the decision on the transmitted phase
sequence would be ambiguous by 
a radians, where 
a could certainly assume
the value of one of the transmitted information phases. The second term in
(3.46) does not have such an associated phase ambiguity, and thus for *c 6D 0
the decision rule would be unique. To guarantee a unique decision rule for the
*c D 0 case, one can employ differential phase encoding of the information
phase symbols as discussed in Section 3.1.4. The specific details of how such
differential encoding provides for a unique decision rule in this special case is
discussed in Section 3.5 in connection with differential detection of M-PSK with
multiple symbol observation. Figure 3.15 is an illustration of a partially coherent
receiver for M-PSK based on the decision statistics of (3.46). The performance
of this receiver is presented in Chapter 8.

3.5 DIFFERENTIALLY COHERENT DETECTION

3.5.1 M-ary Differential Phase Shift Keying

Suppose once again that one does not specifically attempt to reconstruct a
local carrier at the receiver from an estimate of the received carrier phase. We
saw in Section 3.3 that for an observation interval corresponding to a single
transmitted symbol, the optimum noncoherent receiver could not be used to detect
M-PSK modulation. Instead let us now reconsider the noncoherent detection
problem assuming an observation interval greater than one symbol in duration.
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This problem is akin to the partially coherent detection problem considered
in the preceding section except that the memory that is introduced into the
modulation now comes directly from the received carrier phase 
c (assumed
to be constant over, say, Ns symbols) rather than the phase error ,c that results
from its attempted estimation. As such, the maximum-likelihood solution to the
problem would involve averaging the conditional likelihood function based on
an Ns-symbol observation over a uniformly distributed phase (i.e., 
c) rather
than a Tikhonov-distributed phase (i.e., ,c). Receivers designed according to
the foregoing principles are referred to as differential detectors and clearly
represent an extension of noncoherent reception to the case of multiple symbol
observation. The term differential came about primarily due to the fact that
in the conventional technique, a two-symbol observation is used �Ns D 2� and
thus, as we shall see, the decision is made based on the difference between two
successive matched filter outputs. However, Divsalar and Simon [16] showed
that by using an observation greater than two symbols in duration, one could
obtain a receiver structure that provided further improvement in performance in
the limit as Ns ! 1, approaching that of differentially encoded M-PSK (see
Section 3.1.4). Practically speaking, it is only necessary to have Ns on the order
of 3 to achieve most of the performance gain. With a little bit of thought, it should
also be clear that the Tikhonov PDF of (3.37) with *, D 0 becomes a uniform
PDF, and thus from the above-mentioned analogy, the solution to the multiple-
symbol (including Ns D 2) differential detection problem can be obtained directly
as a special case of the results obtained for the multiple-symbol partially coherent
detection problem.

3.5.1.1 Conventional Detection: Two-Symbol Observation. We begin
our discussion of differential detection of M-PSK by considering the conventional
case of a two-symbol observation. Based on the discussion above, the decision
variables can be obtained from the first term of (3.46) with Ns D 2. Substituting
(3.44) together with (3.45) in this term gives

znk D
(

1

N0

)2

j Qyn,k0 C Qyn�1,k1 j2

D
(
Ac
N0

)2 ∣∣∣∣
∫ �nC1�Ts

nTs

QR�t�e�jˇk0 dt C
∫ nTs

�n�1�Ts

QR�t�e�jˇk1 dt

∣∣∣∣
2

,

k0, k1 D 1, 2, . . . ,M �3.47�

where ˇk0 represents the assumed value for the information phase 
0 transmitted in
the nth symbol interval and ˇk1 represents the assumed value for the information
phase 
�1 transmitted in the (n � 1)st symbol interval. As mentioned above,
multiplying each of the two matched filter outputs in (3.47) by e�j
a with

a arbitrary does not change the decision variables. To resolve this phase
ambiguity we employ differential phase encoding at the transmitter as discussed
in Section 3.1.4. In particular, the transmitted information phases, now denoted
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by f
ng, are first converted (differentially encoded) to the set of phases f
ng in
accordance with the relation


n D 
n�1 C 
n modulo 2� �3.48�

where ˇk0 and ˇk1 in (3.47) now represent the assumed values for the differentially
encoded phases in the nth and (n � 1)st symbol intervals, respectively. Note that
for 
n and 
n�1 to both range over the set ˇk D �2k � 1��/M, k D 1, 2, . . . ,M,
we must now restrict the information phase 
n to range over the set ˇk D
2k�/M, k D 0, 1, 2, . . . ,M � 1. If we now choose the arbitrary phase equal to
the negative of the information phase in the (n � 1)st interval (i.e., 
a D �ˇk0 ),
then multiplying each matched output term in (3.47) by e�j
a D ejˇk0 , we can
rewrite (3.47) as [ignoring the �Ac/N0�2 scaling term]

znk D
∣∣∣∣
∫ �nC1�Ts

nTs

QR�t� dt C
∫ nTs

�n�1�Ts

QR�t�e�j�ˇk1 �ˇk0 � dt

∣∣∣∣
2

D
∣∣∣∣
∫ �nC1�Ts

nTs

QR�t� dt C
∫ nTs

�n�1�Ts

QR�t�e�jˇk dt

∣∣∣∣
2

,

k D 0, 1, . . . ,M � 1 �3.49�

Choosing the largest of the znk’s in (3.49) then directly gives an unambiguous
decision on the information phase 
n. Expanding the squared magnitude in
(3.49) as

∣∣∣∣
∫ �nC1�Ts

nTs

QR�t� dt C
∫ nTs

�n�1�Ts

QR�t�e�jˇk dt

∣∣∣∣
2

D
∣∣∣∣
∫ �nC1�Ts

nTs

QR�t� dt
∣∣∣∣
2

C
∣∣∣∣
∫ nTs

�n�1�Ts

QR�t�e�jˇk dt

∣∣∣∣
2

C 2 Re

{(∫ �nC1�Ts

nTs

QR�t� dt
)Ł(∫ nTs

�n�1�Ts

QR�t�e�jˇk dt

)}
�3.50�

and noting that the first two terms of (3.50) are independent of the decision index
k, an equivalent decision rule is to choose the largest of

znk D Re

{(∫ �nC1�Ts

nTs

QR�t� dt
)Ł (∫ nTs

�n�1�Ts

QR�t�e�jˇk dt

)}

D Re

{
e�jˇk

(∫ �nC1�Ts

nTs

QR�t� dt
)Ł(∫ nTs

�n�1�Ts

QR�t� dt
)}

,

k D 0, 1, . . . ,M � 1 �3.51�
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Received
Carrier

Oscillator

Delay
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~

∫
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nTb
(•)dt

cr(t ) = e j(2πfct )~

* *
Re{•}

−1

1 e j∆qn
^

Figure 3.17. Complex form of optimum receiver for conventional (two-symbol observation)
differentially coherent detection of DPSK over the AWGN.

A receiver that implements this decision rule is illustrated in Fig. 3.16 and is the
optimum receiver under the constraint of a two-symbol observation. For binary
DPSK, the decision rule simplifies to

ej
O
n D sgn

[
Re

{(∫ �nC1�Tb

nTb

QR�t� dt
)Ł (∫ nTb

�n�1�Tb

QR�t� dt
)}]

�3.52�

and is implemented by the receiver illustrated in Fig. 3.17. Note that the structure
of the receiver in Fig. 3.16 and its special case in Fig. 3.17 is such that the
previous matched filter output acts as the effective baseband demodulation
reference for the current matched filter output. In this context the differentially
coherent receiver behaves like the nonideal coherent receiver discussed in
Section 3.2 with a reference signal as in (3.39) having a gain G D 1 and an
additive noise independent of that associated with the received signal.

3.5.1.2 Multiple-Symbol Detection. Analogous to what was true for
partially coherent detection, the performance of the differentially coherent detec-
tion system can be improved by optimally designing the receiver based on an
observation of the received signal for more than two symbol intervals [16].
The appropriate decision variables are now obtained from the first term of
(3.46) with Ns > 2. Once again using differential phase encoding to resolve the
phase ambiguity inherent in this term — in particular, setting the arbitrary phase

a D �
n�NsC1 and using the differential encoding algorithm of (3.48) — we
obtain analogous to (3.49) the decision variables

znk D
∣∣∣∣∣
∫ �nC1�Ts

nTs

QR�t� dt C
∫ nTs

�n�1�Ts

QR�t�e�jˇk1 dt C Ð Ð Ð

C
∫ �n�NsC2�Ts

�n�NsC1�Ts

QR�t�e�jˇkNs�1 dt

∣∣∣∣∣
2

,

ki D 0, 1, . . . ,M � 1, i D 1, 2, . . . , Ns � 1 �3.53�
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from which a decision on the information sequence 
n�NsC2,
n�NsC3, . . . ,

n�1,
n is made corresponding to the largest of the znk’s. Note that an Ns-
symbol observation results in a simultaneous decision on Ns � 1 information
phase symbols. The squared magnitude in (3.53) can be expanded analogous to
(3.50) to simplify the decision rule. For example, for Ns D 3 the decision rule
is to choose the pair of information phases 
n�1,
n corresponding to the
maximum over k1 and k2 of

znk D Re

{
e�jˇk1

(∫ �nC1�Ts

nTs

QR�t� dt
)Ł (∫ nTs

�n�1�Ts

QR�t� dt
)

C e�jˇk2

(∫ nTs

�n�1�Ts

QR�t� dt
)Ł (∫ �n�1�Ts

�n�2�Ts

QR�t� dt
)

C e�j�ˇk1 Cˇk2 �

(∫ �nC1�Ts

nTs

QR�t� dt
)Ł(∫ �n�1�Ts

�n�2�Ts

QR�t� dt
)}

,

k1, k2 D 0, 1, . . . ,M � 1 �3.54�

A receiver that implements this decision rule is illustrated in Fig. 3.18.
We conclude this section by mentioning that although it appears that

the complexity of the receiver implementation grows exponentially with the
observation block size Ns [1, Sec. 7.2.3], Mackenthun [17] has developed
algorithms for implementing multiple symbol differential detection of M-PSK
that considerably reduce this complexity, thus making it a feasible alternative to
coherent detection of differentially encoded M-PSK. These algorithms and their
complexity in terms of the number of operations per Ns-symbol block being
processed are also discussed in Ref. 1.

3.5.2 p/4-Differential QPSK

The �/4-QPSK introduced in Section 3.1.4.1 in combination with coherent
detection as a means of reducing the regeneration of spectral sidelobes in
bandpass filtered/nonlinear systems can also be used for the same purpose when
combined with differential detection. The resulting scheme, called �/4-differential
QPSK (�/4-DQPSK), behaves quite similar to ordinary differential detection of
QPSK as discussed in Section 3.5.1, with the following exception. Since the
set of phases fˇkg used to represent the information phases f
ng is now
ˇk D �2k � 1��/4, k D 1, 2, 3, 4, this set must be used in place of the set
ˇk D k�/4, k D 0, 1, 2, 3, in the phase comparison portion of Fig. 3.16.
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4

ALTERNATIVE REPRESENTATIONS
OF CLASSICAL FUNCTIONS

Having characterized and classified the various types of fading channels
and modulation/detection combinations that can be communicated over these
channels, the next logical consideration is evaluation of the average error
probability performance of the receivers of such signals. Before moving on in
the next part of the book to a description of these receivers and the details of
their performance on the generalized fading channel, we divert our attention
to developing a set of mathematical tools that will unify and greatly simplify
these evaluations. The key to such a unified approach is the development
of alternative representations of two classical mathematical functions (i.e.,
the Gaussian Q-function and the Marcum Q-function) that characterize the
error probability performance of digital signals communicated over the AWGN
channel in a form that is analytically more desirable for the fading channel.
The specific nature and properties of this desired form will become clear
shortly. For the moment, suffice it to say that the canonical forms of the
Gaussian and Marcum Q-functions that have been around for many decades
and to this day still dominate the literature dealing with error performance
evaluation have an intrinsic value in their own right with respect to their
relation to well-known probability distributions. What we aim to show, however,
is that aside from this intrinsic value, these canonical forms suffer a major
disadvantage in situations where the argument(s) of the functions depend on
random parameters that require further statistical averaging. Such is the case
when evaluating average error probability on the fading channel as well as on
many other channels with random disturbances. Herein lies the most significant
value of the alternative representations of these functions: namely, their ability
to enable simple and in many cases closed-form evaluation of such statistical
averages.
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4.1 GAUSSIAN Q-FUNCTION

4.1.1 One-Dimensional Case

The one-dimensional Gaussian Q-function (often referred to as the Gaussian
probability integral), Q�x�, is defined as the complement (with respect to unity)
of the cumulative distribution function (CDF) corresponding to the normalized
(zero mean, unit variance) Gaussian random variable (RV) X. The canonical
representation of this function is in the form of a semi-infinite integral of the
corresponding probability density function (PDF), namely,

Q�x� D
∫ 1

x

1p
2�

exp
(

�y
2

2

)
dy �4.1�

In principle, the representation of (4.1) suffers from two disadvantages. From a
computational standpoint, this relation requires truncation of the upper infinite
limit when using numerical integral evaluation or algorithmic techniques. More
important, however, the presence of the argument of the function as the lower
limit of the integral poses analytical difficulties when this argument depends
on other random parameters that ultimately require statistical averaging over
their probability distributions. For the pure AWGN channel, only the first of the
two disadvantages comes into play which ordinarily poses little difficulty and
therefore accounts for the popularity of this form of the Gaussian Q-function
in the performance evaluation literature. However, for channels perturbed by
other disturbances, in particular the fading channel, the second disadvantage
plays an important role since, as we shall see later, the argument of the Q-
function depends, among other parameters, on the random fading amplitudes
of the various received signal components. Thus, to evaluate the average error
probability in the presence of fading, one must average the Q-function over the
fading amplitude distributions. It is primarily this second disadvantage, namely,
the inability to average analytically over one or more random variables when they
appear in the lower limit of an integral, that serves as the primary motivation for
seeking alternative representations of this and similar functions. Clearly, then,
what would be more desirable in such evaluations would be to have a form for
Q�x� wherein the argument of the function is in neither the upper nor the lower
limit of the integral and furthermore, appears in the integrand as the argument
of an elementary function (e.g., an exponential). Still more desirable would be
a form wherein the argument-independent limits are finite. In what follows, any
function that has the two properties above will be said to be in the desired form.

A number of years ago, Craig [1] cleverly showed that evaluation of the
average probability of error for the two-dimensional AWGN channel could be
considerably simplified by choosing the origin of coordinates for each decision
region as that defined by the signal vector as opposed to using a fixed coordinate
system origin for all decision regions derived from the received vector. This shift
in vector space coordinate systems allowed the integrand of the two-dimensional
integral describing the conditional (on the transmitted signal) probability of error
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to be independent of the transmitted signal. A by-product of Craig’s work was
a definite integral form for the Gaussian Q-function, which was in the desired
form.1

In particular, Q�x� of (4.1) could also now be defined (but only for x ½ 0) by

Q�x� D 1

�

∫ �/2

0
exp

(
� x2

2 sin2 �

)
d� �4.2�

The form in (4.2) is not readily obtainable by a change of variables directly in
(4.1). However, by first extending (4.1) to two dimensions (x and y) where one
of the dimensions (y) is integrated over the half plane, a change of variables from
rectangular to polar coordinates readily produces (4.2). Furthermore, (4.2) can be
obtained directly by a straightforward change of variables of a standard known
integral involving Q�x�, in particular [5, Eq. (3.363.2)]. Both of these techniques
for arriving at (4.2) are described in Appendix 4A. Yet another derivation of
(4.2) is given in Ref. 6 and is based on the fact that since the product of
two independent random variables, one of which is a Rayleigh and the other
a sinusoidal random process with random phase, is a Gaussian random variable,
determining the CDF of this product variable is equivalent to evaluating the
Gaussian Q-function.

Based on our previous discussion, it is clear that Q�x� of (4.2) is in the
desired form, that is, in addition to the advantage of having finite integration
limits independent of the argument of the function, x, it has the further advantage
that the integrand now has a Gaussian form with respect to x! We shall see in
Chapter 5 that this exponential dependence of the integrand on the argument of
the Q-function will play a very important role in simplifying the evaluation
of performance results for coherent communication over generalized fading
channels. Before exploiting this property of (4.2) in great detail, however, we wish
to give further insight into the alternative definition of the Gaussian Q-function
with regard to how it relates to the well-known Chernoff bound.

Note that the maximum of the integrand in (4.2) occurs when � D �/2 [i.e.,
the integrand achieves its maximum value, namely, exp��x2/2�, at the upper
limit]. Thus, replacing the integrand by its maximum value, we immediately
get the well-known upper bound on Q�x�, namely, Q�x� � 1

2 exp��x2/2�, which
is the Chernoff bound. As we shall see on many occasions later in the book,
the advantage of this observation is that the form of Q�x� in (4.2) allows
manipulations akin to those afforded by the Chernoff bound but without the
necessity of invoking a bound! In principle, one simply operates on the integrand
in the same fashion as if the Q-function had been replaced by the Chernoff
bound, and then at the end performs a single integration over the variable �. For

1 This form of the Gaussian Q-function was earlier implied in the work of Pawula et al. [2] and
Weinstein [3]. The earliest reference to this form of the Gaussian Q-function found by the authors
appeared in a classified report (which has since become unclassified) by Nuttall [4]. The relation given
there is actually for the complementary error function, which is related to the Gaussian Q-function
by erfc�x� D 2Q�

p
2x�.
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example, many problems dealing with sequence detection whose error probability
performance was heretofore characterized by a combined union–Chernoff bound
can now be described by just a union bound, thereby improving its tightness.
This behavior is discussed in more detail in Chapter 12.

4.1.2 Two-Dimensional Case

The normalized two-dimensional Gaussian probability integral is defined by

Q�x1, y1;
� D 1

2�
√

1 � 
2

∫ 1

x1

∫ 1

y1

exp
[
�x

2 C y2 � 2
xy

2�1 � 
2�

]
dx dy �4.3�

Rewriting (4.3) as

Q�x1, y1;
� D 1

2�
√

1 � 
2

ð
∫ 1

0

∫ 1

0
exp
[
� �x C x1�2 C �y C y1�2 � 2
�x C x1��y C y1�

2�1 � 
2�

]
dx dy

�4.4�
we see that we can interpret this double integral as the probability that a signal
vector s D ��x1,�y1� received in correlated unit variance Gaussian noise falls
in the upper right quadrant of the �x, y� plane. Defining

S D
√
x2

1 C y2
1, �s D tan�1 y1

x1
�4.5�

then using the geometry of Fig. 4.1, it is straightforward to show that Q�x1, y1; 
�
can be expressed as

Q�x1, y1;
� D 1

2�

∫ �/2��s

0

√
1 � 
2

1 � 
 sin 2�
exp

[
�S

2

2

1 � 
 sin 2�

�1 � 
2�

cos2 �s
sin2 �

]
d�

C 1

2�

∫ �s

0

√
1 � 
2

1 � 
 sin 2�
exp

[
�S

2

2

1 � 
 sin 2�

�1 � 
2�

sin2 �s
sin2 �

]
d� �4.6�

which using (4.6) simplifies still further to

Q�x1, y1; 
� D 1

2�

∫ �/2�tan�1 y1/x1

0

√
1 � 
2

1 � 
 sin 2�
exp

[
�x

2
1

2

1 � 
 sin 2�

�1 � 
2� sin2 �

]
d�

C 1

2�

∫ tan�1 y1/x1

0

√
1 � 
2

1 � 
 sin 2�
exp

[
�y

2
1

2

1 � 
 sin 2�

�1 � 
2� sin2 �

]
d�

�4.7�



GAUSSIAN Q-FUNCTION 73

x

y

R

N

x

y

R

Nq







S 
 

S 

  

Ne jΘ= (x+x1)+j (y+y1)
(x+x1)2+(y+y1)2−2r(x+x1)(y+y1)=N2(1−rsin2Θ)

Nejq= (x+x1)+j (y+y1)
(x+x1)2+(y+y1)2−2r(x+x1)(y+y1)=N2(1−rsin2q)

q =  p −Θ
2

0≤ q ≤ p−fs2
fs ≤Θ≤ p

2

S
 cos f s

    cosΘ

S
 cos fs

    cos q

fs
−x1

−x1

−y1

−y1

0≤q ≤fs

fs

Θ

Figure 4.1. Geometry for (4.6).

For the special case of 
 D 0, (4.7) simplifies to

Q�x1, y1; 0� D Q�x1�Q�y1�

D 1

2�

∫ �/2�tan�1 y1/x1

0
exp

(
� x2

1

2 sin2 �

)
d�

C 1

2�

∫ tan�1 y1/x1

0
exp

(
� y2

1

2 sin2 �

)
d� �4.8�

In addition, when x1 D y1 D x, we have

Q�x, x; 0� D Q2�x� D 1

�

∫ �/4

0
exp

(
� x2

2 sin2 �

)
d� �4.9�
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which is a single-integral form for the square of the Gaussian Q-function.2 The
form of the result in (4.9) can also be obtained directly from (4.1) by squaring
the latter, rewriting it as a double integral of a two-dimensional Gaussian PDF,
and then converting from rectangular to polar coordinates (see Appendix 4A).
Comparing (4.9) with (4.2), we see that to compute the square of the one-
dimensional Gaussian probability integral, one integrates the same integrand but
only over the first half of the domain.

4.2 MARCUM Q-FUNCTION

Motivated by the form of the alternative Gaussian Q-function in (4.2), one
questions whether a similar form is possible for the generalized Marcum Q-
function [8], which as we shall see in later chapters is common in performance
results for communication problems dealing with partially coherent, differentially
coherent, and noncoherent detection. We now present the steps leading up to this
desirable form and then show how it offers the same advantages as the alternative
representation of the Gaussian Q-function. For simplicity of the presentation,
we shall first demonstrate the approach for the first-order �m D 1� Marcum Q-
function and then generalize to the mth-order function, where in general m can
be noninteger as well as integer. The derivations and specific forms that will
be derived can be found in Ref. 9, with similar derivations and forms found
in Ref. 10.

4.2.1 First-Order Marcum Q-Function

The first-order Marcum Q-function, Q1�s,
p
y�, is defined as the complement

(with respect to unity) of the CDF corresponding to the normalized noncentral chi-
square random variable, Y D ∑2

kD1 X
2
k , whose canonical representation is in the

form of a semi-infinite integral of the corresponding probability density function
(PDF), namely,3

Q1�s,
p
y� D

∫ 1
p
y
x exp

(
�x

2 C s2

2

)
I0�sx� dx �4.10�

where s2 is referred to as the noncentrality parameter. Also, for simplicity
of notation, we shall replace the arguments s and

p
y in (4.10) by ˛ and ˇ,

2 This result can also be obtained from Lebedev [7, Chap 2, Prob. 6] after making the change of
variables � D �/2 � tan�1 t.
3 It is common in the literature to omit the “1” subscript on the Marcum Q-function when referring
to the first-order function. For the purpose of clarity and distinction from the generalized (mth-order)
Marcum Q-function to be introduced shortly, we shall maintain the subscript notation.



MARCUM Q-FUNCTION 75

respectively, in which case (4.10) is rewritten in the more common form4

Q1�˛, ˇ� D
∫ 1

ˇ
x exp

(
�x

2 C ˛2

2

)
I0�˛x� dx �4.11�

Using integration by parts, it has also been shown [12,13] that the first-order
Marcum Q-function has the series form

Q1�˛, ˇ� D exp
(

�˛
2 C ˇ2

2

) 1∑
kD0

(
˛

ˇ

)k
Ik�˛ˇ�

D exp
[
�ˇ

2

2
�1 C �2�

] 1∑
kD0

�kIk�ˇ
2�� �4.12�

where �
D˛/ˇ. The reason for introducing the parameter � to represent the ratio

of the arguments of the Marcum Q-function is in the same sense that the definition
in (4.10) has one argument that represents the true argument of the function (i.e.,p
y), whereas the second argument (i.e., s) is a parameter. More insight into the

significance of � in the digital communications application and its dependence
on the modulation/detection form is given in Chapter 5. Suffice it to say at the
moment that in terms of the analogy with Craig’s result, we are attempting to
express the Marcum Q-function as an integral with finite limits and an integrand
that is a Gaussian function of ˇ.

4 It is interesting to note that the complement (with respect to unity) of the first-order Marcum Q-
function can be looked upon as a special case of the incomplete Toronto function [11, pp. 227–228],
which finds its roots in the radar literature and is defined by

TB�m, n, r� D 2rn�mC1e�r2
∫ B

0
tm�ne�t2In�2rt� dt.

In particular, we have

Tˇ/
p

2

(
1, 0,

˛p
2

)
D 1 � Q1�˛, ˇ�.

Furthermore, as ˇ ! 1, Q1�˛, ˇ� can be related to the Gaussian Q-function as follows. Using the
asymptotic (for large argument) form of the zero-order modified Bessel function of the first kind,
we get [4, Eq. (A-27)]

Q1�˛, ˇ� '
∫ 1

ˇ
x exp

(
� x

2 C ˛2

2

)
exp�˛x�p

2�˛x
dx

'
√
ˇ

˛

1p
2�

∫ 1

ˇ
exp

[
� �x � ˛�2

2

]
dx D

√
ˇ

˛
Q�ˇ � ˛�
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The modified Bessel function of kth order can be expressed as the integral
[5, Eqs. (8.406.3) and (8.411.1)]

Ik�z� D 1

2�

∫ �

��
��je�j��ke�z sin �d� �4.13�

where j D p�1 and it is clear that the imaginary part of the right-hand side of
(4.13) must be equal to zero [since Ik�z� is a real function of the real argument
z]. Although (4.13) is not restricted to values of � less than unity, to arrive at the
alternative representation of the Marcum Q-function it will be convenient to make
this assumption. (Shortly we shall give an alternative series form from which an
alternative representation can be derived for the case where the ratio ˛/ˇ is
greater than unity.) Thus, assuming in (4.13) that 0 � � < 1, after substitution in
(4.12) we obtain

Q1�˛, ˇ� D exp
[
�ˇ

2

2
�1 C �2�

]
1

2�

∫ �

��

1∑
kD0

[���je�j��]ke�ˇ2� sin �d�

D exp
[
�ˇ

2

2
�1 C �2�

]
1

2�

∫ �

��

1

1 C ��je�j��
e�ˇ2� sin �d� �4.14�

Simplifying the complex factor of the integrand as

1

1 C ��je�j��
D 1

1 C ��sin � C j cos ��
D 1 C ��sin � � j cos ��

�1 C � sin ��2 C �� cos ��2

D 1 C ��sin � � j cos ��

1 C 2� sin � C �2
�4.15�

and recognizing again that the imaginary part of (4.15) must result in a zero
integral [since Q1�˛, ˇ� is real], substituting (4.15) into (4.14) gives the final
result

Q1�˛, ˇ� D Q1�ˇ�, ˇ� D 1

2�

∫ �

��

1 C � sin �

1 C 2� sin � C �2

ð exp
[
�ˇ

2

2
�1 C 2� sin � C �2�

]
d�, ˇ > ˛ ½ 0 �0 � � < 1�

�4.16�
which is in the desired form of a single integral with finite limits and an integrand
that is bounded and well behaved over the interval �� � � � � and is Gaussian
in the argument ˇ.

We observe from (4.16) that � is restricted to be less than unity (i.e., ˛ 6D ˇ).
The reason for this stems from the closed form used for the geometric series
in (4.14), which, strictly speaking, is valid only when � < 1. This special case,
which has limited interest in communication performance applications, has been
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evaluated [14, Eq. (A-3-2)] and has the closed-form result

Q1�˛, ˛� D 1 C exp��˛2�I0�˛2�

2
�4.17�

For the case ˛ > ˇ ½ 0, the appropriate series form is [12,13]5

Q1�˛, ˇ� D 1 � exp
(

�˛
2 C ˇ2

2

) 1∑
kD1

(
ˇ

˛

)k
Ik�˛ˇ�

D 1 � exp
[
�˛

2

2
�1 C �2�

] 1∑
kD1

�kIk�˛
2�� �4.18�

whereupon an analogous development to that leading up to (4.16) would yield
the result6

Q1�˛, ˇ� D Q1�˛, ˛�� D 1 C 1

2�

∫ �

��

�2 C � sin �

1 C 2� sin � C �2

ð exp
[
�˛

2

2
�1 C 2� sin � C �2�

]
d�, ˛ > ˇ ½ 0 �0 � � < 1�

�4.19�

where now �
Dˇ/˛ < 1. Once again the expression in (4.19) is a single integral

with finite limits and an integrand that is bounded and well behaved over the
interval �� � � � � and is Gaussian in one of the arguments, in this case,
˛. Aside from its analytical desirability in the applications discussed in later
chapters, the form of (4.16) and (4.19) is also computationally desirable relative
to other methods suggested previously by Parl [16] and Cantrell and Ojha [17]
for numerical evaluation of the Marcum Q-function.

The results in (4.16) and (4.19) can be put in a form with a more
reduced integration interval. In particular, using the symmetry properties of
the trigonometric functions over the intervals ���, 0� and �0, ��, we obtain the
alternative forms

Q1�˛, ˇ� D Q1�ˇ�, ˇ� D 1

�

∫ �

0

1 š � cos �

1 š 2� cos � C �2

ð exp
[
�ˇ

2

2
�1 š 2� cos � C �2�

]
d�, ˇ > ˛ ½ 0 �0 � � < 1�

�4.20�

5 We note that (4.18) is valid even if ˛ < ˇ, but for our purpose the series form given in (4.12) is
more convenient for this case.
6 At first glance it might appear from (4.19) that the Marcum Q-function can exceed unity. However,
the integral in (4.19) is always less than or equal to zero. It should also be noted that the results
in (4.16) and (4.19) can also be obtained from the work of Pawula [15] dealing with the relation
between the Rice Ie-function and the Marcum Q-function. In particular, equating Eqs. (2a) and
(2c) of Ref. 15 and using the integral representation of the zero-order Bessel function obtained from
(4.13) with k D 0 in the latter of the two equations, one can, with an appropriate change of variables,
arrive at (4.16) and (4.19).
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and

Q1�˛, ˇ� D Q1�˛, ˛�� D 1 C 1

�

∫ �

0

�2 š � cos �

1 š 2� cos � C �2

ð exp
[
�˛

2

2
�1 š 2� cos � C �2�

]
d�, ˛ > ˇ ½ 0 �0 � � < 1�

�4.21�
Since, as we shall soon see, for the generalized (mth-order) Marcum Q-function
the reduced integration interval form is considerably more complex than the form
between symmetrical ���, �� limits, we shall tend to use (4.16) and (4.19) when
dealing with the applications.

As a simple check on the validity of (4.16) and (4.19), we examine the limiting
cases Q1�0, ˇ� and Q1�˛, 0�. Letting � D 0 in (4.16), we immediately have the
well-known result

Q1�0, ˇ� D exp
(

�ˇ
2

2

)
�4.22�

Similarly, letting � D 0 in (4.19) gives

Q1�˛, 0� D 1 �4.23�

Simple upper and lower bounds on Q1�˛, ˇ� can be obtained in the same
manner that the Chernoff bound on the Gaussian Q-function was obtained from
(4.2). In particular, for ˇ > ˛ ½ 0, we observe that the maximum and minimum
of the integrand in (4.16) occurs for � D ��/2 and � D �/2, respectively. Thus,
replacing the integrand by its maximum and minimum values leads to the upper
and lower “Chernoff-type” bounds

1

1 C �
exp

[
�ˇ

2�1 C ��2

2

]
� Q1�ˇ�, ˇ� � 1

1 � �
exp

[
�ˇ

2�1 � ��2

2

]
�4.24a�

or equivalently,

ˇ

ˇ C ˛
exp

[
� �ˇ C ˛�2

2

]
� Q1�˛, ˇ� � ˇ

ˇ � ˛
exp

[
� �ˇ � ˛�2

2

]
�4.24b�

which, in view of (4.22), are asymptotically tight as ˛ ! 0.
For ˛ > ˇ ½ 0, the integrand in (4.19) has a minimum at � D ��/2

and a maximum at � D �/2. Since the maximum of the integrand, [�/�1 C
��] exp[�˛2�1 C ��2/2], is always positive, the upper bound obtained by replacing
the integrand by this value would exceed unity and hence be useless. On the other
hand, the minimum of the integrand, �[�/�1 � ��] exp[�˛2�1 � ��2/2] is always
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negative. Hence a lower Chernoff-type bound on Q1�˛, ˇ� is given by7

1 � �

1 � �
exp

[
�˛

2�1 � ��2

2

]
� Q1�˛, ˛�� �4.25a�

or equivalently,

1 � ˛

˛� ˇ
exp

[
� �˛� ˇ�2

2

]
� Q1�˛, ˇ� �4.25b�

Another alternative and in some sense simpler form of the first-order Marcum
Q-function was recently disclosed in Ref. 18. This form dispenses with the
trigonometric factor that precedes the exponential in the integrands of (4.16)
and (4.19) in favor of the sum of two purely exponential integrands each still
having the desired dependence on ˇ or ˛ as appropriate. In particular, with a
change in notation suitable to that used previously in this chapter, the results
obtained in Ref. 18 can be expressed as follows:

Q1�˛, ˇ� D Q1�ˇ�, ˇ� D 1

4�

∫ �

��

{
exp

[
�ˇ

2

2
�1 C 2� sin � C �2�

]

C exp
[
�ˇ

2

2

(
�1 � �2�2

1 C 2� sin � C �2

)]}
d�, ˇ ½ ˛ ½ 0 �0 � � � 1�

�4.26�

Q1�˛, ˇ� D Q1�˛, ˛�� D 1 C 1

4�

∫ �

��

{
exp

[
�˛

2

2
�1 C 2� sin � C �2�

]

� exp
[
�˛

2

2

(
�1 � �2�2

1 C 2� sin � C �2

)]}
d�, ˛ ½ ˇ ½ 0 �0 � � � 1�

�4.27�

or equivalently, in the reduced forms analogous to (4.20) and (4.21):

Q1�˛, ˇ� D Q1�ˇ�, ˇ� D 1

2�

∫ �

0

{
exp

[
�ˇ

2

2
�1 š 2� cos � C �2�

]

C exp
[
�ˇ

2

2

(
�1 � �2�2

1 š 2� cos � C �2

)]}
d�, ˇ ½ ˛ ½ 0 �0 � � � 1�

�4.28�

Q1�˛, ˇ� D Q1�˛, ˛�� D 1 C 1

2�

∫ �

0

{
exp

[
�˛

2

2
�1 š 2� cos � C �2�

]

� exp
[
�˛

2

2

(
�1 � �2�2

1 š 2� cos � C �2

)]}
d�, ˛ ½ ˇ ½ 0 �0 � � � 1�

�4.29�

7 Clearly, since Q1�˛, ˇ� can never be negative, the lower bound of (4.25a) or (4.25b) is only useful
for values of the arguments that result in a nonnegative value.
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Since the first exponential integrand in each of (4.26) through (4.29) is identical
to the exponential integrand in the corresponding equations (4.16), (4.19), (4.20),
and (4.21), we can look upon the second exponential in the integrands of the
former group of equations as compensating for the lack of the trigonometric
multiplying factor in the integrands of the latter equation group.

The forms of the Marcum Q-function in (4.26) and (4.27) [or (4.28) and (4.29)]
immediately allow obtaining tighter upper and lower bounds of this function than
those in (4.24) and (4.25). In particular, once again recognizing that for ˇ > ˛ ½ 0
the maximum and minimum of the first exponential integrand in (4.26) occurs for
� D ��/2 and � D �/2, respectively, and vice versa for the second exponential
integrand, we immediately obtain8

exp
[
�ˇ

2�1 C ��2

2

]
� Q1�ˇ�, ˇ� � exp

[
�ˇ

2�1 � ��2

2

]
�4.30a�

or equivalently,

exp
[
� �ˇ C ˛�2

2

]
� Q1�˛, ˇ� � exp

[
� �ˇ � ˛�2

2

]
�4.30b�

Making a similar recognition in (4.27), then for ˛ > ˇ ½ 0 we obtain the lower
bound

1 � 1

2

{
exp

[
�˛

2�1 � ��2

2

]
� exp

[
�˛

2�1 C ��2

2

]}
� Q1�˛, ˛�� �4.31a�

or equivalently,9

1 � 1

2

{
exp

[
� �˛� ˇ�2

2

]
� exp

[
� �˛C ˇ�2

2

]}
� Q1�˛, ˇ� �4.31b�

8 It has been pointed out to the authors by W. F. McGee of Ottawa, Canada that the same tighter
bounds can be obtained from (4.16) by upper and lower bounding only the exponential factor in
the integrand (thus making it independent of the integration variable �) and then recognizing that
the integral of the remaining factor of the integrand can be obtained in closed form and evaluates
to unity. We point out to the reader that this procedure of only upper and lower bounding the
exponential is valid when the remaining factor is positive over the entire domain of the integral as
is the case in (4.16).
9 Note that the upper bound in this case would become

Q1�˛, ˇ� � 1 C 1

2

{
exp

[
� �˛� ˇ�2

2

]
� exp

[
� �˛C ˇ�2

2

]}

which exceeds unity and is thus not useful.
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We note that the bounds in (4.31a) and (4.31b) cannot be obtained directly from
(4.19) by lower bounding the exponential in the integrand since the factor that
precedes it is not positive over the entire domain of the integral. We also note
that although tighter bounds on the first-order Marcum Q-function have recently
been obtained by Chiani [19], they are not in the desired form and thus are not
helpful in applying the MGF-based approach to upper bound the average BEP
performance of noncoherent and differentially coherent communication systems
perturbed by slow fading.

Before concluding this section, we alert the reader to the inclusion of the
endpoint ˛ D ˇ �� D 1� in the alternative representations of (4.26) through
(4.29), all of which yield the value of Q1�˛, ˛� in (4.17). This is in contrast
to the alternative representation pairs (4.16), (4.19) or (4.20), (4.21), which yield
different limits as ˛ approaches ˇ (� approaches 1) from the left and right, respec-
tively. The reason for these different left and right limits [the arithmetic average
of which does in fact produce the result in (4.17)] is again tied to the fact that
these representations rely on the convergence of a geometric series which, strictly
speaking, is not convergent at the point � D 1. On the other hand, the derivation of
the representations in (4.26) through (4.29) is based on a different approach [18]
and as such are continuous across the point � D 1. Thus, even in the neighborhood
of � D 1, one would anticipate better behavior from these representations.

4.2.2 Generalized (mth-Order) Marcum Q-Function

The generalized Marcum Q-function is defined analogous to (4.10) by

Qm�s,
p
y� D 1

sm�1

∫ 1
p
y
xm exp

(
�x

2 C s2

2

)
Im�1�sx� dx �4.32�

or, equivalently,10

10 The complement of the generalized Marcum Q-function can also be viewed as a special case of
the incomplete Toronto function. In particular,

Tˇ/
p

2

(
2m � 1, m � 1,

˛p
2

)
D 1 � Qm�˛, ˇ�

Furthermore, as ˇ ! 1, Qm�˛, ˇ� can be related to the Gaussian Q-function in the same manner
as was done for the first-order Marcum Q-function. Specifically, since the asymptotic (for large
argument) form of the kth-order modified Bessel function of the first kind is independent of the
order, then

Qm�˛, ˇ� '
∫ 1

ˇ
x

(
x

˛

)m�1

exp

(
� x

2 C ˛2

2

)
exp�˛x�p

2�˛x
dx

'
(
ˇ

˛

)m�1/2 1p
2�

∫ 1

ˇ
exp

[
� �x � ˛�2

2

]
dx

D
(
ˇ

˛

)m�1/2

Q�ˇ � ˛�
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Qm�˛, ˇ� D 1

˛m�1

∫ 1

ˇ
xm exp

(
�x

2 C ˛2

2

)
Im�1�˛x� dx �4.33�

where for m integer, the canonical form in (4.32) has the significance of
being the complement (with respect to unity) of the CDF corresponding to the
normalized noncentral chi-square random variable, Y D ∑mC1

kD1 X
2
k . It would be

desirable to obtain integral forms analogous to (4.16) and (4.19) to represent the
generalized Marcum Q-function regardless of whether m is integer or noninteger.
Unfortunately, this has been shown to be possible only for the case of m integer,
at least in the sense of an exact representation [9,10]. As we shall see from
the derivation of these forms, however, the ones derived for m integer are also
applicable in an approximate sense to the case of m noninteger in certain regions
of the function’s arguments. Thus, we begin by proceeding with an approach
analogous to that taken in arriving at (4.16) and (4.19) without restricting m to
be integer, applying this restriction only when it becomes necessary. The details
are as follows.

Applying integration by parts to (4.33) with u D xm�1Im�1�˛x� and dv D
x exp[��x2 C ˛2�/2]dx and using the Bessel function recursion relation
Im�1�x�� ImC1�x� D �2m/x�Im�x� [20, Eq. (9.6.26)], it is straightforward to show
that the generalized Marcum Q-function satisfies the recursion relation

Qm�˛, ˇ� D
(
ˇ

˛

)m�1

exp
(

�˛
2 C ˇ2

2

)
Im�1�˛ˇ�C Qm�1�˛, ˇ� �4.34�

Recognizing that regardless of the values of ˛ and ˇ, Q�1�˛, ˇ� D 0 and
Q1�˛, ˇ� D 1, then iterating (4.34) in both the forward and backward directions
gives the series forms

Qm�˛, ˇ� D exp
(

�˛
2 C ˇ2

2

) 1∑
rD1�m

(
˛

ˇ

)r
I�r�˛ˇ� �4.35�

and

Qm�˛, ˇ� D 1 � exp
(

�˛
2 C ˇ2

2

) 1∑
rDm

(
ˇ

˛

)r
Ir�˛ˇ� �4.36�

Note that when m is integer, the values of the summation index r are also integer,
and since in this case I�r�x� D Ir�x�, we can rewrite (4.35) as

Qm�˛, ˇ� D exp
(

�˛
2 C ˇ2

2

) 1∑
rD1�m

(
˛

ˇ

)r
Ir�˛ˇ� �4.37�

Equations (4.36) and (4.37) are the series forms of the generalized Marcum Q-
function that are found in the literature and apply when m is integer. When m is
noninteger, the values of the summation index r are also noninteger, and since
in this case I�r�x� 6D Ir�x�, then (4.37) is no longer valid; instead one must use
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(4.35). Note that (4.36) is valid for m integer or m noninteger and together with
(4.37) reduce to (4.18) and (4.12), respectively, for m D 1.

Although the discussion above appears to make a mute point, it is important
in the approach taken in Ref. 9 since certain trigonometric manipulations
applied there when deriving the alternative representation of the Marcum
Q-function from the series representation hold only for m integer. Despite
this fact, however, if the Ir�x� function could still be represented exactly
by the integral Ir�x� D �1/2��

∫ �
�� ��je�j��re�x sin � d� [which is the same as

(4.13) with r substituted for k], then even though the summation indices in
(4.36) and (4.37) are noninteger, adjacent values are separated by unity and
the same geometric series manipulations could be performed as were done
previously for the first-order Marcum Q-function. Unfortunately, however, the
integral representation of Ir�x� above is approximately valid only when its
argument x is large irrespective of the value of r, and thus the steps that
follow and the results that ensue are only approximate when m, the order
of the Marcum Q-function, is noninteger. In what follows, however, we shall
proceed as though this integral representation is exact (which it is for r
integer, or equivalently, m integer) with the understanding that the final integral
representations obtained for the mth-order Marcum Q-function will be exact for m
integer and approximate (for large values of the argument ˇ or ˛ as appropriate)
for m noninteger.

As discussed previously with regard to the application of the alternative
representation, it is convenient to introduce the parameter � < 1 to represent the
ratio of the smaller to the larger of the two variables of the Marcum Q-function.
We can therefore rewrite (4.35) and (4.36) as

Qm�ˇ�, ˇ� D exp
[
�ˇ

2

2
�1 C �2�

] 1∑
rD1�m

�rI�r�ˇ2��, 0C � �
D˛/ˇ < 1 �4.38�

Qm�˛, ˛�� D 1 � exp
[
�˛

2

2
�1 C �2�

] 1∑
rDm

�rIr�˛
2��, 0 � �

Dˇ/˛ < 1 �4.39�

Letting N < m < NC 1 (i.e., N is the largest integer less than or equal to m),
substituting the integral form of the modified Bessel function in (4.38) gives

Qm�ˇ�, ˇ� D exp
[
�ˇ

2

2
�1 C �2�

]
1

2�

∫ �

��

1∑
rD1�m

�r��je�j���re�ˇ2� sin � d�

D exp
[
�ˇ

2

2
�1 C �2�

]
1

2�

∫ �

��

[
N�m∑
rD1�m

�ej��C�/2���r

C
1∑

rDN�mC1

�ej��C�/2���r
]
e�ˇ2� sin � d� �4.40�
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Recognizing as mentioned above that the sums in (4.40) are still geometric series
despite the fact that the summation index r does not take on integer values, we
obtain

Qm�ˇ�, ˇ� D exp
[
�ˇ

2

2
�1 C �2�

]
1

2�

ð
∫ �

��

[
���m�1�e�j�m�1���C�/2� 1 � �NejN��C�/2�

1 � �ej��C�/2�

C �NC1�mej�NC1�m���C�/2� 1

1 � �ej��C�/2�

]
e�ˇ2� sin �d� �4.41�

Since Qm�˛, ˇ� is a real function of its arguments, then taking the real part of
the right hand side of (4.41) and simplifying results in the desired expression

Qm�ˇ�, ˇ� D 1

2�

∫ �

��

���m�1�fcos[�m � 1��� C �/2�] � � cos[m�� C �/2�]g
1 C 2� sin � C �2

ð exp
[
�ˇ

2

2
�1 C 2� sin � C �2�

]
d�, 0C � � D ˛/ˇ < 1 �4.42�

Note that the limit of Qm�ˇ�, ˇ� as � ! 0 is difficult to evaluate directly from the
form in (4.42), which explains the restriction on its region of validity. However,
this limit can be evaluated starting with the integral form of (4.33) and using the
small argument form of the modified Bessel function, that is,

I'�z� ' �z/2�'

�' C 1�
�4.43�

When this is done, the following results:

Qm�0, ˇ� D �m, ˇ2/2�

�m�
�4.44�

where �˛, x� is the complementary Gauss incomplete gamma function [5,
Eq. (8.350.2)]. Using a particular integral representation of �˛, x� [21,
Eq. (11.10)], then after some changes of variables, Qm�0, ˇ� can be put in the
desired form,

Qm�0, ˇ� D ˇ2m

2m�1�m�

∫ �/2

0

cos �

�sin ��1C2m
exp

(
� ˇ2

2 sin2 �

)
d� �4.45�

For m integer, the gamma function can be evaluated in closed form [5,
Eq. (8.352.2)] and (4.44) reduces to
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Qm�0, ˇ� D
m�1∑
nD0

exp
(

�ˇ
2

2

)
�ˇ2/2�n

n!
�4.46�

which is a special case of another form of the Marcum Q-function proposed by
Dillard [22], namely,

Qm�˛, ˇ� D
1∑
nD0

exp
(

�˛
2

2

)
�˛2/2�n

n!

nCm�1∑
kD0

exp
(

�ˇ
2

2

)
�ˇ2/2�k

k!
�4.47�

In a similar fashion, substituting the integral form of the modified Bessel
function in (4.39) gives

Qm�˛, ˛�� D 1 � exp
[
�˛

2

2
�1 C �2�

]
1

2�

∫ �

��

1∑
rDm

�r��je�j���re�ˇ2� sin �d�

D 1 � exp
[
�ˇ

2

2
�1 C �2�

]
1

2�

∫ �

��

1∑
rDm
�ej��C�/2���re�ˇ2� sin �d�

�4.48�
where upon recognizing the sum as a geometric series, we get

Qm�˛, ˛�� D 1 � exp
[
�˛

2

2
�1 C �2�

]
1

2�

ð
∫ �

��

[
�mC1ej�mC1���C�/2� 1

1 � �ej��C�/2�

]
e�ˇ2� sin � d� �4.49�

Finally, taking the real part of the right-hand side of (4.49) and simplifying gives
the complementary expression to (4.42), namely,

Qm�˛, ˛�� D 1 � 1

2�

∫ �

��

�mfcos[m�� C �/2�] � � cos[�m � 1��� C �/2�]g
1 C 2� sin � C �2

ð exp
[
�˛

2

2
�1 C 2� sin � C �2�

]
d�, 0 � � D ˇ/˛ < 1 �4.50�

For m integer, (4.42) and (4.50) simplify slightly to

Qm�ˇ�, ˇ� D 1

2�

∫ �

��

��1��m�1�/2���m�1�[cos�m � 1�� C � sinm�]

1 C 2� sin � C �2

ð exp
[
�ˇ

2

2
�1 C 2� sin � C �2�

]
d�, 0C < � D ˛/ˇ < 1, m odd

�4.51�
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Qm�ˇ�, ˇ� D 1

2�

∫ �

��

��1�m/2���m�1�[sin�m � 1�� � � cosm�]

1 C 2� sin � C �2

ð exp
[
�ˇ

2

2
�1 C 2� sin � C �2�

]
d�, 0C < � D ˛/ˇ < 1, m even

Qm�˛, �˛� D 1 C 1

2�

∫ �

��

��1��m�1�/2�m[sinm� C � cos�m � 1��]

1 C 2� sin � C �2

ð exp
[
�˛

2

2
�1 C 2� sin � C �2�

]
d�, 0 � � D ˇ/˛ < 1, m odd

�4.52�

Qm�˛, �˛� D 1

2�

∫ �

��

��1�m/2�m[cosm� � � sin�m � 1��]

1 C 2� sin � C �2

ð exp
[
�˛

2

2
�1 C 2� sin � C �2�

]
d�, 0 � � D ˇ/˛ < 1, m even

which are the forms reported by Simon [9, Eqs. (8) and (10)]. Finally, the limit
of (4.50) as � ! 0 is easily seen to be Qm�˛, 0� D 1, which is in agreement with
the similar result in (4.23) for the first-order Marcum Q-function.

As before, we observe from (4.42) and (4.50) that � is restricted to be less than
unity (i.e., ˛ 6D ˇ) for the reason mentioned previously relative to the alternative
representations of the first-order Marcum Q-function. For m integer, this special
case has the closed-form result [10]

Qm�˛, ˛� D 1

2
C exp��˛2�

[
I0�˛2�

2
C

m�1∑
kD1

Ik�˛
2�

]
�4.53�

For m noninteger, the authors have been unable to arrive at an approximate
closed-form result.

Finally, we note that the approach taken in Ref. 18 for arriving at the
alternative forms for the first-order Marcum Q-function given in (4.26) through
(4.29) unfortunately does not produce an equivalent simplification in the case of
the mth-order Marcum Q-function. Similarily, upper and lower bounds on the
mth-order Marcum Q-function are not readily obtainable by upper and lower
bounding the exponential in the integrands of (4.42) and (4.50) since the first
factor of these integrands is not positive over the domain of the integral. Thus,
throughout the remainder of the book, unless the forms in (4.26) through (4.29)
produce a specific analytical advantage, we shall tend to use the alternative forms
of the first-order Marcum Q-function function given in (4.16) and (4.19) because
of their synergy with the equivalent forms in (4.42) and (4.50) for the mth-order
Marcum Q-function.

Despite the fact that upper and lower bounds on the mth-order Marcum Q-
function are not readily obtainable from (4.42) and (4.50), it is nevertheless
possible [23] for m integer to obtain such bounds by using the upper and
lower bounds on the first-order Marcum Q-function given in (4.30a) and (4.30b)
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together with the recursive relation of (4.34).11 In particular, (4.34) can first be
rewritten as

Qm�˛, ˇ� D exp
(

�˛
2 C ˇ2

2

) m�1∑
nD1

(
ˇ

˛

)n
In�˛ˇ�C Q1�˛, ˇ� �4.54�

Now expressing In�z� in its integral form analogous to (4.13), that is,

In�z� D 1

�

∫ �

0
ez cos � cosn� d� �4.55�

and recognizing that the exponential part of the integrand has maximum and
minimum values of ez and e�z, respectively, then because of the n-fold peri-
odicity of cosn� and the equally spaced (by �/n) regions where cosn� is
alternately positive and negative within the interval 0 � � � �, we can upper
bound In�z� by12

In�z� � n

2

(
ez

1

�

∫ �/2n

0
cosn� d� C e�z 1

�

∫ 3�/2n

�/2n
cosn� d� C ez

1

�

∫ 2�/n

3�/2n
cosn� d�

)

D ez � e�z

�
, z ½ 0 �4.56�

which is independent of n for n ½ 1. This allows the series in (4.54) to be
summed as a geometric series that has a closed-form result. Finally, using (4.56)
in (4.54) together with the upper bound on Q1�˛, ˇ� for 0C � � D ˛/ˇ < 1 as
given by (4.30b), we obtain after some manipulation

Qm�˛, ˇ� � exp
[
� �ˇ � ˛�2

2

]
C 1

�

{
exp

[
� �ˇ � ˛�2

2

]

� exp
[
� �ˇ C ˛�2

2

]}(
ˇ

˛

)m�1 [1 � �˛/ˇ�m�1

1 � ˛/ˇ

]
�4.57a�

or equivalently,

Qm�ˇ�, ˇ� � exp
[
�ˇ

2�1 � ��2

2

]
C 1

�

{
exp

[
�ˇ

2�1 � ��2

2

]

� exp
[
�ˇ

2�1 C ��2

2

]}
1

�m�1

(
1 � �m�1

1 � �

)
�4.57b�

11 We emphasize that we are again looking for simple (exponential-type) bounds recognizing that
although these may not be the tightest bounds achievable over all ranges of their arguments, relative
to others previously reported in the literature [23], they are particularly useful in the context of
evaluating error probability performance over fading channels.
12 Note that (4.56) is valid for n odd as well as n even.
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The first term of (4.57a) or (4.57b) represents the upper bound on the first-order
Marcum Q-function, and thus, as would be expected, for m D 1 the remaining
terms in these equations evaluate to zero.

To obtain the lower bound on Qm�˛, ˇ� for 0C � � D ˛/ˇ < 1, we can again
use the lower bound on Q1�˛, ˇ� as given by (4.30b) in (4.54); however, the
procedure used to obtain the upper bound on In�z� that led to (4.56) would now
yield the lower bound

In�z� ½ e�z � ez

�
�4.58�

which for z ½ 0 is always less than or equal to zero and therefore not useful
relative to the simpler lower bound In�z� ½ 0, n ½ 1. Thus, to get a useful lower
bound on In�z�, we must employ an alternative form of its integral definition,
namely [20, Eq. (9.6.18)]

In�z� D �z/2�np
�
(
nC 1

2

) ∫ �

0
ez cos � sin2n � d� �4.59�

Once again replacing the exponential factor of the integrand by its minimum
value, e�z, we obtain the lower bound

In�z� ½ �z/2�np
�
(
nC 1

2

)e�z
∫ �

0
sin2n � d� �4.60�

which using [5, Eqs. (3.621.3) and (8.339.2)] yields

In�z� ½ zn

�2n�!!
e�z �4.61�

Finally, substituting (4.61) in (4.54) and using the lower bound on Q1�˛, ˇ� as
given by (4.30b) results after some simplification in

exp
[
� �ˇ C ˛�2

2

] m�1∑
nD0

�ˇ2/2�n

n!
� Qm�˛, ˇ�, 0 � ˛ < ˇ �4.62�

or equivalently,

exp
[
�ˇ

2�1 C ��2

2

] m�1∑
nD0

�ˇ2/2�n

n!
� Qm�ˇ�, ˇ�, 0 � � D ˛/ˇ < 1 �4.63�

Again the first term (corresponding to n D 0) is the lower bound on the first-
order Marcum Q-function, and as would be expected, for m D 1 there are no
other terms in the sum. Also, for � D 0, (4.63) becomes equal to the exact result
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for Qm�0, ˇ� as given by (4.46). Thus one would anticipate that the lower bound
would be asymptotically tight for small values of �.

For the parameter range 0 � � D ˇ/˛ < 1, we can obtain a lower bound on
Qm�˛, ˇ� by using the lower bound on the first-order Marcum Q-function as
in (4.31b) together with the lower bound on In�z� as given by (4.61), which
results in

1 � 1

2

{
exp

[
� �˛� ˇ�2

2

]
� exp

[
� �˛C ˇ�2

2

]}

C exp
[
� �˛C ˇ�2

2

] m�1∑
nD1

�ˇ2/2�n

n!
� Qm�˛, ˇ� �4.64a�

or equivalently,

1 � 1

2

{
exp

[
�˛

2�1 � ��2

2

]
� exp

[
�˛

2�1 C ��2

2

]}

C exp
[
�˛

2�1 � ��2

2

] m�1∑
nD1

�˛2�2/2�n

n!
� Qm�˛, ˛�� �4.64b�

Figures 4.2, 4.3, and 4.4 are plots of Q1�˛, ˇ�, Q2�˛, ˇ�, and Q4�˛, ˇ� versus ˇ
together with their upper and lower bounds, as determined from (4.57a) and (4.62)
for values of ˛ D 1, 5, and 10, respectively. Also illustrated are Chernoff-type
upper and lower bounds derived from Ref. 23.13 We observe that as anticipated
the upper bound of (4.57a), corresponding to ˇ > ˛ is asymptotically tight,
whereas for the same region, the lower bound as given by (4.62) is quite loose and
gets looser as ˛/ˇ increases. Fortunately (we shall see why in later chapters), the
reverse is true for the lower bound of (4.64a), corresponding to the region ˛ > ˇ
(i.e., it is always extremely tight). In the case of (4.64a), the lower bound was
examined both with and without the additional term involving the summation,
the latter being equivalent to (4.31b). Over the range of values considered, the
numerical results that take into account the presence of the extra series term are
indistinguishable (when plotted) from those without it. Hence we can conclude
that this series term can be dropped without losing tightness on the overall result.
This observation will be important in the application discussions that follow in
later chapters.

13 It is to be noted that whereas these upper and lower bounds of Ref. 24 are of interest on their own,
their regions of validity do not share a common boundary in the ˛ versus ˇ plane, thus prohibiting
their use in evaluating upper bounds on expressions containing the difference of two Marcum Q-
functions with reversed arguments [i.e., Qm�˛, ˇ�� Qm�ˇ, ˛�]. We shall see later in the book that
expressions of this type are characteristic of many types of error probability evaluations over fading
channels, and thus upper bounding such error probabilities requires an upper bound on the first
Q-function and a lower bound on the second, with a boundary between their regions of validity
given by ˛ D ˇ. The bounds presented in this chapter clearly satisfy this requirement, and thus with
regard to the primary subject matter of this book, they are the only bounds of interest.
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Figure 4.2. Plots of Q1�1, ˇ�, Q2�1, ˇ�, Q4�1, ˇ�, and their bounds versus ˇ: �, Exact; Ł, upper
bound (4.57a); ð, Chernoff upper bound from Ref. 23; �, Chernoff lower bound from Ref. 23;
4, lower bound of (4.62).

4.3 OTHER FUNCTIONS

Before going on to discuss how these alternative representations of the
Gaussian and Marcum Q-functions allow for unification and simplification of
the evaluation of average error probability performance of digital communication
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Figure 4.3. Plots of Q1�5, ˇ�, Q2�5, ˇ�, Q4�5, ˇ�, and their bounds versus ˇ. �, Exact; Ł, upper
bound of (4.57a); ð, Chernoff upper bound from Ref. 23; �, Chernoff lower bound from Ref. 23;
4, lower bound of (4.62).

over generalized fading channels, we consider alternative representations of yet
two other functions that can be derived from the results above and are also of
interest in characterizing this performance.

One function that occurs in the error probability analysis of conventional
noncoherent communication systems and also in certain differentially and



92 ALTERNATIVE REPRESENTATIONS OF CLASSICAL FUNCTIONS

0 2 4 6 8 10 12 14 16 18 20

Exponential Bounds on the First Order Marcum Q−function

b

0 2 4 6 8 10 12 14 16 18 20

Exponential Bounds on the Second Order Marcum Q−function

b

0 2 4 6 8 10 12 14 16 18 20

Exponential Bounds on the Fourth Order Marcum Q−function

b

Q
4(

10
,b

)

100

10−5

10−10

10−15

10−20

Q
1(

10
,b

)

100

10−5

10−10

10−15

10−20

Q
2(

10
,b

)

100

10−5

10−10

10−15

10−25

10−20

Figure 4.4. Plots of Q1�10, ˇ�, Q2�10, ˇ�, Q4�10, ˇ�, and their bounds versus ˇ. �, Exact;
Ł, upper bound of (4.57a); ð, Chernoff upper bound from Ref. 23; �, Chernoff lower bound
from Ref. 23; 4 lower bound of (4.62). Note that the lower bound given by (4.62) and the
Chernoff upper bound from Ref. 23 (m D 4) are out of the range of the plot.
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partially coherent communication systems is exp[��˛2 C ˇ2�/2]I0�˛ˇ�, where
typically, ˇ > ˛ ½ 0. Once again defining � D ˛/ˇ < 1 and using (4.12), we get
a form analogous to (4.16), namely,

exp
(

�˛
2 C ˇ2

2

)
I0�˛ˇ� D 1

2�

∫ �

��
exp

[
�ˇ

2

2
�1 C 2� sin � C �2�

]
d� �4.65�

A second function that is particularly useful in simplifying the error probability
analysis of conventional differentially coherent communication modulations (i.e.,
M-DPSK) transmitted on the AWGN and fading channels and again has the
desirable properties of finite integration limits and a Gaussian integrand was
developed by Pawula et al. [2] in the general context of studying the distribution
of the phase between two random vectors. In particular, for the M-DPSK
application, consider the geometry of Fig. 4.5, where s1 D Aej�1 and s2 D Aej�2

represent the signal vectors transmitted in successive symbol intervals and
V1 D R1ej�1 and V2 D R2ej�2 are the corresponding noisy observations. The
components of the zero-mean Gaussian noise vectors that produce V1 from s1

and V2 from s2 each have variance ,2 and are uncorrelated. Denoting the angle
between the signal vectors by  D ��2 � �1� modulo 2� and the corresponding
angle between the noisy observation vectors by  D ��2 � �1�modulo 2�, Pawula
et al. [2] defined the function

F� � D sin�� �  �

4�

∫ �/2

��/2

1

1 � cos�� �  � cos t

ð exp
{

� A2

2,2
[1 � cos�� �  � cos t]

}
dt �4.66�

which like a probability distribution function is monotonically increasing in
the interval �� �  � � except for a jump discontinuity at  D , where

A

A

N2

N1
R1

R2

∆Φ

y

f2

f1q1

q2

Figure 4.5. Geometry for angle between vectors perturbed by Gaussian noise.
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F���� F�C� D �1. For evaluating the symbol error probability of
M-DPSK conditioned on a fixed amplitude A, the special case of  D 0 is
of interest since the symmetry of the problem allows one arbitrarily to assume
transmission of a zero information phase (i.e., successive transmission of two
identical signal vectors). For this case, (4.66) simplifies to

F� � D � sin 

4�

∫ �/2

��/2

1

1 � cos cos t
exp

[
� A2

2,2
�1 � cos cos t�

]
dt �4.67�

Once again notice the similarity in form of (4.66) and (4.67) with the
representations of the Gaussian and Marcum Q-functions in (4.2) and (4.16),
respectively.

Using the approach taken in Ref. 18 to arrive at the alternative forms of the
first-order Marcum Q-function in (4.26) through (4.29), a somewhat simpler form
of (4.67) can be obtained as

F� � D � 1

4�

∫ �� 

���� �
exp

(
� A2

2,2

sin2  

1 C cos cos t

)
dt �4.68�

Here the trigonometric factor in the integrand of (4.67) is replaced by a different
integrand for the exponential as well as integration limits that depend on the
argument of the function.
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APPENDIX 4A: DERIVATION OF EQ. (4.2)

In this appendix we present two proofs of the alternative form of the Gaussian
Q-function given in Eq. (4.2). (A third proof can be obtained by applying the
asymptotic relation between the Marcum and Gaussian Q-functions as given in
footnote 4 of this chapter to the closed form of the integral in Nuttall [4, Eq. (74)]
in the limit as b approaches unity.)

Consider the integral in Gradshteyn and Ryzhik [5, Eq. (3.363.2)], namely,∫ 1

u

e�0x

x
p
x � u

dx D �p
u

erfc�
p
u0� �4A.1�
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Multiplying both sides of (4A.1) by 1
2e
0u and then letting u D y2 gives

1

2

∫ 1

y2

e�0xe0y2

x
√
x � y2

dx D �

2y
e0y

2
erfc�y

p
0� �4A.2�

Now let u D x � y2 in (4A.2). Then

1

2

∫ 1

0

e�0u

�uC y2�
p
u
du D �

2y
e0y

2
erfc�y

p
0� �4A.3�

Next, let u D t2, and du D 2t dt D 2
p
u dt. Thus (4A.3) becomes

∫ 1

0

e�0t2

t2 C y2
dt D �

2y
e0y

2
erfc�y

p
0� �4A.4�

This intermediate form of the desired result appears as Eq. (3.466.1) in Ref. 5
and also as Eq. (7.4.11) in Ref. 19. In addition, Pawula et al. [2, Eq. (34)] used
it to derive their expression [2, Eq. (71)] for the average symbol error probability
of M-PSK. The reason for mentioning this here is that Pawula et al. point out
clearly that for M D 2, [2, Eq. (71)] reduces to the well-known result for binary
PSK, which is expressed strictly in terms of the Gaussian Q-function. Since for
M D 2, [2, Eq. (71)] becomes the representation of Craig [1, Eq. (9)], as given
here in (4.2), it is worthy of note that as early as 1982, Pawula recognized the
existence of this alternative representation. We now proceed with the final steps
to arrive at (4.2).

Let y D 1 and 0 D z2 in (4A.4), which results in

2

�

∫ 1

0

e�z2�t2C1�

t2 C 1
dt D erfc�z� �4A.5�

Finally, let sin2 � D �t2 C 1��1, cos2 � D t2�t2 C 1��1, and dt D ��t2 C 1� d�, in
which case (4A.5) becomes the desired result

2

�

∫ �/2

0
exp

(
� z2

sin2 �

)
d� D erfc�z� �4A.6�

or equivalently, letting z D x/
p

2,

1

�

∫ �/2

0
exp

(
� x2

2 sin2 �

)
d� D Q�x� �4A.7�
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Another neat method of arriving at (4.2) is to start by extending the definition
in (4.1) (with some name changes in the variables) to two dimensions, namely,

Q�z� D

D1︷ ︸︸ ︷
2
∫ 1

0

1p
2�

exp
(

�y
2

2

)
dy
∫ 1

z

1p
2�

exp
(

�x
2

2

)
dx

D 1

�

∫ 1

z

∫ 1

0
exp

(
�x

2 C y2

2

)
dy dx �4A.8�

Now make the change of variables from rectangular to polar coordinates, that is,

x D r cos�

y D r sin�

dx dy D r dr d� �4A.9�

Thus

Q�z� D 1

�

∫ �/2

0

∫ 1

z/ cos�
r exp

(
� r

2

2

)
dr d�

D 1

�

∫ �/2

0
exp

(
� z2

2 cos2 �

)
d� �4A.10�

Finally, letting x D z and � D �/2 � �, we obtain (4.2).
The advantage of this proof over the former is that it can readily be extended to

arrive at (4.9) for Q2�z� as follows. Once again, start by extending the definition
to two dimensions, namely,

Q2�z� D
∫ 1

z

1p
2�

exp
(

�y
2

2

)
dy
∫ 1

z

1p
2�

exp
(

�x
2

2

)
dx

D 1

2�

∫ 1

z

∫ 1

z
exp

(
�x

2 C y2

2

)
dy dx �4A.11�

Making the same change of variables as in (4A.9) and dividing the rectangular
region of integration into two triangular parts gives

Q2�z� D 1

2�

∫ �/4

0

∫ 1

z/ sin�
r exp

(
� r

2

2

)
dr d� C 1

2�

∫ �/2

�/4

∫ 1

z/ cos�
r exp

(
� r

2

2

)
dr d�

D 1

2�

∫ �/4

0
exp

(
� z2

2 sin2 �

)
d� C 1

2�

∫ �/2

�/4
exp

(
� z2

2 cos2 �

)
d� �4A.12�

Letting x D z and also � D �/2 � � in the second integral, then combining the
two terms, we obtain (4.9).
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5

USEFUL EXPRESSIONS FOR
EVALUATING AVERAGE ERROR
PROBABILITY PERFORMANCE

As alluded to in Chapter 4, the alternative representations of the Gaussian
and Marcum Q-functions in the desired form are the key mathematical tools
in unifying evaluation of the average error probability performance of digital
communication systems over the generalized fading channel. Before going on
to present the specific details of such performances in the remaining parts
of the book, we digress in this chapter to derive a set of expressions which
can be looked upon as additional mathematical tools that will prove to be
particularly useful in carrying out these evaluations. Each of these expressions
will consist of an integral of the product of the Gaussian or Marcum Q-function
and an instantaneous SNR per bit PDF that is characteristic of the fading
channels discussed in Chapter 2 and will be specified either in closed form,
as a single integral with finite limits and an integrand composed of elementary
(e.g., trigonometric and exponential) functions, or as a single integral with finite
limits and an integrand consisting of a Gauss–Hermite quadrature integral [1,
Eq. (25.4.46)]. Since, as we shall see later, a great deal of commonality exists
among the performances of various modulation/detection schemes over a given
channel type, it will be convenient to have these expressions at one’s disposal
rather than have to rederive them in each instance. It is for this reason that we
have elected to include a mathematical chapter of this type prior to discussing
the practical applications of such tools.

5.1 INTEGRALS INVOLVING THE GAUSSIAN Q-FUNCTION

When characterizing the performance of coherent digital communications, the
generic form of the expression for the error probability involves the Gaussian
Q-function (and occasionally, the square of the Gaussian Q-function) with an
argument proportional to the square root of the instantaneous SNR of the
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received signal. In the case of communication over a slow-fading channel, the
instantaneous SNR per bit, � , is a time-invariant random variable with a PDF,
p����, defined by the type of fading discussed in Chapter 2. To compute the
average error probability1 one must evaluate an integral whose integrand consists
of the product of the above-mentioned Gaussian Q-function and fading PDF,
that is,2

I D
∫ 1

0
Q�a

p
��p���� d� �5.1�

where a is a constant that depends on the specific modulation/detection
combination. If one were to use the classical definition of the Gaussian Q-function
of (4.1) in (5.1) then, in general, evaluation of (5.1) is difficult because of the
presence of

p
� in the lower limit of the Gaussian Q-function integral. If, instead,

we were to use the desired form of the Gaussian Q-function of (4.2) in (5.1), the
result would be

I D
∫ 1

0

1




∫ 
/2

0
exp

(
� a2�

2 sin2 �

)
d� p���� d�

D 1




∫ 
/2

0

[∫ 1

0
exp

(
� a2�

2 sin2 �

)
p���� d�

]
d� �5.2�

where the inner integral (in brackets) is in the form of a Laplace transform with
respect to the variable � . Since the moment generating function (MGF)3 of � [i.e.,
M��s�

D ∫1
0 es�p���� d�] is the Laplace transform of p���� with the exponent

1 In this chapter we do not distinguish between bit and character (symbol) error probability.
2 This is the simplest form of integral required to evaluate average error probability performance
and is characteristic of single-channel reception, which we discuss in great detail in Chapter 8. More
complicated (e.g., multidimensional) forms of integrals are required to evaluate the performance of
multichannel reception (see Chapter 9). However, in a large majority of cases, the new representation
of the Gaussian Q-function allows these to be partitioned into a product of single-dimensional
integrals of the type in (5.1). Thus it is sufficient at this point to consider only integrals of this type.
3 For a real nonnegative continuous random variable X, most textbooks dealing with probability
define the moment generating function by MX�t� D EfetXg D ∫1

0 etxpX�x� dx, where t is a real
variable. Based on this definition the nth moment of X would then be obtained from

EfXng D dn

dtn
MX�t�

∣∣∣∣
tD0

Since our interest is primarily in the transform property of the moment generating function rather
than on its ability to generate the moments of the random variable, for convenience of notation
we replace the real variable t with the complex variable s, in which case the Laplace transform of
the PDF is given by MX��s� D ∫1

0 e�sxpX�x� dx. Also, if s is purely imaginary (i.e., s D jω) one
obtains the characteristic function, namely,

 X�ω� D EfejωXg D
∫ 1

0
ejωxpX�x� dx D MX�jω�
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reversed in sign, (5.2) can be rewritten as

I D 1




∫ 
/2

0
M�

(
� a2

2 sin2 �

)
d� �5.3�

Since tables of Laplace transforms are readily available, the desired form of
the Gaussian Q-function therefore allows evaluation of I in the simplest possible
way, in most cases resulting in a single integral on � (when the Laplace transform
is available in closed form). In the remainder of this section, we evaluate I of
(5.3) for the variety of fading channel PDF’s derived in Chapter 2.

5.1.1 Rayleigh Fading Channel

The simplest fading channel from the standpoint of analytical characterization
is the Rayleigh channel, whose instantaneous SNR per bit PDF is given by
[see (2.7)]

p���� D 1

�
exp

(
��
�

)
, � ½ 0 �5.4�

where � is the average SNR per bit. The Laplace transform of the Rayleigh PDF
can be evaluated in closed form with the result [2, Eq. (17)]

M���s� D 1

1 C s�
, s > 0 �5.5�

Substituting (5.5) into (5.3) gives

I
D Ir�a, �� D 1




∫ 
/2

0

(
1 C a2�

2 sin2 �

)�1

d� D 1

2


1 �

√
a2�/2

1 C a2�/2


 �5.6�

5.1.2 Nakagami-q (Hoyt) Fading Channel

For the Nakagami-q (Hoyt) distribution with instantaneous SNR per bit PDF
given by [see (2.11)]

p���� D 1 C q2

2q�
exp

[
� �1 C q2�2�

4q2�

]
I0

[
�1 � q4��

4q2�

]
, � ½ 0 �5.7�

with Laplace transform [2, Eq. (109)]

M���s� D
[

1 C 2s� C 4q2s2�2

�1 C q2�2

]�1/2

, s > 0 �5.8�
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the integral in (5.3) evaluates to

I
D Iq�a, q, �� D 1




∫ 
/2

0

[
1 C a2

sin2 �
� C q2a2�2

�1 C q2�2 sin4 �

]�1/2

d� �5.9�

5.1.3 Nakagami-n (Rice) Fading Channel

For the Nakagami-n (Rice) distribution with instantaneous SNR per bit PDF
given by [see (2.16)]

p���� D �1 C n2�e�n2

�
exp

[
� �1 C n2��

�

]
I0


2n

√
�1 C n2��

�


 , � ½ 0

�5.10�
with Laplace transform4

M���s� D 1 C n2

1 C n2 C s�
exp

(
� n2s�

1 C n2 C s�

)
, s > 0 �5.11�

the integral in (5.3) evaluates to

I
D In�a, n, ��

D 1




∫ 
/2

0

�1 C n2� sin2 �

�1 C n2� sin2 � C a2�/2
exp

[
� n2a2�/2

�1 C n2� sin2 � C a2�/2

]
d�,

s > 0 �5.12�

To obtain the desired result for the Rician fading channel, we merely substitute
n2 D K in (5.12), which results in

I
D In�a,K, ��

D 1




∫ 
/2

0

�1 CK� sin2 �

�1 CK� sin2 � C a2�/2
exp

[
� Ka2�/2

�1 CK� sin2 � C a2�/2

]
d�,

s > 0 �5.13�

5.1.4 Nakagami-m Fading Channel

For the Nakagami-m distribution with instantaneous SNR per bit PDF given by
[see (2.21)]

p���� D mm�m�1

�m�m�
exp

(
�m�
�

)
, � ½ 0 �5.14�

4 This particular Laplace transform is not tabulated directly in Ref. 2 but can be evaluated from a
definite integral in the same reference, in particular, Eq. (6.631.4).
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with Laplace transform [2, Eq. (3)]

M���s� D
(

1 C s�

m

)�m
, s > 0 �5.15�

the integral in (5.3) evaluates to

I
D Im�a, m, �� D 1




∫ 
/2

0

(
1 C a2�

2m sin2 �

)�m
d� �5.16�

which can be evaluated in closed form using the definite integral derived in
Appendix 5A, namely,5

1




∫ 
/2

0

(
1 C c

sin2 �

)�m
d�

1

2

[
1 � !2�c�

m�1∑
kD0

(
2k
k

)(
1 � !�c�

4

)k]
, !�c�

D
√

c

1 C c
,

D




m integer �5.17a�

1

2
p



p
c

�1 C c�mC1/2


(
mC 1

2

)
�m C 1�

2F1

(
1, m C 1

2
;m C 1;

1

1 C c

)
,

m noninteger �5.17b�

where 2F1�Ð, Ð; Ð; Ð� is the Gauss hypergeometric function [1, Eq. (15.1.1)]. Thus,
using (5.17) in (5.16) gives

Im�a, m, ��

1

2

[
1 � !

(
a2�

2m

) m�1∑
kD0

(
2k
k

)(
1 � !2�a2�/2m�

4

)k]
,

D




!

(
a2�

2m

)
D
√

a2�/2

m C a2�/2
, m integer �5.18a�

1

2
p



√
a2�/2m

�1 C a2�/2m�mC1/2


(
m C 1

2

)
�m C 1�

2F1

(
1, m C 1

2
;m C 1;

m

m C a2�/2

)
,

m noninteger �5.18b�

Note that for m D 1, (5.18a) reduces to the result for the Rayleigh case as given
by (5.6).

5 This definite integral appears not to be available in standard integral tables such as Ref. 2.
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5.1.5 Log-Normal Shadowing Channel
For the log-normal shadowing distribution with instantaneous SNR per bit PDF
given by [see (2.25)]

p���� D 10/ ln 10p
2
%2�

exp
[
� �10 log10 � � !�2

2%2

]
, � ½ 0

!�in dB� D 10 log10 �

%�in dB� D logarithmic standard deviation of shadowing �5.19�

the Laplace transform cannot be obtained in closed form. Instead, we substitute
(5.19) into (5.2) directly and then make a change of variables, namely, x D
�10 log10 � � !�/

p
2%, which results in

I
D Iln�a, !, %�

D 1




∫ 
/2

0

[
1p



∫ 1

�1
exp

(
� a2

2 sin2 �
Ð 10�x

p
2%C!�/10

)
e�x2

dx

]
d� �5.20�

The inner integral can be efficiently computed using a Gauss–Hermite quadrature
integration [1, Eq. (25.4.46)], that is,

1p



∫ 1

�1
exp

(
� a2

2 sin2 �
Ð 10�x

p
2%C!�/10

)
e�x2

dx

D 1p



n∑
iD1

wi exp
(

� a2

2 sin2 �
Ð 10�xi

p
2%C!�/10

)
�5.21�

where fxig, i D 1, 2, . . . , n, are the zeros of the nth-order Hermite polynomial
Hen�x� and fwig, i D 1, 2, . . . , n, are weight factors tabulated in Table 25.10 of
Ref. 1 for values of n from 2 to 20. Since the xi’s and wi’s are independent of �,
substituting (5.21) in (5.20) and making use of the desired form of the Gaussian
Q-function as given in (4.2), we get

Iln�a, !, %� D 1p



n∑
iD1

wiQ
(
a
√

10�xi
p

2%C!�/10
)

�5.22�

where the value of n is chosen depending on the desired degree of accuracy.

5.1.6 Composite Log-Normal Shadowing/Nakagami-m
Fading Channel
The class of composite shadowing–fading channels is discussed in Section 2.2.3.
A popular example of this class that is characteristic of congested downtown areas
with a large number of slow-moving pedestrians and vehicles is the composite
log-normal shadowing/Nakagami-m fading channel. For this channel, p���� is
obtained by averaging the instantaneous Nakagami-m fading average power
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(treated now as a random variable) over the conditional PDF of the log-normal
shadowing, which from (5.14) and (5.19) results in the composite gamma/log-
normal PDF

p���� D
∫ 1

0

mm�m�1

)m�m�
exp

(
�m�
)

)

ð
{

10/ ln 10p
2
%2)

exp
[
� �10 log10)� !�2

2%2

]}
d), � ½ 0 �5.23�

Since the Laplace transform of the Nakagami-m fading portion of (5.23) is known
in closed form [see (5.15)], the Laplace transform of the composite PDF in (5.23)
can be obtained as the single integral

M���s� D
∫ 1

0

(
1 C s)

m

)�m

ð
{

10/ ln 10p
2
%2)

exp
[
� �10 log10)� !�2

2%2

]}
d), s > 0 �5.24�

Substituting (5.24) into (5.2) and then making a change of variables, namely,
x D �10 log10)� !�/

p
2%, results in

I
D Ig/ln�a, !, %,m�

D 1




∫ 
/2

0

[
1p



∫ 1

�1

(
1 C a2

2m sin2 �
10�x

p
2%C!�/10

)�m
e�x2

dx

]
d� �5.25�

Once again the inner integral can be computed efficiently using a Gauss–Hermite
quadrature integration [1, Eq. (25.4.46)], that is,

1p



∫ 1

�1

(
1 C a2

2m sin2 �
Ð 10�x

p
2%C!�/10

)�m
e�x2

dx

D 1p



n∑
iD1

wi

(
1 C a2

2m sin2 �
Ð 10�xi

p
2%C!�/10

)�m
�5.26�

Since, as mentioned previously, the xi’s and wi’s are independent of �, then
substituting (5.26) in (5.25) and making use of the closed-form integral in (5.17a),
we get

Ig/ln�a, !, %,m� D 1

2
p



n∑
iD1

wi

[
1 � !�ci�

m�1∑
kD0

(
2k
k

)(
1 � !2�ci�

4

)k]
,

!�ci�
D
√

ci
1 C ci

, ci
D a2

2m
Ð 10�xi

p
2%C!�/10 �5.27�
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Before moving on to a consideration of integrals involving the Marcum Q-
function, we give brief attention to integrals involving the square of the Gaussian
Q-function, since these will be found useful when we discuss evaluating average
symbol error probability of coherently detected square QAM over generalized
fading channels. Analogous to (5.1), then, it is of interest to evaluate

I D
∫ 1

0
Q2�a

p
��p���� d� �5.28�

for the various fading channel PDFs. Using the classical definition of the Gaussian
Q-function, such integrals would be extremely difficult to obtain in closed form
since Q2�a

p
�� would be written as a double integral each of which has

p
� in its

lower limit. However, in view of the similarity between the desired forms of the
Gaussian Q-function and the square of the Gaussian Q-function [compare (4.2)
and (4.9)], in principal it becomes a simple matter to evaluate I of (5.28) — in
particular, one merely need replace the 
/2 upper limit in the integration on � in
the evaluations of I of (5.1) with 
/4 to arrive at the desired results. Although this
may seem like a simple generalization, depending on the channel, the foregoing
replacement of the upper limit can lead to closed-form expressions that are
significantly more complicated. For the Rayleigh fading channel, the analogous
result to (5.6) is straightforward in view of the fact that the indefinite integral
form of this equation has a closed-form result [see (5A.11) in Appendix 5A].
Thus, using (5A.13), we arrive at

I
D I�2�r �a, �� D 1




∫ 
/4

0

(
1 C a2�

2 sin2 �

)�1

d�

D 1

4


1 �

√
a2�/2

1 C a2�/2


 4



tan�1

√
1 C a2�/2

a2�/2




 �5.29�

For the Nakagami-m channel with m integer, the result is considerably more
complex than (5.18a). However, using (5A.17) with M D 4, we obtain

I
D I�2�m �a, m, ��

D 1




∫ 
/4

0

(
1 C a2�

2m sin2 �

)�m
d�

D 1

4
� 1



˛

{(

2

� tan�1 ˛
) m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

� sin�tan�1 ˛�
m�1∑
kD1

k∑
iD1

Tik
�1 C c�k

[cos�tan�1 ˛�]2�k�i�C1

}
�5.30�
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where

c D a2�

2m
,

˛
D ! D

√
c

1 C c
D
√

a2�/2

mC a2�/2
�5.31�

and

Tik
D

(
2k
k

)
(

2�k � i�
k � i

)
4i[2�k � i�C 1]

�5.32�

5.2 INTEGRALS INVOLVING THE MARCUM Q-FUNCTION

When characterizing the performance of differentially coherent and noncoherent
digital communications, the generic form of the expression for the error
probability typically involves the generalized Marcum Q-function, both of whose
arguments are proportional to the square root of the instantaneous SNR of the
received signal. To compute the average error probability over a slow-fading
channel, one must evaluate an integral whose integrand consists of the product
of the above-mentioned Marcum Q-function and the PDF of the instantaneous
SNR per bit. Thus, analogous to (5.1), we wish to investigate integrals having
the generic form

I D
∫ 1

0
Ql�a

p
�, b

p
��p���� d� �5.33�

where a and b are constants that depend on the specific modulation/detection
combination, l the order of the Marcum Q-function, and p���� again depends on
the type of fading, as discussed in Chapter 2. As was true for the Gaussian
Q-function, if one were to use the classical definition of the Marcum Q-
function given by Eq. (4.33) in (5.33), then, in general, evaluation of (5.33)
is difficult because of the presence of

p
� in the lower limit of the Marcum

Q-function integral. If, instead, we were to use the desired form of the
Marcum Q-function of (4.42) or (4.50) in (5.33), the result of this substitution
would be

I D 1

2


∫ 


�


.��l�1�fcos[�l� 1��� C 
/2�] � . cos[l�� C 
/2�]g
1 C 2. sin � C .2

ð
{∫ 1

0
exp

[
�b

2�

2
�1 C 2. sin � C .2�

]
p���� d�

}
d�,

0C � . D a/b < 1 �5.34�
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or

I D 1 � 1

2


∫ 


�


.lfcos[l�� C 
/2�] � . cos[�l� 1��� C 
/2�]g
1 C 2. sin � C .2

ð
{∫ 1

0
exp

[
�a

2�

2
�1 C 2. sin � C .2�

]
p���� d�

}
d�,

0C � . D b/a < 1 �5.35�

where the inner integral is again in the form of a Laplace transform with respect
to the variable � . That is, if, as in Section 5.1, M��s�

D ∫1
0 es�p���� d� denotes

the MGF of � , (5.34) and (5.35) can be rewritten as

I D 1

2


∫ 


�


.��l�1�fcos[�l� 1��� C 
/2�] � . cos[l�� C 
/2�]g
1 C 2. sin � C .2

ðM�

[
�b

2

2
�1 C 2. sin � C .2�

]
d�, 0C � . D a/b < 1 �5.36�

or

I D 1 � 1

2


∫ 


�


.lfcos[l�� C 
/2�] � . cos[�l� 1��� C 
/2�]g
1 C 2. sin � C .2

ðM�

[
�a

2

2
�1 C 2. sin � C .2�

]
d�, 0C � . D b/a < 1 �5.37�

In the remainder of this section, we evaluate I of (5.36) for the variety of
fading channel PDFs derived in Chapter 2, where, for simplicity of notation, we
introduce the functions

g��; .�
D 1 C 2. sin � C .2

h��; ., l�
D .��l�1�

{
cos
[
�l� 1�

(
� C 


2

)]
� . cos

[
l
(
� C 


2

)]}
�5.38�

Also, the corresponding results for I of (5.37) can then be obtained by inspection.

5.2.1 Rayleigh Fading Channel

For the Rayleigh channel with a Laplace transform of the instantaneous SNR per
bit PDF given by (5.5), the integral I of (5.36) [or equivalently, (5.33) for a < b]
evaluates to

I
D Jr�b, ., �, l� D 1

2


∫ 


�


h��; ., l�

g��; .�

[
1 C b2�

2
g��; .�

]�1

d� �5.39�
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5.2.2 Nakagami-q (Hoyt) Fading Channel

For the Nakagami-q (Hoyt) distribution with a Laplace transform of the
instantaneous SNR per bit PDF given by (5.7), the integral I of (5.36) evaluates to

I
D Jq�b, ., q, �, l�

D 1

2


∫ 


�


h��; ., l�

g��; .�

[
1 C b2�g��; .�C q2b4�2g2��; .�

�1 C q2�2

]�1/2

d� �5.40�

5.2.3 Nakagami-n (Rice) Fading Channel

For the Nakagami-n (Rice) distribution with a Laplace transform of the
instantaneous SNR per bit PDF given by (5.11), the integral I of (5.36)
evaluates to

I
D Jn�b, ., n, �, l� D 1

2


∫ 


�


h��; ., l�

g��; .�

ð
[

1 C n2

1 C n2 C �b2�/2�g��; .�
exp

(
� n2�b2�/2�g��; .�

1 C n2 C �b2�/2�g��; .�

)]
d� �5.41�

or equivalently, in terms of the Rician parameter

I
D Jn�b, .,K, �, l� D 1

2


∫ 


�


h��; ., l�

g��; .�

ð
[

1 CK

1 CKC �b2�/2�g��; .�
exp

(
� �Kb2�/2�g��; .�

1 CKC �b2�/2�g��; .�

)]
d� �5.42�

5.2.4 Nakagami-m Fading Channel

For the Nakagami-m distribution with a Laplace transform of the instantaneous
SNR per bit PDF given by (5.15), the integral I of (5.36) evaluates to

I
D Jm�b, ., m, �, l� D 1

2


∫ 


�


h��; ., l�

g��; .�

(
1 C b2�

2m
g��; .�

)�m
d� �5.43�

which reduces to (5.39) for the Rayleigh �m D 1� case.

5.2.5 Log-Normal Shadowing Channel

As discussed in Section 5.1.5, the Laplace transform of the instantaneous SNR
per bit PDF for the log-normal shadowing distribution cannot be obtained in
closed form. Thus, we proceed as before and substitute (5.19) directly into (5.34)
and then make a change of variables, namely, x D �10 log10 � � !�/

p
2%, which
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results in

I
D Jln�b, ., !, %, l� D 1

2


∫ 


�


h��; ., l�

g��; .�

ð
[

1p



∫ 1

�1
exp

(
�b

2g��; .�

2
Ð 10�x

p
2%C!�/10

)
e�x2

dx

]
d� �5.44�

The inner integral can be efficiently computed using a Gauss–Hermite quadrature
integration [1, Eq. (25.4.46)], that is,

1p



∫ 1

�1
exp

(
�b

2g��; .�

2
Ð 10�x

p
2%C!�/10

)
e�x2

dx

D 1p



n∑
iD1

wi exp
(

�b
2g��; .�

2
Ð 10�xi

p
2%C!�/10

)
�5.45�

Substituting (5.45) into (5.44) and making use of the desired from of the
generalized Marcum Q-function as given in (4.42), we get

Jln�b, ., !, %, l� D 1p



n∑
iD1

wiQl
(
b.
√

10�xi
p

2%C!�/10, b
√

10�xi
p

2%C!�/10
)
�5.46�

5.2.6 Composite Log-Normal Shadowing/Nakagami-m
Fading Channel

Finally, we consider the composite log-normal shadowing/Nakagami-m fading
channel treated in Section 5.1.6. For this channel, we again make use of the
single integral form of the Laplace transform of p���� as given in (5.24),
which upon substitution into (5.36) together with the change of variables
x D �10 log10)� !�/

p
2% results in

I
D Jg/ln�b, ., !, %,m, l�

D 1

2


∫ 


�


h��; ., l�

g��; .�

[
1p



∫ 1

�1

(
1 C b2g��; .�

2m
Ð 10�x

p
2%C!�/10

)�m
e�x2

dx

]
d�

�5.47�
Once again the inner integral can be computed efficiently using a Gauss–Hermite
quadrature integration [1, Eq. (25.4.46)], that is,

1p



∫ 1

�1

(
1 C b2g��; .�

2m
Ð 10�x

p
2%C!�/10

)�m
e�x2

dx

D 1p



n∑
iD1

wi

(
1 C b2g��; .�

2m
Ð 10�xi

p
2%C!�/10

)�m
�5.48�
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Substituting (5.48) in (5.47) and making use of the closed-form integral in (5.17),
we get

Jg/ln�b, ., !, %,m, l� D 1p



n∑
iD1

wi

[
1

2


∫ 


�


h��; ., l�

g��; .�

ð
(

1 C b2g��; .�

2m
Ð 10�xi

p
2%C!�/10

)�m
d�

]
�5.49�

Unfortunately, because a closed-form result was not obtainable for (5.43), we
cannot similarly obtain a closed-form result for (5.49).

5.3 INTEGRALS INVOLVING THE INCOMPLETE GAMMA FUNCTION

In the preceding section, we considered integrals involving the Marcum Q-
function Qm�˛, ˇ�, 0 < ˛ < ˇ, where the desired form of this function as given
by (4.42) was used to simplify the evaluations. A special case of the Marcum
Q-function corresponding to its first argument equal to zero is expressible as
a ratio of complementary Gauss incomplete gamma functions [see Eq, (4.44)].
As we shall see in Chapter 8, integrals involving such a ratio are appropriate
to the unification of the error probability performance of coherent, differentially
coherent, and noncoherent binary PSK and FSK systems over generalized fading
channels. However, since the desired form of the Marcum Q-function of (4.42)
requires that the first argument be greater than zero, the specific results derived
in Section 5.2 cannot be used in this instance. Fortunately, however, the special
case Qm�0, ˇ� can be put in a separate desired form6 as given by (4.45). In this
section we derive the analogous results to those in Section 5.2 using this special
desired form of Qm�0, ˇ�.

Based on the discussion above, then, we are interested in evaluating

I D
∫ 1

0
Ql�0, b

p
��p���� d� D

∫ 1

0

�l, b2�/2�

�l�
p���� d� �5.50�

for the various characterizations of p���� or substituting the form of (4.45) in
(5.50), we are equivalently interested in evaluating

I D
∫ 1

0

�b
p
��2l

2l�1�l�

∫ 
/2

0

cos �

�sin ��1C2l
exp

(
� b2�

2 sin2 �

)
d�p���� d� �5.51�

6 The desired form of the integral for Qm�0, ˇ� is slightly less desirable than that for Qm�˛, ˇ�, 0 <
˛ < ˇ, in that the integrand contains a term ˇ2m in addition to the usual Gaussian dependence on ˇ.
Nevertheless, it is still useful in carrying out integrals involving the statistics of the fading channel
by using Laplace transform manipulations.
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Reversing the order of integration and grouping together like variables, we can
rewrite (5.51) as

I D b2l

2l�1�l�

∫ 
/2

0

cos �

�sin ��1C2l

∫ 1

0
�l exp

(
� b2�

2 sin2 �

)
p���� d� d� �5.52�

where the integral on � is in the form of a Laplace transform that is similar to
but slightly more complicated than the MGF of � .

5.3.1 Rayleigh Fading Channel

Substituting (5.4) in (5.52) and making use of Eq. (3.381.4) of Ref. 2, we obtain

I
D Jr�b, �, l� D 2l

(
b2�

2

)l ∫ 
/2

0

cos �

�sin ��1C2l

(
1 C b2�

2 sin2 �

)�l�1

d� �5.53�

Making the change of variables t D �1 C b2�/2 sin2 ���1, after some manipulation
we arrive at the equivalent compact result

Jr�b, �, l� D l
∫ �1Cb2�/2��1

0
�1 � t�l�1dt D lB�1Cb2�/2��1�1, l� �5.54�

where

Bx�p, q�
D
∫ x

0
tp�1�1 � t�q�1 dt �5.55�

is the incomplete beta function [2, Eq. (8.391)].

5.3.2 Nakagami-q (Hoyt) Fading Channel

Substituting (5.7) in (5.52) and making use of the Laplace transform found
in Erdelyi et al. [3, Eq. (8)], recognizing the relation between the associated
Legendre function and the Gaussian hypergeometric function [2, Eq. (8.771.1)],
we obtain

I
D Jq�b, q, �, l� D l

(
b2�

2

)l(
1 C q2

q

)∫ 
/2

0

cos �

�sin ��1C2l

ð
[(

b2�

2 sin2 �
C �1 C q2�2

4q2

)2

�
(

1 � q4

4q2

)2
]�[�lC1�/2]

ð 2F1


�l, lC 1; 1;

1

2
� 1

2

b2�

2 sin2 �
C �1 C q2�2

4q2√(
b2�

2 sin2 �
C �1 C q2�2

4q2

)2

�
(

1 � q4

4q2

)2


d�
�5.56�
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5.3.3 Nakagami-n (Rice) Fading Channel

Substituting (5.11) in (5.52) and making use of the Laplace transform found in
Endelyi et al. [3, Eq. (20)], then recognizing the relation between the Whittaker
function and the confluent hypergeometric function [2, Eq. (9.220.2)], we obtain

I
D Jn�b, n, �, l�

D 2l
(
b2�

2

)l
�1 C n2�e�n2

∫ 
/2

0

cos �

�sin ��1C2l

(
1 C n2 C b2�

2 sin2 �

)�l�1

ð 1F1

(
1 C l, 1;

n2�1 C n2�

1 C n2 C b2�/2 sin2 �

)
d� �5.57�

or equivalently in terms of the Rician parameter,

I
D Jn�b, K, �, l�

D 2l
(
b2�

2

)l
�1 CK�e�K

∫ 
/2

0

cos �

�sin ��1C2l

(
1 CKC b2�

2 sin2 �

)�l�1

ð 1F1

(
1 C l; 1;

K�1 CK�

1 CKC b2�/2 sin2 �

)
d� �5.58�

where 1F1�Ð; Ð; Ð� is the confluent hypergeometric function [2, Sec. 9.20].

5.3.4 Nakagami-m Fading Channel

Substituting (5.15) in (5.52) and making use of Eq. (3.381.4) of Ref. 2, we obtain

I
DJm�b, m, �, l�D 2

B�m, l�

(
b2�

2m

)l∫ 
/2

0

cos �

�sin ��1C2l

(
1C b2�

2m sin2 �

)�l�m
d�

�5.59�
where

B�m, l� D B�l, m�
D �m��l�

�m C l�
�5.60�

is the beta function [2, Eq. (8.384.1)]. Making the change of variables t D
�1 C b2�/2m sin2 ���1, then after some manipulation we arrive at the equivalent
compact result

Jm�b, �, l� D 1

B�m, l�

∫ �1Cb2�/2m��1

0
tm�1�1 � t�l�1dt D B�1Cb2�/2m��1�m, l�

B�m, l�
�5.61�
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or in terms of the incomplete beta function ratio [2, Eq. (8.392)],

Ix�p, q�
D Bx�p, q�

B�p, q�
�5.62�

the still simpler form

Jm�b, �, l� D I�1Cb2�/2m��1�m, l� �5.63�

For the Rayleigh �m D 1� case, (5.61) clearly reduces to (5.54) since
B�1, l� D l�1.

5.3.5 Log-Normal Shadowing Channel

Substituting the PDF of (5.19) into (5.52) and making the change of variables,
x D �10 log10 � � !�/

p
2% results after much simplification in

I
D Jln�b, !, %, l� D 1p


�l�

n∑
iD1



(
l,
b2

2
Ð 10�xi

p
2%C!�/10

)
�5.64�

where again fxig, i D 1, 2, . . . , n, are the zeros of the nth-order Hermite
polynomial Hen�x�, as discussed in Section 5.1.5.

5.3.6 Composite Log-Normal Shadowing/Nakagami-m
Fading Channel

Finally, for the composite log-normal shadowing/Nakagami-m fading channel
treated in Section 5.1.6, we substitute the PDF of (5.23) into (5.52) together with
the change of variables x D �10 log10)� !�/

p
2%, resulting in

I
D Jg/ln�b, !, %,m, l� D 1p




n∑
iD1

wi I[1C�b2/2m�Ð10�xi
p

2%C!�/10]�1�m, l� �5.65�

where now in addition fwig, i D 1, 2, . . . , n, are the Gauss–quadrature weights
as discussed in Section 5.1.5.

5.4 INTEGRALS INVOLVING OTHER FUNCTIONS

When studying the error probability performance of certain modulation schemes
over generalized fading channels, we shall have reason to evaluate integrals
involving special functions other than the three considered previously in this
chapter. In this section we consider integrals involving two such special functions
corresponding to well-known modulation schemes.
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5.4.1 M-PSK Error Probability Integral

When studying the average error probability performance of M-PSK over
generalized fading channels, we shall have reason to evaluate integrals of the
form

K D
∫ 1

0

1




∫ �M�1�
/M

0
exp

(
� a2�

2 sin2 �

)
d�p���� d�

D 1




∫ �M�1�
/M

0

[∫ 1

0
exp

(
� a2�

2 sin2 �

)
p���� d�

]
d� �5.66�

where specifically a2 D 2 sin2 
/M. The integral in (5.66) is a generalization
of the one in (5.2) in the sense that the latter is a special case of the form
corresponding to M D 2. Thus (5.66) follows directly from (5.3) and is given by

K D 1




∫ �M�1�
/M

0
M�

(
� a2

2 sin2 �

)
d� �5.67�

Although this may seem like a simple generalization, unfortunately the replace-
ment of the 
/2 upper limit in (5.3) by �M� 1�
/M results wherever possible
in closed-form expressions for (5.67) that, in general, are significantly more
complicated. Without further ado, we present the results for the evaluation of
(5.67) corresponding to the various types of fading channels, where closed-form
results can be obtained. The results corresponding to the remainder of the fading
channels can be obtained by the same upper limit replacement as mentioned
above in the corresponding expressions of Section 5.1.

5.4.1.1 Rayleigh Fading Channel. Substituting (5.5) in (5.67) and making
use of (5A.15), we obtain

K
D Kr�a, �,M� D 1




∫ �M�1�
/M

0

(
1 C a2�

2 sin2 �

)�1

d�

D M� 1

M


1 �

√
a2�/2

1 C a2�/2

M

�M� 1�






2
C tan�1



√

a2�/2

1 C a2�/2
cot




M








�5.68�
which reduces to (5.6) when M D 2.

5.4.1.2 Nakagami-m Fading Channel. Here we need to substitute the
Laplace transform of (5.15) into (5.67). After this is done, then making use
of (5A.17), we obtain
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K
D Km�a, �, m,M�

D 1




∫ �M�1�
/M

0

(
1 C a2�

2m sin2 �

)�m
d�

D M� 1

M
� 1




√
a2�/2m

1 C a2�/2m

{(

2

C tan�1 ˛
) m�1∑
kD0

(
2k
k

)
1

[4�1 C a2�/2m�]k

C sin�tan�1 ˛�
m�1∑
kD1

k∑
iD1

Tik
�1 C a2�/2m�k

[cos�tan�1 ˛�]2�k�i�C1

}
�5.69�

where

˛
D
√

a2�/2m

1 C a2�/2m
cot




M
�5.70�

and Tik is again given by (5.32).

5.4.2 Arbitrary Two-Dimensional Signal Constellation Error
Probability Integral

As a generalization of QAM, Craig [4] showed that the evaluation of the average
error probability performance of an arbitrary two-dimensional (2-D) signal
constellation with polygon-shaped decision regions over the AWGN channel can
be expressed as a summation of integrals of the form7

Pi D 1

2


∫ �i

0
exp

[
� a2

i sin2  i
2 sin2�� C  i�

]
d� �5.71�

where a2
i is a signal-to-noise ratio parameter associated with the ith signal in

the set and �i and  i are angles associated with the correct decision region
corresponding to that signal. Thus, when studying the average error probability
performance of these 2-D signal constellations over generalized fading channels,
we shall have reason to evaluate integrals of the form

L D
∫ 1

0

1

2


∫ �i

0
exp

[
� a2

i � sin2  i
2 sin2�� C  i�

]
d�p���� d�

D 1

2


∫ �i

0

{∫ 1

0
exp

[
� a2

i � sin2  i
2 sin2�� C  i�

]
p���� d�

}
d� �5.72�

7 Equation (5.71) appears as Eq. (13) in Ref. 4 but with an error of a factor of 1
2 [i.e., the factor 1/


that premultiplies the integral there should be 1/2
, as shown in (5.71)].
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By comparison with (5.66), we observe that (5.72) can be expressed in the form
of (5.67), namely,

L D 1

2


∫ �i

0
M�

[
� a2

i sin2  i
2 sin2�� C  i�

]
d� �5.73�

where again M��s� is the MGF of � . Evaluation of the Laplace transform
integrand in (5.73) for the various types of fading channels follows exactly along
the lines of the previous results and hence is not repeated here. Unfortunately,
however, for arbitrary �i it is not always possible now to obtain closed-form
expressions for L even when the integrand is obtainable in closed form. However,
for the Rayleigh channel, using (5.5) for M���s� and the indefinite form of the
integral in (5A.11), it is straightforward to obtain the following closed-form
solution:

L
D Lr�ai, �, �i,  i�

D 1

4
� ci

2


√
1

ci�1 C ci�
tan�1

(√
1 C ci
ci

tan �

) ∣∣∣∣
�i� i

� i

D 1

4
� ci

2


√
1

ci�1 C ci�

{
tan�1

[√
1 C ci
ci

tan��i �  i�

]

C tan�1

(√
1 C ci
ci

tan i

)}
�5.74�

where

ci
D a2

i �

2
sin2  i �5.75�

For Nakagami-m fading, using the Laplace transform in (5.15), we obtain

L
D Lm�ai, �, m, �i,  i�

D 1

2


[∫ �i� i

0

(
sin2 6

sin2 6 C ci/m

)m
d6 C

∫  i

0

(
sin2 6

sin2 6 C ci/m

)m
d6

]
�5.76�

with ci still as defined in (5.75). If, depending on the signal constellation, �i and
�i �  i both turn out to be either in the form �M� 1�
/M or 
/M for M D 2m,
m integer, the closed-form results of (5A.16) and (5A.21) can be used to obtain
(5.76) in closed form. Otherwise, the single-integral form of (5.76) must be used.

The results for the other fading channel types will, in general, be expressed
as a single integral with finite limits �0, �i� in accordance with (5.73) and the
various closed-form expressions previously obtained for M���s�.
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5.4.3 Integer Powers of the Gaussian Q-Function

Associated with the study of the average error probability performance of
coherent communication systems using differentially encoded QPSK and M-ary
orthogonal signals in the presence of slow fading, we shall have need to evaluate
integrals of the form

Ik
D
∫ 1

0
Qk�a

p
��p���� d� �5.77�

where k is assumed to be integer. In general, for arbitrary integer values of k, Ik
cannot be obtained in the desired form. However, certain special cases, namely,
k D 1, 2, 3, 4, do exist either in closed form or in the form of a single integral
with finite limits and an integrand composed of elementary functions. For k D 1,
the results were presented in Section 5.1. The specific results corresponding to
k D 2, 3, 4 for Rayleigh and Nakagami-m fading are presented in what follows.

5.4.3.1 Rayleigh Fading Channel. To evaluate (5.77) for k D 2, we substi-
tute the alternative form of Q2�x� of (4.9) into this equation, resulting in

I2 D 1




∫ 
/4

0
M�

(
� a2

2 sin2 �

)
d� �5.78�

which is identical to (5.3) except that the upper limit is now 
/4 rather than 
/2.
Using (5.5) for M���s�, (5.78) becomes [analogous to (5.6)]

I2
D I2,r�a, �� D 1




∫ 
/4

0

(
1 C a2�

2 sin2 �

)�1

d�

D 1




∫ 
/4

0

sin2 �

sin2 � C a2�/2
d� �5.79�

The integral in (5.79) is evaluated in closed form in Appendix 5A. In particular,
using (5A.13), we obtain

I2,r�a, �� D 1

4

[
1 �

√
c

1 C c

(
4



tan�1

√
1 C c

c

)]
, c

D a2�

2
�5.80�

For k D 3, an expression for Q3�x� in the form of (4.2) and (4.9) has not been
found. Nevertheless, it is still possible to evaluate I3 in the single-integral form
referred to above. In particular, writing Q3�x� as the product Q�x�Q2�x� and using
(4.2) and (4.9) in (5.77), the following sequence of steps occurs.

I3
D I3,r�a, �� D 1




∫ 
/4

0

1




∫ 
/2

0

∫ 1

0
exp

[
a2�

2

(
1

sin2 �
C 1

sin2 6

)]
p���� d� d� d6

D 1




∫ 
/4

0

1




∫ 
/2

0
P�

[
a2

2

(
1

sin2 �
C 1

sin2 6

)]
d� d6
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D 1




∫ 
/4

0

1




∫ 
/2

0

(
1 C a2�

2 sin2 �
C a2�

2 sin2 6

)�1

d� d6

D 1




∫ 
/4

0

2

a2�
c�6�

[
1




∫ 
/2

0

sin2 �

sin2 � C c�6�
d�

]
d6,

c�6�
D a2�

2

(
sin2 6

sin2 6 C a2�/2

)
�5.81�

Using the closed-form result from (5A.9) for the inner integral (in brackets), we
get the desired result

I3,r�a, �� D �a2���1 1




∫ 
/4

0
c�6�

[
1 �

√
c�6�

1 C c�6�

]
d6 �5.82�

It is also possible to obtain a single-integral form for I4 by writing Q4�x�
as the product Q2�x�Q2�x� and then using (4.9) twice in (5.77) followed by the
closed-form expression in (5.80) to evaluate the inner integral. The steps leading
to the result parallel those in (5.81) and produce

I4
D I4,r�a, �� D 1




∫ 
/4

0

2

a2�
c�6�

[
1




∫ 
/4

0

sin2 �

sin2 � C c�6�
d�

]
d6 �5.83�

Finally, using Eq. (5A.13) for the integral in brackets in (5.83) produces the
desired result:

I4,r�a, �� D
(
a2�

2

)�1
1




∫ 
/4

0

1

4

ð
{

1 �
√

c�6�

1 C c�6�

[
4



tan�1

(√
1 C c�6�

c�6�

)]}
d6 �5.84�

5.4.3.2 Nakagami-m Fading Channel. Following the same procedure as for
the Rayleigh fading channel, we can evaluate (5.77) for the Nakagami-m fading
channel as follows. For k D 2, we again start with (5.78) but now use (5.15) for
M���s�, which produces [analogous to (5.16)]

I2
D I2,m�a, m, �� D 1




∫ 
/4

0

(
1 C a2�

2 sin2 �

)�m
d�

D 1




∫ 
/4

0

(
sin2 �

sin2 � C a2�/2

)m
d� �5.85�
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The integral in (5.85) is evaluated in closed form in Appendix 5A. In particular,
using (5A.21), we obtain (for m integer)

I2,m�a, m, �� D 1

4
� 1




√
c

1 C c

{(



2
� tan�1

√
c

1 C c

) m�1∑
kD0

(
2k
k

)

ð 1

[4�1 C c�]k
� sin

(
tan�1

√
c

1 C c

) m�1∑
kD1

k∑
iD1

Tik
�1 C c�k

ð
[

cos
(

tan�1

√
c

1 C c

)]2�k�i�C1}
�5.86�

where c is defined in (5.80) and Tik in (5.32). For k D 3, the steps analogous to
(5.81) are as follows:

I3
D I3,m�a, m, ��

D 1




∫ 
/4

0

1




∫ 
/2

0
M�

[
a2

2

(
1

sin2 �
C 1

sin2 6

)]
d� d6

D 1




∫ 
/4

0

1




∫ 
/2

0

(
1 C a2�

2m sin2 �
C a2�

2m sin2 6

)�m
d� d6

D 1




∫ 
/4

0

(
2

a2�
c�6�

)m [ 1




∫ 
/2

0

(
sin2 �

sin2 � C c�6�

)m
d�

]
d6 �5.87�

where c�6� is still as defined in (5.81). Using the closed-form result in (5A.4b)
we obtain the desired result as

I3,m�a, m, �� D 1




∫ 
/4

0

(
2

a2�
c�6�

)m [1 � !�c�6��

2

]m

ð
m�1∑
kD0

(
m� 1 C k

k

)[
1 C !�c�6��

2

]k
d6 �5.88�

where [see (5A.4a)]

!�c�
D
√

c

1 C c
�5.89�

Finally, for k D 4 we get

I4
D I4,m�a, m, ��

D 1




∫ 
/4

0

1




∫ 
/4

0
M�

[
a2

2

(
1

sin2 �
C 1

sin2 6

)]
d� d6
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D 1




∫ 
/4

0

1




∫ 
/4

0

(
1 C a2�

2m sin2 �
C a2�

2m sin2 6

)�m
d� d6

D 1




∫ 
/4

0

(
2

a2�
c�6�

)m [ 1




∫ 
/4

0

(
sin2 �

sin2 � C c�6�

)m
d�

]
d6 �5.90�

whereupon using (5.86) for the term in brackets with c replaced by c�6�, we get

I4,m�a, m, ��

D 1




∫ 
/4

0

(
2

a2�
c�6�

)m [1

4
� 1




√
c�6�

1 C c�6�

{(



2
� tan�1

√
c�6�

1 C c�6�

)

ð
m�1∑
kD0

(
2k
k

)
1

[4�1 C c�6��]k
� sin

(
tan�1

√
c�6�

1 C c�6�

)

ð
m�1∑
kD1

k∑
iD1

Tik
[1 C c�6�]k

[
cos

(
tan�1

√
c�6�

1 C c�6�

)]2�k�i�C1


d6 �5.91�

Although an equation like (5.91) gives the appearance of being complex, we
remind the reader that we have accomplished our goal, namely, to express
the result in a form no more complicated than a single integral with finite
limits and an integrand containing elementary (in this case, pure trigonometric)
functions.

5.4.4 Integer Powers of M-PSK Error Probability Integrals

Associated with the study of the average error probability performance of
coherently detected differentially encoded M-PSK in the presence of slow fading,
we shall have need to evaluate integrals of the form

K2
D
∫ 1

0

[
1




∫ �M�1�
/M

0
exp

(
� a2�

2 sin2 �

)
d�

]2

p���� d� �5.92�

and

L2��u1, �u2, a1, a2�
D
∫ 1

0

[
1




∫ �u1

0
exp

(
� a2

1�

2 sin2 �

)
d�

]

ð
[

1




∫ �u2

0
exp

(
� a2

2�

2 sin2 �

)
d�

]
p���� d� �5.93�
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where, as was the case in Section 5.4.1, a2 D 2 sin2 
/M, and now, in addition,
a2

1 and a2
2 assume the possible values 2 sin2�2k š 1�
/M, k D 0, 1, 2, . . . ,M� 1,

and �u1 and �u2 assume the possible values 
[1 � �2k š 1�/M]. While (5.92) can
be evaluated in the desired form for both Rayleigh and Nakagami-m fading,
unfortunately, (5.93) can be obtained in such a form only for the Rayleigh case.
Thus we shall only present the results for this single fading case.

5.4.4.1 Rayleigh Fading Channel. Since (5.92) can be viewed as a special
case of (5.93) corresponding to a2

1 D a2
2 D a2 and �u1 D �u2 D �M� 1�
/M, we

shall consider only the generic form in (5.93), where a2
1, a

2
2, �u1, and �u2 are

allowed to be completely arbitrary. Following steps analogous to those in (5.81),
we proceed as follows:

L2��u1, �u2, a1, a2�

D 1




∫ �u1

0

1




∫ �u2

0
M�

[
�1

2

(
a2

1

sin2 �
C a2

2

sin2 6

)]
d� d6

D 1




∫ �u1

0

1




∫ �u2

0

(
1 C a2

1�

2 sin2 �
C a2

2�

2 sin2 6

)�1

d� d6

D 1




∫ �u1

0

(
2

a2
1�
c12�6�

)[
1




∫ �u2

0

sin2 �

sin2 � C c12�6�
d�

]
d6 �5.94�

where c12�6� is defined analogous to c�6� in (5.81) as

c12�6�
D a2

1�

2

(
sin2 6

sin2 6 C a2
2�/2

)
�5.95�

Rewriting the integral in brackets as

∫ �u2

0

sin2 �

sin2 � C c12�6�
d� D �u2 �

∫ �u2

0

c12�6�

sin2 � C c12�6�
d� �5.96�

then making use of Eq. (2.562.1) of Ref. 2, we obtain

∫ �u2

0

sin2 �

sin2 � C c12�6�
d�

D 1




[
�u2 �

√
c12�6�

1 C c12�6�
tan�1

(√
1 C c12�6�

c12�6�
tan �u2

)]
�5.97�
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and hence

L2��u1, �u2, a1, a2� D
(

1




)2 2

a2
1�

∫ �u1

0
c12�6�

ð
[
�u2 �

√
c12�6�

1 C c12�6�
tan�1

(√
1 C c12�6�

c12�6�
tan �u2

)]
d6

�5.98�
Since as mentioned above, K2 D L2��M� 1�
/M, �M� 1�
/M, a, a�, this

special case evaluates as

K2 D
(

1




)2 2

a2�

∫ �M�1�
/M

0
c�6�

[
�M� 1�


M
�
√

c�6�

1 C c�6�

ð tan�1

(√
1 C c�6�

c�6�
tan

�M� 1�


M

)]
d6 �5.99�

where c�6� is as defined in (5.81). The other special cases that will be of interest
in later chapters dealing with differentially encoded, coherently detected M-PSK
are L2��C, �C, aC, aC�, L2���, ��, a�, a��, and L2��C, ��, aC, a��, where

�š
D
[1 � �2k š 1�/M], a2

š
D 2 sin2�2k š 1�
/M, k D 0, 1, 2, . . . ,M� 1.

These special cases of (5.98) evaluate as

L2��š, �š, aš, aš�

D
(

1




)2( 2

a2š�

)∫ 
�1��2kš1�/M�

0
cš�6�
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1 � 2k š 1

M

)
�
√
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1 C cš�6�

ð tan�1
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1 C cš�6�
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(
1 � 2k š 1

M

)]}]
d6 �5.100�

and

L2��C, ��, aC, a��

D
(

1




)2( 2

a2C�

)∫ 
�1��2kC1�/M�

0
cC��6�
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(
1 � 2k � 1

M

)
�
√

cC��6�
1 C cC��6�

ð tan�1

{√
1 C cC��6�
cC��6�
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(
1 � 2k � 1

M

)]}]
d6 �5.101�
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where

cš�6�
Da

2
š�
2

(
sin2 6

sin2 6Ca2š�/2

)
, cC��6�

D a2
C�
2

(
sin2 6

sin2 6Ca2��/2

)
�5.102�

REFERENCES

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover Press, 1972.

2. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed.
San Diego, CA: Academic Press, 1994.

3. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Table of Integral Trans-
forms, vol. 1, New York: McGraw-Hill, 1954.

4. J. W. Craig, “A new, simple and exact result for calculating the probability of error
for two-dimensional signal constellations,” IEEE MILCOM’91 Conf. Rec., Boston,
pp. 25.5.1–25.5.5.

5. T. Eng and L. B. Milstein, “Coherent DS-CDMA performance in Nakagami multipath
fading,” IEEE Trans. Commun., vol. 43, February/March/April 1995, pp. 1134–1143.

6. J. Proakis, Digital Communications, 3rd ed. New York: McGraw-Hill, 1995.

7. S. Chennakeshu and J. B. Anderson, “Error rates for Rayleigh fading multichannel
reception of MPSK signals,” IEEE Trans. Commun., vol. 43, February/March/April
1995, pp. 338–346.

8. J. Edwards, A Treatise on the Integral Calculus, Vol. II. London: Macmillan, 1922.

9. E. Villier, “Performance analysis of optimum combining with multiple interferers in
flat Rayleigh fading,” IEEE Trans. Commun., vol. 47, October 1999, pp. 1503–1510.

APPENDIX 5A: EVALUATION OF DEFINITE INTEGRALS ASSOCIATED
WITH RAYLEIGH AND NAKAGAMI-m FADING

1.
1
p

∫ p=2

0

(
sin2 q

sin2
qY c

)m

dq

We wish to consider evaluating the integral

Im D 1




∫ 
/2

0

(
sin2 �

sin2 � C c

)m
d� �5A.1�

for m both integer and noninteger. To do this we shall make an equivalence with
another definite integral for which closed-form results have been reported in the
literature. In particular, it has been shown [5, Eq. (A8)] that the integral

Jm�a, b�
D am

�m�

∫ 1

0
e�attm�1Q�

p
bt� dt, n ½ 0 �5A.2�
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has the closed-form result

Jm�a, b�
D Jm�c� D

p
c/


2�1 C c�mC1/2


(
mC 1

2

)
�m C 1� 2F1

(
1, m C 1

2
;m C 1;

1

1 C c

)
,

c
D b

2a
m noninteger �5A.3�

When m is restricted to positive integer values, it has been further shown [5,
Eq. (A13)] that (5A.3) simplifies to

Jm�a, b�
D Jm�c� D 1

2

[
1 � !�c�

m�1∑
kD0

(
2k
k

)(
1 � !2�c�

4

)k]
,

!�c�
D
√

c

1 C c
m integer �5A.4a�

which was also obtained previously by Proakis [6, Eq. (14-4-15)] in the form

Jm�c� D
(

1 � !�c�

2

)m m�1∑
kD0

(
m � 1 C k

k

)(
1 C !�c�

2

)k
, m integer

�5A.4b�
Using the alternative representation of the Gaussian Q-function as given in
Eq. (4.2) in (5A.2) gives

Jm�a, b� D am

�m�

∫ 1

0
e�attm�1

(
1




∫ 
/2

0
e�bt/2 sin2 � d�

)
dt

D am


�m�

∫ 
/2

0

∫ 1

0
tm�1e��aCb/2 sin2 ��t dt d� �5A.5�

The inner integral on t can be expressed in terms of the integral definition of the
gamma function, namely [1, Eq. (6.1.1)],

�m� D ˛m
∫ 1

0
tm�1e�˛t dt �5A.6�

Thus, using (5A.6) in (5A.5), we obtain

Jm�a, b� D am


�m�

∫ 
/2

0

�m�

�aC b/2 sin2 ��m
d� D 1




∫ 
/2

0

1

�1 C b/2a sin2 ��m
d�

�5A.7�
Finally, letting c D b/2a, we can rewrite (5A.7) as

Jm�a, b�
D Jm�c� D 1




∫ 
/2

0

(
sin2 �

sin2 � C c

)m
d� �5A.8�
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which is identical with Im of (5A.1). Thus, equating (5A.8) with (5A.3) and
(5A.4) establishes the desired results for m noninteger and m integer, respectively.

One final note is to observe from (5A.4) that J1�c� D [1 � !�c�]/2. Thus, a
special case of (5A.8) that is of interest on Rayleigh channels is

1




∫ 
/2

0

sin2 �

sin2 � C c
d� D 1

2

(
1 �

√
c

1 C c

)
�5A.9�

which could also be obtained directly as follows:

1




∫ 
/2

0

sin2 �

sin2 � C c
d� D 1




∫ 
/2

0

(
1 � c

sin2 � C c

)
d�

D 1

2
� 1




∫ 
/2

0

c

sin2 � C c
d� �5A.10�

Making use of the definite integral in Eq. (2.562.1) of Ref. 2, we arrive at

1




∫ 
/2

0

sin2 �

sin2 � C c
d� D 1

2
� c




√
1

c�1 C c�
tan�1

(√
1 C c

c
tan �

)∣∣∣∣∣

/2

0

D 1

2

(
1 �

√
c

1 C c

)
DP�c� �5A.11�

The reason for including this alternative derivation is that it is useful in deriving
closed-form results for two other integrals of interest related to evaluating the
performance of QAM and M-PSK over Rayleigh channels. In particular, for
QAM we will have a need to evaluate

1




∫ 
/4

0

sin2 �

sin2 � C c
d� D 1




∫ 
/4

0

(
1 � c

sin2 � C c

)
d�

D 1

4
� 1




∫ 
/4

0

c

sin2 � C c
d� �5A.12�

Making use of the same indefinite integral as used in (5A.11) we immediately
arrive at the desired result, namely,
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/4

0

sin2 �

sin2 � C c
d� D 1

4
� c




√
1

c�1 C c�
tan�1

(√
1 C c

c
tan �

)∣∣∣∣∣

/4

0

D 1

4

[
1 �

√
c

1 C c

(
4



tan�1

√
1 C c

c

)]
�5A.13�
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2.
1
p

∫ (M−1)p=M

0

sin2
q

sin2 qY c
dq

For M-PSK, we will have a need to evaluate

1




∫ �M�1�
/M

0

sin2 �

sin2 � C c
d� D M� 1

M
� 1




∫ �M�1�
/M

0

c

sin2 � C c
d�

�5A.14�
Making use of the same indefinite integral as used in (5A.11) we immediately
arrive at the desired result, namely,

1




∫ �M�1�
/M

0

sin2 �

sin2 � C c
d�

D
(
M� 1

M

)[
1 �

√
c

1 C c

M

�M� 1�

tan�1

(√
1 C c

c
tan

�M� 1�


M

)]

D
(
M� 1

M

){
1 �

√
c

1 C c

M

�M� 1�


[



2
C tan�1

(√
c

1 C c
cot




M

)]}
�5A.15�

3.
1
p

∫ (M−1)p=M

0

(
sin2

q

sin2
qY c

)m

dq

For evaluation of symbol error probability corresponding to single-channel
reception of M-PSK on Nakagami-m fading channels and also for multichannel
reception of M-PSK on Rayleigh fading channels, we shall have need to evaluate

Km D 1




∫ �M�1�
/M

0

(
sin2 �

sin2 � C c

)m
d� �5A.16�

Using a result [7, Eq. (21)] for the symbol error probability performance of
M-PSK over a Rayleigh channel with multichannel reception, it is straightforward
to show that for m integer,

1




∫ �M�1�
/M

0

(
sin2 �

sin2 � C c

)m
d�

D M� 1

M
� 1




√
c

1 C c

{(

2

C tan�1 ˛
) m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

C sin�tan�1 ˛�
m�1∑
kD1

k∑
iD1

Tik
�1 C c�k

[cos�tan�1 ˛�]2�k�i�C1

}
�5A.17�
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where

˛
D
√

c

1 C c
cot




M
�5A.18�

and

Tik
D

(
2k
k

)
(

2�k � i�
k � i

)
4i[2�k � i�C 1]

�5A.19�

For m D 1, (5A.17) reduces to (5A.15).

4.
1
p

∫ p=4

0

(
sin2

q

sin2 qY c

)m

dq

For evaluation of symbol error probability corresponding to single-channel
reception of QAM on Nakagami-m fading channels and also for multichannel
reception of QAM on Rayleigh fading channels, we shall have need to evaluate

Lm D 1




∫ 
/4

0

(
sin2 �

sin2 � C c

)m
d� �5A.20�

Using a result [7, Eq. (18)] with �U D �MC 1�
/M and �L D �M� 1�
/M, it
is straightforward to show that for m integer,

1




∫ 
/M

0

(
sin2 �

sin2 � C c

)m
d�

D 1

M
� 1




√
c

1 C c

{(

2

� tan�1 ˛
) m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

� sin�tan�1 ˛�
m�1∑
kD1

k∑
iD1

Tik
�1 C c�k

[cos�tan�1 ˛�]2�k�i�C1

}
�5A.21�

where ˛ and Tik are as evaluated in (5A.18) and (5A.19), respectively. Letting
M D 4 in (5A.21) whereupon ˛ D p

c/�1 C c� gives the desired result in (5A.20).
Finally, for exact evaluation of bit error probability corresponding to single-

channel reception of M-PSK on Nakagami-m fading channels and also for
multichannel reception of M-PSK on Rayleigh fading channels, we shall have
need to evaluate integrals of the form in (5A.17) or (5A.21) but with upper
limits given by 
[1 � �2k š 1�/M] for k D 1, 2, . . . ,M� 1. What is needed to
evaluate the bit error probabilities above is the difference of specific pairs of
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these integrals which can be related to the generic closed-form result given by
Eq. (18) of Ref. 7. Specifically, it can be shown that

Im��U, �L;K�

D 1

2


∫ 
��L

0

(
sin2 �

sin2 � C !2
L

)m
d� � 1

2


∫ 
��U

0

(
sin2 �

sin2 � C !2
U

)m
d�

D �U � �L
2


C 1

2

ˇU

{(

2

C tan�1 ˛U
) m�1∑
kD0

(
2k
k

)
1

[4�1 C !2
U�]k

C sin�tan�1 ˛U�
m�1∑
kD1

k∑
iD1

Tik
�1 C !2

U�k
[cos�tan�1 ˛U�]

2�k�i�C1

}

� 1

2

ˇL

{(

2

C tan�1 ˛L
) m�1∑
kD0

(
2k
k

)
1

[4�1 C !2
L�]k

C sin�tan�1 ˛L�
m�1∑
kD1

k∑
iD1

Tik
�1 C !2

L�k
[cos�tan�1 ˛L�]

2�k�i�C1

}
�5A.22�

where

!L
D
√
K

m
sin �L, ˇL

D !L√
1 C !2

L

, ˛L
DˇL cot �L

!U
D
√
K

m
sin �U, ˇU

D !U√
1 C !2

U

, ˛U
DˇU cot �U

�5A.23�

with K a constant. Our interest will be in the case where �U D �2k C 1�
/M,
�L D �2k � 1�
/M and K is related to signal-to-noise ratio. Alternatively, for

�U D �MC 1�
/M, �L D �M� 1�
/M, then !L D �!U D p
c, ˇL D �ˇU D√

c/�1 C c2�, and ˛L D ˛U
D˛, in which case (5A.22) simplifies immediately

to (5A.21).

5.
1
p

∫ f

0

(
sin2 q

sin2
qY c

)m

dq

Interestingly enough, a closed-form expression for the integral in (5A.16) or
(5A.21) with arbitrary upper limit, say 6, can be obtained from (5A.22). In
particular, setting �L D 
 � 6 and �U D 
, whereupon the second integral in
(5A.22) disappears, we arrive at the result
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Im�6; c� D 1




∫ 6

0

(
sin2 �

sin2 � C c

)m
d� D 6



� 1



ˇ

{(

2

C tan�1 ˛
)

ð
m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k
C sin�tan�1 ˛�

ð
m�1∑
kD1

k∑
iD1

Tik
�1 C c�k

[cos�tan�1 ˛�]2�k�i�C1

}
, �
 � 6 � 
 �5A.24�

where

ˇ
D
√

c

1 C c
sgn 6, ˛

D �ˇ cot6 �5A.25�

Clearly, (5A.24) reduces to (5A.16) and (5A.21) when 6 D �M� 1�
/M and
6 D 
/M, respectively.

Another closed form for the integral in (5A.24) has been suggested to the
authors by R. F. Pawula, which is readily derived using a clever change of
variables due to Euler and Legendre [8, p. 316]. Although this alternative
closed form is quite similar in structure to (5A.24) and therefore does not
offer a significant computational advantage, it is nevertheless worth documenting
because of the elegance associated with its derivation and the simplicity with
which the final result is obtained relative to that employed in arriving at (5A.24).

To begin, we first employ simple trigonometry to convert the integral to a
slightly different form as follows:

Im�6; c� D 1




∫ 6

0

(
sin2 �

sin2 � C c

)m
d� D 1




∫ 6

0

(
1 � cos 2�

1 C 2c � cos 2�

)m
d�

D 1

2
�1 C 2c�m

∫ 26

0

(
1 � cos 9

1 � d cos 9

)m
d9 �5A.26�

where d
D 1/�1 C 2c�. Next, employing the Euler–Legendre change of variables

1 � d cos 9 D 1 � d2

1 C d cos x
, d9 D

p
1 � d2

1 C d cos x
dx �5A.27�

then after some algebraic and trigonometric manipulation, we obtain the form

Im�6; c� D d
p
c

2m
�1 C c�m�1/2

∫ xmax

0

�1 � cos x�m

1 C d cos x
dx �5A.28�

where

tan xmax D
p

1 � d2 sin 26

cos 26 � d
D 2

p
c�1 C c� sin 26

�1 C 2c� cos 26 � 1
�5A.29�
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Finally, letting x D 2t and taking care to assure that xmax as derived from (5A.29)
is intepreted in the four-quadrant arctangent sense, we get the simpler integral
form

Im�6; c� D
p
c


�1 C c�m�1/2

∫ T

0

sin2m t

cC cos2 t
dt �5A.30�

where

T D xmax

2
D 1

2
tan�1 N

D
C 


2

[
1 �

(
1 C sgnD

2

)
sgnN

]
�5A.31�

with
N D 2

√
c�1 C c� sin 26, D D �1 C 2c� cos 26 � 1 �5A.32�

The integral form of (5A.30) is valid for m integer as well as m noninteger but
is restricted to values of 6 [the upper limit in the integral of (5A.26)] between
zero and 
. Later, after obtaining the desired closed-form result, we will show
how to remove this restriction.

To obtain the closed form of (5A.30), we use the well-known geometric series∑m�1
kD0 x

k D �1 � xm�/�1 � x� to rewrite this equation as

Im�6; c� D 1




√
c

1 C c

∫ T

0

1 � �1 � a2m sin2m t�

1 � a2 sin2 t
dt

D 1




√
c

1 C c

∫ T

0

1

1 � a2 sin2 t
dt � 1




√
c

1 C c

m�1∑
kD0

a2k
∫ T

0
sin2k t dt

�5A.33�

where a2 D 1/�1 C c�. The first term is the original integral when m D 0 and
thus from (5A.26) must be equal to 6/
. The second integral is available in
Eq. (2.513.1) of Ref. 2, namely,

∫ T

0
sin2k t dt D T

22k

(
2k
k

)
C ��1�k

22k�1

k�1∑
jD0

��1�j
(

2k
j

)
sin[�2k � 2j�T]

2k � 2j

�5A.34�
Combining these two results and simplifying gives the alternative closed-form
result

Im�6; c� D 6



� T




√
c

1 C c

m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

� 2




√
c

1 C c

m�1∑
kD0

k�1∑
jD0

(
2k
j

)
��1�jCk

[4�1 C c�]k
sin[�2k � 2j�T]

2k � 2j
,

0 � 6 � 
 �5A.35�

To extend this result so as to apply for upper integration limits in the region

 � 6 � 2
, we proceed as follows. First we partition the integral in (5A.26) as
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Im�6; c� D 1




∫ 6

0

(
sin2 �

cC sin2 �

)m
d�

D 1




∫ 


0

(
sin2 �

cC sin2 �

)m
d� C 1




∫ 6




(
sin2 �

cC sin2 �

)m
d� �5A.36�

In the second integral make the change of variables �0 D � � 
. Then

Im�6; c� D 1




∫ 


0

(
sin2 �

c C sin2 �

)m
d� C 1




∫ 6�


0

(
sin2 �0

cC sin2 �0

)m
d�0

�5A.37�
The second integral in (5A.37) can be evaluated using (5A.35) with 6 replaced by
6 � 
. For the first integral we have to first evaluate T in the limit when 6 D 

and then use (5A.35). Since 6 approaches 
 from below, it is straightforward
to show that the first term of (5A.31) will be zero and the second term will
approach 
. Thus, lim6!
 T D 
. Using this value of T in (5A.35), the double
sum evaluates to zero and hence the first integral above becomes

1




∫ 


0

(
sin2 �

cC sin2 �

)m
d� D 1 �

√
c

1 C c

m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k
�5A.38�

Thus, when 
 � 6 � 2
, the final result can be written as

Im�6; c� D 1 �
√

c

1 C c

m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

C 6 � 




� T0




√
c

1 C c

m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

� 2




√
c

1 C c

m�1∑
kD0

k�1∑
jD0

(
2k
j

)
��1�jCk

[4�1 C c�]k
sin[�2k � 2j�T0]

2k � 2j
�5A.39�

where T0 is T evaluated with 6 replaced by 6 � 
. However, because of the
periodicity of T with respect to the 26 process, we have T0 D T. Thus, the final
result is

Im�6; c� D 6



�
(

1 C T




)√
c

1 C c

m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

� 2




√
c

1 C c

m�1∑
kD0

k�1∑
jD0

(
2k
j

)
��1�jCk

[4�1 C c�]k
sin[�2k � 2j�T]

2k � 2j
,


 � 6 � 2
 �5A.40�
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or combining this with (5A.35)

Im�6; c� D 6



�
(

1 C sgn�6 � 
�

2
C T




)√
c

1 C c

m�1∑
kD0

(
2k
k

)
1

[4�1 C c�]k

� 2




√
c

1 C c

m�1∑
kD0

k�1∑
jD0

(
2k
j

)
��1�jCk

[4�1 C c�]k
sin[�2k � 2j�T]

2k � 2j
,

0 � 6 � 2
 �5A.41�

6.
1
p

∫ f

0

(
sin2 q

sin2
qY c1

)m(
sin2 q

sin2
qY c2

)
dq

In the study of generalized diversity selection combining to be discussed in
Chapter 9, we shall have need to evaluate an extension of the integral in (5A.24),
namely,

Im�6; c1, c2� D 1




∫ 6

0

(
sin2 �

sin2 � C c1

)m(
sin2 �

sin2 � C c2

)
d� �5A.42�

where, in general c1 6D c2. Since a closed form for such an integral cannot be
obtained from the results of Ref. 7 nor for that matter from any other reported
contributions, we turn once again to the method suggested by Pawula for arriving
at the alternative closed form for Im�6; c� given in (5A.35), but instead apply
it now to (5A.42). In particular, following steps analogous to (5A.26) through
(5A.30), it is straightforward to show that

Im�6; c1, c2� D
p
c1�1 � d1�d2


�1 C c1�m�1/2�d1 � d2�

∫ T1

0

(
sin2�mC1� t

c1 C cos2 t

)(
1

DC cos2 t

)
dt

�5A.43�

where, as before, di
D 1/�1 C 2ci�, i D 1, 2 and now also

D
D 1 � d1d2 � d1 C d2

2�d1 � d2�
�5A.44�

In addition, T1 corresponds to T of (5A.31) with c replaced by c1.
Now using the same geometric series manipulation as in (5A.33), we can

rewrite (5A.43) as

Im�6; c1, c2� D
p
c1�1 C c1��1 � d1� d2b2

1


�d1 � d2�

∫ T1

0

1 � �1 � a2�mC1�
1 sin2�mC1� t�

�1 � a2
1 sin2 t��1 � b2

1 sin2 t�
dt

�5A.45�
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where, as before, a2
1
D 1/�1 C c1� and now, in addition,

b2
1
D 1

1 C D
D 2�d1 � d2�

1 C d1 � d2 � d1d2
D c2 � c1

c2�1 C c1�
�5A.46�

Expanding the integrand of (5A.45) into a partial fraction expansion and
evaluating the fractional coefficient in front of the integral purely in terms of
c1 and c2, we obtain, after considerable algebraic simplification,

Im�6; c1, c2� D 1




√
c1

1 C c1

∫ T1

0

1 � �1 � a2m
1 sin2m t�

1 � a2
1 sin2 t

dt

� 1




√
c1

1 C c1

(
c2

c2 � c1

)m∫ T1

0

1 � �1 � b2m
1 sin2m t�

1 � b2
1 sin2 t

dt �5A.47�

Comparing the first term of (5A.47) with (5A.33), we see immediately that

Im�6; c1, c2� D Im�6; c1�� 1




√
c1

1 C c1

(
c2

c2 � c1

)m∫ T1

0

1 � �1 � b2m
1 sin2m t�

1 � b2
1 sin2 t

dt

�5A.48�
which indicates that the second term in (5A.48) accounts for the additional factor
in the integrand of Im�6; c1, c2� that is not present in the integrand of Im�6; c1�.

Since for c1 D c2, we have from (5A.46) that b2
1 D 0, then writing the second

term of (5A.48) as

1




√
c1

1 C c1

(
c2

c2 � c1

)m ∫ T1

0

b2m
1 sin2m t

1 � b2
1 sin2 t

dt

D 1




√
c1

1 C c1

1

�1 C c1�m

∫ T1

0

sin2m t

1 � b2
1 sin2 t

dt

D 1




√
c1

1 C c1

1

�1 C c1�m

∫ T1

0
sin2m t dt �5A.49�

and using (5A.34), we obtain

1




√
c1

1 C c1

(
c2

c2 � c1

)m ∫ T1

0

b2m
1 sin2m t

1 � b2
1 sin2 t

dt

D T1




√
c1

1 C c1

(
2m
m

)
1

[4�1 C c1�]m

� 2




√
c1

1 C c1

m�1∑
jD0

(
2m
j

)
��1�jCm

[4�1 C c1�]m
sin[�2m � 2j�T1]

2m � 2j
�5A.50�
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Substituting (5A.50) into (5A.48) and recognizing the form of Im�6; c� in (5A.35),
we immediately see that for c1 D c2,

Im�6; c1, c1� D ImC1�6; c1� �5A.51�

as it should from the definition of Im�6; c1, c2� in (5A.42).
For the case c1 6D c2, we return to the form in (5A.48) and analogous to

(5A.33) partition it into two integrals, that is,

Im�6; c1, c2� D Im�6; c1��
(

c2

c2 � c1

)m [ 1




√
c1

1 C c1

∫ T1

0

1

1 � b2
1 sin2 t

dt

� 1




√
c1

1 C c1

m�1∑
kD0

b2k
1

∫ T1

0
sin2k t dt

]
�5A.52�

The first integral in (5A.52) can be evaluated by first noting from (5A.47) that

I0�6; c1, c2� D 1




∫ 6

0

sin2 �

sin2 � C c2
d� D I1�6; c2�

D 1




√
c1

1 C c1

∫ T1

0

1

1 � a2
1 sin2 t

dt � 1




√
c1

1 C c1

∫ T1

0

1

1 � b2
1 sin2 t

dt

D 6



� 1




√
c1

1 C c1

∫ T1

0

1

1 � b2
1 sin2 t

dt �5A.53�

Evaluating I1�6; c2� from (5A.35) as

I1�6; c2� D 6



� T2




√
c2

1 C c2
�5A.54�

where T2 now corresponds to T of (5A.31) with c replaced by c2, then combining
(5A.53) and (5A.54), we get

1




√
c1

1 C c1

∫ T1

0

1

1 � b2
1 sin2 t

dt D T2




√
c2

1 C c2
�5A.55�

The second integral of (5A.52) is evaluated as before using (5A.34). Without
further ado we present the desired closed-form result for Im�6; c1, c2�, which is

Im�6; c1, c2� D Im�6; c1�� T2




√
c2

1 C c2

(
c2

c2 � c1

)m

C T1




√
c1

1 C c1

m�1∑
kD0

(
c2

c2 � c1

)m�k (
2k
k

)
1

[4�1 C c1�]k
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C 2




√
c1

1 C c1

m�1∑
kD0

k�1∑
jD0

(
c2

c2 � c1

)m�k (
2k
j

)

ð ��1�jCk

[4�1 C c1�]k
sin[�2k � 2j�T1]

2k � 2j
, 0 � 6 � 
 �5A.56�

To extend the range of coverage of the upper integration limit from 0 � 6 � 

to 0 � 6 � 2
, we proceed as before and arrive at the final desired result:

Im�6; c1, c2�

D Im�6; c1��
(

1 C sgn�6 � 
�

2
C T2




)√
c2

1 C c2

(
c2

c2 � c1

)m

C
(

1 C sgn�6 � 
�

2
C T1




)√
c1

1 C c1

m�1∑
kD0

(
c2

c2 � c1

)m�k (
2k
k

)

ð 1

[4�1 C c1�]k
C 2




√
c1

1 C c1

m�1∑
kD0

k�1∑
jD0

(
c2

c2 � c1

)m�k (
2k
j

)

ð ��1�jCk

[4�1 C c1�]k
sin[�2k � 2j�T1]

2k � 2j
, 0 � 6 � 2
 �5A.57�

where now Im�6; c1� is evaluated from (5A.41).

7.
1
p

∫ p=2

0

(
sin2 q

sin2
qY c1

)m1
(

sin2 q

sin2
qY c2

)m2

dq

An extension of the preceding integral wherein each of the two factors in the
integrand is raised to an arbitrary power is of interest in the study of diversity
(optimum) combining in the presence of interference (see Chapter 10 for a
complete discussion of this topic). Unfortunately, it appears difficult to apply
the previous derivation approaches to obtain a result for the most generic form
of this integral, where the powers are not necessarily restricted to be integer
and the upper limit of the integral is arbitrary. However, for the case where the
upper limit is equal to 
/2 and the powers are restricted to be integer, which is
of interest in evaluating the average error probability performance of PSK with
optimum combining over a Rayleigh fading channel, making an association with
a closed-form result obtained by Villier [9], we present (without derivation) the
following result:
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1




∫ 
/2

0

(
sin2 �

sin2 � C c1

)m1
(

sin2 �

sin2 � C c2

)m2

d�

D �c1/c2�m2�1

2�1 � c1/c2�m1Cm2�1

[
m2�1∑
kD0

(
c2

c1
� 1
)k
BkIk�c2�

�c1

c2

m1�1∑
kD0

(
1 � c1

c2

)k
CkIk�c1�

]
�5A.58�

where1

Bk
D Ak(

m1 C m2 � 1
k

) , Ck
D
m2�1∑
nD0

(
k
n

)
(
m1 C m2 � 1

n

)An,

Ak
D��1�m2�1Ck

(
m2 � 1
k

)
�m2 � 1�!

m2∏
nD1
n6DkC1

�m1 C m2 � n� �5A.59�

and

Ik�c� D 1 �
√

c

1 C c

[
1 C

k∑
nD1

�2n� 1�!!

n!2n�1 C c�n

]
�5A.60�

with the double factorial notation denoting the product of only odd integers from 1
to 2k � 1. It is straightforward (although requiring some tedious manipulations)
to show that (5A.58) reduces to (5A.56) when m1 D m and m2 D 1. Also, by
symmetry it can be shown that (5A.58) reduces to (5A.56) with c1 and c2 switched
when m1 D 1 and m2 D m.

8.
1
p

∫ f

0

sin2m
q

cY sin2 q
dq

Yet another integral that arises in the study of generalized diversity selection
combining to be discussed in Chapter 9 is

Jm�6; c�
D 1




∫ 6

0

sin2m �

cC sin2 �
d� �5A.61�

1 Note that by convention,
(k
n

) D 0 for n > k. Also, for m2 D 1, by convention the product∏m2
nD1
n 6DkC1

�m1 C m2 � n� D 1 and the only nonzero-valued coefficients are A0 D B0 D Ck D 1. For

m2>1, the coefficients Ak , Bk , and Ck clearly depend on both m1 and m2.
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This integral is similar in form to (5A.30) and can be evaluated by following an
approach analogous to that used in arriving at the closed form in (5A.35). The
procedure is as follows. Let a2 D 1/c. Then

Jm�6; c� D 1




a2

a2m

∫ 6

0

a2m sin2m �

1 C a2 sin2 �
d�

D 1


a2�m�1�

∫ 6

0

1 � �1 � a2m sin2m ��

1 C a2 sin2 �
d�

D 1


a2�m�1�

[∫ 6

0

1

1 C a2 sin2 �
d� �

∫ 6

0

1 � a2m sin2m �

1 C a2 sin2 �
d�

]
�5A.62�

For l odd,
∑l

iD0��1�ixi D �1 � xlC1�/�1 C x�. Thus, letting x D a2 sin2 6, then
for m even we get

Jm�6; c� D 1


a2�m�1�

[∫ 6

0

1

1 C a2 sin2 �
d� �

m�1∑
iD0

��1�ia2i
∫ 6

0
sin2i � d�

]
�5A.63�

Finally, using Gradshteyn and Ryzhik [2, Eq. (2.562)] to evaluate the first
integral, that is,

∫ 6

0

1

1 C a2 sin2 �
d� D 1p

1 C a2
tan�1 (√1 C a2 tan6

)
�5A.64�

and (5A.34) for the second integral, we arrive at the desired result (for m even)

Jm�6; c� D cm�1
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1 C c
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(√
1 C c

c
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)
�
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iD0

��1�i
1

ci

ð

 6

22i

(
2i
i

)
C ��1�i

22i�1

i�1∑
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��1�j
(

2i
j

)
sin[�2i� 2j�6]

2i� 2j





�5A.65�

For m odd we slightly change the procedure. First rewriting (5A.62) as

Jm�6; c� D 1


a2�m�1�

∫ 6

0

�1 C �1 C a2m sin2m ��

1 C a2 sin2 �
d�

D 1


a2�m�1�

[
�
∫ 6

0

1

1 C a2 sin2 �
d� C

∫ 6

0

1 C a2m sin2m �

1 C a2 sin2 �
d�

]

�5A.66�
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then noting that for l even,
∑l

iD0��1�ixi D �1 C xlC1�/�1 C x�, we obtain

Jm�6; c� D 1


a2�m�1�

[
�
∫ 6

0

1

1 C a2 sin2 �
d� C

m�1∑
iD0

��1�ia2i
∫ 6

0
sin2i � d�

]

�5A.67�
which is the negative of (5A.63). Thus, for arbitrary integer m, we have

Jm�6; c� D ��1�m
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

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
�5A.68�

A special case of interest is when 6 D 
/2, in which case (5A.68) simplifies to

Jm�
/2; c� D ��1�m
cm�1

2

[√
c

1 C c
�

m�1∑
iD0

��1�i
1

22ici

(
2i
i

)]
�5A.69�

which reduces to (5A.9) when m D 1, as it should.
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6

NEW REPRESENTATIONS OF
SOME PDF’s AND CDF’s

FOR CORRELATIVE FADING
APPLICATIONS

Later in the book we shall have reason to study the performance of digital
communication systems over correlative fading channels. Such channels occur,
for example, in small terminals equipped with space antenna diversity where
the antenna spacing is insufficient to provide independent fading among the
various signal paths. In such instances, the received signal will consist of two or
more replicas of the transmitted signal with fading amplitudes that are correlated
random variables. To assess the performance of receivers of such signals, it is
therefore necessary to study the joint statistics of correlated random variables
with probability distributions characterized by the various fading channel models
of Chapter 2.

One important application of the above scenario pertains to a system
wherein the channel is assumed to be modeled by two paths and the receiver
thus implements a diversity combiner with two branches. Evaluation of the
performance of such a dual diversity combining receiver (discussed in great detail
in Chapter 9) requires, in general, knowledge of the two-dimensional (bivariate)
fading amplitude PDF and CDF. For the specific case of selection combining
(SC) [1, Sec. 10-4], the combiner chooses the branch with the highest signal-
to-noise ratio (or equivalently, with the strongest signal assuming equal noise
power among the branches) and outputs this signal to the threshold decision
device. To evaluate performance in this instance, it is sufficient to obtain the
one-dimensional PDF and CDF of the SC output, which is tantamount to finding
the PDF and CDF of the maximum of two correlated fading random variables.
The SC output CDF is used to evaluate outage probability (the probability that
neither SC input exceeds the detection threshold, or equivalently, the probability
that the SC output falls below this threshold), while the SC output PDF is used
to evaluate average error probability.

141
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In what follows we focus on the Rayleigh and Nakagami-m fading channels
since they are the most commonly used in digital communication system analyses
and, as discussed previously, are typical of many wireless environments.

6.1 BIVARIATE RAYLEIGH PDF AND CDF

From a purely mathematical standpoint, the bivariate Rayleigh and Nakagami-m
distributions can be viewed as the joint statistics of the envelopes, R1 and R2,
of two correlated chi-square random variables of degree 2 and 2m, respectively.
Specifically, the bivariate Nakagami-m PDF is given by [1, Eq. (126); 3, Eq. (1)]

pR1,R2�r1, �1; r2, �2jm, �	

D 4mmC1�r1r2	m

�m	�1�2�1 � �	�
p
�1�2�	m�1

exp

[
� m

1 � �

(
r2

1

�1
C r2

2

�2

)]

ð Im�1

(
2m

p
�r1r2p

�1�2�1 � �	

)
, r1, r2 ½ 0 �6.1	

where �i D r2
i , i D 1, 2 and � D cov�r2

1 , r
2
2	/
√

var�r2
1	 var�r2

2	 is the correlation
coefficient �0 � � < 1	. The special case of the bivariate Rayleigh PDF is given
by [2, Eq. (122); 4, Eq. (3.7–13)]

pR1,R2�r1, �1; r2, �2j�	 D 4r1r2

�1�2�1 � �	
exp

[
� 1

1 � �

(
r2

1

�1
C r2

2

�2

)]

ð I0

(
2
p
�r1r2

�1 � �	
p
�1�2

)
, r1, r2 ½ 0 �6.2	

Tan and Beaulieu [3] were successful in finding infinite series representations of
the CDFs corresponding to (6.1) and (6.2), in particular,

PR1,R2�r1, �1; r2, �2jm, �	

D �1 � �	m

�m	

1∑
kD0

�k
�
(
m C k,mr2

1/�1�1 � �	
)
�
(
m C k,mr2

2/�2�1 � �	
)

k!�m C k	
�6.3	

where ��˛, x	
D ∫ x

0 e�tt˛�1 dt,Ref˛g > 0 is the incomplete gamma function [5,
Eq. (6.5.2)] and

PR1,R2�r1,�1; r2,�2j�	

D �1 � �	
1∑
kD0

�kP

(
k C 1,

r2
1

�1�1 � �	

)
P

(
k C 1,

r2
2

�2�1 � �	

)
�6.4	
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where P�˛, x	 D �1/�˛		
∫ x

0 e�tt˛�1 dt,Ref˛g > 0 is another common form of
the incomplete gamma function [5, Eq. (6.5.3)]. Although (6.3) and (6.4) appear
to have a simple structure, they have the drawback that because they are infinite
series of the product of pairs of integrals, their computation requires truncation of
the series. Bounds on the error resulting from this truncation along with empirical
results for indicating the rate of convergence and tightness of the ensuing bounds,
are discussed in Ref. 3. Tan and Beaulieu [3] go further to point out that the
complementary Rayleigh bivariate CDF (and thus also the Rayleigh bivariate
CDF itself) had previously been expressed in terms of the Marcum Q-function
[1, App. A], that is,

PR1,R2�r1, �1; r2, �2j�	
D 1 � PrfR1 > r1g � PrfR2 > r2g C PrfR1 > r1, R2 > r2g

D 1 � exp
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r2p
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√
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1 � �

r1p
�1
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� exp

(
� r2

2

�2

)[
1 � Q1

(√
2�

1 � �

r2p
�2

,

√
2

1 � �

r1p
�1

)]
�6.5	

Although Tan and Beaulieu [3] abandoned this result because of the lack
of availability of the Marcum Q-function in standard distributions of such
mathematical software packages as Maple V, MATLAB, and Mathematica, Simon
and Alouini [6] recognized the value of (6.5) in terms of the desired form
of the Marcum Q-function as described by (4.16) and (4.19). Indeed, as we
shall soon see, this desired form of the Marcum Q-function allows the bivariate
Rayleigh CDF to be similarly expressed as a single integral with finite limits
and an integrand that includes a type of bivariate Gaussian PDF. This resulting
form is simple, exact, and requires no special function evaluations (i.e., the
integrand is entirely composed of elementary functions such as exponentials and
trigonometrics).

Since the Marcum Q-function as represented by (4.16) and (4.19) depends on
the relative values of its arguments, we must consider its use in (6.5) separately
for different regions of the arguments r1 and r2. For simplicity of notation, we
shall also introduce the normalized (by the square root of the average power)

envelope random variables Yi
D ri/

p
�i, i D 1, 2.

Consider first the region of r1 and r2 such that

√
2

�2�1 � �	
r2 <

√
2�

�1�1 � �	
r1

or, equivalently, Y2 <
p
�Y1 which corresponds to the first argument being less

than the second argument in the first Marcum Q-function in (6.5). Since in this
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region we would also have
p
�Y2 < Y1, then in the second Marcum Q-function

in (6.5), the first argument is also less than the second argument. As such, we
now substitute (4.16) in both of these two terms. After much simplification, one
arrives at the desired result, namely,

PR1,R2�r1, �1; r2, �2j�	 D 1 � exp��Y2
2	

C 1

2�

∫ �

��
exp
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�Y2

1 C Y2
2 C 2

p
�Y1Y2 sin �

1 � �
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ð


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�1 � �2	Y2
1Y

2
2

C p
��1 � �	Y1Y2

(
Y2

1 C Y2
2

)
sin �(

�Y2
1 C 2

p
�Y1Y2 sin � C Y2

2

)
ð (Y2

1 C 2
p
�Y1Y2 sin � C �Y2

2

)


d�

�6.6	
The complement of the region just considered is where Y2 >

p
�Y1 or

equivalently,
p
�Y2 > �Y1. Here, however, we can have either

p
�Y2 > Y1 or

�Y1 <
p
�Y2 < Y1. Thus, two separate subcases must be considered. For the

first subcase where
p
�Y2 > Y1, we would certainly also have

p
�Y2 > �Y1

and thus for both Marcum Q-function terms in (6.5), the second argument
is greater than the first argument. Thus, substituting (4.19) in both of these
terms, we obtain after much simplification the identical result of (6.6) except
that the second term, namely, exp��Y2

2	, now becomes exp��Y2
1	. Finally, for

the second subcase where �Y1 <
p
�Y2 < Y1, once again (6.6) is appropriate

with, however, the second term, exp��Y2
2	, now replaced by exp��Y2

1	 C
exp��Y2

2	.
What remains is to evaluate the bivariate Rayleigh CDF at the endpoints

between the regions where one must make use of the relation in (4.17). When
this is done, the following results are obtained for the second term in (6.6).
When Y2 D p

�Y1, use 1
2 exp��Y2

1	 C exp���Y2
1	 and when Y1 D p

�Y2 use
1
2 exp��Y2

2	 C exp���Y2
2	. Summarizing, the bivariate Rayleigh can be expressed

in the form of a single integral with finite limits and an integrand composed of
elementary functions as follows:
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Yi
D ri/

√
�i �6.7	



BIVARIATE RAYLEIGH PDF AND CDF 145

where

g�Y1, Y2j�	 D




exp��Y2
2	, 0 � Y2 <

p
� Y1

1
2 exp��Y2

1	 C exp���Y2
1	, Y2 D p

� Y1

exp��Y2
1	 C exp��Y2

2	,
p
�Y1 < Y2 < Y1/

p
�

1
2 exp��Y2

2	 C exp���Y2
2	, Y2 D Y1/

p
�

exp��Y2
1	, Y1/

p
� < Y2

�6.8	

At first glance, one might conclude from (6.8) that the bivariate CDF as
given by (6.7) is discontinuous at the boundaries Y2 D p

�Y1 and Y2 D Y1/
p
�.

Clearly, this cannot be true since the Marcum Q-function itself is continuous over
the entire range of both of its arguments and thus from the form in (6.5), the
CDF must also be continuous over these same ranges. The explanation for this
apparent discontinuity is that the integral portion of (6.7) is also discontinuous
at these same boundaries but in such a way as to compensate completely for the
discontinuities in g�Y1, Y2j�	 and thus produce a CDF that is continuous for all
positive Y1 and Y2.

The bivariate Rayleigh CDF of (6.7) has been evaluated numerically using
Mathematica and compared with the double-integral representation [3, Eqs. (1)
and (2)], the infinite series representation [3, Eq. (4)] and (6.5) using direct
evaluation of the Marcum Q-function. Both the infinite sum and the proposed
integral representation have a significant speed-up factor compared to the other
two methods (double-integral approach and the one where Marcum-Q is evaluated
numerically). Furthermore, the proposed approach always gives the exact result
(up to the precision/accuracy allowed by the platform), whereas the infinite series
representations (when programmed with the available Mathematica routines and
setting the upper limit to infinity as allowed by Mathematica) loses its accuracy
for high values of � such as 0.8 and 0.9 and a truncation of the series is required.1

Note that the number of terms for the truncation must be determined for each
set of values of r1, r2 and �. Tan and Beaulieu [3] derived a bound on the
error resulting from truncation of the infinite series but reported that this bound
becomes loose as � approaches 1, which we have verified is the case.

An alternative simple form of the bivariate Rayleigh CDF can be obtained by
substituting the representations of the first-order Marcum Q-function of (4.26)
and (4.27) in (6.5). When this is done, then after considerable algebraic
manipulation the following result is obtained:

PR1,R2�r1, �1; r2, �2j�	 D 1 � g�Y1, Y2j�	 C sgn�Y2 � p
�Y1	I�Y1, Y2j�	

C sgn�Y1 � p
�Y2	I�Y2, Y1j�	 �6.9	

1 Note that the infinite series representation itself converges to the correct result for all values of �
between zero and one. It is the limitation of the numerical evaluation of this series caused by the
software used to make this evaluation that results in the loss of accuracy for large �.
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where analogous to (6.8),

g�Y1, Y2j�	 D


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exp��Y2
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and
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Note that the compensation for the discontinuities in g�Y1, Y2j�	 at the boundaries
Y2 D p

�Y1 and Y2 D Y1/
p
� is now immediately obvious from the form of the

last two terms in (6.9). Moreover, the values of the CDF at these endpoints are
given as

PR1,R2�r1, �1; r2, �2j�	 D 1 � 1
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�Y1 �6.12	

and

PR1,R2�r1, �1; r2, �2j�	 D 1 � 1
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exp
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1 C 2� sin � C �2

]}
,

Y1 D p
�Y2 �6.13	

One might anticipate that the bivariate Nakagami-m CDF could be expressed
in a form analogous to (6.5), depending instead on the mth-order Marcum Q-
function. If this were possible, then using the desired form of the generalized
Marcum Q-function as in (4.42) and (4.50), one could also express the bivariate
Nakagami-m CDF in the desired form. Unfortunately, to the author’s knowledge
an expression analogous to (6.5) has not been reported in the literature and the
author’s have themselves been unable to arrive at one.

6.2 PDF AND CDF FOR MAXIMUM OF TWO RAYLEIGH RANDOM
VARIABLES

In this section we consider the distributions of the random variable R D
max�R1, R2	, where R1 and R2 are correlated Rayleigh random variables with joint
PDF as in (6.2). As mentioned previously, the random variable R characterizes
the output of an SC whose inputs are R1 and R2. Since PrfR � RŁg D PrfR1 �
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RŁ, R2 � RŁg, the CDF of R is obtained immediately from the joint CDF of
R1, R2 by equating its two arguments. Since we are ultimately interested in the

PDF of the instantaneous SNR per bit,2 �
D r2Eb/N0 with mean � D r2Eb/N0 D

�Eb/N0, it is convenient for the Rayleigh case to start by renormalizing the

bivariate CDF of (6.7).3 Thus, noting that Y2
i
D r2

i /�i D �i/�i, i D 1, 2, the joint
CDF of �1 and �2 is given by

P�1,�2��1, �1; �2, �2j�	 D 1 � G�H��1, �1	,H��2, �2	j�	

C 1

2�

∫ �

��
exp


�

�1

�1
C �2

�2
C 2

√
�

(
�1

�1

)(
�2

�2

)
sin �

1 � �




ð




�1 � �2	

(
�1

�1

)(
�2

�2

)

C p
��1 � �	

√(
�1

�1

)(
�2

�2

)(
�1

�1
C �2

�2

)
sin �

(
�
�1

�1
C 2

√
�

(
�1

�1

)(
�2

�2

)
sin � C �2

�2

)

ð
(
�1

�1
C 2

√
�

(
�1

�1

)(
�2

�2

)
sin � C �

�2

�2

)




d�

�6.14	

where

G�H��1, �1	,H��2, �2	j�	 D




H��2, �2	, 0 � �2

�2
< �

�1

�1

1

2
H��1, �1	 C H��2, �2	,

�2

�2
D �

�1

�1

H��1, �1	 C H��2, �2	, �
�1

�1
<

�2

�2
<

1

�

�1

�1

1

2
H��2, �2	 C H��1, �1	,

�2

�2
D 1

�

�1

�1

H��1, �1	,
1

�

�1

�1
<

�2

�2
�6.15	

2 As in Chapter 5, we do not distinguish between bit and character instantaneous SNR. Thus, the
results derived here apply equally to the instantaneous SNR per symbol when relating to digital
communication systems with modulations that are higher order than binary.
3 We shall use the form of the CDF in (6.7) rather than that in (6.9) because of its synergy with the
corresponding results for correlated Nakagami-m RVs discussed in the next section.
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with H��i, �i	 D exp���i/�i	, i D 1, 2. Defining the instantaneous SNR per bit
at the SC output by � D max��1, �2	, the CDF of � , namely P���	, is obtained
immediately by substituting �1 D �2 D � in (6.14), that is,4

P���	D1 � G�H��, �1	,H��, �2	j�	 C 1

2�

∫ �

��
exp
[
��

�1 C �2 C 2
p
��1 �2 sin �

�1 �2�1 � �	

]

ð
[

�1 � �2	�1 �2 C p
��1 � �	

p
�1 �2��1 C �2	 sin �(

��2 C 2
p
��1 �2 sin � C �1

) (
�2 C 2

p
��1 �2 sin � C ��1

)
]
d�

D 1 � G�exp���/�1	, exp���/�2	j�	 C 1

2�

∫ �

��
exp[��h1��j�	]h2��j�	 d�

�6.16	
where

h1��j�	 D �1 C �2 C 2
p
��1 �2 sin �

�1 �2�1 � �	

h2��j�	 D �1 � �2	�1 �2 C p
��1 � �	

p
�1 �2��1 C �2	 sin �(

��2 C 2
p
��1 �2 sin � C �1

) (
�2 C 2

p
��1 �2 sin � C ��1

)
�6.17	

To obtain the PDF of � , we differentiate (6.16). Since the dependence � in
(6.16) is purely exponential, it is a simple matter to arrive at the result, namely,

p���	 D �G0�H��, �1	,H��, �2	j�	

C 1

2�

∫ �

��
[�h1��j�	] exp[�� h1��j�	]h2��j�	 d�

D G��H0��, �1	,�H0��, �2	j�	

C 1

2�

∫ �

��
[�h1��j�	] exp[�� h1��j�	]h2��j�	 d� �6.18	

where the prime denotes differentiation with respect to � and thus �H0��, �i	 D
�1/�i	 exp���/�i	, i D 1, 2. Note that the dependence of p���	 on � is also
purely exponential and as such resembles the behavior of the instanta-
neous SNR per bit corresponding to a single Rayleigh RV, namely, p���	 D
�1/�	 exp���/�	. Because of this similarity, it is possible to draw an analogy
with results for the average error probability performance of single-channel (no
diversity) digital modulations transmitted over a Rayleigh fading channel (see

4 Note that when �1 D �2 D � , as will be the case for the SC output PDF and CDF, the five regions
of validity for G�ž, žj�	 of (6.15) are independent of � and become (1) 0 � �1 < ��2, (2) �1 D ��2,
(3) ��2 < �1 < �2/�, (4) �1 D �2/�, and (5) �2/� < �1.
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Chapter 8) which make use of the integrals developed in Sections 5.1.1 and 5.2.1
based on the desired forms of the Gaussian and Marcum Q-functions. However,
because of the additional integration on � required by the second term in (6.18),
the functional form of the results will be somewhat different.

6.3 PDF AND CDF FOR MAXIMUM OF TWO NAKAGAMI-m RANDOM
VARIABLES

As mentioned in Section 6.1, the alternative representation of the Marcum
Q-function discussed in Chapter 4 is not helpful in simplifying the bivariate
Nakagami-m CDF in the form of a single integral with finite limits as was
possible for the Rayleigh case; thus, the method used to arrive at the CDF
and PDF of the SC output in Section 6.2 cannot be used here. Fortunately,
however, Fedele et al. [7] were able to arrive directly at an expression for the
SC output PDF in terms of the mth-order Marcum Q-function directly from the
defining expression for the bivariate Nakagami-m CDF as in (6.3). Using the
alternative representation of the generalized Marcum Q-function given in (4.42)
and (4.50), Simon and Alouini [8] were then able to simplify the expression
for the SC output PDF and working backward (i.e., integrating rather than
differentiating), obtain the SC output CDF. Following this approach, one never
needs to find the joint CDF of the SC input. While it is true that the results
from Ref. 7 could also be used to obtain directly the PDF and CDF of the SC
output for Rayleigh fading by considering the special case of the Nakagami-m
distribution corresponding to m D 1, the method used in Section 6.1 for solving
the Rayleigh case allows for additional simplifications of the resulting expressions
for outage probability and average error probability, as will be demonstrated later
in the book.

The PDF of the SC output R D max�R1, R2	 can be found directly from the
bivariate Nakagami-m PDF of R1 and R2 as

pR�r	 D d

dr

∫ r

0

∫ r

0
PR1,R2�r1, �1; r2, �2jm, �	 dr1 dr2 �6.19	

Substituting (6.3) in (6.19) results in [7, Eq. (20)]

pR�r	 D 2mmr2m�1

�m	�m
1

exp
(

�mr2

�1

)[
1 � Qm

(√
2m�

�1 � �	�1
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√
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r

)]

C 2mmr2m�1

�m	�m
2

exp
(

�mr2

�2

)[
1 � Qm

(√
2m�

�1 � �	�2
r,

√
2m

�1 � �	�1
r

)]
,

r ½ 0 �6.20	
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which when rewritten in terms of the instantaneous SC output instantaneous SNR
per bit, � , becomes

p���	 D mm

�m	�1

(
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1 � �

(
�
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)
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√
2m

1 � �

(
�

�1

))]
, � ½ 0 �6.21	

Applying the alternative representation of the generalized Marcum Q-function to
(6.21), then analogous to (6.18) we obtain for � 6D 05:

p���	 D G��H0��, �1, m	,�H0��, �2, m	j�	

� mm

�m	

1

2�

∫ �

��
�m�1 exp[�m�h1��j�	]h��j�	 d�, � > 0

�6.22	
with

�H0��, �i, m	
D mm

�m	�i

(
�

�i

)m�1

exp
(

�m�

�i

)
, i D 1, 2 �6.23	

Also, h1��j�	 is still given by (6.17), which is independent of m and

h��j�	 D 1

�m
1

(
�1

��2

)�m�1	/2

ð
[��1 cos[�m � 1	�� C �/2	] C p

��1 �2 cos[m�� C �/2	]

��2 C 2
p
��1 �2 sin � C �1

]

C 1

�m
2

(
��1

�2

)��m�1	/2

ð
[
�2 cos[�m � 1	�� C �/2	] � p

��1 �2 cos[m�� C �/2	]

�2 C 2
p
��1 �2 sin � C ��1

]
�6.24	

5 Note that the alternative representation of the generalized Marcum Q-function (m 6D 1) is valid only
for � 6D 0.
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Note that m D 1, (6.24) simplifies to

h��j�	 D 1

�1

[
�1 C p

��1 �2 sin �

��2 C 2
p
��1 �2 sin � C �1

]
C 1

�2

[
�2 C p

��1 �2 sin �

�2 C 2
p
��1 �2 sin � C ��1

]
�6.25	

which can be shown to be equal to h1��j�	h2��j�	 with h2��j�	 obtained from
(6.17). Thus, also noting that �H0��, �i, 1	 D �1/�i	 exp���/�i	, i D 1, 2, the
PDF of (6.24) reduces to (6.18), as it should.

Note here that the dependence on � of p���	 in (6.22) resembles the behavior
of the instantaneous SNR per bit corresponding to a single Rayleigh RV,
namely, p���	 D [mm�m�1/�m�m	] exp��m�/�	. Because of this similarity, it
is possible to draw an analogy with results for the average error probability
performance of single-channel (no diversity) digital modulations transmitted over
a Nakagami-m fading channel (see Chapter 8) which make use of the integrals
developed in Sections 5.1.4 and 5.2.4 based on the desired forms of the Gaussian
and Marcum Q-functions. However, because of the additional integration on �
required by the second term in (6.18), the functional form of the results will be
somewhat different.

The CDF of the SC output can now be found directly by integration of (6.22)
with the result (for � 6D 0)

P���	 D G��H��, �1, m	,�H��, �2, m	j�	
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1 ��j�	, m	]h��j�	 d� �6.26	

where now

�H��, �i, m	
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0
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D 1 � exp
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�m�

�i

) m�1∑
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k

k!
, i D 1, 2 �6.27	

For � D 0, the PDF � can be obtained from Fedele et al. [7, Eq. (20)], which
after some changes of variables becomes
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where �m, x	 D ∫1
x e�ttm�1 dt is the complementary incomplete gamma func-

tion [5, Eq. (6.5.3)]. For m integer �m, x	 has a closed-form expression [9,
Eq. (8.352.2)] and (6.28) simplifies to
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[�H��, �1, m	], � ½ 0

�6.29	
The corresponding CDFs are obtained by integration of (6.28) and (6.29) between
0 and � . For m noninteger, integration of (6.28) does not produce a closed-form
result, whereas for m integer, integration of (6.29) results in

P���	 D �H��, �1, m	 � H��, �2, m	

�
m�1∑
nD0

�n C m � 1	!

n!�m � 1	!

��1	
n��2	
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m��2	

n

��1 C �2	nCm

[
�Hn
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�,

�1 �2

�1 C �2
, m

)]
�6.30	

where analogous to (6.27),

�Hn��, �,m	
D 1 � exp

(
�m�

�

) mCn�1∑
kD0

�m�/�	k

k!
�6.31	

Note that �H0��, �, m	 is equal �H��, �,m	 of (6.27).
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7

OPTIMUM RECEIVERS FOR
FADING CHANNELS

As far back as the 1950s, researchers and communication engineers recognized
the need for investigating the form of receivers that would provide optimum
detection of digital modulations transmitted over a channel composed of a
combination of AWGN and multiplicative fading. For the most part, most
of these contributions dealt with only the simplest of modulation/detection
schemes and fading channels (i.e., BPSK with coherent detection and Rayleigh
or Rician fading). In some instances, the work pertained to single-channel
reception, while in others multichannel reception was considered. Our goal in
this chapter is to present the work of the past under a unified framework
based on the maximum-likelihood approach and also to consider a larger
number of situations corresponding to more sophisticated modulations, detection
schemes, and fading channels. In addition, we treat a variety of combinations of
channel state knowledge relating to the amplitude, phase, and delay parameter
vectors associated with the fading channels. In many instances, implementation
of the optimum structure may not be simple or even feasible and thus a
suboptimum solution is preferable and is discussed. Also, evaluating the error
probability performance of these optimum receivers may not always be possible
to accomplish using the analytical tools discussed previously in this book or
anywhere else for that matter. Nevertheless, it is of interest to determine in
each case the optimum receiver since it serves as a benchmark against which
to measure the suboptimum structure, which is simpler both to implement and
to analyze.

We begin our discussion by reviewing the mathematical models for the
transmitted signal and generalized fading channel as introduced in previous
chapters. In particular, consider that during a symbol period of Ts seconds the
transmitter sends the real bandpass signal1

1 Without any loss in generality, we shall assume that the carrier phase, �c, is arbitrarily set equal to
zero since the various paths that compose the channel will each introduce their own random phase
into the transmission.
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sk�t� D RefQsk�t�g D RefQSk�t�e
j2�fctg �7.1�

where Qsk�t� is the kth complex bandpass signal and QSk�t� is the corresponding
kth complex baseband signal chosen from the set of M equiprobable message
waveforms representing the transmitted information. At this point, we do not
restrict the signal set fQSk�t�g in any way (e.g., we do not require that the signals
have equal energy), and thus we are able to handle all of the various modulation
types discussed in Chapter 3.

The signal of (7.1) is transmitted over the generalized fading channel which
is characterized by Lp independent paths, each of which is a slowly varying
channel which attenuates, delays, and phase shifts the signal and adds an AWGN
noise source. Thus the received signal is a set of noisy replicas of the transmitted
signal, that is,2

rl�t� D Ref˛lQsk�t � �l�e
j�l C Qnl�t�g

D Ref˛l QSk�t � �l�e
j�2�fctC�l� C QNl�t�e

j2�fctg
D RefQrl�t�g D Ref QRl�t�e

j2�fctg, l D 1, 2, . . . , Lp �7.2�

where f QNl�t�gLp

lD1 is a set of statistically independent3 complex AWGN processes
each with PSD 2Nl watts/Hz. The sets f˛lgLp

lD1, f�lgLp

lD1, and f�lgLp

lD1 are the random
channel amplitudes, phases, and delays, respectively, which because of the slow-
fading assumption, are assumed to be constant over the transmission (symbol)
interval Ts. Also, without loss of generality, we take the first channel to be the
reference channel whose delay �1 D 0 and assume further that the delays are
ordered (i.e., �1 < �2 < Ð Ð Ð < �Lp).

The optimum receiver computes the set of a posteriori probabilities
p�sk�t�jfrl�t�gLp

lD1�, k D 1, 2, . . . ,M, and chooses as its decision that message
whose signal sk�t� corresponds to the largest of these probabilities.4 Since the
messages (signals) are assumed to be equiprobable, then by Bayes rule, the
equivalent decision rule is to choose sk�t� corresponding to the largest of the
conditional probabilities (likelihoods) p�frl�t�gLp

lD1jsk�t��, k D 1, 2, . . . ,M, which
is the maximum-likelihood (ML) decision rule. Using the law of conditional

2 In deriving the various optimum receiver configurations, we assume a “one-shot” approach (i.e., a
single transmission), wherein intersymbol interference (ISI) that would be produced by the presence
of the path delays on continuous transmission is ignored.
3 It should be noted that Turin [1] originally considered optimal diversity reception for the more
general case where the link noises (as well as the link fades) could be mutually correlated;
however, the noises and fades were statistically independent. Later, however, Turin [2] restricted
his considerations to link noises that were white Gaussian and statistically independent. (The link
fades, however, were still allowed to be correlated — statistically independent and exponentially
correlated fades were considered as special cases.)
4 The receiver is assumed to be time-synchronized to the transmitted signal (i.e., it knows the time
epoch of the beginning of the transmission).
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probability, each of these conditional probabilities can be expressed as5

∫∫∫
p
(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1

)
ð p
(f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1

)
df˛lgLp

lD1df�lgLp

lD1 df�lgLp

lD1 �7.3�

and as such depends on the degree of knowledge [amount of channel state infor-
mation (CSI)] available on the parameter sets f˛lgLp

lD1, f�lgLp

lD1, and f�lgLp

lD1. For
instance, if any of the three parameter sets are assumed to be known (e.g., through
channel measurement), the statistical averages on that set of parameters need not
be performed. In the limiting case (to be considered shortly) where all parameters
are assumed to be known to the receiver, none of the statistical averages in (7.3)
need be performed, and hence the ML decision rule simplifies to choosing the
largest of p�frl�t�gLp

lD1jsk�t�, f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1�, k D 1, 2, . . . ,M.
Receivers that make use of CSI have been termed self-adaptive [3] in that the

estimates of the system parameters are utilized to adjust the decision structure,
thereby improving system performance by adaptation to slowly varying channel
changes. We start our detailed discussion of optimum receivers with the most
general case of all parameters known since the decision rule is independent of
the statistics of the channel parameters and leads to a well-known classic structure
whose performance is better than all others that are based on less than complete
parameter knowledge. Also, since detection schemes are typically classified based
on the degree of knowledge related to the phase(s) of the received signal, ideal
coherent detection implying perfect knowledge falls into this category.

7.1 CASE OF KNOWN AMPLITUDES, PHASES, AND DELAYS:
COHERENT DETECTION

Conditioned on perfect knowledge of the the amplitudes, phases, and delays,
the conditional probability p�frl�t�gLp

lD1jsk�t�, f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1� is a joint
Gaussian PDF which because of the independence assumption on the additive
noise components can be written as

p
(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1

)
D

Lp∏
lD1

Kl exp
[
� 1

2Nl

∫ TsC�l

�l

∣∣Qrl�t� � ˛lQsk�t � �l�e
j�l
∣∣2 dt]

D
Lp∏
lD1

Kl exp
[
� 1

2Nl

∫ TsC�l

�l

∣∣ QRl�t� � ˛l QSk�t � �l�e
j�l
∣∣2 dt] �7.4�

5 Each integral in (7.3) is, in fact, an Lp-fold integral.
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where Kl is an integration constant. Substituting (7.2) into (7.4) and simplifying
yields

p
(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

exp

[
Re
{

˛l

Nl
e�j�lykl��l�

}
� ˛2

lEk

Nl

]

D K exp


 Lp∑

lD1

Re
{

˛l

Nl
e�j�lykl��l�

}
�

Lp∑
lD1

˛2
l Ek

Nl


 �7.5�

where

ykl��l�
D
∫ TsC�l

�l

QRl�t�QSŁ
k �t � �l� dt D

∫ Ts

0

QRl�t C �l�QSŁ
k �t� dt �7.6�

is the complex cross-correlation of the lth received signal and the kth signal
waveform and

Ek D 1

2

∫ Ts

0
j QSk�t�j2 dt D 1

2

∫ TsC�l

�l

j QSk�t � �l�j2 dt �7.7�

is the energy of the kth signal sk�t�. Also, the constant K absorbs all the Kl’s as
well as the factor exp[

∑Lp

lD1�1/2Nl�
∫ j QRl�t�j2 dt], which is independent of k and

thus has no bearing on the decision. Since the natural logarithm is a monotonic
function of its argument, we can equivalently maximize (with respect to k)

k
D lnp

(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1, f�lgLp

lD1

)

D
Lp∑
lD1

[
Re
{

˛l

Nl
e�j�lykl��l�

}
� ˛2

l Ek

Nl

]
�7.8�

where we have ignored the lnK term since it is independent of k.6 The first
bracketed term in the summation of (7.8) requires a complex weight �˛lej�l� to
be applied to the lth cross-correlator output (scaled by the noise PSD Nl) and
the second bracketed term is a bias dependent on the signal energy-to-noise ratio
in the lth path. For constant envelope signal sets (i.e., Ek D E; l D 1, 2, . . . ,M),
the bias can be omitted from the decision-making process.

A receiver that implements (7.8) as its decision statistic is illustrated in Fig. 7.1
and is generically referred to as a RAKE receiver [4,5] because of its structural

6 For convenience, in what follows we shall use the notation k for all decision metrics associated
with the kth signal regardless of any constants that will be ignored because they do not depend on k.
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similarity with the teeth on a garden rake.7 Note that this receiver is, for the CSI
conditions specified (i.e., perfect knowledge of all channel parameters), optimum
regardless of the statistics of these parameters. We shall see shortly that as soon
as we deviate from this ideal condition (i.e., one or more sets of parameters
are unknown), the receiver structure will immediately depend on the channel
parameter statistics.

We conclude this subsection by noting that if instead of the generalized
fading channel model consisting of Lp independently received noisy replicas
of the transmitted signal, we had assumed the random multipath channel model
suggested by Turin [6], wherein the received signal would instead be of the form

r�t� D
Lp∑
lD1

Ref˛lQsk�t � �l�e
j�lg C Ref Qn�t�g

D
Lp∑
lD1

Ref˛l QSk�t � �l�e
j�2�fctC�l�g C Ref QN�t�ej2�fctg

D Ref QR�t�ej2�fctg �7.9�

with QN�t� a complex AWGN processes with PSD 2N0 watts/Hz, the decision
metric analogous to (7.8) would be

k
D

Lp∑
lD1

[
Re
{

˛l

N0
e�j�lykl��l�

}
� ˛2

l Ek

N0

]
�7.10�

which is in agreement with Ref. 6. Since N0 is now a constant independent of l,
we can eliminate it from (7.10) in so far as the decision is concerned and rewrite
the decision metric as

k
D

Lp∑
lD1

[Ref˛le
�j�lykl��l�g � ˛2

lEk] �7.11�

For single-channel reception (i.e., Lp D 1), (7.8) or (7.11) simplifies to

k
D Ref˛e�j�ykl���g � ˛2Ek �7.12�

which is identical to the decision metric for a purely AWGN channel except for
the scaling of the first term by the known fading amplitude ˛ and the second
(bias) term by ˛2. For the special case of constant-envelope signal sets, the
second term becomes independent of k and can therefore be ignored, leaving
as a decision metric k D ˛Refe�j�ykl���g. Since ˛ now appears strictly as a

7 Such a receiver is also considered to implement the maximum-ratio combining (MRC) form of
diversity and is discussed further in Chapter 9 which deals with the performance of multichannel
receivers.
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multiplicative constant that is independent of k, it has no bearing on the decision
and thus can also be eliminated from the decision metric. Hence, for single-
channel reception of constant envelope signal sets, the decision metric is identical
to that for the pure AWGN channel, and knowledge of the fading amplitude does
not aid in improving the performance. It should be emphasized, however, that
despite the lack of dependence of the optimum decision metric on knowledge of
the channel fading amplitude, the error probability performance of this receiver
does indeed depend on the fading amplitude statistics and will of course be
worse for the fading channel than for the pure AWGN channel. On the other
hand, for nonconstant envelope signal sets (e.g., M-QAM), the second term in
(7.12) cannot be ignored and optimum performance requires perfect knowledge
of the channel fading amplitude (typically provided by an AGC).

Finally, note that if in the generalized fading channel model all paths have
equal noise PSD (i.e., Nl D N0, l D 1, 2, . . . , Lp), the decision metric of (7.8)
reduces to that of (7.10).

7.2 THE CASE OF KNOWN PHASES AND DELAYS, UNKNOWN
AMPLITUDES

When the amplitudes are unknown, the conditional probability of (7.5) must
be averaged over their joint PDF to arrive at the decision metric. Assuming
independent amplitudes with first-order PDFs fpal�˛l�gLp

lD1, we obtain

p
(frl�t�gLp

lD1

∣∣sk�t�, f�lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

∫ 1

0
exp

[
˛l

Nl
Refe�j�lykl��l�g � ˛2

l Ek

Nl

]
pal�˛l� d˛l �7.13�

We now consider the evaluation of (7.13) for Rayleigh and Nakagami-m fading.

7.2.1 Rayleigh Fading

For Rayleigh fading with channel PDFs,

pal�˛l� D 2˛l

$l
exp

(
� ˛2

l

$l

)
, ˛l ½ 0 �7.14�

and $l
DEf˛2

l g, the integrals of (7.13) can be evaluated in closed form. In
particular, using Eq. (3.462.5) of Ref. 7, we obtain

p
(frl�t�gLp

lD1

∣∣sk�t�, f�lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

�1 C %kl�
�1

{
1 C p

�Ukl exp

(
U2

kl

4

)[
1 � Q

(
Uklp

2

)]}
�7.15�
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where Q�x� is the Gaussian Q-function (see Chapter 4), %kl
D$lEk/Nl is the

average SNR of the kth signal over the lth path, and

Ukl
D
√

Ek

Nl

%kl

1 C %kl

[
1

Ek
Refe�j�lykl��l�g

]
�7.16�

The combination of (7.15) and (7.16) agrees, after a number of corrections, with
the results of Hancock and Lindsey [3, Eq. (28)] using a different notation.

The decision metric analogous to (7.8) is obtained by taking the natural
logarithm of (7.15) and ignoring the lnK term, which results in

k D �
Lp∑
lD1

ln�1 C %kl� C
Lp∑
lD1

ln

{
1 C p

�Ukl exp

(
U2

kl

4

)[
1 � Q

(
Uklp

2

)]}

�7.17�
The first summation in (7.17) is a bias, and the second summation is the decision
variable that depends on the observation. For large average SNR (i.e., %kl × 1),
the decision metric above simplifies to (ignoring the ln

p
� term)

k D �
Lp∑
lD1

ln %kl C
Lp∑
lD1

(
lnUkl C 1

4
U2

kl

)
�7.18�

A receiver that implements the decision rule based on the high SNR decision
metric above is illustrated in Fig. 7.2.

7.2.2 Nakagami-m Fading

For Nakagami-m fading with channel PDFs,

pal�˛l� D 2

�ml�

(
ml

$l

)ml

˛2ml�1
l exp

(
�ml˛2

l

$l

)
, ˛l ½ 0 �7.19�

the integrals of (7.13) can be evaluated in closed form using Eq. (3.462.1), of
Ref. 7 with the result

p
(frl�t�gLp

lD1

∣∣sk�t�, f�lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

(
�2ml�

2ml�1�ml�

)(
ml

ml C %kl

)ml

exp

(
V2

kl

8

)
D�2ml

(
�Vklp

2

)
�7.20�

where

Vkl
D
√

Ek

Nl

(
%kl

ml C %kl

)[
1

Ek
Refe�j�lykl��l�g

]
�7.21�

and Dp�x� is the parabolic cylinder function [7, Eq. (3.462.1) and Sec. 9.24].
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7.3 CASE OF KNOWN AMPLITUDES AND DELAYS, UNKNOWN
PHASES

When the phases are unknown, the conditional probability of (7.5) must be
averaged over their joint PDF to arrive at the decision metric. Assuming
independent phases with PDFs specified over the interval �0, 2��, we obtain

p
(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

∫ 2�

0
exp

[
˛l

Nl
Refe�j�lykl��l�g � ˛2

l Ek

Nl

]
p�l��l� d�l �7.22�

For uniformly distributed phases as is typical of Rayleigh and Nakagami-m
fading, (7.22) becomes

p
(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

exp

(
�˛2

lEk

Nl

)
1

2�

∫ 2�

0
exp
[
˛l

Nl
Refe�j�lykl��l�g

]
d�l

D K
Lp∏
lD1

exp

(
�˛2

lEk

Nl

)
1

2�

∫ 2�

0
exp
{

˛l

Nl
jykl��l�j cos[�l � arg�ykl��l��]

}
d�l

D K
Lp∏
lD1

exp

(
�˛2

lEk

Nl

)
I0

(
˛l

Nl
jykl��l�j

)
�7.23�

Taking the natural logarithm of (7.23) and ignoring the lnK term , we obtain the
decision metric

k D
Lp∑
lD1

ln I0

(
˛l

Nl
jykl��l�j

)
�

Lp∑
lD1

˛2
l Ek

Nl
�7.24�

which for constant envelope signal sets simplifies to (ignoring the bias term)

k D
Lp∑
lD1

ln I0

(
˛l

Nl
jykl��l�j

)
�7.25�

An implementation of a receiver that bases its decisions on the metric of (7.24)
is illustrated in Fig. 7.3.

For large arguments, the function ln I0�x� is approximated by a scaled version
of jxj, and thus for high SNR, the decision metric is similarly approximated by

k D
Lp∑
lD1

˛l

Nl
jykl��l�j �7.26�



. . .

* * *

D
el

ay
t

1

D
el

ay
t

2

D
el

ay
t L P

+
−

+
−

+
−

. . .L
1

L
2

L
k

L
M

ln
I 0

•

ln
I 0

•

ln
I 0

•
( 

 )d
t

T
s+

t 1

∫ t 1

R
1(

t)
 

˜ R
2(

t)
 

˜

R
L p

(t
) 

˜

S
k(

t)
 

˜

• ( 
 )d

t
T

s+
t 1

∫ t 2

• ( 
 )d

t
T s

+t
L p

∫ t L p

•

a
1

N
1

a
2

N
2

a
L p

N
L p

a
L

pE
k

N
L p

2a
2E

k

N
2

2

a
1E

k

N
1

2

C
ho

os
e

S
ig

na
l

C
or

re
sp

on
di

ng
to

m
ax

 L
k

k

D
ec

is
io

n
s(

t)
^

. . .

. . .

Fi
g

ur
e

7.
3.

C
om

p
le

x
fo

rm
of

op
tim

um
re

ce
iv

er
fo

r
kn

ow
n

am
p

lit
ud

es
an

d
d

el
ay

s,
un

kn
ow

n
p

ha
se

s.

167



168 OPTIMUM RECEIVERS FOR FADING CHANNELS

7.4 CASE OF KNOWN DELAYS AND UNKNOWN AMPLITUDES AND
PHASES

When only the delays are known, then the conditional probability of (7.5) must be
averaged over both the unknown amplitudes and phases to arrive at the decision.
Assuming, as was done in Section 7.3, the case of independent, identically
distributed (i.i.d.) uniformly distributed phases, the conditional probability needed
to compute the decision statistic is obtained by averaging (7.23) over the PDFs
of the independent amplitudes, resulting in

p
(frl�t�gLp

lD1

∣∣sk�t�, f�lgLp

lD1

)

D K
Lp∏
lD1

∫ 1

0
exp

(
�˛2

lEk

Nl

)
I0

(
˛l

Nl
jykl��l�j

)
p˛l�˛l� d˛l �7.27�

7.4.1 One-Symbol Observation: Noncoherent Detection

In this subsection we consider the case where the observation interval of
the received signal is one symbol in duration. Receivers that implement their
decision rules based on statistics formed from one-symbol duration-correlations
are referred to as noncoherent receivers. This is in direct contrast to the cases that
will be considered next, wherein the observation of the received signal extends
over two or more symbols, resulting in differentially coherent receivers. This
distinction in terminology regarding the method of detection (i.e., noncoherent
versus differentially coherent) employed by the receiver and its relation to
the observation interval is discussed by Simon et al. [8, App. 7A] for AWGN
channels.

7.4.1.1 Rayleigh Fading. For the Rayleigh fading PDF of (7.14), the
conditional probability of (7.27) can be evaluted in closed form. In particular,
using Eq. (6.633.4) of Ref. 7, we obtain after some manipulation

p
(frl�t�gLp

lD1

∣∣sk�t�, f�lgLp

lD1

) D K
Lp∏
lD1

�1 C %kl�
�1 exp

[
�U0

kl�
2

4

]
�7.28�

where analogous to (7.16) for the coherent case,

U0
kl

D
√

Ek

Nl

%kl

1 C %kl

[
1

Ek
jykl��l�j

]
�7.29�

Once again taking the natural logarithm of the likelihood of (7.28) and ignoring
the lnK term, we obtain the decision metric

k D �
Lp∑
lD1

ln�1 C %kl� C
Lp∑
lD1

Ek

4Nl

(
%kl

1 C %kl

)[
1

Ek
jykl��l�j

]2

�7.30�
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A receiver that implements a decision rule based on the metric of (7.30) is
illustrated in Fig. 7.4.

For the special case of constant envelope signal sets, wherein the bias [first
term of (7.30)] becomes independent of k and can be ignored, the decision metric
becomes (ignoring the scaling by the energy E)

k D
Lp∑
lD1

(
%l

1 C %l

) jykl��l�j2
Nl

�7.31�

where %l
D$lE/Nl. If, further, we assume that Nl D N0; l D 1, 2, . . . , Lp,

(7.31) simplifies still further to (ignoring the scaling by N0)

k D
Lp∑
lD1

(
%l

1 C %l

)
jykl��l�j2 �7.32�

Finally, for a flat power delay profile (PDP), $l D $, l D 1, 2, . . . , Lp, then
ignoring the scaling by %/�1 C %�, the decision metric is simply

k D
Lp∑
lD1

jykl��l�j2 �7.33�

which is identical in structure to the optimum receiver for a pure AWGN
multichannel; that is, each finger implements a complex cross-correlator matched
to the delayed signal for that path followed by a square-law envelope detector
with no postdetection weighting.

Methods for evaluating the average bit error probability (BEP) performance of
multichannel receivers with square-law detection are discussed in Chapter 9. In
general, the performance of the optimum receiver that implements the decision
metric of (7.32) is difficult to evaluate using these methods because of the
nonuniformity of the postdetection weights %l/�1 C %l�. On the other hand,
the performance of a receiver that implements the unweighted decision metric
of (7.33), which for other than a uniform PDP would be suboptimum, is
straightforward. In what follows we examine the BEP of the optimum receiver
(for which results are obtained from computer simulation) and the BEP of
the suboptimum receiver [for which results are obtained from the analysis of
equal gain combining (EGC) diversity reception to be studied in Chapter 9]8 for
the case of binary FSK and an exponential PDP described by %l D %1e�υ�l�1�,
l D 1, 2, . . . , Lp.

8 Simulation results were also obtained for the BEP of the suboptimum receiver as a means of
verifying the simulation program and were shown to be in perfect agreement with the analytically
obtained results.
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TABLE 7.1 Average BEP Data for Optimum and Suboptimum Reception of Noncoher-
ently Detected Binary FSK over Rayleigh Fading with an Exponential PDPa

% l (dB)

L 0 2 4 6 8 10 12 14 16

Optimum Case (Simulation Result) for Sample Size D 108 for υ D 0

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .25925 .19008 .12554 .07451 .03996 .01967 .00907 .00397 .001685
3 .20987 .13640 .07587 .03579 .01443 .00508 .00162 .00048 .000130
4 .17333 .10042 .04729 .01782 .00541 .00138 .00030 .00006 .000011

Optimum Case (Analysis Result) for υ D 0

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .25926 .19003 .12559 .07451 .03996 .01968 .00906 .00398 .001689
3 .20987 .13637 .07589 .03580 .01443 .00509 .00161 .00047 .000132
4 .17330 .10039 .04730 .01783 .00543 .00137 .00030 .00006 .000011

Optimum Case (Simulation Result) for Sample Size D 108 for υ D 0.1

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .26645 .19740 .13192 .07920 .04293 .02130 .00989 .00436 .001853
3 .22574 .15124 .08713 .04259 .01776 .00643 .00208 .00062 .000173
4 .19800 .12168 .06144 .02492 .00809 .00218 .00050 .00010 .000019

Suboptimum Case (Analysis) for υ D 0.1

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .26650 .19737 .13198 .07922 .04293 .02132 .00988 .00436 .001855
3 .22589 .15129 .08718 .04263 .01776 .00643 .00208 .00062 .000175
4 .19827 .12183 .06154 .02495 .00813 .00218 .00050 .00010 .000019

Optimum Case (Simulation Result) for Sample Size D 108 for υ D 0.5

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .29083 .22373 .15638 .09848 .05584 .02883 .01379 .00621 .002682
3 .27520 .20311 .13241 .07457 .03590 .01482 .00535 .00173 .000519
4 .26915 .19490 .12270 .06499 .02823 .01000 .00292 .00072 .000153

Suboptimum Case (Analysis) for υ D 0.5

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .29196 .22451 .15691 .09871 .05503 .02885 .01379 .00622 .002687
3 .27926 .20625 .13435 .07545 .03617 .01489 .00536 .00173 .000517
4 .27793 .20213 .12738 .06718 .02895 .01016 .00294 .00072 .000155

Optimum case (Simulation Result) for Sample Size D 108 for υ D 1

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .31137 .24835 .18213 .12149 .07322 .04001 .02011 .00941 .004179
3 .30802 .24323 .17511 .11273 .06385 .03149 .01354 .00512 .001731
4 .30755 .24244 .17400 .11127 .06219 .02981 .01216 .00421 .001234
5 .30739 .24230 .17381 .11106 .06190 .02957 .01190 .00402 .001129

(continued overleaf )
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TABLE 7.1 (continued)

% l (dB)

L 0 2 4 6 8 10 12 14 16

Suboptimum Case (Analysis) for υ D 1

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .31594 .25204 .18467 .12277 .07375 .04022 .02015 .00943 .004190
3 .32195 .25612 .18497 .11872 .06666 .03252 .01382 .00517 .001738
4 .33243 .26714 .19457 .12518 .06958 .03290 .01314 .00443 .001277
5 .34279 .27886 .20600 .13440 .07551 .03583 .01417 .00464 .001260

Optimum Case (Simulation Result) for Sample Size D 108 for υ D 2

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .32884 .27202 .21125 .15300 .10242 .06318 .03588 .01878 .009146
3 .32885 .27181 .21098 .15249 .10190 .06248 .03500 .01783 .008290
4 .32878 .27184 .21097 .15253 .10191 .06246 .03500 .01784 .008256

Suboptimum Case (Analysis) for υ D 2

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .34317 .28588 .22268 .16062 .10665 .06507 .03653 .01897 .009197
3 .35916 .30381 .24044 .17584 .11776 .07180 .03969 .01986 .008999
4 .37163 .31859 .25610 .19048 .12976 .08040 .04509 .02281 .010394

aThe simulation is accurate to 10�4

Table 7.1 presents the numerical BEP data for the optimum and suboptimum
receivers corresponding to values of υ equal to 0, 0.1, 0.5, 1.0, and 2.0. For each
value of υ, the average SNR/bit of the first path, %1, is allowed to vary over a
range from 0 to 16 dB, and the number of paths, Lp, is varied from 1 to 4. For
υ D 0 (i.e., a uniform PDP), the simulation and analytical data are seen to agree
exactly since in this case the suboptimum receiver corresponding to the decision
metric of (7.33) is indeed optimum, as mentioned previously. For υ > 0, the
optimum receiver clearly outperforms (has a smaller BEP than) the suboptimum
receiver, as it should. To illustrate the behavior of the optimum and suboptimum
receivers as a function of the fading power decay factor, υ, and the number
of paths, Lp, the simulation data in Table 7.1 are plotted in Figs. 7.5a–e and
7.6a–e, respectively. We observe from the curves in Fig. 7.5a–e that for fixed
υ the performance of the optimum receiver always improves monotonically with
increasing Lp over the entire range of %1 considered. By contrast, the curves
in Figs. 7.6a–e illustrate that for large υ, the performance of the suboptimum
receiver can in fact degrade with increasing Lp as a result of the noncoherent
combining loss, which is more prevalent at low SNR’s. Comparing the various
groups of curves within each set of figures also reveals that the improvement in
BEP obtained by increasing Lp is larger when the fading power decay factor, υ,
is smaller; that is, a uniform PDP stands to gain more from an increase in the
number of combined paths than one with an exponentially decaying multipath
and the same average SNR/bit of the first path.



CASE OF KNOWN DELAYS AND UNKNOWN AMPLITUDES AND PHASES 173

0 2 4 6 8 10 12 14 16
10−5

10−4

10−3

10−2

10−1

100

Average SNR per Bit for First path [dB]

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e 

P
b
(E

)
Lp=1
Lp=2
Lp=3
Lp=4

(a)

0 2 4 6 8 10 12 14 16
10−5

10−4

10−3

10−2

10−1

100

Average SNR per Bit for First path [dB]

A
ve

ra
ge

 B
it 

E
rr

or
 R

at
e 

P
b
(E

)

Lp=1
Lp=2
Lp=3
Lp=4

(b)

Figure 7.5. Average BEP performance for optimum reception of noncoherently detected binary
FSK over Rayleigh fading with an exponential PDP: (a) υ D 0; (b) υ D 0.1; (c) υ D 0.5; (d) υ D 1.0;
(e) υ D 2.0. m D 1, M D 2.
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Figure 7.5. (continued)
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Figure 7.5. (continued)

To compare the behavior of the optimum and suboptimum receivers, Fig. 7.7a
and b illustrate their performance for two different combinations of υ and Lp:
namely, υ D 1, Lp D 5 and υ D 2, Lp D 4. Also illustrated in these figures are
the corresponding results for Lp D 1, in which case the two receivers once again
yield identical performance since the single scaling factor %1/�1 C %1� in (7.32) is
now inconsequential. We observe from these figures that the suboptimum receiver
performs quite well with respect to its optimum counterpart but does in fact
exhibit a noncoherent combining loss at sufficiently low SNR, as mentioned
previously. As a further comparison of the behavior of the optimum and
suboptimum BFSK receivers, Fig. 7.8 illustrates their performance with Lp D 4
and varying υ. Finally, Fig. 7.9 gives an analogous performance comparison for
4-ary FSK with υ D 1.0 and varying Lp.

7.4.1.2 Nakagami-m Fading. For the Nakagami-m fading PDF of (7.19),
the conditional probability of (7.27) can also be evaluated in closed form. In
particular, using Eq. (6.631.1) of Ref. 7 we obtain [9]

p
(frl�t�gLp

lD1
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) D K
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�7.34�
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Figure 7.6. Average BEP performance for suboptimum reception of noncoherently detected
binary FSK over Rayleigh fading with an exponential PDP: (a) υ D 0; (b) υ D 0.1; (c) υ D 0.5;
(d) υ D 1.0; (e) υ D 2.0; m D 1, M D 2.
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Figure 7.6. (continued)

where analogous to (7.21) for the coherent case

V0
kl

D
√

Ek

Nl

(
%kl

ml C %kl

)[
1

Ek
jykl��l�j

]
�7.35�

and 1F1�a, b; x� is Kummer’s confluent hypergeometric function [7, Sec. 9.210],
which has the property that for x > 0, a > 0, 1F1�a, 1; x� is a monotonically
increasing function of x. Also, the larger a is, the greater the rate of increase.
Finally, since 1F1�1, 1; x� D ex, then for ml D 1, l D 1, 2, . . . , Lp, the conditional
probability of (7.34) reduces to (7.28), as it should.

The decision metric for this case is obtained by taking the natural logarithm
of (7.34) with the result (ignoring the lnK term)

k D �
Lp∑
lD1

ml ln
(

1 C %kl

ml

)
C

Lp∑
lD1

ln 1F1

(
ml, 1;

�V0
kl�

2

4

)
�7.36�

Once again the first summation in (7.36) is a bias term, whereas the second
summation has a typical term that is a nonlinearly processed sample (at time �l)
of the cross-correlation modulus ykl�j�lj�. A receiver that implements a decision
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Figure 7.7. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected binary FSK over Rayleigh fading with an exponential PDP:
(a) υ D 1.0, Lp D 5; (b) υ D 2.0, Lp D 4. m D 1, M D 2.
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Figure 7.8. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected binary FSK over Rayleigh fading with an exponential PDP;
Lp D 4, varying υ, m D 1, M D 2.
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Figure 7.9. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected 4-ary FSK over Rayleigh fading with an exponential PDP;
υ D 1.0, varying Lp, m D 1, M D 4.
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Figure 7.10. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected binary FSK over Nakagami-m fading with an exponential
PDP; υ D 2.0, Lp D 4, varying m.

rule based on (7.36) would be similar to Fig. 7.4, where, however, the square-law
nonlinearity is replaced by the ln 1F1�Ð, Ð; Ð� nonlinearity and the bias is modified
accordingly.

To compare the behavior of the optimum and suboptimum receivers, Fig. 7.10
illustrates their performance as a function of the m parameter for υ D 2 and
Lp D 4. Here we observe that the difference between the suboptimum and
optimum performances increases with m (i.e., as the severity of the fading
decreases).

7.4.2 Two-Symbol Observation: Conventional Differentially Coherent
Detection

We assume here that in addition to the channel phases and amplitudes being
unknown, the channel is sufficiently slowly varying that these parameters can
be considered to be constant over a time interval that is at least two symbols in
duration. Furthermore, we consider only constant envelope modulations, namely,
M-PSK. For a purely AWGN channel, the optimum receiver has been shown
[8, App. 7A] to implement differentially coherent detection which for M-PSK
results in M-DPSK. What we seek here is the analogous optimum receiver when
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in addition to AWGN, fading with unknown amplitude is present on the received
signal. The derivation of this optimum receiver to be presented here follows the
development by Simon et al. [8, App. 7A].

We begin by rewriting (7.4) with integration limits corresponding to a 2Ts-
second observation, namely,

p
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Defining the individual symbol energies of the kth signal as

Eki D 1

2
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we obtain, analogous to (7.5),
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where now
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QRl�t C �l�QSŁ
k �t� dt �7.40�

Since we have assumed constant envelope M-PSK modulation, the kth complex
baseband signal can be expressed as9

QSk�t� D
√

Es

Ts
ej2

�i�
k , iTs � t � �i C 1�Ts, i D 0, 1 �7.41�

where Ek0 D Ek1 D Es (the energy per symbol) and 2�i�
k denotes the information

phase transmitted in the ith symbol interval of the kth signal and ranges over the

9 To avoid notational confusion with the channel fading phases, we use 2 (as opposed to � from
Chapter 3) to denote the transmitted phases.
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set ˇk D �2k � 1��/M, k D 1, 2, . . . ,M. Substituting (7.41) into (7.40), we can
rewrite (7.39) as
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where we have absorbed the constant term exp��2Es
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As in Section 7.3, we first need to average (7.42) over the uniformly distributed
statistics of the unknown channel phases. Proceeding as was done in (7.23), we
arrive at the result
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Next, we must average over the statistics of the unknown amplitudes.

7.4.2.1 Rayleigh Fading. Following steps analogous to those taken in
Section 7.4.1.1, we obtain
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with the equivalent decision metric (ignoring the lnK term)
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The decision rule based on the decision metric in (7.46) is to choose as the
transmitted signal that pair of phases 2�0�

k D ˇj0, 2
�1�
k D ˇj1 that results in the

largest k . We note that adding an arbitrary phase, say ˇ, to both 2�0�
k and 2�1�

k
does not affect the decision metric, and thus in accordance with the decision
rule above, the joint decision on 2�0�

k and 2�1�
k will be completely ambiguous. To

resolve this phase ambiguity, we observe that although the decisions on 2�0�
k and

2�1�
k can each be ambiguous with an arbitrary phase ˇ, the difference of these

two decisions is not ambiguous at all. Thus, an appropriate solution is to encode
the phase information as the difference between two successive transmitted
phases (i.e., employ differential phase encoding at the transmitter). This is
exactly the solution discussed in Section 3.5 for phase-ambiguity resolution on
the pure AWGN channel (see also Simon et al. [8, App. 7A]). Mathematically
speaking, we can set the arbitrary phase ˇ D �2�0�

k , in which case (7.46)
becomes

k D
Lp∑
lD1

%l

4Ts

∣∣∣∣
∫ TsC�l

�l

QRl�t�e
�j�2�0�

k Cˇ� dt C
∫ 2TsC�l

TsC�l

QRl�t�e
�j�2�1�

k Cˇ� dt

∣∣∣∣
2

D
Lp∑
lD1

%l

4Ts

∣∣∣∣
∫ TsC�l

�l

QRl�t� dt C
∫ 2TsC�l

TsC�l

QRl�t�e
�j�2�1�

k �2�0�
k � dt

∣∣∣∣
2

D
Lp∑
lD1

%l

4Ts

∣∣∣∣
∫ TsC�l

�l

QRl�t� dt C e�j2�1�
k

∫ 2TsC�l

TsC�l

QRl�t� dt

∣∣∣∣
2

�7.47�

where 2�i�
k

D2�i�
k � 2�i�1�

k represents the information phase corresponding to
the ith transmission interval, which ranges over the set of values ˇk D 2k�/M,
k D 0, 1, . . . ,M � 1. Expanding the squared magnitude in (7.47) and retaining
only terms that depend on the information phase 2�1�

k , we obtain (ignoring other
multiplicative constants)

k D
Lp∑
lD1

%l Ref QV0l QVŁ
1le

j2�1�
k g �7.48�

where

QVil
D
∫ �iC1�TsC�l

iTsC�l

QRl�t� dt, i D 0, 1 �7.49�

A receiver that bases its decision rule on the decision metric of (7.48) is illustrated
in Fig. 7.11. For a flat power delay profile and equal channel noise PSDs, the
metric of (7.48) reduces to that corresponding to optimum reception in a pure
AWGN environment (see Section 3.5).
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7.4.2.2 Nakagami-m Fading. By comparing the conditional probabilities of
(7.23) and (7.44) corresponding, respectively, to noncoherent and differentially
coherent detection, it is straightforward to show that for Nakagami-m fading, the
decision metric becomes

k D
Lp∑
lD1

ln 1F1�ml, 1;W2
kl/4� �7.50�

where

Wkl
D
√

Es

Nl

(
%l

ml

)[
1

Es

∣∣y�0�
kl ��l� C y�1�

kl ��l�
∣∣]

D
√

Es

Nl

(
%l

ml

)[
1p
EsTs

∣∣∣∣
∫ TsC�l

�l

QRl�t�e
�j2�0�

k dt C
∫ 2TsC�l

TsC�l

QRl�t�e
�j2�1�

k dt

∣∣∣∣
]

�7.51�
As for the Rayleigh case, the decision metric of (7.50) in combination with (7.51)
is ambiguous to an arbitrary phase shift ˇ. With differential phase encoding
employed at the transmitter, the unambiguous decision metric is still given by
(7.50) with Wkl now defined as

Wkl
D
√

Es

Nl

(
%l

ml

)(
1p
EsTs

∣∣ QV0l C e�j2�1�
k QV1l

∣∣)

D
√

Es

Nl

(
%l

ml

)[
1

EsTs

(j QV0lj2 C j QV1lj2 C 2 Re
{ QV0l QVŁ

1le
j2�1�

k
})]1/2

�7.52�

Note that because of the nonlinear postdetection processing via the ln 1F1�Ð, Ð; Ð�
function, the terms j QV0lj2 and j QV1lj2 cannot be ignored, nor can the other
multiplicative factors in (7.52), despite the fact that they are all indepen-
dent of k.

7.4.3 Ns-Symbol Observation: Multiple Symbol Differentially Coherent
Detection

In Ref. 10, the authors considered differential detection of M-PSK over an
AWGN channel based on an Ns-symbol �Ns > 2� observation of the received
signal. The optimum receiver (see Fig. 3.18) was derived and shown to yield
improved (monotonically with increasing Ns) performance relative to that
attainable with the conventional (two-symbol observation) M-DPSK receiver.
Our intent here is to generalize the results of Divsalar and Simon [10] (see also
Simon et al. [8, Sec. 7.2]) to the fading multichannel with unknown amplitudes.
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Clearly, for Ns > 2, the decision metric and associated receiver derived here
will reduce to those obtained in Section 7.4.2. Without going into great detail, it
should be immediately obvious that for an Ns-symbol observation, the conditional
probability of (7.44) generalizes to

p
(frl�t�gLp

lD1

∣∣sk�t�, f˛lgLp

lD1, f�lgLp

lD1

)

D K
Lp∏
lD1

exp

(
�˛2

lEs

Nl

)
I0

(
˛l

Nl

∣∣∣∣∣
Ns�1∑
nD0

y�n�
kl ��l�

∣∣∣∣∣
)

�7.53�

7.4.3.1 Rayleigh Fading. Averaging (7.53) over Rayleigh statistics for the
unknown amplitudes results in the generalization of the decision metric in (7.46),
namely,

k D
Lp∑
lD1

%l

4Ts

∣∣∣∣∣
Ns�1∑
nD0

∫ �nC1�TsC�l

nTsC�l

QRl�t�e
�j2�n�

k dt

∣∣∣∣∣
2

�7.54�

Using the same differential phase encoding rule as for the two-symbol observation
case to resolve the phase ambiguity in (7.54), the unambiguous form of this
decision metric becomes

k D
Lp∑
lD1

%l

4Ts

∣∣∣∣∣
Ns�1∑
nD0

e�j
∑n

iD0
2�i�

k

∫ �nC1�TsC�l

nTsC�l

QRl�t� dt

∣∣∣∣∣
2

�7.55�

where, by definition, 2�0�
k D 0. As before, expanding the squared magnitude and

retaining only terms that depend on the information phases, we obtain (ignoring
other multiplicative constants)

k D
Lp∑
lD1

%l Re




Ns�1∑
iD0

Ns�1∑
jD0

i<j

QVil QVŁ
jl exp

(
j

j∑
nDiC1

2�n�
k

)
 �7.56�

The decision rule based on the metric of (7.56) is to choose as the transmitted
signal that sequence of phases 2�i�

k D ˇji , i D 1, . . . , Ns � 1, that results in the
largest k . Once again note that for a flat power delay profile and equal noise
PSDs, the decision metric of (7.56) becomes equal to that discussed by Divsalar
and Simon [10] and Simon et al. [8, Sec. 7.2] for the fading-free AWGN channel.

7.4.3.2 Nakagami-m Fading. At this point it should be obvious to the reader
how to extend the results of Section 7.4.2.2 to the Ns-symbol observation case.
In particular, the decision metric of (7.50) applies, now with
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Wkl D
√

Es

Nl

(
%l

ml

)[
1p
EsTs

∣∣∣∣∣
Ns�1∑
nD0

QVnl exp

(
�j

n∑
iD0

2�i�
k

)∣∣∣∣∣
]

D
√

Es

Nl

(
%l

ml

)[
1

EsTs

∣∣∣∣∣
Ns�1∑
nD0

j QVnlj2

C 2 Re




Ns�1∑
iD0

Ns�1∑
jD0

i<j

QVil QVŁ
jl exp

(
j

j∑
nDiC1

2�n�
k

)

∣∣∣∣∣∣



1/2

�7.57�

As for the two-symbol observation case, (7.57) cannot be simplified by ignoring
the j QVnlj2 terms or any of the multiplicative constants.

7.5 CASE OF UNKNOWN AMPLITUDES, PHASES,
AND DELAYS

When all channel parameters are unknown, the conditional probability of (7.4)
must be averaged over the statistics of the amplitudes, phases, and delays, all
of which are assumed to be independent. Equivalently, since (7.23), (7.44), and
(7.53) already represent the average over the unknown i.i.d. uniformly distributed
phases, the desired likelihood functions can be obtained by averaging these
equations over the statistics of the unknown amplitudes, for example, Rayleigh,
Nakagami-m, and the unknown delays which, following Ref. 9, will be modeled
over the interval �A, B� as i.i.d. uniformly distributed random variables, that is,

p�l��l� D 1

B � A
, A � �l � B, l D 1, 2, . . . , Lp �7.58�

7.5.1 One-Symbol Observation: Noncoherent Detection

In Section 7.4.1 we derived likelihood functions and decision metrics for a one-
symbol observation conditioned on the delays being known. Here we simply
average these expressions over the i.i.d. uniform PDFs of (7.58) to arrive at the
optimum noncoherent receiver for fading channels with all parameters unknown.
In the most general case, the parameters that characterize the fading amplitude
PDFs (e.g., $l, ml) might depend on the delay �l. However, to simplify matters,
we shall assume, as in Ref. 9 that no such dependencies exist. This will enable us
more easily to derive suboptimum receiver structures based on approximations
to the optimum decision metrics.

7.5.1.1 Rayleigh Fading. Starting with (7.28), then averaging over the PDFs
in (7.58), results in the likelihood function
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p
(frl�t�gLp

lD1

∣∣sk�t�) D K
Lp∏
lD1

�1 C %kl�
�1
∫ B

A
exp
[

1

4EkNl

(
%kl

1 C %kl

)
jykl���j2

]
d�

�7.59�
where we have absorbed the constant �B � A��Lp in K. For the multipath fading
model proposed by Turin [6] with constant envelope signals, equal noise PSDs,
and a uniform power delay profile (as assumed in Ref. 9), (7.59) simplifies to

p�r�t�jsk�t�� D K

{∫ B

A
exp
[

1

4EsN0

(
%

1 C %

)
jyk���j2

]
d�

}Lp

�7.60�

where, now analogous to (7.6),

yk���
D
∫ TsC�l

�l

QR�t�QSŁ
k �t � �� dt �7.61�

and the constant �1 C %��Lp has been absorbed into K. Since the decision rule is
based on choosing the largest (with respect to k) of the likelihood functions in
(7.60), then since their integrands are always positive, it is sufficient to ignore
the exponent Lp and, keeping the same notation for convenience, redefine the
likelihoods as

p�r�t�jsk�t�� D K
∫ B

A
exp
[

1

4EsN0

(
%

1 C %

)
jyk���j2

]
d� �7.62�

To proceed further toward a simpler but suboptimum receiver, we must
approximate the integral in (7.62). Following the approach taken in Ref. 9,
the first step is to approximate the nonlinearity of the integrand (i.e., the
exponential) by its behavior for small arguments, namely, ex ' 1 C x, which
leads to a likelihood function [ignoring the constant term K�B � A� and all other
multiplicative constants]

p�r�t�jsk�t�� D
∫ B

A
jyk���j2 d� �7.63�

To evaluate the performance of a receiver that uses a decision rule based on
this likelihood function would require knowledge of the PDF of the integral in
(7.63). Even when the cross-correlation function yk��� is stationary and Gaussian,
obtaining this PDF is not possible. To circumvent this problem, we proceed to
the second step in the approximation, namely, to replace the integral by the
discrete (Riemann) sum

∑N
iD1 jyk��i�j2�, where the �i’s are equally spaced over

the interval �A, B�, with spacing � chosen equal to the correlation time of the
process yk���.10 When this is done, the suboptimal decision metric becomes (here

10 Such a sample spacing results in a set of independent complex-valued Gaussian RVs for
fyk��i�gNiD1.
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there is no need to take the natural logarithm of the likelihood function)

k D
N∑
iD1

jyk��i�j2 �7.64�

Comparing (7.64) with (7.33), which corresponds to the case of known delays,
we see that the two metrics are of identical form, the difference being in the
sampling instants and number of samples taken of the cross-correlation function.

7.5.1.2 Nakagami-m Fading. Starting with (7.28), then averaging over the
PDFs in (7.58) and assuming constant envelope signals, equal noise PSDs, and
Turin’s multipath fading model with i.i.d. fading channels, results in a likelihood
function analogous to (7.62), namely,

p�r�t�jsk�t�� D K
∫ B

A
1F1

(
m, 1; �4EsN0�

�1
(

%

m C %

)
jyk���j2

)
d� �7.65�

Once again, to obtain a simple but suboptimum receiver, we follow the approach
taken in Ref. 9 and approximate the nonlinearity of the integrand by its behavior
for small arguments, namely, 1F1�m, 1; x� ' 1 C mx, which, ignoring the constant
term K�B � A� and all other multiplicative constants, leads to a likelihood
function identical to (7.63), and using the second step of approximation, a
decision metric identical to (7.64). Hence, the suboptimal receiver for Nakagami-
m fading would be identical to that for Rayleigh fading.

7.5.2 Two-Symbol Observation: Conventional Differentially
Coherent Detection

By analogy with the results obtained in Section 7.4.2 and their relation to those in
Section 7.4.1, we can immediately deduce from the foregoing, in particular (7.64),
that for Rayleigh and Nakagami-m fading the suboptimum decision metric for
conventional differential coherent detection with all fading parameters unknown
becomes

k D
N∑
iD1

∣∣y�0�
k ��i� C y�1�

k ��i�
∣∣2 �7.66�

Again comparing (7.66) with (7.46), which corresponds to the case of known
delays, we see that the two metrics are of identical form, the difference being
in the sampling instants and number of samples taken of the cross-correlation
function. Hence, a receiver implemention based on the suboptimum decision
metric of (7.66) for unknown delays and Rayleigh or Nakagami-m fading would
be identical in structure to that based on the optimum decision of (7.46) for
Rayleigh fading and known delays.

At this point, extension of the two-symbol observation results to multiple
(more than two)-symbol observation differentially coherent detection should be
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obvious in light of the discussion in Section 7.4.3 and thus requires no further
development here.
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8

PERFORMANCE OF SINGLE
CHANNEL RECEIVERS

As alluded to in Chapters 4, 5, and 6, the alternative representations of the
Gaussian and Marcum Q-functions and other related functions expressed in
the desired form are the key mathematical tools for unifying evaluation of
the average error probability performance of digital communication systems
over the generalized fading channel. Before discussing the specific details of
these performance evaluations later in this chapter and the ones that follow,
we first present the appropriate expressions for evaluating the performance of
these systems over the AWGN. We present these results in two forms: (1) the
classical expression for average bit error probability (BEP) or symbol error
probability (SEP) as originally reported by the contributing author(s) and the
one most commonly understood and familiar to those working in the field,
and (2) the expression based on the alternative representations of the above-
mentioned functions given in Chapter 4. These expressions, together with the
special integrals developed in Chapter 5, then form the basis for evaluating
the performance of digital communication systems in a fading environment
modeled as a single transmission channel. Extension of these results to multiple
transmission channels and the accompanying multichannel (diversity) reception
is discussed in Chapter 9.

8.1 PERFORMANCE OVER THE AWGN CHANNEL

The average BEP and SEP performances over the AWGN channel of the various
modulation/detection schemes discussed in Chapter 3 are well documented in many
recent textbooks on digital communications [1]–[7]. Since this section of the
chapter is intended to serve as a prelude of what is yet to come, our intent here
is merely to review these classical results without derivation and then put them
in a form that will be particularly suitable for arriving at simple expressions for
performance over the generalized fading channel. The reader who is interested in
the details of the derivations is referred to the above-mentioned textbook references.
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8.1.1 Ideal Coherent Detection

Following the hierarchy of Chapter 3, we shall first consider the error probability
performance of digital communication systems that employ ideal coherent
detection. As mentioned in that chapter, such idealized performance can never
by obtained in practice; nevertheless, these results serve as a benchmark against
which the performance of realistic communications systems can be compared.

8.1.1.1 Multiple Amplitude-Shift-Keying or Multiple Amplitude Modu-
lation. Referring to the signal model in Section 3.1.1 and the accompanying
forms of the optimum receiver in Fig. 3.2, then in terms of the carrier amplitude
Ac, the SEP for symmetrical M-AM is given by

Ps�E	 D 2
(
M� 1

M

)
Q




√
2A2

cTs
N0


 �8.1	

where Q�Ð	 is the Gaussian Q-function defined in (4.1). Since the average symbol
energy Es is related to Ac by

Es D 1

M

M∑
lD1

�2l� 1 �M	2A2
cTs D A2

cTs
M2 � 1

3
�8.2	

then in terms of Es, the SEP becomes

Ps�E	 D 2
(
M� 1

M

)
Q

(√
6Es

N0�M2 � 1	

)
�8.3	

For binary AM �M D 2	, (8.3) becomes the BEP

Pb�E	 D Q

(√
2Eb
N0

)
�8.4	

In terms of the desired form of the Gaussian Q-function as given in (4.2), the
error probabilities of (8.2) and (8.4) become, respectively,

Ps�E	 D 2

�

M� 1

M

∫ �/2

0
exp

[
� Es
N0

3

�M2 � 1	 sin2 �

]
d� �8.5	

and

Pb�E	 D 1

�

∫ �/2

0
exp

(
�Eb
N0

1

sin2 �

)
d� �8.6	

To convert the M-ary symbol decisions to decisions on the information bits,
one must employ a bit-to-symbol mapping at the transmitter and then invert this
mapping at the output of the receiver of Fig. 3.2. For this purpose a Gray code
mapping is appropriate, which has the property that in transitioning from one
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symbol to an adjacent symbol, only one out of the log2M bits changes. Such
a mapping at the transmitter results in only a single bit error when an adjacent
symbol error is committed at the receiver. Although an exact computation of
average BEP is possible for any given M, it is most common to consider the
case of large symbol SNR �Es/N0	, for which the only significant symbol errors
are those that occur in adjacent signal levels. For this case, the average BEP is
approximated by [5, Chap. 4]

Pb�E	 ' Ps�E	

log2M
�8.7	

where Ps�E	 is determined from (8.3) and it is convenient to replace the symbol
energy by Es D Eb log2M. Clearly, for the binary case, (8.7) is in agreement
with (8.4) and is thus exact.

8.1.1.2 Quadrature Amplitude-Shift-Keying or Quadrature Amplitude
Modulation. Referring to the signal model in Section 3.1.2 and the accompa-
nying forms of the optimum receiver in Fig. 3.3, the SEP for square QAM can
be obtained immediately from the SEP of

p
M–AM by making the following

observation. Since a QAM modulation is composed of the quadrature combina-
tion of two

p
M–AM modulations each with half the total power, and since a

correct QAM decision is made only when a correct symbol decision is made
independently on each of these modulations, the probability of correct symbol
decision for QAM can be expressed as

Ps�C	

∣∣∣∣M�QAM
Es

D
[
Ps�C	

∣∣∣∣p
M�AM

Es/2

]2

�8.8	

or, equivalently in terms of the SEP,

Ps�E	

∣∣∣∣M�QAM
Es

D 1 �
[

1 � Ps�E	

∣∣∣∣p
M�AM

Es/2

]2

D 2Ps�E	

∣∣∣∣p
M�AM

Es/2

[
1 � 1

2Ps�E	

∣∣∣∣p
M�AM

Es/2

]
�8.9	

Substituting (8.3) into (8.9) gives the desired classical form of the SEP for QAM,
namely [5, Chap. 10],

Ps�E	 D 4

(p
M� 1p
M

)
Q

(√
3Es

N0�M� 1	

)[
1 �

(p
M� 1p
M

)
Q

(√
3Es

N0�M� 1	

)]

D 4

(p
M� 1p
M

)
Q

(√
3Es

N0�M� 1	

)
� 4

(p
M� 1p
M

)2

Q2

(√
3Es

N0�M� 1	

)
�8.10	
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For 4-QAM, (8.10) reduces to

Ps�E	 D 2Q

(√
Es
N0

)
� Q2

(√
Es
N0

)
�8.11	

Using the desired forms of the Gaussian Q-function and its square as given
by (4.2) and (4.9), respectively, in (8.10) and (8.11), we obtain

Ps�E	 D 4

�

(p
M� 1p
M

)∫ �/2

0
exp

[
�Es
N0

3

2�M� 1	 sin2 �

]
d�

� 4

�

(p
M� 1p
M

)2 ∫ �/4

0
exp

[
� Es
N0

3

2�M� 1	 sin2 �

]
d� �8.12	

and

Ps�E	 D 2

�

∫ �/2

0
exp

(
� ES

2N0

1

sin2 �

)
d� � 1

�

∫ �/4

0
exp

(
� ES

2N0

1

sin2 �

)
d�

�8.13	
Once again using a Gray code (now in two dimensions) to map the information

bits into the QAM symbols, it is possible (but tedious) to obtain an exact closed-
form result for the average bit error probability for arbitrary M.1 One method for
circumventing this difficulty is to use the approximate (valid for large-symbol
SNR) relation between bit and symbol error probability of (8.7) together with
(8.13) for the latter. However, as we shall see later in this chapter, to obtain the
average BEP in the presence of fading wherein the instantaneous SNR can vary
between zero and infinity, it is essential to have a BEP expression for AWGN that
is valid for low as well as high SNR. Recently, using a signal space approach, Lu
et al. [8] derived approximate expressions for the BEP of QAM andM-PSK (to be
discussed next) in AWGN, which have the above-mentioned desirable properties,
namely, they are quite accurate at both low and high SNR, and furthermore, are
valid for all M. In particular, for QAM it is shown in Ref. 8 that

Pb�E	 ' 4

(p
M� 1p
M

)(
1

log2M

) p
M/2∑
iD1

Q

(
�2i� 1	

√
3Eb log2M

N0�M� 1	

)
�8.14	

We note that, for large Eb/N0, the first term in the summation of (8.14) is
dominant in which case this equation simplifies to

Pb�E	 ' 4

(p
M� 1p
M

)(
1

log2M

)
Q

(√
3Eb log2M

N0�M� 1	

)
�8.15	

1 Two examples of this exact BEP computation corresponding to M D 16 and M D 64 can be found
in Eqs. (10.36a) and (10.36b), respectively, of Ref. 5.
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Comparing (8.15) with (8.10) after ignoring the Q2�Ð	 term (valid for large
Eb/N0), we observe that this is exactly the result that would be obtained
by applying the relation between the bit and symbol error probability as
given in (8.7). Thus, we conclude that the remaining terms of the summation
in (8.14) account for what is needed to make the expression accurate at
low Eb/N0.

8.1.1.3 M-ary Phase-Shift-Keying. Referring to the signal model in Sec-
tion 3.1.3 and the accompanying optimum receiver in Fig. 3.4, then equating the
carrier amplitude with the average symbol energy (the same for all symbols since
M-PSK is a constant envelope modulation, i.e., Ac D p

Es/Ts), the classical form
for the SEP of M-PSK is given by [5, Eq. (4.130)]

Ps�E	 D 1 � 2

�

∫ 1

0
exp


�

(
u�

√
Es
N0

)2[∫ u tan��/M	

0
exp��v2	 dv

]
du

�8.16	
which after some manipulation can be rewritten in terms of the Gaussian
Q-function as

Ps�E	 D Q

(√
2Es
N0

)

C 2p
�

∫ 1

0
exp


�

(
u�

√
Es
N0

)2Q (p
2u tan

�

M

)
du �8.17	

From the form in (8.17) we immediately see that for binary PSK �M D 2	,
the second term evaluates to zero [since Q�1	 D 0] and hence the bit error
probability is given by

Pb�E	 D Q

(√
2Eb
N0

)
�8.18	

which agrees, as it should, with (8.4) corresponding to binary AM.
Another special case of (8.16) that yields a closed-form solution corresponds

to QPSK �M D 4	. Here the average SEP is given by

Ps�E	 D 2Q

(√
Es
N0

)
� Q2

(√
Es
N0

)
�8.19	

which agrees with (8.11) and assuming a Gray code mapping of bits to symbols,
the bit error probability is also given by (8.18). Thus, we see that the BEP of
BPSK and QPSK are identical, the latter having the advantage of being half the
bandwidth of the former.
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If one now applies the desired form of the Gaussian Q-function to (8.17), then
after considerable manipulation, the following result is obtained:

Ps�E	 D 1

�

∫ �/2

0
exp

(
� Es
N0

1

sin2 �

)
d� C 2

�

∫ �/2

0
exp

[
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N0

tan2��/M	

tan2��/M	C sin2 �

]
d�

� 2

�2

∫ �/2

0

∫ �/2

0
exp

[
�Es
N0

tan2��/M	C sin2 �/ sin2 �

tan2��/M	C sin2 �

]
d� d� �8.20	

Even though (8.20) has the desired form of finite integration limits that are
independent of Es/N0 and integrands that are exponential in Es/N0, it does
contain a term with a double integral, which leaves a bit to be desired. Fortunately,
Pawula et al. [9] were able to simplify the symbol error probability analysis of
M-PSK by considering the more general case of the distribution of the angle
between two vectors when the variance of the noise components perturbing each
vector are in general unequal. Although this analysis was directly applicable
to differentially coherent detection of M-PSK, in the degenerate case where
one of the two vectors is noise free, the M-DPSK problem becomes the
coherent M-PSK problem and the symbol error probability is given by the single
integral

Ps�E	 D 1

�

∫ �/2��/M

��/2
exp

(
� Es
N0

gPSK

sin2 �

)
d�, gPSK D sin2 �

M
�8.21	

Many years later Craig [10] arrived at a similar result as a special case
of a generic method for evaluating the average error probability for arbitrary
two-dimensional modulations transmitted over the AWGN channel. This method
defined the origin of coordinates for each decision region by the associated signal
vector as opposed to using a fixed coordinate system origin for all decision
regions derived from the received vector . This shift in vector-space coordinate
systems allowed the integrand of the two-dimensional integral describing the
conditional (on the transmitted signal) probability of error to be independent of
the transmitted signal. For the particular case of coherently detected M-PSK,
Craig [10] obtained the average SEP as

Ps�E	 D 1

�

∫ �M�1	�/M

0
exp

(
� Es
N0

gPSK

sin2 �

)
d� �8.22	

which is easily shown to be equivalent to (8.21). Note, however, that for M D 2
(BPSK), replacing � by �� in (8.20) and letting Es D Eb must yield (8.18).
Equating the two results one immediately obtains the desired form of the Gaussian
Q-function as in (4.2), which is also obtained from equating (8.18) with (8.22)
under the same conditions.
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To obtain a quick assessment of the error probability performance of a
particular modulation/detection scheme and at the same time enable a simple
comparison of its performance with that of other modulation/detection schemes,
simple upper bounds on average SEP are quite useful, especially if they
can be obtained in closed form. Furthermore, when further integrations (e.g.,
statistical averages) are necessary over the SNR variable, as is the case
for fading channels, these bounds have even more significance in terms of
coming up with simple answers. The form of Ps�E	 in (8.22) lends itself
nicely to the above-mentioned purpose. It is straightforward to show that
over the interval of integration in (8.22), the function f��	 D 1/ sin2 � has
a single minimum which occurs at � D �/2 and corresponds to f��/2	 D 1.
Using this in the argument of the exponential in (8.22) establishes the
inequality

exp
(

� Es
N0

gPSK

sin2 �

)
� exp

(
�Es
N0
gPSK

)
�8.23	

which when used in the integrand of this same equation together with gPSK D
sin2 �/M leads to the simple (no integration) upper bound

Ps�E	 � M� 1

M
exp

(
� Es
N0

sin2 �

M

)
�8.24	

A well-known union bound for the SEP of coherent M-PSK is (e.g., Ref. 11,
Prob. 5.2)

Ps�E	 � 2Q

(√
2Es
N0

sin
�

M

)
�8.25	

which applying the Chernoff bound to the Gaussian Q-function results in the
union–Chernoff bound

Ps�E	 � exp
(

� Es
N0

sin2 �

M

)
�8.26	

Comparing (8.24) with (8.26), we observe that for any fixed M, the former is
slightly tighter than the latter, the difference between the two becoming smaller
as M increases. Futhermore, in the limit of large SNR, all three upper bounds
[i.e., (8.24), (8.25) and (8.26)] become asymptotically tight with respect to the
exact result as given by (8.22) (see Fig. 8.1).

A method for determining the exact BEP of M-PSK using a Gray code bit-
to-symbol mapping2 was first discovered by Lee [13] and is also discussed by

2 Extension of these results to arbitrary bit-to-symbol mappings (e.g., natural binary and folded binary
mappings) was considered by Irshid and Salous [12].
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Figure 8.1. Comparison of three upper bounds on the symbol error probability of coherent
M-PSK.

Simon et al. [5, pp. 211–212]. This method requires evaluating the probability
that for a given transmitted phase, the received signal vector falls in each decision
region (wedge of 2�/M radians centered around each of the signal points) within
the circle. These probabilities, denoted by Pk, k D 0, 1, 2, . . . ,M� 1, are given
in the classical form [5, Eq. (4.198a)]

Pk D 1

�

∫ 1

0
exp


�

(
u�

√
Es
N0

)2[∫ u tan[�2kC1	�/M]

u tan[�2k�1	�/M]
exp��v2	 dv

]
du,

k D 0, 1, 2, . . . ,M� 1 �8.27	

where the index k denotes the kth decision away from the one corresponding to
the transmitted phase. [Note that (8.27) evaluated at k D 0 corresponds to the
probability of the received signal vector falling in the correct decision region,
i.e., the 2�/M wedge around the transmitted phase, which would then be the
probability of a correct decision in agreement with 1 minus the symbol error
probability of (8.16).]
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In the same manner that (8.17) was derived from (8.16), the probabilities in
(8.27) can be expressed in terms of the Gaussian Q-function. In particular,3

Pk D 1p
�

∫ 1

0
exp


�

(
u�

√
Es
N0

)2 [
Q

(p
2u tan

[
�2k � 1	

�

M

])

� Q
(p

2u tan
[
�2k C 1	

�

M

])]
du �8.28	

The desired form of the Gaussian Q-function can be applied to (8.28). However,
even though the resulting expression will be in the form of a single integral
with finite �0, �/2	 limits, the integrand itself will still involve Gaussian Q-
functions. Fortunately, the probabilities in (8.27) can be expressed as single
integrals which are already in the desired form and do not involve Gaussian
Q-functions. Analogous to (8.22), these probabilities can be obtained as [5,
Eq. (4.198b)]

Pk D 1

2�

∫ ��1��2k�1	/M	

0
exp

{
�Es
N0

sin2[�2k � 1	�]/M

sin2 �

}
d�

� 1

2�

∫ ��1��2kC1	/M	

0
exp

{
� Es
N0

sin2[�2k C 1	�]/M

sin2 �

}
d� �8.29	

Having the set of probabilities Pk, k D 0, 1, 2, . . . ,M� 1, in the desired form,
we can now express the exact BEP of M-PSK in a similar desired form using the
results of Lee [13]. In particular, the following results are obtained for M D 4,
8, and 16:

Pb�E	 D




1

2
�P1 C 2P2 C P3	, M D 4

1

3
�P1 C 2P2 C P3 C 2P4 C 3P5 C 2P6 C P7	, M D 8

1

2

(
8∑
kD1

Pk C
5∑
kD2

Pk C P5 C 2P6 C P7

)
, M D 16

�8.30	

For M D 4 it is straightfoward to show that the result in (8.30) agrees with that
in (8.18).

Although the approach of Lee [13] gives exact BEP results, it suffers from the
fact that an explicit expression in terms of the Pk’s of (8.29) must be obtained
for each value of M. A simple solution around this difficulty is to again use the

3 These probabilities were denoted by Sk, k D 0, 1, . . . ,M� 1, and given in this form by Lee [13],
who also observed them to have the symmetry property Sm D SM�m,m D �M/2	C 1, . . . ,M� 1.



202 PERFORMANCE OF SINGLE CHANNEL RECEIVERS

approximate (valid for large symbol SNR) relation between bit and symbol error
probability of (8.7) together now with (8.22) for the latter. However, as discussed
for QAM, such an approximation is not useful for evaluating average BEP in
the presence of fading since in this situation the instantaneous SNR can vary
between zero and infinity. Thus, once again we turn to the results of Lu et al.
[8], which give an approximate expression for the BEP of M-PSK in AWGN
that is quite accurate at both low and high SNR and furthermore is valid for all
M. In particular, for M-PSK, it is shown in Ref. 8 that

Pb�E	 ' 2

max�log2M, 2	

max�M/4,1	∑
iD1

Q

(√
2Eb log2M

N0
sin

�2i� 1	�

M

)
�8.31	

Here again for large Eb/N0 and M > 4, the first term in the summation of (8.31)
is dominant, in which case this equation simplifies to

Pb�E	 ' 2

log2M
Q

(√
2Eb log2M

N0
sin

�

M

)
�8.32	

which is precisely what would be obtained by applying the relation between
the bit and symbol error probability as given in (8.7), using (8.25) for the
latter. Thus, once again we conclude that the remaining terms of the summation
in (8.31) account for what is needed to make the expression accurate at low
Eb/N0.

8.1.1.4 Differentially Encoded M-ary Phase-Shift-Keying and p/4-
QPSK. When differential phase encoding is applied to the transmitted M-PSK
modulation but coherent detection is still used at the receiver, the evaluation
of average SEP is a bit more complex than that considered in the preceding
section. Since for differential phase encoding a correct decision on the information
phase for the nth symbol interval will occur if both the nth and the (n� 1)st
received signal vectors fall k decision regions away from the correct one,
k D 0, 1, . . . ,M� 1, then since these two adjacent receptions are independent,
the probability of this occurring is

Ps�C	 D
M�1∑
kD0

P2
k �8.33	

independent of the particular value of the nth information phase. Thus, the
average symbol error probability for coherently detected, differentially encoded
M-PSK is

Ps�E	 D 1 � Ps�C	 D 1 �
M�1∑
kD0

P2
k �8.34	
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which can be expressed in terms of the average SEP for M-PSK without
differential encoding [i.e., Ps�E	jM�PSK of (8.16)] as [5, Eq. (4.200)]

Ps�E	 D 1 �
[
1 � Ps�E	

∣∣
M�PSK

]2 �
M�1∑
kD1

P2
k

D 2Ps�E	
∣∣
M�PSK �

[
Ps�E	

∣∣
M�PSK

]2 �
M�1∑
kD1

P2
k �8.35	

Using (8.22) and (8.29) in (8.35), all terms involve only single integrals with
finite integration limits that are independent of Es/N0 and integrands that are
exponential in Es/N0. However, the fact that the second and third terms of
(8.35) require that these integrals be squared still poses difficulties in terms of a
simple extension of these results to the fading channel.

Two special cases of (8.35) are of interest. For coherent detection of
differentially encoded BPSK, (8.35) together with (8.18) reduces to

Pb�E	 D 2Pb�E	
∣∣
BPSK � 2

[
Pb�E	
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BPSK

]2

D 2Q

(√
2Eb
N0

)
� 2Q2

(√
2Eb
N0

)
�8.36	

Since a desired form of the square of the Gaussian Q-function exists in (4.9),
then (8.36) has the desired form
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�8.37	
For differentially encoded QPSK, (8.35) simplifies to

Ps�E	 D 4Q

(√
Es
N0

)
� 8Q2

(√
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N0

)
C 8Q3

(√
Es
N0

)
� 4Q4

(√
Es
N0

)
�8.38	

Unfortunately, this special case cannot be put in the desired form due to the
lack of such forms for the third and fourth powers of the Gaussian Q-function.
Nevertheless, as we shall see shortly, it will still be possible obtain finite-
limit single-integral expressions for the average error probability performance
of differentially encoded QPSK in Rayleigh and Nakagami-m fading by making
use of the alternative form of the Gaussian Q-function and the integrals developed
in Section 5.4.3.

Finally, since as pointed out in Section 3.1.4.2, �/4-QPSK is a particular form
of differentially encoded QPSK wherein the information phases are chosen to
range over the set ˇi D �/4, 3�/4, 5�/4, 7�/4 instead of the conventional
ˇi D 0, �/2, �, 3�/2, then since the receiver performance is independent of the
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choice of the information symbol set, coherently detected �/4-QPSK transmitted
over a linear AWGN channel is also characterized by (8.38).

8.1.1.5 Offset QPSK or Staggered QPSK. Referring to the signal model in
Section 3.1.5 and the accompanying optimum receiver in Fig. 3.7, then noting
the similarity of this receiver to the conventional QPSK receiver in Fig. 3.6, the
classical form for the BEP of OQPSK is also given by (8.16). Stated another
way, since in accordance with Fig. 3.7 independent decisions are made on the
I and Q data bits, the time offset of these two channels has no effect on these
decisions and hence on a linear AWGN channel with ideal coherent detection at
the receiver, OQPSK has the same BEP performance as QPSK and also BPSK.
The differences in performance between these three modulations comes about
when the carrier demodulation is nonideal, as will be discussed shortly.

8.1.1.6 M-ary Frequency-Shift-Keying. Consider first the case of orthog-
onal signaling using the M-FSK modulation described by the signal model
in Section 3.1.6 and the receiver of Fig. 3.8. Assuming that the transmitted
frequency in the nth symbol interval, fn, is equal to !l D �2l� 1 �M	f/2,
the real parts of the integrate-and-dump (I&D) outputs, Qynk, k D 1, 2, . . . ,M, as
given by (3.25) are independent, identically distributed (i.i.d.) Gaussian random
variables with means as in (3.25) and variance #2

n D N0Ts/2. The probability of
a correct symbol decision is the probability that all Ref Qynkg, k 6D l, are less than
Ref Qynlg. Thus, letting Ac D p

Es/Ts and denoting Ref Qynkg by znk , the probability
of symbol error is given by [5, Eq. (4.92)]
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1√
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n
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[
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EsTs	2

2#2
n

]
dznl �8.39	

or in terms of the Gaussian Q-function,

Ps�E	 D 1 �
∫ 1

�1

[
Q

(
�q �

√
2Es
N0

)]M�1
1p
2�

exp
(

�q
2

2

)
dq �8.40	

The corresponding bit error probability is given by [5, Eq. (4.96)]

Pb�E	 D 2k�1

2k � 1
Ps�E	, k D log2M �8.41	

Unfortunately, for arbitrary M, (8.40) cannot be put in the desired form by
using the form of the Gaussian Q-function in (4.2). The special case of binary
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orthogonal FSK �M D 2	, however, does have a simple form, namely,

Pb�E	 D Q

(√
Eb
N0

)
�8.42	

which can be put in the desired form,
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sin2 �

)
d� �8.43	

Another M-FSK case whose error probability performance can be put into the
desired form corresponds to binary nonorthogonal FSK with cross-correlation
given by (3.27). In particular, the BEP for such a modulation is given by4
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sin2 �

)
d� �8.44	

where, as before, h D fTb is the frequency-modulation index. The minimum
BEP is achieved when h D 0.715 (the value of h that maximizes the argument
of the Gaussian Q-function), resulting in
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which is often approximated by
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)
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�8.46	

8.1.1.7 Minimum-Shift-Keying. In Section 3.1.7 it was demonstrated that
MSK was equivalent to pulse-shaped OQPSK, where the pulse shape was
sinusoidal [see (3.33) and (3.34)]. Ignoring the implicit differential encoding at
the transmitter (i.e., assuming that we are dealing with precoded MSK), the BEP
of the receiver implemented as the one that’s optimum for pulse-shaped OQPSK
(e.g., Fig. 3.12) is independent of the shape of the pulse and is thus given by
(8.18). In summary, the receivers for binary AM, BPSK, QPSK, OQPSK, and
MSK all have identical BEP performance.

4 This is a special case of the BEP for coherent detection of binary signals with arbitrary cross-
correlation �1 � ' � 1, which is given by Pb�E	 D Q�

p
Eb�1 � '	/N0	.
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8.1.2 Nonideal Coherent Detection

We saw in the preceding section that many of the ideal coherent detection systems
had identical error probability performances. In a practical system where the
demodulation reference is nonideal (see Section 3.2), the performances of these
systems whose receivers are designed on the basis of ideal coherent detection
will differ from one another. In this section we present the results that enable
one to assess these differences.

We begin with the simplest case of a BPSK system whose receiver has
an imperfect carrier demodulation reference obtained from a Costas loop. The
average BEP performance of such a BPSK system is given by [14]5

Pb�E	 D
∫ �/2

��/2
Pb�E;�c	p��c	 d�c �8.47	

where

Pb�E;�c	 D Q

(√
2Eb
N0

cos�c

)
�8.48	

is the conditional (on the loop phase error �c) BEP and for a Costas loop that
tracks the doubled phase error process

p��c	 D exp�'eq cos 2�c	

�I0�'eq	
, 0 � j�cj � �

2
�8.49	

is the phase error PDF in Tikhonov form [15]. Also, in (8.49),

'eq D 'cSL
4

�8.50	

is the equivalent loop SNR with 'c D �Eb/Tb	/N0BL (BL is the single-sided loop
noise bandwidth) the loop SNR of a phase-locked loop (PLL) and

SL D 1

1 C 1/�2Eb/N0	
�8.51	

is called the squaring loss assuming ideal I&D arm filters for the Costas loop.
Substituting (8.48) and (8.49) in (8.47) gives the classical result

Pb�E	 D
∫ �/2

��/2
Q

(√
2Eb
N0

cos�c

)
exp�'eq cos 2�c	

�I0�'eq	
d�c �8.52	

which ordinarily is evaluated by numerical integration.

5 This result assumes that the 180° phase ambiguity associated with the Costas loop is perfectly
resolved. Methods for accomplishing this are beyond the scope of this discussion.
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The evaluation of (8.52) can be simplified a bit by using the desired form
of the Gaussian Q-function. In particular, using (4.2) in (8.52), we obtain the
following development:

Pb�E	 D 1

�2I0�'eq	

∫ �/2

��/2

∫ �/2

0
exp

(
� Eb
N0 sin2 �

cos2 �c

)
ð exp�'eq cos 2�c	 d�c d�

D 1

�2I0�'eq	

∫ �/2

��/2

∫ �/2

0
exp

(
� Eb

2N0 sin2 �
�1 C cos 2�c	

)
ð exp�'eq cos 2�c	 d� d�c

D 1

�2I0�'eq	

∫ �/2

0
exp

(
� Eb

2N0 sin2 �

)

ð
∫ �/2

��/2
exp

{(
� Eb

2N0 sin2 �
C 'eq

)
cos 2�c

}
d�c d�

D 1

2�2I0�'eq	

∫ �/2

0
exp

(
� Eb

2N0 sin2 �

)

ð
∫ �

��
exp

{(
� Eb

2N0 sin2 �
C 'eq

)
cosc

}
dc d� �8.53	

Finally, recognizing that the integral on c is in the form of a modified Bessel
function of the first kind, we get the final desired result:

Pb�E	 D 1

�

∫ �/2

0
exp

(
� Eb

2N0 sin2 �

)
I0���Eb/2N0 sin2 �	C 'eq	

I0�'eq	
d� �8.54	

The form of (8.54) is interesting in that the Gaussian Q-function needed in the
integrand of (8.52) has been replaced by a modified Bessel function with an
argument related to both the equivalent loop SNR ('eq) and the detection SNR
(Eb/N0).

For QPSK and an imperfect carrier demodulation reference obtained from
a four-phase Costas loop with I&D arm filters, the appropriate expressions
analogous to (8.47) through (8.52) are [14]

Pb�E	 D
∫ �/4

��/4
Pb�E;�c	p��c	 d�c �8.55	

where

Pb�E; �c	 D 1

2
Q

(√
2Eb
N0

�cos�c � sin�c	

)
C 1

2
Q

(√
2Eb
N0

�cos�c C sin�c	

)
�8.56	
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and

p��c	 D 2 exp�'eq cos 4�c	

�I0�'eq	
, 0 � j�cj � �

4
�8.57	

with

'eq D 'cSL
16

�8.58	

and

SL D 1

1 C �9/4	/�Eb/N0	C �3/2	/�Eb/N0	2 C �3/16	/�Eb/N0	3
�8.59	

Unfortunately, substitution of (8.56) and (8.57) in (8.55) and using the desired
form of the Gaussian Q-function does not provide for any further simplification,
as before.

Consider now the additive Gaussian noise reference signal model of (3.39) as
suggested by Fitz [16] to be characteristic of a large class of phase estimation
techniques used to evaluate average error probability performance at moderate
to high SNR. When used to demodulate the received signal in (3.38), the
decision statistic for the nth symbol becomes equal to Ref Qynk QcŁ

r g, which is in
the form of the real part of the product of two nonzero mean complex Gaussian
random variables. The probability of error associated with such a generic decision
statistic is discussed in Appendix 8A. When applied to BPSK modulation with
Ar D Ac�S1p D S2p	 and assuming that the signal and reference noises QNnk and
QNr have equal power and are uncorrelated, then from (8A.5) together with (8A.7)
and, in addition, �1p D �2p, the error probability becomes

Pb�E	 D 1
2 [1 � Q1�

p
b,

p
a	C Q1�

p
a,

p
b	] �8.60	

where

a D Eb
2N0

�
p
G� 1	2, b D Eb

2N0
�
p
GC 1	2 �8.61	

To tie the additive Gaussian noise reference and the Tikhonov-distributed
phase error models together, we assume a phase reference generated by a PLL
whose input has a signal power equal to that of the data-modulated (BPSK)
signal. In this case, the SNR gain G of the former model is related to the loop
bandwidth–bit time product BLT of the PLL by G D 1/BLTb [16].6 Using this
equivalence, Fitz [16] shows that the error probability computed from (8.52) or
any of its subsequent equivalent forms is virtually identical to that computed
from the combination of (8.60) and (8.61).

6 Equivalently, the loop SNR 'c, is related to the SNR gain G by 'c
DP/N0BL D �1/BLTb	

ð �PTb/N0	 D GEb/N0.
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For QPSK modulation, the reference signal has twice the power of the signal in
either the I or Q components [i.e., Ar D p

2Ac�S1p D 2S2p	]. Thus, detecting each
of these components independently according to the decision variables Ref Qynk QcŁ

r g
and Imf Qynk QcŁ

r g, the two bit error probabilities will be equal, and hence the average
bit error probability can again be obtained from (8A.5) together with (8A.7) using
the same assumptions as above for the signal and reference noises. The result is
given by (8.60), now with

a D Eb
2N0

�
p

2G� 1	2, b D Eb
2N0

�
p

2GC 1	2 �8.62	

Similar comparisons of average error probability computed from (8.55) through
(8.57) and (8.60) together with (8.62) show excellent agreement [16].

Using a similar approach, the average BEP for offset QPSK and MSK can
be computed as an arithmetic average of two terms in the form of (8.60). The
reason for the two terms is that one them corresponds to decisions made on
one (say, I) of the channels when during (in the middle of) the same detection
interval there is a symbol transition on the other (say, Q) channel, while the
other term corresponds to decisions made on one of the channels when during
the same detection interval there is no symbol transition on the other channel. In
particular,

Pb�E	 D 1
4 [1 � Q1�

√
b1,

p
a1	C Q1�

p
a1,

√
b1	]

C 1
4 [1 � Q1�

√
b2,

p
a2	C Q1�

p
a2,

√
b2	] �8.63	

where the appropriate values of the parameters a and b are as follows:

a1 D Eb
2N0

�
p

2G� 1	2, b1 D Eb
2N0

�
p

2GC 1	2

a2 D Eb
N0
�GC 1 �

p
2G	, b2 D Eb

N0
�GC 1 C

p
2G	 �OQPSK	

�8.64	

and

a1 D Eb
2N0

�
p

2G� 1	2, b1 D Eb
2N0

�
p

2GC 1	2

�8.65	

a2 D Eb
N0

(
GC �2 C 4

2�2
�

p
2G

)
, b2 D Eb

N0

(
GC �2 C 4

2�2
C

p
2G

)
�MSK	

8.1.3 Noncoherent Detection

In Section 3.3 the decision variables and the accompanying optimum receiver
for noncoherent detection of an equal energy M-ary signaling set were presented
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[see (3.40) and Fig. 3.13]. It was concluded there that the most logical choice
of modulation for this type of detection is M-FSK. Based on the matched
filter outputs described by (3.41) and the assumption of orthogonal signals
(corresponding to a minimum frequency spacing fmin D 1/Ts, which is twice
that for coherent detection), the SEP is given by

Ps�E	 D
M�1∑
mD1

��1	mC1
(
M� 1
m

)
1

m C 1
exp

[
� m

m C 1

(
Es
N0

)]
�8.66	

and the corresponding BEP is obtained from (8.66) by the relation

Pb�E	 D 1

2

(
M

M� 1

)
Ps�E	 �8.67	

For noncoherent detection of binary FSK, (8.66) reduces to

Pb�E	 D 1

2
exp

(
� Eb

2N0

)
�8.68	

The performance of nonorthogonal M-FSK is considerably more complicated
to evaluate (see Simon et al. [5, Sec. 5.2.2]). For the binary nonorthogonal
case, however, the result can be expressed in terms of the first-order Marcum
Q-function as [17]

Pb�E	 D Q1�
p
a,

p
b	� 1

2
exp

(
aC b

2

)
I0�

p
ab	 �8.69	

which is equivalent to (8.60) and where

a D Eb
2N0

�1 �
√

1 � '2	, b D Eb
2N0

�1 C
√

1 � '2	 �8.70	

and ' is the correlation coefficient of the two signals. For ' D 0 (orthogonal
signaling), the parameters a and b become a D 0 and b D Eb/N0, and using the
property of the Marcum Q-function in (4.22), we immediately obtain (8.68).

8.1.4 Partially Coherent Detection

8.1.4.1 Conventional Detection: One-Symbol Observation. In Sec-
tion 3.4.1 the decision variables and the accompanying optimum receiver for
partially coherent detection of an equal-energyM-ary signaling set were presented
[see (3.43) and Fig. 3.14]. We observed there that for M-PSK modulation
(including BPSK), the noncoherent term in the decision variables was indepen-
dent of the information, and thus the decision is based entirely on the coherent
term. Hence, the performance of Fig. 3.14 for partially coherent detection of
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M-PSK would be equal to that of nonideal coherent detection of this same modu-
lation, assuming a demodulation reference that produces a Tikhonov PDF for the
phase error. For example, for BPSK, the performance would be given by

Pb�E	 D
∫ �

��
Q

(√
2Eb
N0

cos�c

)
exp�'c cos�c	

2�I0�'c	
d�c �8.71	

For orthogonal M-FSK modulation, both the noncoherent and coherent terms
of the decision variables contribute to the decision. The resulting SEP is given by

Ps�E	 D 1 �
∫ �

��

∫ 1

0
y exp

(
�c

2
1 C y2

2

)
I0�c1y	

ð [1 � Q1�c2, y	]
M�1 exp�'c cos�c	

2�I0�'c	
dy d�c �8.72	

where

c2
1 D 2Es

N0
C '2

c

2Es/N0
C 2'c cos�c

c2
2 D '2

c

2Es/N0

�8.73	

For the binary case, (8.72) can be expressed as

Pb�E	 D
∫ �

��
P�E;�c	

exp�'c cos�c	

2�I0�'c	
d�c �8.74	

where P�E;�c	 is in the form of (8.69), now with

a D '2
c

4Eb/N0
, b D 4�Eb/N0	2 C '2

c C 4�Eb/N0	'c cos�c
2Eb/N0

�8.75	

Finally, for nonorthogonal BFSK, the BEP is once again given by (8.74) with
P�E;�c	 in the form of (8.69) and

a D 1
2 �˛

2
0 C ˇ2

0 C 2˛0ˇ0 cos�c	, b D 1
2 �˛

2
1 C ˇ2

1 C 2˛1ˇ1 cos�c	 �8.76	

with

˛0 D ˛1 D 'c√
1 � '2

√
1 � '

2Eb/N0

ˇ0 D
√
�1 C

√
1 � '2	�Eb/N0	

ˇ1 D �
√
�1 �

√
1 � '2	�Eb/N0	

�8.77	
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8.1.4.2 Multiple-Symbol Detection. Because of the memory introduced into
the modulation by virtue of the fact that the carrier phase error �c is constant
over many symbol intervals, the performance of conventional partially coherent
detection schemes can be improved by increasing the observation interval beyond
the duration of one symbol. This was pointed out in Section 3.4.2, and the optimum
receiver for multiple-symbol partially coherent detection over the AWGN was
shown in Fig. 3.15. It is of interest to specify the performance of that receiver in
terms of the number of symbols, Ns, associated with the observation. Unlike the
conventional case, the BEP for multiple-symbol detection cannot be obtained in
closed form. However, based on block-by-block detection ofNs-symbol sequences,
an upper union bound on the average BEP can be determined as follows.

For M-PSK, we first rewrite the decision variables of (3.46) in the form

znk D
∣∣∣∣∣
Ns�1∑
iD0

1

N0
Qyn�i,ki C 'c

2

∣∣∣∣∣
2

, ki D 1, 2, . . . ,M �8.78	

where the addition of the constant �'c/2	2 to znk in (3.46) has no bearing on
the decision. Also since choosing the largest magnitude squared is equivalent to
choosing the largest magnitude, we can consider instead the decision variables

znk D
∣∣∣∣∣
Ns�1∑
iD0

1

N0
Qyn�i,ki C 'c

2

∣∣∣∣∣ , ki D 1, 2, . . . ,M �8.79	

For any particular transmitted phase sequence, say b D �ˇk0 , ˇk1 , . . . , ˇkNs�1	,
znk is a Rician random variable. Thus, the probability of choosing as the decision
another phase sequence, say b̂ D � Ǒ k0 , Ǒ k1, . . . , Ǒ kNs�1	, which is equal to the
probability that the corresponding decision variable, say Oznk, is greater than znk,
is statistically characterized by the probability of one Rican random variable
exceeding another. Since the decision is made strictly between two sequences,
the resulting probability is referred to as the pairwise error probability. Based
on the characterization above, the pairwise error probability can be determined
using the results pertinent to the noncoherent detection problem in Appendix 8A.
In particular, it can be shown [5, Sec. 6.4.1] that this pairwise error probability
(conditioned on the carrier phase error �c) is given by the generic form of (8A.5)
with A D 0, namely,

PrfOznk > znkj�cg D 1
2 [1 � Q1�

p
b,

p
a	C Q1�

p
a,

p
b	] �8.80	

with

{
b
a

}
D Es

2N0

{
Ns

[
1 C 1

Ns

(
'c

Es/N0

)
cos�c C Ns � jυj cos 2

2Ns�N2
s � jυj2	

(
'c

Es/N0

)2
]}

š Es
N0

[√
N2
s � jυj2 C Ns cos�c � jυj cos��c C 2	√

N2
s � jυj2

(
'c

Es/N0

)]
�8.81	
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and

υ
D
Ns�1∑
iD0

exp[j�ˇki � Ǒki 	], 2
D arg υ �8.82	

To determine the upper bound on average BEP from the pairwise error probability
we first determine the number of bit errors that result from the erroneous sequence
decision corresponding to a given pair of phase sequences and then average over
all possible sequence pairs. Mathematically speaking, let u be the sequence of
b D Ns log2M information bits that produces the transmitted phase sequence b,
and let û be the sequence of b bits that results from the erroneously detected phase
sequence b̂. Furthermore, let w�u, û	 be the Hamming distance between u and û
(i.e., the number of bit errors that result from the erroneous phase sequence deci-
sion). Then, the upper bound (conditioned on �c) on the average BEP is given by

Pb�Ej�c	 � 1

b

∑
b 6=b̂

w�u, û	, PrfOznk > znkj�cg

D 1

Ns log2M

∑
b 6=b̂

w�u, û	 PrfOznk > znkj�cg �8.83	

Finally, the upper bound on average BEP is obtained by averaging (8.83) over
the Tikhonov PDF of (3.37).

8.1.5 Differentially Coherent Detection

8.1.5.1 M-ary Differential Phase-Shift-Keying. As discussed in Sec-
tion 3.5 differentially coherent detection of M-ary PSK (M-DPSK) makes its
phase decisions using a demodulation reference signal derived from the received
signal in previous intervals. In the conventional case corresponding to a two-
symbol observation, the previous matched filter output is used directly as the
demodulation reference for the current matched filter output. Since, however, the
assumption of a received carrier phase that is constant over a number of symbol
intervals introduces memory into the modulation, then, as was true for the case
of partially coherent detection, the performance can be improved by extending
the observation beyond two symbol intervals.

Since a Tikhonov PDF with 'c D 0 corresponds to a uniform PDF, then in
principle the results for differentially coherent detection should be obtainable
from those for partially coherent detection with multiple (at least two)-symbol
observation simply by setting 'c D 0. However, because of the presence of a
coherent component in addition to the noncoherent component of the decision
statistic for partially coherent detection, there was no formal requirement for
assuming differential encoding at the transmitter. However, setting 'c D 0 in
the decision statistic leaves only the noncoherent component, which without
differential encoding is ambiguous insofar as making phase decisions (see the
discussion in Section 3.5.1.1). Thus, for M-DPSK, it is a formal requirement
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that differential encoding be employed at the transmitter. In what follows we
present the performance of classical (two-symbol observation) and multiple-
symbol differential detection of M-PSK, keeping in mind that the results will be
somewhat different than those obtained by simply setting 'c D 0 in the results
of Section 8.1.4.2.

Conventional Detection: Two-Symbol Observation. The SEP of the optimum
receiver (see Fig. 3.16) for conventional (two-symbol observation) differential
detection of M-PSK over the AWGN in the desired form (a single integral with
finite limits and an integrand that is Gaussian in the square root of SNR) was
first determined by Pawula et al. [9]:

Ps�E	 D sin��/M	

2�

∫ �/2

��/2

expf��Es/N0	[1 � cos��/M	 cos �]g
1 � cos��/M	 cos �

d�

D
p
gPSK

2�

∫ �/2

��/2

exp[��Es/N0	�1 � p
1 � gPSK cos �	]

1 � p
1 � gPSK cos �

d� �8.84	

where, as in (8.21), gPSK
D sin2��/M	. For binary DPSK wherein gPSK D 1,

(8.84) simplifies to

Pb�E	 D 1

2
exp

(
�Eb
N0

)
�8.85	

Assuming a Gray code bit-to-symbol mapping, the exact BEP of M-DPSK can
be obtained using the method of Lee [13] combined with the results of Pawula
et al. [9] (see also Simon et al. [5, App. 7B]). A summary of the results for
M D 4, 8, 16, and 32 is given below:
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4

)
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)
, M D 4

Pb�E	 D 2

3

[
F

(
13�

8

)
� F
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F
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(
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)
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(
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)
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, M D 16
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5
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F

(
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)
� F

(
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)
� F

(
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)
� F

(
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)

C F

(
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)
� F

(
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32

)
� F

(
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)
� F

( �
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, M D 16

�8.86	
where

F� 	 D � sin 

4�

∫ �/2

��/2

expf�[�Eb/N0	 log2M]�1 � cos cos t	g
1 � cos cos t

dt �8.87	
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The bit error probability for the special case of M D 4 can also be written in the
form of (8.60), where

a D �2 �
p

2	
Eb
N0
, b D �2 C

p
2	
Eb
N0

�8.88	

Instead, using the alternative representation of the Marcum Q-function, the bit
error probability becomes [see (8A.11)]

Pb�E	 D 1

4�

∫ �

��

[
1 � 82

1 C 28 sin � C 82

]
exp

{
�

(
1 C 1p

2

)
Eb
N0

ð [1 C 28 sin � C 82]
}
d�, 8 D

√
2 � p

2

2 C p
2

�8.89	

Finally, as was true for coherent detection of MPSK, for large symbol SNR, the
BEP can be related to the SEP of (8.84) by the simple approximation of (8.7).

An alternative (simpler) form for the average SEP of M-DPSK has recently
been found by Pawula [18] and is given by

Ps�E	 D 1

�

∫ �M�1	�/M

0
exp

(
� Es
N0

gPSK

1 C p
1 � gPSK cos �

)
d� �8.90	

which, using simple trigonometric identities and the relation for gPSK given
previously, can be written as

Ps�E	 D 1

2�

∫ �M�1	�/M

0
exp

[
� Es
N0

sin2��/M	

sin2 � C sin2�� C �/M	

]
d� �8.91	

For large M, the sin2�� C �/M	 term can be replaced by sin2 �, which, further
ignoring the factor of 1

2 in front of the integral, results in the approximate
relation [19]

Ps�E	 ' 1

�

∫ �M�1	�/M

0
exp

(
� Es

2N0

sin2��/M	

sin2 �

)
d�

D 1

�

∫ �M�1	�/M

0
exp

(
� Es

2N0

gPSK

sin2 �

)
d� �8.92	

Comparing (8.92) with (8.22), we immediately observe the well-known fact that
for large M, M-PSK is 3 dB better than M-DPSK.

Another advantage of the form in (8.90), in contrast with that of (8.76), is
that it lends itself nicely to obtaining a simple upper bound as was done for
coherent M-PSK. In particular, the function f��	 D 1/�1 C p

1 � gPSK cos �	 is
monotonically increasing over the entire interval of the integration and thus can
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be lower bounded by its value at � D 0 resulting in 1/�1 C p
1 � gPSK	 � f��	.

Using this result in the integrand of (8.90) results in the simple (no integration)
upper bound on average SEP:

Ps�E	 � M� 1

M
exp

(
�Es
N0

gPSK

1 C p
1 � gPSK

)

D M� 1

M
exp


� Es
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N0

(
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�

M

)]

D M� 1

M
exp

(
�2Es
N0

sin2 �

2M

)
�8.93	

Note the similarity of (8.93) with (8.24). Based on these bounds, one would
conclude that for coherent M-PSK and M-DPSK to achieve the “same” SEP, the
symbol SNRs should be related by

(
Es
N0

)
M-DPSK

D sin2��/M	

2 sin2��/2M	

(
Es
N0

)
M-PSK

�8.94	

For M D 2, (8.93) gives the exact BEP performance of DPSK in agreement with
(8.85). For M > 2, Pawula [20, Eq. (3)] had previously found an upper bound
on this performance given by

Ps�E	 � 2.06

√
1 C cos��/M	

2 cos��/M	
Q

(√
2Es
N0

(
1 � cos

�

M

))
�8.95	

which applying the Chernoff bound to the Gaussian Q-function results in

Ps�E	 � 1.03

√
1 C cos��/M	

2 cos��/M	
exp

[
� Es
N0

(
1 � cos

�

M

)]

D 1.03

√
1 C cos��/M	

2 cos��/M	
exp

(
�2Es
N0

sin2 �

2M

)
�8.96	

Figure 8.2 illustrates a comparison of the exact evaluation of Ps�E	 from (8.84)
or (8.91) with upper bounds obtained from (8.93), (8.95), and (8.96). As can
be observed, the two exponential bounds [i.e., (8.93) and (8.96)] are reasonably
tight at high SNR, whereas the Q-function bound of (8.95) is virtually a perfect
match to the exact result over the entire range of SNR’s illustrated.
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Figure 8.2. Comparison of exact evaluation and upper bounds on the symbol error probability
of coherent 16-DPSK.

Multiple-Symbol Detection. In Section 3.5.1.2 we discussed the notion of
multiple-symbol differential detection of M-PSK and developed the associated
decision variables and optimum receiver (see Fig. 3.18 for a three-symbol
observation, i.e., Ns D 3). The error probability performance of this receiver
was first reported by Divsalar and Simon [21] and later included by Simon et al.
[5, Sec. 7.2]. Since for differential detection a block of Ns symbols (phases) is
observed in making a decision on Ns � 1 information symbols, then following the
procedure developed for partially coherent detection, an upper bound on average
BEP can be obtained analogous to (8.74), namely,

Pb�E	 � 1

�Ns � 1	 log2M

∑
b 6=b̂

w�u, û	 PrfOznk > znkg �8.97	

where now �Ns � 1	 log2M represents the number of bits corresponding to the
information symbol sequence, b and Ob now refer to the correct and incorrect
sequences associated with the information (prior to differential encoding) phases,
and PrfOznk > znkg is determined from the decision variables in (3.53) in the form
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of (8.80), now with {
b
a

}
D Eb log2M

2N0

(
Ns š

√
N2
s � jυj2

)
�8.98	

and υ now defined analogous (because of the differential encoding) to (8.82) by

υ
D
Ns�1∑
iD0

exp

[
j
Ns�i�2∑
mD0

�ˇki�m � Ǒ ki�m	
]

�8.99	

8.1.5.2 p/4-Differential QPSK. As discussed in Section 3.5.2, the only
conceptual difference between �/4-DQPSK and conventional DQPSK is that the
set of phases fˇkg used to represent the information phases f�ng is ˇk D
�2k � 1	�/4, k D 1, 2, 3, 4, for the former andˇk D k�/4, k D 0, 1, 2, 3, for the
latter. Since the performance of the M-DPSK receiver of Fig. 3.16 is independent
of the choice of the information symbol set, we can conclude immediately that
�/4-DQPSK has an identical behavior to DQPSK on the ideal linear AWGN
channel and hence is characterized by (8.84) and (8.86) with M D 4.

8.1.6 Generic Results for Binary Signaling

Although specific results for the BEP of binary signals transmitted over the
AWGN have been given in previous sections, an interesting unification of some
of these results into a single BEP expression is possible as discussed in Ref. 22.
In particular, Wojnar [22] cites a result privately communicated to him by Lindner
(see footnote 2 of Ref. 22), which states that the BEP of coherent, differentially
coherent, and noncoherent detection of binary signals transmitted over the AWGN
is given by the generic expression [see also (4.44)]

Pb�E	 D �b, a�Eb/N0		

2�b	
D 1

2
Qb

(
0,

√
2a
Eb
N0

)
�8.100	

where �ž, ž	 is the complementary incomplete gamma function [23, Eq.
(8.350.2)], which for convenience is provided here as

�˛, x	
D

∫ 1

x
e�tt˛�1 dt �8.101	

The parameters a and b depend on the particular form of modulation and detection
and are presented in Table 8.1. We have also indicated in this table the specific
equations to which (8.100) reduces in each instance. Although the result in (8.100)
does not provide any new results relative to those indicated in Table 8.1, it does
offer a nice unification of five different BEP expressions into a single one that
can easily be programmed using standard mathematical software packages such
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TABLE 8.1 Parameters a and b for Various Modulation/Detection Combinations

a b 1
2 1

1
2 Orthogonal coherent BFSK

[Eq. (8.42)]
Orthogonal noncoherent BFSK

[Eq. (8.68)]

1 Antipodal coherent BPSK [Eq. (8.18)] Antipodal differentially coherent
BPSK (DPSK) [Eq. (8.85)]

0 � g � 1 Correlated coherent binary signaling
[Chapter 8, footnote 4]

—

as Mathematica. Furthermore, when evaluating the average BEP performance
of these very same binary communication systems over the generalized fading
channel, the form in (8.100) will also be helpful in unifying these results. This is
discussed in Section 8.2 making use of the special integrals given in Section 5.3.

8.2 PERFORMANCE OVER FADING CHANNELS

In this section, we apply the special integrals evaluated in Chapter 5 to the
AWGN error probability results presented in Section 8.1 to determine the
performance of these same communication systems over generalized fading
channels. Wherever possible, we shall again make use of the desired forms rather
than the classical representations of the mathematical functions introduced in
Chapter 4. By comparison with the level of detail presented in Section 8.1, the
treatment here will be quite brief since indeed the entire machinery that allows
determining the desired results has by this time been developed completely.
Thus, for the most part we shall merely present the final results except for the
few situations where further development is warranted.

When fading is present, the received carrier amplitude, Ac, is attenuated by
the fading amplitude, ˛, which is a random variable (RV) with mean-square
value ˛2 D < and probability density function (PDF) dependent on the nature
of the fading channel. Equivalently, the received instantaneous signal power is
attenuated by ˛2, and thus it is appropriate to define the instantaneous SNR per

bit by =
D˛2Eb/N0 and the average SNR per bit by =

D˛2Eb/N0 D <Eb/N0. As
such, conditioned on the fading, the BEP of any of the modulations considered
in Section 8.1 is obtained by replacing Eb/N0 by = in the expression for AWGN
performance. Denoting this conditional BEP by Pb�E; =	, the average BEP in the
presence of fading is obtained from

Pb�E	 D
∫ 1

0
Pb�E; =	p=�=	d= �8.102	

where p=�=	 is the PDF of the instantaneous SNR. On the other hand, if one is
interested in the average SEP, the same relation as (8.102) applies using, instead,
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the conditional SEP in the integrand, which is obtained from the AWGN result
with Es/N0 replaced by = log2M. Our goal in the remainder of this chapter
is to evaluate (8.102) for the various modulation/detection schemes considered
in Section 8.1 and the various fading channel models characterized in previous
chapters. Because of the multitude of different signal–channel combinations,
however, we shall only give explicit results for one or two of the fading channel
models and then indicate how to obtain the rest of the results.

8.2.1 Ideal Coherent Detection

In this section we evaluate the average BEP of the various modulations considered
in Section 8.1.1 when transmitted over the generalized fading channel and
detected with an ideal phase coherent reference signal. The results will be
obtained by applying the integrals presented in Section 5.1.1 to the appropriate
expressions for BEP over the AWGN with the above-mentioned replacement of
Eb/N0 by = .

8.2.1.1 Multiple Amplitude-Shift-Keying or Multiple Amplitude Modu-
lation . ForM-AM the SEP over the AWGN channel is given by (8.3). To obtain the
average SEP ofM-AM over a Rayleigh fading channel, one first obtains the condi-
tional SEP by replacingEs/N0 with = log2M in (8.3) and then evaluates (8.102) for
the Rayleigh PDF of (5.4). This type of evaluation was carried out in Chapter 5, in
particular, comparing (8.102) with (5.1) and making use of (5.6), we obtain

Ps�E	 D
(
M� 1

M

)(
1 �

√
3=s

M2 � 1 C 3=s

)
�8.103	

where =s
D = log2M denotes the average SNR per symbol. For the binary case,

(8.103) becomes

Pb�E	 D 1

2

(
1 �

√
=

1 C =

)
�8.104	

To obtain the remainder of the results for average SEP, one finds the particular
integral in Section 5.1 corresponding to (5.1) for the fading channel of interest,
multiplies it by 2�M� 1	/M and substitutes �6 log2M	/�M

2 � 1	 for a2. For
example, for Nakagami-m fading, the appropriate integrals to use are (5.18a) and
(5.18b). Thus, the average SEP of M-AM over a Nakagami-m fading channel is
given by

Ps�E	 D
(

M

M� 1

)[
1 � >

m�1∑
kD0

(
2k
k

)(
1 � >2

4

)k]
,

>
D

√
3=s

m�M2 � 1	C 3=s
, m integer �8.105a	
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which clearly reduces to (8.103) for m D 1 and

Ps�E	 D
(
M� 1

M

)
1p
�

√
3=s/m�M2 � 1	

[�m�M2 � 1	C 3=s	/m�M2 � 1	]mC1/2


(
m C 1

2

)
�m C 1	

ð 2F1

(
1, m C 1

2
;m C 1;

m�M2 � 1	

m�M2 � 1	C 3=s

)
, m noninteger

�8.105b	
It is tempting to try evaluating the average BEP over the fading channel by

using the asymptotic (large SNR) relation between the AWGN BEP and SEP as
given in (8.7) to determine the conditional BEP needed in (8.102). Unfortunately,
this procedure is inappropriate since, as mentioned earlier in the chapter, on the
fading channel the symbol SNR of the AWGN SEP gets replaced by log2M
times the instantaneous SNR per bit, = , which is a RV varying between zero and
infinity. Rather, one needs to compute the exact relation between AWGN BEP
and SEP, substitute = log2M for Es/N0, and then average over the PDF of = . As
mentioned in Section 8.1.1.1, this relation (i.e., the conditional BEP on =) can
be computed for any given M and a Gray code bit-to-symbol mapping.

8.2.1.2 Quadrature Amplitude-Shift-Keying or Quadrature Amplitude
Modulation. For QAM, the SEP over the AWGN channel is given by (8.10). To
obtain the average SEP of M-AM over a Rayleigh fading channel, one proceeds
as for the M-AM case by first obtaining the conditional SEP [i.e., replacing
Es/N0 with = log2M in (8.10)] and then evaluating an integral such as (8.102)
for the Rayleigh PDF of (5.4). This type of evaluation involves two integrals
that were developed in Chapter 5. In particular, comparing the two terms (8.102)
with (5.1) and (5.28) and making use of (5.6) and (5.29), we obtain

Ps�E	 D 2

(p
M� 1p
M

)(
1 �

√
1.5=s

M� 1 C 1.5=s

)

�
(p

M� 1p
M

)2 [
1 �

√
1.5=s

M� 1 C 1.5=s

(
4

�
tan�1

√
M� 1 C 1.5=s

1.5=s

)]
�8.106	

which for 4-QAM reduces to

Ps�E	 D
(

1 �
√

=

1 C =

)
� 1

4

[
1 �

√
=

1 C =

(
4

�
tan�1

√
1 C =

=

)]
�8.107	

To obtain the remainder of the results for average SEP, one finds the
particular integrals in Section 5.1 corresponding to (5.1) and (5.28) for the
fading channel of interest, multiplies the first by 4�

p
M� 1	/

p
M, the second by

4[�
p
M� 1	/

p
M]2, and substitutes �3 log2M	/�M� 1	 for a2. For example, for

Nakagami-m fading with m integer, the appropriate integrals to use are (5.18a)
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and (5.30). Thus, the average SEP of QAM over a Nakagami-m fading channel
is given by

Ps�E	 D 2

( p
Mp

M� 1

)[
1 � >

m�1∑
kD0

(
2k
k

)(
1 � >2

4

)k]

�
( p

Mp
M� 1

)2 (
1 � 4

�
>

{(�
2

� tan�1 >
) m�1∑
kD0

(
2k
k

)
1

[4�1 C c	]k

� sin�tan�1 >	
m�1∑
kD1

k∑
iD1

Tik
�1 C c	k

[cos�tan�1 >	]2�k�i	C1

})
�8.108	

where

c D 1.5=s
m�M� 1	

, >
D

√
c

1 C c
�8.109	

and Tik is defined in (5.32). Figure 8.3 is an illustration of the average SEP of
16-QAM as computed from (8.108) with m as a parameter.

To compute the average BEP performance, again one should not use the
approximate asymptotic form of (8.7) but rather, determine either the exact
relation between the AWGN BEP and SEP or the exact AWGN BEP directly (see
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Figure 8.3. Average SEP of 16-QAM over a Nakagami-m channel versus the average SNR per
symbol.
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footnote 1 of this chapter), substituting = log2M for Es/N0, and then average over
the PDF of = . Instead, one can use the approximate BEP expression obtained by
Lu et al. [8] for the AWGN as in (8.14), which is accurate for a wide range of
SNR’s, again making the substitution = log2M for Es/N0 followed by averaging
over the PDF of = . Using the alternative form of the Gaussian Q-function of
(4.2), it is straightforward to show that the result of this evaluation is given by

Pb�E	 ' 4

(p
M� 1p
M

)
1

log2M

p
M/2∑
iD1

1

�

∫ �/2

0
M=

(
� �2i� 1	2

2 sin2 �

3Eb log2M

N0�M� 1	

)
d�

�8.110	
whereM=�s	 is again the MGF of the instantaneous fading power = . For example,
for a Rayleigh fading channel, we obtain, analogous to (8.106),

Pb�E	 ' 2

(p
M� 1p
M

)
1

log2M

p
M/2∑
iD1


1 �

√
1.5�2i� 1	2= log2M

M� 1 C 1.5�2i� 1	2= log2M




�8.111	

8.2.1.3 M-ary Phase-Shift-Keying. For M-PSK, the classical form of the
SEP over the AWGN channel is given by (8.17), and the desired form is given by
(8.22). To obtain the average SEP of M-PSK over a Rayleigh fading channel, one
first obtains the conditional SEP by replacing Es/N0 with = log2M in (8.22) and
then evaluates (8.102) for the Rayleigh PDF of (5.4). In particular, comparing
(8.102) with (5.66) and making use of (5.68), we obtain

Ps�E	 D
(
M� 1

M

){
1 �

√
gPSK=s

1 C gPSK=s

M

�M� 1	�

ð
[
�

2
C tan�1

(√
gPSK=s

1 C gPSK=s
cot

�

M

)]}
�8.112	

where gPSK
D sin2��/M	. For M D 2, (8.112) reduces to (8.104) since binary

PSK and binary AM are identical.
For Rician fading, the average SEP is obtained from (5.67) together with

(5.11), or equivalently, (5.13) [with the upper limit changed from �/2 to
�M� 1	�/M] with a2 D 2gPSK and =s substituted for = , resulting in

Ps�E	 D 1

�

∫ �M�1	�/M

0

�1 CK	 sin2 �

�1 CK	 sin2 � C gPSK=s

ð exp
(

� KgPSK=s
�1 CK	 sin2 � C gPSK=s

)
d� �8.113	

An equivalent result was reported by Sun and Reed [24, Eq. (11)].7

7 It should be noted that an error occurs in Eqs. (10), (11), and (12) Ref. 24 in that the upper limit
of their integrals should be �/2 � �/M rather than �/2.
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For Nakagami-m fading with m integer, the average SEP is obtained from
(5.69) with the same substitutions for a2 and = , resulting in the closed-form
solution

Ps�E	 D M� 1

M
� 1

�

√
�gPSK=s	/m

1 C �gPSK=s	/m

ð
{(�

2
C tan�1 ˛

) m�1∑
kD0

(
2k
k

)
1

[4�1 C �gPSK=s	/m	]k

C sin�tan�1 ˛	
m�1∑
kD1

k∑
iD1

Tik
[1 C �gPSK=s	/m]k

[cos�tan�1 ˛	]2�k�i	C1

}
�8.114	

where, from (5.70),

˛
D

√
�gPSK=s	/m

1 C �gPSK=s	/m
cot

�

M
�8.115	

and again Tik is defined in (5.32). Figure 8.4 is an illustration of the average SEP
as computed from (8.114) with m as a parameter.

Exact results for average BEP of 4-PSK, 8-PSK, and 16-PSK over Rayleigh
fading channels can be obtained by averaging (8.30) over the fading PDF in
(5.4). In particular, using a generalization of (5A.15) when the upper limit of the
integral is �[1 � �2k š 1	/M], we obtain

Pk
D

∫ 1

0
Pkp=�=	 d= D KC �K�, k D 0, 1, 2, . . . ,M� 1 �8.116	

where

Kš D 1

2

(
2k š 1

M

)[
1 �

√
gPSK=s

1 C gPSK=s

M

�2k š 1	�

ð tan�1

(√
1 C gPSK=s
gPSK=s

tan
�2k š 1	�

M

)]
�8.117	

Using Pk of (8.116) for Pk in (8.30) gives the desired results for M D 4, 8,
and 16.

Similarly for Nakagami-m fading, Pk can be computed from (5A.22) as

Pk D Im

(
�2k C 1	�

M
,
�2k � 1	�

M
; =s

)
, k D 0, 1, 2, . . . ,M� 1 �8.118	
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Figure 8.4. Average SEP of 8-PSK over a Nakagami-m channel versus the average SNR per
symbol.

which again should be used in place of Pk in (8.30) to obtain average
BEP.

For other values of M, one can again use the approximate AWGN result
of Lu et al. [8] as given in (8.31), substituting = log2M for Es/N0, followed
by averaging over the PDF of = . Using the alternative form of the Gaussian
Q-function of (4.2), the end result of this evaluation is

Pb�E	 ' 2

max�log2M, 2	

max�M/4,1	∑
iD1

1

�

ð
∫ �/2

0
M=

(
� 1

sin2 �

Eb log2M

N0
sin2 �2i� 1	�

M

)
d� �8.119	

Specific results for the variety of fading channels being considered are easily
worked out using the results of Chapter 5 and are left as exercises for the
reader.
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8.2.1.4 Differentially Encoded M-ary Phase-Shift-Keying and p/4-
QPSK. Consider first the case of differentially encoded QPSK for which the
classical form of the SEP over the AWGN channel is given by (8.38). As pointed
out in Section 8.1.1.4, the first two terms of (8.38) can be put in the desired form,
but such a form is not available for the third and fourth terms. Nevertheless, using
the results from Section 5.4.3, for Rayleigh and Nakagami fading, we are able
to evaluate these terms in the form of a single integral with finite limits and an
integrand composed of elementary functions; thus, we can obtain a solution for
the average SEP in a similar form for these channels.

For the simpler Rayleigh case, making use of (5.6), (5.80), (5.82), and (5.84)
with a D 1 and = replaced by =s, we obtain

Ps�E	 D 4I1 � 8I2 C 8I3 � 4I4 �8.120	

where

I1 D 1

2

(
1 �

√
=s/2

1 C =s/2

)
,

I2 D 1

4

[
1 �

√
=s/2

1 C =s/2

(
4

�
tan�1

√
1 C =s/2

=s/2

)]
,

I3 D 1

�=s

∫ �/4

0
c��	

(
1 �

√
c��	

1 C c��	

)
d�

I4 D 1

2�=s

∫ �/4

0

[
1 �

√
c��	

1 C c��	

(
4

�
tan�1

√
1 C c��	

c��	

)]
d�,

c��	
D =s

2

(
sin2 �

sin2 � C =s/2

)
�8.121	

For Nakagami-m fading with m integer, the average SEP can similarly be
obtained from (8.120) using (5.18a), (5.86), (5.88), and (5.91), again with a D 1
and = replaced by =s. Specifically, the Ik’s needed in (8.120) are now given by

I1 D 1

2

[
1 � >

(
=s
2m

) m�1∑
kD0

(
2k
k

)(
1 � >2�=s/2m	

4

)k]
,

>

(
=s
2m

)
D

√
=s/2

m C =s/2
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I2 D 1

4
� 1

�

√
=s/2

1 C =s/2




(
�

2
� tan�1

√
=s/2

1 C =s/2

)
m�1∑
kD0

(
2k
k

)
1

[4�1 C =s/2	]k
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√
=s/2

1 C =s/2

)
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kD1
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�1 C =s/2	k
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√
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1 C =s/2
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
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�

√
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


(
�

2
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√
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)

ð
m�1∑
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(
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k

)
1
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(
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√
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m�1∑
kD1
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[1 C c��	]k
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√
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1 C c��	

)]2�k�i	C1
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


d� �8.122	

and c��	 is still as defined in (8.121).
For the more general case of differentially encoded M-PSK, we need to

evaluate the average of (8.35) over the fading PDF. Here we can only obtain
the result in the simple desired form for Rayleigh fading. The average of the first
term of (8.35) is given by (8.112) multiplied by 2, that is,

∫ 1

0
2Ps�E	 jM-PSK p=�=	d= D 2

(
M� 1

M

){
1 �

√
gPSK=s

1 C gPSK=s

M

�M� 1	�

ð
[
�

2
C tan�1

(√
gPSK=s

1 C gPSK=s
cot

�

M

)]}
�8.123	
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The corresponding average of the second term is obtained from (5.99) with
a2 D 2gPSK D 2 sin2 �/M and = replaced by =s, that is,

∫ 1

0
�Ps�E	 jM-PSK 	

2p=�=	d=D
(

1

�

)2( 1

gPSK=s

)

ð
∫ �M�1	�/M

0
c��	
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�M� 1	�

M
�

√
c��	

1 C c��	

ð tan�1

(√
1 C c��	

c��	
tan

�M� 1	�

M

)]
d� �8.124	

where now

c��	
D gPSK=

(
sin2 �

sin2 � C gPSK=

)
�8.125	

For the average of the third term, we must first square Pk of (8.29) and then make
use of (5.100) through (5.102) with a2

š
D 2 sin2�2k š 1	�/M and �š

D�[1 �
�2k š 1	/M] for k D 0, 1, 2, . . . ,M� 1. The result is∫ 1

0
P2
kp=�=	d= D LC C L� � 2LC�, k D 0, 1, 2, . . . ,M� 1 �8.126	

where
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and
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with

cš��	
D�sin2�2k š 1	�/M	=s

(
sin2 �

sin2 � C �sin2�2k š 1	�/M	=s

)

cC���	
D�sin2�2k C 1	�/M	=s

(
sin2 �

sin2 � C �sin2�2k � 1	�/M	=s

)
�8.129	

Finally, since as pointed out in Section 8.1.1.4, the performance of coherently
detected �/4-QPSK transmitted over a linear AWGN channel is identical to that
of differentially encoded QPSK, the same conclusion can be made for the fading
channel. Hence, the SEP performance of coherently detected �/4-QPSK over the
Rayleigh and Nakagami-m fading channels is also given by (8.120), together with
(8.121) or (8.122), respectively.

8.2.1.5 Offset QPSK or Staggered QPSK. In Section 8.1.1.5 it was
concluded that because of the similarity between conventional and offset QPSK
receivers and the fact that time offset of the I and Q channels has no effect
on the decisions made on the I and Q data bits, the BEP performances of
these two modulation techniques on a linear AWGN channel with ideal coherent
detection are identical. Thus, without further ado, we conclude that the same is
true on the fading channel, and hence the error probability performance results
of Sections 8.1.2.3 and 8.1.2.4 apply.

8.2.1.6 M-ary Frequency-Shift-Keying. In Section 8.1.1.6 we observed
that the expression [see (8.40)] for the average SEP of orthogonal M-FSK
involves the �M� 1	st power of the Gaussian Q-function. Since for M arbitrary
an alternative form [analogous to (4.2)] is not available for QM�1�x	, (8.40)
cannot be put in the desired form to allow simple evaluation of the average
SEP on the generalized fading channel.8 Despite this consequence, however, it
is nevertheless possible to obtain simple-to-evaluate, asymptotically tight upper
bounds on the average error probability performance of 4-ary FSK on the
Rayleigh and Nakagami-m fading channels, as we shall show shortly. For the
special case of binary FSK �M D 2	, we can use the desired form in (8.43) (for
orthogonal signals) or (8.44) (for nonorthogonal signals) to allow simple exact
evaluation of average BEP on the generalized fading channel. Before moving on
to the more difficult 4-ary FSK case, we first quickly dispense with the results
for binary FSK since these follow immediately from the integrals developed in
Chapter 5 or equivalently from the results obtained previously for binary AM and

8 At the time this book was about to go to press, the authors learned of new, as yet unpublished
work by Dong and Beaulieu [25] that using an M-dimensional extension of Craig’s approach [10]
obtains exact closed-form results for BEP and SEP of 3- and 4-ary orthogonal signaling in slow
Rayleigh fading. Also shown in Ref. 25 is the fact that the results obtained for M D 4 can be used
as close approximations to the exact results for values of M > 4. Finally, the MGF-based approach
described in this chapter can also be used to extend this work to the generalized fading channel.
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BPSK, replacing = by =/2 for orthogonal BFSK and by �=/2	[1 � �sin 2�h	/2�h]
for nonorthogonal BFSK. For example, for Rayleigh fading the average BEP of
orthogonal BFSK is given by

Pb�E	 D 1

2

(
1 �

√
=/2

1 C =/2

)
�8.130	

whereas for Nakagami-m fading the analogous results are
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�8.131a	
and
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For M-ary orthogonal FSK, the average SEP on the AWGN can be obtained
from (8.40) as
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�8.132	
and the corresponding BEP is obtained from (8.132) using (8.41). The most
straightforward way of numerically evaluating (8.132) (and therefore the BEP
derived from it) is to apply Gauss–Hermite quadrature [26, Eq. (25.4.46)],
resulting in

Ps�E	 ' 1p
�

Np∑
nD1

wn


1 �

[
1 � Q

(p
2

(
xn C

√
Es
N0

))]M�1

 �8.133	
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where fxn;n D 1, 2, . . . , Npg are the zeros of the Hermite polynomial of order Np
and wn are the associated weight factors [26, Table 25.10]. A value of Np D 20
is typically sufficient for excellent accuracy.

When slow fading is present, the average symbol error probability is obtained
from (8.132) or (8.133) by first replacing Es/N0 with = D ˛2Es/N0 and then
averaging over the PDF of = , that is,

Ps�E	 D 1p
2�

∫ 1

�1
f1 � [1 � Q�y	]M�1g

ð
∫ 1

0
exp

(
� �y � p

2=	2

2

)
p=�=	 d= dy �8.134	

or approximately
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�
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{
1 �

∫ 1

0
[1 � Q�

p
2�xn C p

=		]M�1p=�=	 d=

}
�8.135	

Numerical evaluation of (8.134) and the associated bit error probability using
(8.33) for Rayleigh and Nakagami-m fading channels is computationally inten-
sive. Equation (8.135) does yield numerical values; however, its evaluation is
very time consuming, especially for large values of m. Thus, tight upper bounds
on the result in (8.134) which are simple to use and evaluate numerically are
highly desirable.

Using Jensen’s inequality [27], Hughes [28] derived a simple bound on the
AWGN performance in (8.132). In particular, it was shown that

Ps�E	 � 1 �
[

1 � Q

(√
Es
N0

)]M�1

�8.136	

which is tighter than the more common union upper bound [5, Eq. (4.97)],

Ps�E	 � �M� 1	Q

(√
Es
N0

)
�8.137	

Evaluation of an upper bound on average error probability for the fading channel
by averaging the right-hand side of (8.136) (with Es/N0 replaced by =s) over
the PDF of =s and using the conventional form for the Gaussian probability
integral as in (4.1) is still computationally intensive. Using the alternative forms
of the Gaussian Q-function and its square as in (4.2) and (4.9), respectively, it
is possible to simplify the evaluation of this upper bound on performance. The
details are as follows.
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We begin by applying a binomial expansion to the Hughes bound of (8.136),
which when averaged over the fading PDF results in

Ps�E	 �
M�1∑
kD1

��1	kC1
(
M� 1
k

)
Ik �8.138	

where

Ik
D

∫ 1

0
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=s	p=s �=s	 d=s, k D 1, 2, . . . ,M� 1 �8.139	

[Note that the result based on the union upper bound would simply be the first
term �k D 1	 of (8.138)]. Using (4.2) and (4.9) and assuming a Nakagami-m
channel with instantaneous SNR PDF given by (5.14), the integral in (8.139)
can be evaluated for M D 4 �k D 1, 2, 3	 either in closed form or in the
form of a single integral with finite limits and an integrand composed of
elementary functions (i.e., exponentials and trigonometrics). The results appear
in Section 5.4.3.2 and are summarized here as follows:
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Figure 8.5. Average BEP of 4-ary orthogonal signals over a Nakagami-m channel versus the
average SNR per bit: (a) union bound; (b) Hughes bound; (c) exact result.

Illustrated in Fig. 8.5 are curves for average bit error probability versus average
bit SNR for 4-ary orthogonal signaling over the Nakagami-m fading channel, the
special case of m D 1 corresponding to the Rayleigh channel. For each value
of m, three curves are calculated. The first is the exact result obtained (with
much computational power and time) by averaging (8.135) over the PDF in
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(5.14). The second is the Hughes upper bound obtained from (8.138) together
with �8.140a	, �8.140b	, and �8.140c	. Finally, the third is the union upper
bound obtained from the first term of (8.135) together with (8.140a). The curves
labeled m D 1 correspond to the nonfading (AWGN only) results. We observe,
not surprisingly, that as m increases (the amount of fading decreases) the three
results are asymptotically equal to each other. For Rayleigh fading (the smallest
integer value of m) we see the most disparity between the three, with the Hughes
bound falling approximately midway between the exact result and the union
upper bound. More specifically, the “averaged” Hughes bound is 1 dB tighter
than the union bound for high-average bit SNR values. As m increases, the
difference between the Hughes bound and the exact results is at worst less than
a few tenths of 1 dB over a wide range of average bit SNR’s. Hence, for high
values of m, we can conclude that it is accurate to use the former as a prediction
of true system performance, with the advantage that the numerical results can
be obtained instantaneously. Note also that for high values of m a slightly less
accurate result can be obtained by using the union bound.

8.2.1.7 Minimum-Shift-Keying. Following the same line of reasoning as
discussed in Section 8.1.1.7 for the AWGN channel, we conclude here for
the fading channel that the average BEP performance of the MSK receiver
implemented as that which is optimum for half-sinusoidal pulse-shaped OQPSK
is identical to that of AM, BPSK, QPSK, and conventional (rectangular pulse-
shaped) OQPSK. As a result of this observation, no further discussion is
necessary.

8.2.2 Nonideal Coherent Detection

To compute the average error probability performance of nonideal coherent
receivers of BPSK, QPSK, OQPSK, and MSK modulations transmitted over
a fading channel, we again follow the approach taken by Fitz [16] wherein
the randomness of the demodulation reference signal is modeled as an additive
Gaussian noise independent of the AWGN associated with the received signal.
In the absence of fading, this model was introduced in Section 3.2, and the
performance of the receiver based on this model was given in Section 8.1.2.
When Rician fading is present, Fitz [16] proposes a suitable modification of the
Gaussian noise reference signal model as follows.

Let @n D @In C j@Qn denote a complex Gaussian RV which represents the
fading associated with the received signal in the nth symbol interval. In the most
general case, when @In and @Qn are nonzero mean, ˛n D j@nj is a Rician RV,
which is the case considered by Fitz. With reference to (3.38), the kth matched
filter output in this symbol interval Qynk, k D 1, 2, . . . ,M, now becomes

Qynk D Qsk@nej�c C QNnk D
specular component︷ ︸︸ ︷

Qsk�@In C j@Qn	e
j�c C

random component︷ ︸︸ ︷
Qsk�!In C j!Qn	e

j�c C QNnk �8.141	
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The reference signal is also assumed to be degraded by the channel fading. As
such, the additive Gaussian noise model for this signal given in (3.39) is now
modified to

Qcr D
specular component︷ ︸︸ ︷

Ar
√
Gs�@In C j@Qn	e

j�c C
random component︷ ︸︸ ︷

Ar
√
Gr�!In C j!Qn	e

j�c C QNr �8.142	

where Gs and Gr denote the SNR gains associated with its specular and random

components, respectively9 and !in
D @in � @in, i D I, Q. In view of the complex

Gaussian fading models above for the received signal and reference signal, the
decision statistic for the nth symbol, namely, Ref Qynk QcŁ

r g, is, as was the case
for the fading-free channel, in the form of the real part of the product of two
nonzero mean complex Gaussian random variables; hence, the error probability
analysis discussed in Appendix 8A is once again applicable. To apply Stein’s
analysis [29], we need to specify the first and second moments of Qynk and Qcr .
These are computed as follows.

Assume that the real and imaginary components of the complex fading RV@n
have first and second moments

@I D mI, @Q D mQ, var�@I	 D var�@Q	 D #2 �8.143	

Then the Rician factor K is given by

K D specular power

random power
D �@I	

2 C �@Q	
2

var�@I	C var�@Q	
D m2

I C m2
Q

2#2
�8.144	

and the total power of @n is given by

Efj@nj2g D< D Ef@2
I C @2

Qg D 2#2 C m2
I C m2

Q D 2#2�1 CK	 �8.145	

For BPSK signaling, Qsk D AcTban (an D š1 represents the binary data) and
Ar D Ac D A. Thus, from (8.141) and (8.142),

j Qynkj D ATb
√
�@In	2 C �@Qn	2 D ATb

√
m2
I C m2

Q D
√

K

1 CK
<A2T2

b

j Qynk � Qynkj2 D �ATb	
22#2 C var� QNnk	 D 1

1 CK
<A2T2

b CN0Tb �8.146a	

9 Later we shall specifically consider (as does Fitz [16]) the slow-fading case, which implies that the
fading changes slowly in comparison to the memory length of the phase estimator. This implies that
Gs D Gr D G. For the moment, however, we shall allow the specular and random gains to maintain
their individual identity.
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and
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1 CK
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b CN0Tb �8.146b	

Letting z1p D Qcr, z2p D Qynk , and A2Tb D Eb, then relating these moments to the
parameters defined in (8A.3) and (8A.4), we get

S1p D 1

2
jz1pj2 D 1

2
jQcrj2 D 1
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�8.147	
Using these parameters in �8A.6a	 gives the arguments of the Marcum Q-function
in (8A.5) as [16, Eqs. (8a) and (8b)]
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where once again we have elected to express the result in terms of the average
fading SNR per bit = . Also since from (8.147) 'p is real, then from (8A.6a),

A D 'cp√
1 � '2

sp

D 'p D

p
Gr

1 CK
=√(

Gr
1 CK

= C 1
)(

1

1 CK
= C 1

) �8.149	

Finally, the average BEP for nonideal coherent detection of BPSK in a Rician
fading environment is given by (8A.5), namely,

Pb�E	 D 1
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p
a	C Q1�

p
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p
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2
exp
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�aC b
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I0�

p
ab	

�8.150	
where a, b, and A are defined as above.

As mentioned earlier in footnote 9, we will be interested in the case of slow
fading, which implies that Gs D Gr D G. Making this substitution in (8.148) and
(8.149) gives the simplified results
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and

A D

p
G

1 CK
=√(

G

1 CK
= C 1

)(
1

1 CK
= C 1

) �8.152	

which agrees with an unnumbered equation [between (8c) and (9)] in Ref. 16.
Figure 8.6 is an illustration of average BEP as computed from (8.150) together
with (8.151) and (8.152) for K D 0 and K D 10 and three nonideal coherence
parameter values: G D 3, 10, and 20 dB. We observe from these numerical results
that over a wide range of average SNR, the BEP is rather insensitive to the value
of G, particularly for the higher value of K.

As a check on previous results, the no-fading case, which corresponds to
K ! 1, = ! Eb/N0, would result in

{
a
b

}
D 1

2

(√
G
Eb
N0

Ý
√
Eb
N0

)2

D Eb
2N0

�
p
GÝ 1	2, A D 0 �8.153	
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Figure 8.6. Average BEP for nonideal coherent detection of BPSK over a Rician channel versus
the average SNR per bit: (a) G D 3 dB; (b) G D 10 dB; (c) G D 20 dB.

which agrees with (8.61). For Rayleigh fading (K D 0), the corresponding
results are {

a
b

}
D

{
0
0

}
, A D

p
G=p

�G= C 1	�= C 1	
�8.154	

Since Q1�0, 0	 D 1, from (8.150) we obtain

Pb�E	 D 1

2

[
1 �

p
G=p

�G= C 1	�= C 1	

]
�8.155	

For a perfect phase reference (i.e., G ! 1), (8.155) simplifies to

Pb�E	 D 1

2

(
1 �

√
=

1 C =

)
�8.156	

which is consistent with the result given in (8.104) for ideal coherent detection.
To extend the results above to other quadrature modulation schemes with I and

Q carrier components that are independently modulated (e.g., QPSK, OQPSK,
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MSK, and QAM), one merely recognizes that for such schemes the average BEP
in the presence of fading can be expressed as

Pb�E	 D 1

2
PbI�E	C 1

2
PbQ�E	 �8.157	

where PbI�E	 and PbQ�E	 are, respectively, the average BEPs for the I and Q
data streams. Thus, Stein’s analysis technique [29] of Appendix 8A can again
be applied to evaluate PbI�E	 and PbQ�E	 separately and thereby arrive at a
generalization to the fading channel case of the AWGN BEP results given by
(8.62) through (8.65). For example, for QPSK results analogous to (8.151) and
(8.152) are obtained by replacing G by 2G, whereupon the former reduces
to (8.62) when K ! 1. The specific details for the remaining quadrature
modulation schemes are left to the reader.

8.2.3 Noncoherent Detection

As alluded to previously, in a multipath environment it is often difficult in practice
to achieve good carrier synchronization; in such instances it is necessary to employ
a modulation for which noncoherent detection is possible. The most popular choice
of such a modulation in fading channel applications is orthogonal M-FSK, whose
error probability performance in AWGN was considered in Section 8.1.3. It is a
simple matter now to extend these results to the fading channel. In particular,
since each term of (8.66) is purely an exponential of the SNR, then applying the
MGF-approach to this equation, we obtain the average SEP:

Ps�E	 D
M�1∑
mD1

��1	mC1
(
M� 1
m

)
1

m C 1
M=s

(
� m

m C 1

)
�8.158	

where the moment generating function M=s��s	 is obtained from any of the
results in Section 5.1 with = replaced by the average symbol SNR =s. Thus, for
Rayleigh fading, using (5.5), we have

Ps�E	 D
M�1∑
mD1

��1	mC1
(
M� 1
m

)
1

1 C m�1 C =s	
�8.159	

which for the special case of binary FSK simplifies to Pb�E	 D 1/�2 C =	, in
agreement with Proakis [6, Eq. (14-3-12)]. For Rician fading, using (5.11) gives

Ps�E	 D
M�1∑
mD1

��1	mC1
(
M� 1
m

)
1 CK

1 CKC m�1 CKC =s	

ð exp
(

� Km=s
1 CKC m�1 CKC =s	

)
�8.160	
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which agrees with Sun and Reed [24, Eq. (8)], and reduces to (8.159) when
K D 0. Finally for Nakagami-m fading, using (5.15), we obtain

Ps�E	 D
M�1∑
lD1

��1	lC1
(
M� 1
l

)
�lC 1	m�1

[1 C l�1 C =s/m	]m
�8.161	

where we have changed the summation index to avoid confusion with the
Nakagami-m fading parameter. As expected, (8.161) reduces to (8.159) when
m D 1. Before concluding this section, we note that the results for average BEP
over a fading channel can be obtained, as was the case for the AWGN channel,
by applying the relation between bit and symbol error probability given in (8.67)
to the results above. We note furthermore that although we have specifically
addressed M-FSK, the results above apply equally well to any M-ary orthogonal
signaling scheme transmitted over a slow, flat fading channel and detected
noncoherently at the receiver.

For nonorthogonal M-FSK, we observed in Section 8.1.3 that a simple
analytical result for average BEP over the AWGN was possible for the binary
case, namely, (8.69). To extend this result to the fading channel, we first rewrite
it in the alternative form [see (9A.14) of Appendix 9A]

Pb�E	 D 1
2 [1 � Q1�

p
b,

p
a	C Q1�

p
a,

p
b	] �8.162	

and then make use of the alternative representation of the Marcum Q-function in
(4.16) and (4.19) to allow application of the MGF-based approach [see (8A.12)].
Using the definitions of a and b in (8.70), the result of this application produces

Pb�E	 D 1

4�

∫ �

��

1 � 82

1 C 28 sin � C 82

ðM=

(
�1

4
�1 C

√
1 � '2	�1 C 28 sin � C 82	

)
d�,

8
D

√√√√1 �
√

1 � '2

1 C
√

1 � '2
�8.163	

where ' is the correlation coefficient of the two signals. To obtain specific results
for the various fading channels, one merely substitutes the appropriate MGF from
Section 5.1 in (8.163), analogous to what was done previously for the orthogonal
signaling case. The specific analytical results are left as an exercise for the reader.
As an illustration of the numerical results that can be obtained from (8.163)
after making the aforementioned substitutions, Figs. 8.7, 8.8, and 8.9 illustrate
the average BEP performance for Nakagami-q (Hoyt), Nakagami-n (Rice), and
Nakagami-m channels.
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Figure 8.7. Average BEP of correlated BFSK over a Nakagami-q (Hoyt) channel: (a) ' D 0;
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Figure 8.9. Average BEP of correlated BFSK over a Nakagami-m channel: (a) ' D 0; (b) ' D 0.2;
(c) ' D 0.4; (d) ' D 0.6.

8.2.4 Partially Coherent Detection

In this section we apply the MGF-based approach to the AWGN results of
Section 8.1.4 to predict the performance of partially coherent detection systems
in the presence of fading. The steps to be followed parallel those of the previous
sections and thus the presentation will be brief.

For BPSK with conventional (one-symbol observation) detection, the condi-
tional (on a fixed phase error �c) BEP is in the form of a Gaussian Q-function as
described by (8.71). Thus, first performing the averaging over the fading takes
the form of (5.1), which is expressed in terms of the MGF of the fading as in
(5.3). Finally, performing the averaging over the Tikhonov phase error PDF gives
the desired result, namely,

Pb�E	 D
∫ �

��

1

�

∫ �/2

0
M=

(
�cos2 �c

sin2 �

)
d�

exp�'c cos�c	

2�I0�'c	
d�c �8.164	

For orthogonal and nonorthogonal BFSK, the results [see (8.74) together with
(8.69)] are expressed in terms of the first-order Marcum Q-function. However,
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in these cases the ratio of the two arguments of this function [see (8.75)
and (8.76)] are not independent of SNR, and thus the MGF-based approach
is not useful here in allowing an easy evaluation of average BEP. Instead,
one must resort to the brute force approach of replacing Eb/N0 by = in the
a and b parameters and then performing the average over the PDF of =
as appropriate for the type of fading channel under consideration. A similar
statement is made for the multiple-symbol detection case since again the ratio of
the two arguments of the Marcum Q-function [see (8.81)] are not independent
of SNR.

8.2.5 Differentially Coherent Detection

In this the final section of this chapter, we consider the characterization of the
error probability performance of differentially detected M-ary phase-shift-keying
when transmitted over a fading channel. This modulation/detection combination
has received a lot of attention in the literature, particularly the M D 4 case
(DQPSK), which has been adopted in the most recent North American and
Japanese digital cellular system standards. For instance, Tjhung et al. [30] and
Tanda [31] analyzed the average BEP of DQPSK over slow Rician and Nakagami-
m fading channels, respectively. Later, Tellambura and Bhargava [32] presented
an alternative unified BEP analysis of DQPSK over Rician and Nakagami-m
fading channels. In keeping with the unifying theme of this book, our purpose
in this section is to once again unify and add to the previous contributions
by obtaining results for arbitrary values of M as well as for a broad class of
fading channels. As in Section 8.1.5, we first focus on conventional (two-symbol
observation) detection of M-PSK, for which, as noted there, the SEP is already
in the desired form, namely, one that lends itself to immediate application of the
MGF-based approach.

8.2.5.1 M-ary Differential Phase-Shift-Keying: Slow Fading

Conventional Detection: Two-Symbol Observation. With reference to (8.84),
which gives the SEP of M-DPSK for the AWGN channel, we observe that the
integrand is already an exponential function of the symbol SNR. Thus, unlike
the cases where the integrand’s dependence on SNR is through Gaussian and
Marcum Q-functions, no alternative form is necessary here to allow averaging
over the fading statistics of the channel. All that needs to be done is to replace
Es/N0 by =s in the argument of the exponential and then average over the PDF
of =s resulting in the MGF-based expression

Ps�E	 D
p
gPSK

2�

∫ �/2

��/2

M=s���1 � p
1 � gPSK cos �		

1 � p
1 � gPSK cos �

d�,

gPSK
D sin2��/M	 �8.165	
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or the simpler form derived from (8.90),

Ps�E	 D 1

�

∫ �M�1	�/M

0
M=s

(
� gPSK

1 C p
1 � gPSK cos �

)
d� �8.166	

The special case of binary DPSK wherein gPSK D 1 simplifies to the closed-form
result

Pb�E	 D 1
2M=��1	 �8.167	

Comparing (8.167) with the special case of (8.158) corresponding to M D 2,
namely, Pb�E	 D 1

2M=�� 1
2 	, then since, independent of the type of fading, the

MGF of the fading SNR M=��s	 is only a function of the product s= [see,
e.g., (5.5), (5.8), (5.11), and (5.15)], we conclude that the BEP of noncoherent
orthogonal FSK is 3 dB worse in average fading SNR than that of DPSK. We
remind the reader that this is the same conclusion reached when comparing these
two modulation/detection schemes over the AWGN.

To obtain the average BEP corresponding to values of M > 2, we make use
of the AWGN results in (8.86), which correspond to a Gray code bit-to-symbol
mapping. Since each of the BEP results in (8.86) is expressed in terms of the
function F� 	 defined in (8.87), which, analogous to (8.84), has an integrand
with exponential dependence on symbol SNR, then clearly the average BEP over
the fading channel can be obtained from (8.86) by replacing F� 	 with

F� 	 D � sin 

4�

∫ �/2

��/2

M=���log2M	�1 � cos cos t		

1 � cos cos t
dt �8.168	

or the simpler form [see Eq. (4.68)]

F� 	 D � 1

4�

∫ �� 

���� 	
M=

(
��log2M	

sin2  

1 C cos cos t

)
dt �8.169	

The average BEP for the special case of DQPSK can, of course, be obtained from
the first relation in (8.86) together with (8.168) or (8.169) with M D 4. In view
of (8.89) for the AWGN channel, it can also be obtained in a form analogous to
(8.163), namely,

Pb�E	 D 1

4�

∫ �

��

1 � 82

1 C 28 sin � C 82
M=

(
�

(
1 C 1p

2

)
�1 C 28 sin � C 82	

)
d�,

8
D

√
2 � p

2

2 C p
2

�8.170	

Using instead the alternative forms of the first-order Marcum Q-functions given
in (4.20) and (4.21) corresponding to only positive values of the integration
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variable, an equivalent form to (8.170) can be obtained from Tellambura and
Bhargava [32, Eq. (3)], namely,

Pb�E	 D 1

2�

∫ �

0

1p
2 � cos �

M=���2 �
p

2 cos �		d� �8.171	

Without further ado, we now give the specific results of the above, corresponding
to Rayleigh, Rician, and Nakagami-m channels. These results, as well as those
for the fading channels discussed previously, are taken from Ref. 33.

RAYLEIGH FADING. From (8.165) and (5.5), the average SEP of M-DPSK is
given by

Ps�E	D sin��/M	

2�

∫ �/2

��/2

1

[1 � cos��/M	 cos �]f1 C =s[1 � cos��/M	 cos �]g d�
�8.172	

which is in agreement with Sun and Reed [24, Eq. (6)]. The corresponding binary
DPSK result is

Pb�E	 D 1

2�1 C =	
�8.173	

which agrees with Proakis [6, Eq. (14-3-10)]. For DQPSK, the average BEP is
evaluated from (8.170) in closed form as

Pb�E	 D 1

2

[
1 � 1√

�1 C 2=	2/�2=2	� 1

]
�8.174	

which agrees with an equivalent result obtained by Tjhung et al. [30, Eq. (18)]
and Tanda [31, Eq. (13)], namely,

Pb�E	 D 1

2
√

1 C 4= C 2=2

[p
2= C �

p
2 � 1	�1 C 2= �

√
1 C 4= C 2=2	p
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p

2 � 1	�1 C 2= �
√

1 C 4= C 2=2	

]
�8.175	

or the one reported by Tellambura and Bhargava [32, Eq. (8)], namely,

Pb�E	 D 1

2

(
1 �

p
2=√

1 C 4= C 2=2

)
�8.176	

For other values of M, the average BEP is computed from (8.86) using

F� 	 D � sin 

4�

∫ �/2

��/2

1

�1 � cos cos t	[1 C =�log2M	�1 � cos cos t	]
dt

�8.177	
in place of F� 	.
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RICIAN FADING. From (8.165) and (5.11), the average SEP ofM-DPSK is given by

Ps�E	 D sin��/M	

2�

∫ �/2

��/2

1 CK

�1 � cos��/M	 cos �	f1 CKC =s[1 � cos��/M	 cos �]g

ð exp
{

� K=s[1 � cos��/M	 cos �]

1 CKC =s[1 � cos ��/M	 cos �]

}
d� �8.178	

which is in agreement with Sun and Reed [24, Eq. (5)]. The corresponding binary
DPSK result is

Pb�E	 D 1

2

(
1 CK

1 CKC =

)
exp

(
� K=

1 CKC =

)
�8.179	

For DQPSK, the average BEP is most easily evaluated from (8.171), which
produces

Pb�E	 D e�K

2�

∫ �

0

1 CK

�
p

2 � cos �	[1 CKC =s�2 � p
2 cos �	]

ð exp

[
� K�1 CK	

1 CKC =s�2 � p
2 cos �	

]
d� �8.180	

in agreement with Tellambura and Bhargava [32, Eq. (6)].
For other values of M, the average BEP is computed from (8.86) using

F� 	 D � sin 

4�

∫ �/2

��/2

1 CK

�1 � cos cos t	[1 CKC =�log2M	�1 � cos cos t	]

ð exp
[
� K=�log2M	�1 � cos cos t	

1 CKC =�log2M	�1 � cos cos t	

]
dt �8.181	

in place of F� 	.

NAKAGAMI-m FADING. From (8.165) and (5.15), the average SEP of M-DPSK is
given by

Ps�E	 D sin��/M	

2�

∫ �/2

��/2

1

[1�cos��/M	 cos �]f1C�=s/m	[1�cos��/M	 cos �]gm d�
�8.182	

and is illustrated in Fig. 8.10 as a function of average symbol SNR and
parameterized by m. The corresponding binary DPSK result is

Pb�E	 D 1

2

(
m

mC =

)m
�8.183	
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Figure 8.10. Average SEP of 8-DPSK over a Nakagami-m channel versus the average SNR
per symbol.

which agrees with the expression attributed to Barrow [34] and later reported by
Wojnar [22, Eq. (11)] and Crepeau [35, Eq. (B1)]. For DQPSK, the average BEP
is evaluated from (8.171) as

Pb�E	 D 1

2�

(
m

m C 2=

)m ∫ �

0

1

�
p

2 � cos �	�1 � [
p

2=/�m C 2=	] cos �	m
d�

�8.184	
which agrees with Tellambura and Bhargava [32, Eq. (7)].

Finally, the function necessary to compute average BEP for other values of
M is given by

F� 	 D � sin 

4�

∫ �/2

��/2

1

�1 � cos cos t	

[
m

m C =�log2M	�1 � cos cos t	

]m
dt

�8.185	

Multiple Symbol Detection. The upper bound on the BEP for the AWGN
channel as given in (8.97) is easily extended to the fading channel case by
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recognizing that the form of the probability PrfOznk > znkg as described by (8.80)
is identical to (8.162), which characterizes noncoherent detection of orthogonal
FSK. One can thus make use of the results in Section 8.2.3 to express each term
in the sum of (8.97) in an MGF-based form analogous to (8.163), namely,

PrfOznk > znkg D 1

4�

∫ �

��

1 � 82

1 C 28 sin � C 82
M=

(
� log2M

4
�Ns C

√
Ns � jυj2	

ð �1 C 28 sin � C 82	

)
d�, 8

D
√√√√Ns �

√
Ns � jυj2

Ns C
√
Ns � jυj2

�8.186	
with υ defined in (8.99). Substituting (8.186) into (8.97) gives the desired upper
bound on BEP. It is left as an exercise for the reader to evaluate (8.186) for the
various fading channels based on the same procedure as that stated at the end of
Section 8.2.3.

8.2.5.2 M-ary Differential Phase-Shift-Keying: Fast Fading

Conventional Detection: Two-Symbol Observation. Until now in this chapter
we have focused entirely on the performance of digital communication systems
operating over slow-fading channels. For conventional differentially coherent
detection of M-PSK, the assumption of slow fading is tantamount to assuming
that the fading amplitude is constant over a duration of at least two symbol
intervals. A suitable modification of this model for the case of fast fading is
to assume that the fading amplitude is constant within the duration of a single
symbol but varies from symbol to symbol. That is, the symbol intervals are
each characterized by their own fading amplitude, which relative to one another
satisfy a given discrete correlation function that is related to the nature of the
fading channel (more about this later). Such a discrete fast-fading model is an
approximation to the true channel behavior wherein the fading varies continuously
with time. To understand fully the method used to evaluate the average error
probability for this scenario, we must first review the system model discussed in
Section 3.5, making the necessary modifications in notation to account for the
presence of fast fading on the signal. We focus all our attention on the Rician
channel (with results for the Rayleigh channel obtained as a special case) and
develop only the binary DPSK case.

Consider a binary DPSK system transmitting information bits over an AWGN
channel that is also perturbed by fast Rician fading. The normalized kth
information bit at the input to the system is given by

xk D ej�k �8.187	

where for binary transmission �k takes on values of 0 and � corresponding,
respectively, to values of 1 and �1 for xk . The input information bits are
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differentially encoded, resulting in the transmitted bit

vk D
√

2Ebe
j�k D

√
2Ebe

j��k�1C�k	 D vk�1xk �8.188	

After passing through the fast-fading channel, the received information bit in the
kth transmission interval is

wk D Gkvk CNk �8.189	

where Gk is the complex Gaussian fading amplitude associated with the kth
received bit and Nk is a zero-mean complex Gaussian noise RV with correlation
function EfNŁ

kNmg D 2N0υ�k � m	. Denoting the mean and variance of Gk by
@ D EfGkg and #2 D 1

2EfjGk � @j2g (both assumed to be independent of k), then
for the assumed Rician channel, the magnitude of Gk , namely, ˛k

D jGkj, has PDF

p�˛k	 D ˛k
2�1 CK	

<
exp

[
�K� ˛2

k�1 CK	

<

]
I0

(
2˛kp
<

√
K�1 CK	

)
�8.190	

where < D Ef˛2
kg D 2#2�1 CK	. Furthermore, the adjacent complex fading

amplitudes have correlation

1
2Ef�Gk�1 � @	Ł�Gk � @	g D '#2, 0 � ' � 1 �8.191	

where ' is the fading correlation coefficient whose value depends on the fast-
fading channel model that is assumed.

At the receiver the received signal wk for the current bit interval is complex
conjugate multiplied by the same signal, corresponding to the previous bit
interval, and the real part of the resulting product forms the decision variable
(which is multiplied by 2 for mathematical convenience)

zk
D 2 RefwŁ

kwk�1g D wŁ
kwk�1 C wkw

Ł
k�1 �8.192	

Comparison of zk with a zero threshold results in the final decision on the
transmitted bit xk , namely, Oxk D ejO�k D sgn zk , which is consistent in form with
the decision rule given in (3.52).

We note that conditioned on the information bit xk , the components wk�1 and
wk are complex Gaussian RVs (since both the fading amplitude and additive noise
RVs are complex Gaussian). Thus, (8.192) represents a Hermitian quadratic form
of complex variables. Although it is possible to use an MGF-based approach
based on the conditional MGF of such a quadratic form first considered by Turin
[36] and later reported by Schwartz et al. [37, App. B], in this particular case
there is an easier way to proceed. Specifically, letting D D zkjxkD1 denote the
decision variable corresponding to transmission of a C1 information bit, then
based on the decision rule above, the average BEP is given by
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Pb�E	 D PrfD < 0g �8.193	

The solution to (8.193) is a special case of the problem considered in [6, App. B]
which has also been reconsidered in alternative forms in Appendix 9A of this
book. Specifically, letting A D B D 0, C D 1, Xk D wk�1, Yk D wk in (9A.2), the
decision variable (8.192) is identical to that in (9A.1) when L D 1. Evaluating
the various coefficients required in (9A.10) produces after much simplification
the following results:

@ D v2

v1
D 1 CKC =�1 C '	

1 CKC =�1 � '	
, a D 0, b D

√
2K=

1 CKC =
�8.194	

where = D <Eb/N0 is, as before, the average fading SNR. Finally, substituting
(8.194) in (9A.10) and recalling that Q1�0, b	 D e�b2/2, we obtain the desired
average BEP

Pb�E	 D 1

2

[
1 CKC =�1 � '	

1 CKC =

]
exp

(
� K=

1 CKC =

)
�8.195	

The corresponding result for the Rayleigh �K D 0	 channel is

Pb�E	 D 1

2

[
1 C =�1 � '	

1 C =

]
�8.196	

As a check, the results presented earlier for slow fading can be obtained by letting
' D 1 in (8.195) and (8.196), which results, respectively, in (8.179) and (8.173),
as expected.

What is different about the fast-fading case in comparison with the slow-fading
case is the limiting behavior of Pb�E	 as the average fading SNR approaches
infinity. Letting = ! 1 in (8.195) and (8.196) gives

lim
=!1

Pb�E	 D 1 � '

2
exp��K	 �8.197	

and

lim
=!1

Pb�E	 D 1 � '

2
�8.198	

(i.e., an irreducible bit error probability exists for any ' 6D 1). The amount of
this irreducible error probability can be related (through the parameter ') to
the ratio of the Doppler spread (fading bandwidth) of the channel to the data
rate. The specific functional relationship between these parameters depends on
the choice of the fading channel correlation model. Mason [39] has tabulated
such relationships for various types of fast-fading processes of interest. These
results are summarized in Table 2.1, where fdTs D fdTb denotes the Doppler
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Figure 8.11. Average BEP of binary DPSK over a fast fading Rician channel versus the average
SNR per bit: land mobile channel.

spread/data rate ratio, and in addition the variance of the fading process has, for
convenience, been normalized to unity. For example, for the land mobile channel
where ' D J0�2�fdTb	, Fig. 8.11 illustrates the average BEP as computed from
(8.195) as a function of average bit SNR for Rician K D 0 (Rayleigh channel)
and K D 10 with fdTb as a parameter. As one would expect, as fdTb diminishes,
the irreducible error becomes smaller. Nevertheless, depending on the value of
Rician factor, a Doppler spread of only 1% of the data rate can still cause a
significant error floor.

8.2.5.3 p/4-Differential QPSK. From the conclusion drawn in Section 8.1.5.2
relative to the equivalence in behavior between DQPSK and �/4-DQPSK on the
ideal linear AWGN channel, it is clear that the same statement can be made for
the fading channel. Thus, without any additional detail, we conclude immediately
that the error probability performance of �/4-DQPSK on the fading channel is
characterized by the results of Section 8.2.5.1, namely, the generic BEP of (8.170)
[or (8.171)] or the more specific results that followed these equations.
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APPENDIX 8A: STEIN’S UNIFIED ANALYSIS OF THE ERROR
PROBABILITY PERFORMANCE OF CERTAIN COMMUNICATION
SYSTEMS

The analysis of the error probability performance of differential and noncoherent
detection as well as certain nonideal coherent detection systems on an AWGN



254 PERFORMANCE OF SINGLE CHANNEL RECEIVERS

channel is characterized by a decision statistic that is either in the form of the
product of two complex Gaussian random variables or the difference of the
squares of such variables. In what has now become a classic paper in the annals of
communication theory literature, Stein [9] showed how, using a simple algebraic
relation between the product and difference of square forms of the decision
variable, the error probability of certain such binary systems could be analyzed
by a unified approach. Our intent in this appendix is to summarize (without
proof) the results found in Stein’s original paper in a generic form that can easily
be referenced in the main text, where it is applied to specific communication
scenarios. This generic form will also be useful when extending Stein’s results
to M-ary communication systems [21] and fading channels [6] as well as certain
nonideal coherent detection systems [16].

We start by considering two complex Gaussian variables, z1p D jz1pjej1p

and z2p D jz2pjej2p , that are in general correlated and whose sum and differ-
ence, z1f D �z1p C z2p	/2 and z2f D �z1p � z2p	/2, are also correlated complex
Gaussian random variables.1 A simple algebraic manipulation shows that

jz1fj2 � jz2fj2 D
(
z1p C z2p

2

)(
z1p C z2p

2

)Ł
�

(
z1p � z2p

2

)(
z1p � z2p

2

)Ł

D 2
(
z1pzŁ2p C zŁ1pz2p

4

)
D RefzŁ1pz2pg �8A.1	

Hence, a test of jz1fj2 � jz2fj2 or RefzŁ1pz2pg against a zero threshold, which are
typical of noncoherent FSK and differentially coherent PSK systems, respectively,
would produce equivalent error probability performance expressions, that is,

P D PrfRefzŁ1pz2pg < 0g �8A.2a	

or

P D Prfjz1fj2 � jz2fj2 < 0g
D Prfjz1fj2 < jz2fj2g
D Prfjz1fj < jz2fjg �8A.2b	

To evaluate the error probability P, Stein used a succession of linear
transformations to transform both the FSK and PSK models to a canonical
problem that had a convenient solution. In particular, he showed that the
solution to (8A.2a) or (8A.2b) could be expressed in terms of an equivalent
noncoherent FSK problem based on two nonzero mean but uncorrelated complex
Gaussian variables, t1 and t2 wherein the desired error probability could be stated

1 The subscripts f and p refer, respectively, to FSK and PSK modulations, as will become clear
shortly.
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as P D Prfjt1j2 < jt2j2g D Prfjt1j < jt2jg. By relating t1 and t2 to z1p, z2p and
z1f, z2f, Stein arrived at the following generic results.

Define the first- and second-order moments of z1p, z2p by (using Stein’s
notation)

zip
Dmip C j>ip D jzipje�ip, i D 1, 2

Sip
D 1

2 jzipj2 D 1
2 �m

2
ip C >2

ip	, Nip
D 1

2 jzip � zipj2, i D 1, 2

'p
√
N1pN2p

D 1
2 �z1p � z1p	Ł�z2p � z2p	, 'p D 'cp C j'sp
1
2 �z1p � z1p	�z2p � z2p	 D 0 �8A.3	

and similarly for z1f and z2f. Finally, define the phase angle � by

� D arg�N1p �N2p � j2'sp
√
N1pN2p	 �8A.4a	

or

� D arg�'cf C j'sf	 �8A.4b	

for the problems characterized by (8A.2a) and (8A.2b), respectively. Then,

P D 1

2
[1 � Q1�

p
b,

p
a	C Q1�

p
a,

p
b	] � A

2
exp

(
�aC b

2

)
I0�

p
ab	

�8A.5	
where for the definition of P as in (8A.2a) we have

{
a
b

}
D 1

2


S1p C S2p C �S1p � S2p	 cos� C 2

√
S1pS2p sin��1p � �2p	 sin�

N1p CN2p C
√
�N1p �N2p	2 C 4'2

spN1pN2p

C S1p C S2p � �S1p � S2p	 cos� � 2
√
S1pS2p sin��1p � �2p	 sin�

N1p CN2p �
√
�N1p �N2p	2 C 4'2

spN1pN2p

Ý 2
√
S1pS2p cos��1p � �2p	√
�1 � '2

sp	N1pN2p


 �8A.6a	

A D 'cp√
1 � '2

sp
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and for the definition of P as in (8A.2b) we have{
a
b

}
D 1

2

[
S1f C S2f C 2

√
S1fS2f cos��1f � �2f C �	

N1f CN2f C 2
√
N1fN2fj'fj2

C S1f C S2f � 2
√
S1fS2f cos��1f � �2f C �	

N1f CN2f � 2
√
N1fN2fj'fj2

Ý 2�S1f � S2f	√
�N1f CN2f	2 � 4N1fN2fj'fj2

]
�8A.6b	

A D N1f �N2f√
�N1f CN2f	2 � 4N1fN2fj'fj2

Several special cases of (8A.6a) and (8A.6b) are of interest. First, if z1p and z2p
are uncorrelated (i.e., j'pj D 0	, � D 0 or � (depending, respectively, on whether
N1p > N2p or N1p < N2p. In either event, (8A.6a) simplifies to

{
a
b

}
D 1

2

[
S1p

N1p
C S2p

N2p
Ý 2

√
S1p

N1p

S2p

N2p
cos��1p � �2p	

]
, A D 0

�8A.7	

A further special case of (8A.8) corresponds to S1p D S2p
D Sp, N1p D N2p

DNp,
�1p D �2p, in which case we obtain

{
a
b

}
D




0
2Sp
Np


 , A D 0 �8A.8	

If for (8A.6b), z1f and z2f have equal noise power (i.e., N1f D N2f
DNf	,

then (8A.6b) simplifies to

{
a
b

}
D 1

2Nf

[
S1f C S2f � 2j'fj√S1fS2f cos��1f � �2f C �	

1 � j'fj2

Ý S1f � S2f√
1 � j'fj2

]
, A D 0 �8A.9	

If, in addition, z1f and z2f are uncorrelated, i.e., j'fj D 0, then (8A.9) further
simplifies to

{
a
b

}
D



S2f

Nf
S1f

Nf


 , A D 0 �8A.10	



APPENDIX 8A: STEIN’S UNIFIED ANALYSIS OF THE ERROR PROBABILITY PERFORMANCE 257

The generic result in (8A.5) can be simplified by using some of the
alternative representations of classical functions given in Chapter 4. In particular,
substituting (4.16), (4.19), and (4.65) in (8A.5) and combining terms, we arrive
at the result

P D 1

4�

∫ �

��

[
1 � AC 28A sin � � 82�1 C A	

1 C 28 sin � C 82

]

ð exp
[
�b

2
�1 C 28 sin � C 82	

]
d�, 0 � 8

D
√
a

b
< 1 �8A.11	

which for A D 0 simplifies to

P D 1

4�

∫ �

��

[
1 � 82

1 C 28 sin � C 82

]
exp

[
�b

2
�1 C 28 sin � C 82	

]
d�,

0 � 8
D

√
a

b
< 1 �8A.12	

It should be noted that the specific form of the result in (8A.12) can be obtained
from the work of Pawula [38], who cited certain relations between the Marcum
Q-function and the Rice Ie-function, which is defined by

Ie�k, x	 D
∫ x

0
exp��t	I0�kt	 dt �8A.13	

In particular, combining Eqs. (2a) and (2d) of Ref. 38 and making the substitu-
tions U D �bC a	/2, W D �b� a	/2, and V2 D U2 �W2 D ab in these same
equations, one arrives at the result

P D 1

2�

∫ �

0

[
1 � 82

1 � 28 cos � C 82

]
exp

[
�b

2
�1 � 28 cos � C 82	

]
d�,

0 � 8
D

√
a

b
< 1 �8A.14	

which in view of the symmetry properties of the trigonometric functions over the
intervals ���, 0	 and �0, �	 can be shown to be identically equivalent to (8A.12).

Another (simpler) form of P can be obtained from the newer alternative form
of the Marcum Q-function due to Pawula [19] and presented in (4.26) through
(4.29). Using these relations in (8A.5) with A D 0, we obtain

P D 1

4�

∫ �

��
exp

{
�b

2

[
�1 � 82	2

1 C 28 sin � C 82

]}
d� �8A.15	
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or equivalently,

P D 1

2�

∫ �

0
exp

{
�b

2

[
�1 � 82	2

1 š 28 cos � C 82

]}
d� �8A.16	

The advantage of (8A.15) [or (8A.16)] is that simple upper and lower bounds on
P are now readily obtainable by upper and lower bounding the exponential in
the integrand by its maximum and minimum values, corresponding, respectively,
to � D ��/2 and � D �/2, which immediately gives

1

2
exp

[
�b

2
�1 C 8	2

]
� P � 1

2
exp

[
�b

2
�1 � 8	2

]
�8A.17	

A still tighter lower bound can be obtained from (8A.16) by the following
sequence of steps:2
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2
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½ 1

2�

∫ �

0
exp

{
�b

2

[
�1 � 8	2

cos2 ��/2	

]}
d�

D 1

�

∫ �/2

0
exp

{
�b

2

[
�1 � 8	2

sin2 ��/2	

]}
d�

D Q�
p
b�1 � 8		 D Q�

p
b� p

a	 �8A.18	

where the last equality comes from the alternative form of the Gaussian Q-
function in (4.2). What is particularly interesting about (8A.18) is that many
authors have used this result as an asymptotic approximation to P (e.g., Turin [36,
Eq. (A-3-4)]), where the additional constraints b × 1, a × 1, b� a > 0 were
imposed. The result as presented in (8A.18) is stronger, in that it is a strict lower
bound and as such does not require any asymptotic conditions on the parameters.
Furthermore, since the upper bound of (8A.17) is, in fact, the Chernoff bound
on the lower bound in (8A.18), we conclude that the probability of error P is
bounded between the Gaussian Q-function of the difference of the arguments and
the Chernoff bound on this function.

2 This bound was derived and supplied to the authors by W. F. McGee of Ottawa, Canada.
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PERFORMANCE OF
MULTICHANNEL RECEIVERS

Many of the current and emerging wireless communication systems make use
in one form or another of diversity: a classic and well-known concept [1–4]
that has been used for the past half century to combat the effects of multipath
fading. Indeed, diversity combining, in which two or more copies of the
same information-bearing signal are combined skillfully to increase the overall
signal-to-noise ratio (SNR), still offers one of the greatest potential for radio
link performance improvement to many of the current and future wireless
technologies. For example, to meet stringent quality of service requirements,
spectrally efficient multilevel constellations need antenna (or space) diversity
to reduce the fading-induced penalty on the SNR [5]. In addition, one of the
most promising features of wideband CDMA systems is their ability to resolve
additional multipaths [compared to “narrowband” (i.e., IS-95) CDMA systems],
resulting in an increased diversity which can be exploited by RAKE reception.
This particular application of diversity techniques is discussed in detail in
Chapter 11. In this chapter we extend the MGF-based approach developed for
the performance of single-channel receivers in Chapter 8 to the performance of
diversity (i.e., multichannel) receivers. The coverage is broad in the sense that
several combining techniques are presented and analyzed in terms of average
combined SNR, outage probability, and average probability of error. A particular
focus is put on how the performance of these techniques is affected by various
channel fading characteristics, such as fading severity, power delay profile,
and fading correlation. But first, to understand the concepts and terminology
used, we summarize briefly the basic principles of diversity, then review the
various types of combining techniques in the remainder of this introductory
section.

259



260 PERFORMANCE OF MULTICHANNEL RECEIVERS

9.1 DIVERSITY COMBINING

9.1.1 Diversity Concept

As mentioned above, diversity combining consists of receiving redundantly
the same information-bearing signal over two or more fading channels, then
combining these multiple replicas at the receiver to increase the overall received
SNR. The intuition behind this concept is to exploit the low probability of
concurrence of deep fades in all the diversity channels to lower the probability
of error and of outage.

These multiple replicas can be obtained by extracting the signals via different
radio paths:

ž In space by using multiple receiver antennas (antenna or site diversity)
ž In frequency by using multiple frequency channels which are separated

by at least the coherence bandwidth of the channel (frequency hopping or
multicarrier systems)

ž In time by using multiple time slots which are separated by at least the
coherence time of the channel (coded systems)

ž Via multipath by resolving multipath components at different delays (direct-
sequence spread-spectrum systems with RAKE reception)

9.1.2 Mathematical Modeling

The mathematical model considered in this chapter consists of a multilink channel
where the transmitted signal is received over L independent slowly varying flat
fading channels, as shown in Fig. 9.1. In the figure, l is the channel index,
and f˛lgLlD1, f�lgLlD1, and f�lgLlD1 are the random channel amplitudes, phases,
and delays, respectively. We assume that the sets f˛lgLlD1, f�lgLlD1, and f�lgLlD1
are mutually independent. The first channel is assumed to be the reference
channel with delay �1 D 0 and, without loss of generality, we assume that
�1 < �2 < Ð Ð Ð < �L. We assume that the f˛lgLlD1, f�lgLlD1, and f�lgLlD1 are all
constant over at least a symbol interval.

When we talk about independent combined paths, we mean that the fading
amplitudes f˛lgLlD1 are assumed to be statistically independent random variables

(RV’s) where ˛l has mean-square value ˛2
l denoted by �l and a probability

density function (PDF) described by any of the family of distributions [Rayleigh,
Nakagami-n (Rice), or Nakagami-m] presented in Chapter 2. As we will see
throughout the chapter, the multilink channel model used in our analyses is
often sufficiently general to include the case where the different channels are
not necessarily identically distributed or even distributed according to the same
family of distributions. We call this type of multilink channel a generalized
multilink fading channel.

After passing through the fading channel, each replica of the signal is perturbed
by complex additive white Gaussian noise (AWGN) with a one-sided power
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Figure 9.1. Multilink channel model.

spectral density denoted by 2Nl (W/Hz). The AWGN is assumed to be statistically
independent from channel to channel and independent of the fading amplitudes
f˛lgLlD1. Hence, the instantaneous SNR per symbol of the lth channel is given by
�l D ˛2

lEs/Nl, where Es (J) is the energy per symbol and the SNR per symbol
of the lth channel is given by �l D �lEs/Nl.

9.1.3 Brief Survey of Diversity Combining Techniques

Diversity techniques can first be classified according to the nature of the
fading they are intended to mitigate. For instance, microdiversity schemes
are designed to combat short-term multipath fading, whereas macrodiversity
techniques mitigate the effect of long-term shadowing caused by obstructions
such as buildings, trees, and hills. Diversity schemes can also be classified
according to the type of combining employed at the receiver. At this point
we should distinguish the classical pure combining schemes [1] from the more
recently proposed hybrid techniques.

9.1.3.1 Pure Combining Techniques. There are four principal types of
combining techniques, which depend essentially on the (1) complexity restric-
tions put on the communication system, and (2) amount of channel state infor-
mation (CSI) available at the receiver.
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Maximal Ratio Combining (MRC). As shown in Chapter 7, in the absence
of interference, MRC is the optimal combining scheme (regardless of fading
statistics) but comes at the expense of complexity since MRC requires knowledge
of all channel fading parameters. Since knowledge of channel fading amplitudes
is needed for MRC, this scheme can be used in conjunction with unequal-
energy signals (e.g., M-QAM or any other amplitude or phase modulations).
Furthermore, since knowledge of channel phases is also needed for MRC, this
scheme is not practical for differentially coherent and noncoherent detection.
Indeed, if channel phase estimates are obtained, the designer might as well go
for coherent detection, thus achieving better performance.

Equal-Gain Combining (EGC). Although suboptimal, EGC with coherent
detection is often an attractive solution since it does not require estimation of
the fading amplitudes and hence results in reduced complexity relative to the
optimum MRC scheme. However, EGC is often limited in practice to coherent
modulations with equal-energy symbols (M-ary PSK signals). Indeed, for signals
with unequal energy symbols such as M-QAM, estimation of the path amplitudes
is needed anyway for automatic gain control (AGC) purposes, and thus for these
modulations, MRC should be used to achieve better performance [3].

In many applications the phase of the received signal cannot be tracked
accurately, and it is therefore not possible to perform coherent detection. In
such scenarios, communication systems must rely on noncoherent detection
techniques such as envelope or square-law detection of frequency-shift-keying
(FSK) signals [6, Chap. 5] or on differentially coherent detection techniques such
as differential phase-shift-keying (DPSK) [6, Chap. 7]. As explained above, MRC
is not practical for such detection schemes, which are used, rather, in conjunction
with postdetection EGC [3, Sec. 5.5.6; 7, Sec. 12.1].

Selection Combining (SC). The two former combining techniques (MRC and
EGC) require all or some of the CSI (fading amplitude, phase, and delay) from
all the received signals. In addition, a separate receiver chain is needed for each
diversity branch, which adds to the overall receiver complexity. On the other
hand, SC-type systems process only one of the diversity branches. Specifically, in
its conventional form, the SC combiner chooses the branch with the highest SNR.
In addition, since the output of the SC combiner is equal to the signal on only one
of the branches, the coherent sum of the individual branch signals is not required.
Therefore, the SC scheme can be used in conjunction with differentially coherent
and noncoherent modulation techniques since it does not require knowledge of
the signal phases on each branch as would be needed to implement MRC or EGC
in a coherent system.

Switch and Stay Combining (SSC). For systems that use uninterrupted
transmission, such as frequency-division multiple-access systems, SC in its
conventional form may still be impractical since it requires simultaneous and
continuous monitoring of all the diversity branches [3, p. 240]. Hence SC is
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often implemented in the form of switched or scanning diversity, in which rather
than continually picking the best branch, the receiver selects a particular branch
until its SNR drops below a predetermined threshold. When this happens the
receiver switches to another branch. There are different variants of switched
diversity [8], but in its simplest form the SSC receiver switches to, and stays
with, the other branch, regardless of whether the SNR of that branch is above or
below the predetermined threshold [9,10]. SSC diversity is obviously the least
complex diversity scheme to implement and can be used in conjunction with
coherent modulations as well as noncoherent and differentially coherent ones.

9.1.3.2 Hybrid Combining Techniques. Because of additional complexity
constraints or because of the potential of a higher diversity gain with more
sophisticated diversity schemes, newly proposed hybrid techniques have been
receiving a great deal of attention in view of their promising offer to meet the
specifications of emerging wideband communication systems. These schemes
can be categorized into two groups: (1) generalized diversity schemes and
(2) multidimensional diversity techniques.

Generalized Diversity Techniques. The complexity of MRC and EGC receivers
depends on the number of diversity paths available, which can be quite high,
especially for multipath diversity of wideband CDMA signals. In addition, MRC
is sensitive to channel estimation errors, and these errors tend to be more
important when the instantaneous SNR is low. On the other hand, SC uses only
one path out of the L available multipaths and hence does not fully exploit the
amount of diversity offered by the channel. Recently, a wave of papers have
been published bridging the gap between these two extremes (MRC/EGC and
SC) by proposing GSC, which adaptively combines (following the rules of MRC
or EGC) the Lc strongest (highest SNR) paths among the L available ones. We
denote such hybrid schemes as SC/MRC or SC/EGC-Lc/L. In the context of
coherent wideband CDMA systems, these schemes offer less complex receivers
than the conventional MRC RAKE receivers since they have a fixed number
of fingers independent of the number of multipaths. More important, SC/MRC
was shown to approach the performance of MRC, while SC/EGC was shown
to outperform in certain cases conventional postdetection EGC since it is less
sensitive to the “combining loss” of the very noisy (low-SNR) paths [11].

Multidimensional Diversity Techniques. Multidimensional diversity schemes
involving the combination of two or more conventional means of realizing
diversity (e.g., space and multipath) to provide better performance have recently
received a great deal of attention. For example, in the context of wideband CDMA
they are implemented in the form of two-dimensional RAKE receivers, consisting
of an array of antennas, each followed by a conventional RAKE receiver.
Furthermore, these schemes can take advantage of diversity from frequency and
multipath, as is the case in multicarrier-RAKE CDMA systems [12] or from
Doppler and multipath as proposed in Ref. 13. Composite microscopic plus
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macroscopic diversity can also be viewed as a two-dimensional diversity scheme.
This type of diversity is used is systems originally proposed about a decade ago
by Cox et al. [14] in conjunction with universal digital portable communications.
These systems consist of several access ports (base stations) which continually
track a mobile terminal. Each access port contains a multielement antenna
array that employs microdiversity to reduce the effects of multipath fading.
Macrodiversity is then performed at the output of the different access ports to
mitigate the effects of shadowing. Two-dimensional diversity can be generalized
to multidimensional diversity by simultaneous exploitation of, for example, space,
frequency, and multipath diversity.

9.1.4 Complexity–Performance Trade-offs

Wireless system designers are in charge of developing sufficiently high perfor-
mance systems that achieve a certain specified quality of service while
meeting predetermined complexity constraints. The search for the appropriate
system design typically involves trade-off studies among various modula-
tion–coding–diversity scheme combinations. An informed decision/choice relies
on a precise quantitative performance evaluation of these various combinations.

The objective of this chapter is to develop analytical methods and tools to
assess accurately the performance of communication systems operating over
wireless fading channels when various diversity techniques are employed to
combat the effects of fading. An emphasis is put on the development of “generic”
tools to address various performance measures (average combined or output SNR,
outage probability, and average error rate), several modulation–diversity scheme
combinations, and a variety of fading environments. In particular, analytical
methods that are not limited to specific channel conditions are very important
since the performance of diversity systems operating over such conditions is
affected by various channel characteristics and parameters, such as:

ž Fading distribution on the various diversity branches and paths. For
example, for multipath diversity the statistics of the different paths may
be characterized by different families of distributions.

ž Average fading power. For example, in multipath diversity the average
fading power is typically assumed to follow an exponentially decaying
power delay profile with equispaced delays: �l D �1e

�υ�l�1� (l D
1, 2, . . . , L), where �1 is the average SNR of the first (reference) propagation
path and υ is the average fading power decay factor.

ž Severity of fading. For example, fading in a macrocellular environment tends
to follow a Rayleigh type of fading, whereas fading tends to be Rician or
Nakagami-m in a microcellular type of environment.

ž Fading correlation. For example, because of insufficient antenna spacing in
small mobile units equipped with space antennas, diversity and, in this case,
the maximum theoretical diversity gain cannot be achieved.
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9.2 MAXIMAL-RATIO COMBINING

The performance of MRC over fading channels has long been of interest, as
shown by the large number of papers published on this topic. With some
special exceptions, most of the models for these systems typically assume
either Rayleigh paths or independent identically distributed (i.i.d.) Nakagami
or Rician paths. These idealizations are not always realistic since the average
fading power [15,16] and the severity of fading [17–19] may vary from one
path to another when, for example, multipath diversity is employed. In this
section we consider a generalized multilink fading channel and derive expressions
for the exact symbol error rate (SER) of linearly modulated signals over such
channels [20,21]. The results of this section are applicable to systems that employ
coherent demodulation and operate over independent paths.1 As in Chapter 8
the approach to solving the problem takes advantage of the alternative integral
representations [22,23] (see Chapter 4) of the probability of error of these signals
over additive white Gaussian noise (AWGN) channels (i.e., the conditional SER),
along with the Laplace transforms and/or Gauss–Hermite quadrature integrals of
Chapter 5, to derive the SER expressions. Again these expressions involve a
single finite-range integral whose integrand contains only elementary functions
and which can therefore be easily evaluated. It should be noted that Tellambura
et al. [24,25] and Dong et al. [26] also used these alternative representations to
analyze the performance of several M-ary signals with MRC diversity reception.
These works, which were done independently, have some of the same features
as the MGF-based approach described in this section.

9.2.1 Receiver Structure

We consider the L-branch (finger) MRC receiver shown in Fig. 9.2. As mentioned
earlier, this receiver is the optimal multichannel receiver regardless of the fading
statistics on the various diversity branches since it results in a maximum-
likelihood receiver (see Chapter 7). For equally likely transmitted symbols, the
total conditional SNR per symbol, �t, at the output of the MRC combiner is given
by [3, Eq. (5.98)]

�t D
L∑
lD1

�l �9.1�

For coherent binary signals the conditional BER, Pb�Ejf�lgLlD1�, is given by

Pb
(
Ejf�lgLlD1

) D Q
(√

2g�t
)

�9.2�

where g D 1 for coherent BPSK [6, Eq. (4.55)], g D 1
2 for coherent orthogonal

BFSK [6, Eq. (4.59)], g D 0.715 for coherent BFSK with minimum correla-
tion [6, Eq. (4.63)], and Q�Ð� is the Gaussian Q-function. Our goal is to evaluate

1 The independent assumption is relaxed for Nakagami-m fading channels in Section 9.6.
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the performance of the system in terms of users’ average BER, and for this
purpose the conditional BER (9.2) has to be statistically averaged over the
random parameters f�lgLlD1. We now present two approaches to solving this
problem: the classical PDF-based approach, then the MGF-based approach.

9.2.2 PDF-Based Approach

The classical approach relies on finding the PDF of �t, p�t ��t�, then replacing
the L-fold average by a single average over �t:

Pb�E� D
∫ 1

0
Q
(√

2g�t
)
p�t ��t� d�t �9.3�

This requires finding the distribution of �t in a simple form. If this is possible,
it can lead to a closed-form expression for the average probability of error, as
shown in the following example.

Example. Let us consider the MRC combining of L independent identically
distributed (i.i.d.) Rayleigh fading paths. In this case the SNR per bit per path �l
has an exponential PDF with average SNR per bit � :

p�l��l� D 1

�
e��l/� �9.4�

and the SNR per bit of the combined SNR �t has a chi-square PDF [7, Eq. (14-
4-13)]

p�t ��t� D 1

�L � 1�! �L
�L�1
t e��t/� �9.5�

Finally, the average probability of error can be found in closed form by successive
integration by parts [7, Eq. (14-4-15)]:

Pb�E� D
(

1 � �

2

)L L�1∑
lD0

(
L � 1 C l

l

)(
1 C �

2

)l
�9.6�

where

� D
√

�

1 C �
�9.7�

The PDF-based approach has some limitations. Indeed, finding the PDF of the
combined SNR per bit �t in a simple form is typically feasible if the paths are
i.i.d. However, finding the PDF of the combined SNR per bit �t is more difficult
if the combined paths come from the same family of fading distribution (e.g.,
Rice) but have different parameters (e.g., different average fading powers (i.e., a
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nonuniform power delay profile) and/or different severity of fading parameters).2

In addition, finding the PDF of the combined SNR per bit �t is intractable in a
simple form if the paths have fading distributions coming from different families
of distributions. We now show how the alternative representation of the Gaussian
Q-function provides a simple and elegant MGF-based solution to many of these
limitations.

9.2.3 MGF-Based Approach

9.2.3.1 Average Bit Error Rate of Binary Signals

Product Form Representation of the Conditional BER. Using the alternative
representation of the Gaussian Q-function (4.2) in (9.2), the conditional BER
(9.2), may be rewritten in a more desirable product form given by

Pb
(
E
∣∣f�lgLlD1

) D 1

�

∫ �/2

0
exp

(
� g�t

sin2  

)
d D 1

�

∫ �/2

0

L∏
lD1

exp
(

� g�l
sin2  

)
d 

�9.8�
This form of the conditional BER is more desirable since we can first
independently average over the individual statistical distributions of the �l’s,
and then perform the integral over  , as described in more detail below.

Average BER with Multichannel Reception. To obtain the unconditional
BER, Pb�E�, when multichannel reception is used, we must average the multi-
channel conditional BER, Pb�Ejf�lgLlD1�, over the joint PDF of the instanta-
neous SNR sequence f�lgLlD1, namely, p�1,�2,...,�L ��1, �2, . . . , �L�. Since the RVs
f�lgLlD1 are assumed to be statistically independent, p�1,�2,...,�L ��1, �2, . . . , �L� D∏L
lD1 p�l��l�, and the averaging procedure results in

Pb�E� D
∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
L�fold

Pb
(f�lgLlD1

) L∏
lD1

p�l��l� d�1 d�2 Ð Ð Ðd�L �9.9�

Note that if the traditional integral representation of the Gaussian Q-function
(4.1) were to be used in the Pb�Ejf�lgLlD1� term, (9.9) would result in an �L C 1�-
fold integral with infinite limits [one of these integrals comes from the classical
definition of the Gaussian Q-function (4.1) in Pb�Ejf�lgLlD1�], and a closed-form
solution or an adequately efficient numerical integration method would not be
available. Using the alternative product form representation of the conditional

2 Note that a solution for this problem exists for Rayleigh [7, Eq. (14-5-26)] and Nakagami-m [27].
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BER (9.8) in (9.9) yields

Pb�E� D
∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
L�fold

1

�

ð
∫ �/2

0

L∏
lD1

exp
(

� g�l
sin2  

)
p�l��l� d d�1 d�2 Ð Ð Ðd�L �9.10�

The integrand in (9.10) is absolutely integrable, and hence the order of integration
can be interchanged. Thus, grouping terms of index l, we obtain

Pb�E� D 1

�

∫ �/2

0

L∏
lD1

M�l

(
� g

sin2  

)
d �9.11�

where M�l�s�
D ∫1

0 p�l��l�e
s�ld�l is the MGF of the SNR per symbol �l

associated with path l and is summarized in Table 9.1 (or equivalently, Table 2.2)
for various channel models of interest. If the fading is identically distributed with
the same fading parameter and the same average SNR per bit � for all L channels,
(9.11) reduces to

Pb�E� D 1

�

∫ �/2

0

(
M�

(
� g

sin2  

))L
d �9.12�

Hence, in all cases this approach reduces the �L C 1�-fold integral with
infinite limits of (9.9) (accounting for the infinite range integral coming from
the traditional representation of the Gaussian Q-function) to a single finite-
range integral (9.11) whose integrand contains only elementary functions
such as exponentials and trigonometrics, and which can therefore easily be
evaluated numerically. As a numerical example, Fig. 9.3 shows the average BER

TABLE 9.1 Moment Generating Function of the SNR per Symbol gl for Some Common
Multipath Fading Channels

Type of Fading Fading Parameter M�l �s�

Rayleigh �1 � s� l�
�1

Nakagami-q (Hoyt) 0 � ql � 1

(
1 � 2s� l C �2s� l�

2q2
l

�1 C q2
l �

2

)�1/2

Nakagami-n (Rice) 0 � nl
�1 C n2

l �

�1 C n2
l �� s� l

exp

(
n2

l s� l

�1 C n2
l �� s� l

)

Nakagami-m 1
2 � ml

(
1 � s� l

ml

)�ml
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Figure 9.3. Average BER of BPSK with L-fold MRC diversity versus the SNR per bit of the
first path for an L-path frequency-selective Nakagami-m (m D 0.5) fading channel with an
exponentially decaying power delay profile. υ is the power decay factor.

performance of BPSK over a frequency-selective Nakagami-m (m D 0.5) fading
channel with an exponentially decaying power delay profile when MRC RAKE
reception is used.

It is interesting to mention at this point that the same final result (9.11)
can be obtained without using the alternative representation of the Gaussian
Q-function, but by starting with Eq. (17) of Ref. 28. Indeed, it has been pointed
out to the authors by Mazo [29] that Eq. (17), which is expressed in terms of the
characteristic function of �t (using our notations) can be rewritten in terms of
the MGF of �t by changing the integration contour. The details of the procedure
are described in an internal AT&T Bell Laboratories memorandum which was
never submitted for publication [30]. Following that procedure and using the fact
that the MGF of the sum of independent RV’s is the product of the MGF’s of
the individual RVs [31, Sec. 7.4], [28, Eq. (17)] can be rewritten as (using our
notations)

Pb�E� D 1

2�

∫ 1

1

∏L
lD1M�l��gy�
y
p
y � 1

dy �9.13�

which can be changed to the same single finite-range integral (9.11) by adopting
the change of variables y D 1/ sin2  [29].
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9.2.3.2 Average Symbol Error Rate of M-PSK Signals

Product Form Representation of the Conditional SER. Similar to the
binary case, using (8.22), the conditional SER for M-PSK, Ps�Ejf�lgLlD1� can
be expressed as an integral of the desired product form,

Ps
(
E
∣∣f�lgLlD1

) D 1

�

∫ �M�1��/M

0
exp

(
�gPSK�t

sin2  

)
d 

D 1

�

∫ �M�1��/M

0

L∏
lD1

exp
(

�gPSK�l
sin2  

)
d �9.14�

where gPSK D sin2��/M�.

Average SER of M-PSK. Following the same steps as in (9.9) through (9.11),
it can easily be shown that the average SER of M-PSK, Ps�E�, over generalized
fading channels is given by

Ps�E� D 1

�

∫ �M�1��/M

0

L∏
lD1

M�l

(
� gPSK

sin2  

)
d �9.15�

The result (9.15) generalizes the M-PSK average SER results of Proakis [32,
Eq. (22)] and Chennakeshu and Anderson [33, Eq. (21)] for L independent
identically distributed Rayleigh paths. It also gives an alternative approach for
the performance evaluation of coherentM-PSK over frequency-selective channels
characterized by a Rician dominant path with Rayleigh secondary paths [34,35].

Furthermore, by setting L to 1, the result (9.15) can be used to evaluate the
average SER performance of M-PSK with single-channel reception, as shown in
Chapter 8. This leads, for example, to the following results:

ž Rayleigh. Substituting the MGF corresponding to Rayleigh fading in (9.15)
(with L D 1), then using Eq. (2.562.1) of Ref. 36 yields the closed-form
expression given by (8.112), which can also be found in Pauw and
Schilling [37, Eq. (9)] and Ekanayake [38, Eq. (7)] and which agrees with
the results obtained using various other methods [32, Eq. (22); 39, Eq. (36)].

ž Nakagami-n (Rice). Substituting the MGF corresponding to Nakagami-n
(Rice) fading in (9.15) leads to an expression for the SER of M-PSK which
is easily shown to agree with Eq. (35) of Ref. 39.

ž Nakagami-m. Substituting the MGF corresponding to Nakagami-m fading in
(9.15) (with L D 1) gives the SER of M-PSK over a Nakagami-m channel as

Ps�E� D 1

�

∫ �M�1��/M

0

(
1 C � sin2��/M�

m sin2  

)�m
d �9.16�
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Note that (9.16) yields the same numerical values as Eq. (17) of Ref. 40
and Eq. (9) of Ref. 41 and it is much easier to compute for any arbitrary
value of m.

9.2.3.3 Average Symbol Error Rate of M-AM Signals

Product-Form Representation of the Conditional SER. Recall that the condi-
tional SER for M-AM, Ps�Ejf�lgLlD1�, with signal points located symmetrically
about the origin, is given by (8.3) as

Ps
(
E
∣∣f�lgLlD1

) D 2�M� 1�

M
Q
(√

2gAM�t
)

�9.17�

where gAM D 3/�M2 � 1�. Using the alternative representation of the Gaussian
Q-function (4.2) in (9.17), we obtain the conditional SER in the desired product
form as

Ps
(
E
∣∣f�lgLlD1

) D 2�M� 1�

M�

∫ �/2

0
exp

(
�gAM�t

sin2  

)
d 

D 2�M� 1�

M�

∫ �/2

0

L∏
lD1

exp
(

�gAM�l
sin2  

)
d �9.18�

Average SER of M-AM. Following the same steps as in (9.9) through (9.11),
it is straightforward to show that the average SER of M-AM over generalized
fading channels is given by

Ps�E� D 2�M� 1�

M�

∫ �/2

0

L∏
lD1

M�l

(
� gAM

sin2  

)
d �9.19�

9.2.3.4 Average Symbol Error Rate of Square M-QAM Signals

Product Form Representation of the Conditional SER. Consider square M-
QAM signals whose constellation size is given by M D 2k with k even. The
conditional SER for square M-QAM is given by (8.10) as

Ps
(
E
∣∣f�lgLlD1

) D 4
(

1 � 1p
M

)
Q
(√

2gQAM�t
)

� 4
(

1 � 1p
M

)2

Q2(√2gQAM�t
)

�9.20�

where gQAM D 3/2�M� 1�. Using the alternative representation of the Gaussian
Q-function (4.2) as well as of its square (4.9), the conditional SER (9.20) may
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be rewritten in the more desirable product form given by

Ps
(
E
∣∣f�lgLlD1

) D 4

�

(
1 � 1p

M

)∫ �/2

0
exp

(
�gQAM�t

sin2  

)
d 

� 4

�

(
1 � 1p

M

)2 ∫ �/4

0
exp

(
�gQAM�t

sin2  

)
d 

D 4

�

(
1 � 1p

M

)∫ �/2

0

L∏
lD1

exp
(

�gQAM�l
sin2  

)
d 

� 4

�

(
1 � 1p

M

)2 ∫ �/4

0

L∏
lD1

exp
(

�gQAM�l
sin2  

)
d .

Average SER of M-QAM. Following the same steps as in (9.9) through (9.11)
yields the average SER of M-QAM over generalized fading channels as

Ps�E� D 4

�

(
1 � 1p

M

)∫ �/2

0

L∏
lD1

M�l

(
� gQAM

sin2  

)
d 

� 4

�

(
1 � 1p

M

)2 ∫ �/4

0

L∏
lD1

M�l

(
� gQAM

sin2  

)
d �9.21�

Of particular interest is the average SER performance of M-QAM with single-
channel reception, which can be obtained by setting L to 1 in (9.21). For
example, substituting the MGF corresponding to Rayleigh fading in (9.21) (with
L D 1), then using again Eq. (2.562.1) of Ref. 36 yields a closed-form expression
for the average SER of M-QAM over Rayleigh channels as given by (8.106),
namely,

Ps�E� D 2
(

1 � 1p
M

)(
1 �

√
gQAM�

1 C gQAM�

)

C
(

1 � 1p
M

)2
[

4

�

√
gQAM�

1 C gQAM�
tan�1

√
1 C gQAM�

gQAM�
� 1

]
�9.22�

Note that (9.22) matches the result obtained by Shayesteh and Aghamoham-
madi [39, Eq. (44)] for the particular case where M D 16. Furthermore, note
that (9.22) can be alternatively obtained by averaging (9.20) over the Rayleigh
PDF and by using a standard known integral involving the function erfc2�Ð� [36,
Eq. (8.258.2)]. In addition using (5A.4b) and (5A.21) in (9.21) we obtain the
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performance of M-QAM over L i.i.d. Rayleigh fading channels as

Ps�E� D 4
(

1 � 1p
M

)(
1 � �c

2

)L L�1∑
lD0

(
L � 1 C l

l

)(
1 C �c

2

)L

� 4
(

1 � 1p
M

)2




1

4
� �c
�


(�

2
� tan�1 �c

) L�1∑
lD0

(
2l
l

)
4�1 C gQAM��l

� sin�tan�1 �c�
L�1∑
lD1

l∑
iD1

Til
�1 C gQAM��l

[cos�tan�1 �c�]




 �9.23�

where

�c D
√

gQAM�

1 C gQAM�
�9.24�

and

Til D

(
2l
l

)
(

2�l� i�
l� i

)
f4i[2�l� i�C 1]g

�9.25�

Note that (9.23) is equivalent to Eq. (15) of Ref. 42 and to Eq. (12) of Ref. 43,
which involves a sum of Gauss hypergeometric functions.3 Furthermore, using
a partial fraction expansion on the integrand of (9.21), we obtain with the help
of Eq. (2.562.1) of Ref. 36 the average SER of M-QAM over L Rayleigh fading
channels with distinct average fading powers and with MRC reception as

Ps�E� D 2
(

1 � 1p
M

) L∑
lD1

&l

(
1 �

√
gQAM�l

1 C gQAM�l

)
C
(

1 � 1p
M

)2

ð
[

4

�

L∑
lD1

&l

√
gQAM�l

1 C gQAM�l
tan�1

(√
1 C gQAM�l
gQAM�l

)
�

L∑
lD1

&l

]

where

&l D


 L∏
kD1
k 6Dl

(
1 � �k

�l

)
�1

�9.26�

which is equivalent to Eq. (10) of Ref. 42 and to Eq. (21) of Ref. 43.

3 Equation (12) of Ref. 43 gives the same numerical result as the one given by (9.23) if a minor typo
is corrected in Eq. (18) of Ref. 43 [the denominator should be �2k C 1�

p
� rather than �2k � 1�

p
�].
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Before concluding our discussion on the exact average SER evaluation of
M-ary signals with MRC over independent fading paths, we should mention
that the approach presented for M-PSK, M-AM, and M-QAM signals can be
applied to any two-dimensional amplitude or phase linear modulation as shown in
Ref. 26, since, based on Craig’s approach [23], the conditional SER expressions
of any of these constellations can be expressed as a summation of integrals in
the desired exponential form (see Section 5.4.2).

9.2.4 Bounds and Asymptotic SER Expressions

In this section we are interested in determining simple closed-form bounds and
asymptotic expressions (limit as the average SNR/symbol/channel approaches
infinity) for the SER of M-ary signals with MRC reception.

9.2.4.1 Bounds. As discussed in Section 8.1.1.3, the integrand of the condi-
tional SER of M-PSK as given by (9.14) has a single maximum that occurs at
 D �/2. Thus, replacing the integrand by its maximum yields an upper bound
for (9.15) given by

Ps�E� � M� 1

M

L∏
lD1

M�l ��gPSK� �9.27�

Similarly, the average SER of M-AM is upper-bounded by

Ps�E� � M� 1

M

L∏
lD1

M�l ��gAM� �9.28�

9.2.4.2 Asymptotic Results. Consider an M-ary communication system
operating over an L-path slowly varying fading channel and assume that
the L channels have independent Rician statistics that do not have to
be identically distributed in that they can have different average symbol
SNR’s, �l, l D 1, 2, . . . , L, and different Rician factors Kl, l D 1, 2, . . . , L. Let
Ps�Ej�1, �2, . . . , �L� denote the conditional (on the fading SNR’s) SER of the
system, and let p�l��l�, l D 1, 2, . . . , L, denote the PDF’s of these SNR’s, which
for a Rician channel are given by

p�l��l� D 1 CKl
�l

exp
(

�Kl � 1 CKl
�l

�l

)

ð I0

(
2

√
�lKl�1 CKl�

�l

)
�9.29�
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Then, substituting (9.29) in (9.9), the exact average SER is given by

Ps�E� D
∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0

(
L∏
lD1

p�l��l�

)
Ps�Ej�1, �2, . . . , �L� d�1 d�2 Ð Ð Ðd�L

D
[
L∏
lD1

1 CKl
�l

]
exp

(
�

L∑
lD1

Kl

)

ð
∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0

L∏
lD1

[
exp

(
�1 CKl

�l
�l

)
I0

(
2

√
�lKl�1 CKl�

�l

)]

ð Ps�Ej�1, �2, . . . , �L� d�1 d�2 Ð Ð Ðd�L
�9.30�

Introducing the shorthand notation

�L�
D

L∏
lD1

�l
1 CKl

, �L�
D

L∑
lD1

Kl �9.31�

(9.30) can be rewritten as

Ps�E� D exp���L��
�L�

ð
∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0

L∏
lD1

[
exp

(
�1 CKl

�l
�l

)
I0

(
2

√
�lKl�1 CKl�

�l

)]

ð Ps�Ej�1, �2, . . . , �L� d�1 d�2 Ð Ð Ðd�L �9.32�

Abdel-Ghaffar and Pasupathy [44] have shown that for large �l, l D
1, 2, . . . , L, the average SER of (9.32) behaves as

Ps�E� ' exp[��L�]C�L,M�
�L�

D
[∏L

lD1�1 CKl�
]

exp
(

�∑L
lD1Kl

)
C�L,M�∏L

lD1 �l
�9.33�

or

Ps�E� '
[∏L

lD1�1 CKl�
]

exp
(

�∑L
lD1Kl

)
Cb�L,M�∏L

lD1��b�l
,

��b�l
D �l

log2M
, Cb�L,M�

D C�L,M�

�log2M�L
�9.34�

where C�L,M� [or Cb�L,M�] is a term that depends on the modula-
tion/detection/diversity scheme but is independent of �l, l D 1, 2, . . . , L. Thus,
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the entire dependence on the average SNR per channel is embedded in the product
form of �L� defined in (9.31) and for equal average SNRs would vary as ��L

[or ��b�
�L]. For Rayleigh channels, (9.34) simplifies to

Ps�E� ' C�L,M�

�L�
∣∣
KljLlD1D 0

D C�L,M�∏L
lD1 �l

�9.35�

or

Ps�E� ' Cb�L,M�∏L
lD1��b�l

�9.36�

The evaluation of C�L,M� for some special cases is of interest and is described
by Theorems 2 and 3 in Abdel-Ghaffar and Pasupathy [44]. In particular, when
the conditional SER Ps�Ej�1, �2, . . . , �L� depends only on the sum of the �l’s as
is the case for coherent MRC, it is shown that C�L,M� is computed from

C�L,M�jMRC D 1

�L � 1�!

∫ 1

0
�L�1
t Ps�Ej�t� d�t �9.37�

Thus, the asymptotic average SER for Rayleigh channels with MRC is

Ps�E� ' 1

�L � 1�!
∏L
lD1 �l

∫ 1

0
�L�1
t Ps�Ej�t� d�t �9.38�

which for equal average SNRs becomes

Ps�E� ' 1

�L � 1�! �L

∫ 1

0
�L�1
t Ps�Ej�t� d�t �9.39�

This is to be compared with the exact result obtained from (9.39) which can
be written as

Ps�E� D
∫ 1

0
p�t ��t�Ps�Ej�t� d�t �9.40�

where for Rayleigh i.i.d. channels, p�t ��t� is given by (9.5) Substituting (9.5)
into (9.40) gives

Ps�E� D 1

�L � 1�! �L

∫ 1

0
�L�1
t exp

(
��t
�

)
Ps�Ej�t� d�t �9.41�

Notice the similarity between (9.41) and (9.39), i.e., the exact result has an
additional exp���t/�� in its integrand.
C�L,M� can be evaluated in closed form for a variety of different modula-

tion/detection/diversity techniques of interest. In particular for M-PSK with MRC
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Abdel-Ghaffar and Pasupathy [44] showed that

C�L,M� D 1

[2 sin��/M�]2L

[(
2L
L

)
M� 1

M
�

L∑
lD1

(
2L
L � l

)
��1�l

sin�2�l/M�

�l

]
�9.42�

with the special case of L D 1 (i.e., no diversity) given by

C�1,M� D 1

2 sin2��/M�

(
M� 1

M
C sin�2�/M�

2�

)
�9.43�

Substituting (9.43) in (9.36) and letting �1 D � D �b log2M, we get

Ps�E� ' 1

2�b�log2M� sin2��/M�

(
M� 1

M
C sin�2�/M�

2�

)
�9.44�

which resembles Eq. (14-4-39) of Ref. 7 with the addition of the term
�sin 2�/M�/2�. For M-QAM with MRC, using the conditional SER expres-
sion (9.20) as well as the alternative representations of the Gaussian Q-function
(4.2) and its square (4.9) in (9.41), we arrive at the following result for C�L,M�:

C�L,M� D 1

22L

(p
M� 1p
M

)2 (
2�M� 1�

3

)L ( 2L
L

)(
2
p
Mp

M� 1
� 1

)

� 4

�

L∑
lD1
l odd

(
2L
L � l

)
��1��lC1�/2

l


 �9.45�

For M D 4 (QPSK), this can be shown to check with the result in (9.42).

9.3 COHERENT EQUAL GAIN COMBINING

As mentioned in Section 9.2, MRC provides the maximum performance improve-
ment relative to all other diversity combining techniques by maximizing the
signal-to-noise ratio (SNR) at the combiner output. However, MRC has the
highest complexity of all combining techniques since it requires knowledge of
the fading amplitude in each signal branch. Alternative combining techniques
such as EGC are often used in practice because of their reduced complexity
relative to the optimum MRC scheme [3, Sec. 5.5]. Indeed, EGC weights each
branch equally before combining, and therefore does not require estimation of
the channel (path) fading amplitudes.

Our focus in this section is on evaluating the average SER for ideal coherent
detection of M-PSK signals with EGC reception over Nakagami-m fading chan-
nels. Work related to this topic can be found in Refs. 25, 26, and 45 through 47.



COHERENT EQUAL GAIN COMBINING 279

More specifically, in Refs. 45 and 46 Abu-Dayya and Beaulieu employ an infi-
nite series representation for the PDF of the sum of Nakagami-m and Rice
random variables [48] to analyze the performance of binary modulations when
used in conjunction with EGC. The same approach was adopted by Dong
et al. [26] to extend the results to several two-dimensional constellations of
interest. Another approach based on the Gil-Pelaez lemma [49] was recently
proposed by Zhang [47] and lead to closed-form solutions for binary modula-
tions with two or three branch EGC receivers over Rayleigh fading channels. This
approach was extended to Nakagami-m fading channels in Ref. 50. In Ref. 25
Annamalai et al. use a frequency domain–based approach and Parseval’s theorem
to compute the average symbol error rate with EGC over Nakagami-m fading
channels. In this section we use the alternative representation of the condi-
tional SER to analyze the average SER of M-PSK signals with EGC reception
over Nakagami-m fading channels. The approach leads to a final expression for
the average SER in the form of a single finite-range integral and an integrand
composed of tabulated functions [20,51].

9.3.1 Receiver Structure

The EGC receiver processes the L received replicas, weights them equally, then
sums them to produce the decision statistic, as shown in Fig. 9.2. Note that
estimation of the channel carrier phase is still required in this case since the
weights applied to each branch in the combiner are complex quantities whose
amplitudes are all set to 1 and whose phases are indeed equal to the negatives of
these carrier-phase estimates. For equally likely transmitted symbols, it can be
easily shown that the total conditional SNR per symbol, �EGC, at the output of
the EGC combiner is given by [3, Eq. (5.108)]

�EGC D
(∑L

lD1 ˛l
)2
Es∑L

lD1Nl
�9.46�

where Es (J) is the energy per symbol and Nl is the AWGN power spectral
density on the lth path.

9.3.2 Average Output SNR

We consider the average combined SNR at the output of a coherent EGC
receiver operating over a frequency-selective Nakagami-m fading channel with
an exponentially decaying power delay profile (�l D �1eυ�l�1�, l D 1, 2, . . . , l).
Assuming independent paths and the same AWGN power spectral density N0,
the average combined SNR can be written from (9.46) as

�EGC D Es
LN0


 L∑
lD1

�l C
L∑
iD1

L∑
jD1
j6Di

E�˛i�E�˛j�


 �9.47�
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For υ D 0 [i.e., uniform power delay profile such as �1 D � (l D 1, 2, . . . , L)] it
can easily be shown that (9.47) can be written as

�EGC D �

(
1 C �L � 1�

[

(
m C 1

2

)]2

m[�m�]2

)
�9.48�

which reduces for the Rayleigh case to

�EGC D �
(

1 C �L � 1�
�

4

)
�9.49�

in agreement with Eq. (5.112) of Ref. 3. These two expressions should be
contrasted with the average combined SNR at the output of an optimal MRC
receiver, which for υ D 0 is given, in view of (9.1), by [4, Eq. (6.70)]

�MRC D L� �9.50�

regardless of the type of fading.
For υ > 0 using geometric summations it can be shown that (9.47) reduces to

�EGC D �1

L

[
1 � e�Lυ

1 � e�υ C 2
[

(
m C 1

2

)]2

m[�m�]2�1 � e�υ/2�

ð
(
e�υ/2 1 � e��L�1�υ

1 � e�υ � e�Lυ/2 1 � e��L�1�υ/2

1 � e�υ/2

)]
�9.51�

which simplifies for the Rayleigh case (m D 1) to

�EGC D �1

L

[
1 � e�Lυ

1 � e�υ C �

2�1 � e�υ/2�

ð
(
e�υ/2 1 � e��L�1�υ

1 � e�υ � e�Lυ/2 1 � e��L�1�υ/2

1 � e�υ/2

)]
�9.52�

Again these two last expressions should be contrasted with the average combined
SNR at the output of an MRC receiver which can easily be shown, in view of
(9.1), to be given by

�MRC D �1
1 � e�Lυ

1 � e�υ �9.53�

regardless of the type of fading. These expressions are illustrated in Fig. 9.4,
where the normalized output SNR �EGC/�1 of EGC is plotted as a function of
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Figure 9.4. Normalized average output SNR �EGC/�1 of coherent EGC over Nakagami-m
channels with an exponentially decaying power delay profile: (a) m D 4; (b) m D 2; (c) m D 1;
(d) m D 0.5.

the number of paths for various values of the Nakagami-m parameter and the
power decay factor υ. Note the combining loss when υ > 0, which gets more
accentuated as υ increases.

9.3.3 Exact Error Rate Analysis

9.3.3.1 Binary Signals. We begin our discussion by considering the perfor-
mance of an EGC receiver when coherent binary BPSK or binary BFSK modu-
lation is transmitted over a multilink channel with L paths. Conditioned on the
fading amplitudes f˛lgLlD1, the BER Pb�Ejf˛lgLlD1�, of an EGC receiver is given by

Pb
(
E
∣∣f˛lgLlD1

) D Q
(√

2g�EGC
)

D Q



√√√√ 2gEb∑L

lD1Nl

(
L∑
lD1

˛l

)2

 �9.54�

where as for the MRC case g is a modulation-dependent parameter such that
g D 1 for BPSK, g D 1

2 for orthogonal BFSK, and g D 0.715 for BFSK with
minimum correlation [6].
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The average BER Pb�E� is obtained by averaging (9.54) over the joint PDF
of the channel fading amplitudes p˛1,˛2,...,˛L �˛1, ˛2, . . . , ˛L�, that is,

Pb�E� D
∫ 1

0
Ð Ð Ð

∫ 1

0
Q



√√√√ 2gEb∑L

lD1Nl

(
L∑
lD1

˛l

)2



ð p˛1,˛2,...,˛L �˛1, ˛2, . . . , ˛L� d˛1 d˛2 Ð Ð Ðd˛L �9.55�

The L-fold integral in (9.55) can be collapsed to a single integral, namely,

Pb�E� D
∫ 1

0
Q

(√
2gEb∑L
lD1Nl

˛2
t

)
p˛t �˛t� d˛t �9.56�

where ˛t D ∑L
lD1 ˛l denotes the sum of the fading amplitudes after combining.

In general, there are two difficulties associated with analytically evaluating
the average BER as expressed in (9.56). The first relates to the requirement of
obtaining the PDF of the total fading RV ˛t. When the fading amplitudes can be
assumed independent (the case to be considered in this section), finding this PDF
requires a convolution of the PDFs of the ˛l’s and can often be quite difficult to
evaluate. The second difficulty has to do with the fact that the argument of the
classical definition of the Gaussian Q-function in (4.1) appears in the lower limit
of the integral, which is undesirable when trying to perform the average over ˛t.

To circumvent these difficulties, we now propose a new method of solution
based on the alternative representation of the Gaussian Q-function as given by
(4.2), namely,

Q�x� D 1

�

∫ �/2

0
exp

(
� x2

2 sin2  

)
d ; x ½ 0 �9.57�

First, using (9.57) in (9.55) gives

Pb�E� D
∫ 1

0
Ð Ð Ð

∫ 1

0

1

�

∫ �/2

0
exp


�

gEb
(∑L

lD1 ˛l
)2

∑L
lD1Nl sin2  




ð p˛1�˛1� Ð Ð Ðp˛L �˛L� d d˛1 d˛2 Ð Ð Ðd˛L �9.58�

Unfortunately, we cannot represent the exponential in (9.58) as a product of
exponentials each involving only a single ˛l because of the presence of the ˛k˛l
cross-product terms. Hence, we cannot partition the L-fold integral into a product
of one-dimensional integrals as is possible for MRC (see Ref. 21) and thus we
must abandon this approach. Instead, we use the alternative representation of the
Gaussian Q-function in (9.56), which gives after switching the order of integration
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Pb�E� D 1

�

∫ �/2

0

∫ 1

0
exp

(
� A2

2 sin2  
˛2
t

)
p˛t�˛t� d˛t d �9.59�

where A D
√

2gEb/
∑L

lD1Nl. Although this maneuver cures the second difficulty
by getting the total fading RV ˛t out of the lower limit of the integral and into
the integrand, it appears that we are still faced with the problem of determining
the PDF of ˛t. To get around this difficulty, we represent p˛t�˛t� in terms of its
characteristic function ˛t�jv�, which, because of the independence assumption
on the fading channel amplitudes, becomes

p˛t �˛t� D 1

2�

∫ 1

�1
˛t�jv�e

�jv˛t dv

D 1

2�

∫ 1

�1

[
L∏
lD1

˛l�jv�

]
e�jv˛t dv �9.60�

where ˛l�jv� is the characteristic function of the fading amplitude ˛l corre-
sponding to the lth path. Substituting (9.60) into (9.59) gives

Pb�E� D 1

2�2

∫ �/2

0

∫ 1

�1

[
L∏
lD1

˛l�jv�

]

ð
∫ 1

0
exp

(
� A2˛2

t

2 sin2  
� jv˛t

)
d˛t︸ ︷︷ ︸

J�v,  �

dvd �9.61�

The integral J�v,  � can be obtained in terms of the complementary error function
erfc�Ð� as

J�v,  � D
√
�

2

sin 

A
exp

(
� sin2  

2A2
v2

)[
1 C erfc

(
j

sin p
2A

v

)]
�9.62�

or alternatively, by separately evaluating its real and imaginary parts, namely [36,
Eqs. (3.896.4) and (3.896.3)],

∫ 1

0
exp

(
� A2

2 sin2  
˛2
t

)
cos�v˛t� d˛t D

√
� sin2  

2A2
exp

(
� sin2  

2A2
v2

)
∫ 1

0
exp

[
� A2

2 sin2  
˛2
t

]
sin�v˛t� d˛t D v sin2  

A2
exp

(
� sin2  

2A2
v2

)

ð 1F1

(
1

2
;

3

2
;

sin2  

2A2
v2

)
�9.63�
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where 1F1�Ð; Ð; Ð� is the Kummer confluent hypergeometric function [52,
Eq. (13.1.2)]. Thus, letting

X� � D
√
�

2

sin 

A

Y�v,  � D �v sin2  

A2 1F1

(
1

2
;

3

2
;

sin2  

2A2
v2

)
�9.64�

we can write the integral J�v,  � in the form

J�v,  � D [X� �C jY�v,  �] exp

(
� sin2  

2A2
v2

)

D
√
X2� �C Y2�v,  � exp

(
j tan�1 Y�v,  �

X� �

)

ð exp

(
� sin2  

2A2
v2

)
�9.65�

In general, the characteristic function of a PDF will be a complex quantity,
and hence the product of characteristic functions in (9.61) will also be complex.
However, since the average BER is real, it is sufficient to consider only the real
part of the right-hand side of (9.61), which yields

Pb�E� D 1

2�2

∫ �/2

0

∫ 1

�1
Re

{[
L∏
lD1

˛l�jv�

]
J�v,  �

}
dvd �9.66�

Expressing the characteristic function of each fading path PDF by

˛l�jv� D Ul�v�C jVl�v�

D
√
U2
l �v�C V2

l �v� exp
(
j tan�1 Vl�v�

Ul�v�

)
�9.67�

then substituting (9.65) and (9.67) into (9.66) gives

Pb�E� D 1

2�2

∫ �/2

0

∫ 1

�1
F�v,  � exp

(
� sin2  

2A2
v2

)
dvd �9.68�

where

F�v,  � D R�v,  � cos�v,  �

R�v,  � D
√
X2� �C Y2�v,  �

L∏
lD1

√
U2
l �v�C V2

l �v�
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�v,  � D tan�1
(
Y�v,  �

X� �

)
C

L∑
lD1

tan�1
(
Vl�v�

Ul�v�

)

C �

2

(
L C 1 � sgn�Y�v,  ���

L∑
lD1

sgn�Vl�v��

)
, �9.69�

where sgn(Ð) denotes the sign function and the arctangent function is defined
with respect to the standard principal value as available, for example, in the
MATHEMATICA routine for that function.

The characteristic function corresponding to the Nakagami-m fading PDF can
be evaluated with the help of Eq. (3.462.1) of Ref. 36 in terms of the parabolic
cylinder function D�v�Ð� [36, Secs. 9.24 and 9.25]

˛l�jv� D 1

2ml�1

�2ml�

�ml�
D�2ml

(
�jv

√
�l
2ml

)
exp

(
� �l

8ml
v2
)

or alternatively, by separately evaluating its real and imaginary parts by using sine
and cosine Fourier transforms found in Ref. 36 with the results [see Eq. (9.67)]

Ul�v� D Al�v� exp
(

� �l
4ml

v2
)

Vl�v� D Bl�v� exp
(

� �l
4ml

v2
) �9.70�

where

Al�v� D 1F1

(
1

2
� ml;

1

2
;
v2�l
4ml

)

Bl�v� D 
(
ml C 1

2

)
�ml�

√
�l
ml

v 1F1

(
1 � ml;

3

2
;
v2�l
4ml

) �9.71�

Thus, the functions defined in (9.69) become

R�v,  � D
√
X2� �C Y2�v,  �

L∏
lD1

√
A2
l �v�C B2

l �v�

ð exp

(
�

L∑
lD1

�l
4ml

v2

)

�v,  � D tan�1
(
Y�v,  �

X� �

)
C

L∑
lD1

tan�1
(
Bl�v�

Al�v�

)

C �

2

(
L C 1 � sgn�Y�v,  ���

L∑
lD1

sgn�Bl�v��

)
, �9.72�
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with X� � and Y�v,  � as defined in (9.64) and Al�v� and Bl�v� as defined in
(9.71). It is convenient in this case to absorb the exponential factor in R�v, ��
into the exponential factor in the integrand of (9.68). Hence, we can write the
average BER of (9.68) as

Pb�E� D 1

2�2

∫ �/2

0

∫ 1

�1
F0�v,  � exp

[
�
(

sin2  

2A2
C

L∑
lD1

�l
4ml

)
v2

]
dvd 

�9.73�
where F0�v,  � is a normalized version of F�v,  � defined by

F0�v,  � D R0�v,  � cos�v,  � �9.74�

with

R0�v,  � D
√
X2� �C Y2�v,  �

L∏
lD1

√
A2
l �v�C B2

l �v� �9.75�

and �v,  � still as defined in (9.72). Finally, letting

:� � D sin2  

2A2
C

L∑
lD1

�l
4ml

�9.76�

and making the change of variables x D p
:� �v, the inner doubly infinite integral

is of the form ∫ 1

�1
F0

(
xp
:� �

,  

)
e�x2

dx �9.77�

which can readily be evaluated by the Gauss–Hermite quadrature formula [52,
Eq. (25.4.46)], yielding the desired final result in the form of a single finite-range
integral on  , namely,

Pb�E� D 1

2�2

∫ �/2

0

1p
:� �

Np∑
nD1

HxnF0

(
xnp
:� �

,  

)
d �9.78�

where Np is the order of the Hermite polynomial, HNp�Ð�. Setting Np to 20 is
typically sufficient for excellent accuracy. In (9.78) xn are the zeros of the Npth-
order Hermite polynomial, and Hxn are the weight factors of the Npth-order
Hermite polynomial and are given by [52, Table 25.10]

Hxn D 2Np�1Np!
p
�

N2
pH

2
Np�1�xn�

�9.79�

Both the zeros and the weights factors of the Hermite polynomial are tabulated in
Table 25.10 of Ref. 52 for various polynomial orders Np. Note that substituting
(9.74), (9.75), and (9.76) in (9.78), it can be shown that if Nl D N0 (l D
1, 2, . . . , L), the average BER in (9.78) is solely a function of the various average
SNR/bit/paths �l D �lEb/N0. As a numerical example, Fig. 9.5 compares the
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Figure 9.5. Average BER of B-PSK over Nakagami-m fading channels with MRC and coherent
EGC. L D 4.

BER performance of BPSK with MRC and EGC over i.i.d. Nakagami-m fading
channels. Note that EGC approaches the performance of MRC as m increases.

9.3.3.2 Extension to M-PSK Signals. Recall that the SER for M-PSK over
an AWGN is given by the integral expression (8.22), namely,

Ps�Ej˛t� D 1

�

∫ �M�1��/M

0
exp

(
� gPSKEs
N0 sin2  

)
d �9.80�

where gPSK D sin2��/M� and Es/N0 is the received symbol SNR. For EGC
reception in the presence of fading, the conditional SER is obtained from
(9.78) by replacing Es/N0 by �EGC, which represents the instantaneous SNR
per symbol after combining. Following the same steps as in Section 9.3.3.1, it is
straightforward to show that the average SER is given by an equation analogous
to (9.78), namely,

Ps�E� D 1

2�2

∫ �M�1��/M

0

1p
:PSK� �

Np∑
nD1

HxnF0

(
xnp

:PSK� �
,  

)
d �9.81�
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where

:PSK� � D sin2  

2A2
PSK

C
L∑
lD1

�l
4ml

APSK D
√

2gPSKEs∑L
lD1Nl

�9.82�

and all other parameters and functions remain the same as for the binary signal
case. It can also be shown that if Nl D N0 �l D 1, 2, . . . , L�, then (9.81) is solely
a function of the various average SNR/symbol/paths �l D �lEs/N0.

9.3.4 Approximate Error Rate Analysis

As mentioned previously, one of the difficulties in evaluating (9.56) is the
requirement of obtaining the PDF of the total fading RV ˛t. Even use of the
alternative representation of the Gaussian Q-function, which leads to (9.59),
does not alleviate this problem. Although there is no known closed-form exact
expression for the PDF of the sum of L i.i.d. Nakagami-m RVs, Nakagami [53]
showed after rather complex calculations that such a sum can be approximated
accurately by another Nakagami-m distribution [53, p. 22] with a parameter 0m
and average power 0� given by

0m D mL

0� D L�

[
1 C �L � 1�

2
(
m C 1

2

)
m2�m�

]
' L2�

(
1 � 1

5m

)
�9.83�

Specifically, modeling the PDF p˛t�˛t� by a Nakagami-m PDF with parameters
0m and 0�, the average BER for binary signals as given by (9.56) can be evaluated
in closed form as [54, App. A]

Pb�E� ' 1

2

√
g�eq

��m C g�eq�


(
LmC 1

2

)
 �LmC 1�

(
m

m C g�eq

)Lm

ð 2F1

(
1, LmC 1

2
, LmC 1;

m

m C g�eq

)
, �9.84�

where 2F1�Ð; Ð; Ð; Ð� is the Gauss hypergeometric function [52, Eq. (15.1.1)], � is
the SNR/symbol/path, and

�eq D �

L

[
1 C �L � 1�

2
(
m C 1

2

)
m2�m�

]
' �

(
1 � 1

5m

)
�9.85�
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For the special case where m is integer, it can be shown (using Ref. 54, App. A)
that (9.84) simplifies to

Pb�E� ' 1

2


1 �

√
g�eq

m C g�eq

Lm�1∑
lD0

(
2l
l

)
[4�1 C g�eq/m�]l


 �9.86�

For M-PSK, the same approximate modeling of ˛t can be used together with
the conditional SER obtained from (9.80) to compute an approximate expression
for the average SER. For an arbitrary noninteger m, no closed-form solution
is available and the final average has to be computed numerically. However,
when m is restricted to integer values, using the expression (5A.35), the average
SER can be expressed in closed form as

Ps�E� ' M� 1

M
� T

�

√
gPSK�eq

mC gPSK�eq

Lm�1∑
lD0

(
2l
l

)
[4�1 C gPSK�eq/m�]l

� 2

�

√
gPSK�eq

mC gPSK�eq

Lm�1∑
lD0

l�1∑
jD0

(
2l
j

)
��1�lCj

[4�1 C gPSK�eq/m�]l

ð sin[2�l� j�T]

2�l� j�
�9.87�

where

T D �

2


1 C 1

2

(
1 C sgn

[(
1 C 2gPSK�eq

m

)
cos

(
2�

M

)
� 1

])

� tan�1
2
√
�gPSK�eq/m��1 C gPSK�eq/m� sin�2�/M�

�1 C 2gPSK�eq/m� cos�2�/M�� 1


 �9.88�

For M D 2 it can be shown that T as given in (9.88) becomes equal to �/2, and
therefore (9.87) reduces to (9.86).

9.3.5 Asymptotic Error Rate Analysis

In this section we continue the discussion started in Section 9.2.4 and consider
the asymptotic SER performance of M-PSK with coherent EGC reception. In
this case, the conditional combined SNR depends on the �l’s as given in (9.46),
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namely,

�t D �EGC D 1

L

(
L∑
lD1

p
�l

)2

�9.89�

assuming that all the branches have the same AWGN power spectral density (i.e.,
Nl D N0, l D 1, 2, . . . , L). Then Abdel-Ghaffer and Pasupathy [44] showed that
C�L,M� for EGC is computed from

C�L,M�jEGC D �2L�LL!

�2L�!

1

�L � 1�!

∫ 1

0
�L�1
t Ps�Ej�t� d�t �9.90�

It is of interest to compare the asymptotic performance of coherent MRC and
EGC receivers. Since the conditional SER of these two receivers would be equal
when �EGC D �MRC, then comparing (9.90) with (9.37), we observe that

C�L,M�jEGC

C�L,M�jMRC
D �2L�LL!

�2L�!
' 1p

2

( e
2

)L
, L × 1 �9.91�

where the latter approximation is obtained using Stirling’s formula x! 'p
2�e�xxxC1/2, x × 1. Thus, we conclude that the asymptotic SER degradation

of EGC relative to MRC is given by (9.91). Hence, combining (9.91) and (9.42)
immediately gives the desired expression for C�L,M� for M-PSK with EGC
reception, namely,

C�L,M� D �L/2�LL!

�2L�!

1

[sin��/M�]2L

ð
[(

2L
L

)
M� 1

M
�

L∑
lD1

(
2L
L � l

)
��1�l

sin�2�l/M�

�l

]
�9.92�

9.4 NONCOHERENT EQUAL-GAIN COMBINING

In this section we consider the performance of several differentially coherent and
noncoherent modulations when used in conjunction with postdetection EGC [3,
Sec. 5.5.6; 7, Sec. 12-1]. In Section 9.4.1 we present an approach based on the
alternative representation of the generalized Marcum Q-function which applies to
binary DPSK and FSK as well as DQPSK [55]. Then in Section 9.4.2 we present
another approach, which applies to noncoherent orthogonal M-FSK [56].

9.4.1 DPSK, DQPSK, and BFSK: Exact and Bounds

There are a large number of papers dealing with the performance of noncoherent
and differentially coherent communication and detection systems when used in
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conjunction with postdetection EGC over AWGN as well as fading channels. For
example, Proakis [57] developed a generic expression for evaluating the BER
for multichannel noncoherent and differentially coherent reception of binary
signals over L independent AWGN channels. Further, Proakis [7, Sec. 14-4]
provides closed-form expressions for the average BER of binary orthogonal
square-law detected FSK and binary DPSK with multichannel reception over
L i.i.d. Rayleigh fading channels. Lindsey [58] derived a general expression for
the average BER of binary correlated FSK with multichannel communication
over L independent Rician fading channels in which the strength of the scattered
component is assumed to be constant for all the channels. Charash [59] analyzed
the average BER performance of binary orthogonal FSK with multichannel
reception over L i.i.d. Nakagami-m fading channels. More recently, Weng
and Leung [60] derived a closed-form expression for the average BER of
binary DPSK with multichannel reception over L i.i.d. Nakagami-m fading
channels. Patenaude et al. [61] extended the results of Charash [59] and Weng
and Leung [60] by providing a closed-form expression for the average BER
performance of binary orthogonal square-law detected FSK and binary DPSK
with multichannel reception over L independent but not necessarily identically
distributed Nakagami-m fading channels. Their derivation is based on the
characteristic function method and the resulting expression contains �L � 1�th-
order derivatives, which can be found for small L but which become more
complicated to find as L increases.

In this section we present two unified approaches for the performance
evaluation of such systems over generalized fading channels. The first approach,
which is described in Section 9.4.1.2, exploits the alternative integral form
of the Marcum Q-function as presented in Section 4.2 and the resulting
alternative integral representation of the conditional BER as well as the Laplace
transforms and/or Gauss–Hermite quadrature integration derived in Chapter 5 to
independently average over the PDF of each channel that fades. In all cases,
this approach leads to exact expressions of the average BER that involve a
single finite-range integral whose integrand contains only elementary functions
and which can therefore be easily computed numerically. The second approach,
which is presented in Section 9.4.1.3, relies on the bounds on the generalized
Marcum Q-function developed in Section 4.2 to derive tight closed-form bounds
on the average BER of the systems under consideration.

9.4.1.1 Receiver Structures. We consider L branch (finger) postdetection
EGC receivers, as shown in Figs. 9.6 and 9.7 for differentially coherent and
noncoherent detection, respectively. Both receivers utilize M correlators to detect
the maximum a priori transmitted symbol. Without loss of generality let us
consider the mth symbol correlator. Each of the L received signals rl�t� is
first delayed by �L � �l, then integrate and dump filtered followed by baud-
rate sampling). These operations assume that the receiver is correctly time
synchronized at every branch (i.e., perfect time delay f�lgLlD1 estimates).
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For differentially coherent detection (see Fig. 9.6) the receiver takes, at every
branch l, the difference of two adjacent transmitted phases to arrive at the
decision rm,l. For noncoherent detection (see Fig. 9.7) no attempt is made to
estimate the phase, and the receiver yields the decision rm,l based on the squared
envelope (i.e., square-law detection). Using EGC, the L decision outputs frm,lgLlD1
are summed to form the final decision variable rm:

rm D
L∑
lD1

rm,l, m D 1, 2, . . . ,M �9.93�

Last of all, the receiver selects the symbol corresponding to the maximum
decision variable, as shown in Figs. 9.6 and 9.7.

For equally likely transmitted symbols, the total conditional SNR per bit,
�t, at the output of the postdetection EGC combiner is given by Proakis [7,
Sec. 12-1] as

�t D
L∑
lD1

�l �9.94�

9.4.1.2 Exact Analysis of Average Bit Error Probability. Many problems
dealing with the BER performance of multichannel reception of differentially
coherent and noncoherent detection of PSK and FSK signals in AWGN channels
have a decision variable that is a quadratic form in complex-valued Gaussian
random variables. Almost three decades ago, Proakis [57] developed a general
expression for evaluating the BER when the decision variable is in that particular
form. Indeed, the development and results originally obtained in Ref. 57 later
appeared as Appendix B of Ref. 7 and have become a classic in the annals of
communication system performance literature. The most general form of the BER
expression [i.e., Ref. 7, Eq. (B-21)] obtained by Proakis was given in terms of
the first-order Marcum Q-function and modified Bessel functions of the first kind.
Although implied but not explicitly given in Refs. 7 and 57, this general form
can be rewritten in terms of the generalized Marcum Q-function, Ql�Ð, Ð�, as (see
Appendix 9A)

Pb�L, �t; a, b, :�

D Q1�a
p
�t, b

p
�t��


1 �

∑L�1
lD0

(
2L � 1

l

)
:l

�1 C :�2L�1


exp

[
� �a

2 C b2��t
2

]
I0�ab�t�

C 1

�1 C :�2L�1

[
L∑
lD2

(
2L � 1
L � l

)
:L�l[Ql�a

p
�t, b

p
�t�� Q1�a

p
�t, b

p
�t�]

]

� 1

�1 C :�2L�1

[
L∑
lD2

(
2L � 1
L � l

)
:L�1Cl[Ql�b

p
�t, a

p
�t�� Q1�b

p
�t, a

p
�t�]

]
�9.95�
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where (
2L � 1
L � l

)
D �2L � 1�!

�L � l�!�L C l� 1�!

denotes the binomial coefficient and all the modulation-dependent parameters are
as defined previously. As a check for L D 1 and : D 1, the latter two summations
in (9.95) do not contribute, and hence one immediately obtains the single-channel
result (8.162), as expected. Note that although the form in (9.95) does not give
the appearance of being much simpler than Eq. (B-21) of Ref. 7, we shall see
shortly that it does have particular advantage for obtaining the average BER
performance over generalized fading channels.

As in the single-channel reception case the parameters a and b in (9.95)
are typically independent of SNR and furthermore, b > a. For instance, for
noncoherent detection of equal energy, equiprobable, correlated binary signals,
: D 1 and

a D
(

1 �
√

1 � j>j2
2

)1/2

b D
(

1 C
√

1 � j>j2
2

)1/2
�9.96�

where > (0 � j>j � 1) is the complex-valued cross-correlation coefficient between
the two signals. The special case > D 0 corresponds to orthogonal noncoherent
BFSK for which a D 0 and b D 1. Furthermore, in the case of binary DPSK,

a D 0, b D p
2, and : D 1. Finally, a D

√
2 � p

2, b D
√

2 C p
2, and : D 1

correspond to DQPSK with Gray coding. At this point let us introduce again
a modulation-dependent parameter ? D a/b which is independent of SNR. With
this in mind, we now show how the alternative integral representations of the
generalized Marcum Q-function yields a desired product form representation of
the conditional BER. In particular, it was shown in Section 4.2.2 that

Ql�u, w� D 1

2�

∫ �

��

?��l�1��cos[�l� 1�� C �/2�] � ? cos[l� C �/2�]�

1 C 2? sin C ?2

ð exp
[
�w

2

2
�1 C 2? sin C ?2�

]
d , 0C � ? D u

w
< 1

�9.97�

Ql�u, w� D 1 � 1

2�

∫ �

��

?l�cos[l� C �/2�] � ? cos[�l� 1�� C �/2�]�

1 C 2? sin C ?2

ð exp
[
�u

2

2
�1 C 2? sin C ?2�

]
d , 0 � ? D w

u
< 1

with the special case of l D 1 being given in (4.2.17) and (4.2.18). Now, using
(4.13) and (9.97) in (9.95), it can be shown after tedious manipulations that the
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entire conditional BER expression (9.95) can be written as a single integral with
an integrand that contains a single exponential factor in �t of the form

exp
[
�b

2�t
2
�1 C 2? sin C ?2�

]

namely,

Pb�L, �t; a, b, :� D :L

2��1 C :�2L�1

∫ �

��

f�L; ?, :; �

1 C 2? sin C ?2

ð exp
[
�b

2�t
2
�1 C 2? sin C ?2�

]
d , 0C � ? D a

b
< 1

�9.98�
where

f�L; ?, :; � D f0�L; ?, :; �C f1�L; ?, :; �

with4

f0�L; ?, :; � D
[

� �1 C :�2L�1

:L
C

L∑
lD1

(
2L � 1
L � l

)
�:�l C :l�1�

]
?�? C sin �

f1�L; ?, :; � D
L∑
lD1

(
2L � 1
L � l

)
[�:�l?�lC1 � :l�1?lC1� cos[�l� 1�� C �/2�]

� �:�l?�lC2 � :l�1?l� cos[l� C �/2�]] �9.99�

The form of the conditional BER in (9.98) has the advantage of being a
single finite-range integral with limits independent of the conditional SNR and
an integrand that can be written in a product form, such as

Pb�L, �t; a, b, :� D :L

2��1 C :�2L�1

∫ �

��

f�L; ?, :; �

1 C 2? sin C ?2

ð
L∏
lD1

exp
[
�b

2�l
2
�1 C 2? sin C ?2�

]
d , 0C � ? D a

b
< 1

�9.100�
Furthermore, the form of (9.100) is desirable since we can first independently
average over the individual statistical distributions of the �l’s, and then perform
the integral over  , as described in more detail below (Section 9.4.1.2). Before
showing this, however, we first offer some simplifications of (9.95) and (9.98)
for some special cases of interest.

4 As the book was going to press, Mr. L.-F. Tsaur of Conexant Systems Inc, Newport Beach, CA
pointed out to the authors that f0�L; ?, :; � can be proven equal to zero for all values of L and :
independent of ? and  .
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Desired Product Form-Representation of the Conditional BER [Special
Case (: D 1)]. For : D 1, and any L ½ 1, which corresponds to the case of
multichannel detection of equal-energy correlated binary signals, the conditional
BER expression (9.95) becomes

Pb�L, �t; a, b, 1�DQ1�a
p
�t, b

p
�t�� 1

2
exp

[
� �a

2 C b2��t
2

]
I0�ab�t�

C 1

22L�1
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(
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p
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� [Q1�a
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�t�� Q1�b
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p
�t�]g

]

D Q1�a
p
�t, b
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�t�� 1

2
exp

[
� �a

2 C b2��t
2

]
I0�ab�t�

C 1

22L�1

L∑
lD1

(
2L � 1
L � l
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[Ql�a

p
�t, b

p
�t�� Ql�b

p
�t, a

p
�t�]

� 1

2
[Q1�a

p
�t, b

p
�t�� Q1�b

p
�t, a

p
�t�], �9.101�

where we have added back the l D 1 term in the sums of (9.95) since they have
zero value anyway. However, comparing Eqs. (40) and (42) of Ref. 62 yields

Q1�u, w�� 1

2
exp

(
�u

2 C w2

2

)
I0 �uw� D 1

2
[1 � Q1�w, u�C Q1�u, w�]

�9.102�
Thus, combining (9.101) and (9.102) gives the simplified expression

Pb�L, �t; a, b, 1� D 1

2
C 1

22L�1

L∑
lD1

(
2L � 1
L � l

)
ð [Ql�a

p
�t, b

p
�t�� Ql�b

p
�t, a

p
�t�] �9.103�

which appears not to be given in Refs. 7 and 57. Setting a D 0 and b D 1
�b D p

2� in (9.103), then using the relations [63, Eq. (9)]

Ql�0, w� D e�w2/2
l�1∑
kD0

�w2/2�k

k!

Ql�u, 0� D 1

along with the identity
∑L

lD1

(
2L � 1
L � l

)
D 22�L�1�, it can be shown that (9.103)

reduces to the well-known expression for multichannel binary orthogonal FSK
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(binary DPSK) given by Proakis [7, Eq. (12-1-13)], namely,

Pb�L, �t; 0,
√

2g, 1� D 1

22L�1
e�g�t

L�1∑
lD0

cl�g�t�
l �9.104�

where

cl D 1

l!

L�1�l∑
kD0

(
2L � 1
k

)

g D 1
2 for orthogonal binary FSK, and g D 1 for binary DPSK. Note that an

alternative (equivalent) form to (9.104), involving the confluent hypergeometric
function, 1F1�Ð; Ð; Ð�, and given by Charash [59, Eq. (32)] as

Pb�L, �t; 0,
√

2g, 1� D e�2g�t

2L�L�

L�1∑
lD0

�L C l�

2l�lC 1�
1F1�L C l; L; g�t� �9.105�

has also been used in the literature for the BER of multichannel binary orthogonal
FSK and binary DPSK [64,65].

The conditional BER expression (9.101) for the special case of : D 1 and any
L ½ 1 can also be put in the desired product form. Indeed, it can be shown that
in this particular case f0�L; ?, 1; � D 0, and hence (9.98) reduces to

Pb�L, �t; a, b, 1� D 1

22L�

∫ �

��

f1�L; ?, 1; �

1 C 2? sin C ?2

ð exp
[
�b

2�t
2
�1 C 2? sin C ?2�

]
d ,

0C � ? D a

b
< 1 �9.106�

where the function f1�Ð; Ð, Ð; Ð� is now given by

f1�L; ?, :; � D
L∑
lD1

(
2L � 1
L � l

){
�?�lC1 � ?lC1� cos[�l� 1�� C �/2�]

� �?�lC2 � ?l� cos[l� C �/2�]
}

�9.107�

Note that as ? ! 0, (9.106) assumes an indeterminate form, and thus an
analytical expression for the limit is more easily obtained from (9.104) with
g replaced by b2/2. We point out further that the limit of (9.106) as ? ! 0
converges smoothly to the exact BER expression of (9.104). For example,
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numerical evaluation of (9.106) setting ? D 10�3�a D 10�3, b D 1� gives an
accuracy of five digits compared with numerical evaluation of (9.104) for the
same system parameters. The representation (9.106) is therefore useful even
in this specific case. This is particularly true for the performance of binary
orthogonal FSK and binary DPSK, which cannot be obtained via the classical
representation of (9.104) in the most general fading case but which can be
solved using the desirable conditional BER expression (9.106), as we will show
next.

Average BER. To obtain the unconditional BER, Pb�L, f�lgLlD1, filgLlD1; a, b, :�,
we must average the conditional BER, Pb�L, �t; a, b, :�, over the joint PDF
of the instantaneous SNR sequence f�lgLlD1, namely, p�1,�2,...,�L ��1, �2, . . . , �L�.
Since the RV’s f�lgLlD1 are assumed to be statistically independent,
p�1,�2,...,�L ��1, �2, . . . , �L� D ∏L

lD1 p�l��l�, and the averaging procedure results in

Pb
(
L, f�lgLlD1, filgLlD1; a, b, :

) D
∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
L�fold

Pb�L, �t; a, b, :�

ð
[
L∏
lD1

p�l��l�

]
d�1 d�2 Ð Ð Ðd�L �9.108�

If the classical representation of Pb�L, �t; a, b, :�, as given by Proakis [7,
Eq. (B-21)] or equivalently, (9.95), were to be used, (9.108) would result in an
�L C 1�-fold integral with infinite limits [one of these integrals comes from the
classical definition of the generalized Marcum Q-function in Pb�L, �t; a, b, :�]
and an adequately efficient numerical integration method would not be
available.

Using the desired product form representation of Pb�L, �t; a, b, :�, namely,
(9.100) in (9.108), yields

Pb
(
L, f�lgLlD1, filgLlD1; a, b, :

)
D :L

2��1 C :�2L�1

∫ 1

0

∫ 1

0
Ð Ð Ð
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∫ �
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1 C 2? sin C ?2

ð
[
L∏
lD1

exp
[
�b

2�l
2
�1 C 2? sin C ?2�

]]

ð
[
L∏
lD1

p�l��l�

]
d d�1 d�2 Ð Ð Ðd�L �9.109�
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The integrand in (9.109) is absolutely integrable and the order of integration can
therefore be interchanged. Thus, grouping like terms, we have

Pb
(
L, f�lgLlD1, filgLlD1; a, b, :

)
D :L

2��1 C :�2L�1

∫ �

��

f�L; ?, :; �

1 C 2? sin C ?2
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lD1

∫ 1

0
exp

[
�b

2�l
2
�1 C 2? sin C ?2�

]
p�l��l� d�l

]
d 

D :L

2��1 C :�2L�1
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��

f�L; ?, :; �

1 C 2? sin C ?2

ð
L∏
lD1

M�l

(
�a

2 C b2 C 2ab sin 

2

)
d �9.110�

where M�l�s� is the MGF of the SNR per symbol associated with the lth path
and is given in Table 9.1 for some channel models of interest. Note that if the
fading is identically distributed with the same fading parameter i and the same
average SNR per bit � for all L channels, (9.110) reduces to

Pb�L, �, i; a, b, :� D :L

2��1 C :�2L�1

∫ �

��

f�L; ?, :; �

1 C 2? sin C ?2

ð
[
M�l

(
�a

2 C b2 C 2ab sin 

2

)]L
d �9.111�

Hence this approach reduces the �L C 1�-fold integral with infinite limits of
(9.108) to a single finite-range integral (9.110) whose integrand contains only
elementary functions (i.e., no special functions) and which can therefore be easily
evaluated numerically.

9.4.1.3 Bounds on Average Bit Error Probability. While the results found
above are exact, they still require numerical evaluation of an integral. Our goal
in this section is to derive a closed-form upper bound on the BER performance.
We start with the conditional BER expression given in (9.103). Recall that the
arguments of the second generalized Marcum Q-function in (9.103) are in reverse
order to those in the first one. Thus, if a < b (the case of practical interest in
communication problems), then using the tight upper bound (4.57a) for the first
term and the tight lower bound of (4.64a) for the second would produce a tight
upper bound on the conditional BER. The next step would then be to average
the resulting conditional BER expression over the PDF’s of the fading RV’s. If
we assume that the SNR’s per bit per path �l, l D 1, 2, . . . , L, are independent,
unfortunately, the presence of the term in (4.64a) with the summation would
prevent the desired partitioning of the integrand, thereby precluding averaging
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on a channel-by-channel basis. To circumvent this difficulty, we simplify (with the
understanding that it becomes negligibly looser, as shown in Figs. 4.2 through
and 4.4) the lower bound of (4.64a) by ignoring this term (which is always
positive), which is tantamount to using the lower bound on Q1�˛, ˇ� as given
by (4.31b) for Qm�˛, ˇ�. When this is done, the following upper bound on the
conditional BER results:

Pb�Ej�t� � 1

22L�1
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(
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L � l

)[(
3

2
C 1
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2
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�
(

1

2
C 1

�?l�1

1 � ?l�1

1 � ?
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exp
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2

)]
�9.112�

where again ? denotes 0C � ?
D˛/ˇ < 1. Substituting �t D ∑L

lD1 �l in (9.112)
and averaging over the individual fading PDFs, p�l��l�, l D 1, 2, . . . , L, gives
the result for average BEP in the desired MGF product form, namely,

Pb�E� � 1

22L�1
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(
2L � 1
L � l

)[(
3

2
C 1

�?l�1
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1 � ?
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�
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1

2
C 1

�?l�1
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) L∏
kD1

M�k

(
�b

2�1 C ?�2

2

)]
�9.113�

where M�l�s� is again the MGF of the SNR per symbol associated with the lth
path and is given in Table 9.1 for some channel models of interest.

As an example, consider the average BEP performance of DQPSK (for

which a D
√

2 � p
2 and b D

√
2 C p

2) over a frequency-selective Nakagami-
m channel with an arbitrary power delay profile. Since for a Nakagami-m channel
with instantaneous SNR per bit per path PDF,

p�k ��k� D mm�m�1
k

�mk �m�
exp

(
�m�k
�k

)
, �k ½ 0 �9.114�

the MGF is given by

M�k �s� D
(

1 � s�k
m

)�m
, s > 0 �9.115�

then use of (9.115) in (9.113) immediately gives the upper bound on average
BER in closed form. Figure 9.8 is a plot of the conditional BER Pb�Ej�t� versus
SNR per bit per path (in dB) � D �t/L as determined from both the exact result
of (9.103) and the purely exponential bound of (9.112) for values of L D 2 and 4.
Similarly, Fig. 9.9 is a plot of average BER versus � (assuming a uniform power
delay profile for the Nakagami-m fading), as determined from both the exact
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Figure 9.8. Bit error probability of D-QPSK with L-fold diversity postdetection EGC versus the
SNR per bit per path for AWGN channels.

result in (9.110) combined with (9.115) and the upper bound of (9.113) combined
with (9.115). The results are given for three values of m, 0.5, 1, and 2 with
m D 0.5 corresponding to worst-case (single-sided Gaussian) fading and m D 1
corresponding to Rayleigh fading. As one can observe from both sets of plots,
the upper bounds are quite tight over a wide range of values of the SNR. Finally,
it should be pointed out that when evaluated numerically using MATHEMATICA
software, the closed-form upper bounds of (9.112) and (9.113) offer a significant
improvement in speed compared with the exact single finite-range integrals as
given by (9.106) and (9.110), respectively.
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Average BEP Performance of D-QPSK with Postdetection EGC over 
Nakagami-m channels (m = 0.5)
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Figure 9.9. Average bit error probability of D-QPSK with L-fold diversity postdetection EGC
versus the average SNR per bit per path for various Nakagami-m fading channels. The fading
is assumed to be identically distributed over the L combined paths.
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9.4.2 M-ary Orthogonal FSK

The BER of noncoherent M-ary orthogonal modulation [or equivalently, M-ary
frequency-shift-keying (M-FSK)] operating over fading channels (both with and
without diversity reception) has long been of interest. Hahn [66] and Lindsey [58]
were the first to consider this problem for square-law combining (also called
postdetection equal-gain combining) over Rayleigh and Rice fading channels,
respectively. For the more general Nakagami-m channel [53], analogous results
were obtained by Crepeau [67] for the case of no diversity, and more recently
by Weng and Leung [68] for the case of square-law diversity combining.

In addition, during the last decade, the problem has been reexamined in the
context of its application to the performance analysis of the reverse link of direct-
sequence code-division multiple access (DS-CDMA) systems over frequency-
selective fading channels and with RAKE reception [69–72]. By modeling
the multiple access (MA) interference among users as an equivalent additive
Gaussian noise process, as can be justified for many applications [73], these
works evaluate performance as would be done for the traditional AWGN channel
using a total noise variance equal to the sum of that due to the ever-present
thermal noise and that due to the multiple access interference. However, for
mathematical tractability, most of the channel models considered in all the studies
cited typically assume a uniform power delay profile along the paths.

The unified approach presented in Section 9.4.1.2 for the analysis of nonco-
herent and differentially coherent communications over generalized fading chan-
nels does not apply for the case of noncoherent detection of M-ary �M > 2�
orthogonal signals. In fact, even in the case of binary �M D 2� signaling, the
average BER result can be obtained only as a limiting case of the generic result
in (9.110) with ? ! 0, which cannot be expressed in closed form. However,
since the MGF of the instantaneous combined SNR of a large variety of fading
conditions is straightforward to evaluate, as mentioned earlier, it is still desirable
to arrive at a generic expression for average BER in the form of an integral
(preferably with finite limits) having an integrand that depends on this MGF.
In this section we show that the original method used by Weng and Leung [68]
to derive the BEP of noncoherent M-ary orthogonal modulation with square-
law combining over i.i.d. Nakagami-m fading channels in fact enables this to
occur. More specifically, in the next section we reformulate this method to apply
to a generalized fading channel with an arbitrary MGF and thereby arrive at
exact results for average BEP in the above-mentioned desired form. To avoid
unnecessary repetition, we draw heavily on the results in Refs. 7 and 60, only
going into detail where necessary to distinguish between the specific Nakagami-
m and generalized fading cases. We then show that the desired generic result can
be further simplified for the special cases of Nakagami-m fading with arbitrary
power delay profile.

9.4.2.1 Exact Analysis of Average Bit Error Probability. Consider a
noncoherent M-ary orthogonal system operating over an L-path generalized
fading channel and using an L-finger post detection EGC receiver with square-law
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combining, as shown in Fig. 9.7. Denote the outputs of the M combiners by Ui
�i D 1, 2, . . . ,M�. Assume without loss in generality that the first combiner, i.e.,
�U1� corresponds to the information-bearing signal, whereas the remainingM� 1
combiner outputs contain noise only. Then the average BEP for such a system
can be expressed as [60, Eq. (8)]

Pb�E� D 2�log2 M��1

2log2 M � 1
Ps�E�

D 2�log2 M��1

2log2 M � 1

∫ 1

0

1

2�

∫ 1

�1
MU1�jω�e

�jωu1g�u1� dω du1 �9.116�

where MU1�jω� is the MGF of the first combiner output U1 and

g�u1� D
M�1∑
iD1

(
M� 1
i

)
��1�iC1e�iu1/2

i�L�1�∑
kD0

ˇki
(u1

2

)k
�9.117�

In (9.117) the coefficients fˇkig are obtained via the expansion

(
L�1∑
kD0

xk

k!

)i
D

i�L�1�∑
kD0

ˇkix
k �9.118�

and can be evaluated recursively by [66, Eq. (23) or equivalently 72, Eq. (32)]

ˇki D
k∑

nDk�LC1

ˇn�i�1�

�k � n�!
I[0,�i�1��L�1�]�i� �9.119�

where ˇ00 D ˇ0i D 1, ˇk1 D 1/k!, ˇ1i D i, and I[a,b]�i� is the indicator function
defined by

I[a,b]�i� D
{

1, a � i � b
0, otherwise

�9.120�

Since U1 is of the form [60, Eq. (1)] (for more details, see Ref. 7, Sec. 14-4-3)

U1 D
L∑
lD1

∣∣∣∣∣˛l
√

2Es
N0

e�j l C nl,1

∣∣∣∣∣
2

�9.121�

where ˛l and  l are the fading amplitude and phase associated with the lth
diversity path, Es/N0 is the symbol SNR, and nl,1�l D 1, 2, . . . , L) are complex-
valued i.i.d. zero-mean unit variance random variables, then conditioned on the
fading, U1 is a noncentral chi-square random variable with 2L degrees of freedom
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and MGF [6, Eq. (5A.8)]

MU1

(
s
∣∣f˛gLlD1

) D 1

�1 � 2s�L
exp

(
2s

1 � 2s

Es
N0

L∑
lD1

˛2
l

)

D 1

�1 � 2s�L
exp

(
2s

1 � 2s

L∑
lD1

�l

)
�9.122�

where �l D ˛2
l Es/N0 denotes the instantaneous symbol SNR of the lth diversity

branch. Averaging (9.122) over the fading yields the unconditional MGF of U1,
namely,

MU1�s� D E
{
MU1

(
s
∣∣f˛gLlD1

)}
D 1

�1 � 2s�L

∫ 1

0

∫ 1

0
Ð Ð Ð

∫ 1

0
exp

(
2s

1 � 2s

L∑
lD1

�l

)

ð p�1,�2,...,�L ��1, �2, . . . , �L� d�1 d�2 Ð Ð Ðd�L

D 1

�1 � 2s�L

∫ 1

0
exp

(
2s

1 � 2s
�t

)
p�t ��t� d�t

D 1

�1 � 2s�L
M�t

(
2s

1 � 2s

)
�9.123�

where �t D ∑L
lD1 �l is, as before, the total instantaneous symbol SNR at the

combiner output and M�t�s� is its MGF. Finally, substituting (9.123) in (9.116),
reversing the order of integration and then integrating over u1 [with the help of
the integral in [Ref. 36, Eq. (3.351.3)] we obtain after some manipulation and a
change of variables,

Pb�E� D
(

2�log2 M��1

2log2 M � 1

)
1

2�

M�1∑
iD1

(
M� 1
i

)
��1�iC1

i�L�1�∑
kD0

ˇki

ð
∫ 1

�1

1

�1 � jv�L
k!

�iC jv�kC1
M�t

(
jv

1 � jv

)
dv �9.124�

To put (9.124) in the form of an integral with finite limits, we now make the
change of variables v D tan �. Furthermore, recognizing that Pb�E� is real, it is
only necessary to take the real part of the right-hand side of (9.124) since the
imaginary part must equate to zero. Finally, after making this change of variables,
performing some routine complex algebraic manipulations, and taking advantage
of the fact that the resulting integrand is an even function of �, we obtain the
desired generic result, namely,
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Pb�E� D
(

2�log2 M��1

2log2 M � 1

)
1

�

∫ �/2

0

M�1∑
iD1

(
M� 1
i

)
��1�iC1

i�L�1�∑
kD0

ˇki

ð
[

Re
{
M�t

(
j tan �

1 � j tan �

)}
� Im

{
M�t

(
j tan �

1 � j tan �

)}
sink

]

ð k!�cos ��L�2

�i2 C tan2 ���kC1�/2
d� �9.125�

where RefÐg and ImfÐg denote the real and imaginary parts, respectively, and

k
DL� � �k C 1� tan�1

(
tan �

i

)
�9.126�

For binary modulation, M D 2 and ˇk1 D 1/k!, and hence (9.125) simplifies
further to

Pb�E� D 1

�

∫ �/2

0

L�1∑
kD0

[
Re
{
M�t

(
j tan �

1 � j tan �

)}
cos[�L � k � 1��]

� Im
{
M�t

(
j tan �

1 � j tan �

)}
sin[�L � k � 1��]

]

ð �cos ��L�2

�1 C tan2 ���kC1�/2
d� �9.127�

which can be shown to agree numerically with (9.110), letting : D 1, b D 1,
and then taking the limit as ? ! 0. Also recall that the conditional BER of
binary DPSK [7, Eq. (12-1-13)] has the same functional dependence on the
combined SNR �t, with the exception that �t is replaced by 2�t in the DPSK
expression. However, since M�t�s� is only a function of the normalized versions
of its argument, (i.e., fs�lgLlD1), M�t�s� D E[e2�ts] D E[e�t�2s�], which from the
foregoing is identical to M�t�s� with f�lgLlD1 replaced by f2�lgLlD1. Thus, we
conclude that (9.127) also applies to the average BEP of DPSK with postdetection
EGC when f�lgLlD1 is replaced by f2�lgLlD1.

Consider now the special case where the fading is independent from path to
path but not necessarily identically distributed (i.e., each path is allowed to have
arbitrary fading statistics). Because of the independence assumption, the MGF
M�t �s� partitions into the product

M�t�s� D
L∏
lD1

M�l�s� �9.128�

where, as mentioned previously, M�l�s� is readily available for a variety of
different channel models and a summary of these MGF results is included in
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Table 9.1. In view of the above, the generic result for average BEP as given by
(9.125) now becomes

Pb�E� D
(

2�log2 M��1

2log2 M � 1

)
1

�

M�1∑
iD1

(
M� 1
i

)
��1�iC1

i�L�1�∑
kD0

ˇki

ð
∫ �/2

0

[
Re

{
L∏
lD1

M�l

(
j tan �

1 � j tan �

)}
cosk

� Im

{
L∏
lD1

M�l

(
j tan �

1 � j tan �

)}
sink

]
k!�cos ��L�2

�i2 C tan2 ���kC1�/2
d� �9.129�

As a further specialization of (9.129), consider the case where all paths have
Nakagami-m fading with the same fading parameter m as was done in Ref. 68,
now with, however, an arbitrary power delay profile. Since for this type of fading
the MGF of �l is given by (see Table 9.1)

M�l�s� D
(

1 � s�l
m

)�m
�9.130�

then using this in (9.129) and simplifying the complex algebra, we arrive at the
result

Pb�E� D
(

2�log2 M��1

2log2 M � 1

)
1

�

∫ �/2

0

M�1∑
iD1

(
M� 1
i

)
��1�iC1

ð
i�L�1�∑
kD0

ˇki
k!A cos�k C m�

�i2 C tan2 ���kC1�/2�cos ���2m�1�LC2
d� �9.131�

where

A
D

L∏
lD1

[(
1 C

(
1 C �l

m

)
tan2 �

)2

C
(
�l
m

tan �
)2
]�m/2

,


D

L∑
lD1

tan�1 ��l/m� tan �

1 C �1 C �l/m� tan2 �
�9.132�

For binary modulation, M D 2 and ˇk1 D 1/k!, and hence (9.131) simplifies
further to

Pb�E� D 1

�

∫ �/2

0

L�1∑
kD0

A cos[�L � k � 1�� C m]

�cos ���2m�1�LC1�k d� �9.133�
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which agrees numerically with the result obtained from substituting (9.130) into
(9.110), letting : D 1, b D 1, and then taking the limit as ? ! 0. Also again
because of the similarity of the conditional BER for binary orthogonal signaling
and DPSK, (9.133) also applies for the average BEP of DPSK with �l replaced
by 2�l. Hence for the i.i.d. case (�l D �, l D 1, 2, . . . , L�, (9.133) with the
substitution of �l by 2�l is equivalent to the closed-form expression given by
Weng and Leung [60, Eq. (11)].

9.4.2.2 Numerical Examples. Figure 9.10 is a plot of Pb�E� for binary
orthogonal FSK [obtained from (9.133)] versus the average SNR per bit of the
first path �1 for different values of m and an exponentially decaying power delay
profile [�l D �1 exp��υ�l� 1��, l D 1, 2, . . . , L, and υ is the average fading
power decay factor]. In view of our previous remarks, in this figure as well
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Figure 9.10. Average bit error probability Pb�E� of binary FSK with square-law combining
versus the average SNR per bit of the first path �1 over Nakagami-m channels with an
exponentially decaying power delay profile.
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as in the remaining figures concerned with binary orthogonal FSK, the average
BEP of DPSK may be found by shifting the curves 3 dB to the left. Analogous
to Fig. 9.10, Figs. 9.11 and 9.12 are plots for the BEP Pb�E� of 4-ary and
8-ary orthogonal FSK [obtained from (9.131) with M D 4 and M D 8] versus
the average SNR per bit of the first path �1/ log2M. From these figures there are
two observations worth noting. First, in comparison with a system operating over
a uniform power delay profile, the BEP deterioration due to the exponentially
decaying power delay profile can be quite important in all cases, and this
degradation is more accentuated for a large number of combined paths, as one
may expect. However, note that in these figures, once the first path average
SNR �1 is fixed (as it is typically done in this type of illustrations; see, e.g.,
Ref. 54), the total average SNR is smaller for channels with an exponentially
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Figure 9.11. Average bit error probability Pb�E� of 4-ary FSK with square-law combining versus
the average SNR per bit of the first path �1/2 over Nakagami-m channels with an exponentially
decaying power delay profile.
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Figure 9.12. Average bit error probability Pb�E� of 8-ary FSK with square-law combining versus
the average SNR per bit of the first path �1/3 over Nakagami-m channels with an exponentially
decaying power delay profile.

decaying power delay profile �υ > 0� than for channels with a uniform power
delay profile �υ D 0�, which explains in part the relatively important performance
degradation due to the exponentially decaying power delay profile. Second,
the use of M-ary �M > 2� instead of binary signaling still improves the BEP
performance, especially for channels subject to a low amount of fading (i.e.,
high fading parameter m).

9.5 OUTAGE PROBABILITY PERFORMANCE

As discussed in Chapter 1, in addition to the average error rate, outage
probability, Pout, is another standard performance criterion of diversity systems
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operating over fading channels [2–4]. It is defined as the probability that the
instantaneous error rate exceeds a specified value or equivalently, that the
combined SNR �t falls below a certain specified threshold �th, that is,

Pout D
∫ �th

0
p�t ��t� d�t �9.134�

In other words, Pout is the cumulative distribution function (CDF) of �t, P�t ��t�,
evaluated at �th. Motivated by the fact that finding the PDF of �t in closed form
is often restricted to some simple cases (such as i.i.d. diversity paths) while the
MGF of �t, M�t�s�, can be obtained in a simple form for a wide variety of fading
conditions, as discussed in previous sections, in this section we develop an MGF-
based approach for the outage probability evaluation of diversity systems over
generalized fading channels [74]. This approach relies on a simple and accurate
algorithm for numerical inversion of Laplace transforms of CDFs [75], which is
summarized in Section 9B.1.

9.5.1 MRC and Noncoherent EGC

Consider a multilink channel where the transmitted signal is received over L
independent slowly varying flat fading channels. Recall that for equally likely
transmitted symbols, the total conditional SNR per symbol, �t, at the output of an
MRC combiner or a postdetection (differentially coherent or noncoherent) EGC
combiner is given by (9.1) or equivalently, (9.94). Since p�t ��t� D dP�t ��t�/d�t
and P�t �0� D 0, we have [36, p. 1178]

OP�t �s� D Op�t �s�
s

�9.135�

where the “O” denotes the Laplace transform operator. Using the relation Op�t �s� D
M�t��s� and applying the numerical technique described in Appendix 9B, we
obtain the desired result:

Pout D P�t ��th� D 2�KeA/2

�th

K∑
kD0

(
K
k

) NCk∑
nD0

��1�n

˛n

ð Re



M�t

(
�AC 2�jn

2�th

)
AC 2�jn

2�th


C E�A,K,N� �9.136�

where the overall error term E�A,K,N� is approximately bounded by
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jE�A,K,N�j � e�A

1 C e�A

C

∣∣∣∣∣∣∣∣
2�KeA/2

�th

K∑
kD0

��1�NC1Ck
(
K
k

)
Re



M�t

(
�AC 2�j�NC k C 1�

2�th

)
AC 2�j�NC k C 1�

2�th



∣∣∣∣∣∣∣∣

�9.137�
Because of the independence assumption on the f�lgLlD1, the MGF of �t is the
product of the MGF of the �l’s [31, Sec. 7.4], which are available in Table 9.1.
Hence (9.136) and (9.137) yield simple expressions for the outage probability and
the corresponding numerical error, which can easily be computed using standard
mathematical packages such as Mathematica.

9.5.2 Coherent EGC

Recall that for coherent EGC with equally likely transmitted symbols, the
conditional combined SNR per symbol, �EGC, is given by (9.46), namely,

�EGC D
(∑L

lD1 ˛l
)2
Es

LN0
�9.138�

where we have now assumed that the AWGN noise power spectral density is the
same for all the diversity paths. Since the outage probability Pout is defined by

Pout
D Prf0 � �EGC � �thg �9.139�

and since ˛l ½ 0, l D, 1, 2, . . . , L, (9.139) can be rewritten as

Pout D Prf0 � ˛t � ˛thg �9.140�

where ˛t
D∑L

lD1 ˛l and ˛th
D p

L�th/�Es/N0�. Consequently, using the numerical
technique described in Section 9B.1, for independent combined paths the outage
probability of coherent EGC receivers can be computed using (9.136), and
the corresponding numerical error can be estimated from (9.137), where in all
these expressions �t, �l, and �th are replaced by ˛t, ˛l, and ˛th, respectively.
At this point let us restrict our multilink channel to L independent slowly
varying Nakagami-m flat fading channels with fading parameter ml (0.5 � ml)
and average fading power �l D E[˛2

l ]. The MGF of ˛l can be expressed in this
case with the help of Eq. (3.462.1) of Ref. 36 in terms of the parabolic cylinder
function D�v�Ð� [36, Secs. 9.24 and 9.25]
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M˛l�s� D �2ml�

2ml�1�ml�
exp

(
�ls2

8ml

)
D�2ml

(
�sp�lp

2ml

)
�9.141�

or alternatively, in terms of the more common confluent hypergeometric functions
1F1[Ð, Ð; Ð] by using Eq. (3.462.1) of Ref. 36, resulting in

M˛l�s� D �2ml�

22ml�1�ml�

[ p
�


(
ml C 1

2

) 1F1

(
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1

2
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�ls2

4ml
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C
p
��ls

�ml�
p
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1F1

(
ml C 1

2
,

3

2
;
�ls2

4ml

)]
�9.142�

Note that similar to MRC and postdetection EGC, our numerical results confirm
that the outage probability of coherent EGC systems is solely a function of the
various average SNRs/bit/paths �l D �lEs/N0, l D 1, 2, . . . , L.

9.5.3 Numerical Examples

As examples, Figs. 9.13 and 9.14 show the impact of an exponentially decaying
power delay profile (�l D e�υ�l�1��1) on the outage probability performance
of MRC (or postdetection EGC) RAKE receivers over frequency-selective
Nakagami-m and Rician fading channels, respectively. These curves were
generated with A set to equal 10 ln 10 ' 23.026 to guarantee a discretization
error of less than 10�10. In addition, the parameters N and K were chosen
so that the resulting truncation error is negligible compared to the computed
outage probability, as shown in Tables 9.2 and 9.3.5 The numerical results show
that the power delay profile induces a nonnegligible degradation in the outage
probability and has therefore to be taken into account for accurate prediction
of the outage probability performance of RAKE receivers. Furthermore, in
both sets of curves it is clear that the effect of the power decay factor
υ becomes more important as the number of combined paths increases, as
expected.

Figure 9.15 shows the impact of an exponentially decaying power delay profile
on the outage probability performance of coherent EGC RAKE receivers over
Nakagami-m fading channels. For these sets of curves the parameter A was set
equal to 8 ln 10 ' 18.4 to guarantee a discretization error of less than 10�8,
and the parameters N and K were again chosen so that the truncation error
is negligible compared to the actual computed outage probabilities, as shown
in Table 9.4. Finally, Fig. 9.16 compares the outage probability of MRC and
coherent EGC receivers over Nakagami-m fading channels with an exponentially

5 In Tables 9.2, through 9.4 the truncation error is set equal to zero if it is smaller than the precision
limit of the computer.
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Figure 9.13. Outage probability with MRC or postdetection EGC RAKE reception (L D 2 and
4) versus normalized average SNR of the first path �1/�th over a Nakagami-m fading channel
with an exponentially decaying power delay profile: �a� υ D 0; �b� υ D 0.5; �c� υ D 1.

decaying power delay profile. Note that regardless of the power decay factor υ
the outage probability of EGC approaches the performance of MRC for channels
with low amounts of fading (high m). This behavior can be explained by the
following arguments. For channels with high amounts of fading, coherent EGC
combines very “noisy” branches and therefore suffers a serious penalty with
respect to MRC. On the other hand, for channels with low amounts of fading,
coherent EGC takes full advantage of the combining of all the “clean” paths and
therefore approaches the performance of MRC.
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Figure 9.14. Outage probability with MRC or postdetection EGC reception (L D 2 and 4)
versus normalized average SNR of the first path �1/�th over a Rician fading channel with an
exponentially decaying power delay profile: �a� υ D 0; �b� υ D 0.5; �c� υ D 1.

9.6 IMPACT OF FADING CORRELATION

In studying the performance of diversity systems, the usual assumption as made
by us in all previous sections, is that the combined signals are independent of one
another. However, as discussed in Refs. 76 and 77, there are a number of real-life
scenarios in which this assumption is not valid, for example, insufficient antenna
spacing in small mobile units equipped with space and polarization antenna
diversity [78,79]. Furthermore, for multipath diversity over frequency-selective
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TABLE 9.2 Truncation Error Estimates of MRC Outage Probability with 10−10

Discretization Error, K = 11 and N = 20 (Nakagami-m Fading) for Various Values of
g1=gth

�L,m, υ� �10 dB �5 dB 0 dB 5 dB 10 dB

(2,1,0) 4.6 ð 10�10 4.0 ð 10�10 5.0 ð 10�11 5.2 ð 10�12 5.3 ð 10�13

(2,1,1) 3.8 ð 10�9 7.0 ð 10�10 1.2 ð 10�10 1.4 ð 10�11 1.4 ð 10�12

(2,4,0) 3.9 ð 10�8 4.7 ð 10�11 5.2 ð 10�15 5.4 ð 10�20 2.8 ð 10�23

(2,4,1) 1.6 ð 10�8 1.0 ð 10�9 4.3 ð 10�13 1.1 ð 10�17 9.5 ð 10�22

(4,1,0) 6.0 ð 10�10 5.5 ð 10�12 9.8 ð 10�14 1.1 ð 10�15 1.1 ð 10�17

(4,1,1) 3.1 ð 10�9 1.2 ð 10�9 8.3 ð 10�12 2.7 ð 10�13 4.1 ð 10�15

(4,4,0) 4.5 ð 10�9 2.7 ð 1015 8.4 ð 10�22 0 3.0 ð 10�36

(4,4,1) 3.1 ð 10�8 1.3 ð 10�9 3.6 ð 10�14 6.7 ð 10�21 6.4 ð 10�27

TABLE 9.3 Truncation Error Estimates of MRC Outage Probability with 10−10

Discretization Error, K = 15 and N = 30 (Rician Fading) for Various Values of g1=gth

(L,n2 dB,d) �10 dB �5 dB 0 dB 5 dB 10 dB

(2,0,0) 1.0 ð 10�14 1.3 ð 10�15 1.9 ð 10�16 1.3 ð 10�17 5.6 ð 10�18

(2,0,1) 3.4 ð 10�14 5.6 ð 10�15 5.5 ð 10�17 0 1.7 ð 10�18

(2,10,0) 5.3 ð 10�15 3.8 ð 10�9 0 0 0
(2,10,1) 3.0 ð 10�14 2.9 ð 10�9 0 0 0
(4,0,0) 4.4 ð 10�16 1.6 ð 10�16 1.7 ð 10�18 5.4 ð 10�20 4.2 ð 10�22

(4,0,1) 1.0 ð 10�14 4.2 ð 10�15 1.1 ð 10�16 3.4 ð 10�18 5.4 ð 10�20

(4,10,0) 7.3 ð 10�8 1.7 ð 10�13 0 0 0
(4,10,1) 3.1 ð 10�15 7.2 ð 10�9 2.3 ð 10�20 0 0

channels, correlation coefficients up to 0.6 between adjacent and second adjacent
paths in the channel impulse response of frequency-selective channels were
observed by Turin et al. [82,83], and Bajwa [81]. These early observations were
recently confirmed by the propagation campaign of Patenaude et al. [82,83], who,
based on a thorough statistical analysis of several macrocellular, microcellular,
and indoor wideband channel impulse responses, reported correlation coefficients
sometimes higher than 0.8 with no significant reduction in the correlation even for
large path delay differences. As a result, the maximum theoretical diversity gain
promised by RAKE reception cannot be achieved, and hence any analysis must be
revamped to account for the effect of correlation between the combined signals.

Along these lines, several correlation models have been proposed [53,76,77],
and using these models several authors [40,61,72,76,77,84–89,91,92] have
analyzed special cases of the performance of various systems, corresponding to
specific detection, modulation, and diversity combining schemes. For instance,
Pierce and Stein [76] considered the performance of binary coherent and nonco-
herent systems over correlated identically distributed Rayleigh fading channels.
In particular, they obtained the average BER of coherent BPSK when used in
conjunction with MRC, and of noncoherent BFSK when used with postdetection
EGC. Miyagaki et al. [40] analyzed the outage probability and the average SER



318 PERFORMANCE OF MULTICHANNEL RECEIVERS

          a        b     c

a  b c

a      b       c
a b   c

a b c

a b c

a b c
a b c

L=4

L=2

L=2

L=4
L=2

L=2
L=4

L=4

O
ut

ag
e 

P
ro

ba
bi

lit
y 

P
ou

t

−10 20−5 0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Average SNR of First Path [dB]

Effect of Power Delay Profile on
Outage Probability of EGC (m=0.5)

O
ut

ag
e 

P
ro

ba
bi

lit
y 

P ou
t

−10 20−5 0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Average SNR of First Path [dB]

Effect of Power Delay Profile on
Outage Probability of EGC (m=1)

O
ut

ag
e 

P
ro

ba
bi

lit
y 

P ou
t

−10 −5 0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Average SNR of First Path [dB]

Effect of Power Delay Profile on
Outage Probability of EGC (m=2)

O
ut

ag
e 

P
ro

ba
bi

lit
y 

P ou
t

−10 −5 0 5 10 15
10−6

10−5

10−4

10−3

10−2

10−1

100

Normalized Average SNR of First Path [dB]

Effect of Power Delay Profile on
Outage Probability of EGC (m = 4)

Figure 9.15. Outage probability with EGC reception (L D 2 and 4) versus normalized average
SNR of the first path �1/�th over a Nakagami-m fading channel with an exponentially decaying
power delay profile: (a) υ D 0; (b) υ D 0.5; (c) υ D 1.

performance of M-PSK for various dual-branch diversity receivers over corre-
lated identically distributed Nakagami-m fading channels [53]. Al-Hussaini and
Al-Bassiouni [84] obtained a closed-form expression for the average BER of
noncoherent BFSK with dual-branch MRC reception over correlated nonidenti-
cally distributed Nakagami-m fading channels. More recently, Aalo [77] analyzed
the outage probability and the average BER of various coherent, differentially
coherent, and noncoherent binary modulations with multichannel MRC reception
over identically distributed Nakagami-m fading channels with two correlation
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TABLE 9.4 Truncation Error Estimates of EGC Outage Probability with 10−8 Discretiza-
tion Error, K = 11 and N = 15 (Nakagami-m Fading) for Various Values of g1=gth

(L,m,υ) �10 dB �5 dB 0 dB 5 dB 10 dB

(2,1,0) 8.3 ð 10�10 1.0 ð 10�10 6.0 ð 10�12 5.6 ð 10�13 3.6 ð 10�16

(2,1,1) 9.0 ð 10�10 2.4 ð 10�10 1.7 ð 10�11 1.5 ð 10�12 8.1 ð 10�14

(2,4,0) 1.2 ð 10�9 4.3 ð 10�12 6.2 ð 10�17 1.3 ð 10�20 3.3 ð 10�24

(2,4,1) 1.8 ð 10�8 5.9 ð 10�10 8.8 ð 10�15 4.3 ð 10�19 1.0 ð 10�22

(4,1,0) 3.1 ð 10�11 1.6 ð 10�13 1.7 ð 10�15 1.7 ð 10�17 1.7 ð 10�19

(4,1,1) 3.9 ð 10�8 6.6 ð 10�10 1.7 ð 10�12 6.5 ð 10�15 7.1 ð 10�17

(4,4,0) 5.9 ð 10�7 3.6 ð 10�15 0 0 0
(4,4,1) 5.1 ð 10�7 1.2 ð 10�10 0.2 ð 10�14 1.3 ð 10�20 0
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Figure 9.16. Comparison of the outage probability of MRC and EGC �L D 4� versus normalized
average SNR of the first path �1/�th over a Nakagami-m fading channel with an exponentially
decaying power delay profile: (a) υ D 0; (b) υ D 0.5; (c) υ D 1.
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models: the constant (equal) correlation model and the exponential correlation
model. These results were extended to M-ary orthogonal signals in Ref. 72. In
addition, Patenaude et al. [61] provided closed-form expressions for the average
BER of orthogonal noncoherent BFSK with postdetection EGC reception over
two correlated nonidentical and also D equicorrelated identically distributed
Nakagami-m channels. Moreover, Zhang [85,86] and Lombardo et al. [87,88]
presented analyses of binary signals over arbitrary correlated Nakagami-m fading
channels with MRC and postdetection EGC. Finally, Cho and Lee [89], as well
as Win et al. [90], considered the effect of fading correlation on the average SER
performance of M-ary modulations with MRC reception.

In this section we use the MGF-based approach for the performance of
diversity systems over fading channels combined with mathematical studies on
the multivariate gamma distribution, to obtain general results for the exact average
error rate and outage probability over Nakagami-m fading channels with arbitrary
power delay and fading correlation profiles [93]. The results are applicable to
M-ary coherent modulations when used in conjunction with MRC, as well as
differentially coherent and noncoherent modulations when used in conjunction
with postdetection EGC. More specifically, we consider four channel correlation
models (models A, B, C, and D) of interest. For every model we give the PDF for
the combined SNR per symbol, �t, as well as its MGF. In what follows, pi��t�
denotes the PDF of the combined SNR per symbol, with the index i identifying
the model type and is hence equal to a, b, c, or d. In addition, the corresponding
MGF of �t is denoted by Mi�s� and is given by

Mi�s� D
∫ 1

0
pi��t�e

s�t d�t �9.143�

Note that although model D is the most general model under consideration and
as such incorporates models A, B, and C as special cases, direct derivations
of the MGFs for these various models are interesting in their own right
and will therefore be developed separately. As a double check, we show
that the general MGF result obtained for model D will reduce to the MGF
results obtained directly for models A, B, and C. Extensions of this MGF-
based analysis to correlated Rician fading channels can be found in Refs. 91
and 92.

9.6.1 Model A: Two Correlated Branches with Nonidentical Fading

Model A was proposed by Nakagami [53, Sec. 6.4] and corresponds to the
scenarios of dual-diversity reception over correlated Nakagami-m channels which
are not necessarily identically distributed. This may therefore apply to small
terminals equipped with space or polarization diversity where antenna spacing is
insufficient to provide independent fading among signal paths.

9.6.1.1 PDF. In this case the PDF of the combined signal envelope, pa�rt�, is
given by [53, Eq. (142)]
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pa�rt� D 2rt
p
�

�m�[G1G2�1 � &�]m

[
r2
t

2ˇ

]m�1/2

Im�1/2�ˇr
2
t �e

�˛r2
t , rt ½ 0 �9.144�

where Iv�Ð� denotes the vth-order modified Bessel function [52, Sec. 10.2],

& D cov�r2
1 , r

2
2�√

var�r2
1� var�r2

2�
, 0 � & < 1 �9.145�

is the envelope correlation coefficient between the two signals6 and the parameters
Gd (d D 1, 2), ˛, and ˇ are defined as follows:

Gd D �d
m
, d D 1, 2, �9.146�

˛ D G1 C G2

2G1G2�1 � &�
�9.147�

ˇ2 D �G1 � G2�2 C 4G1G2&

4G2
1G

2
2 �1 � &�2

�9.148�

where �d, d D 1, 2, is the average fading power of the dth channel. By using
a standard transformation of random variables, it can be shown that the PDF of
the combined SNR per symbol, pa��t�, is given by

pa��t� D
p
�

�m�

[
m2

�1�2�1 � &�

]m (
�t

2ˇ0

)m�1/2

Im�1/2�ˇ
0�t�e�˛0�t , �t ½ 0

�9.149�
where the parameters ˛0 and ˇ0 are normalized versions of the parameters ˛ and
ˇ, and are given by

˛0 D ˛

Es/N0
D m��1 C �2�

2�1�2�1 � &�
�9.150�

ˇ0 D ˇ

Es/N0
D m���1 C �2�

2 � 4�1�2�1 � &��1/2

2�1�2�1 � &�
�9.151�

6 We use the envelope correlation coefficient throughout this chapter as a measure of the degree of
correlation between the fading signals since, as pointed out in Refs. 76 and 77, experimental data
on the correlation between fading signals are typically given in terms of this figure because of its
relative ease of measurement.
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For the case of identical channels (�1 D �2 D �), (9.149) reduces to

pa��t� D
p
�

�m�
p

1 � &

(
m

�

)mC1/2 ( �t
2
p
&

)m�1/2

ð exp
[
� m�t
�1 � &��

]
Im�1/2

(
m

p
&�t

��1 � &�

)
, �t ½ 0 �9.152�

For the Rayleigh fading case (m D 1) using the identity [52, Eq. (10.2.13)]

√
�

2z
I1/2�z� D sinh z

z
�9.153�

where sinh�Ð� denotes the hyperbolic sine function [52, Sec. 4.5], it can be shown
that (9.149) reduces to

pa��t� D

exp

[
��1 C �2 �√

��1 C �2�2 � 4�1�2�1 � &�

2�1�2�1 � &�
�t

]

� exp

[
��1 C �2 C√

��1 C �2�2 � 4�1�2�1 � &�

2�1�2�1 � &�
�t

]
√
��1 C �2�2 � 4�1�2�1 � &�

, �t ½ 0

�9.154�
which itself reduces to the well-known expression for the case of identical
Rayleigh channels originally derived in Ref. [94], which can also be found in
Eq. (40) of Ref. 76:

pa��t� D 1

2
p
& �

{
exp

[
� �t
�1 C p

&��

]
� exp

[
� �t
�1 � p

&��

]}
, �t ½ 0

�9.155�

9.6.1.2 MGF. Using the Laplace transform [36, Eq. (110)], it can be shown
after some manipulations that the MGF of pa��t� is given by

Ma�s; �1, �2;m; &�
DMa�s�D

[
1 � ��1 C �2�

m
sC �1 � &��1�2

m2
s2
]�m

, s ½ 0

�9.156�
It should be noted that for model A, using the MGF-based approach together

with (9.156) leads to an exact expression for average probability of error
[equivalent to Eq. (54) of Ref. 40], which has the advantage of being expressed
in terms of a single finite-range integral with a much simpler integrand than that
in Eq. (54) of Ref. 40, and hence easier to compute for any arbitrary value of
the fading parameter m.



IMPACT OF FADING CORRELATION 323

9.6.2 Model B: D Identically Distributed Branches with Constant
Correlation

Model B was proposed by Aalo [77, Sec. II-A] for identically distributed
Nakagami-m channels (i.e., all channels are assumed to have the same average
SNR per symbol � and the same fading parameter m). This model assumes that
the envelope correlation coefficient & is the same between all the channel pairs
�d, d0 D 1, 2, . . . , D�, that is,

& D &dd0 D cov�r2
d, r

2
d0�√

var�r2
d� var�r2

d0�
, d 6D d0, 0 � & < 1 �9.157�

and may therefore correspond to the scenario of multichannel reception from
closely spaced diversity antennas or three antennas placed on an equilateral
triangle.

9.6.2.1 PDF. Based on the work of Gurland [95], Aalo showed that the PDF
of �t is given in this case by [77, Eq. (18)]7

pb��t� D

(
m�t
�

)Dm�1

exp
(

� m�t
�1 � p

&��

)

ð 1F1

(
m,Dm;

Dm
p
&�t

�1 � p
&��1 � p

& C D
p
&��

)
��/m� �1 � p

&�m�D�1��1 � p
& C D

p
&�m�Dm�

, �t ½ 0

�9.158�
where 1F1�Ð, Ð; Ð� is the confluent hypergeometric function [52 p. 503]. For D D 2,
using Eq. (13.6.3) of Ref. 52, namely,

1F1�m, 2m; 2z� D  �mC 1/2�
( z

2

)�mC1/2
Im�1/2�z�e

z �9.159�

as well as the identities (6.1.12) and (6.1.8) of Ref. 52, yielding



(
mC 1

2

)
D 1 Ð 3 Ð 5 Ð 7 Ð Ð Ð �2m � 1�

2m
p
� �9.160�

it can be shown after some manipulations that (9.158) reduces to (9.152) of model
A, as expected.

7 It should be noted at this point that in [Eq. (18) of Ref. 77] [or equivalently, Eq. (41) of Ref. 72]
the symbol & is used to denote the correlation coefficient of the underlying Gaussian processes that
produce the fading on the channels. This correlation coefficient is equal to the square root of the
power correlation coefficient. Based on the work of Lawson and Uhlenbeck [96, p. 62], it is shown
in by Pierce and Stein [76, App. V] that for all practical purposes, the power correlation coefficient,
can be assumed to be equal to the envelope correlation coefficient which is denoted by & throughout
this section, so as to follow what seems to be the more conventional usage of this symbol.
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9.6.2.2 MGF. Substituting (9.158) in (9.143), then using the Laplace transform
[36, Eq. (4)],

∫ 1

0
xb�1

1F1�a; c; kx� e�sx dx

D �b�

sb
2F1

(
a, b; c;

k

s

)
, jsj > jkj, b > 0, s > 0, s > k �9.161�

together with the identity [52, Eq. (15.1.8); 77, Eq. (A-5)],

2F1�a, b; b; z� D �1 � z��a �9.162�

it can be shown that

Mb�s; � ;m;&;D�
DMb�s� D

(
1 � ��1 � p

& C D
p
&�

m
s

)�m

ð
(

1 � ��1 � p
&�

m
s

)�m�D�1�

, s ½ 0

�9.163�
For D D 2, as a check, it can easily be shown that (9.163) agrees with (9.156)
for �1 D �2.

9.6.3 Model C: D Identically Distributed Branches with Exponential
Correlation

Model C was also proposed by Aalo [Sec. II-B] for identically distributed
Nakagami-m channels (i.e., all channels are assumed to have the same average
SNR per symbol � and the same fading parameter m). This model assumes an
exponential envelope correlation coefficient &dd0 between any pair of channels
�d, d0 D 1, 2, . . . , D� as given by

&dd0 D cov�r2
d, r

2
d0�√

var�r2
d� var�r2

d0�
D &jd�d0j, 0 � & � 1, �9.164�

and may therefore correspond to the scenario of multichannel reception from
equispaced diversity antennas in which the correlation between the pairs of
combined signals decays as the spacing between the antennas increases.

9.6.3.1 PDF. Based on the work of Kotz and Adams [97], Aalo showed that
the PDF of �t can be very well approximated by a gamma distribution given by
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[77, Eq. (19)]8

pc��t� D �
�mD2/r&��1
t exp��mD�t/r&��
�mD2/r&��r&�/mD�mD

2/r&
, �t ½ 0 �9.165�

where9

r& D DC 2
p
&

1 � p
&

(
D� 1 � &D/2

1 � p
&

)
�9.166�

9.6.3.2 MGF. Substituting (9.165) in (9.143), then using the Laplace transform
[36, Eq. (3.381.4)], it can be shown that

Mc�s; � ;m;&;D�
DMc�s� D

(
1 � r&�

mD
s

)�mD2/r&

, s ½ 0 �9.167�

9.6.4 Model D: D Nonidentically Distributed Branches with Arbitrary
Correlation

In this section, we treat a very general model in which the combined branches may
not be identically distributed and also may have an arbitrary correlation. More
specifically, this model assumes that the branches have an arbitrary average SNR
per symbol �d and the same fading parameter m. The envelope correlation coef-
ficient between any channel pair �d, d0 D 1, 2, . . . , D� is denoted by &dd0 . The
generality of this model may correspond to the impulse response of a frequency-
selective channel with correlated paths and a nonuniform power delay profile.

9.6.4.1 MGF. The PDF of the combined SNR corresponding to this model
was not previously found in a simple form. However, the joint distribution of the
f�dgDdD1 can be deduced from the work of Krishnamoorthy and Parthasarathy [98]
and can be expressed in terms of the generalized Laguerre polynomials. Their
derivation is based on a relatively simple form for the joint MGF of a D-variate
gamma distribution. Based on that derivation and defining ˇd D m�d/�d as the
normalized SNR per symbol per branch, we can express the MGF corresponding
to this model as

Md�s; f�dgDdD1;m; [&dd0];D�
DMd�s� D E�1,�2,ÐÐÐ,�D

[
exp

(
s

D∑
dD1

�d

)]

D Eˇ1,ˇ2,ÐÐÐ,ˇD

[
exp

(
s

D∑
dD1

�d
m
ˇd

)]
�9.168�

8 Based on the work of Kotz and Adams [97], Aalo [77] points out that the approximation (9.165)
is valid for high values of D but is still accurate for values of D as small as 5.
9 We remind the reader that contrary to its usage in Refs. 72 and 77, in this chapter the coefficient
& denotes the envelope correlation coefficient.
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Using the result Eq. (2.3) of Ref. 98 we can rewrite (9.168) as

Md�s� D
D∏
dD1

(
1 � s�d

m

)�m

ð

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




1
p
&12

(
1 � m

s�2

)�1

Ð Ð Ð p
&1D

(
1 � m

s�D

)�1

p
&12

(
1 � m

s�1

)�1

1 Ð Ð Ð p
&2D

(
1 � m

s�D

)�1

Ð Ð Ð Ð
Ð Ð Ð Ð
Ð Ð Ð Ð

p
&1D

(
1 � m

s�1

)�1 p
&2D

(
1 � m

s�2

)�1

Ð Ð Ð 1




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�m

DðD
�9.169�

where j[M]jDðD denotes the determinant of the Dð D matrix M. For the case
of identical channels ��d D ��, (9.169) reduces after some manipulation to

Md�s� D
(

� s�
m

)�mD

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




1 � m

s�
p
&12 Ð Ð Ð p

&1D

p
&12 1 � m

s�
Ð Ð Ð p

&2D

Ð Ð Ð Ð
Ð Ð Ð Ð
Ð Ð Ð Ðp
&1D

p
&2D Ð Ð Ð 1 � m

s�




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�m

DðD

�9.170�

9.6.4.2 Special Cases of Interest

Dual Correlation Model (Model A). For D D 2, as a check, it is straightforward
to show that (9.169) reduces to (9.156) of model A.

Intraclass Correlation or Constant Correlation Model (Model B). A correlation
matrix M is called a Dth-order intraclass correlation matrix if it has the following
structure [99, p. 14]:

M D



a b Ð Ð Ð b
b a b Ð Ð b
b b a b Ð b
Ð Ð Ð Ð Ð Ð
b Ð Ð Ð b a



DðD

�9.171�

with b ½ �a/�D � 1�. Eigenvalues of this type of matrices can be found in closed
form and consequently their determinant can be written as [99, p. 21]

det M D �a� b�D�1[aC b�D � 1�] �9.172�
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Applying this property for a D 1 � m/s� and b D p
&, we get the MGF as

Md�s� D Mb�s� D
(

1 � ��1 � p
& C D

p
&�

m
s

)�m

ð
(

1 � ��1 � p
&�

m
s

)�m�D�1�

�9.173�

which is in agreement with (9.163), as expected.

Exponential Correlation Model (Model C). For the exponential correlation
model treated by Aalo (model C), �d D � for d D 1, 2, . . . , D and &dd0 D &jd�d0 j.
Substituting this in (9.169) and using the algebraic technique presented in
Appendix III of Ref. 76, it can easily be shown that the MGF is in this case
given by

Md�s� D
(

� s�
m

)�mD D∏
dD1

(
1 � &

1 C & C 2
p
& cos �d

)�m
�9.174�

where �d (d D 1, 2, 3, . . . , D) are the D solutions of the transcendental equation
given by

tan�D�d� D � sin �d
[�1 C &�/�1 � &�] cos �d C [2

p
&/�1 � &�]

�9.175�

Contrary to (9.167), which is accurate only for large values of D, (9.174)
represents the exact MGF of the combined SNR at the output of an exponentially
correlated Nakagami-m fading channel for an arbitrary value of D.

Tridiagonal Correlation Model. A correlation matrix M is called a Dth-order
tridiagonal correlation matrix if it has the following structure [99, p. 16]:

M D



a b 0 Ð Ð 0
b a b 0 Ð 0
0 b a b 0 0
Ð Ð Ð Ð Ð Ð
0 Ð Ð 0 b a



DðD

�9.176�

In this case the determinant can be shown to be given by [99, p. 21]

detM D
D∏
dD1

[
aC 2b cos

(
d�

DC 1

)]
�9.177�
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Applying this property for a D 1 � m/s� and b D p
&, and substituting the

resulting determinant in (9.170), we get

Md�s� D
D∏
dD1

{
1 � s�

m

[
1 C 2

p
& cos

(
d�

DC 1

)]}�m
�9.178�

with [76, App. III]

& � 1

4 cos2[�/�D C 1�]
�9.179�

to ensure that the matrix M as given by (9.176) is nonsingular and nonnegative.
This model is useful for the accurate performance evaluation of space diversity
with a “nearly” perfect antenna array in which the signal received at any antenna
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Figure 9.17. Comparison of the average SER of 8-PSK with MRC diversity for constant and
exponential fading correlation profiles and various values of the correlation coefficient: (a) & D 0;
(b) & D 0.2; (c) & D 0.4; (d) & D 0.6. �d D � for d D 1,2, . . . ,D.
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is weakly correlated with that received at any adjacent antenna (& − 1), but
beyond the adjacent antenna the correlation is zero.

9.6.5 Numerical Examples

With the MGFs for the variety of correlation models in hand, we are now in
a position to get the average probability of error and outage probability for
MRC and postdetection EGC. For example, the average SER results of 8-PSK
with third-order (D D 3) and fifth-order (D D 5) MRC diversity under constant
and exponential correlation profile are shown in Fig. 9.17. On the other hand,
Fig. 9.18 presents the same comparison (constant versus exponential correlation)
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Figure 9.18. Comparison of the average SER of 16-QAM with MRC diversity for constant and
exponential fading correlation profiles and various values of the correlation coefficient: (a) & D 0;
(b) & D 0.2; (c) & D 0.4; (d) & D 0.6. �d D � for d D 1,2, . . . ,D.
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but for the the average SER of 16-QAM. For both of these figures constant
correlation suffers a minor performance degradation compared to exponential
correlation but the performance difference is more noticeable for a larger number
of diversity paths and higher correlation between these paths.

Figure 9.19 shows the average BER of BPSK with MRC RAKE reception
over an exponentially decaying PDP [�d D �1 exp��υ�d� 1��, d D 1, 2, . . . , D]
and an exponential correlation profile across the multipaths. The corresponding
outage probability curves obtained by using the numerical technique presented in
Section 9.5 are presented in Fig. 9.20. Clearly, both the average SNR unbalance
and the fading correlation induce a nonnegligible degradation in performance
compared to a diversity system with i.i.d. fading across the combined paths.
Furthermore, for the chosen parameters the effect of power delay profile is more
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Figure 9.20. Outage probability with MRC or postdetection EGC reception �D D 4� over an
exponentially decaying PDP and an exponential correlation profile across the multipaths for
various values of the correlation coefficient: (a) & D 0; (b) & D 0.2; (c) & D 0.4.

important than the impact of correlation. However, note that in Figs. 9.19 and
9.20, once the first path average SNR �1 is fixed (as is typically done in this
type of illustrations; see, e.g., Ref. 54), the total average SNR is smaller for
channels with an exponentially decaying power delay profile (υ > 0) than for
channels with a uniform power delay profile (υ D 0), which explains in part the
relatively important performance degradation due to the exponentially decaying
power delay profile. Figure 9.21 is a plot of Pb�E� for binary orthogonal FSK
with dual diversity over correlated unbalanced (�2 D e�υ�1) Nakagami-m fading
channels. On the other hand, Fig. 9.21 shows the average BEP performance
of binary orthogonal FSK with square-law combining over a multilink channel
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with L D 5, an exponentially decaying power delay profile, and an exponential
correlation profile (i.e., &ij D &ji�jj, 1 � i < j � L). In both figures, for the
parameters of interest, the BEP degradation induced by the power delay profile
is higher than the degradation due to the fading correlation profile, where the
degradation here is with respect to a system operating over a uniform power
delay profile with independent multipaths. Furthermore, comparing Figs. 9.21
and 9.22, we conclude that this deterioration is more noticeable as the number
of combined paths increases.

9.7 SELECTION COMBINING

Of the three types of linear diversity combining MRC, EGC, and SC normally
employed in receivers of digital signals transmitted over multipath fading
channels, SC is the least complicated of the three, since it only processes
one of the diversity branches. Specifically, the combiner chooses the branch
with the highest signal-to-noise ratio (or equivalently, with the strongest signal
assuming equal noise power among the branches) [100, Sec. 10-4]. To obtain
significant diversity gain, independent fading in the channels should be achieved.
However, as mentioned previously, this is not always realized in practice because,
for example, of insufficient antenna spacing in small terminals equipped with
space antenna diversity and as a result, the maximum theoretical diversity gain
cannot be achieved. In addition, the diversity branches in a practical system may
have unequal average SNRs due to different noise figures or feedline lengths
[101,102].

Hence, it is important to assess the effect of correlation and average SNR
unbalance on the outage probability and average error probability of an SC
diversity receiver, in particular, a dual-diversity (two-branch) SC receiver, which
is the specific case to be considered in this section. Some special cases of the
performance of various modulation schemes with dual SC over independent
and correlated Rayleigh and Nakagami-m slow-fading channels have been
reported in the literature [103–107]. For instance, Blanco [103] studied the
performance of noncoherent BFSK with dual SC over i.i.d. Nakagami-m fading
channels. In Ref. 108 Al-Hussaini and Al-Bassiouni analyzed the effect of fading
correlation and average SNR unbalance on the BER performance of BFSK
with dual SC over Nakagami-m fading channels. Adachi et al. [104] analyzed
the performance of DQPSK over correlated unequal average power Rayleigh
fading channels. Okui [105] studied the probability of co-channel interference
for selection diversity reception in the Nakagami-m fading channel, whereas
Wan and Chen [106] presented simulation results for DQPSK with dual SC over
correlated Rayleigh fading channels. Fedele et al. [109] analyzed the performance
of M-ary DPSK with dual SC over independent and correlated Nakagami-m
fading channels. Finally, Ugweje and Aalo [107] analyzed the average BER
performance of DPSK and BPSK with dual SC over correlated Nakagami-
m fading channels. In this section we use the unifying MGF-based approach
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combined with the results presented in Chapter 6 to assess the performance of
dual SC over independent and correlated slow Rayleigh and Nakagami-m fading
channels [110,111].

9.7.1 MGF of Output SNR

Recall that the PDF of the output SNR, �SC, of a dual SC over correlated
Nakagami-m fading channels is given by (6.21), namely,

p�SC��� D �m/�1�
m�m�1

�m�
exp

(
�m�
�1

)
[1 � Qm�A1

√
2&�, A2

√
2��]

C �m/�2�
m�m�1

�m�
exp

(
�m�
�2

)
[1 � Qm�A2

√
2&�, A1

√
2��] �9.180�

where Al is given by Al D √
m/�l�1 � &�. Hence, the MGF of the output SNR

can be written as

M�SC�s� D I1�s; �1, �2, &, m�C I2�s; �1, �2, &, m� �9.181�

where

I1�s; �1, �2, &,m� D �m/�1�
m

�m�

∫ 1

0
�m�1 exp

[
�
(
m

�1
� s

)
�

]
ð [1 � Qm�A1

√
2&�, A2

√
2��] d� �9.182�

I2�s; �1, �2, &,m� D �m/�2�
m

�m�

∫ 1

0
�m�1 exp

[
�
(
m

�2
� s

)
�

]
ð [1 � Qm�A2

√
2&�, A1

√
2��] d� �9.183�

Using the identity from Ref. 105 [Eq. (6)], a straightforward change of integration
variables in (9.182) and (9.183) allows I1�s; �1, �2, &,m� and I2�s; �1, �2, &, m�
to be expressed in closed form as

I1�s; �1, �2, &,m� D 23m�2m�m2mX�2m
1 [W1�1 CW1�]�m

�m��m C 1���1�2�m�1 � &�m

ð 2F1

[
1 � m,m; 1 C m;

1

2

(
1 � 1

W1

)]
�9.184�

I2�s; �1, �2, &,m� D 23m�2m�m2mX�2m
2 [W2�1 CW2�]�m

�m��m C 1���1�2�m�1 � &�m

ð 2F1

[
1 � m,m; 1 C m;

1

2

(
1 � 1

W2

)]
�9.185�
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where 2F1�Ð, Ð; Ð; Ð� is the Gauss hypergeometric function [52, Chap. 15], and Xi,
Yi, and Wi are given by

X1 D 2�a � s�

X2 D �2�aC s�

Y1 D Y2 D 2[�b� s�2 � c2]1/2

W1 D Y1

X1
D
[(
b� s

a� s

)2

�
(

c

a� s

)2
]1/2

W2 D Y2

X2
D �

[(
b� s

aC s

)2

�
(

c

aC s

)2
]1/2

�9.186�

with a, b, and c given by

a D m��2 � �1�

�1�2�1 � &�
, b D m��1 C �2�

�1�2�1 � &�
, c D 2m

p
&p

�1�2�1 � &�
�9.187�

9.7.2 Average Output SNR

9.7.2.1 General Case. Using the well-known result that the first moment of
�SC is equal to its statistical average [112, Eq. (5-67)],

�SC D dM�SC�s�

ds

∣∣∣∣
sD0

�9.188�

we obtain after substituting (9.181) in (9.188) and using the differentiation
formula given by Eq. (15.2.1) of Ref. 52 we obtain after much manipulation
the final desired closed-form result as

�SC D K�K1 CK2� �9.189�

where

K D 2mm2mC1�2m�

�m��m C 1���1�2�m�1 � &�m

K1 D �b2 � c2 � ab��b2 � c2 C a
p
b2 � c2��m

�b2 � c2��
p
b2 � c2 � a�

ð
[(

1

2
C a

2
p
b2 � c2

)m�1

� 2F1

(
1 � m,m, 1 C m,

1

2
� a

2
p
b2 � c2

)]
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C �b2 � c2 C ab��b2 � c2 � a
p
b2 � c2��m

�b2 � c2��
p
b2 � c2 C a�

[(
1

2
� a

2
p
b2 � c2

)m�1

� 2F1

(
1 � m,m, 1 C m,

1

2
C a

2
p
b2 � c2

)]
�9.190�

K2 D �b2 � c2 C a
√
b2 � c2��m�1

(
2bC b2 � c2 C abp

b2 � c2

)

ð 2F1

(
1 � m,m; 1 C m;

1

2
� a

2
p
b2 � c2

)

C �b2 � c2 � a
√
b2 � c2��m�1

(
2bC b2 � c2 � abp

b2 � c2

)

ð 2F1

(
1 � m,m; 1 C m;

1

2
C a

2
p
b2 � c2

)

Using the integral representation of the Gauss hypergeometric function as given
by Eq. (15.1.25) of Ref. 52, it can easily be shown that 2F1�0, 1, 2, x� D 1 for
all x. Hence for the Rayleigh fading �m D 1� case, (9.189) reduces to the much
simpler formula

�SC D 1

2

(
�1 C �2 C �2

1 C �2
2 � 2&�1�2√

��1 C �2�2 � 4&�1�2

)
�9.191�

9.7.2.2 Special Cases. For the equal average SNR ��1 D �2 D �� but
correlated fading case �& 6D 0�, we have from (9.187) a D 0, b D 2m/[��1 � &�],
and c D 2m

p
&/[��1 � &�]. This, combined with the identity, Eq. (15.1.26), of

Ref. 52 relating the Gauss hypergeometric function to the gamma function as
well as the duplication formula of Ref. 52 [Eq. (6.1.18)] of the gamma function,
leads to the average SNR in the greatly simplified form given by

�SC D �

[
1 C �2m�

p
1 � &

22m�1�m��m C 1�

]
�9.192�

which further reduces for the special Rayleigh fading case �m D 1� to

�SC D �

(
1 C

p
1 � &

2

)
�9.193�

For the unequal average SNR (�1 6D �2) with uncorrelated fading �& D 0�
case, we have from (9.187) a D m��2 � �1�/�1�2, b D m��1 C �2�/�1�2, and
c D 0. Substituting this in (9.190) and using the linear transformation formula of
Ref. 52 [Eq. (15.3.3)], it can be shown after some algebraic manipulation that
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(9.189) reduces to

�SC D �1 C �2 � ��1�2�
mC1�2m C 1�

�m C 1��m��m C 1���1 C �2�2mC1

ð
[

2F1

(
1, 2m C 1;m C 2;

�1

�1 C �2

)

C 2F1

(
1, 2m C 1;m C 2;

�2

�1 C �2

)]
�9.194�

Using the series definition of the Gauss hypergeometric function as given in
Eq. (15.1.1) of Ref. 52 it can easily be shown that 2F1�1, 3, 3, x� D 1/�1 � x�.
Hence for the Rayleigh fading case �m D 1�, (9.194) reduces to

�SC D �1 C �2 � �1�2

�1 C �2
�9.195�

Finally, for the equal average SNR ��1 D �2 D �� with uncorrelated fading
�& D 0� case, we have in (9.187), a D 0, b D 2m/� , and c D 0. This combined
again with Eqs. (15.1.26) and (6.1.18) of Ref. 52 leads to

�SC D �

[
1 C �2m�

22m�1�m��m C 1�

]
�9.196�

which reduces for the Rayleigh case �m D 1� to �SC D 1.5� , in agreement with
Eq. (6.62) of Ref. 4 or equivalently, Eq. (5.86) of Ref. 3.

9.7.2.3 Numerical Examples. As an example, Fig. 9.23 plots the first branch
normalized average SNR, �SC/�1, versus the correlation coefficient & for an
equal average dual SC receiver [(a) �1 D �2] as well as for an unbalanced dual
SC receiver [(b) �1 D 2�2, (c) �1 D 5�2, and (d) �1 D 10�2]. The average SNR
degrades quite rapidly as the correlation coefficient & increases, especially for
the equal average SNR case and for low values of m. In particular, when & D 0
(uncorrelated fading), the average SNR is maximum, and in the limit of fully
fading correlation (& D 1), the average output SNR approaches the average SNR
of a single branch (i.e., without diversity), as expected. In addition, for a fixed
fading correlation, the average SNR decreases as the severity of fading decreases
(i.e., m decreases), which may seem surprising at first glance. However, as m
increases the distribution becomes more skewed, which reduces the effective area
of integration and explains this dependence of the average SNR on the fading
parameter m.

9.7.3 Outage Probability

The outage probability, Pout, is defined as the probability that the SC output SNR
� D max��1, �2� falls below a given threshold, say �th. Since this probability is
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Figure 9.23. First branch normalized average SNR ��sc/�1� of SC versus correlation coefficient
�&� for correlated Nakagami-m fading channels with (a) �1 D �2, (b) �1 D 2�2, (c) �1 D 5�2, and
(d) �1 D 10�2.

simply the probability that neither �1 nor �2 exceeds the threshold, �th, then by
inspection the outage probability is obtained by replacing � with �th in the CDF
expression given in (6.16), yielding for Rayleigh fading:

ž Case 1: Identical channels ��1 D �2 D ��

Pout D 1 � 2 exp
(

��th

�

)
C 1 � &

2�

∫ �

��

1

1 C & C 2
p
& sin �

ð exp
(

�2�th

�

1 C p
& sin �

1 � &

)
d� �9.197�
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Note that this result is equivalent to Eq. (10-10-7) of Ref. 100 which is
expressed in terms of the Marcum Q-function. Note that even for this
simpler case of identical channels, Tan and Beaulieu’s result [113, Eq. (4)]
(or equivalently, the result found in Ref. 114) does not simplify considerably
since it is still an infinite series of squares of integrals. Furthermore, in
the limiting case of uncorrelated branches (i.e., & D 0), (9.197) reduces to
Pout D [1 � exp���th/��]2, as expected.

ž Case 2: Nonidentical channels ��1 6D �2�

Pout D 1 �G�H��th, �1�,H��th, �2�j&�

C 1

2�

∫ �

��
exp

(
��th

�1 C �2 C 2
p
&�1�2 sin �

�1�2�1 � &�

)

ð �1 � &2��1�2 C p
&�1 � &�

p
�1�2��1 C �2� sin �

�&�2 C 2
p
&�1�2 sin � C �1���2 C 2

p
&�1�2 sin � C &�1�

d�

�9.198�
where G�H��th, �1� and H��th, �2�j&� are as given in (6.15). Note that
(9.198) is equivalent to Eq. (10-10-3) of Ref. 100, which is expressed in
terms of the Marcum Q-function. Furthermore, in the limiting case of
uncorrelated branches (i.e., & D 0), (9.198) together with (6.15) reduces to
Pout D [1 � exp���th/�1�][1 � exp���th/�2�], as expected.

The outage probability expressions for Nakagami-m fading are obtained
immediately from the CDF expressions (6.26) and (6.30) by replacing � with
�th. Since no further simplifications are possible and in the interest of brevity,
we shall not write down the specific results for the two cases of identical and
nonidentical channels considered previously for Rayleigh fading.

9.7.3.1 Numerical Example. Figure 9.24 compares the outage probability
of dual-branch MRC and SC for various values of the fading parameter m,
correlation coefficient &, and average SNR unbalance. In this figure the SC outage
probability results are based on (9.197), whereas the MRC outage probability
results are obtained by substituting (9.156) in (9.136).

9.7.4 Average Probability of Error

9.7.4.1 BDPSK and Noncoherent BFSK. Recall that the conditional BER
for BDPSK and noncoherent BFSK is given by [7, Eqs. (5-2-69) and (5-4-47)]

Pb�Ej�� D 1
2 exp��g�� �9.199�

where g is again a modulation constant (i.e., g D 1 for BDPSK and g D 1
2 for

orthogonal BFSK). Averaging (9.199) over the PDF of the SC output (6.18), we
obtain the following expression for the average BER:
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Figure 9.24. Comparison of outage probability with MRC and SC versus average SNR of the
first branch for various values of the correlation coefficient: (a) & D 0; (b) & D 0.5; (c) & D 0.7;
(d) & D 0.9. (Top) equal average branch SNRs ��1 D �2�; (bottom) unequal average branch
SNRs ��1 D 10�2�.

Pb�E� D 1

2

[
G��1 C g�1�

�1, �1 C g�2�
�1j&�� 1

2�

∫ �

��

h1��j&�h2��j&�
gC h1��j&� d�

]
�9.200�

The integral term in (9.200) can be evaluated in closed form by first expanding
the integrand into a partial fraction expansion, then making use of a well-known
definite integral. In particular, identifying h1��j&� and h2��j&� from (6.17), it is
straightforward to show that

h1��j&�h2��j&�
gC h1��j&� D �1 C �2 C 2

p
&�1�2 sin �

g�1 � &��1�2 C �1 C �2 C 2
p
&�1�2 sin �

ð �1 � &2��1�2 C p
&�1 � &�

p
�1�2��1 C �2� sin �

�&�2 C 2
p
&�1�2 sin � C �1���2 C 2

p
&�1�2 sin � C &�1�

�9.201�
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which is in the form

h1��j&�h2��j&�
gC h1��j&� D �1 C �2

�1 C �2 C g�1�2
, & D 0 �9.202�

h1��j&�h2��j&�
gC h1��j&� D AC B sin � CC sin2 �

�a1 C b sin ���a2 C b sin ���a3 C b sin ��

D c1

a1 C b sin �
C c2

a2 C b sin �
C c3

a3 C b sin �
, & 6D 0

�9.203�
with

a1 D g�1 � &��1�2 C �1 C �2

a2 D &�2 C �1

a3 D &�1 C �2

b D 2
√
&�1�2

A D �1 � &2��1�2��1 C �2�

B D 2
p
&�1 � &2���1�2�

3/2 C p
&�1 � &�

√
�1�2��1 C �2�

2

C D 2&�1 � &��1�2��1 C �2�

�9.204�

The coefficients of the partial fraction expansion are readily determined as

c1 D b2A� a1bBC a2
1C

�a1 � a2��a1 � a3�b2

c2 D � b2A� a2bBC a2
2C

�a1 � a2��a2 � a3�b2

c3 D b2A� a3bBC a2
3C

�a1 � a3��a2 � a3�b2

�9.205�

Finally, substituting (9.202) and (9.203) into (9.200) and making use of the
definite integral [36, Eq. (3.661.4)],

1

2�

∫ �

��

1

aC b sin �
d� D 1p

a2 � b2
, a ½ b �9.206�

we get the desired closed-form result10

Pb�E� D 1

2

3∑
iD1

ˇi
1

1 C g�i
,

(
�3

D �1�2

�1 C �2
, ˇ1 D ˇ2 D 1, ˇ3 D �1

)
, & D 0

�9.207�

10 Note from (9.204) that it can easily be shown that ai ½ b for i D 1, 2, 3. Hence, (9.206) applies.
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Pb�E� D 1

2


G��1 C g�1�

�1, �1 C g�2�
�1j&��

3∑
iD1

ci√
a2
i � b2


 , & 6D 0

�9.208�
Note that for the special case of �1 D �2 and g D 1 (BDPSK), (9.207) is in
agreement with Eq. (5.88) of Ref. 3.

9.7.4.2 Coherent BPSK and BFSK. Recall that based on an alternative
representation of the Gaussian Q-function as given in (4.2), the conditional BER
of BPSK and BFSK can be written in the integral form

Pb�Ej�� D 1

�

∫ �/2

0
exp

(
� g�

sin2 �

)
d� �9.209�

where g D 1 for BPSK, g D 1
2 for orthogonal BFSK, and g D 0.715 for BFSK

with minimum correlation. Recognizing the analogy between (9.209) and (9.199)
in terms of its functional dependence on � , we can immediately write the average
BER as

Pb�E� D 1

�

∫ �/2

0

[
3∑
iD1

ˇi
1

1 C g����i

]
d�

D 1

2

(
1 �

3∑
iD1

ˇi

√
g�i

1 C g�i

)
, & D 0 �9.210�

Pb�E� D 1

�

∫ �/2

0


G��1 C g����1�

�1, �1 C g����2�
�1j&�

�
3∑
iD1

ci���√
a2
i ���� b2


d�, & 6D 0 �9.211�

where now g��� D g/ sin2 �, a2��� D a2, a3��� D a3 and a1���, c1���, c2���, and
c3��� are obtained by substituting g��� for g in (9.204) and (9.205), respectively,
and the same substitution is made in G��1 C g�1�

�1, �1 C g�2�
�1j&�.

For identical channels (�1 D �2 D �) using the Adachi et al. approximate
expression of the PDF [104, Eq. (42)],

p���� ' 2

�1 C &��
�e��/� � e�2�/�1�&��� �9.212�

it can be shown that the average BER of BPSK can be written in closed form as

Pb�E� D 1

1 C &

[
1 C &

2
�
√

g�

1 C g�
C 1 � &

2

√
�1 � &�g�

2 C �1 � &�g�

]
�9.213�
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Since it would be useful to know the relative accuracy improvements of the exact
expressions (9.210) and (9.211) over the approximation (9.213), we plot all of
them in Fig. 9.25. Note that the approximation tightly upper-bounds the exact
BER expression and the bound gets tighter as the average SNR increases and
as the correlation coefficient decreases. Extension of the average probability of
error performance to Nakagami-m fading is omitted here but can be found in
Ref. 110.

9.7.4.3 Numerical Example. We present in this section various numerical
examples to illustrate the effect of (1) the severity of fading, (2) branch
correlation, and (3) branch average SNR unbalance on the performance of the
system. Figures 9.26 and 9.27 plot the average BER of BDPSK versus the
average SNR of the first branch for various values of the fading parameter
m and correlation coefficient & for equal average branch SNR’s and unequal
average branch SNR’s, respectively. Figures 9.28 and 9.29 plot the average
BER of BPSK versus the average SNR of the first branch for various values
of the fading parameter m and correlation coefficient & for equal average
branch SNR’s and unequal average branch SNR’s, respectively. Note in all
figures that the diversity gain decreases with the increase of the correlation
coefficient, as expected. Note also that the effect of branch correlation is more
important for channels with a lower amount of fading (higher m parameter).
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Figure 9.25. Exact and approximate average BER of BPSK versus average SNR of the first
branch for equal average branch SNRs ��1 D �2� and for various values of the correlation
coefficient: (a) & D 0.9; (b) & D 0.7; (c) & D 0.5; (d) & D 0.
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Figure 9.26. Average BER of BDPSK versus average SNR of the first branch for equal
average branch SNRs ��1 D �2� and for various values of the correlation coefficient: (a) & D 0.9;
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Figure 9.27. Average BER of BDPSK versus average SNR of the first branch for unequal
average branch SNRs ��1 D 10�2� and for various values of the correlation coefficient:
(a) & D 0.9; (b) & D 0.7; (c) & D 0.5; (d) & D 0.
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Figure 9.28. Average BER of BPSK versus average SNR of the first branch for equal average
branch SNRs ��1 D �2� and for various values of the correlation coefficient: (a) & D 0.9;
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Figure 9.29. Average BER of BPSK versus average SNR of the first branch for unequal average
branch SNRs ��1 D 10�2� and for various values of the correlation coefficient: (a) & D 0.9;
(b) & D 0.7; (c) & D 0.5; (d) & D 0.
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Finally, comparing the equal average branch SNR figures (Figs. 9.26 and 9.28)
with the unequal average branch SNR figures (Figs. 9.27 and 9.29), observe that:
(1) unbalance in the average branch SNR’s always leads to lower overall system
performance, and (2) the effect of correlation is more important for equal average
branch SNR’s.

Figure 9.30 compares the average BER performance of BPSK with dual-
branch MRC and SC diversity for equal and unequal average SNR. In this figure,
the SC average BER results are based on (9.210) and (9.211), whereas the MRC
average BER results are based on the MGF given by (9.156). On the other hand,
in both of these figures note that MRC outperforms SC, as expected, and that
the diversity gain of MRC compared to SC is more important for channels with
a low amount of fading (high m), regardless of the correlation between the two
branches.
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Figure 9.30. Comparison of average BER of BPSK with MRC and SC for various values of the
correlation coefficient: (a) & D 0; (b) & D 0.5; (c) & D 0.7; (d) & D 0.9. (Top) equal average branch
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9.8 SWITCHED DIVERSITY

In this section we focus on the performance evaluation and optimization of switch
and stay combining (SSC) systems over a wide variety of fading conditions in
conjunction with several communication types of practical interest [115]. In these
dual-branch diversity systems the receiver switches to, and stays with, the other
branch regardless of whether the SNR of that branch is above or below the
predetermined threshold (see Fig. 9.31).

The setting of the predetermined threshold is an additional important system
design issue for SSC. For instance, if this threshold level is chosen too high,
the switching unit is almost continually switching between the two antennas,
which results not only in a poor diversity gain but also in an undesirable
increase in the rate of the switching transients on the transmitted data stream.
On the other hand, if this threshold level is chosen too low, the switching
unit is almost locked to one of the diversity branches, even when the SNR
level is quite low, and again there is little diversity gain achieved. Hence,
another goal of this section is to determine the optimal switching threshold as
a function of channel characteristic, performance measure, and modulation type.
Work related to this topic can be found in Refs. 8 through 10, 103, and 116
through 120.

9.8.1 Performance of SSC over Independent Identically Distributed
Branches

Let �SSC denote the SNR per symbol of the SSC combiner output, and let �T
denote the predetermined switching threshold. Following the mode of operation
of SSC as described earlier, we derive in this section the CDF, P�SSC���, PDF,
p�SSC���, and MGF, M�SSC ���, of �SSC assuming i.i.d. branches.

Present
Treshold

Receiver

Comparator

Switch
Logiccontrol

Channel 
Estimator

Data

Figure 9.31. Mode of operation of dual-branch switched and stay combining (SSC) diversity.
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9.8.1.1 SSC Output Statistics

CDF. The CDF of �SSC can be written as [9,10]

P�SSC��� D



Prf��1 � �T� and ��2 � ��g, � < �T
Prf��T � �1 � �� or ��1 � �T

and �2 � ��g, � ½ �T

�9.214�

which can be expressed in terms of the CDF of the individual branches, P����, as

P�SSC ��� D
{
P���T�P����, � < �T
P����� P���T�C P����P� ��T�, � ½ �T

�9.215�

Using the one-branch CDFs given in Table 9.5, we can write the CDF of �SSC

over Rayleigh channels as

P�SSC ��� D
{

1 � �e��T/� C e��/��C e���TC��/� , � < �T
1 � 2e��/� C e���TC��/� , � ½ �T

�9.216�

over Nakagami-m as

P�SSC��� D




(
1 � �m, �m/���T�

�m�

)(
1 � �m, �m/���

�m�

)
, � < �T

�m, �m/���T�� �m, �m/����

�m�

C
(

1 � �m, �m/���T�

�m�

)(
1 � �m, �m/����

�m�

)
, � ½ �T

�9.217�

TABLE 9.5 Statistics of the SNR per Symbol g for the Three Multipath Fading Models
Under Consideration

Model PDF, p� ��� CDF, P� ��� MGF M� �s�

Rayleigh
1
�

e��/� 1 � e��/� �1 � s���1

Nakagami-n
�1 C n2�e�n2

�
e[�1Cn2�/� ]� 1 � Q1


n

p
2,

√
2�1 C n2�

�
�


 1 C n2

1 C n2 � s�

ð I0


2n

√
1 C n2

�
�


 ð exp

(
s�n2

1 C n2 � s�

)

Nakagami-m
�m/��m�m�1

�m�
e�m�/� 1 � �m, �m/����

�m�

(
1 � s�

m

)�m
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and over Nakagami-n (Rice) as

P�SSC ��� D




(
1 � Q1

(p
2n2,

√
2�1 C n2��

�

))

ð
(

1 � Q1

(p
2n2,

√
2�1 C n2��T

�

))
� < �T

Q1

(p
2n2,

√
2�1 C n2��T

�

)
� Q1

(p
2n2,

√
2�1 C n2��

�

)

C
(

1 � Q1

(p
2n2,

√
2�1 C n2��

�

))

ð
(

1 � Q1

(p
2n2,

√
2�1 C n2��T

�

))
� ½ �T

�9.218�

PDF. Differentiating P�SSC ��� with respect to � we get the PDF of the SSC output
in terms of the CDF, P����, and the PDF, p����, of the individual branches as

p�SSC��� D dP�SSC���

d�
D
{
P���T�p����, � < �T

[1 C P���T�]p����, � ½ �T
�9.219�

which can be written for Rayleigh fading as

p�SSC��� D




1

�
�1 � e��T/� �e��/� , � < �T

1

�
�2 � e�T/��e��/� , � ½ �T

�9.220�

for Nakagami-m fading as

p�SSC��� D




(
1 � �m, �m/���T�

�m�

)
�m/��m�m�1

�m�
e��m/��� , � < �T

(
2 � �m, �m/���T�

�m�

)
�m/��m�m�1

�m�
e��m/��� , � ½ �T

�9.221�
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and for Nakagami-n (Rice) fading as

p�SSC��� D




1 C n2

�
exp

(
�n2 � 1 C n2

�
�

)
I0

(
2n

√
1 C n2

�
�

)

ð
(

1 � Q1

(
n

p
2,

√
2�1 C n2�

�
�T

))
, � < �T

1 C n2

�
exp

(
�n2 � 1 C n2

�
�

)
I0

(
2n

√
1 C n2

�
�

)

ð
(

2 � Q1

(
n

p
2,

√
2�1 C n2�

�
�T

))
, � ½ �T

�9.222�

MGF. The MGF of �SSC can be expressed in terms of the individual branch
MGFs as

M�SSC �s� D P���T�M��s�C
∫ 1

�T

p����e
s� d� �9.223�

For Rayleigh fading, (9.223) simplifies to

M�SSC�s� D �1 � s���1�1 � e��T/� C e��1�s����T/��� �9.224�

For Nakagami-m fading using Eq. (3.381.3) of Ref. 36, (9.223) can be expressed
in terms of the complementary incomplete gamma function as

M�SSC�s� D
(

1 � s�

m

)�m

ð
[

1 C �m, �1 � ��/m�s��m�T�/���� �m, �m/���T�

�m�

]
�9.225�

For Nakagami-n (Rice) fading (9.223) can be expressed in terms of the first-order
Marcum Q-function as

M�SSC �s� D
(

1 � s�

1 C n2

)�1

exp
(

s�n2

1 C n2 � s�

)

ð

1 � Q1


np

2,

√
2�1 C n2��T

�




C Q1


n

√
2�1 C n2�

1 C n2 � s�
,

√
2
(

1 C n2

�
� s

)
�T




 �9.226�
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9.8.1.2 Average Output SNR

Analysis. The average SNR at the SSC output can be obtained by averaging �
over p�SSC��� as given by (9.219), yielding

�SSC D P���T�
∫ 1

0
�p���� d� C

∫ 1

�T

�p���� d�

D P���T�� C
∫ 1

�T

�p���� d� �9.227�

Differentiating (9.227) with respect to �T and setting the result to zero, it can
easily be shown that �SSC is maximized when the switching threshold is set to
�Ł
T D � . For Rayleigh fading, substituting the one-branch CDF and PDFs given

in Table 9.5 in (9.227), we get

�SSC D �

(
1 C �T

�
e��T/�

)
�9.228�

which reduces for the optimal threshold case to

�Ł
SSC D ��1 C e�1� D 1.368� �9.229�

Similarly, for the Nakagami-m fading case, the average output SNR can be
found as

�SSC D �

(
1 C [�m/���T]me��m/���T

�m C 1�

)
�9.230�

with the simplification to

�Ł
SSC D �

(
1 C mm�1e�m

�m�

)
�9.231�

when using the optimum switching threshold. For Nakagami-n (Rice) fading
using the identity [36, Sec. 8.486]

I0�z� D I2�z�C 2

z
I1�z� �9.232�

the average output SNR can be expressed in closed form in terms of generalized
Marcum Q-functions as
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�SSC D �


1 � Q1


np

2,

√
2�n2 C 1�

�
�T






C �

n2 C 1


Q2


np

2,

√
2�n2 C 1�

�
�T




C n2Q3


np

2,

√
2�n2 C 1�

�
�T




 �9.233�

which reduces to

�Ł
SSC D �

[
1 � Q1

(
n

p
2,
√

2�n2 C 1�
)]

C �

n2 C 1

[
Q2
(
n

p
2,
√

2�n2 C 1�
)C n2Q3

(
n

p
2,
√

2�n2 C 1�
)]
�9.234�

when the optimum switching threshold is used.

Comparison with MRC and SC. For comparison purposes recall that the average
SNR at the output of a dual-branch MRC diversity system is given by (9.50)

�MRC D 2� �9.235�

regardless of the fading model. On the other hand, the CDF of a dual-branch SC
output is given by [3, Sec. 5.5.2]

P�SC��� D [P����]
2 �9.236�

which when differentiated with respect to � gives the PDF

p�SC��� D 2p����P���� �9.237�

Hence the average output SNR of a dual-branch SC is given by

�SC D 2
∫ 1

0
�p����P���� d� �9.238�

Using the one-branch PDFs and CDFs given in Table 9.5 for Rayleigh fading
(9.238) reduces to [3, Eq. (5.86)]

�SC D 1.5� �9.239�
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Figure 9.32. Normalized average SNR of (a) MRC ��MRC/� ), (b) SC ��SC/� ), and (c) SSC
��SSC/� ) versus the Nakagami-m fading parameter m.

for Rayleigh fading channels. Similarly, the average output SNR of SC can be
obtained in closed form for Nakagami-m fading by using the one-branch PDF’s
and CDFs given in Table 9.5 as well as Eq. (6.455) of Ref. 36 and Eq. (15.1.25)
of Ref. 52, yielding

�SC D �

(
1 C �2m C 1�

22m�m�m��2

)
�9.240�

As an example, Fig. 9.32 plots the normalized average output SNR, �MRC/� ,
�SC/� , and �SSC/� versus the Nakagami-m fading parameter for MRC, SC, and
SSC with optimum threshold, respectively.

9.8.1.3 Outage Probability. As before, the outage probability, Pout, is defined
as the probability that the combiner output SNR falls below a given threshold,
�th, and is therefore obtained by replacing � with �th in the CDF expressions
given previously, that is,

PSSC
out D Prf�SSC < �thg D P�SSC��th� �9.241�

Similarly, the outage probability of dual-branch SC systems can easily be deduced
from (9.236) as

PSC
out D [P���th�]

2 �9.242�
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Note that if we substitute �T for �th in (9.241), then using (9.215), (9.241) reduces
to (9.242). Since SC can be viewed as an optimal implementation of any switched
diversity system, we can conclude that the optimal switching threshold in the
minimum outage probability sense is given by �Ł

T D �th. Hence, using (9.216),
(9.217), and (9.218), we can write the outage probability of SC and SSC systems
with optimal switching thresholds as

PSSC
out D PSC

out D �1 � e�th/��2 �9.243�

for Rayleigh fading,

PSSC
out D PSC

out D
(
�m�� �m, �m/���th�

�m�

)2

�9.244�

for Nakagami-m fading, and

PSSC
out D PSC

out D

1 � Q1


np

2,

√
2�1 C n2�

�
�th




2

�9.245�

for Nakagami-n (Rice) fading.
For comparison purposes we also derive the outage probability of dual-branch

MRC receivers based on known results for the central and noncentral chi-square
distributions [6, App. 5A]. For Rayleigh fading the outage probability is given by

PMRC
out D 1 �

(
1 C �th

�

)
e��th/� �9.246�

while for Nakagami-m it is given by

PMRC
out D �2m�� �2m, �m/���th�

�m�
�9.247�

and finally, for Nakagami-n (Rice) fading it can be expressed as

PMRC
out D 1 � Q2


np

2,

√
2�1 C n2�

�
�th


 �9.248�

Figures 9.33 and 9.34 compare the outage probability of dual-branch MRC and
SC/SSC with optimal switching thresholds versus the normalized threshold SNR
�th/� for Nakagami-m and Nakagami-n (Rice) fading channels, respectively. The
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difference of diversity gain between MRC and SSC is about 2 dB in Rayleigh
fading and it increases as the fading environment improves, that is, as m or n
(or equivalently, the Rice factor) increases.

9.8.1.4 Average Probability of Error

Analysis. In previous sections an MGF-based approach was taken for evaluation
of the average error rate over fading channels, which although specifically
explored for MRC, EGC, and SC is also applicable for SSC. Indeed, it was
shown that the key to evaluating the average error rate of systems operating over
fading channels is expressing the MGF of the combiner output in a form that is
both simple and suitable for single integration. Since we have already derived the
MGF of the SSC output SNR in Section 9.8.1.1, the evaluation of average error
rate over the fading channel can be accomplished as before. As an example, and
in view of the alternative conditional SER expressions presented in Chapter 8,
the average SER of M-PSK signals is given by

Ps�E� D 1

�

∫ �M�1��/M

0
M�SSC

(
� gPSK

sin2  

)
d �9.249�

where gPSK D sin2��/M�.
For the particular case of BPSK over Rayleigh fading, the average BER can

in fact be found in closed form in terms of the Gaussian Q-function, as we now
show. Indeed, the average BER of BPSK using SSC can be written as

Pb�E� D
∫ 1

0
Q�
√

2��p�SSC ��� d�

D P���T�
∫ 1

0

1

�
e��/�Q�

√
2�� d� C

∫ 1

�T

1

�
e��/�Q�

√
2�� d �9.250�

which can be found in closed form with the help of (5A.4) and Eq. (24) of
Ref. 121 as

Pb�E� D
(

1 � 1

2
e��T/�

)(
1 �

√
�

1 C �

)

C �T
2

[
1 � 2e�1Q�

√
2�T��

√
�T

1 C �T
�1 � 2Q�

√
2�1 C �T���

]
�9.251�

However, the form given by (9.249) has the advantage of leading to a generic
expression for the optimum switching threshold in a minimum average error rate
sense, as shown next.
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Optimum Threshold. Let us first focus on the binary case (M D 2). Using
(9.223) in (9.249), we obtain

Pb�E� D 1

�

∫ �/2

0
P���T�M�

(
� 1

sin2  

)
d 

C 1

�

∫ �/2

0

[∫ 1

�T

p����e
��/ sin2  d�

]
d �9.252�

For �T D 0, P���T� D 0 and hence the first term of (9.252) vanishes, resulting in

Pb�E� D 1

�

∫ �/2

0
M�

(
� 1

sin2  

)
d �9.253�

which is the BER performance of a single-branch (no diversity) receiver. On
the other hand, as �T tends to infinity, the second term of (9.252) vanishes, and
since P���T� D 1 in the first term, (9.252) reduces again to the average BER
performance of a single-branch (no diversity) receiver. Since the average BER
is a continuous function of �T, there exists an optimal value of �T for which the
average BER is minimal. This optimal value �Ł

T is a solution of the equation

dPb�E�

d�T

∣∣∣∣
�TD�Ł

T

D 0 �9.254�

Substituting (9.252) in (9.254), we get

1

�

∫ �/2

0
p���

Ł
T�M�

(
� 1

sin2  

)
d � 1

�

∫ �/2

0
p���

Ł
T�e

��Ł
T/ sin2  d D 0

�9.255�
which after simplification reduces to

1

�

∫ �/2

0
M�

(
� 1

sin2  

)
d � Q�

√
2�Ł

T� D 0 �9.256�

where we have used the alternative representation of the Gaussian Q-function in
(4.2). Solving for �Ł

T in (9.256) leads to

�Ł
T D 1

2

[
Q�1

(
1

�

∫ �/2

0
M�

(
� 1

sin2  

)
d 

)]2

�9.257�

where Q�1�Ð� denotes the inverse Gaussian Q-function. Substituting the single-
branch MGF’s given in Table 9.5 for Rayleigh and Nakagami-m fading in
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(9.257), then using the trigonometric integrals derived in Appendix 5A, we get
the optimum threshold for BPSK over Rayleigh fading as

�Ł
T D 1

2

[
Q�1

(
1

2

(
1 �

√
�

1 C �

))]2

�9.258�

and for Nakagami-m fading as

�Ł
TD 1

2

[
Q�1

( p
�/�m

2�1 C �/m�mC1/2


(
mC 1

2

)
�m C 1� 2F1

(
1, m C 1

2
;m C 1;

1

1 C �/m

))]2

�9.259�
For Nakagami-n (Rice) fading, it can be shown using the integrals given by
Eqs. (6) and (7) of Ref. 122 that the optimum threshold is given by

�Ł
T D 1

2

{
Q�1

[
Q1�a, b�� 1

2

(
1 C

√
p

1 C p

)
e��a2Cb2�/2I0�ab�

]}
�9.260�

where

p D �

n2 C 1

a D n

[
1 C 2p

2�1 C p�
�
√

p

1 C p

]1/2

b D n

[
1 C 2p

2�1 C p�
C
√

p

1 C p

]1/2

�9.261�

The optimum threshold can be found in a similar fashion for other modulation
scheme/fading models combination. In general, this optimal threshold will be
a solution of an integral equation similar to (9.256), but explicit closed-form
solutions similar to the ones presented in (9.258), (9.259), and (9.261) will
not always be possible to obtain. For example, the optimum threshold �Ł

T with
DQPSK is the solution of the integral equation

1

4�

∫ �

��
M�

(
� b2�1 � ?2�2

2�1 C 2? sin C ?2�

)
d 

D 1

4�

∫ �

��
exp

(
� b2�1 � ?2�2

2�1 C 2? sin C ?2�
�Ł
T

)
d �9.262�

where a D
√

2 � p
2, b D

√
2 C p

2, and ? D a/b. In this case, one has to rely
on numerical root-finding techniques to get an accurate numerical solution for
�Ł
T in (9.262).
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Comparison with MRC and SC. In Figs. 9.35 through 9.38 we present some
numerical results comparing the average error rate performance of several
modulation schemes with SSC, SC, and MRC. The SSC curves are generated
as per the average error rate expressions given in Section 9.8.1.4 and with the
optimum switching thresholds derived previously. MRC curves are based on the
expressions derived in Section 9.2 on the performance of MRC receivers. For
SC, the Rayleigh and Nakagami-m curves are based on the results presented in
Section 9.7. For Nakagami-n (Rice) fading channels, we need the MGF at the
SC output to be able to get average error rate expressions. Using the integral
given in Appendix 4.6 of Ref. 123 this MGF can be found in closed form in
terms of the Marcum Q-function as

M�SC �s� D 2
(

1 � �s

1 C n2

)�1

Ð exp
(

s�n2

1 C n2 � �s

)

ð
{

1 � v2

1 C v2

[
1 � Q1

(
>vp

1 C v2
,

�p
1 C v2

)]

� 1

1 C v2
Q1

(
�p

1 C v2
,

>vp
1 C v2

)}
�9.263�
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Figure 9.35. Comparison of the average BER of BPSK with MRC, SC, and SSC versus average
SNR per bit per branch � for Nakagami-m fading channel.
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Figure 9.36. Comparison of the average SER of 8-PSK with MRC, SC, and SSC versus average
SNR per symbol per branch � for Nakagami-m fading channel.
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Figure 9.37. Comparison of the average SER of 16-QAM with MRC, SC, and SSC versus
average SNR per symbol per branch � for Nakagami-m fading channels.
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Figure 9.38. Comparison of the average BER of DQPSK with SC and SSC versus average
SNR per bit per branch � for Nakagami-m fading channels.

where

� D
p

2n

> D
(

2�1 C n2�

1 C n2 � s�

)1/2

v D
(

1 C n2

1 C n2 � s�

)1/2

�9.264�

9.8.2 Effect of Branch Unbalance

In the preceding section we analyzed SSC for the case of identically distributed
branches. In this section we consider the performance of SSC systems in the
more general case where the branches are still independent but not necessarily
identically distributed. In particular, let us denote by p�1��1� and p�2��2� the
PDF’s of the two branches, by P�1��1� and P�2��2� their respective CDF’s, and
by �1 and �2 their respective average SNR’s.

9.8.2.1 SSC Output Statistics. Assuming a discrete time implementation of
SSC let �1�n� and �2�n� be the instantaneous SNR of branch 1 and 2, respectively,
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at time t D nT, and let �n denote the SSC output SNR at time t D nT. According
to the mode of operation of SSC described above, we have

�n D �1�n� iff
{
�n�1 D �1�n�1�, �1�n� ½ �T
�n�1 D �2�n�1�, �2�n� < �T

�9.265�

CDF. The CDF of �n, P�SSC���, can be written as

P�SSC ��� D Prf�n � �g
D Prf�n D �1�n� and �1�n� � �g C Prf�n D �2�n� and �2�n� � �g
D Prf�1�n� ½ �T and �1�n� � �g Prf�n�1 D �1�n�1�g

C Prf�2�n� < �T and �1�n� � �g Prf�n�1 D �2�n�1�g
C Prf�2�n� ½ �T and �2�n� � �g Prf�n�1 D �2�n�1�g
C Prf�1�n� < �T and �2�n� � �g Prf�n�1 D �1�n�1�g �9.266�

which can be expressed in terms of the CDF of the individual branches as

P�SSC ���

D




Prf�n�1 D �1�n�1�gP�1��T�P�2���C Prf�n�1 D �2�n�1�gP�2��T�P�1���,

� � �T

Prf�n�1 D �1�n�1�g�P�1���� P�1��T�C P�1��T�P�2����

C Prf�n�1 D �2�n�1�g�P�2��T�P�1���C P�2���� P�2��T��,

� > �T
�9.267�

To obtain the CDF of the SSC output, we need to find

p1
D Prf�n�1 D �1�n�1�g
D Prf��n�2 D�1�n�2� and �1�n�1� ½ �T� or ��n�2 D�2�n�2� and �2�n�1� < �T�g

p2
D Prf�n�1 D �2�n�1�g
D Prf��n�2 D�2�n�2� and �2�n�2� ½ �T� or ��n�2 D�1�n�2� and �1�n�1� < �T�g

�9.268�
Assuming that the pairs of samples from each branch are i.i.d. (i.e.,�1�n�1� and
�1�n� are i.i.d. and �2�n�1� and �2�n� are i.i.d.), we can rewrite (9.268) as

p1 D p1[1 � P�1��T�] C p2P�2��T�

p2 D p2[1 � P�2��T�] C p1P�1��T�
�9.269�
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Using the fact that the events �n D �1�n� and �n D �2�n� are mutually exclusive
(i.e., p1 C p2 D 1), we can solve for p1 and p2 to get

p1 D P�2��T�

P�1��T�C P�2��T�

p2 D P�1��T�

P�1��T�C P�2��T�

�9.270�

Substituting (9.270) in (9.267) the CDF of the SSC output can be written solely
in terms of the individual branch CDF’s as

P�SSC��� D




P�1��T�P�2��T�

P�1��T�C P�2��T�
[P�1���C P�2���], � � �T

P�1��T�P�2��T�

P�1��T�C P�2��T�
[P�1���C P�2���� 2]

C P�1���P�2 ��T�C P�1��T�P�2���

P�1��T�C P�2��T�
, � > �T

�9.271�

PDF. Differentiating the expression of P�SSC��� as given by (9.271) with respect
to � , we get the PDF at the SSC output as

p�SSC��� D




P�1��T�P�2��T�

P�1��T�C P�2��T�
[p�1���C p�2���], � � �T

P�1��T�P�2��T�

P�1��T�C P�2��T�
[p�1���C p�2���]

C p�1���P�2 ��T�C P�1��T�p�2���

P�1��T�C P�2��T�
, � > �T

�9.272�

MGF. Taking the Laplace transform of the PDF as given by (9.272), it can be
shown that the MGF of the SSC output M�SSC �s� when the branches are not
necessarily identically distributed can be expressed with the help of (9.223) as

M�SSC�s� D P�2��T�

P�1��T�C P�2��T�
M�1�
�SSC
�s�

C P�1��T�

P�1��T�C P�2��T�
M�2�
�SSC
�s� �9.273�

where M�i�
�SSC
�s� is the MGF given by (9.224), (9.225), or (9.226). The superscript

�i� inM�i�
�SSC
�s� refers to the fact that in this analysis the two combined branches are

allowed to have different average SNR’s �1 and �2, different fading parameters
such as m1 and m2 in the case of Nakagami-m fading, or (even) to be distributed
according to two different families of distributions such as Nakagami-m and
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Nakagami-n (Rice). As a check, note that (9.273) reduces to (9.224), (9.225), or
(9.226) in the case of i.i.d. branches.

9.8.2.2 Average Output SNR. The closed-form expression of the PDF as
given by (9.272) readily allows obtaining the SSC output average SNR in the
case of unbalanced branches. For instance, let us consider the average SNR at the
SSC output of the Nakagami-m fading branches with the same fading parameter
m but different average SNR’s �1 and �2. In this case, averaging � over (9.272), it
can be shown after some manipulations that the average output SNR is given by

�SSC D P�2��T�

P�1��T�C P�2��T�

(
1 C mm�1��T/�1�

me��m/�1��T

�m�

)
�1

C P�1��T�

P�1��T�C P�2��T�

(
1 C mm�1��T/�2�

me��m/�2��T

�m�

)
�2 �9.274�

where P�i�Ð� is given in Table 9.5 for the Nakagami-m case.
As a comparison, recall that the average SNR at the output of a dual-branch

MRC receiver is given by Eq. (5.102) of Ref. 3 as �MRC D �1 C �2 regardless
of the fading model, whereas the average SNR at the output of a dual-branch SC
over Nakagami-m fading is given by (9.194) as

�SC D �1 C �2 � ��1�2�
mC1�2m C 1�

m�m C 1��m�2��1 C �2�2mC1

ð
[

2F1

(
1, 2m C 1;m C 2;

�1

�1 C �2

)

C 2F1

(
1, 2m C 1;m C 2;

�2

�1 C �2

)]
�9.275�

where 2F1[Ð, Ð; Ð; Ð] is the Gauss hypergeometric function [52, Chap. 15].

9.8.2.3 Average Probability of Error. Using the closed-form MGF expres-
sion (9.273), we are in a position to derive the average probability of error
for a wide variety of modulation schemes, as explained in Section 9.8.1.4. For
example, the average BER of BPSK over Nakagami-m fading channels with
unequal average SNR’s is given by

Pb�E� D P�2��T�

P�1��T�C P�2��T�

1

�

∫ �/2

0
M�1�
�SSC

(
� 1

sin2  

)
d 

C P�1��T�

P�1��T�C P�2��T�

1

�

∫ �/2

0
M�2�
�SSC

(
� 1

sin2  

)
d �9.276�

where M�i�
�SSC
�Ð� is given by (9.225).
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Figure 9.39. Average BER of BPSK versus average SNR of the first branch �1 (a) for
unequal average branch SNRs �1 D �2/5 and (b) for equal average branch SNRs �1 D �2
over Nakagami-m fading channels.

Figure 9.39 shows the effect of average SNR unbalance on the average BER
of BPSK with SSC over Nakagami-m fading channels. We used the optimum
switching threshold to generate these curves, and these optimum thresholds were
found numerically by minimizing (9.276) with respect to �T. Note, for example,
that in the case of m D 2, the unbalanced system under consideration suffers
about a 3-dB penalty, for an average BER of 10�6 compared to a balanced
system.

9.8.3 Effect of Branch Correlation

Recall that in Section 9.8.1 we considered the performance of SSC over i.i.d.
branches, whereas in the preceding section we addressed the problem of branch
unbalance. We assess in this section the effect of fading correlation on the
performance of SSC receivers.

9.8.3.1 SSC Output Statistics

PDF. In the case of correlated Nakagami-m fading envelopes, the joint PDF
p�1,�2��1, �2� of the instantaneous SNR’s �1 and �2 is given by [9, Eq. (19)]



SWITCHED DIVERSITY 367

p�1�2��1, �2� D
(
m

�

)mC1 ��m�1�/2
1 ��m�1�/2

2

�m�&�m�1�/2�1 � &�
e�[m/��1�&�]��1C�2�

ð Im�1

(
2m

p
&

�1 � &��

p
�1�2

)
, �1 ½ 0, �2 ½ 0 �9.277�

Under these conditions and following the mode of operation of SSC systems as
described above, Abu-Dayya and Beaulieu [9] showed that the PDF of the SSC
output is given by [9, Eq. (21a)]

p�SSC��� D



A���, � � �T(
m

�

)m
e��m/��� �

m�1

�m�
C A���, � > �T,

�9.278�

where A��� can be written with the help of Eq. (11) of Ref. 124 as [115]

A��� D �m/��m�m�1e�m�/�

�m�

ð
[

1 � Qm

(√
2m&�

�1 � &��
,

√
2m�T
�1 � &��

)]
�9.279�

MGF. Taking the Laplace transform of (9.278), the MGF of the SSC output SNR
can be expressed in closed form in terms of the incomplete gamma function, with
the help of Eq. (11) of Ref. 124, as

M�SSC ��� D
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1 � �

m
s

)�m
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
1 C
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

(
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m�T
�

1 � �s/m

1 � �1 � &��s/m

)
�m�




�9.280�

9.8.3.2 Average Output SNR. The average output SNR of SSC with
correlated branches is obtained by averaging � over the PDF of (9.278), yielding
with the help of Eq. (28) of Ref. 125 and Eq. (8.356.2) of Ref. 36, and after
some manipulation,

�SSC D �

(
1 C �1 � &�[�m/���T]me�m�T/�

m�m�

)
�9.281�

As a check, note that (9.281) reduces to the average SNR of a single-branch �
for fully correlated branches with & D 1. On the other hand, (9.281) reduces to
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the average output SNR over i.i.d. branches as given by (9.230) when & D 0.
Differentiating (9.281) with respect to �T and setting the result equal to zero, it
can easily be shown that the optimum threshold for maximum average output
SNR is �Ł

T D � , which is the same as in the uncorrelated fading case. Hence
the maximum average output SNR for SSC over correlated Nakagami-m fading
channels is given by

�SSC D �

(
1 C �1 � &�mm�1e�m

�m�

)
�9.282�

For the purpose of comparison, recall that the average output SNR for dual-
branch MRC is unaffected by fading correlation, while we showed that the
average output SNR for dual-branch SC over equal average SNR correlated
Nakagami-m fading paths is given by (9.192). Figure 9.40 compares the effect
of fading correlation on the average output SNR of SSC and SC receivers. SC
outperforms SSC, as expected, but has a slightly higher sensitivity to fading
correlation.

9.8.3.3 Average Probability of Error. Using the MGF of the SSC output
SNR given by (9.280), we can determine the average probability of error
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Figure 9.40. Comparison of the normalized average SNR of SC ��SC/�� and SSC ��SSC/��
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(c) m D 2, and (d) m D 4.
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of several modulation schemes, as explained in Section 9.8.1.4. For example,
Fig. 9.41 depicts the effect of correlation on the BER performance of BPSK
with SSC. From Fig. 9.41 one can conclude that correlation coefficients up to
0.6 do not seriously degrade the BER performance. Note that the curves in
Fig. 9.41 used the optimum threshold in the minimum BER sense. In general,
this optimum threshold cannot be expressed in an explicit closed form but can be
found numerically by solving an integral equation. For example, in the particular
BPSK case substituting (9.253) in (9.254) (with M��s� given by (9.280)) and
differentiating with respect to �T (with the help of [36, Eq. (8.356.4)]) leads to
the following integral equation for �Ł

T

∫ �/2

0
exp

(
�
(

1
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C m
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�Ł
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)
d 
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1 C ��1 � &�

m sin2  

)�m
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
�m�
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T

�




1 C �

m sin2  

1 C �1 � &�
�

m sin2  




d 
�9.283�
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9.9 PERFORMANCE IN THE PRESENCE OF OUTDATED OR
IMPERFECT CHANNEL ESTIMATES

In general, diversity combining techniques rely, to a large extent, on accurate
channel estimation. As a typical first step in performance analysis, perfect channel
estimation is assumed as was done in previous sections. However, in practice
these estimates must be obtained in the presence of noise and time delay. For
example, one common way to estimate the channel uses pilot symbol-assisted
modulation (PSAM) [126; 127, Sec. 10.3.2], which periodically inserts pilots into
the stream of data symbols to extract the channel-induced fading. Estimation
error (due to additive noise as well as wireless channel variation/decorrelation
over time) will cause the channel fading extracted from the pilot symbols to differ
from the actual fading affecting the data symbols, thereby inducing a performance
degradation.

The effects of channel estimation error or channel decorrelation on the
performance of diversity systems has long been of interest. These previous
studies focused on MRC receivers over Rayleigh fading channels [32, 128–131],
postdetection EGC receivers over fast Rician fading channels [132,133], SC
receivers over Rayleigh [134] and Nakagami-m [135] fading channels, and SSC
receivers over Nakagami-m fading channels [115]. In this section we summarize
briefly the work on the impact of channel estimation error or channel decorrelation
on the performance of diversity systems.

9.9.1 Maximal-Ratio Combining

Gans [129] studied the effect of Gaussian-distributed weighting errors on the
performance of MRC receivers. In particular, he showed that if the combined
branches are subject to i.i.d. Rayleigh fading, the PDF of the combined SNR is
given by

p�MRC��� D �1 � &�L�1 exp���/��
�

L∑
lD1

(
L � 1
l� 1

)
�l� 1�!

[
&�

�1 � &��

]l�1

�9.284�

where & 2 [0, 1] is the power correlation coefficient between the estimated and
actual fadings. This coefficient can be viewed as a measure of the channel’s rate
of fluctuation and can be related solely to the time delay � and to the maximum
Doppler frequency shift fd [e.g., for land mobile communication & D J2

0�2�fd��,
where J0�Ð� is the zero-order Bessel function of the first kind]. The parameter
& can also be viewed as a measure of the quality of the channel estimation and
can be expressed, for example, in terms of PSAM parameters, such as the rate of
pilot symbol insertion and SNR [136]. It is interesting to note that (9.284) can
be rewritten as a weighted sum of L ideal MRC PDF’s [131, Eq. (7)]

p�MRC��� D
L∑
lD1

A�l�
1

�l� 1�! �l
�l�1e��/� �9.285�
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where the weight coefficients

A�l� D
(
L � 1
l� 1

)
�1 � &�L�l&l�1 �9.286�

are Bernstein polynomials. As a check, when & D 1 (perfect correlation between
the pilot-extracted fading and the actual fading), perfect MRC combining is
achieved and (9.284) or equivalently, (9.285) reduces to (9.5), as expected. As &
decreases, the correlation between the pilot-extracted fading and the actual fading
diminishes and performance degrades. In the limit as & ! 0 the fading estimate
and its actual value are completely uncorrelated and (9.284) or equivalently,
(9.285) approaches the PDF without diversity (i.e., L D 1) given by (9.4).

Taking the Laplace transform of (9.285) and using Eq. (3.351.3) of Ref. 36,
the corresponding MGF M�s� can easily be shown to be given by

M�s� D
L∑
lD1

A�l�

�1 � s��l
�9.287�

With (9.287) in hand and using the integrals derived in Appendix 5A, the average
probability of error of several linear coherent modulations with imperfect MRC
can be computed in closed form.

9.9.2 Noncoherent EGC over Rician Fast Fading

In this section we extend the results presented in Section 8.2.5.2 and consider
the effect of fast Rician fading on binary DPSK when used in conjunction with
L-branch postdetection EGC. Using the same notation as in Section 8.2.5.2, the
EGC output decision variable corresponding to transmission of a C1 information
bit during the kth bit time becomes

zk D
L∑
l

wŁ
klwk�1l C wklw

Ł
k�1l �9.288�

where the subscript l refers to the lth branch. The probability of error is given by

Pb�E� D Prfzk < 0g �9.289�

Because the decision variable is a quadratic form of complex Gaussian random
variables, we rely again on Appendix B of Ref. 7. Specifically, letting A D
B D 0, C D 1, D D zk, Xk D wk�1l , and Yk D wkl , the decision variable (9.288)
is identical to that in (9A.1) (or equivalently, Appendix B of Ref. 7) for any
arbitrary L. Evaluating the various coefficients required in (9A.10) after much
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simplification produces the following results:

: D v2

v1
D 1 CKC ��1 C &�

1 CKC ��1 � &�

a D 0

b D
√

2LK�

1 CKC �
�9.290�

where K is the Rice factor and & is again the fading correlation whose value
depends on the fast-fading channel model that is assumed, as mentioned earlier.
Finally, substituting (9.290) in (9A.9) and recalling that Qm�b, 0� D 1 and (4.46),
we obtain the desired average BER as

Pb�E� D exp
(

� LK�

1 CKC �

)(
1 CKC ��1 � &�

2�1 CKC ��

)2L�1
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(
LK�

1 CKC �

)n]
�9.291�

which can be shown to agree numerically with Eq. (76) of Ref. 133. The
corresponding result for the Rayleigh (K D 0) channel is

Pb�E� D
(

1 C ��1 � &�

2�1 C ��

)2L�1 L�1∑
lD0

(
2L � 1
l

)(
1 C ��1 C &�

1 C ��1 � &�

)l
�9.292�

in agreement with Eq. (3a) of Ref. 132 and Eq. (79) of Ref. 133. Similar to the
no-diversity case, these expressions exhibit an irreducible bit error probability
floor for any & 6D 1. Letting � approach infinity in (9.291) and (9.292) yields

Pb�E� D e�LK
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1 � &
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Pb�E� D
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1 � &
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)2L�1 L�1∑
lD0

(
2L � 1
l

)(
1 C &

1 � &

)l
�9.294�

for Rician and Rayleigh channels, respectively. Figure 9.42 illustrates this bit
error floor for a Rician factor K D 10 and assuming a correlation model
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Figure 9.42. Average BER of binary DPSK over fast Rician channels; �K D 10 dB and
fdT D 0.04).

with & D J2
0�2�fdT�. Before concluding this section we should mention that

Chow et al. [133] extend the analysis presented here to study the effect of
fast Rician fading on M-DPSK (M � 4) when used in conjunction with post
detection EGC.

9.9.3 Selection Combining

In this section we adopt the approach introduced by Ritcey and Azizog̃lu [135]
and study the impact of imperfect channel estimation or/and decorrelation on
the performance of SC systems over Nakagami-m fading channels. This requires
the second-order statistics of the channel variation which are fortunately known
for Nakagami-m fading. Let ˛ and ˛� denote the channel fading amplitudes at
times t and t C �, respectively.11 For a slowly varying channel we can assume
that the average fading power remains constant over the time delay � [i.e.,
� D E�˛2� D E�˛2

��]. Under these conditions the joint PDF p˛,˛� �˛, ˛�� of these
two correlated Nakagami-m distributed channel fading amplitudes is given by

11 Equivalently, as mentioned above, ˛ and ˛� can be viewed as the actual fading amplitude and the
imperfectly estimated one, respectively.
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[53, Eq. (126)]

p˛,˛� �˛, ˛�� D 4�˛˛��m

�1 � &��m�&�m�1�/2

(m
�

)mC1
Im�1

(
2m

p
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�1 � &��

)

ð exp
(

�m�˛
2 C ˛2

��

�1 � &��

)
�9.295�

where & 2 [0, 1] again denotes the power correlation factor between ˛ and ˛� .
Denoting the instantaneous SNR per symbol at times t and t C � by � and �� ,
respectively, the joint PDF of � and �� can be written as

p�,�� ��, ��� D
(
m

�

)mC1 ��m�1�/2��m�1�/2
�

�1 � &��m�&�m�1�/2
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)

ð Im�1

(
2m

p
&���

�1 � &��

)
�9.296�

where � is the average SNR per symbol over the time delay �.
Under these conditions it can be shown that for the dual-branch SC the MGF

of the output of SC with an outdated/imperfect estimate can be obtained in closed
form with the help of Eq. (6.455.2) of Ref. 36 as

M�SC�s� D 2�2m�

m2�m�

(
2 � �2 � &�

�

m
s

)�2m (
1 � �1 � &�

�

m
s

)m

ð 2F1

(
1, 2m;m C 1;

1 � �1 � &���/m�s

2 � �2 � &���/m�s

)
�9.297�

Using the well known result that the first moment of �SC is equal to its statistical
average (9.188) we obtain the closed-form expression for the average output SNR
of SC with an outdated/imperfect estimate as

�SC D 2�2m�

m2�m�

[
2F1

(
1, 2m,m C 1, 1

2

)
22m

C &
2F1

(
2, 2m C 1, m C 2, 1

2

)
22mC1�m C 1�

]
�

�9.298�
With the MGF (9.297) in hand, the average probability of error can be found for
a wide variety of modulation schemes, as explained in Chapter 8.

9.9.4 Switched Diversity

We now study the effect of channel decorrelation or imperfect channel estima-
tion on the performance of SSC systems operating over Nakagami-m fading
channels [115].
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9.9.4.1 SSC Output Statistics. The PDF of the SSC output at time
t C �, q�SSC����, can be expressed in terms of the PDF of the SSC output at
time t, p�SSC���, as

q�SSC ���� D
∫ 1

0
p�SSC���p���� j�� d� �9.299�

where the PDF of �� conditioned on � , p���� j��, is given by

p�� j� ��� j�� D p�,�� ��, ���

p����
�9.300�

For simplicity, let us consider the case of i.i.d. branches. Inserting (9.219) and
(9.300) in (9.299), we can write q�SSC ���� as

q�SSC���� D P���T�
∫ �T

0
p�,�� ��, ��� d� C [1 C P���T�]

∫ 1

�T

p�,�� ��, ��� d�

D P���T�
∫ 1

0
p�,�� ��, ��� d� C

∫ 1

�T

p�,�� ��, ��� d�

D P���T�p�� ����C
∫ 1

�T

p�,�� ��, ��� d� �9.301�

As a check, when � and �� are fully correlated [i.e., p�,�� ��, ��� D υ�� �
���p����], it can easily be shown that q�SSC���� reduces to p�SSC���� as given
in (9.219), and full SSC diversity gain is achieved. On the other hand, when �
and �� are uncorrelated [i.e., p�,�� ��, ��� D p����p�� ����], it is straightforward
to show that q�SSC ���� reduces to p�� ����, which is the single-branch PDF, and
hence no diversity gain is obtained.

For Nakagami-m fading, inserting the single-branch PDF and CDF as given
in Table 9.5 as well as (9.296) in (9.301), q�SSC���� can be expressed in closed
form as

q�SSC���� D
(
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)m �m�1
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�m�
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)]
�9.302�

The MGF at time t C � is given by

M�SSC�s� D
∫ 1

0
es�� q�SSC���� d�� �9.303�
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Substituting (9.302) in (9.303), and using the change of variable x Dp
2m&��/�1 � &�� , M�SSC�s� can be expressed in closed form with the help of

Eq. (11) of Ref. 124 as

M�SSC�s�D
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1 � s�
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)�m
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(
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�
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�m�




�9.304�
When & D 1 and hence � and �� are perfectly correlated, it is easy to see that
(9.304) reduces to the MGF with perfect SSC as given by (9.225). On the
other hand, when � and �� are uncorrelated (i.e., & D 0), it is easy to see that
(9.304) reduces to the MGF of single Nakagami-m channel reception as given in
Table 9.5.

9.9.4.2 Average SNR. Averaging �� over the PDF q�SSC���� as given by
(9.302) yields the average output SNR as

�SSC D �

[
1 C &�m�T/��me��m�T/��

�m C 1�

]
�9.305�

Differentiating (9.305) with respect to �T and setting the result to zero, we find
that the optimal threshold �Ł

T is given by �Ł
T D � and results in a maximum

average output SNR �Ł
SSC given by

�Ł
SSC D �

[
1 C &

mm�1e�m

�m�

]
�9.306�

9.9.4.3 Average Probability of Error. Consider as an example the average
BER of binary DPSK or noncoherent FSK. In this case the average BER is
given by

Pb�E� D 1
2M�SSC ��g� �9.307�

where g D 1 for DPSK and g D 1
2 for orthogonal FSK. Substituting (9.304) in

(9.307), then differentiating with respect to �T, yields the optimal threshold as

�Ł
T D mC �1 � &�g�

g&
ln
(

m C g�

m C �1 � &�g�

)
�9.308�

As a check, when & D 0 it is easy to see that (9.308) reduces to zero since no
diversity gain can be achieved in this case and there is therefore no need to
switch to the other branch. On the other hand, when & D 1, (9.308) reduces to
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the optimal threshold for perfect SSC as given by [9, Eq. (14)]

�Ł
T D m

g
ln
(

1 C g�

m

)
�9.309�

Note that the optimum threshold �Ł
T in (9.309) is dependent on the correlation

coefficient &. In the case where & is viewed as a measure of the channel estimation
quality, �Ł

T can be set to (9.309) once & is known for minimum BER performance.
However, in the case of outdated estimates, & is a function of the time delay �,
but �Ł

T (which is set to a particular value during the entire slot time12) cannot
be changed as a function of �. In this case, to minimize the degradation due
to channel decorrelation, one may want to find a “global” optimum threshold
independent of the delay �. This may be achieved by finding the value, �Ł

T, that
minimizes a cost function, C, similar to Eq. (29) of Ref. 9 over an average SNR
range,

C D
∫ 1

&1

log
(
PŁ
b�&�

PŁ
b�&0�

)
d& �9.310�

where PŁ
b�&� denotes the average BER, as given by (9.307), evaluated with the

optimal threshold �Ł
T, as given by (9.309). In (9.310), &1 denotes the minimal

correlation coefficient experienced over the slot time, whereas &0 can be chosen
equal to &0 D �&1 C 1�/2.

9.9.5 Numerical Results

Figure 9.43 illustrates the analyses presented in previous sections by showing the
dependence of the average BER of BPSK on the correlation coefficient & 2 [0, 1]
between the estimated and actual fading for dual-branch MRC, SC, and SSC
receivers and for Rayleigh type of fading. When & D 1 (i.e., perfect correlation
between the pilot-extracted fading and the actual fading, or equivalently perfect
channel estimation), MRC outperforms SC, which in turn outperforms SSC. As &
decreases, the correlation between the pilot-extracted fading and the actual fading
diminishes and performance degrades. In the limit as & ! 0, the fading estimate
and its actual value are uncorrelated, and performance of all combining schemes
approaches the performance without diversity. Figure 9.44 compares the effect
of the correlation coefficient & on the average BER of binary DPSK with SC and
SSC for various values of the Nakagami-m parameter. In this case, & is viewed as
a measure of the channel estimation quality and the optimum switching threshold
is set according to (9.308) for the SSC curves. We can see from these curves that
the diversity gain offered by SC over SSC decreases as & decreases and tends
eventually to zero as & tends to zero, as expected. Figure 9.45 shows the effect
of channel decorrelation on the average BER of binary DPSK with SC and SSC.
For the SSC curves the optimum switching threshold is fixed at the beginning

12 By slot time we mean the time interval T between two consecutive switching instants.
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Figure 9.43. Average BER of BPSK with dual-branch MRC, SC, and SSC (with optimum
threshold) versus the correlation coefficient &.

of the slot time. For the dashed SSC curves the optimum switching threshold is
fixed to the optimum value for & D 1 or equivalently, for � D 0. On the other
hand, the solid SSC curves are generated using optimum thresholds which were
optimized over the entire slot time (according to the cost function as explained
above), where we assumed that & is bounded between 0.8 and 1. From these
figures we can see that at low average SNRs (10 dB), the two procedures yield
nearly indistinguishable performance results. However, for higher average SNR
(20 dB), the first procedure clearly yields better performance for & close to 1 (or
equivalently, for small values of �) before the two curves cross and the global
optimization procedure starts to pay off.

9.10 HYBRID DIVERSITY SCHEMES

9.10.1 Generalized Selection Combining

In the context of spread-spectrum communication with RAKE reception, the
complexity of MRC and EGC receivers depends on the number of resolv-
able paths available, which can be quite high, especially for multipath diver-
sity of wideband spread-spectrum signals. In addition, MRC is sensitive to
channel estimation errors, and these errors tend to be more important when the
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Figure 9.44. Average BER of binary DPSK with SC and SSC versus correlation coefficient (&)
with � D 10 dB and � D 20 dB over Nakagami-m fading channel. The optimum threshold is set
according to (9.308) and is thus a function of & and �.

instantaneous SNR is low. On the other hand, SC and SSC use only one path out
of the L available (resolvable) multipaths [137] and hence do not fully exploit the
amount of diversity offered by the channel. Recently, there has been an interest in
bridging the gap between these two extremes (MRC/EGC and SC) by proposing
generalized selection combining (GSC), which adaptively combines (as per the
rules of MRC or EGC) the Lc strongest (highest SNR) resolvable paths among
the L available ones [11,138–142]. We denote such hybrid schemes as SC/MRC-
Lc/L and SC/EGC-Lc/L. In the context of wideband spread-spectrum systems,
these schemes offer less complex receivers than the conventional MRC RAKE
receivers since they have a fixed number of fingers independent of the number
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Figure 9.45. Average BER of binary DPSK with SC and SSC versus correlation coeffient (&)
with � D 10 dB and � D 20 dB. The dashed line corresponds to the case where the optimum
threshold is set for & D 1 or equivalently � D 0. The solid line corresponds to the case where
the optimum threshold is optimized over & D 0.8 to 1 range.

of multipaths. In addition, SC/MRC receivers are expected to be more robust
toward channel estimation errors since the weakest SNR paths (and hence the
ones that are the most exposed to these errors) are excluded from the combining
process. Finally, SC/MRC was shown to approach the performance of MRC [11],
while SC/EGC was shown to outperform in certain cases conventional postde-
tection EGC since it is less sensitive to the “combining loss” of the very noisy
(low-SNR) paths [11].



HYBRID DIVERSITY SCHEMES 381

In Refs. 11 and 139 Eng, Kong, and Milstein present an error rate analysis
of binary signals with the GSC scheme over Rayleigh fading channels with
both i.i.d. distributions and an exponentially decaying power delay profile for
Lc D 2 and Lc D 3. In Ref. 141, Kong and Milstein derived a simple, neat closed-
form expression for the average combined SNR at the output of GSC diversity
systems operating over Rayleigh fading channels with a constant (uniform) power
delay profile. More recently, they extended their result to non-i.i.d. diversity
paths [142]. In this section we show that by starting with the MGF of the GSC
output SNR, we are able to analyze the performance of GSC receivers over
i.i.d Rayleigh paths in terms of average combined SNR, outage probability, and
average error rate for a wide variety of modulation schemes and for arbitrary
Lc and L [143]. Extension to non-i.i.d. Rayleigh diversity paths is omitted here
but can be found in Ref. 143. Finally, work on the performance analysis of
GSC receivers using the virtual branch technique can also be found in Refs. 144
through 146.

9.10.1.1 GSC Statistics

GSC Input Joint PDF. Let ˛1, ˛2, . . . , ˛L denote the set of i.i.d. Rayleigh
random fading amplitudes associated with the SC inputs, each of which has
average power �. For RAKE reception with a matched filter receiver for
each diversity path, we define as before the instantaneous SNR per symbol of
the lth path as �l D ˛2

l Es/N0, l D 1, 2, . . . , L, and the corresponding average

SNR per symbol for each path as �l D ˛2
l Es/N0 D �Es/N0. Let �1:L ½ �2:L ½

Ð Ð Ð ½ �L:L ½ 0 be the order statistics obtained by arranging the f�lgLlD1 in
decreasing order of magnitude. Since the f�lgLlD1 are i.i.d., the joint PDF
p�1:L,...,�Lc :L ��1:L, . . . , �Lc:L� of the f�l:LgLclD1 (Lc � L) is given by [112, p. 185;
139, Eq. (9)]

p�1:L,...,�Lc :L ��1:L, . . . , �Lc:L� D Lc!
(
L
Lc

)
[P���Lc :L�]

L�Lc
Lc∏
lD1

p���l:L�;

�1:L ½ �2:L ½ Ð Ð Ð ½ �Lc:L �9.311�

where (
L
Lc

)
D L!

Lc!�L � Lc�!

denotes the binomial coefficient, p���� is the PDF of the f�lgLlD1, such as

p���� D 1

�
e��/� �9.312�

and P���� D ∫ �
0 p��y� dy is the corresponding CDF, given by

P���� D 1 � e��/� �9.313�
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It is important to note that although the f�lgLlD1 are independent, the f�l:LgLlD1 are
not, as can be seen from (9.311).

MGF of the Output SNR. The MGF of the total combined SNR �GSC D∑Lc
lD1 �l:L is defined by

M�GSC�s� D E�GSC [es�GSC ] D E�1:L,�2:L,...,�Lc :L

(
es
∑Lc

lD1
�l:L
)

�9.314�

with E[Ð] denoting the expectation operator. Substituting (9.311) in (9.314), we
get

M�GSC�s� D
∫ 1

0

∫ 1

�Lc :L

Ð Ð Ð
∫ 1

�2:L︸ ︷︷ ︸
Lc�fold

p�1:L,...,�Lc :L ��1:L, . . . , �Lc:L�e
s
∑Lc

lD1
�l:L

ð d�1:L Ð Ð Ðd�Lc�1:L d�Lc :L �9.315�

Although the integrand is in a desirable separable form in the �l:Lc ’s, we cannot
partition the Lc-fold integral into a product of one-dimensional integrals as was
possible for MRC in Section 9.2 and postdetection EGC in Section 9.4 because
of the �l:L’s in the lower limits of the semifinite range (improper) integrals. To get
around this difficulty, we take advantage of the following classical result, which
is originally due to Sukhatme [147] and which subsequently played an important
role in many order statistics problems [148,149], including, for example, radar
detection analysis problems [150,151].

Theorem 1 (Sukhatme [147]). Consider the following transformation of random
variables13 by defining the “spacings”

xl
D �l:L � �lC1:L, l D 1, 2, . . . , L � 1

xL
D �L:L

�9.316�

Then it can be shown that the fxlgLlD1 are independent and distributed according
to the exponential distribution pxl �xl�, given by

pxl�xl� D l

�
e�lxl/� , xl ½ 0, l D 1, 2, . . . , L �9.317�

A proof of this theorem is given in Appendix 9C.

13 It should be pointed out that Kong and Milstein considered a very similar transforma-
tion [141, App.] in their derivation of the combined average SNR of GSC and hence implicitly
used Theorem 1.
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We now use Theorem 1 to derive a simple expression for the MGF of the
total combined SNR �GSC, which can be expressed in terms of the xl’s as

�GSC D
Lc∑
lD1

�l:L D
Lc∑
lD1

L∑
kDl

xk

D x1 C 2x2 C Ð Ð Ð C LcxLc C LcxLcC1 C Ð Ð Ð C LcxL �9.318�

Hence the MGF of �GSC as defined in (9.314) can be expressed in terms of the
xl values as

M�GSC�s� D
∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
L�fold

px1,...,xL �x1, . . . , xL�e
s�x1C2x2CÐÐÐCLcxLcCLcxLcC1CÐÐÐCLcxL�

ð dx1 Ð Ð ÐdxL �9.319�

Since the xl’s are independent [i.e., px1,...,xL �x1, . . . , xL� D ∏L
lD1 pxl�xl�], we can

put the integrand in the desired product form, resulting in

M�GSC�s� D
∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
L�fold

[
L∏
lD1

pxl�xl�

]
esx1e2sx2 Ð Ð Ð eLcsxLc eLcsxLcC1 Ð Ð Ð eLcsxL

ð dx1 Ð Ð ÐdxL �9.320�

Grouping terms of index l thereby partitioning the L-fold integral of (9.320) into
a product of L one-dimensional integrals, then using the fact that the xl values
are exponentially distributed, we get the desired closed-form result

M�GSC�s� D �1 � s���LcC1
L∏

lDLc

(
1 � s�Lc

l

)�1

�9.321�

Using a partial fraction expansion of the product in (9.321), it can be shown that
the MGF of �GSC can be rewritten in the following equivalent form:

M�GSC�s� D �1 � s���LcC1
L�Lc∑
lD0

��1�l
(
L
Lc

)(
L � Lc
l

)
1 C l/Lc � s�

�9.322�

PDF of the Output SNR. Having a simple expression for the MGF as given by
(9.322), we are now in a position to derive the PDF of the GSC output combined
SNR �GSC for an arbitrary Lc and L. Letting s D �p, the Laplace transform of
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the PDF of �GSC, L�GSC�p�, is related to the MGF of �GSC by

L�GSC�p� D M�GSC��p� �9.323�

which, by using (9.322), can be written as

L�GSC�p� D

(
L
Lc

)
�Lc


 1

�pC 1/��Lc
C

L�Lc∑
lD1

��1�l
(
L � Lc
l

)
�pC 1/��Lc�1[pC �1 C l/Lc�/�]




�9.324�
Using the inverse Laplace transforms [152, Eqs. (1) and (3)] as well as the
identity [36, Eq. (8.352.1)], we obtain the PDF of �GSC in closed form as the
inverse Laplace transform of (9.324):

p�GSC��� D
(
L
Lc

)[
�Lc�1e��/�

�Lc �Lc � 1�!
C 1

�

L�Lc∑
lD1

��1�LcCl�1
(
L � Lc
l

)(
Lc
l

)Lc�1

ð e��/�
(
e�l�/Lc� �

Lc�2∑
mD0

1

m!

(�l�
Lc�

)m)]
�9.325�

As a check, note that (9.325) reduces to the well-known PDF of the SNR at an
MRC (L D Lc) output as given by (9.5) and SC (Lc D 1) output

p�SC��� D L

�

L�1∑
lD0

��1�l
(
L � 1
l

)
exp

(
�1 C l

�

)
�9.326�

9.10.1.2 Average Output SNR

Analysis. In this section, starting from the MGF of �GSC, we obtain the average
combined SNR �GSC at the GSC output. For this purpose we first introduce the
“second” MGF of �GSC (using the terminology of Papoulis [112, Sec. 5.5]) or
equivalently, the cumulant generating function defined by

�GSC�s� D ln�M�GSC �s�� �9.327�

which for the GSC after substitution of (9.321) in (9.327) is given as

�GSC�s� D �Lc ln�1 � s���
L∑

lDLcC1

ln
(

1 � s�Lc
l

)
�9.328�

We now use the well-known result that the first cumulant of �GSC is equal to its
statistical average [112, Eq. (5-73)]:
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�GSC D d�GSC�s�

ds

∣∣∣∣
sD0

�9.329�

giving after substituting (9.328) in (9.329),

�GSC D Lc� C
L∑

lDLcC1

Lc�

l

D

1 C

L∑
lDLcC1

1

l


 Lc� �9.330�

which is the beautifully simple closed-form result originally obtained by Kong
and Milstein [141, Eq. (7)]. In Appendix 9D we give an alternative simple and
direct proof14 of the result in (9.330). It should be noted that since the MGF
contains information about all the statistical moments of the underlying RV (and
similarly for the cumulant generating function), it is then straightforward to obtain
simple closed-form expressions for the higher-order moments and cumulants
directly from higher-order derivatives of (9.321) and (9.328), respectively. For
example, the variance of �GSC, which is equal to the second cumulant of �GSC

[112, Eq. (5-73)], is given by

var��GSC� D d2�GSC�s�

ds2

∣∣∣∣
sD0

D

1 C

L∑
lDLcC1

Lc
l2


 Lc�2 �9.331�

in agreement with Eq. (18) of Ref. 145, derived independently by Win and
Winters.

We note, as pointed out in Ref. 141, that the result (9.330) generalizes the
average SNR results for conventional SC and MRC. In particular, for the specific
case of L D Lc (i.e., conventional MRC) it is easy to see that (9.330) reduces to
the classical result given in (9.50). Similarly, for the particular case of Lc D 1
(i.e., conventional SC), it is straightforward to see that (9.330) reduces to the
well-known result �SC D ∑L

lD1�1/l�� [4, Eq. (6.62)].

Numerical Examples. Figure 9.46 shows the normalized average combined SNR
�GSC/� as a function of the number of available resolvable paths L for various
values of the number of the Lc strongest combined paths. These results show
that for a fixed number L of available diversity paths, diminishing diversity gain
is obtained as the number of combined paths Lc increases. On the other hand,
Fig. 9.47 shows the normalized average combined SNR �GSC/� as a function of
the number of strongest combined paths Lc for various values of the number of

14 By direct proof we mean a proof that does not rely on Theorem 1 or equivalently, on the
transformation used in the Appendix of Ref. 141.
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Figure 9.46. Normalized average combined SNR �GSC/� versus the number of available
resolvable paths L for various values of the strongest combined paths Lc.

resolvable paths L. These curves indicate that for a fixed number of combined
paths, a nonnegligible performance improvement can be gained by increasing the
number of available diversity paths.

9.10.1.3 Outage Probability

Analysis. The outage probability, Pout, is defined as the probability that the GSC
output SNR falls below a certain predetermined threshold SNR, �th, and hence
can be obtained by integrating the PDF of �GSC, which can be obtained in closed
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Figure 9.47. Normalized average combined SNR �GSC/� versus the number of the strongest
combined paths Lc for various values of the number of the resolvable paths L.

form with the help of Eq. (3.351.1) of Ref. 36 as

PGSC
out D

(
L
Lc

){
1 � e��th/�

Lc�1∑
lD0

��th/��l

l!

C
L�Lc∑
lD1

��1�LcCl�1
(
L � Lc
l

)(
Lc
l

)Lc�1
[

1 � e��1Cl/Lc���th/��

1 C l/Lc

�
Lc�2∑
mD0

(�l
Lc

)m(
1 � e��th/�

m∑
kD0

��th/��k

k!

)]}
�9.332�
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As a check, it is easy to see that when Lc D L, (9.332) reduces to the well-
known outage probability result for MRC [4, Eq. (6.69)]:

PMRC
out D 1 � e��th/�

L�1∑
lD0

��th/��l

l!
�9.333�

In addition, for conventional SC (Lc D 1), (9.332) reduces to

PSC
out D L

[
1 � e��th/� C

L�1∑
lD1

��1�l
(
L � 1
l

)
1 � e��1Cl���th/��

1 C l

]

D L
L�1∑
lD0

��1�l
(
L � 1
l

)
1 � e��1Cl���th/��

1 C l
�9.334�

which can easily be shown using the identity [153, p. 171] and the binomial series
expansion to be in agreement with the previously known result [4, Eq. (6.58)],

PSC
out D �1 � e��th/� �L �9.335�

as expected.

Numerical Examples. Figure 9.48 shows the outage probability PGSC
out as a

function of the normalized average SNR per path �/�th for various values of
the available diversity paths L and strongest combined paths Lc. Notice again
the diminishing returns as the number of combined paths increases. Figure 9.49
shows PGSC

out as function of �/�th for a fixed Lc D 3 and L D 3, 4, and 5. Clearly,
these curves show that for fixed Lc a significant decrease in the outage probability
is obtained as the number of available diversity paths increases.

9.10.1.4 Average Error Rate

Binary Signals. Using the closed-form expression for SNR at the GSC output
(9.322), we get the average BER as a single finite-range integral given by

Pb�E� D

(
L
Lc

)
�

∫ �/2

0

∑L�Lc
lD0 ��1�l

(
L � Lc
l

)
�1 C l/Lc C g�/ sin2  ��1

�1 C g�/ sin2  �Lc�1
d 

�9.336�
Switching the order of summation and integration, and defining the integral
In��; c1, c2� as in (5A.42), where in general c1 and c2 are two constants
(independent of  ) that might be different, we can rewrite the average BER as

Pb�E� D
(
L
Lc

) L�Lc∑
lD0

��1�l
(
L � Lc
l

)
1 C l/Lc

ILc�1

(
�

2
; g�,

g�

1 C l/Lc

)
�9.337�
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Figure 9.48. Outage probability PGSC
out versus the normalized average SNR per path �/�th.

Since the integrals In��; c1, c2� can be found in closed form (see Appendix 5A),
(9.337) presents the final desired closed-form result. This result yields the same
numerical results as Eqs. (9) and (12) of Ref. 11, for the average BER of BPSK
(g D 1) with Lc D 2 and Lc D 3, respectively. Hence, (9.337) [or equivalently,
(9.336)] is a generic expression valid for any Lc � L.



390 PERFORMANCE OF MULTICHANNEL RECEIVERS

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

10−10
0 5 10 15 20 25 30

(a) L=3

(b) L=4

(c) L=5

Outage probability (Lc=3)

Normalized average SNR per symbol path [dB]

O
ut

ag
e 

P
ro

ba
bi

lit
y

Figure 9.49. Outage probability PGSC
out versus the normalized average SNR per path �/�th for

Lc D 3.

Average SER of M-PSK. Similarly, following the same steps as in (9.336)–
(9.337), we obtain the average SER of M-PSK as

Ps�E� D
(
L
Lc

) L�Lc∑
lD0

��1�l
(
L � Lc
l

)
1 C l/Lc

ILc�1

(
�M� 1��

M
; gPSK�,

gPSK�

1 C l/Lc

)
�9.338�

The result (9.338) generalizes the M-PSK average SER results of Chennakeshu
and Anderson [33] with MRC and conventional SC. For instance, for the
particular case of L D Lc (i.e., MRC), it can easily be shown that (9.338)
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agrees with Eq. (21) of Ref. 33. Similarly, for the particular case of Lc D 1
(i.e., conventional SC), it can also be shown that (9.338) reduces to Eq. (26)
of Ref. 33.

Average SER of M-QAM. Using the same steps as in (9.336)–(9.337), we obtain
the average SER of square M-QAM as

Ps�E� D
(
L
Lc

)4
(

1 � 1p
M

) L�Lc∑
lD0

��1�l
(
L � Lc
l

)
1 C l/Lc

ð ILc�1

(
�

2
; gQAM�,

gQAM�

1 C l/Lc

)
� 4

(
1 � 1p

M

)2

ð
L�Lc∑
lD0

��1�l
(
L � Lc
l

)
1 C l/Lc

ILc�1

(
�

4
; gQAM�,

gQAM�

1 C l/Lc

) �9.339�

The result (9.339) generalizes the square M-QAM SER result given in (9.23)
as well as those of Kim et al. [42,154,155] and Lu et al. [43] with conventional
MRC and SC. For instance, for the particular case of L D Lc (i.e., MRC), it can
be shown that (9.339) yields the same numerical results as Eq. (6) of Ref. 155
or Eq. (15) of Ref. 42, or equivalently, Eq. (12) of Ref. 43. Similarly, for the
particular case of Lc D 1 (i.e., conventional SC), it can also be shown that (9.339)
reduces to Eq. (23) of Ref. 43 or equivalently, to Eq. (13) of Ref. 155.

Numerical Examples. Figures 9.50 through 9.55 show the effect of Lc and L
on the average error rate of BPSK, 8-PSK, and 16-QAM. These curves confirm
previous trends in the sense that diminishing returns are obtained as the number of
strongest combined paths increases, but a significant performance improvement
can be gained by increasing the number of available diversity paths.

9.10.1.5 Performance of GSC over Nakagami-m Channels. The
“spacing” technique for ordered exponential RV’s which allows the necessary
partitioning of the integrand for the MGF-based approach to be applied success-
fully does not carry over to gamma-distributed variables, which are charac-
teristic of the instantaneous SNR per path for Nakagami-m fading. Thus, an
alternative approach is required to obtain analogous generic results for such
channels.

A partial solution to this problem was provided by the authors in a recent
paper [156] presenting a performance analysis of two specific hybrid SC/MRC
receivers: SC/MRC-2/3 and SC/MRC-2/4. The final result for the average BER
was shown to be expressible in terms of infinite series of hypergeometric func-
tions suitable for numerical evaluation. However, the method used in Ref. 156
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Figure 9.50. Average BER of BPSK versus the average SNR per path � .

does not allow for similar simplifications for the case of Lc > 2, and hence
analysis is not amenable to application to other SC/MRC receivers. Further-
more, it is limited to binary coherent modulations and as such does not apply
to the performance of SC/EGC or M-ary modulations such as M-ary phase-
shift-keying (M-PSK) and M-ary quadrature amplitude modulation (M-QAM). In
this section, applying the Dirichlet transformation [157] (a well-known technique
found in classical textbooks on integral calculus [158, p. 492; 159, Chap. XXV]
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Figure 9.51. Average BER of BPSK versus the average SNR per path � for Lc D 3.

to simplify certain multiple integrals), we develop a well-structured procedure that
allows obtaining the average error rate for arbitrary L and Lc, and which is appli-
cable for the performance analysis of not only SC/MRC with M-ary modulations
but also SC/EGC receivers [160]. Specific results are presented for a number of
examples both numerically and as simple closed-form expressions. These results
are compared with the particular results corresponding to Rayleigh fading. As
a by-product of the general results, some interesting closed-form expressions
are presented in Appendix 9E for certain single and multiple definite integrals
which heretofore appear not to have been reported in standard tabulations such
as Refs. 36 and 52.



394 PERFORMANCE OF MULTICHANNEL RECEIVERS

0 2 4 6 8 10 12 14 16 18 20
10−6

10−4

10−2

100
Average Symbol Error Rate of 8-PSK (L=3)

Average SNR per symbol per path [dB]

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e 
P s

(E
)

0 2 4 6 8 10 12 14 16 18 20
10−6

10−4

10−2

100
Average Symbol Error Rate of 8-PSK (L=4)

Average SNR per symbol per path [dB]

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e 
P s

(E
)

0 2 4 6 8 10 12 14 16 18 20
10−6

10−4

10−2

100
Average Symbol Error Rate of 8-PSK (L=5)

Average SNR per symbol per path [dB]

A
ve

ra
ge

 S
ym

bo
l E

rr
or

 R
at

e 
P s

(E
)

(a) Lc =1

(c) Lc =3

(a) Lc =1

(d) Lc =4

(a) Lc =1
(e) Lc =5

Figure 9.52. Average SER of 8-PSK versus the average SNR per symbol per path � .

GSC Input Joint Statistics. Let ˇl
Dm�l/� denote the normalized instantaneous

SNR for the lth channel with PDF

pˇl�ˇl� D ˇm�1
l

�m�
exp��ˇl�, ˇl ½ 0 �9.340�
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Figure 9.53. Average SER of 8-PSK versus the average SNR per symbol per path � for Lc D 3.

Consider ˇ1:L ½ ˇ2:L ½ Ð Ð Ð ½ ˇL:L: the order statistics obtained by arranging the
set fˇlgLlD1. Since the f˛lgLlD1 are assumed to be i.i.d. RV’s, so are the f�lgLlD1
and the fˇlgLlD1, and the joint PDF of the fˇl:LgLlD1 is then given by [112, p. 185;
139, Eq. (9)]

pˇ1:L,...,ˇL:L �ˇ1:L, . . . , ˇL:L� D L!
L∏
lD1

pˇ�ˇl:L�,

ˇ1:L ½ ˇ2:L ½ Ð Ð Ð ½ ˇL:L ½ 0 �9.341�
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Figure 9.54. Average SER of 16-QAM versus the average SNR per symbol per path � .

which can be rewritten after substitution of (9.340) in (9.341) as

pˇ1:L,...,ˇL:L �ˇ1:L, . . . , ˇL:L� D L!

[�m�]L

(
L∏
lD1

ˇl:L

)m�1

exp

(
�

L∑
lD1

ˇl:L

)
,

ˇ1:L ½ ˇ2:L ½ Ð Ð Ð ½ ˇL:L ½ 0 �9.342�
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Figure 9.55. Average SER of 16-QAM versus the average SNR per symbol per path � for
Lc D 3.

MGF of GSC Output. In this section we first summarize the procedure proposed
by Kabe [157] to obtain the MGF of any linear function of ordered gamma
variates. We then show how this result can be used to get the MGF of the GSC
output for arbitrary Lc and L.

To take advantage of the results of Kabe, let us first follow his notation and
reorder the RV’s from weakest to strongest by defining fxi:LgLiD1 as the reverse-
ordered set corresponding to fˇlgLlD1, namely, xi:L

DˇL�iC1:L , i D 1, 2, . . . , L,
with the joint PDF obtained from (9.342) as

px1:L,...,xL:L �x1:L, . . . , xL:L� D L!

[�m�]L

(
L∏
iD1

xi:L

)m�1

exp

(
�

L∑
iD1

xi:L

)
,

0 � x1:L � x2:L � Ð Ð Ð � xL:L �9.343�
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The MGF of
∑L

iD1 uixi:L , where the fuigLiD1 are constants, is given by

Ex1:L,...,xL:L

[
es
∑L

iD1
uixi:L

] D
∫ 1

0
Ð Ð Ð

∫ x3:L

0

∫ x2:L

0︸ ︷︷ ︸
L�fold

exp

(
s

L∑
iD1

uixi:L

)

ð px1:L,...,xL:L �x1:L, . . . , xL:L� dx1:L dx2:L Ð Ð ÐdxL:L

D L!

[�m�]L

∫ 1

0
Ð Ð Ð

∫ x3:L

0

∫ x2:L

0︸ ︷︷ ︸
L�fold

(
L∏
iD1

xi:L

)m�1

ð exp

[
�

L∑
iD1

�1 � uis�xi:L

]
dx1:L dx2:L Ð Ð ÐdxL:L

�9.344�
which can be viewed as a multiple integral of the Dirichlet–Louiville type
[159, Chap. XXV]. The difficulty in evaluating this L-fold integral is that the
integration limits are functions of the integration variables themselves. This is
where the Dirichlet transformation steps in to simplify the problem. In particular,
using the transformation [157, Eq. (2.2)]

xi:L D
L∏
lDi
�l �9.345�

so that 0 < �l < 1 for l D 1, 2, . . . , L � 1 and �L > 0, (9.344) can be rewritten as

Ex1:L,...,xL:L

[
es
∑L

iD1
uixi:L

] D L!

[�m�]L

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
�L�1��fold

∫ 1

0

(
L∏
lD1

�lm�1
l

)

ð exp[��LD�s; �1, �2, . . . , �L�1�]d�L d� d�L�1 Ð Ð Ðd�1

�9.346�
where each integral now has limits that are independent of the integration
variables and the function D�s; �1, �2, . . . , �L�1� is defined by

D�s; �1, �2, . . . , �L�1� D �1 � uLs�C �L�1�1 � uL�1s�C �L�1�L�2�1 � uL�2s�

C Ð Ð Ð C �L�1�L�2 Ð Ð Ð �1�1 � u1s� �9.347�

Note that D�s; �1, �2, . . . , �L�1� is independent of �L; thus, the first integration in
(9.346) (i.e., the one on �L) is of the form∫ 1

0
�Lm�1
L exp[��LD�s; �1, �2, . . . , �L�1�] d�L �9.348�

which has the closed-form result [36, Eq. (3.381.4)]
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∫ 1

0
�Lm�1
L exp[�D�s; �1, �2, . . . , �L�1��L]d�L D �Lm�

[D�s; �1, �2, . . . , �L�1�]Lm
�9.349�

Thus, applying (9.349) to (9.346) immediately reduces the L-fold integral to an
(L � 1)-fold integral given by

Ex1:L,...,xL:L

[
es
∑L

iD1
uixi:L

] D L!�Lm�

[�m�]L

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
�L�1��fold

(
L�1∏
lD1

�lm�1
l

)

ð [D�s; �1, �2, . . . , �L�1�]
�Lm d�L�1 Ð Ð Ðd�1 �9.350�

where each integral has finite limits that are independent of the integration
variables.

We now use Kabe’s procedure to derive the MGF of the total output SNR
�GSC, which can be expressed in terms of the fxi:LgLiD1 as

�GSC
D

Lc∑
lD1

�l:L D �

m

Lc∑
lD1

ˇl:L D
L∑
iD1

ui xi:L �9.351�

where the weights fuigLiD1 are defined by

u1 D u2 D Ð Ð Ð D uL�Lc D 0

uL�LcC1 D uL�LcC2 D Ð Ð Ð uL D �

m

�9.352�

Hence, using the result (9.350), the MGF of the total combined SNR can be
written as

M�GSC�s� D L!�Lm�

��m��L

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
�L�1��fold

(
L�1∏
lD1

�lm�1
l

)
�D�s; �1, �2, . . . , �L�1��

�Lm

ð d�L�1 Ð Ð Ðd�1 �9.353�

where D�s; �1, �2, . . . , �L�1� is found after substitution of the weights of (9.352)
in (9.347), giving

D�s; �1, �2, . . . , �L�1�

D
(

1 � �

m
s

)
�1 C �L�1 C �L�1�L�2 C Ð Ð Ð C �L�1�L�2 Ð Ð Ð �L�LcC2�L�LcC1�

C �L�1�L�2 Ð Ð Ð �L�LcC1�L�Lc C Ð Ð Ð C �L�1�L�2 Ð Ð Ð �2 C �L�1�L�2 Ð Ð Ð �1

�9.354�
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In view of the form of D�s; �1, �2, . . . , �L�1� in (9.354) the next integrations (i.e.,
the ones on �L�1, �L�2, . . .) can be computed in a recursive fashion [160].

Numerical Examples. With the MGF of the SNR output in hand, we can
compute the average SER for a wide variety of modulation schemes. As examples,
Figs 9.56 through 9.61 show the effect of Lc and L on the average error rate of
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Figure 9.56. Average BER of BPSK versus the average SNR per bit path � for L D 4 and
(a) Lc D 1 (SC), (b) Lc D 2, (c) Lc D 3, and (d) Lc D 4 (MRC).
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Figure 9.57. Average BER of BPSK versus the average SNR per bit per path � for Lc D 2 and
(a) L D 2, (b) L D 3, and (c) L D 4.

BPSK, 8-PSK, and 16-QAM, for various values of the fading parameter m. The
curves for m D 1 are in agreement with the Rayleigh fading results, as expected.
Furthermore, results for BPSK with SC/MRC-2/3 and SC/MRC-2/4 match the
results reported in Ref. 156. These numerical results confirm trends observed
for Rayleigh fading in the sense that diminishing returns are obtained as the
number of combined paths increases, but a significant performance improvement
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Figure 9.58. Average SER of 8-PSK versus the average SNR per symbol per path � for L D 4
and (a) Lc D 1 (SC), (b) Lc D 2, (c) Lc D 3, and (d) Lc D 4 (MRC).

can be gained by increasing the number of available diversity paths. In addition,
Figs. 9.56, 9.58, and 9.60 (in which the number of available diversity paths L is
fixed at 4 and the number of combined paths Lc is varied from 1 to 4) indicate
that the more severe the fading (i.e., the lower the fading parameter m), the more
diminishing are the returns obtained for an increasing number of combined paths.
On the other hand, Figs. 9.57, 9.59 and 9.61 (in which the number of combined
paths Lc is fixed at 2 and the number of available diversity paths L is varied
from 2 to 4) show that the performance improvement gained by increasing the
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Figure 9.59. Average SER of 8-PSK versus the average SNR per symbol per path � for Lc D 2
and (a) L D 2, (b) L D 3, and (c) L D 4.

number of available diversity paths is more important for channels subject to a
low amount of fading.

9.10.2 Generalized Switched Diversity

We now focus on the performance of a GSSC scheme [115]. This scheme
involves first SSC, followed by MRC or EGC, the operation of which is as
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Figure 9.60. Average SER of 16-QAM versus the average SNR per symbol per path � for L D 4
and (a) Lc D 1 (SC), (b) Lc D 2, (c) Lc D 3, and (d) Lc D 4 (MRC).

follows: The incoming signal is received over an even number 2L of diversity
branches that are grouped in pairs. Every pair of signals is fed to a switching
unit that operates according to the rules of SSC. The output from the L switching
units are connected to an MRC or EGC combiner. This scheme is motivated by
the GSC scheme that was analyzed in the preceding section, which inherits one
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Figure 9.61. Average SER of 16-QAM versus the average SNR per symbol per path � for
Lc D 2 and (a) L D 2, (b) L D 3, and (c) L D 4.

of the main disadvantages of SC: the necessity of a “centralized,” continuous,
and simultaneous monitoring of all the diversity branches. On the other hand, the
GSSC scheme offers a decentralized, simpler (although less efficient) solution
and can be viewed as a more practical implementation of GSC. In what follows
we evaluate the performance of the GSSC scheme and then compare it to GSC.
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9.10.2.1 GSSC Output Statistics

Joint PDF. For simplicity let us assume that all the pairs of signals at the SSC
unit inputs are i.i.d. Then the joint PDF at the MRC input is given by

p�1,�2,...,�L ��1, �2, . . . , �L� D
L∏
lD1

p�SSC��l� �9.355�

where p�SSC��l� denotes the SNR PDF at the output of the lth SSC unit and is
given by

p�SSC��l� D
{
P�l ��l�p�l��l� if �Tl < �l
[1 C P�l ��Tl�]p�l��l� if �Tl ½ �l

�9.356�

where P�l ��l� and p�l��l� are the CDF and PDF of the SSC unit’s individual
branches, respectively, and are given in Table 9.5.

MGF. Since the L MRC inputs are combined according to the rules of MRC,
�GSSC D ∑L

lD1 �l, then assuming independent fading across the SSC units, the
MGF of the GSSC SNR output is just the product of the L MGF’s of the SNR’s
at the L SSC outputs. In the particular case of Nakagami-m fading, using (9.225),
the MGF of the GSSC output can be obtained as

M�GSSC �s� D
L∏
lD1

(
1 � s�l

ml

)�ml

1 C

�ml, �1 � ��l/ml�s��ml�T/�l��� �ml, �ml/�l��T�
�ml�



�9.357�

Similarly for the Nakagami-n (Rician) fading case, using (9.226), the MGF of
the GSSC output can be obtained as

M�GSSC �s� D
L∏
lD1

(
1 � s�l

1 C n2
l

)�1

exp

(
s�ln

2
l

1 C n2
l � s�l

)

ð

1 � Q1


nlp2,

√
2�1 C n2

l ��T
�l




C Q1


nl

√
2�1 C n2

l �

1 C n2
l � s�l

,

√√√√2

(
1 C n2

l

�l
� s

)
�T




 �9.358�

9.10.2.2 Average Probability of Error. Using the MGF of the GSSC output
SNR determined in the preceding section, we can determine the average prob-
ability of error of several modulation schemes via the MGF-based approach.
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Differentiating the resulting expressions with respect to the L switching thresh-
olds, it can easily be shown (because of the product form of the integrand) that
the optimal thresholds of the individual switching units will yield the overall
optimum performance. This means that GSSC performance can be optimized
without much more computational complexity than conventional SSC. As an
example, Fig. 9.62 compares the average BER performance of SC/MRC-2/4 with
the performance of SSC/MRC-2/4 (using the optimum switching thresholds in
all the switching units) for m D 0.5, 1, and 2. Note that SSC/MRC-2/4 suffers
about a 1-dB penalty compared to SC/MRC-2/4 in the medium- to high-average
SNR region.
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Figure 9.62. Comparison of the average BER of BPSK with MRC-2, SSC/MRC-2/4,
SC/MRC-2/4, and MRC-4 over Nakagami-m fading channels.
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9.10.3 Two-Dimensional Diversity Schemes

In this section we analyze the performance of two-dimensional diversity systems
that we described in Section 9.1.3.2. The aim is to accurately quantify the effect
of the fading severity and correlation as well as the power delay profile on the
error rate and outage probability performance. As in the preceding section, we
again rely on the MGF-based approach, which is going to be particularly handy
in this case. In particular, when MRC or postdetection EGC is used for both
dimensions, finding the PDF of the combined SNR in a simple form (as required
by the classical approach to tackle these problems) is particularly difficult in the
presence of fading correlation, a nonuniform power delay profile and/or when
the fading tends to follow other than Rayleigh statistics, whereas the MGF-based
approach will circumvent much of the tedium and intractability in the classical
approach, as we show next.

9.10.3.1 Performance Analysis. Consider a two-dimensional diversity
system consisting, for example, of D antennas, each followed by an Lc-finger
RAKE receiver. As an example of practical channel conditions of interest, let us
assume that for a fixed antenna index d the f�l,dgLclD1 are independent but noniden-
tically distributed. On the other hand, let us assume that for a fixed multipath
index l, the f�l,dgDdD1 are correlated (in space) according to model A, B, C, or
D (as described in Section 9.6). When MRC or postdetection EGC combining is
applied for both space and multipath diversity, we have a conditional combined
SNR/symbol given by

�t D
D∑
dD1

Lc∑
lD1

�l,d

D
D∑
dD1

�d

(
where �d D

Lc∑
lD1

�l,d

)

D
Lc∑
lD1

�l

(
where �l D

D∑
dD1

�l,d

)
�9.359�

Finding the average error rate or outage probability performance of such systems
with the classical PDF-based approach is difficult since the PDF of �t cannot
be found in a simple form. However, using the MGF-based approach for the
average BER, for example of BPSK, we have after switching the order of
integration

Pb�E� D 1

�

∫ �/2

0
E�1,�2,...,�Lc

[
exp

(
�
∑Lc

lD1 �l
sin2  

)]
d �9.360�
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Since the f�lgLclD1 are assumed to be independent, then

Pb�E� D 1

�

∫ �/2

0

Lc∏
lD1

E�l

[
exp

(
� �l

sin2  

)]
d 

D 1

�

∫ �/2

0

Lc∏
lD1

Mil

(
� 1

sin2  

)
d �9.361�

where Mil�s� is given by (9.156), (9.163), (9.167), or (9.169), depending on the
space fading correlation model under consideration.

Application. As an application, let us consider a two-dimensional RAKE
receiver operating over a Nakagami-m fading channel characterized by a spatial
correlation coefficient &l along the path of index l�l D 1, 2, . . . , Lc� and the same
exponential PDP for the D RAKE receivers:

�l,d D �1,1e
��l�1�υ, l D 1, 2, . . . , Lc �9.362�

where υ denotes the average fading power decay factor. Substituting (9.163) in
(9.361), we obtain the average BER for BPSK with a constant spatial fading
correlation profile as

Pb�E� D 1

�

∫ �/2

0

Lc∏
lD1

(
1 C �l,d�1 � p

&l C D
p
&l�

ml sin2  

)�ml

ð
(

1 C �l,d�1 � p
&l�

ml sin2  

)�ml�D�1�

d �9.363�

Similarly substituting (9.178) in (9.361), we obtain the average BER for BPSK
with a tridiagonal spatial fading correlation profile as

Pb�E� D 1

�

∫ �/2

0

Lc∏
lD1

D∏
dD1

[
1 � �l,d

ml sin2  

(
1 C 2

p
&l cos

d�

DC 1

)]�ml
d 

�9.364�

9.10.3.2 Numerical Examples. As an example, the average BER perfor-
mance curves of BPSK with two-dimensional MRC RAKE reception over an
exponentially decaying power delay profile and with constant or tridiagonal
correlation between the antenna elements of the array [as given by (9.363)
and (9.364), respectively] are shown in Fig. 9.63. The corresponding outage
probability curves obtained by using the numerical technique presented in
Section 9.5 are given in Fig. 9.64. Again notice the relatively important effect of
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Figure 9.63. Average BER of BPSK with two-dimensional MRC RAKE reception (Lc D 4 and
D D 3) over an exponentially decaying power delay profile and constant or tridiagonal spatial
correlation between the antennas for various values of the correlation coefficient: (a) & D 0;
(b) & D 0.2; (c) & D 0.4.

the power delay profile. Also, diversity systems subject to tridiagonal correlation
have a slightly better performance than those subject to constant correlation in
most cases. However, the opposite occurs at high-average SNR for channels with
a high amount of fading (m D 0.5) and a relatively strong correlation between
the paths (& D 0.4).
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APPENDIX 9A: ALTERNATIVE FORMS OF THE BIT ERROR
PROBABILITY FOR A DECISION STATISTIC THAT IS A
QUADRATIC FORM OF COMPLEX GAUSSIAN
RANDOM VARIABLES

Appendix B of Ref. 7 considers a test against a zero threshold of a RV, D, which
is a quadratic form of complex Gaussian RVs Xn,Yn, that is,

D D
L∑
nD1

dn �9A.1�

where
dn D AjXnj2 C BjYnj2 CCXnY

Ł
n C CŁXŁ

nYn �9A.2�

in which A, B, and C are constants. The pairs fXn, Yng are mutually independent,
and thus the quadratic forms fdng are likewise independent; however, for each
n,Xn and Yn can be correlated with each other. If D characterizes the decision
variable at the output of the detector in a multichannel communication system
transmitting binary signals over the AWGN channel, the probability PrfD < 0g is
representative of the BEP, Pb�E�, at the receiver. Using a characteristic function
method, Proakis [7] finds an expression [see Eq. (B-21)] for this probability in
terms of the first-order Marcum Q-function, modified Bessel functions of order
0, 1, . . . , L � 1, and other elementary functions, namely,
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Using the relation between the first- and mth-order Marcum Q-functions given
by [see Eq. (B-17) and the associated footnote of Ref. 7]
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then after some simplification (9A.3) can be written as
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where :
D v2/v1.

The advantage of the form in (9A.7) over that in (9A.3) is that when used
to assess the performance in the presence of fading where additional statistical
averaging over the arguments a and b is required, we shall be able to make use of
the alternative forms of both the first-order and generalized (mth-order) Marcum
Q-functions developed in Chapter 4. Specifically, we shall soon show that in
principle, Pb�E� can be expressed as a single integral with finite limits and an
integrand which is a product of a trigonometric factor (complicated as it might be)
and a single exponential factor of the form exp[��b2/2��1 C 2? sin � C ?2�], 0C �
?
D a/b < 1. Before proceeding with this development, however, we can first

perform some further simplification of (9A.7). Recognizing that
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then using this replacement in the second term of (9A.7) gives after some
manipulation

Pb�E� D Q1�a, b��


1 �

L�1∑
kD0

(
2L � 1
k

)
:k

�1 C :�2L�1


 exp

(
�a

2 C b2

2

)
I0�ab�

C 1

�1 C :�2L�1

[
L�2∑
kD0

(
2L � 1
k

)
:k[QL�k�a, b�� Q1�a, b�]

�
2L�1∑
kDLC1

(
2L � 1
k

)
:k[Qk�LC1�b, a�� Q1�b, a�]

]
�9A.9�
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For L D 1, the two latter two summations in (9A.9) do not contribute and the
first sum reduces to the term corresponding to k D 0, whereupon one immediately
obtains

Pb�E� D Q1�a, b�� :

1 C :
exp

(
�a

2 C b2

2

)
I0�ab� �9A.10�

which agrees with the result in Eq. (B-21) of Ref. 7.
As a final simplification, in the second term of (9A.9) let l D L � k, and in

the third term let l D k � L C 1. Then we can rewrite (9A.9) as

Pb�E� D Q1�a, b��


1 �

L�1∑
kD0

(
2L � 1
k

)
:k

�1 C :�2L�1


 exp

(
�a

2 C b2

2

)
I0�ab�

C 1

�1 C :�2L�1

[
L∑
lD2

(
2L � 1
L � l

)
:L�l[Ql�a, b�� Q1�a, b�]

�
L∑
lD2

(
2L � 1
L � l

)
:L�1Cl[Ql�b, a�� Q1�b, a�]

]
�9A.11�

The special case of : D v2/v1 D 1 (which occurs when w D 0) is of interest
in many communication problems. For this case, (9A.11) simplifies to

Pb�E� D Q1�a, b�� 1

2
exp

(
�a

2 C b2

2

)
I0�ab�C 1

22L�1

L�1∑
kD0

(
2L � 1
k

)

ð [�QL�k�a, b�� QL�k�b, a��� �Q1�a, b�� Q1�b, a��] �9A.12�

where we have added back the k D L � 1 term in the sum since it contributes zero
value anyway. Now recognizing that the first-order Marcum Q-function terms do
not depend on the summation index k, we can simplify (9A.12) still further to

Pb�E� D Q1�a, b�� 1

2
exp

(
�a

2 C b2

2

)
I0�ab�C 1

22L�1

L�1∑
kD0

(
2L � 1
k

)

ð [QL�k�a, b�� QL�k�b, a�] � 1

2
[Q1�a, b�� Q1�b, a�] �9A.13�

However, comparing Eqs. (40) and (42) of Ref. 62, we get



APPENDIX 9A: ALTERNATIVE FORMS OF THE BIT ERROR PROBABILITY 425

Q1�a, b�� 1

2
exp

(
�a

2 C b2

2

)
I0�ab� D 1

2
[1 � Q1�b, a�C Q1�a, b�]

�9A.14�
Thus, combining (9A.13) and (9A.14) gives the final desired result:

Pb�E� D 1

2
C 1

22L�1

L�1∑
kD0

(
2L � 1
k

)
[QL�k�a, b�� QL�k�b, a�]

D 1

2
C 1

22L�1

L∑
lD1

(
2L � 1
L � l

)
[Ql�a, b�� Ql�b, a�] �9A.15�

We are now prepared to justify an earlier statement: the ability to express the
BEP in the form of a single integral with finite limits and an integrand composed
of elementary functions. Using the alternative forms of the generalized Marcum
Q-functions in (4.30) and (4.38), we immediately get

Pb�E� D 1

2�

∫ �

��

f��; ?�

1 C 2? sin � C ?2
exp

[
�b

2

2
�1 C 2? sin � C ?2�

]
d�,

0C � ?
D a/b < 1 �9A.16�

where

f��; ?� D 1

22L�1

L∑
lD1

(
2L � 1
L � l

)[
�?��l�1� � ?lC1� cos

[
�l� 1�

(
� C �

2

)]

C �?��l�2� � ?l� cos
[
l
(
� C �

2

)]]
�9A.17�

As a check, for L D 1, (9A.17) reduces to

f��; �� D 1
2 �1 � ?2� �9A.18�

in which case (9A.16) becomes

Pb�E� D 1

4�

∫ �

��

1 � ?2

1 C 2? sin � C ?2
exp

[
�b

2

2
�1 C 2? sin � C ?2�

]
d�,

0C � ?
D a/b < 1 �9A.19�

Comparing (9A.15) with (9A.19) agrees with a similar comparison of (8A.5) and
(8A.12).

Finally, for the more general case where : D v2/v1 6D 1, since the second term
of (9A.11) is expressible in the desired single integral form [see (4.65)], it should
be clear that the BEP of (9A.11) can be expressed in the form (9A.16), where
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the function f��; ?� is composed of the sum of the various trigonometric factors
in the alternative representations of each term, each now weighted by terms that
include a dependence on the ratio : D v2/v1. The final result can be written as

Pb�E� D :L

2��1 C :�2L�1

∫ �

��

f�L; ?, :; ��

1 C 2? sin � C ?2
exp

[
�b

2

2
�1 C 2? sin � C ?2�

]
d�,

0C � ?
D a/b < 1 �9A.20�

where
f�L; ?, :; �� D f0�L; ?, :; ��C f1�L; ?, :; �� �9A.21�

with1

f0�L; ?, :; �� D
[

� �1 C :�2L�1

:L
C

L∑
lD1

(
2L � 1
L � l

)
�:�l C :l�1�

]
?�? C sin �

f1�L; ?, :; �� D
L∑
lD1

(
2L � 1
L � l

){
�:�l?�lC1 � :l�1?lC1� cos

[
�l� 1�

(
� C �

2

)]

� �:�l?�lC2 � :l�1?l� cos
[
l
(
� C �

2

)]}
�9A.22�

As a check, for the special case of L D 1, we obtain

f0�L; ?, :; �� D 0, f1�L; ?, :; �� D 1 � :?2 C ?�1 � :� sin �

:
�9A.23�

and hence (9A.20) reduces to (9A.10), as expected.
Before concluding this appendix, we wish to point out that the upper and

lower bounds found for the generalized Marcum Q-function in Chapter 4 are
useful here in obtaining tight upper bounds on BEP. In applying these bounds
on the Q-function itself, it is important to note that in the expressions for BEP
developed in this appendix [e.g., (9A.11) and (9A.15)], the arguments of the
second generalized Marcum Q-function are in reverse order to those in the first
one. Thus, for example, for the case a < b (the usual case of practical interest in
communication problems), using the tight upper bound of (4.57a) for the first term
and the tight lower bound of (4.64a) for the second would produce a simple tight
upper bound on BEP. The specifics of these upper bounds on BEP are discussed
in Section 9.4.1.3 paying most attention to the special case of : D v2/v1 D 1 and
the further refinements of these bounds required by the necessity of averaging
over the fading distributions.

1 As the book was going to press, Mr. L.-F. Tsaur of Conexant Systems Inc, Newport Beach, CA
pointed out to the authors that f0�L; ?, :; � can be proven equal to zero for all values of L and :
independent of ? and  .
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APPENDIX 9B: SIMPLE NUMERICAL TECHNIQUES FOR THE
INVERSION OF THE LAPLACE TRANSFORM OF CUMULATIVE
DISTRIBUTION FUNCTIONS

9B.1 Euler Summation-Based Technique

Let X be a positive random variable (RV) with CDF PX�x� and let OPX�s� denote
the Laplace transform of PX�x� so that

OPX�s� D
∫ 1

0
PX�x�e

�sx dx

PX�x� D 1

2�j

∫ aCj1

a�j1
OPX�s�esx ds

�9B.1�

PX�x� can be obtained from OPX�s� using the following three steps of a useful and
simple numerical technique presented in Ref. 75.

Step 1. Using the change of variables s D aC ju the inverse Laplace transform,
as given in (9B.1), can be expressed as

PX�x� D eax

2�

∫ 1

�1
Ref OPX�aC ju�g cos�ux�� Imf OPX�a C ju�g sin�ux� du

�9B.2�
where RefÐg and ImfÐg denote the real and imaginary parts, respectively. Since X
is a positive RV, PX��x� D 0 for x ½ 0 and hence∫ 1

�1
Ref OPX�a C ju�g cos�ux� du D �

∫ 1

�1
Imf OPX�a C ju�g sin�ux� du

�9B.3�
Thus (9B.2) simplifies to

PX�x� D eax

�

∫ 1

�1
Ref OPX�a C ju�g cos�ux� du �9B.4�

In addition, using the fact that PX�x� is real, Ref OPX�aC ju�g is even with respect
to u. Thus, (9B.4) can be rewritten as

PX�x� D 2eax

�

∫ 1

0
Ref OPX�a C ju�g cos�ux� du �9B.5�

Step 2. Letting a D A/2x, then evaluating the integral in (9B.5) by means of
the trapezoidal rule with step size h D �/�2x�, we get

PX�x� D eA/2

x

1∑
nD0

��1�n

˛n
Re
{

OPX
(
AC 2�jn

2x

)}
C E�A� �9B.6�
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with

˛n D
{

2, n D 0
1, n D 1, 2, . . . , N

and where E�A� is a discretization error term that can be bounded, with the help
of the Poisson summation formula, by

jE�A�j � e�A

1 � e�A ' e�A �9B.7�

Step 3. Truncating the infinite summation in (9B.6), we obtain

PX�x� D eA/2

x

N∑
nD0

��1�n

˛n
Re
{

OPX
(
AC 2�jn

2x

)}
C E�A�C E�N� �9B.8�

where E�N� is a truncation error. Since (9B.8) is in the form of an alternating
series, its convergence can be accelerated by the Euler summation technique,
which can be viewed as the binomial average of K partial series of length
N,NC 1, . . . , NCK, respectively. This leads to the final desired result:

PX�x� D
K∑
kD0

2�K
(
K
k

)[
eA/2

x

NCk∑
nD0

��1�n

˛n
Re
{

OPX
(
AC 2�jn

2x

)}]

C E�A�C E�N,K� �9B.9�

where the overall truncation error term E�N,K� can be estimated by

E�N,K� ' eA/2

x

K∑
kD0

2�K��1�NC1Ck
(
K
k

)
Re
{

OPX
(
AC 2�j�NC k C 1�

2x

)}
�9B.10�

9B.2 Gauss–Chebyshev Quadrature-Based Technique

Let  be a real RV with PDF p�x� and let Op�s� denote the Laplace transform
of p�x�, so that

Op�s� D
∫ 1

�1
p�x�e

�sx dx �9B.11�

The CDF of  evaluated at zero (i.e., Prf < 0g) can be computed from
Op�s� using a Gauss–Chebyshev quadrature-based numerical technique given
in Refs. 161 and 162, which we describe briefly next.
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Using the Laplace inversion formula, we can write

Prf < 0g D 1

2�j

∫ cCj1

c�j1
Op�s�ds

s
�9B.12�

Since a probability is always a real quantity, (9B.12) can be rewritten as

Prf < 0g D 1

2�

∫ 1

�1

Op�c C jω�

cC jω
dω

D 1

2�

∫ 1

�1

c Ð Ref Op�c C jω�g C ω Ð Imf Op�cC jω�g
c2 C ω2

dω �9B.13�

Using the change of variable ω D c�
p

1 � x2/x� in (9B.13) yields

Prf < 0g D 1

2�

∫ 1

�1

[
Re

{
Op
(
cC jc

p
1 � x2

x

)}

C
p

1 � x2

x
Im

{
Op
(
cC jc

p
1 � x2

x

)}]
dxp

1 � x2
�9B.14�

which is of the form
∫ 1

�1f�x��dx/
p

1 � x2� and thus can be computed efficiently
using the Gauss–Chebyshev quadrature rule [52, Eq. (25.4.38)] with an even
number n of nodes as2

Prf < 0g D 1

n

n/2∑
kD1

[Ref Op�c C jc�k�g C �k Imf Op�cC jc�k�g] C En �9B.15�

where �k D tan[�2k � 1��/�2n�] and En is an error term that tends to zero as n
goes to infinity. In practice, n can be chosen by computing (9B.15) for increasing
values of n and stopping when the resulting numerical value does not change
significantly. In addition, in (9B.15) c is a positive real number that should be
chosen to guarantee quick convergence of (9B.15). Methods to choose proper
values of c are discussed in Refs. 161 and 162. In particular, according to
Refs. 161 and 162, the best value for c is the value for which Op�c� is minimum.
Alternatively, if that minimum value cannot be found easily, c may be set equal
to one-half the smallest real part of the poles of Op�s� without significant increase
in n for a predetermined accuracy.

2 Note that the form of the result in (9B.15) relies on the fact that f�x� is an even function of x.
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APPENDIX 9C: PROOF OF THEOREM 1

Starting with the transformation (9.3.17), note that

∂xl
∂�l:L

D 1

∂xl
∂�lC1:L

D �1

�9C.1�

Hence, the Jacobian of the transformation

jJ�x1, x2, . . . , xL�j D

∣∣∣∣∣∣∣∣∣




1 �1 0 Ð Ð 0
0 1 �1 0 Ð 0
Ð Ð Ð Ð Ð Ð
0 Ð Ð Ð 1 �1
0 Ð Ð 0 0 1



∣∣∣∣∣∣∣∣∣
LðL

D 1 �9C.2�

Thus,

px1,x2,...,xL �x1, x2, . . . , xL� D p�1:L,�2:L,...,�L:L ��1:L, �2:L, . . . , �L:L�

jJ�x1, x2, . . . , xL�j
D p�1:L,�2:L,...,�L:L ��1:L, �2:L, . . . , �L:L� �9C.3�

Substituting (9.311) for Lc D L in the right-hand side of (9C.3), we get

px1,x2,...,xL �x1, x2, . . . , xL� D L!

�L
exp

(
�
∑L

lD1 �l:L
�

)
�9C.5�

Since the �l:L’s can be expressed in terms of the xl values as

�l:L D
L∑
kDl

xk

we can rewrite px1,x2,...,xL �x1, x2, . . . , xL� of (9C.4) as

px1,...,xL �x1, . . . , xL� D L!

�L
exp

(
�
∑L

lD1

∑L
kDl xk

�

)

D L�L � 1� Ð Ð Ð 1

�� Ð Ð Ð � exp
(

�x1 C 2x2 C Ð Ð Ð C LxL
�

)

D
L∏
lD1

l

�
exp

(
� lxl
�

)
D

L∏
lD1

pxl �xl� �9C.6�

which concludes the proof.



APPENDIX 9D: DIRECT PROOF OF EQ. (9.330) 431

APPENDIX 9D: DIRECT PROOF OF EQ. (9.330)

Since the f�lgLlD1 are i.i.d., the PDF of the ordered RV �l:L, p�l:L ��l:L�, can be
expressed in terms of the PDF, p����, and CDF, P����, of the original unordered
RV � as [112, Eq. (185); 148, Eq. (2.1.6)]

p�l:L ��� D L!

�L � l�!�l� 1�!
[P����]

L�l[1 � P����]
l�1p����, � ½ 0

�9D.1�
For Rayleigh fading, substituting (9.312) and (9.313) in (9D.1), we obtain the
PDF of �l:L as

p�l:L ��� D L!

�L � l�!�l� 1�!
�1 � e��/� �L�l e

�l�/�

�
, � ½ 0 �9D.2�

Hence, the average of �l:L is given by

�l:L D L!

�L � l�!�l� 1�!

∫ 1

0
��1 � e��/��L�l e

�l�/�

�
d� �9D.3�

Making the change of variable u D e��/� in (9D.3), we get

�l:L D � L!�

�L � l�!�l� 1�!

∫ 1

0
ln u�1 � u�L�lul�1 du �9D.4�

which can be evaluated in terms of the beta function, B�Ð, Ð� [36, Sec. 8.38] and
the psi function,  �Ð� [36, Sec. 8.36], with the help of Eq. (4.253.1) of Ref. 36
as

�l:L D � L!�

�L � l�!�l� 1�!
B�l, L � lC 1�[ �l��  �L C 1�] �9D.5�

Using the beta function property [36, Eq. (8.384.1)]

B�l, L � lC 1� D �l��L � lC 1�

�L C 1�
D �l� 1�!�L � l�!

L!
�9D.6�

as well as the psi function property [36, Eq. (8.365.3)]

 �L C 1��  �l� D
L�l∑
kD0

1

lC k
�9D.7�

in (9D.5) yields

�l:L D �
L�l∑
kD0

1

lC k
�9D.8�
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Since the combined SNR �GSC at the GSC output is �GSC D ∑Lc
lD1 �l:L, the

average combined SNR �GSC is given by

�GSC D
Lc∑
lD1

�l:L �9D.9�

Using (9D.8) in (9D.9), we get

�GSC D �
Lc∑
lD1

L�l∑
kD0

1

lC k

D �

[(
1 C 1

2
C Ð Ð Ð C 1

L

)
C
(

1

2
C 1

3
C Ð Ð Ð C 1

L

)

C Ð Ð Ð C
(

1

Lc
C 1

Lc C 1
C Ð Ð Ð C 1

L

)]

D �

(
1 C 2 ð 1

2
C 3 ð 1

3
C Ð Ð Ð C Lc ð 1

Lc
C Lc ð 1

Lc C 1
C Ð Ð Ð C Lc ð 1

L

)

D �

(
Lc C Lc

Lc C 1
C Lc
Lc C 2

C Ð Ð Ð C Lc
L

)

D

1 C

L∑
lDLcC1

1

l


Lc� �9D.10�

which is the final desired result in agreement with (9.330) or equivalently, Eq. (7)
of Ref. 141. Note that the second moment of �2

GSC D ∫1
0 �2p�l:L ��� d� [and

hence the variance var[�GSC] D �2
GSC � ��GSC�

2 as given in (9.331)] can also be
obtained directly by using Eq. (4.261.21) of Ref. 36.

APPENDIX 9E: SPECIAL DEFINITE INTEGRALS

In this appendix we present some interesting closed-form expressions for certain
single and multiple definite integrals which heretofore appear not to have been
reported in standard tabulations such as Refs. 36 and 52. Consider the special
case Lc D L in (9.353), corresponding to combining all branches. For this case
the function D�s; �1, �2, . . . , �L�1� of (9.354) reduces to

D�s; �1, �2, . . . , �L�1� D
(

1 � �

m
s

)
�1 C �L�1 C �L�1�L�2 C �L�1�L�2�L�3

C Ð Ð Ð C �L�1�L�2�L�3 Ð Ð Ð �2�1� �9E.1�
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which results in the MGF of (9.353) becoming

M�GSC�s� D L![�m�]�L�Lm�
(

1 � �

m
s

)�Lm ∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
�L�1��fold

��L�1�m�1
L�1 Ð Ð Ð �2m�1

2 �m�1
1

ð �1 C �L�1 C �L�1�L�2 C �L�1�L�2�L�3

C Ð Ð Ð C �L�1�L�2�L�3 Ð Ð Ð �2�1�
�Lm d�L�1 Ð Ð Ðd�1 �9E.2�

However, if all branches are combined, then whether or not the branches are
ordered according to their SNR should have no bearing on the overall result;
that is, the MGF of (9E.2) should be identical to that of true MRC of L i.i.d.
Nakagami-m branches, for which the MGF is given by [21]

M�MRC �s� D
(

1 � �

m
s

)�Lm
�9E.3�

Thus, equating (9E.2) and (9E.3) gives the following closed-form result for the
�L � 1�-fold integral:

∫ 1

0
Ð Ð Ð

∫ 1

0︸ ︷︷ ︸
�L�1��fold

(
L�1∏
lD1

�lm�1
l

)
�1 C �L�1 C �L�1�L�2 C Ð Ð Ð C �L�1�L�2 Ð Ð Ð �1�

�Lm

ð d�L�1 Ð Ð Ðd�1 D [�m�]L

L!�Lm�
�9E.4�

Equation (9E.4) is easily verified for L D 1 since both the left- and right-hand
sides evaluate to unity. For L D 2 we obtain the single definite integral

∫ 1

0
�m�1

1 �1 C �1�
�2m d�1 D ��m��2

2�2m�
�9E.5�

Neither the multiple definite integral of (9E.4) nor the single definite integral
of (9E.5) appear in standard tabulations such as [36,52].3 Both are valid for m
integer or noninteger and have been numerically checked for their validity.

3 A closed-form solution equivalent to (9E.5) is possible for m integer using the recursive form
of Eq. (2.111.2) of Ref. 36 and at the end applying Eq. (2.117.2) of Ref. 36. However, to get the
solution in the simple form equivalent to (9E.5) requires a good deal of effort and manipulation and
again is restricted to m integer.
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10

OPTIMUM COMBINING: A DIVERSITY
TECHNIQUE FOR COMMUNICATION

OVER FADING CHANNELS IN THE
PRESENCE OF INTERFERENCE

Thus far in the book we have discussed the performance of digital communication
systems perturbed only by a combination of AWGN and multipath fading. Under
such noise-limited conditions, coherent diversity reception takes the form of a
maximum ratio combiner (MRC), which as discussed in Chapter 9 is optimum
from the standpoint of maximizing the signal-to-noise ratio (SNR) at the combiner
output. In applications such as digital mobile radio, space diversity provided by
an adaptive antenna array is an attractive means for providing such diversity
[1]. In addition to combating multipath fading, space diversity can also be used
in cellular radio systems to reduce the relative power of co-channel interferers
(CCI’s) that are present at each element of the array. When operating in this
scenario, the appropriate diversity scheme to employ is one that combines the
branch outputs in such a way as to maximize the signal-to-interference plus noise
(SINR) ratio at the combiner output. Under such conditions, this scheme, which
is referred to as optimum combining (OC), will achieve a larger output SINR
than MRC and is thus highly desirable even when the number of interferers
exceeds the number of antenna array elements. This improved SINR efficiency
can manifest itself in the cellular mobile radio application as a reduction in the
number of base stations and/or an increased channel capacity through greater
frequency reuse.

The maximization of output SINR using adaptive antenna arrays techniques
has been studied extensively in the early literature [1–4], primarily in a pure
AWGN environment (i.e., in the absence of fading). The application of these
principles to the slow-fading channel that is typical of digital mobile radio
applications was first studied by Bogachev and Kiselev [5], who evaluated the
bit error probability (BEP) performance of an optimum combiner for coherent
binary orthogonal signals in the presence of a flat Rayleigh fading assumed
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to be independent between antenna elements and a single interferer with the
same fading characteristics. Later, Winters [6] amplified on these analytical
results and also provided computer (Monte Carlo) simulation results for the
multiple interferer case. In both of these papers, comparisons were made with
comparable systems employing MRC, and significant performance improvement
was demonstrated for the OC case. Subsequent to these early papers, many studies
of OC followed which considered in detail such issues as (1) the number of
interferers relative to the number of antenna elements, (2) channel correlation
due to nonideal space separation, (3) practical signal and interference models
that allow for analytical results corresponding to the multiple interferer case,
and (4) simple upper bounds (as opposed to complicated exact expressions) on
average BEP performance.

In this chapter we bring together the foregoing analytical results under a single
roof by applying the unifying framework of the moment generating function
(MGF) approach discussed in earlier chapters. We shall again see that such
an approach not only simplifies the analytical expressions for average BEP
associated with the various cases previously treated in the literature but allows
extension to a large variety of modulation schemes as well as slow-fading
channels other than those that are Rayleigh distributed. To illustrate the approach,
we shall first treat the simple case of a single co-channel interferer impinging
on an L-element antenna array. As we shall see there are, in principle, two
approaches (one exact and one approximate) that can be taken to evaluate the
average BEP for this scenario. What is important to observe is that a comparison
of the two for the Rayleigh fading channel, assumed to be independent and
identically distributed (i.i.d.) across the array, reveals that the simple (but
approximate) approach yields performance results that are extremely close to
those provided by the more complicated (but exact) approach [7]. From this
observation, which can also be readily justified by intuitive reasoning, we
shall then draw the conclusion that for the remainder of the cases (i.e., other
modulations and fading channel models, more than one interferer), it is sufficient
to evaluate average BEP performance using the simpler approach. Indeed this is
the assumption made in many of the above-cited references without, however,
the mathematical and numerical justification offered here and presented originally
in Ref. 7.

10.1 PERFORMANCE OF OPTIMUM COMBINING RECEIVERS

10.1.1 Single Interferer, Independent Identically Distributed Fading

Consider a communication receiver [typical of the base station of the reverse
link (mobile to base) of a digital mobile radio system] that provides space
diversity via an L-element antenna array. Assume that the antenna elements of the
array are placed sufficiently far apart so as to provide independent fading paths.
Furthermore, assume that the fading is sufficiently slow as to allow coherent
detection to be employed. Then the received signal vector r�t� at the outputs of
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the array elements may be expressed as1

r�t� D
√
Pdcdsd�t�C p

PIcIsI�t�C n�t� �10.1�

where sd�t� and sI�t� are the desired and interfering signals normalized such that
Pd and PI represent their respective powers, cd, and cI are the corresponding
channel propagation vectors with components cdljLlD1, cIljLlD1, respectively, and
n�t� is the AWGN vector each element of which has zero mean and variance �2.
Each vector is of dimension L. In the absence of fading, the elements of cd and cI
are constant complex quantities each with unit magnitude and a phase determined
by the relative distance of its associated antenna element from the reference
antenna element (often taken as the center element of the array). In the presence
of fading, the elements of cd and cI become complex random variables (RVs)
with statistics dependent on the fading channel model assumed. For example,
for Rayleigh fading, the elements of cd and cI would be i.i.d. complex Gaussian
RVs with zero means and unit mean-square value.2 Finally, the desired signal,
interference signal, and additive noise are assumed mutually independent, as
would be the case in a practical system.

As in a conventional RAKE receiver, the components of r�t� are appropriately
(complex) weighted and combined (summed) to form a decision statistic. The
difference between the RAKE receiver for MRC and that for OC lies in selection
of the weight vector w. Specifically, for MRC the weights are selected for
maximum instantaneous SNR at the combiner output, and thus w D cd/�2. For
OC the weights are selected for maximum instantaneous SINR at the same
location, and thus w D R�1

ni cd, where Rni is the noise plus interference covariance
matrix defined below. As such, implementation of the RAKE receiver for OC
requires complete knowledge of the channel corresponding to both the desired
signal and the interferer. For this receiver, the maximum instantaneous SINR at
the combiner output is given by [6]

�t D PdcHd R
�1
ni cd �10.2�

where the superscript H stands for the Hermitian (transpose complex conjugate)
operation and the noise plus interference covariance matrix is given by

Rni D Ef[pPIcIsI�t�C n�t�][
p
PIcIsI�t�C n�t�]Hg

D PIcIcHI C �2I �10.3�

where I is the L ð L identity matrix. In the absence of interference, (10.3)
becomes a purely diagonal matrix and thus (10.2) simplifies, as it should, to

1 We assume for simplicity a baseband model corresponding to ideal coherent demodulation.
2 The assumption of equal unit mean-square value for both the desired signal and interference
propagation vector fading components results in no loss of generality and is made for consistency
with the no-fading case.
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the instantaneous SNR of the combiner output for MRC, namely,

�t D Pd
�2

cHd cd D Pd
�2

L∑
lD1

˛2
dl D

L∑
lD1

�l �10.4�

where ˛dl is the fading amplitude of the lth element of cd and �l
D˛2

dlPd/�
2 is

its corresponding instantaneous SNR.
Since as we have seen in Chapter 9, the form of (10.4) is highly desirable from

the standpoint of evaluating average BEP since for the i.i.d fading assumption
it allows the MGF of �t to be expressed in product form, we shall find it
expedient for the OC case to diagonalize the covariance matrix of (10.3) with
the hope of applying the same MGF-based approach. The diagonalization of
Rni is accomplished by applying a unitary matrix transformation U to it (i.e.,


DUHRniU is a diagonal matrix with elements �1, �2, . . . , �L corresponding
to the eigenvalues3 of Rni). The rows of U are the corresponding complex
eigenvectors, which from the properties of a unitary matrix are orthonormal.
From the definition of , the inverse of Rni is easily found to be R�1

ni
DU�1UH.

Thus, substituting this result in (10.2) gives

�t D PdcHd U
�1UHcd

DPdsH�1s D Pd

L∑
lD1

jslj2
�l

�10.5�

where s D UHcd is the transformed desired signal propagation vector with
components sl, l D 1, 2, . . . , L. It is clear from (10.5) that conditioned on the
set of eigenvalues �l, l D 1, 2, . . . , L, the MGF �t will be expressible in product
form if the transformed instantaneous signal powers jslj2, l D 1, 2, . . . , L, are
mutually independent. To see how this condition can be satisfied, we proceed
as follows. If the elements of cd are modeled as complex Gaussian RVs (as
for Rayleigh or Rician fading) or sums of complex Gaussian RVs (as for
Nakagami-m fading), a linear operation (e.g., multiplication by UH) on cd
results in a vector (i.e., s) whose components are again complex Gaussian
RVs. Furthermore, from the orthonormal property of the rows of U, the mean-
square value of the components of s are all equal to unity (as is the case
for cd). In addition, these components are mutually uncorrelated, and since
they are Gaussian, they are mutually independent. Thus, we conclude that
the transformed desired signal propagation vector s has statistics identical to
those of its untransformed version cd, and therefore for analytical purposes
we can replace jslj2 by jcdlj2 D ˛2

dl in (10.5). Doing so allows us to rewrite
(10.5) as

�t D Pd
�2

L∑
lD1

�2

�l
˛2
dl D

L∑
lD1

�2

�l
�l �10.6�

3 In general, these eigenvalues are RVs, although as we shall see shortly, for the single-interferer
case, only one of them, say �1, is random.
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and hence the conditional (on the eigenvalues) MGF of �t, M�tj�1,�2,...,�L �s�, is
given by the product

M�t j�1,�2,...,�L �s� D
L∏
lD1

M�

(
s;
�2

�l
�d

)
�10.7�

where M��s; �d� is the MGF of any of the �l’s with mean value �d D Pd/�2,
which also represents the average SNR of the desired signal per antenna.

Before proceeding with the evaluation of average BEP, we first specify the
eigenvalues for the single-interferer case. It has been shown in several places in
the literature [5–8] that the eigenvalues of the covariance matrix of (10.3) are
given by

�l D



PI

L∑
nD1

jcInj2 C �2 D PI
L∑
nD1

˛2
In C �2, l D 1

�2, l D 2, 3, . . . , L

�10.8�

That is, L � 1 of them are constant and one of them, �1, is a RV. Making this
substitution in (10.7) gives

M�t j�1�s� D [M��s; �d�]
L�1M�

(
s;
Pd
�1

)
�10.9�

To evaluate the average BEP of coherent BPSK exactly using an OC receiver,
we must average the conditional (on the fading) BEP over the fading distribution
of the combiner output statistic. In particular,

Pb�E� D
∫ 1

0
Q�
√

2�t�p�t ��t� d�t

D
∫ 1

�2

∫ 1

0
Q�
√

2�t�p�t ��tj�1� d�t p�1��1� d�1 �10.10�

where Q�x� is, as before, the Gaussian Q-function and p�t ��tj�1� is the prob-
ability density function (PDF) of the combiner output SINR conditioned on
the single random eigenvalue �1 [with PDF p�1��1�] and is ordinarily found
by first evaluating the conditional MGF, M�tj�1�s�, and then taking its inverse
Laplace transform. Although direct evaluation of (10.9) may be possible, it
typically involves complicated analysis, which includes first determining the
PDF p�t ��tj�1� in closed form and then successively performing the remaining
integrations over the Gaussian Q-function and the eigenvalue probability distri-
bution. Quite often, the closed-form expressions obtained at any stage in
the process are given in terms of functions not readily available in stan-
dard software packages such as Mathematica and are in a form that provides
little insight into their dependence on such system parameters as Pd, PI,
and �2.
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10.1.1.1 Rayleigh Fading: Exact Evaluation of Average Bit Error
Probability. To illustrate the foregoing point, Shah et al. [7] evaluate (10.10)
for the Rayleigh channel. First, the conditional MGF of �t is found from (10.9)
to be

M�t j�1�s� D 1

�1 � s�d�L�1[1 � s�Pd/�1�]
�10.11�

which has the inverse Laplace transform [9, p. 410]

p�t ��tj�1� D �1�L�1
t exp���1�t/Pd� 1F1�L � 1;L; ��1 � �2��t/Pd�

�2�L���d�L
,

�t ½ 0, �1 ½ �2, L ½ 1 �10.12�

where 1F1�ž; ž; ž� is Kummer’s confluent hypergeometric function [10, Eq. (9.210)].
Performing the first integration (on �t) in (10.10) gives

Pb�Ej�1�

D
∫ 1

0
Q�
√

2�t�p�t ��tj�1� d�t

D 1

2
�
�1

(
LC 1

2

)
PLC1/2
d F2

(
LC 1

2
, 1, L�1;

3

2
,L;

Pd
�1CPd ,

�1��2

�1CPd

)
p
"�2�L���d�L��1CPd�LC1/2

�10.13�

where F2�ž, ž, ž; ž, ž; ž, ž� is Appell’s hypergeometric function of two variables
[10, Eq. (9.180.2)]. Since each ˛2

In in (10.8) has a chi-square distribution, �1 has
the PDF

p�1��1� D 1

�L�PLI
��1 � �2�L�1 exp

(
��1 � �2

PI

)
, �1 ½ �2 �10.14�

Finally, the average BEP is obtained by averaging (10.13) over the PDF in (10.14)
in accordance with (10.10), namely,

Pb�E� D 1

2
�


(
L C 1

2

)
PLC1/2
d

p
"�2�L���d�L

1

�L�PLI

ð
∫ 1

�2

�1

��1 C Pd�LC1/2
��1 � �2�L�1 exp

(
��1 � �2

PI

)

ð F2

(
L C 1

2
, 1, L � 1;

3

2
, L;

Pd
�1 C Pd

,
�1 � �2

�1 C Pd

)
d�1 �10.15�
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which cannot be obtained in closed form except for the special case of L D 1,
which has the result

Pb�E� D 1

2
�
√
"
Pd
PI

exp
(
Pd C �2

PI

)
Q



√

2
Pd C �2

PI




D 1

2
�
√
"
�d
�I

exp
(

1 C �d
�I

)
Q

(√
2

1 C �d
�I

)
�10.16�

where �I
DPI/�2 is the average interference-to-noise ratio per antenna.

We recall from Chapter 9 that using the alternative form of the Gaussian
Q-function allows expressing the BEP directly in terms of the MGF of �t.
Specifically, conditioned on �1, we have

Pb�Ej�1� D 1

"

∫ "/2

0
M�tj�1

(
� 1

sin2 #

)
d# �10.17�

Then, the average BEP is given by

Pb�E� D 1

"

∫ 1

�2

∫ "/2

0
M�t j�1

(
� 1

sin2 #

)
d#p�1��1� d�1

D 1

"

∫ 1

�2

∫ "/2

0

[
M�

(
� 1

sin2 #
; �d

)]L�1

ðM�

(
� 1

sin2 #
;
�2

�1
�d

)
d#p�1��1� d�1 �10.18�

which for the Rayleigh channel becomes

Pb�E� D 1

"

∫ 1

�2

∫ "/2

0

(
sin2 #

sin2 # C �d

)L�1 [
sin2 #

sin2 # C ��2/�1��d

]
d#p�1��1� d�1

�10.19�
Performing the integral on �1 first, we obtain after much manipulation

Pb�E� D 1

"

(
1

�I

)L ∫ "/2

0
exp
[(

1 C �d
sin2 #

)
1

�I

] [


(
1 � L,

(
1 C �d

sin2 #

)
1

�I

)

C L

(
1 C �d

sin2 #

)


(
�L,

(
1 C �d

sin2 #

)
1

�I

)]
d# �10.20�

where �a, x� is the complementary incomplete gamma function [10,
Eq. (8.353.3)]. If one wants to simplify the notation a bit (which will be
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convenient when extending the results to other modulations), define

f�#�
D
(

1 C �d
sin2 #

)
1

�I
�10.21�

in which case (10.20) simplifies to4

Pb�E� D 1

"

(
1

�I

)L ∫ "/2

0
exp[f�#�][�1 � L,f�#��

C L�If�#���L, f�#��] d# �10.22�

Clearly, (10.19) or (10.22) together with (10.22) is considerably simpler in form
than (10.15) and as we shall see momentarily, allows us to draw conclusions
immediately for certain special cases.

For the special case of no interferer [i.e., PI D 0 (�1 D �2)], we immediately
see from (10.19) that

Pb�E� D
∫ "/2

0

(
sin2 #

sin2 # C �d

)L
d# �10.23�

which corresponds to the performance of coherent PSK with MRC and an
L-element array.

For the special case of a single infinite power interferer [i.e., PI D 1
��1 D 1�], Eq. (10.19) simplifies to

Pb�E� D
∫ "/2

0

(
sin2 #

sin2 # C �d

)L�1

d# �10.24�

Thus, based on exact expressions for BEP, we observe that for the infinite power
interferer, the array uses up one entire order of diversity in its attempt to cancel

4 Using an analogous approach based on an alternative form of the complementary error function
(equivalently, the Gaussian Q-function), Eq. (4A.1), Aalo and Zhang [11] were able to arrive at a
closed-form expression for average BEP, namely,

Pb�E� D 1

2

[
1 �
√

�d
�d C 1

L�2∑
kD0

(
2k
k

)(
1

4��d C 1�

)k]

� 1

2�L���L�I�L�1

[√
"�d
L�I

exp
(
�d C 1

L�I

)
erfc

(√
�d C 1

L�I

)

�
√

�d
�d C 1

L�2∑
kD0

�2k�!

k!

( �L�I
4��d C 1�

)k]

which checks numerically with (10.22).
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it. This same conclusion was reached in Ref. 7 based on “upper” bounds on
conditional BEP and in Ref. 6 based on approximate expressions for average
BEP (obtained by replacing �1 by its mean value �1 D �2 C LPI). We shall
ourselves pursue the legitimacy of this approximation momentarily.

Before proceeding, we wish to point out that the foregoing conclusion,
reached from a comparison of the no interferer and infinite power interferer
could have been reached earlier from the context of a generalized slow-fading
channel. This can easily be seen by evaluating (10.9) for the cases of PI D 0
(�1 D �2) and PI D 1 (�1 D 1), resulting in M�t j�1D�2�s� D M��s, �d�

L and
M�t j�1D1�s� D M��s, �d�

L�1, respectively, which from (10.17) establishes the
desired conclusion.

10.1.1.2 Rayleigh Fading: Approximate Evaluation of Average Bit Error
Probability. To simplify the analysis, several authors [5–8] have made the
assumption of replacing �1 by its mean value �1 D �2 C LPI in the conditional
MGF of �t (and similarly, the same assumption in the conditional PDF of �t)
and then computing the average BEP from

Pb�E� '
∫ 1

0
Q�
√

2�t�p�t ��tj�1�j�1D�1
d�t �10.25�

Clearly, this avoids evaluating the PDF of the eigenvalue �1 and the integration
over this RV in (10.10) and also makes the expression for average BEP
independent of the probability statistics of the interferer (i.e., it is only necessary
to know its average power). When this substitution is made in the conditional
PDF of (10.12), the following closed-form expression results for Rayleigh fading
[6, Eq. (25)]:5

Pb�E� D 1 C L�I
2��L�I�L�1

{
� L�I

1 C L�I
C
√

�d
1 C �d

� 1

1 C L�I

√
�d

1 C L�I C �d

�
L�2∑
kD1

��L�I�k
[

1 �
√

�d
1 C �d

(
1 C

k∑
iD1

�2i� 1�!!

i!�2 C 2�d�i

)]}
�10.26�

This result should also agree with that obtained by substituting �1 D �2 C LPI
for �1 in (10.19), that is,

Pb�E� D 1

"

∫ "/2

0

(
sin2 #

sin2 # C �d/�1 C L�I�

)(
sin2 #

sin2 # C �d

)L�1

d# �10.27�

5 The result in (10.26) was obtained from the expression in Ref. 5 for the BEP of coherent binary
orthogonal signaling by replacing �d by 2�d, reflecting the 3-dB difference between orthogonal and
antipodal signaling in Gaussian noise. Also, although not stated explicitly in either reference, the
result in (10.26) is valid only for L ½ 2. The lack of validity for L D 1 (i.e., no diversity) can easily
be seen by observing that for �I D 0 (i.e., no interference), (10.26) would yield Pb�E� D 0, which
is an incorrect result.
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The result in (10.27) can be also be evaluated in closed form using (5A.56),
that is,

Pb�E� D 1

2

{
1 �
√

�d
1 C �d

L�2∑
kD0

(
2k
k

)
1

[4�1 C �d�]k

[
1 �
(

� 1

L�I

)L�1�k]

�
√

�d
1 C L�I C �d

(
� 1

L�I

)L�1
}

�10.28�

The equivalence between (10.28) and (10.26) can be established mathematically
(after much tedious manipulation). Furthermore, (10.28) is valid for L D 1 and
is thus the more general result.

Figures 10.1 through 10.3 illustrate the evaluation of Pb�E� from (10.20) (the
exact result) and from (10.28) (the approximate result) as a function of average
total SNR L�d for two- and four-element arrays and for the special case of equal
average desired signal and interference powers (or equivalently, �d D �I.) We
observe that the difference between the curves using (10.20) and (10.28) is small.
There is a simple, intuitive explanation for why the average BEP values are as
close as they appear. For either L D 2 or L D 4, the array has a sufficient number
of degrees of freedom to suppress the single interferer, regardless of whether or
not it is degraded by fading. Thus, the performance is affected predominantly
by the interferer’s average power (which is all that is needed in the approximate
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Figure 10.1. Average BEP of the optimum combiner in Rayleigh fading with a single fading
co-channel interferer; �d D � I.
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Figure 10.2. Average BEP performance (magnified scale); �d D � I, L D 2. (Courtesy of Shah,
Haimovich, Simon, Alouini [7].)
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Figure 10.3. Average BEP performance (magnified scale); �d D � I, L D 4.

evaluation case) rather than its complete statistical description (which is what is
needed in the exact evaluation case).

As we shall soon see, obtaining exact results in useful form for more complex
fading channels is difficult. Thus, in view of the observation above, we shall
resort to using the approximate approach for evaluating average BEP in these
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cases based on the same intuitive argument as that made for the simpler Rayleigh
channel. To illustrate the difficulty of the exact evaluation method and the relative
simplicity of the approximate approach, we present next the average BEP results
for the Rician and Nakagami-m fading channels. Before doing this, however, we
first present results for the Rayleigh channel corresponding to coherent M-PSK
and QAM.

10.1.1.3 Extension to Other Modulations. From the treatment of coherent
M-PSK in the presence of fading discussed in Chapter 8, the conditional SEP
can be written as

Ps�Ej�1� D 1

"

∫ �M�1�"/M

0
M�t j�1

(
� gPSK

sin2 #

)
d# �10.29�

where gPSK D sin2 "/M. Thus, following the same procedure as for binary PSK,
then after averaging over the PDF of �1, we obtain [analogous to (10.22)]

Ps�E� D 1

"

(
1

�I

)L ∫ "/2

0
exp[fPSK�#�][�1 � L,fPSK�#��

C L�IfPSK�#���L, fPSK�#��] d# �10.30�

where now

fPSK�#�
D
(

1 C �sgPSK

sin2 #

)
1

�1
�10.31�

and �s denotes the average desired signal SNR per symbol per antenna.
For QAM with M D 2k signal points, the conditional SER is given by

Ps�Ej�1� D 4

"

(
1 � 1p

M

)∫ "/2

0
M�t j�1

(
�gQAM

sin2 #

)
d#

� 4

"

(
1 � 1p

M

)2 ∫ "/4

0
M�tj�1

(
�gQAM

sin2 #

)
d# �10.32�

where gQAM
D 3/[2�M� 1�]. Thus, analogous to (10.22), the average SER is

given by

Ps�E� D 4

"

(
1 � 1p

M

)(
1

�I

)L ∫ "/2

0
expffQAM�#�g[�1 � L,fQAM�#��

C L�IfQAM�#���L, fQAM�#��] d# � 4

"

(
1 � 1p

M

)2 ( 1

�I

)L

ð
∫ "/4

0
expffQAM�#�g[�1 � L,fQAM�#��

C L�IfQAM�#���L, fQAM�#��]d# �10.33�
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where now

fQAM�#�
D
(

1 C �sgQAM

sin2 #

)
1

�I
�10.34�

and again �s denotes the average desired signal symbol SNR per antenna.

10.1.1.4 Rician Fading: Evaluation of Average Bit Error Proba-
bility. Analogous to (10.11), the conditional MGF is now

M�t j�1�s� D


 1(

1 � s
1

1 CK

Pd
�1

)(
1 � s

1

1 CK
�d

)L�1




ð exp




K

1 CK
s


 Pd/�1

1�s 1

1 CK

Pd
�1

C�L � 1�
�d

1�s 1

1 CK
�d




 �10.35�

Also, the largest eigenvalue has a noncentral chi-square PDF given by

p�1��1� D
(

1 CK

PI

)(
1 CK

LK

)�L�1�/2(�1 � �2

PI

)�L�1�/2

ð exp
{

�
[
LKC �1 CK�

(
�1 � �2

PI

)]}

ð IL�1


2

√
LK�1 CK�

(
�1 � �2

PI

) , �1 ½ �2 �10.36�

For L D 1 and y D ��1 � �2�/PI, Eq. (10.36) reduces to

py�y� D �1CK� expf�[KC�1CK�y]gI0�2
√
K�1CK�y�, y ½ 0 �10.37�

which is the standard PDF for the square of a Rician RV. Also, for K D 0, using
the asymptotic (small argument) form of IL�1�x� in (10.36), namely,

IL�1�x� ' 1

�L�

(x
2

)L�1
�10.38�

the PDF of (10.36) can be shown to reduce to that in (10.14), as it should.
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The conditional BEP for coherent PSK is from (10.17) and (10.35) given by

Pb�Ej�1� D 1

"

∫ "/2

0

1(
1 C 1

1 CK

Pd
�1 sin2 #

)(
1 C 1

1 CK

�d
sin2 #

)L�1

ð exp


� K

1 CK

1

sin2 #


 Pd/�1

1 C 1

1 CK

Pd
�1 sin2 #

C �L � 1�
�d

1 C 1

1 CK

�d
sin2 #




d# �10.39�

To evaluate the average BEP exactly, we must average (10.39) over the PDF
in (10.36). After some algebraic manipulation, we get the following result:

Pb�E� D exp��LK��1 CK�

(
1 CK

LK

)�L�1�/2 1

"

∫ "/2

0


 sin2 #

sin2 # C 1

1 CK
�d



L�1

ð exp


� �L � 1�K

1CK


 �d

sin2 #C 1

1CK�d





∫ 1

0

sin2 #

sin2 # C 1

1 CK

�d
1 C �Iy

ð exp


� K

1CK


 �d/�1C�Iy�

sin2 #C 1

1 CK

�d
1 C �Iy




 y�L�1�/2

ð exp[��1 CKy�]IL�1�2
√
LK�1 CK�y� dy d# �10.40�

Unfortunately, the integral on y cannot be obtained in closed form. Thus, we
now resort to the approximate approach, corresponding to �1 D LPI C �2 for �1

in the MGF of (10.35). When this is done, the approximate average BEP from
(10.39) becomes
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Pb�E� D 1

"

∫ "/2

0


 sin2 #

sin2 # C 1

1 CK

�d
1 C L�I




 sin2 #

sin2 # C 1

1 CK
�d



L�1

ð exp


� K

1CK


 �d/�1CL�I�

sin2 #C 1

1CK
�d

1CL�I

C �L�1��d

sin2 #C 1

1 CK
�d




d#
�10.41�

For K D 0, (10.41) reduces to

Pb�E� D 1

"

∫ "/2

0


 sin2 #

sin2 # C �d
1 C L�I



(

sin2 #

sin2 # C �d

)L�1

d# �10.42�

which is identical to (10.27).
Figures 10.4 and 10.5 illustrate the approximate evaluation of Pb�E� from

(10.41) as a function of average total SNR L�d with Rician factor K as a
parameter for two- and four-element arrays, again assuming that �d D �I.

10.1.1.5 Nakagami-m Fading: Evaluation of Average Bit Error Prob-
ability. For this fading channel we can model each of the interference vector
components as a sum of m i.i.d. complex Gaussian RVs each with zero mean
and variance 1/m. In this way, each component of the interference vector (e.g.,
cIn) still has unity mean-square value. Then, after transformation by the unitary
matrix, the new vector s, which corresponds to a weighted sum of the compo-
nents cI, will still have i.i.d. complex Gaussian components, and its properties are
thus preserved as in the Rayleigh and Rician cases. Also, the RV

∑L
lD1 jcIlj2 is

now central chi-square distributed with 2mL degrees of freedom, each of which
has variance 1/2m. Thus, the PDF of �1 D PI

∑L
lD1 jcIlj2 C �2 is now given

analogous to (10.14) by

p�1��1� D mmL

�mL��PI�mL
��1 � �2�mL�1 exp

(
�m�1 � �2

PI

)
, �1 ½ �2

�10.43�
Similarly, analogous to (10.11), the conditional MGF of the combiner output
SNR is now

M�t j�1�s� D 1

[1 � s��d/m�]m�L�1�[1 � s�Pd/m�1�]
�10.44�
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Figure 10.4. Average BEP of the optimum combiner in Rician fading with a single fading
co-channel interferer; �d D � I, L D 2.

Using (10.44), the conditional BEP of (10.17) is given by

Pb�Ej�1� D 1

"

∫ "/2

0

1

�1 C �d/m sin2 #�m�L�1�

1

�1 C Pd/m�1 sin2 #�m
d# �10.45�

For no interferer ��1 D �2�, (10.45) becomes

Pb�E� D 1

"

∫ "/2

0

1

�1 C �d/m sin2 #�mL
d# �10.46�

which is equivalent to MRC combining with mL orders of diversity and channels
each with �1/m�th of the power. For an infinite power interferer ��1 D 1�, we get

Pb�E� D 1

"

∫ "/2

0

1

�1 C �d/m sin2 #�m�L�1�
d# �10.47�
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Figure 10.5. Average BEP of the optimum combiner in Rician fading with a single fading
co-channel interferer; �d D � I, L D 4.

Thus, analogous to the Rayleigh and Rician cases, the diversity is reduced by m
orders of magnitude in attempting to cancel the interferer, where each channel
now has only �1/m�th of the power.

If we attempt to get the exact expression for average BEP by averaging (10.45)
over the PDF in (10.43), we obtain after some simplification

Pb�E� D 1

"�mN�

(
m

�I

)mN ∫ "/2

0

1

�1 C �d/m sin2 #�L�1

ð
∫ 1

0

(
1 C z

1 C �d/m sin2 # C z

)m
zmL�1 exp

(
�m

�I
z

)
dz d#

�10.48�
Unfortunately, the integral on z cannot be obtained in closed form so once again
we must resort to the approximate approach. Substituting �1 D LPI C �2 for �1 in
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the MGF of (10.44) and then applying (10.17) results in the approximate average
BEP

Pb�E� D 1

"

∫ "/2

0

(
sin2 #

sin2 # C ��d/m�/�1 C L�I�

)m(
sin2 #

sin2 # C �d/m

)m�L�1�

d#

�10.49�
Analogous to Figs. 10.4 and 10.5, Figs. 10.6 and 10.7 illustrate the approxi-

mate evaluation of Pb�E� from (10.49) as a function of L�d with Nakagami-m
factor m as a parameter for two- and four-element arrays, again assuming that
�d D �I.

10.1.2 Multiple Interferers, Independent Identically Distributed Fading

Consider now a scenario where more than a single co-channel interferer exists at
each antenna element. On the one hand, to increase network capacity, the cellular
system might be operating in an interference-limited environment, in which case
the number of co-channel interferers, NI, could typically exceed the number of
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Figure 10.6. Average BEP of the optimum combiner in Nakagami-m fading with a single fading
co-channel interferer; �d D � I, L D 2.



PERFORMANCE OF OPTIMUM COMBINING RECEIVERS 455

m =1

m = 2

m = 4

0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 B
E

P

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Average Total SNR, Lg
d  (dB)

Figure 10.7. Average BEP of the optimum combiner in Nakagami-m fading with a single fading
co-channel interferer; �d D � I, L D 4.

antenna elements, L. Under such conditions, which is typical of CDMA, the
number of degrees of freedom provided by the array is insufficient to allow a
partitioning of the observation space into distinct noise and interferer subspaces
(i.e., the optimum combiner processes both the noise and interference together as
a single entity and cannot cancel all the interfering signals). On the other hand,
in certain other practical cellular mobile applications, for instance in a TDMA
system such as the Global System for Mobile (GSM), most of the interference
can be due to only a limited number of dominant interferers. Here the array has
sufficient degrees of freedom to partition the observation space into distinct noise
and interferer subspaces and combat them as separate entities (much like the case
of the single interferer discussed earlier). As we shall soon see, the treatment of
this scenario is a natural extension of the single-interferer case and therefore will
be the first to be discussed.

Exact and approximate evaluation of average BER for optimum combining
receivers in the presence of multiple narrowband interferers has been considered
by several authors. Specifically, Cui, Falconer, and Sheikh [12,13]6 considered

6 Also considered in these papers is the average BEP performance of MRC receivers in the presence
of an arbitrary number of interferers.
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optimum combining receivers for DPSK modulation with NI D 2 and Rayleigh
fading. Their results also yield an upper bound on the performance of coherent
BPSK and QAM based on the approach taken in Ref. 14. Optimum combining
for coherent BPSK systems with arbitrary NI < L and Rayleigh fading was
considered by Winters and Salz [15] and Winters et al. [16]. However, their
results were presented only in the form of an upper bound on average BEP,
which unfortunately is not accurate for low BEP and a large number of antenna
elements. Most recently, Aalo and Zhang [11] obtained exact average BEP results
(not in closed form, however) for optimum combining coherent BPSK systems
with NI D 2 and again Rayleigh fading. The approach taken there was the same as
that used to derive closed-form results for the single-interferer case, as mentioned
in footnote 4 of this chapter.

A more generic approach to the problem of spatial combining in the presence
of multiple equal-power narrowband interferers was considered by Haimovich
and Shah [17] and Shah and Haimovich [18,19],7 who assumed that the
number of interferers is sufficiently large as to justify an interference-limited
environment (i.e., AWGN was ignored). The results of this work are presented
in Section 10.1.2.2 for the case where the number of interferers is equal to or
greater than the number of array elements. For the case where the number of
interferers is less than the number of array elements, Villier [8] assumed that
the CCI is dominated by the NI strongest interferers8 and that the approximate
approach for evaluating error probability (i.e., replacing the random eigenvalues
by their mean value is once again valid). (We shall say more about this
assumption momentarily.) As we shall see, this approach allows for consideration
of generalized fading channels as well as a variety of modulation types. Before
considering this approach and the performance results derived from it, we first
present the exact average BEP results for the two-interferer coherent BPSK
Rayleigh channel case as given in Ref. 11, starting with a generalization of the
system model to the multiple-interferer scenario.

10.1.2.1 Number of Interferers Less Than the Number of Array
Elements. Analogous to (10.1), the received signal vector r�t� at the outputs
of the array elements may be expressed as

r�t� D
√
Pdcdsd�t�C

NI∑
nD1

p
PIcInsIn�t�C n�t� �10.50�

where sIn �t� and cIn are now, respectively, the signal and propagation vectors
associated with the nth interfering signal. Assuming that the NI interference
signals are mutually independent, then analogous to (10.3), the noise plus

7 In Ref. 19, EGC and MRC are compared with OC, and in addition, allowance is made for Rayleigh,
Rician, or no fading on the desired signal when the fading on the interference is Rayleigh distributed.
8 Any other interfering signal is assumed to have a power level significantly lower than that of the
NI strongest ones and as such is included in the additive noise term n�t�.
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interference covariance matrix Rni is given by

Rni D E



[
NI∑
nD1

p
PIcInsIn�t�C n�t�

] [
NI∑
nD1

p
PIcInsIn�t�C n�t�

]H


D PI

NI∑
nD1

cInc
H
In C �2I �10.51�

Since the maximum instantaneous SINR at the combiner output is still given
by the relation in (10.2), where R�1

ni is now the inverse of (10.51), then once again
the eigenvalue decomposition of Rni yields the result in (10.5), where now there
exist L �NI nonrandom eigenvalues �NIC1, �NIC2, . . . , �L , each with value �2

and NI random eigenvalues �1, �2, . . . , �NI . Although we still obtain a product
form for the MGF of the combiner output SINR, namely,

M�tj�1,�2,...,�NI
�s� D [M��s; �d�]

L�NI
NI∏
nD1

M�

(
s;
�2

�n
�d

)
�10.52�

the difficulty now lies in the determination of the NI random eigenvalues which
are related in a complex manner to the total interference power received by the
array. For the case where the interference sources are represented by mutually
orthogonal propagation vectors, the random eigenvalues �1, �2, . . . , �NI become
equal in form to that of (10.8), with PDFs given by [see (10.14)]

p�n��n� D 1

�L�PLI
��n � �2�L�1 exp

(
��n � �2

PI

)
, �n ½ �2,

n D 1, 2, . . . , NI �10.53�

When the number of interferers is restricted to two and the fading is Rayleigh
distributed, the two random eigenvalues can be found exactly. Using the results
given in Refs. 12 and 13, and later in Ref. 11, we have

�1 D �2
[

1 C �1 C �2

2
C 1

2

√
��1 � �2�2 C 4-12�1�2

]

�2 D �2
[

1 C �1 C �2

2
� 1

2

√
��1 � �2�2 C 4-12�1�2

] �10.54�

where �n
D∑L

lD1 ˛
2
InlPI/�

2 D �I
∑L

lD1 ˛
2
Inl, n D 1, 2, is the instantaneous SNR

for the nth interferer, with ˛Inl the Rayleigh fading amplitude on its lth branch
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and has the PDF [analogous to (10.14)]

p�n��n� D



1

�L���I�L
�L�1
n exp

(
��n
�I

)
, �n ½ 0, n D 1, 2

0, otherwise

�10.55�

Also, in (10.54), -12 is the normalized correlation between the two interference
propagation vectors, cI1 and cI2 , which is a beta-distributed RV with PDF given by

p-12�-12� D
{
�L � 1��1 � -12�L�2, 0 
 -12 
 1

0, otherwise
�10.56�

Note that for uncorrelated interference vectors (i.e., -12 D 0), (10.54) simplifies
to �n D �2�1 C �n� D PI

∑L
lD1 ˛

2
Inl C �2, n D 1, 2, which as alluded to above,

has the form of (10.8).
To evaluate the average BEP for coherent BPSK, we proceed analogous to

(10.17) and (10.18). Specifically, from (10.52) the conditional MGF for Rayleigh
fading is now

M�tj�1,�2�s� D 1

�1 � s�d�L�2[1 � s�Pd/�1�][1 � s�Pd/�2�]

D 1

�1 � s�d�L�2[1 � s�d��2/�1�][1 � s�d��2/�2�]
�10.57�

Then the average BEP can be written as

Pb�E� D 1

"

∫ 1

�2

∫ 1

�2

∫ "/2

0
M�t j�1,�2

(
� 1

sin2 #

)
d# p�1��1�p�2��2� d�1 d�2

D 1

"

∫ "/2

0

(
sin2 #

sin2 # C �d

)L�2

d#

ð
∫ 1

0

∫ 1

0

∫ 1

0

1(
1 C �d

sin2 #

�2

�1

)(
1 C �d

sin2 #

�2

�2

)

ð p-12�-12� d-12 p�1��1�p�2��2� d�1 d�2 �10.58�

where �1, and �2 are in turn expressed in terms of the RVs �1, �2, and -12, as in
(10.54). The statistical average over -12 [inner integral of the triple integral in
(10.58)] can be evaluated in closed form. Using results from Refs. 12 and 13, it
can be shown that this average can be put in the form
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∫ 1

0

1(
1 C �d

sin2 #

�2

�1

)(
1 C �d

sin2 #

�2

�2

)p-12�-12� d-12

D �L � 1��1 C �1 C �2�(
1 C �d

sin2 #

)(
1 C �d

sin2 #
C �1 C �2

) ∫ 1

0

1 C au

1 C bu
uL�2 du �10.59�

where we have made the change of variables u D 1 � -12 and

a
D �1�2

1 C �1 C �2
, b

D �1�2

�1 C �d/ sin2 #��1 C �d/ sin2 # C �1 C �2�
�10.60�

Evaluating the integral in (10.59) as in [Eq. (49) of Ref. 13, then after some
manipulation we arrive at the closed-form result (also see Ref. 11)

∫ 1

0

1(
1 C �d

sin2 #

�2

�1

)(
1 C �d

sin2 #

�2

�2

)p-12�-12� d-12

D 1 C �L � 1�
(
b� a

ab

)[L�3∑
kD0

1

�L � 2 � k���b�k C 1

��b�L�2
ln�bC 1�

]

�10.61�
Substituting (10.61) into (10.58) leaves a triple integral for evaluating Pb�E�,
which according to Aalo and Zhang [11], “can be easily evaluated numerically.”

Motivated by the desire to obtain a simple expression for assessing the average
BEP of the OC in the presence of multiple interferers with NI < L, Villier
[8] proposes to use an approximate approach analogous to that for the single
interference case, wherein each random eigenvalue is replaced by its average
over the fading distribution and all of them are made equal in accordance with
what would be obtained from �1 of (10.8) (i.e., �i D LPI C �2, i D 1, 2, . . . , NI).
The validity of this approximate approach is justified for the case where the
interference power level is high (relative to the desired signal power) and
the number of antenna elements is considerably greater than the number of
dominant interferers, which translates mathematically to �i × Pd and L >> NI.
In such instances, the product

∏NI
nD1M��s; ��2/�n��d� in (10.52) tends to become

insignificant compared to the remainder of the product �M��s; �d��
L�NI , which

then dominates the MGF. A further justification corresponds to the scenario
where the interferers are indeed orthogonal, in which case, based on our previous
discussion, the mean values of the random eigenvalues would become equal and
given precisely by �i D LPI C �2, i D 1, 2, . . . , NI.
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Proceeding under the assumption of the approximate approach above, then
analogous to (10.11), the MGF for the Rayleigh fading channel becomes

M�tj�1
�s� D 1

�1 � s�d�L�NI [1 � s�Pd/�1�]NI

D 1

�1 � s�d�L�NI�1 � s[�d/�1 C L�I�]�NI
�10.62�

and similarly, analogous to (10.27), the average BEP of coherent BPSK with OC
is given by

Pb�E� D 1

"

∫ "/2

0

(
sin2 #

sin2 # C �d/�1 C L�I�

)NI (
sin2 #

sin2 # C �d

)L�NI
d#

�10.63�
Note the similarity in the form of (10.63) (NI independent interferers with
Rayleigh fading) with that in (10.49) (one interferer in Nakagami-m fading.)
Furthermore, Villier [8] gives a closed-form result for the NI independent
interferer, Rayleigh fading case which from the similarity of the integrals
mentioned above would therefore imply that the single interferer in Nakagami-m
fading performance [see (10.49)] would have a similar closed-form result (this
is left as an exercise for the reader). For the former, we have [8, Eq. (20)]

Pb�E� D �1 C L�I�
NI�1

2��L�I�L�1

[
NI�1∑
kD0

( �L�I
1 C L�I

)k
BkIk

(
�d

1 C L�I

)

� �1 C L�I�
L�NI�1∑
kD0

��L�I�kCkIk��d�
]

�10.64�

where the coefficients Bk and Ck are given by9

Bk
D Ak(

L � 1
k

) , Ck
D
NI�1∑
nD0

(
k
n

)
(
L � 1
n

)An,

Ak
D��1�NI�1Ck

(
NI � 1
k

)
�NI � 1�!

NI∏
nD1
n6DkC1

�L � n� �10.65�

9 Note that by convention
(
k
n

)
D 0 for n > k. Also, for NI D 1, by convention the product∏NI

nD1, n6DkC1�L � n� D 1 and the only nonzero-valued coefficients are A0 D B0 D 1 and Ck D 1,
k D 0, 1, . . . , L � 2. For NI > 1, the coefficients Ak, Bk , and Ck clearly depend on both NI and L.
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and

Ik�c�
D 1

k!

∫ 1

0
xk erfc�

p
cx�e�x dx �10.66�

which has the series form

Ik�c� D 1 �
√

c

1 C c

[
1 C

k∑
nD1

�2n� 1�!!

n!2n�1 C c�n

]
�10.67�

with the double-factorial notation denoting the product of only odd integers from
1 to 2k � 1.

An alternative closed-form expression for the average BEP can be obtained
from the results in Ref. 17 using the approach in (10.12) and (10.13) but with
�1 replaced by �1. In particular, the inverse Laplace transform of (10.62) is [17,
Eq. (71)]

p�t ��tj�1� D
(
�1

�2

)NI
�L�1
t exp���1�t/Pd� 1F1�L �NI; L; ��1 � �2��t/Pd�

�L���d�L
,

�t ½ 0, NI < L �10.68�

which clearly reduces to (10.12) with �1 replaced by �1 when NI D 1. Integrating
the Gaussian Q-function over the PDF in (10.64) as in (10.13) gives [17,
Eq. (83)]10

Pb�E�

D
∫ 1

0
Q�
√

2�t�p�t ��tj�1� d�t D 1

2
�
(
�1

�2

)NI

ð


(
L C 1

2

)(
Pd
�1

)LC1/2

F2

(
L C 1

2
,

1

2
, L �NI;

3

2
, L; �Pd

�1
,
�1 � �2

�1

)
p
"�L���d�L

D 1

2
� �1 C L�I�

NI



(
L C 1

2

)(
�d

1 C L�I

)LC1/2

ð F2

(
L C 1

2
,

1

2
, L �NI;

3

2
, L; � �d

1 C L�I
,

L�I
1 C L�I

)
p
"�L���d�L

�10.69�

10 Equation (83) of Haimovich and Shah [17] has a typographical error. A factor of -�N�r� should
appear in the denominator.
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where again F2�ž, ž, ž; ž, ž; ž, ž� is Appell’s hypergeometric function of two vari-
ables [10, Eq. (9.180.2)]. Using the functional relation between hypergeometric
functions of two variables in Eq. (9.183.2) of Ref. 10, the BEP of (10.69) can
be rewritten as

Pb�E� D 1

2
�
(
�1

�2

)NI

ð


(
L C 1

2

)
�Pd�LC1/2F2

(
L C 1

2
, 1, L �NI;

3

2
, L;

Pd
�1 C Pd

,
�1 � �2

�1 C Pd

)
p
"�L���d�L��1 C Pd�LC1/2

D 1

2
� �1 C L�I�

NI

ð



(
L C 1

2

)(
�d

1 C �d C L�I

)LC1/2

ð F2

(
L C 1

2
, 1, L �NI;

3

2
, L;

�d
1 C �d C L�I

,
L�I

1 C �d C L�I

)
p
"�L���d�L

�10.70�
which reduces to (10.13) with �1 replaced by �1 when NI D 1.

Figures 10.8 and 10.9 illustrate Pb�E� as computed from (10.64) [or equiva-
lently, from (10.70)] versus average total SNR, L�d, for four- and eight-element
arrays with multiple interferers and equal desired signal and interference powers.
Included for comparison are the corresponding results for the single-interferer
case, which for the four-element array are obtained from Fig. 10.3. The numer-
ical results clearly show the increased performance penalty produced by the
additional CCI.

10.1.2.2 Number of Interferers Equal to or Greater Than the Number
of Array Elements. The scenario where the number of interfering signals is
no less than the number of array elements is treated in Ref. 18 for the case of
Rayleigh fading on both the desired signal and the CCI. In particular, assuming
that the system is interference limited (hence, thermal noise can be neglected), it
is shown there that11

p�t ��t� D �NI C 1�

�L��NI C 1 � L�

(
Pd
PI

)NIC1�L �L�1
t

�Pd/PI C �t�NIC1
, �t ½ 0

�10.71�

11 Shah and Haimovich [18] also note that the PDF in (10.71) does not depend on the form of the
covariance matrix of the interference propagation vectors. Thus, the performance of the optimum
combiner obtained from using this PDF is the same regardless of whether or not the fading at the
L receiver elements is independent. It is to be emphasized, however, that this statement is true only
for the equal power interferer and NI ½ L case, as is being considered here.
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Figure 10.8. Average BEP versus average total SNR for optimum combining with Rayleigh
fading and multiple interferers; L D 4.

where �t now denotes the signal-to-interference ratio (SIR) at the combiner
output. This PDF is an example of one that has a finite number of finite
moments, with all remaining higher-order moments being infinite. We will show
this explicitly after evaluating the MGF.

To compute the MGF associated with (10.71), we make use of a result in
Eq. (12) of Ref. 20, for the generalized Stieltjes integral∫ 1

0

x�

�x C y�-
e�ax dx D ��C 1�a[�-���/2]�1y���-�/2e�1/2�ayWk,m�ay�,

k D ��� -

2
, m D �� - C 1

2
�10.72�

where Wk,m�z� is the Whittaker function defined in Eq. (9.222) of Ref. 10.12

12 Note that the condition on the integral definition of Wk,m�z� in Eq. (9.222) of Ref. 10, namely,
m � k > � 1

2 , is satisfied since here

m � k D L �NI � 1

2
� �L �NI

2
D L � 1

2
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Figure 10.9. Average BEP versus average total SNR for optimum combining with Rayleigh
fading and multiple interferers; L D 8.

Then, letting x D �t, a D s, � D L � 1, - D NI C 1, and y D Pd/PI, we obtain,
after simplification,

M�t��s� D
∫ 1

0
p�t ��t�e

�s�t d�t

D �NI C 1�

�L��NI C 1 � L�

(
Pd
PI

)NIC1�L ∫ 1

0

�L�1
t

�Pd/PI C �t�NIC1
e�s�t d�t

D �NI C 1�

�NI C 1 � L�

(
s
Pd
PI

)�NI�L�/2
exp
(

1

2
s
Pd
PI

)

ðW��L�NI�/2,�L�NI�1�/2

(
s
Pd
PI

)
�10.73�

To obtain the moments of �t, we must evaluate the derivatives of the MGF
in (10.73) at s D 0. To obtain these we first rewrite (10.73) using the integral
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definition of the Whittaker function in Ref. 10 [Eq. (9.222)], to give

M�t��s� D �NI C 1�

�NI C 1 � L��L�

∫ 1

0
exp
(

�sPd
PI
t

)
tL�1

�1 C t�NIC1
dt �10.74�

Then

Ef�nt g D ��1�n
dn

dsn
M�t ��s�jsD0

D �NI C 1�

�NI C 1 � L��L�

(
Pd
PI

)n ∫ 1

0

tnCL�1

�1 C t�NIC1
dt �10.75�

The integral in (10.75) can be evaluated using [10, Eq. (3.241.4)], which is
restricted to n < NI � L. When this done, the following results:

Ef�nt g D �L C n��NI C 1 � L � n�

�NI C 1 � L��L�

(
Pd
PI

)n

D L�L C 1� Ð Ð Ð �L C n� 1�

�NI � L��NI � L � 1� Ð Ð Ð �NI C 1 � L � n�

(
Pd
PI

)n
, n < NI � L

�10.76�
The first moment corresponding to n D 1 is simply given by

Ef�tg D L

NI � L

(
Pd
PI

)
�10.77�

which agrees with Eq. (14) of Ref. 18 and varies linearly with L when the
number of interferers is large compared to the number of antenna elements.
For n ½ NI � L, the integral in (10.75) diverges, and thus as stated above, only
a finite number (NI � L � 1) of moments have finite value.

Assuming that the number of interferers is large and that the total interference
can be modeled as a Gaussian RV [18], the conditional error probability for
coherent detection is still described by a Gaussian Q-function, and as before, the
average BEP of OC can be computed based entirely knowledge of the MGF; for
example, for BPSK we have, analogous to (10.17),

Pb�E� D 1

"

∫ "/2

0
M�t

(
� 1

sin2 #

)
d# �10.78�

Alternatively, a closed-form expression for the average BEP corresponding to
coherent BPSK is obtained in Ref. 18 by direct integration of the conditional
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BEP over the PDF in (10.71), with the result

Pb�E� D 1

2
C 1

2
p
"�L��NI C 1 � L�

[(
Pd
PI

)NIC1�L 
(
L �NI � 1

2

)
�L C 1�

�L �NI � 1�

ð 2F2

(
NI C 1,NI C 1 � L;NI � L C 3

2
,NI � L C 2;

Pd
PI

)

� 2
(
Pd
PI

)1/2



(
NI � L C 1

2

)


(
L C 1

2

)

ð 2F2

(
L C 1

2
,

1

2
;L �NI C 1

2
,

3

2
;
Pd
PI

)]
�10.79�

where pFq

( p︷ ︸︸ ︷
ž, Ð Ð Ð , ž;

q︷ ︸︸ ︷
ž, Ð Ð Ð , ž; ž

)
is the generalized hypergeometric series defined

in Eq. (9.14.1) of Ref. 10. Again the simplicity of (10.78) combined with (10.65)
compared with (10.79) is to be observed.

10.1.3 Comparison with Results for MRC in the Presence of
Interference

As mentioned previously, using MRC in the presence of interference results in
suboptimum performance in that it produces a smaller SINR at the combiner
output than OC. As such, it is of interest to evaluate the performance of MRC
with interference and then compare the amount by which it suffers relative to that
obtained with OC. Based on the approximate approach (replacing the eigenvalues
by their statistical means), the analytical results describing the performance of
MRC in the presence of interference can be obtained directly from the results
for the performance of MRC in the absence of interference (see Chapter 9) by
replacing the average SNR with the average SINR. For example, for Rayleigh
fading, analogous to (9.6), the appropriate expression for average BEP would be

Pb�E� D 1

2L

(
1 �
√

�

1 C �

)L L�1∑
kD0

1

2k

(
L � 1 C k

k

)(
1 C
√

�

1 C �

)k
�10.80�

where now

�
D �d

1 CNI�I
�10.81�

The result in (10.80) agrees with that obtained by Winters [6] for the single-
interferer case and that obtained by Villier [8] for the multiple-interferer case.
We further note that (10.80) is also obtained as the limit of (10.26) (for L ½ 2) or
(10.28) (for L ½ 1) when �I approaches zero, in which case � of (10.81) becomes
equal to �d.
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For the case where the system is interference limited and the interference is
assumed to be modeled by a Gaussian distribution (Shah and Haimovich [19]
justify this assumption using histograms obtained from computer simulations),
the exact approach discussed in Section 10.1.2.2 is applied to derive results for
MRC performance in the presence of CCI. Specifically, the PDF of the SIR �t
is shown to be13

p�t ��t� D �NI C L�

�L��NI�

(
Pd
PI

)NI �L�1
t

�Pd/PI C �t�NICL
, �t ½ 0 �10.82�

Comparing (10.82) with (10.71) we observe that they are of similar form and
thus the approach taken to compute the MGF in (10.73) can also be used
here. Specifically using (10.72) with now x D �t, a D s, � D L � 1, - D NI C L,
y D Pd/PI, we obtain after simplification

M�t��s� D �NI C L�

�NI�

(
s
Pd
PI

)�NI�1�/2

ð exp
(

1

2
s
Pd
PI

)
W��2L�NIC1�/2,�NI/2

(
s
Pd
PI

)
�10.83�

Hence, the average BEP can be computed from (10.78) with M�t��s� as
in (10.83).

Analogous to (10.79), a closed-form expression for Pb�E� was found by Shah
and Haimovich [19] by direct integration of the conditional BEP over the PDF
in (10.71) with the result

Pb�E� D 1

2
p
"�NI��L�
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Pd
PI

)NI ( 1
2 �NI

)
�NI C L�

��NI�

ð 2F2

(
NI C L,NI;NI C 1

2
, NI C 1;

Pd
PI

)
� 2
(
Pd
PI

)1/2



(
NI � 1

2

)

ð 

(
L C 1

2

)
2F2

(
L C 1

2
,

1

2
;

3

2
�NI,

3

2
;
Pd
PI

)
C p

"�NI��L�

]
�10.84�

Borrowing on numerical results presented in Ref. 19, Fig. 10.10 is a plot
of average BEP versus SIR per channel, Pd/PI, as computed from (10.79) for
OC and (10.84) for MRC for two values of the number of antennas, namely,
L D 3 and L D 6, and also NI D 18 interfering sources. It is observed that
OC can provide improved performance over MRC even when the number of
interfering sources is much larger than the number of antennas. For example, for
Pb�E� D 10�3 and L D 6, OC requires 1 dB less SIR than MRC. Figure 10.11

13 Note that the PDF for MRC in (10.82) is not restricted to L ½ NI as was the case for (10.71)
corresponding to OC.
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Figure 10.10. Average BEP versus channel SIR for Rayleigh fading; NI D 18. (Courtesy of Shah
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explicitly shows the improvement of OC over MRC as a function of the
average BEP for the same numbers of antennas as in Fig. 10.10. (Clearly, for a
single antenna, the two combining schemes produce identical performance.) By
improvement in Fig. 10.11 is meant the reduction in required SIR per channel
to obtain a given average BEP using OC as compared with MRC. We observe
from this figure that for a fixed number of antenna elements, the improvement is
quite insensitive to the value of average BEP over a range of four decades. On
the other hand, for a fixed average BEP, a noticeable improvement is obtained
as the number of antenna elements increases.

The extension of the above results to the case of Nakagami-m fading has
recently been considered by Aalo and Zhang [21]. In particular, letting md and
mI denote the Nakagami-m parameters on the desired signal and interference,
respectively, from Ref. 21 the result for the average BEP of coherent BPSK with
MRC is in our notation given by

Pb�E� D 1
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� �mdL C mINI�
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)p
"
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An identically equivalent result can be obtained from (10.84) by replacing L
with mdL and NI with mINI. Using this same replacement in (10.79) gives the
analogous result for OC, namely,

Pb�E�

D 1

2
C 1

2
p
"�mdL��mINI C 1 � mdL�

[(
Pd
PI

)mINIC1�mdL

ð 
(
mdL � mINI � 1

2

)
�L C 1�

�mdL � mINI � 1�
2F2

(
mINI C 1, mINI C 1 � mdL;mINI

� mdL C 3

2
, mINI � mdL C 2;

Pd
PI

)
� 2
(
Pd
PI

)1/2



(
mINI � mdL C 1

2

)

ð 

(
mdL C 1

2

)
2F2

(
mdL C 1

2
,

1

2
;mdL � mINI C 1

2
,

3

2
;
Pd
PI

)]
�10.86�



470 OPTIMUM COMBINING: A DIVERSITY TECHNIQUE FOR COMMUNICATION

REFERENCES

1. W. C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.

2. B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B. Goode, “Adaptive antenna
systems,” Proc. IEEE, vol. 55, December 1967, p. 2143.

3. S. R. Applebaum, “Adaptive antenna systems,” IEEE Trans. Antenna Propag.,
vol. AP-24, September 1976, p. 585.

4. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, New York: Wiley,
1980.

5. V. M. Bogachev and I. G. Kiselev, “Optimum combining of signals in space-diversity
reception,” Telecommun. Radio Eng., vol. 34–35, October 1980, pp. 83–85.

6. J. H. Winters, “Optimum combining in digital mobile radio with co-channel interfer-
ence, IEEE Trans. Veh. Technol., vol. VT-33, August 1984, pp. 144–155.

7. A. Shah, A. M. Haimovich, M. K. Simon, and M.-S. Alouini, “Exact bit error
probability for optimum combining with a Rayleigh fading Gaussian co-channel
interferer,” to appear in the June 2000 issue of the IEEE Trans. Commun.

8. E. Villier, “Performance analysis of optimum combining with multiple interferers in
flat Rayleigh fading,” IEEE Trans. Commun., vol. 47, October 1999, pp. 1503–1510.

9. J. V. DiFranco and W. L. Rubin, Radar Detection. Upper Saddle River, NJ: Prentice
Hall, 1968.

10. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed.,
San Diego, CA: Academic Press, 1994.

11. V. A. Aalo and J. Zhang, “Performance of antenna array systems with optimum
combining in a Rayleigh fading environment,” to appear in IEEE Comm. Letters.

12. J. Cui, D. D. Falconer, and A. U. H. Sheikh, “Analysis of BER for optimum
combining with two co-channel interferers and maximal ratio combining with arbi-
trary number of interferers,” Proc. IEEE Int. Symp. Personal indoor Mobile Commun.
(PIMRC’96), October 1996, pp. 53–57.

13. J. Cui, D. D. Falconer, and A. U. H. Sheikh, “Performance evaluation of optimum
combining and maximal ratio combining in the presence of co-channel interference
and channel correlation for wireless communication systems,” Mobile Networks Appl.,
vol. 2, 1997, pp. 315–324.

14. G. J. Foschini and J. Salz, “Digital communications over fading radio channels,” Bell
Syst. Tech. J., vol. 62, February 1983, pp. 429–456.

15. J. H. Winters and J. Salz, “Upper bounds on the bit error rate of optimum combining
in wireless systems,” Proc. Veh. Technol. Conf., 1994, pp. 942–946. (See also IEEE
Trans. Commun., vol. 46, December 1998, pp. 1619–1624.)

16. J. H. Winters, J. Salz, and R. Gitlin, “The impact of antenna diversity on the
capacity of wireless communication systems,” IEEE Trans. Commun., vol. 42,
February/March/April 1994, pp. 1740–1751.

17. A. M. Haimovich and A. Shah, “The performance of space-time processing for
suppressing narrowband interference in CDMA communications,” Wireless Personal
Commun., vol. 7, August 1998, pp. 233–255.

18. A. Shah and A. M. Haimovich, “Performance analysis of optimum combining in
wireless communications with Rayleigh fading and cochannel interference,” IEEE
Trans. Commun., vol. 46, April 1998, pp. 473–479.



REFERENCES 471

19. A. Shah and A. M. Haimovich, “Performance analysis of maximal ratio combining
and comparison with optimum combining for mobile radio communications with
cochannel interference,” to appear in IEEE Trans. Veh. Technol.

20. A. Erdelyi et al., Tables of Integral Transforms, vol. 2, New York: McGraw-Hill,
1954.

21. V. A. Aalo and J. Zhang, “On the effect of cochannel interference on average
error rates in Nakagami-fading channels,” IEEE Commun. Lett., vol. 3, May 1999,
pp. 136–138.



Digital Communication over Fading Channels: A Unified Approach to Performance Analysis
Marvin K. Simon, Mohamed-Slim Alouini

Copyright  2000 John Wiley & Sons, Inc.
Print ISBN 0-471-31779-9 Electronic ISBN 0-471-20069-7

11

DIRECT-SEQUENCE CODE-DIVISION
MULTIPLE ACCESS

In its generic form, direct-sequence code-division multiple access (DS-CDMA)
is a spread-spectrum (SS) technique for simultaneously transmitting a number
of signals representing information messages from a multitude of users over
a channel employing a common carrier.1 The method by which the various
users share the channel is the assignment of a unique pseudonoise (PN)-type
code to each user (which accompanies the transmission of the information)
with orthogonal-like properties that allows the composite received signal to
be separated into its individual user components, each of which can then
be demodulated and detected. The deployment of the code (assumed to be
represented by a binary waveform with PN properties2) at the transmitter
(spreading process, i.e., the superposition onto the binary information waveform)
is accomplished by a simple multiplication [which is equivalent to modulo-
2 addition of their (0,1) representations], hence the term direct-sequence
modulation. Similarly, the removal of the code at the receiver (despreading
process) is also accomplished by the identical multiplication operation. For
our purposes in this chapter, we assume that the receiver is perfectly capable
of regenerating the transmitted codes corresponding to each of the users’
transmissions, and as such we shall ignore all synchronization issues dealing
with the acquisition and tracking of these codes at the receiver. A complete
discussion of techniques for accomplishing these functions and their impact on
system performance can be found in Part 4, Chapters 1 and 2, of Ref. 1.

The DS-CDMA technique has its roots in the literature dealing with military
network applications (for a complete historical perspective on early SS systems

1 Later we address a multiple-carrier version of this modulation, which has become of interest in
recent years.
2 Depending on the particular application, the codes may or not be purely orthogonal; however, in
either event they are chosen to have large autocorrelation and small cross-correlation. A detailed
discussion of the design of codes for SS applications such as CDMA is beyond the scope of this
book but can be found in Ref. 1, Part 1, Chapter 5.
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employing such modulations, see Part 1, Chapter 2, of Ref. 1), where their use
was primarily to combat intentional jamming introduced by an enemy. As such,
the communication channel was typically modeled as additive white Gaussian
noise (AWGN) combined with jamming of one sort or another (see Part 1,
Chapters 3 and 4, and Part 2, Chapter 1, of Ref. 1). More recently, however, DS-
CDMA has secured a strong foothold in the commercial market primarily because
of its adoption as the IS-95 standard that governs digital cellular telephony in
the United States and elsewhere. It is this and related wireless communication
applications that motivate the results presented in this chapter, since here the
primary channel of interest is the fading channel along with the possibility of
narrowband interference. In fact, it is the inclusion of this possibility that has
stimulated researchers to investigate a multiple-carrier form of DS-CDMA, since
as we shall see later in the chapter, this particular form offers significant advantage
over the traditional single-carrier version in combating such interference.

In view of the discussion above, it seems natural, therefore, to divide the
chapter into two main sections: single- and multiple-carrier DS-CDMA. Each
of these sections focuses on the average bit error rate (BER) performance
of the corresponding DS-CDMA system when transmitted over a generalized
fading channel such as those modeled in previous chapters. As before, the
emphasis will be on using the alternative forms of the classic functions developed
in Chapter 4 to simplify the resulting expressions. Although we shall restrict
ourselves to binary DS modulation (spreading waveforms), we allow for the
possibility of other than a rectangular pulse shape to represent the PN code chip
waveform.

11.1 SINGLE-CARRIER DS-CDMA SYSTEMS

There are a large number of papers dealing with the performance of DS-CDMA
systems over frequency-selective fading channels [2–13]. In this section we apply
the MGF-based approach presented in Chapter 9 to derive the average BER
performance of binary DS-CDMA systems operating over these channels [14].
The results presented in this section are applicable to systems that employ RAKE
reception with coherent maximal-ratio combining (MRC). Extensions to other
type of detection/diversity combining techniques is straightforward (in view of
the results presented in Chapter 9) and are therefore left as an exercise for the
reader. Also, although specifically developed for receiver type of diversity, the
analysis presented in this section can be used with some modifications to assess
the performance of transmit diversity CDMA systems [15,16].

11.1.1 System and Channel Models

11.1.1.1 Transmitted Signal. We consider a binary DS-CDMA system with
Ku independent users sharing a channel simultaneously, each transmitting with
power P at a common carrier frequency fc D ωc/2�, using a data rate Rb D 1/Tb
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and a chip rate Rc D 1/Tc. The kth user, k D 1, 2, . . . , Ku, is assigned a unique
code sequence fak,jg of chip elements �C1,�1�, so that its code waveform is
given by

ak�t� D
C1∑
jD�1

ak,jPTc�t � jTc� �11.1�

where the function PT�Ð� denotes the chip pulse of duration T. In the single-
carrier case we assume that PT�Ð� is a unit rectangular pulse, whereas in the
multicarrier case we will consider Nyquist pulses. The code sequence fak,jg is
assumed to be periodic, with period equal to the processing gain PG D Tb/Tc.
The data signal waveform bk�t� given by

bk�t� D
C1∑
jD�1

bk,jPTb�t � jTb� �11.2�

is binary phase-shift-keyed (BPSK) onto the carrier at fc, which is then spread
by that user’s code sequence and transmitted over the channel. The resulting kth
user’s transmitted signal sk�t� is thus given by

sk�t� D
p

2Pak�t�bk�t� cos�ωct� �11.3�

The composite transmitted signal s�t� at the input of the channel can then be
expressed as

s�t� D
Ku∑
kD1

p
2Pak�t�bk�t� cos�ωct� �11.4�

11.1.1.2 Channel Model. DS-CDMA systems involve a spreading process
which results in a transmitted signal whose bandwidth is much wider than
the channel coherence bandwidth, and therefore undergoes frequency-selective
fading. Following our discussion in Chapter 2, this type of fading is typically
modeled by a linear filter which for the kth user is characterized by a complex-
valued lowpass equivalent impulse response [17–19]

hk�t� D
Lp∑
lD1

˛k,le
�j�k,lυ�t � �k,l� �11.5�

where υ�Ð� is the Dirac delta function, l the propagation path index, and
f˛k,lgLplD1, f�k,lgLplD1, and f�k,lgLplD1 the random path amplitudes, phases, and delays,
respectively. We assume that the sets f˛k,lgLplD1, f�k,lgLplD1, and f�k,lgLplD1 are mutually
independent. In (11.5), Lp is the number of resolvable paths (the first path being
the reference path whose delay �1 D 0) and is related to the ratio of the maximum
delay spread �max to the chip time duration Tc.
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We assume slow fading, so that Lp is constant over time, and f˛k,lgLplD1,
f�k,lgLplD1, and f�k,lgLplD1 are all constant over a symbol interval. If the different
paths of a given impulse response are generated by different scatterers, they tend
to exhibit negligible correlations [20,21]. In this case it is reasonable to assume
that the f˛k,lgLplD1 are statistically independent random variables (RV’s). We make
this assumption in our analysis but remind the reader that this assumption can
be relaxed for Nakagami-m fading channels in view of the results presented in
Section 9.6.4. We denote the fading amplitude of the kth-user lth resolved path by
˛k,l, which is a RV whose mean-square value ˛2

k,l is assumed to be independent
of k and is denoted by �l.

After passing through the fading channel, the signal is perturbed by additive
white Gaussian noise (AWGN) with a one-sided power spectral density which is
denoted by N0 (W/Hz). The AWGN is assumed to be independent of the fading
amplitudes f˛k,lgLplD1. Hence, the instantaneous SNR per bit of the lth channel is
given by !k,l D ˛2

k,lEb/N0, where Eb (J) is the energy per bit, and the average
SNR per bit of the lth channel is given by !l D �lEb/N0.

11.1.1.3 Receiver. With multipath propagation, it follows from (11.5) and
(11.4) that the received signal r�t�, whose signal component is the time
convolution of s�t� and h�t�, may be written as

r�t� D
p

2P
Ku∑
kD1

Lp∑
lD1

˛k,lak�t � �k,l�bk�t � �k,l� cos[ωc�t � �k,l�C �k,l] C n�t�
�11.6�

where n�t� is the receiver AWGN random process.
We consider an L-branch (finger) MRC RAKE receiver, as shown in Fig. 9.2.

The optimal value for L is Lp, but L may be chosen less than Lp, due to receiver
complexity constraints. Let us consider the kth-user receiver. Each of the L paths
to be combined is first coherently demodulated through multiplication by the
unmodulated carrier cos[ωc�t � �k,l�C �k,l], then lowpass filtered to remove the
second harmonics of the carrier. All these operations assume that the receiver
is correctly time and phase synchronized at every branch (i.e., perfect carrier
recovery, and perfect phase f�k,lgLlD1 and time delay f�k,lgLlD1 estimates). Using
MRC (see Section 9.2) and assuming perfect knowledge of the fading amplitude
on each finger, the L lowpass filter outputs frm,lgLlD1 are individually weighted
by their respective fading amplitudes and then combined by a linear combiner
yielding the decision variable

rk D
L∑
lD1

˛k,lrk,l, k D 1, 2, . . . , Ku �11.7�
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11.1.2 Performance Analysis

Without loss of generality, let us consider the kth user’s performance. The
decision variable rk may be written as the sum of a desired signal component
and three interference/noise components [10]:

rk D š
(

L∑
lD1

˛2
k,l

)√
Eb C

L∑
lD1

˛k,l�IS C IM CN� �11.8�

where IS is the self-interference component induced by the autocorrelation
function of the kth user’s spreading code, IM is the multiple-access interference
(MAI) component induced by the other Ku � 1 users on the desired user, and N
is a zero-mean AWGN component with variance (2

N D N0/2. Eng and Milstein
showed that IS can be considered to be a zero-mean Gaussian RV with variance
[10, Eq. (9)]

(2
S D �T � 1

2PG
�1Eb �11.9�

where �T D∑Lp
lD1�l/�1 can be interpreted as the normalized (to the first path)

total average fading power. Similarly, under the standard Gaussian approximation
(large numbers of users) [3,5,6,10], IM can be modeled as a zero-mean Gaussian
RV with variance [10, Eq. (6)]

(2
M D 2�Ku � 1��T

6PG
�1Eb �11.10�

Under these assumptions rk may be considered to be a conditional Gaussian
RV (conditioned on f˛k,lgLlD1� with a conditional mean E[rkjf˛k,lgLlD1] and a
conditional variance var[rkjf˛k,lgLlD1] given by

E
[
rkjf˛k,lgLlD1

] D š
(

L∑
lD1

˛2
k,l

)√
Eb �11.11�

var
(
rkjf˛k,lgLlD1

) D
L∑
lD1

˛2
k,l

(
(2
N C (2

S C (2
M

)
�11.12�

Assuming that the data bits C1 or �1 are equally probable, the kth-user
conditional SNR, SNR�f˛k,lgLlD1�, is given as

SNR
(f˛k,lgLlD1

) D
(
E
{
rkjf˛k,lgLlD1

})2
2 var

{
rkjf˛k,lgLlD1

}
D
(

L∑
lD1

˛2
k,l

)
Eb
Ne

�11.13�



478 DIRECT-SEQUENCE CODE-DIVISION MULTIPLE ACCESS

where Ne/2 is the equivalent two-sided interference plus noise power spectral
density defined as

Ne
2

D (2
N C (2

S C (2
M

D �2Ku C 1��T � 3

6PG
�1Eb C N0

2
�11.14�

with !1 D �1Eb/N0 the average received SNR per bit corresponding to the
first path.

11.1.2.1 General Case. In view of (11.13) and (11.14), and since we are
assuming BPSK modulation, the average BER performance expression obtained
in (9.11) applies here for DS-CDMA by replacing N0 with Ne, or equivalently,
replacing the average SNR per bit of the lth path !l D �lEb/N0 by

!l,e D �lEb
Ne

D !l

[
1 C �2Ku C 1��T � 3

3PG
!1

]�1

�11.15�

11.1.2.2 Application to Nakagami-m Fading Channels. The performance
of coherent DS-CDMA systems over Nakagami-m frequency-selective fading
channels with MRC [10,12] and postdetection EGC [9,13,22] RAKE reception
has received considerable attention in the recent literature. In particular, Eng
and Milstein [10] have provided a BER performance analysis of coherent DS-
CDMA systems in a Nakagami-m fading environment with an equally spaced
exponentially decaying power delay profile (�l D �1eυ�l�1�, l D 1, 2, . . . , Lp),
where υ is the power decay factor. Their analysis relies on a classical PDF-
based approach and uses a Nakagami approximation [23, Eq. (80)] to the PDF of
the sum of squares of independent nonidentically distributed Nakagami-m RV’s,
which leads to a closed-form approximation to the BER in terms of the Gauss
hypergeometric series, 2F1�Ð, Ð; Ð; Ð�. The approximation is accurate for small
values of the power decay factors υ but loses its accuracy as υ increases. More
recently, Efthymoglou et al. [12] applied the Gil–Pelaez lemma [12, Eq. (26)]
to obtain exact BER performance in the Nakagami-m fading environment with
arbitrary fading parameters along the different resolvable paths. Applying the
approach described above to the problem treated in Refs. 10 and 12 and using
the MGF corresponding to Nakagami-m fading given in Table 2.1 yields after
some manipulations the following expression for the average BER:

Pb�E� D 1

�

∫ �/2

0

L∏
lD1

(
1 C !ee

��l�1�υ

ml sin2 +

)�ml
d+ �11.16�

where !e D �1Eb/Ne can be viewed as the equivalent signal-to-noise-plus-
interference ratio per bit corresponding to the first path, and which may be
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expressed using (11.15) as

!e D
(
�2Ku C 1��T � 3

3PG
C 1

!1

)�1

�11.17�

In this case, �T reduces to �T D∑Lp
lD1 e

��l�1�υ D �1 � e�Lpυ�/�1 � e�υ�. The
exact and simple form of the average BER in (11.16) has advantage over
previous equivalent forms which are either an approximation [10, Eq. (16a)] or
are expressed in terms of an integral with an infinite upper limit and with a much
more complicated integrand [12, Eq. (33)]. Many such DS-CDMA performance
analysis problems (for other types of channel models [24] or other types of
detection/diversity combining [9,13,22]) may be solved using the approach
described above.

11.2 MULTICARRIER DS-CDMA SYSTEMS

Multicarrier code-division multiple-access (MC-CDMA) systems have recently
received widespread interest due to their potential for high-speed transmission
and their effectiveness in mitigating the effects of multipath fading and in
rejecting narrowband interference [25]. Different classes of these systems have
been presented and studied by various researchers [25]. Here we focus on one
particular scheme proposed by Kondo and Milstein [26]. In the absence of
partial band interference (PBI), this scheme was shown to achieve performance
equivalent to RAKE reception of single-carrier DS-CDMA systems operating
over frequency-selective Rayleigh channels with a flat multipath intensity profile.
However, the MC-CDMA system has the advantage of not requiring a continuous
spectrum since the various subbands over which the modulated signal is
transmitted can be chosen in various parts of the “unused” spectrum. In addition,
the proposed MC-CDMA scheme was shown to outperform single-carrier systems
in the presence of PBI and can therefore be favorably used in an overlay
CDMA/FDMA or CDMA/TDMA situation without the need for sophisticated
adaptive notch filtering to excise the interference.

There have been several studies that built on the work of Kondo and Milstein.
In particular, Rowitch and Milstein examined the performance of coded versions
of the original scheme [27]. The effect of fading correlation between the various
subbands was studied in Refs. 28 and 29. In this section we present generic
expressions for the average BER performance of MC-CDMA systems operating
over generalized fading channels with and without PBI [30]. The results are
again applicable to systems that employ coherent detection with MRC but can
easily be extended, in view of the results in Chapter 9, to other detection
and combining technique combinations. Aside from providing equivalent forms
for known expressions corresponding to the performance of MC-CDMA over
Rayleigh fading channels [26], utilization of the MGF-based approach for this
specific application yields a solution for many scenarios that would be otherwise
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difficult to analyze in simple form. More specifically, this approach is particularly
useful for the performance of MC-CDMA systems operating in a microcellular
environment where the fading tends to follow a Rice or Nakagami-m type of
distribution. Indeed, as we shall see in the following sections, because of the
PBI the variance of the subband correlator outputs may be different, and hence
computing the PDF of the conditional SNR, which can be done for the Rayleigh
fading case, becomes a difficult task for other types of fading. In fact, even in the
absence of PBI, the variance of the subband correlator outputs may be different
because of the variation in the average fading power across the band. This is
particularly true when the various subbands are not contiguous (i.e., subcarriers
are far apart) because of the dependence of the path loss on the carrier frequency
[31, Sec. 2.5].

11.2.1 System and Channel Models

11.2.1.1 Transmitter. Consider a BPSK multicarrier coherent DS-CDMA
system with Ku independent users each transmitting with power P. The users
are simultaneously sharing an available bandwidth BW D �1 C ˛�/Tc, where
Tc is the chip duration of a corresponding single-carrier wideband DS-CDMA
system, and ˛ (0 � ˛ � 1) is the rolloff factor of the chip wave-shaping Nyquist
filter. The available spectrum BW is divided into (not necessarily contiguous)
Mf equal bandwidth subbands each of width BWMf approximately equal to the
coherence bandwidth of the channel (see Fig. 11.1). Each subband is assigned
a carrier (at frequency fl, l D 1, 2, . . . ,Mf) which is DS-CDMA modulated
with the same user information at bit rate 1/Tb and chip rate 1/�MfTc� (see
Fig. 11.2). Each user is effectively assigned a specific periodic code sequence of
chip elements (C1,�1) and of processing gain per subband PG0 D PG/Mf. We

. . . . .
f

f

f1 f2 fmf

BWMf

BW = MfBWMf

fc

Figure 11.1. Comparison between single and multicarrier DS-CDMA systems power spectral
densities.
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Figure 11.2. Transmitter of multicarrier DS-CDMA system for the kth user.

assume deterministic subband PN codes with ideal autocorrelation function. The
use of bandlimited (Nyquist-shaped) spreading waveforms with wave-shaping
filter transfer function denoted by H�f� guarantees that the DS waveforms do
not overlap.

11.2.1.2 Channel. Following the system design and modeling assumptions of
Kondo and Milstein [26], the number of subbands as well as their bandwidths are
chosen so that the separate subbands fade slowly and nonselectively. Under these
assumptions, the channel transfer function of the lth subband for the kth user is
˛0
k,l exp�j�0

k,l�, where the f˛0
k,lgMflD1 are the fading amplitude RV’s and f�0

k,lgMflD1 are
independent uniformly distributed RV’s over [0, 2�]. The average fading power
of the lth subband is denoted by �0

l D �˛0
k,l�

2 and is assumed to be independent
of k.

11.2.1.3 Receiver. The receiver consists of a bank of Mf matched filters
followed by MRC (see Fig. 11.3). Each of the received modulated subband
carriers is first passed through a bandpass chip-matched filter HŁ�f�, then
coherently demodulated, sampled, despread, and summed. All these operations
assume that the receiver is correctly phase and time synchronized at every
branch (i.e., perfect carrier recovery and bit synchronization). We denote by
X�f� D H�f�HŁ�f� D jH�f�j2 the overall frequency response of the chip wave-
shaping Nyquist filter and assume that X�f� is a root raised-cosine frequency
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Figure 11.3. Receiver of multicarrier DS-CDMA system for kth user (ideal coherent
demodulation).

response given by

X�f�D




1

W
, 0 � jfj < W

2
�1 � ˛�

1

2W

[
1�sin

(
1

2˛

(
2�jfj
W

��
))]

,
W

2
�1 � ˛� � jfj � W

2
�1 C ˛�

0,
W

2
�1 C ˛� � jfj

�11.18�
with W D 1/T0

c D 1/�MfTc� for multicarrier and W D 1/Tc for single carrier. In
addition, we normalize the chip correlators by 1/

p
PG0 (Kondo and Milstein [26]

do not normalize). Finally, the Mf test statistics rk,l are individually weighted by
the coefficients wk,l and then combined according to the rules of MRC to form
the decision variable rk D∑Mf

lD1 wk,lrk,l.

11.2.1.4 Notation. For clarity we show in this section the equivalence
between multicarrier and single-carrier system parameters. To distinguish
between them we add a prime to the multicarrier system parameters.

ž Subband chip time T0
c D MfTc.

ž Subband processing gain PG0 D Tb/MfTc D PG/Mf.
ž Subband chip energy E0

c D Ec [�P/Mf�MfTc D PTc].
ž Subband bit energy E0

b D Eb/Mf D PG0E0
c D PG0Ec.
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11.2.2 Performance Analysis

Without loss of generality let us consider the kth user’s performance. Two cases
are of interest. In the first case the received signal is affected by fading, MAI, and
AWGN. The second case corresponds to the scenario where the received signal
is affected not only by the fading, MAI, and AWGN but also by Gaussian PBI.

11.2.2.1 Conditional SNR

Case 1: No Partial-Band Interference. The decision variable of the kth
user may be written as the sum of a desired signal component and two
interference/noise components [26]:

rk D
Mf∑
lD1

wk,lrk,l D š
Mf∑
lD1

wk,l˛
0
k,l

√
Eb
Mf

C
Mf∑
lD1

wk,l�IMl CN� �11.19�

where Eb D PTb is the energy per bit, IMl is the MAI term induced by the other
Ku � 1 users in the lth subband, and N is the zero-mean AWGN component
with variance (2

N D N0/2. Under the standard Gaussian approximation (valid for
large number of users), IMl can be modeled as a zero-mean Gaussian RV with
variance (2

Ml
given by (assuming Nyquist chip pulses)

(2
Ml

D �Ku � 1�E0
c�

0
l

2T0
c

∫ 1

�1
X2�f� df D �Ku � 1�Eb�0

l

2MfPG0
(

1 � ˛

4

)
�11.20�

Assuming that the MAI and AWGN are independent, we define an equivalent
additive interference/noise with two-sided power spectral density

Nel
2

D (2
N C (2

Ml
D �Ku � 1�Eb�0

l

2MfPG0
(

1 � ˛

4

)
C N0

2

D N0

2

[
1 C Ku � 1

MfPG0
(

1 � ˛

4

)
! 0
l

]
�11.21�

where ! 0
l D �0

lEb/N0 represents the average SNR/bit of the lth subband. Under

these assumptions rk is a conditionally Gaussian RV (conditioned on f˛0
k,lgMflD1)

with conditional mean E[rkjf˛0
k,lgMflD1] and conditional variance var�rk jf˛0

k,lgMflD1�
given by

E
[
rkjf˛0

k,lgMflD1

] D š

 Mf∑
lD1

wk,l˛
0
k,l



√
Eb
Mf

var
(
rkjf˛0

k,lgMflD1

) D
Mf∑
lD1

�wk,l�
2Nel

2

�11.22�
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Assuming that there is an equal probability that the data bits are C or �1, we
get the kth-user conditional SNR, SNR �f˛0

k,lgMflD1�, as

SNR
(f˛0

k,lgMflD1

) D
(
E
[
rkjf˛0

k,lgMflD1

])2
2 var

(
rkjf˛0

k,lgMflD1

)
D Eb
Mf

(∑Mf
lD1 wk,l˛

0
k,l

)2
∑Mf
lD1�wk,l�

2Nel
�11.23�

The maximum conditional SNR is obtained when the various frequency diversity
subbands are weighted as per the rule of MRC by the coefficients

wk,l D E
[
rk,ljf˛0

k,lgMflD1

]
var
(
rk,ljf˛0

k,lgMflD1

) D 2˛0
k,l

Nel

√
Eb
Mf

�11.24�

Substituting (11.24) in (11.23), we obtain the kth-user maximum conditional
SNR, SNRmax�f˛0

k,lgMflD1�, at the MRC output as

SNRmax
(f˛0

k,lgMflD1

) D Eb
Mf

Mf∑
lD1

�˛0
k,l�

2

Nel

D Eb
N0Mf

Mf∑
lD1

ˇl�˛
0
k,l�

2 �11.25�

with

ˇl D
[

1 C Ku � 1

MfPG0
(

1 � ˛

4

)
! 0
l

]�1

�11.26�

Kondo and Milstein [26] compared the performance of their proposed multi-
carrier system with a wideband single-carrier coherent CDMA system with L
fingers RAKE reception [10]. For the special case of a single user �Ku D 1�,
the MAI term vanishes and the maximum conditional SNR of the multicarrier
system, as given by (11.25), reduces to

SNRmax
(f˛0

k,lgMflD1

) D Eb
N0Mf

Mf∑
lD1

�˛0
k,l�

2 �11.27�

On the other hand, it is well know that the maximum conditional SNR,
SNRmax�f˛k,lgLlD1�, of a single-carrier system with L fingers RAKE reception
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and in which the self-interference is negligible is given by [10]

SNRmax
(f˛k,lgLlD1

) D Eb
N0

L∑
lD1

�˛k,l�
2 �11.28�

Thus, for exact equivalence between the single-carrier and multicarrier systems,
what we need is

L D Mf, ˛k,l D ˛0
k,l√
Mf

�11.29�

For the multiuser case the maximum conditional SNR of the multicarrier system
is given by (11.25), whereas the maximum conditional SNR of the single-carrier
system is given by

SNRmax
(f˛k,lgLlD1

) D Eb
N0

L∑
lD1

�˛k,l�
2
[

1 C �Ku � 1��T
PG

(
1 � ˛

4

)
!1

]�1

�11.30�
Hence, in the multiuser case even if L D Lp and even if the conditions in
(11.29) are met, comparing (11.25) and (11.30) we see that we do not have
in general equivalence between the single- and multicarrier systems. However,
equivalence can be achieved in the particular case of a uniform average fading
power delay profile ��l D �, l D 1, 2, . . . , Lp� for single-carrier systems and a
uniform average fading power across the frequency band for multicarrier systems
��0

l D �0, l D 1, 2, . . . ,Mf�. Indeed, in this special case if L D Lp D Mf and if
the single-user conditions (11.29) are met, we have �T D L and � D �0/Mf,
and thus

�T�1 D L� D L
�0

Mf
D �0 �11.31�

which is the condition necessary for equivalence between (11.25) and (11.30).

Case 2: Partial-Band Interference. Consider now the presence of a PBI jammer
modeled as a bandlimited white Gaussian noise with bandwidth WJ D BWMf and
power spectral density SnJ�f� such as

SnJ�f� D


5J
2
, fJ � WJ

2
� jfj � fJ C WJ

2
0, elsewhere

�11.32�

where fJ denotes the jammer carrier frequency. The decision variable of the kth
user may now be written as the sum of a desired signal component and three
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interference/noise components [26],

rk D
Mf∑
lD1

wk,lrk,l D š
Mf∑
lD1

wk,l˛
0
k,l

√
Eb
Mf

C
Mf∑
lD1

wk,l�NC IMl C IJl� �11.33�

where IJl is the Gaussian PBI present in the lth subband with variance

(2
Jl

D NJl
2

D 1

2

∫ 1

�1
[SnJ�f� fl�C SnJ�fC fl�]X�f� df �11.34�

Assuming that the PBI is independent of the MAI and AWGN, we can define a
new equivalent additive interference/noise with two-sided power spectral density

Nel
2

D (2
N C (2

Ml
C (2

Jl

D N0

2

[
1 C Ku � 1

MfPG0
(

1 � ˛

4

)
! 0
l C NJl

N0

]
�11.35�

Note that even if the average fading power is uniform across the subbands, some
of the Nel values will still depend on l because of the presence of the PBI NJl in
these subbands. Since the various frequency diversity subbands are weighted as
per the rule of MRC by the weights (11.24) the kth-user maximum conditional
SNR, SNRmax�f˛0

k,lgMflD1�, is still given by (11.25), where ˇl is now given by

ˇl D
[

1 C Ku � 1

MfPG0
(

1 � ˛

4

)
! 0
l C NJl

N0

]�1

�11.36�

Because of the assumption that the bandwidth of the PBI is equal to the
bandwidth of one subband, two subcases have to be considered. First, if the
jammer carrier fJ coincides with one of the system subcarriers, say f6, 6 D
1, 2, . . . ,Mf, the PBI completely overlaps the 6th subband and

NJ6
N0

D JSR6!6
PG0�1 C ˛� , 6 D 1, 2, . . . or Mf

NJl
N0

D 0, l 6D 6,

�11.37�

where JSR6 D 5JWJ/�6Eb/Tb represents the interference (jamming) to average
signal power ratio in the 6th subband. Now if the jammer carrier fJ is between
two of the system subcarriers, say f6 < fJ < f6C1, the PBI partially overlaps
the 6th and �6 C 1�th subbands and it can be shown by substituting (11.18) in
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(11.34) that

NJ6
N0

D JSR6!6
PG’�1 C ˛�

[
1 � 1 C ˛

4

jfj
WJ/2

C ˛

2�
sin
(
�

2

1 C ˛
˛

jfj
WJ/2

)]

NJ6C1

N0
D JSR6C1!6C1

PG’�1 C ˛�
[

1 C ˛
4

jfj
WJ/2

� ˛

2�
sin
(
�

2

1 C ˛
˛

jfj
WJ/2

)]
NJl
N0

D 0, l 6D 6, 6C 1 �11.38�

where f D fJ � f6 and jfj � [˛/�˛C 1�]WJ.
For single-carrier systems affected by Gaussian PBI, the maximum conditional

SNR becomes

SNRmax
(f˛k,lgLlD1

) D Eb
N0

L∑
lD1

�˛k,l�
2
[

1 C �Ku � 1��T
PG

(
1 � ˛

4

)
!1 C NJ

N0

]�1

�11.39�
where NJ is as in (11.34), so that

NJ
N0

D JSR�T!1

PG
�11.40�

where JSR D 5JWJ/[�
∑L
lD1�l�Eb/Tb] represents the interference to total

average signal power ratio. Note that even in the special case of uniform power
delay profile and uniform power distribution across the band, in the presence of
PBI, we do not have equivalence between single- and multicarrier systems. In
fact, if we employ the same equivalence conditions as for the no-interference
case, the multicarrier system has an SNR advantage in mitigating the PBI, since,
in general, some of NJls will be equal to zero. This is confirmed in Section 11.3.3.

11.2.2.2 Average BER. Since the output of the MRC is a conditional (on the
f˛k,lgMflD1) Gaussian RV with a conditional SNR given by (11.25), the kth user’s

conditional BER, Pb�Ejf˛0
k,lgMflD1�, is given by

Pb
(
E
∣∣f˛0

k,lgMflD1

) D Q



√√√√ 2Eb
N0Mf

Mf∑
lD1

ˇl�˛0
k,l�

2


 �11.41�

where Q�Ð� denotes the Gaussian Q-function. The goal is to evaluate the system
performance in terms of the users’ average BER, which requires the averaging
of the conditional BER as given by (11.41) over the random fading amplitudes
f˛0
lgMflD1. Recall that the classical PDF-based approach for solving this problem is

to first find the PDF of ! 0
t
D∑Mf

lD1 ˇl�˛
0
k,l�/N0 and then to average (11.41) over

that PDF. This is, in fact, the approach used by Kondo and Milstein, since for
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Rayleigh fading this PDF can be found either in closed form or can be evaluated
by residue calculations. However, because ! 0

t is a weighted sum of RVs, finding
its PDF for other fading conditions of interest (such as Rician or Nakagami-
m with or without a uniform average fading power across the subbands) is a
difficult task. To circumvent this difficulty we apply the alternative MGF-based
approach.

Independent Fading Across the Subbands. Following the procedure in
Section 9.2.3, we partition the conditional BER (11.41) in a separable product
form, thereby obtaining the unconditional BER by independently averaging over
the fading of each subband, resulting in an average BER expression given by

Pb�E� D 1

�

∫ �/2

0

Mf∏
lD1

M! 0
l

(
� ˇl
Mf sin2 +

)
d+ �11.42�

whereM! 0
l
�s� denotes the MGF of the lth-subband SNR/bit, as given in Table 2.1.

Correlated Nakagami-m Fading. As discussed in Refs. 28 and 29, fading
correlation among the various subband fading amplitudes induces a certain
performance degradation. Under these conditions, using a procedure similar to
the one adopted in Section 9.6.4.1, the average BER performance of MC-CDMA
systems can be expressed as

Pb�E� D 1

�

∫ �/2

0
M! 0

t

(
� 1

sin2 +

)
d+ �11.43�

where M! 0
t
�s� is the MGF of the combined output SNR with arbitrary correlated

Nakagami-m faded subbands and which can be found in closed form based on
Eq. (2.3) of Ref. 32 as

M! 0
t
�s� D E! 0

1,!
0
2,...,!

0
Mf


exp


s Mf∑

lD1

ˇl
Mf
! 0
l






D
Mf∏
lD1

(
1 � sˇl

mMf

)�m
[det[Cij]MfðMf ]�m �11.44�

where

Cij D



1, i D j
p
:ij

(
1 � mMf

sˇj

)�1

, otherwise �11.45�

with :ij the fading power correlation coefficient between subbands i and j.
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11.2.3 Numerical Examples

We present in this section some numerical examples illustrating the effect of
the severity of fading on the performance of MC-CDMA systems operating
over a Nakagami-m fading channel with uniform average fading power profile
across the band. Using the same system parameters as the ones in Kondo and
Milstein [26] (i.e., Mf D 4, ˛ D 0.5, Ku D 50, PG0 D 128, WJ D BWMf , and
fJ D fl, l D 1, 2, 3, 4�, we plot the BER performance of both systems in terms
of ! 0 D Mf! . Figures 11.4 through 11.6 compare the performance of an MC-
CDMA system with its corresponding SC-CDMA system (with a flat power
delay profile) for m D 0.5, m D 1, and m D 2, respectively. The results for
the Rayleigh case �m D 1� check with the results published in Ref. 26. Note
first that both MC-CDMA and SC-CDMA systems are more sensitive to the
JSR for channels with a lower amount of fading since we observe a higher
dynamic range in the BER performance for higher values of m. Furthermore,
regardless of the severity of fading, the performance of SC-CDMA and MC-
CDMA are almost the same for negligible JSR, but MC-CDMA outperforms
SC-CDMA for high values of JSR. However, the relative difference between
the MC-CDMA and SC-CDMA systems tends to increase as the amount of
fading decreases (i.e., higher m), which means that MC-CDMA is even a better
choice in a microcellular environment. Figures 11.7 through and 11.9 compare
the performance of aligned MC-CDMA systems with the misaligned ones for
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Figure 11.4. BER comparison between SC-CDMA and MC-CDMA systems over
Nakagami-m fading channels, m D 0.5: (a) JSR D �1 dB; (b) JSR D 10 dB; (c) JSR D 20 dB;
(d) JSR D 30 dB.
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Figure 11.5. BER comparison between SC-CDMA and MC-CDMA systems over Nakagami-m
fading channels, m D 1: (a) JSR D �1 dB; (b) JSR D 10 dB; (c) JSR D 20 dB; (d) JSR D 30 dB.
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Figure 11.6. BER comparison between SC-CDMA and MC-CDMA systems over Nakagami-m
fading channels, m D 2: (a) JSR D �1 dB; (b) JSR D 10 dB; (c) JSR D 20 dB; (d) JSR D 30 dB.
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Figure 11.7. Average BER of MC-CDMA systems over Nakagami-m fading channels, m D 0.5:
(a) JSR D �1 dB; (b) JSR D 10 dB; (c) JSR D 20 dB; (d) JSR D 30 dB.
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Figure 11.8. Average BER of MC-CDMA systems over Nakagami-m fading channels, m D 1:
(a) JSR D �1 dB; (b) JSR D 10 dB; (c) JSR D 20 dB; (d) JSR D 30 dB.
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Figure 11.9. Average BER of MC-CDMA systems over Nakagami-m fading channels, m D 2:
(a) JSR D �1 dB; (b) JSR D 10 dB; (c) JSR D 20 dB; (d) JSR D 30 dB.

m D 0.5, m D 1, and m D 2, respectively. Aligned systems correspond to the
case of fJ D fl, l D 1, 2, 3, 4, whereas misaligned systems correspond to the
case fJ D �fl C flC1�/2, l D 1, 2, 3. For all values of m, the system performance
is better when only one subband is affected by the interference. Furthermore, the
relative difference between the two systems slightly increases for channels with
a lower amount of fading.
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12

CODED COMMUNICATION OVER
FADING CHANNELS

Thus far we have considered the performance of uncoded digital communication
systems over fading channels. As such, it has only been necessary to model the
fading channel in a single symbol interval, Ts, since for uncoded transmission,
decisions are made on a symbol-by-symbol basis. When error-correction coding
is applied to the transmitted modulation and decisions are made based on an
observation of the received signal much longer than Ts, it becomes necessary
to consider the variation of the fading channel from symbol interval to symbol
interval.

For the case of slow fading, the fading parameters (e.g., amplitude, phase)
are typically treated as being constant over many symbol intervals, thereby
introducing unintentional memory into the channel and an associated degradation
of performance. A common method for breaking up these fading bursts without
disturbing the intentional memory introduced by the coding is to employ
interleaving at the transmitter and deinterleaving at the receiver. The combination
of interleaving and deinterleaving acts in such a way as to produce fades that are
independent from symbol to symbol, whereupon the fading channel once again
becomes memoryless.

In studying the performance of coded communications over memoryless
channels (with or without fading), the results are given as upper bounds on
the average bit error probability (BEP). In principle, there are three different
approaches to arriving at these bounds all of which employ obtaining the pairwise
error probability (i.e., the probability of choosing one symbol sequence over
another for a given pair of possible transmitted symbol sequences), followed
by a weighted summation over all pairwise events. The first approach, which
typically gives the weakest result but the simplest to evaluate, upper bounds the
pairwise error probability by a Chernoff bound and then further upper bounds
the summation over all pairwise events by a union bound (i.e., it treats the
pairwise events as if they were independent where in reality they are correlated).
Bounds on average error probability and average BEP arrived at in this fashion are
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referred to as union–Chernoff bounds and are typically the most common form
found in the literature (e.g., for trellis-coded M-PSK modulation over Rayleigh
and Rician fading channels see Refs. 1 and 2 (later documented in tutorial fashion
in Refs. 3 through 5)). Furthermore, the evaluation of the union-bound portion of
the overall upper bound is conveniently accomplished using the transfer function
bound method originally proposed in Ref. 6 and later documented in tutorial
form in Chapter 4 of Ref. 7.

The second approach evaluates the pairwise error probability exactly but
considers only a finite number of pairwise events (i.e., those that are dominant)
in place of the true union bound that considers all pairwise events. Examples of
this approach can be found in Refs. 8 and 9. In the limiting case only the single
dominant error event corresponding to the minimum distance between the correct
and incorrect sequences is considered, which results in the simplest of this form
of upper bound.1

The third approach also exactly evaluates the pairwise error probability
but accounts for all pairwise events by using the transfer function bound to
evaluate the true union bound. Clearly, of the three approaches this form will
result in the tightest upper bound; however, it is, in general, more complex to
evaluate analytically. Significant contributions using this approach can be found
in Refs. 10 through 13, all of which focused on trellis-coded modulation (TCM)
transmitted over fading channels. The degree to which these contributions differ
from each other depends on the nature of the detection schemes (i.e., coherent
versus differentially coherent), the statistics of the fading channel (e.g., Rayleigh,
Rician), and the amount of knowledge concerning the state of the channel [i.e., the
availability of channel state information (CSI)]. For example, the approach taken
in Ref. 10 is not readily applicable to differential detection, and the approach
taken by the authors of Refs. 11 and 12 is easily computed only for Rayleigh
and Rician channels, where the difference of the decision metrics can be modeled
as a quadratic form in complex Gaussian random variables (RVs). On the other
hand, the method taken in Ref. 13 has the advantage that it can be extended to
include a larger class of fading channels other than just Rayleigh and Rician, at
the same time allowing for both coherent and differentially coherent detection
of a variety of different modulation schemes of the form discussed previously.
Unfortunately, however, as we shall demonstrate, this method is not practical
when other-than-perfect CSI knowledge is available.

In this chapter we focus on the results obtained from the third approach
since these provide the tightest upper bounds on the true performance. The first
emphasis will be placed on evaluating the pairwise error probability with and
without CSI, following which we deal with how the results of these evaluations
can be used via the transfer-bound approach to evaluate the average BEP of
coded modulation transmitted over the fading channel. For the method in Ref. 13,
we shall soon show that the use of interleaving/deinterleaving to create a
memoryless fading channel results in decision statistics akin to those obtained

1 Upper bounds found by this approach are not true upper bounds but rather are approximate upper
bounds because of the limited number of error events considered.
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when diversity combining is employed to enhance system performance for the
uncoded communication case (see Chapter 9). Because of this analogy, we
therefore find it possible to apply the unified approach to coded communication
over the memoryless fading channel in much the same way as it was used
to simplify the evaluation of performance for multiple reception of uncoded
communications. In particular, by using the alternative representations of the
classic functions given in Chapter 4, we shall be able to exactly evaluate the
pairwise error probability in the form of a product of integrals, each with
finite limits and an integrand composed of tabulated functions. In the situations
where the method in Ref. 13 is not practical, we shall turn to the method in
Ref. 12, which requires evaluation of an integral with doubly infinite limits whose
integrand is a product of characteristic functions.

Although, in principle, results can once again be obtained for a variety of
fading channel models and modulation/coding types, to allow comparison with
results obtained previously by, say, the first approach, we focus specifically on the
combination of M-PSK modulation with trellis coding. We begin by considering
the case of ideal coherent detection.

12.1 COHERENT DETECTION

12.1.1 System Model

Consider the block diagram of the trellis-coded M-PSK system illustrated in
Fig. 12.1. Random binary i.i.d. information bits are inputted to a rate nc/�nc C 1�
trellis encoder whose output symbols are then block interleaved to break up
fading bursts according to the discussion above.2 Groups of nc C 1 interleaved
code symbols are mapped (in accordance with the set partitioning method of
Ungerboeck [14]3 into M-PSK signals chosen from a set of M D 2ncC1 members.
For example, a rate � 1

2 encoder �nc D 1� would be combined with a QPSK
�M D 4� modulation. The in-phase (I) and quadrature (Q) components of the
mapped signal point are then modulated onto quadrature carriers (with or without
pulse shaping) for transmission over the fading channel. The usual additive
white Gaussian noise (AWGN) is added at the input to the receiver, which first
demodulates the I and Q signal components, soft quantizes the results of these
demodulations, and then passes them through a block deinterleaver to recreate
the codewords temporarily scrambled by the interleaver at the transmitter. The
soft-quantized deinterleaved code symbols are then passed to the trellis decoder,
which implements a Viterbi algorithm [15] with a metric depending on whether or
not channel state information is available. For our purposes here, we assume that

2 As was done in Ref. 2, we assume for the purpose of analysis an infinite interleaving depth,
resulting in an ideal memoryless channel. In practice, the depth of interleaving would be finite and
chosen in relation to the maximum duration of fade anticipated.
3 A detailed discussion of trellis-coded modulation (TCM) and its application is beyond the scope
of this book. The reader is referred to Ref. 3 for a thorough treatment of this subject.
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such information is either perfectly known or totally unknown, without regard to
the manner in which this information is obtained (e.g., via pilot tone techniques).
Finally, the tentative soft decisions from the Viterbi decoder are stored in a
buffer whose size is typically a design parameter (depending on the nature of the
encoded information, e.g., speech), but for simplicity of analysis is assumed to
be infinite.

A mathematical model for the foregoing system can be derived from the
simple analysis block diagram in Fig. 12.2. The block labeled encoder includes
both the binary input–binary output trellis encoder together with mapping onto
the M-PSK signal set. Hence, the output of the encoder is a succession of coded
M-PSK symbols, which for a sequence of length N is denoted by

x D �x1, x2, . . . , xN� �12.1�

where the kth element of x, namely, xk , represents the normalized4 transmitted
M-PSK symbol (in complex form) at time k and, in general, is a nonlinear
function of the state of the encoder, sk , and the information symbol, uk ,
representing the nc i.i.d. information bits at its input [i.e., xk D f�sk, uk�]. The
transition from state to state is defined by a similar nonlinear relation, namely,
skC1 D g�sk, uk�. Corresponding to the transmission of x, the channel outputs the
sequence

y D �y1, y2, . . . , yN� �12.2�

where the kth element of y, namely, yk , representing the channel output at time
k is given by

yk D ˛k
√

2Esxk C nk �12.3�

Here ˛k is the fading amplitude for the kth transmission and nk is a zero-mean
complex Gaussian RV with variance �2 D N0 per dimension (i.e., Efjnkj2g D
2N0). Based on an observation of y, the maximum-likelihood (ML) receiver
chooses as the transmitted information bit sequence the one that maximizes the a
posteriori probability p�ujy� or equivalently (since the information bit sequences

DecoderEncoder
x y

a

Memoryless
Coding Channel

p(yx,a),p(a)

Figure 12.2. Simple analysis block diagram.

4 We assume that the M-PSK symbols are normalized such that jxnj D 1 (i.e., the signals lie on the
perimeter of the unit circle). The actual transmitted M-PSK symbol in the nth interval is given byp

2Esxn, where Es D ncEb is the symbol energy, with Eb denoting the information bit energy.
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are equiprobable), the likelihood p�yju�. Receivers that make decisions in this
fashion are referred to as maximum-likelihood sequence estimators (MLSE)5 and
are practically implemented by the Viterbi algorithm [15].

12.1.2 Evaluation of Pairwise Error Probability

The first step in evaluating the average error probability is to compute the pairwise
error probability associated with the transmitted M-PSK symbol sequences [i.e.,
the probability of choosing the sequence x̂ D �Ox1, Ox2, . . . , OxN� when in fact
x D �x1, x2, . . . , xN� was transmitted given that these are the only two possible
choices]. We refer to this occurrence as an error event of length N. The assumption
of infinite interleaving/deinterleaving (i.e., an ideal memoryless channel) allows
one to express the channel probabilities as

p�yjx, a� D
N∏
nD1

p�ynjxn, ˛n� �12.4�

and

p�a� D
N∏
nD1

p�˛n� �12.5�

Since conditioned on ˛n and xn, yn of (12.3) is a Gaussian RV with PDF,

p�ynjxn, ˛n� D 1

2��2
exp

(
�
∣∣yn � ˛n

p
2Esxn

∣∣2
2�2

)
�12.6�

then for the case of perfectly known channel state information, substituting (12.6)
in (12.4) and taking the natural logarithm of the result gives the decision metric
(ignoring unnecessary scale factors)

m�y, x;a�
D

N∑
nD1

m�yn, xn;˛n� D �
N∑
nD1

∣∣yn � ˛n
√

2Esxn
∣∣2 �12.7�

In the absence of channel state information, the optimum decision metric
would be obtained by averaging (12.4) over (12.5) to obtain p�yjx� and then
again taking the natural logarithm. This procedure would yield a decision metric
whose form depends on the actual fading PDF assumed (see Chapter 7). To

5 Strictly speaking, the term maximum-likelihood sequence estimator is reserved for sequences whose
length N approaches infinity. However, it has become common practice to use this terminology even
when the sequence length is finite, since practical implementations of the ML decision rule such as
the Viterbi algorithm begin making decisions prior to an infinite observation time interval.
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simplify matters, we propose (as was done in Ref. 1) a suboptimum decision
metric that treats the channel as if it were purely Gaussian:

m�y, x�
D

N∑
nD1

m�yn, xn� D �
N∑
nD1

∣∣yn �
√

2Esxn
∣∣2 �12.8�

and which therefore is not a function of the fading sequence a D �˛1, ˛2, . . . , ˛N�.
We now proceed to evaluate the pairwise error probability for these two

extreme cases of channel state information.

12.1.2.1 Known Channel State Information. Since for the decision
metric of (12.7), the sequence x̂ D �Ox1, Ox2, . . . , OxN� would be chosen over x D
�x1, x2, . . . , xN� whenever m�y, x̂; a� ½ m�y, x; a�, the pairwise error probability
(i.e., the probability of an error event of length N) for this case is given by

P�x ! x̂ja� D Pr

{
N∑
nD1

m�yn, Oxn;˛n� ½
N∑
nD1

m�yn, xn;˛n�jx
}

�12.9�

where the conditioning on x in the right-hand side of (12.9) indicates the fact
that the components of the observation y are to be computed assuming that x
was transmitted. Substituting (12.7) into (12.9) and recalling that both x and x̂
have components with unit squared magnitude, we obtain

P�x ! x̂ja� D Pr

{
N∑
nD1

˛n Re
{
yn OxŁ

n

} ½
N∑
nD1

˛n Re
{
ynx

Ł
n

}jx
}

D Pr

{∑
n2�

˛n Re
{
yn�Oxn � xn�

Ł} ½ 0jx
}

�12.10�

where � is the set of all n for which Oxn 6D xn. Based on (12.3), the decision
variable to be compared with the zero threshold in (12.10) is Gaussian with
mean

p
2Es

∑
n2� ˛

2
n Refxn�Oxn � xn�Łg and variance N0

∑
n2� ˛

2
njOxn � xnj2. Thus,

since for constant envelope signal sets such as M-PSK, where jxj2 D jOxj2, it is
straightforward to show that

jx � Oxj2 D 2 Re
{
x�x � Ox�Ł} �12.11�

then the pairwise error probability immediately evaluates to

P�x ! x̂ja� D Q

(√
Es

2N0

∑
n2�

˛2
njOxn � xnj2

)
�12.12�
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The pairwise error probability in (12.12) has a form analogous to that obtained
for the probability of error of uncoded BPSK transmitted over a multichannel
with maximal-ratio combining (MRC) employed at the receiver (see Chapter 9).
In fact, for convolutionally encoded BPSK where jOxn � xnj2 D 4 for all n 2 �,
(12.12) would simplify to

P�x ! x̂ja� D Q



√√√√2Es
N0

∑
n2�

˛2
n


 �12.13�

and hence the number of diversity channels for the uncoded application can be
seen to be directly analogous to the number of symbols that are in error in the
coded case.

In Ref. 1, the conditional (on the fading) pairwise error P�x ! x̂ja� was
upper (Chernoff) bounded to allow averaging over the fading statistics (a feat
not possible using the classic definition of the Gaussian Q-function), thereby
obtaining a closed-form upper bound on P�x ! x̂�. In particular, it was shown
there that

P�x ! x̂� � Dd2�x,x̂�
a

�12.14�

where the overbar denotes statistical averaging over the random vector a,

d2�x, x̂�
D∑
n2�

˛2
njOxn � xnj2 �12.15�

and

D
D exp

(
� Es

4N0

)
�12.16�

is the Bhattacharyya parameter [7]. Since the fading amplitudes are independent,
it was then possible to write (12.14) as the product

P�x ! x̂� �
∏
n2�

D˛2
njOxn�xnj2 ˛n �12.17�

which is in a form that lends itself to application of the transfer function bound
approach for computing an upper bound on average BEP. The individual terms
of the product in (12.17) were evaluated in Ref. 1 for Rayleigh and Rician fading
amplitude statistics.

Since in Chapter 4 it was demonstrated that the alternative form of the
Gaussian Q-function has the analytic advantages of the Chernoff bound without
the disadvantage of being a bound, it is reasonable to apply that approach here
to the conditional pairwise error probability in much the same manner that it was
used in Chapter 9 to unify and simplify the analysis of multichannel reception
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of BPSK with MRC. In particular, using the alternative form of Q�x� given in
(4.2), we can express (12.13) as

P�x ! x̂ja� D 1

�

∫ �/2

0
exp

(
� Es

4N0 sin2 �

∑
n2�

˛2
njOxn � xnj2

)
d�

D 1

�

∫ �/2

0
[D���]d

2�x,x̂� d� �12.18�

where, analogous to (12.15),

D���
D exp

(
� Es

4N0 sin2 �

)
�12.19�

Hence, the unconditional pairwise error probability is given by

P�x ! x̂� D 1

�

∫ �/2

0
[D���]d2�x,x̂� d�

a

D 1

�

∫ �/2

0
[D���]d2�x,x̂�

a
d�

D 1

�

∫ �/2

0

∏
n2�

D���˛2
njOxn�xnj2 ˛n d� �12.20�

which is to be compared with the upper bound in (12.17).
The statistical average required by each term in the product of (12.20) can be

written as

D���˛2
njOxn�xnj2 ˛n D

∫ 1

0
exp

(
� ˛2

nEs
4N0 sin2 �

jOxn � xnj2
)
pan�˛n� d˛n �12.21�

Since for a rate nc/�nc C 1� trellis encoder nc information bits produce one
M�D 2ncC1�-ary symbol, then in terms of the bit energy-to-noise ratio, Eb/N0,
(12.24) can be rewritten as

D���˛2
njOxn�xnj2 ˛n D

∫ 1

0
exp

(
� nc˛2Eb

4N0 sin2 �
jOxn � xnj2

)
pa�˛� d˛ �12.22�

where we dropped the n subscript on ˛ since the fading variables are all
identically distributed. Alternatively, in terms of the instantaneous SNR per bit
!
D˛2Eb/N0, (12.22) becomes

D���˛2
njOxn�xnj2 ˛n D

∫ 1

0
exp

(
�! ncjOxn � xnj2

4 sin2 �

)
p!�!� d! �12.23�

Integrals of the form in (12.23) were considered in Chapter 5 for a wide
variety of fading channel types. For example, for Rayleigh fading, using (5.5)
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we would obtain6

D���˛2
njOxn�xnj2 ˛n D 1

1 C ncjOxn � xnj2!/4 sin2 �
D sin2 �

sin2 � C ncjOxn � xnj2!/4
�12.24�

where !
D˛2Es/N0 is the average SNR per bit. For Rician fading, using (5.11)

we would obtain

D���˛2
njOxn�xnj2 ˛n D 1 CK

1 CKC ncjOxn � xnj2!/4 sin2 �

ð exp

(
� K

[
ncjOxn � xnj2!/4 sin2 �

]
1 CKC ncjOxn � xnj2!/4 sin2 �

)
�12.25�

which clearly reduces to (12.24) for K D 0. Finally, for Nakagami-m fading,
using (5.15), the analogous expression to (12.24) and (12.25) becomes

D���˛2
njOxn�xnj2 ˛n D 1(

1 C ncjOxn � xnj2!/4m sin2 �
)m

D
(

sin2 �

sin2 � C ncjOxn � xnj2!/4m

)m
�12.26�

Note that had one chosen to use the upper bound on pairwise error probability
(as was done in Ref. 1) of (12.17) rather than the exact result of (12.20), the
terms that would be required for the product in the former equation would be
obtained simply by setting � D �/2 (sin2 � D 1) in (12.24), (12.25), and (12.26),
respectively, as discussed in Chapter 4, that is,

D˛2
njOxn�xnj2 ˛n D D���˛2

njOxn�xnj2 ˛n j�D�/2 �12.27�

12.1.2.2 Unknown Channel State Information. When channel state
information is not available, the expression for the pairwise error probability
analogous to (12.9) becomes

P�x ! x̂ja� D Pr

{
N∑
nD1

m�yn, Oxn� ½
N∑
nD1

m�yn, xn�jx
}

�12.28�

6 For the special case of BPSK modulation wherein jxn � Oxnj2 D 4, a similar result for the pairwise
error probability to (12.20) together with (12.24) was obtained by Hall and Wilson [16].
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Substituting (12.8) into (12.28) and recalling that both x and x̂ have components
with unit squared magnitude, we obtain

P�x ! x̂ja� D Pr

{∑
n2�

Re
{
yn�Oxn � xn�

Ł} ½ 0jx
}

�12.29�

where � is again the set of all n for which Oxn 6D xn. Based on (12.3), the decision
variable to be compared with the zero threshold in (12.29) is now Gaussian with
mean

∑
n2� ˛n

p
2Es Refxn�Oxn � xn�Łg and variance N0

∑
n2� jOxn � xnj2. Once

again using the relation in (12.11), which is valid for constant envelope signal
sets such as M-PSK, the pairwise error probability immediately evaluates to

P�x ! x̂ja� D Q



√√√√ Es

2N0

(∑
n2� ˛njOxn � xnj2

)2∑
n2� jOxn � xnj2




D Q



√√√√√

 Es

2N0

∑
n2�

˛n
jOxn � xnj2√∑
k2� jOxk � xkj2


2

 �12.30�

The pairwise error probability in (12.30) has a form analogous to that obtained for
the probability of error of uncoded BPSK transmitted over a multichannel with
equal-gain combining (EGC) employed at the receiver (see Chapter 9). In fact,
for convolutionally encoded BPSK, where jOxn � xnj2 D 4 for all n 2 �, (12.30)
would simplify to

P�x ! x̂ja� D Q



√√√√2Es
N0

1

L�

(∑
n2�

˛n

)2

 �12.31�

where L� is the number of elements in the set � or equivalently, the Hamming
distance between the correct and incorrect sequences. Hence, the number of
diversity channels for the uncoded application can again be seen to be directly
analogous to the number of symbols that are in error in the coded case.

To obtain the unconditional pairwise error probability, one must average
(12.31) over the i.i.d. fading statistics of the ˛n’s. In particular, defining

˛T
D∑
n2�

˛n
jOxn � xnj2√∑
k2� jOxk � xkj2

D∑
n2�

˛nd
2
n �12.32�

the L�-fold integral obtained by averaging (12.31) over the fading amplitudes can
be collapsed to a single integral, namely,

P�x ! x̂� D
∫ 1

0
Q

(√
Es

2N0
˛2
T

)
p˛T�˛T� d˛T �12.33�
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Applying the alternative representation of the Gaussian Q-function to (12.33)
gives

P�x ! x̂� D 1

�

∫ �/2

0

∫ 1

0
exp

(
� Es

4N0 sin2 �
˛2
T

)
p˛T�˛T� d˛T d� �12.34�

Direct evaluation of (12.34) requires finding the PDF of ˛T defined in (12.32),
which, in general, is difficult even when the ˛n’s are i.i.d. Instead, we follow
the procedure given in Chapter 9 by first representing p˛T�˛T� in terms of its
characteristic function. Thus,

P�x ! x̂� D 1

2�2

∫ �/2

0

∫ 1

�1


 L�∏
lD1

 ˛l
(
jvd2

l

)

ð




J�v, ��︷ ︸︸ ︷∫ 1

0
exp

(
� Es

4N0 sin2 �
˛2
T � jv˛T

)
d˛T


dvd� �12.35�

Despite the apparent similarity of (12.35) with (9.61), the difficulty here lies
in the fact that the weight d2

l of (12.32) that appears in the argument of the lth
characteristic function does not depend only on the squared Euclidean distance for
the lth branch of the error sequence but because of its normalization also depends
on the total squared Euclidean distance of the entire error sequence. Even in the
case of BPSK modulation, each of these weights would be normalized by the
length L� of the error sequence. Because of this, it will not be possible to obtain
an integral form for P�x ! x̂�, where the integrand is a product of terms each
of which depends only on the squared Euclidean distance associated with that
term. Thus, we abandon this method for the case of unknown CSI and instead
turn to the inverse Laplace transform method introduced for problems of this
type by Cavers and Ho [9]7 with additional generalizations reported in Ref. 12,
and additional methods for evaluation later explored by Biglieri, Caire, Taricco,
and Ventura-Traveset [17,18].

Consider a RV z with PDF p�z� and moment generating function (MGF)8

Mz�s� D ∫1
�1 eszpz�z� dz. Then the CDF P�z� D ∫ z

�1 p�y� dy is related to Mz�s�

7 Cavers and Ho [9] refer to this method as the characteristic function method. As we shall see
momentarily, in keeping with the distinction made in Chapter 5 between the moment generating
function and the characteristic function of a RV in terms of their relations to the Laplace and Fourier
transforms, respectively, the method in Ref. 9 is more appropriately called a moment generating
function method. Also, in their definition of characteristic function, Cavers and Ho [9] do not reverse
the sign of the exponent in the Laplace transform and as such are not consistent with the traditional
definition of this function.
8 The definition of moment generating function used here is the generalization of that introduced in
Chapter 5 to the case where the underlying RV takes on both positive and negative values. Thus,
the MGF is now the bilateral (as opposed to unilateral) Laplace transform of the PDF with the sign
of the exponent reversed.
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by (see Chapter 9)

P�z� D 1

2�j

∫ �Cj1

��j1

Mz��s�
s

esz ds �12.36�

where � is chosen such that the vertical line of integration lies in the region of
convergence (ROC) of the bilateral Laplace transform. Since P�a� D Prfz � ag,

Prfz � 0g D P�0� D 1

2�j

∫ �Cj1

��j1

Mz��s�
s

ds �12.37�

Methods for evaluating integrals of the type in (12.37) are discussed in detail
in Appendix 9B. Hence, we shall draw upon these results only when needed
to perform numerical evaluations. When applied to the difference decision
metric

z D
N∑
nD1

1

2
[m�yn, xn�� m�yn, Oxn�]jx D

N∑
nD1

zn

(12.37) results in the evaluation of the pairwise error probability. Since as
we have already discussed, the interleaving/deinterleaving operation makes the
zn’s independent, then denoting the MGF of zn by Mzn�s�, we obtain from
(12.37) that

P�x ! x̂� D 1

2�j

∫ �Cj1

��j1

1

s

N∏
nD1

Mzn��s� ds �12.38�

Using (12.3), the RV

zn
D Re

{
yn�xn � Oxn�Łjx} D Re

{
˛n
√

2Esxn�xn � Oxn�Ł C nn�xn � Oxn�Łjx
}

is conditionally (on the fading) Gaussian with mean *znj˛n
D Ref˛n

p
2Esxn�xn �

Oxn�Łg and variance �2
znj˛n

DN0jOxn � xnj2. Thus, using (12.11), the unconditional
RV zn has PDF

pzn�zn� D
∫ 1

0
pzn�znj˛n�pan�˛n� d˛n

D
∫ 1

0

1√
2�N0jOxn � xnj2

ð exp

(
� zn � 1

2˛n
p

2EsjOxn � xnj2
2N0jOxn � xnj2

)
pan�˛n� d˛n �12.39�

Since for a Gaussian RV Y with mean *Y and variance �2
Y the MGF is given by

MY�s� D es*YC�2
Ys

2/2 �12.40�
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then applying (12.40) to the conditional Gaussian RV znj˛n, we have from (12.39)
that the MGF of zn is

Mzn�s� D
∫ 1

�1
pzn�zn�e

szn dzn

D
∫ 1

0
e�1/2�s˛n

p
2EsjOxn�xnj2C�1/2�N0jOxn�xnj2s2pan�˛n� d˛n

D e�1/2�[s˛n
p

2EsCN0s2]jOxn�xnj2 ˛n �12.41�

or in terms of the MGF of the fading random variable ˛n D ˛,

Mzn�s� D e�1/2�N0s2jOxn�xnj2M˛

(
s

p
2EsjOxn � xnj2

2

)
�12.42�

Finally, substituting (12.42) into (12.38) gives the pairwise error probability in
the desired product form

P�x ! x̂� D 1

2�j

∫ �Cj1

��j1

1

s

∏
n2�

[
e�1/2�N0s2jOxn�xnj2M˛

(
� s

p
2EsjOxn � xnj2

2

)]
ds

�12.43�
where the nth term of the product depends only on the squared Euclidean distance
for the nth branch of the sequence and not on the distance properties of the entire
sequence as in (12.35). Also, in (12.43) it has again become possible to replace
the product over all branches by the product over only those for which Oxn 6D xn
(i.e., n 2 �), since for the terms where Oxn D xn, the MGFM˛�s

p
2EsjOxn � xnj2/2�

is equal to unity.

12.1.3 Transfer Function Bound on Average Bit Error Probability

To compute the true upper (union) bound (TUB) on the average BEP, one sums
the pairwise error probability over all error events (sequence pairs), corresponding
to a given transmitted sequence weighting each term by the number of information
bit errors associated with that event, then statistically averages this sum over
all possible transmitted sequences, finally dividing by the number of input bits
per transmission. In mathematical terms, if P�x� denotes the probability that
the sequence x is transmitted, n�x, x̂� the number of information bit errors
committed by choosing x̂ instead of x, and nc the number of information bits per
transmission, the average BEP has the TUB

Pb�E� � 1

nc

∑
x

P�x�
∑
x6=x̂

n�x, x̂�P�x ! x̂� �12.44�
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An efficient method for computing this weighted sum was originally proposed
by Viterbi [6] for convolutional codes transmitted over the AWGN channel and
is referred to as the transfer function bound approach. To apply this approach,
one must be able to write P�x ! x̂� in a product form where the nth term of the
product is associated with the nth branch of the particular path through the state
diagram defined by the error event. Also, evaluation of this nth term must depend
only on the distance between the nth branch of the correct and incorrect sequences
and not on the distance properties of the entire sequence. Alternatively, one can
write P�x ! x̂� in the form of an integral whose integrand is a product of terms
satisfying the above-mentioned condition. In this case it is possible to evaluate
the TUB on average BER by first applying the transfer function bound approach
to the integrand (conditioned on the integration variable) and then performing
the required integration.

For trellis codes we have seen that the appropriate distance measure is
Euclidean distance and thus for the AWGN channel P�x ! x̂� would take the
form [see (12.20) omitting the averaging on the fading]9

P�x ! x̂� D 1

�

∫ �/2

0

∏
n2�

D���jOxn�xnj2 d� �12.45�

where D��� is still defined as in (12.19). To incorporate n�x, x̂� into the product,
we define n�xn, Oxn� as the number of bit errors in the nth interval of the
error event, in which case n�x, x̂� D ∑N

nD1 n�xn, Oxn�. Then, defining an indicator
variable I, we can rewrite the second summation in (12.44) as

∑
x 6DOx

n�x, x̂�P�x ! x̂� D
∑
x6=x̂

1

�

∫ �/2

0

∂

∂I

∏
n

D���jxn�Oxnj2In�xn,Oxn�
∣∣∣
ID1

d�

D 1

�

∫ �/2

0


 ∂
∂I

∑
x6=x̂

∏
n

D���jxn�Oxnj2In�xn,Oxn�
∣∣∣
ID1


d�

D 1

�

∫ �/2

0

[
∂

∂I
T�D���, I�

∣∣∣
ID1

]
d� �12.46�

where T�D, I� is the transfer function associated with the error state diagram [3]
of a particular TCM scheme and in general depends on the transmitted sequence
x. The form of T�D, I� is typically a ratio of polynomials in D and I, as will
become clear when we consider some examples. Finally, combining (12.44) and

9 From here on, for simplicity of notation, we denote the product over the N branches of an error
event by

∏
n, with the understanding that it need only be taken over those branches for which an

error occurs.
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(12.46) gives the TUB on average BER for the AWGN channel, namely,

Pb�E� � 1

nc

∑
x

P�x�
1

�

∫ �/2

0

[
∂

∂I
T�D���, I�

∣∣∣
ID1

]
d� �12.47�

For a large class of trellis codes, a symmetry property exists such that for
the purpose of evaluation of the TUB, the correct sequence x can always be
chosen as the all-zeros sequence, thus avoiding the necessity of averaging over
all possible transmitted code sequences in (12.44). Codes of this type, referred
to as uniform error probability (UEP) codes, are the only ones considered in this
chapter, although, in principle, the generic methods discussed also apply when
the UEP criterion is not valid. Thus, for UEP TCM schemes, (12.44) simplifies to

Pb�E� � 1

�

∫ �/2

0

[
1

nc

∂

∂I
T�D���, I�

∣∣∣
ID1

]
d� �12.48�

Had we applied the Chernoff bound to the pairwise error probability rather
than obtain its exact form, the equivalent result to (12.47) would become

Pb�E� � 1

nc

∑
x

P�x�
∂

∂I
T�D, I�

∣∣∣
ID1,DDexp��Es/4N0�

�12.49�

or for UEP TCM schemes

Pb�E� � 1

nc

∂

∂I
T�D, I�

∣∣∣
ID1,DDexp��Es/4N0�

�12.50�

both of which are looser than the TUB.
To find the TUB on the average BEP for TCM transmitted over the

fading channel, we simply substitute in (12.44) the expressions found in
Sections 12.1.2.1 or 12.1.2.2 for the pairwise error probability corresponding to
the cases of perfectly known CSI or unknown CSI, respectively. We now present
the specific results for the two cases of CSI knowledge.

12.1.3.1 Known Channel State Information. Comparing the integrand of

(12.20) with (12.45), we observe the analogy between D���˛2
njOxn�xnj2 ˛n of the

former and D���jxn�Oxnj2 of the latter. Thus, based on the discussion above, the
average BEP for trellis-coded M-PSK transmitted over the slow-fading channel
has a TUB analogous to (12.48), namely,10

Pb�E� � 1

�

∫ �/2

0

1

nc

∂

∂I
T�D���, I�

∣∣∣
ID1,D���De�Es/4N0 sin2 �

d� �12.51�

10 The implication of the simple notation D��� is that the label D���jxn�Oxnj2 on each branch between

transitions be replaced by D���˛
2
njxn�Oxnj2 ˛n .
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The averages over the fading required in (12.51) have been evaluated in closed
form in Section. 12.1.2.2 [e.g., see (12.24) for Rayleigh fading, (12.25) for Rician
fading, and (12.26) for Nakagami-m fading].

12.1.3.2 Unknown Channel State Information. For this case the appro-
priate product form of the pairwise error probability integrand is (12.43). Thus,
by analogy with (12.48), the TUB on the average BEP is given by

Pb�E� � 1

2�j

∫ �Cj1

��j1

1

s

[
1

nc

∂

∂I
T�s, I�

∣∣∣
ID1

]
ds �12.52�

where T�s, I� is the transfer function computed from the state transition diagram
for the AWGN channel with the label D���jxn�Oxnj2 on each branch between
transitions replaced by

D�s; jOxn � xnj2� D e�1/2�N0s2jOxn�xnj2M˛

(
� s

p
2EsjOxn � xnj2

2

)
�12.53�

12.1.4 Alternative Formulation of the Transfer Function Bound

A variation of the previous approach to computing the transfer function
introduced by Divsalar [19] is referred to as the pair-state method. It is
particularly useful for non-UEP codes since it circumvents averaging over the
transmitted code sequences by incorporating it in the transfer function itself. In
this method, a pair-state transition diagram is constructed wherein each pair state
Sk D �sk, Osk� corresponds to a pair of states, sk and Osk , in the trellis diagram. One
is said to be in a correct pair-state when sk D Osk and an incorrect pair-state when
sk 6D Osk . A transition between pair-states Sk D �sk, Osk� and SkC1 D �skC1, OskC1� in
the transition diagram corresponds to a pair of transitions in the trellis diagram
(i.e., sk to Osk and skC1 to OskC1). Since associated with each transition in the pair
is an M-PSK symbol and a corresponding information symbol (a sequence of nc
information bits), the transition between two pair-states in the transition diagram
is characterized by the squared Euclidean distance υ2 between the corresponding
M-PSK symbols and the Hamming distance dH between the corresponding
information bit sequences.

Based on the discussion above, in the absence of fading (i.e., the AWGN
channel), each branch between pair-states in the transition diagram has a gain G
of the form

G D
∑ 1

2nc
IdHDυ

2
�12.54�

where, as before, I is an indicator variable and D is the Bhattacharyya parameter
defined in (12.19). The summation in (12.54) accounts for the possibility of
parallel paths between states of the trellis diagram. Since the pair-state method
accounts for all possible transmitted symbol sequences and their probability,
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the union–Chernoff bound would be given by (12.50) (which was formally
restricted to UEP codes), where the transfer function T�D, I� is now computed
from the pair-state transition diagram based on the gains of (12.54). Extending
this approach to exact evaluation of the pairwise error probability, if instead of
(12.54) we were to label each branch with a gain

G��� D
∑ 1

2nc
IdHD���υ

2
�12.55�

with D��� as in (12.19), the TUB would be given by (12.48), where the transfer
function T�D���, I� is now computed from the pair-state transition diagram based
on the gains of (12.55).

In the presence of fading, the appropriate substitutions for D and D��� as
discussed in Section 12.1.3. would result in upper bounds on average BEP. Since
our interest is in the TUB, we consider only the case where the pair-state gains
are as in (12.55) for the AWGN and their equivalences for the fading channel.

12.1.5 Example

Consider the case of rate � 1
2 coded QPSK using a two-state trellis. The signal

constellation and appropriate set partitioning [14] are illustrated in Fig. 12.3, and

0

1

2

3

02

3

1

0 1

0 1 0 1

3

1

0 2

Figure 12.3. Set partitioning of QPSK signal constellation.
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the corresponding trellis diagram and pair-state transition diagram are shown
in Figs. 12.4 and 12.5, respectively. The dashed branch in the trellis diagram
corresponds to a transition resulting from a “0” information bit, whereas the
solid branch corresponds to a transition resulting from a “1” information bit.
The branches are labeled with the M-PSK output symbol that is transmitted as a
result of the information bit above being input to the encoder. The branches of the
pair-state transition diagram are labeled with the gains computed from (12.56).
For example, for the transition from the pair state 0,0 to the pair state 0,1 in
Fig. 12.5 or equivalently, the pair of transitions from state 0 to state 0 and
state 0 to state 1 in Fig. 12.4, the corresponding output M-PSK symbols are
0 and 2. Since the signal constellation is normalized to unit radius circle, then
from Fig. 12.3 the squared Euclidean distance between symbols 0 and 2 is υ2 D 4.
Similarly, the transition from state 0 to state 0 is the result of transmitting a single
0 information bit, whereas the transition from state 0 to state 1 is the result of
transmitting a single 1 information bit. Thus, the Hamming distance between these
two information bits is dH D 1. Since there are no parallel branches in the trellis
diagram and nc D 1, then, in accordance with (12.55), the gain associated with
the transition from pair state 0,0 to pair state 0,1 is a D 1

2ID
4��� (see Fig. 12.5).

The gains b D 1
2ID

2��� and c D 1
2D

2��� follow from similar considerations.
Defining the states of the pair-state diagram by 2 with the input state having

value unity, the transfer function is obtained by solving the following set of state
equations:

12

0

3

1

0 0 0

1 1

0

Figure 12.4. Trellis diagram and QPSK signal assignment.

1/2
0,0 0,0

1,1 1,1

1a

b

c

I F

a

a

a

b b

b

c

c

c
1

xa

xc xe

xF

xf
xd

xb

xI = 1
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Figure 12.5. Pair-state transition diagram.
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T�D���, I� D 2e C 2f

2e D 2f D c�2c C 2d�, 2c D 2d D b�2c C 2d�C a�2a C 2b�

2a D 2b D 1
2 �12.56�

resulting in

T�D���, I� D 4ac

1 � 2b
D ID6���

1 � ID2���
�12.57�

Thus, for the AWGN channel, the TUB on average BEP would be given by

Pb�E� � 1

�

∫ �/2

0

[
d

dI
T�D���, I�

∣∣∣
ID1

]
d� D 1

�

∫ �/2

0

D6���

[1 � D2���]2
d�

D 1

�

∫ �/2

0

exp��3Eb/2N0 sin2 ��

[1 � exp��Eb/2N0 sin2 ��]2
d� �12.58�

For the fading channel with known channel state information, the transfer
function would become

T�D���, I� D ID2˛2���
˛
D4˛2���

˛

1 � ID2˛2���
˛ �12.59�

from which we would obtain the TUB

Pb�E� � 1

�

∫ �/2

0

D2˛2���
˛
D4˛2���

˛

[1 � D2˛2���
˛
]2

d� �12.60�

where the statistical averages are obtained from (12.24), (12.25), and (12.26)
for Rayleigh, Rician, and Nakagami-m channels, respectively. For example, for
Rayleigh fading, using (12.24) gives the simple TUB

Pb�E� � 1

�

∫ �/2

0

(
2

!

)2

sin4 �

(
sin2 � C !/2

sin2 � C !

)
d� �12.61�

As a check on the results, the union–Chernoff bound would be obtained by
replacing the integrand in (12.61) by its value at � D �/2, resulting in

Pb�E� � 2

!2

(
1 C !/2

1 C !

)
�12.62�

which agrees11 with Eq. (49) of Ref. 1.

11 The result in (12.63) is actually one-half of the result in Eq. (49) of Ref. 1 since the bound on
the alternative representation of the Gaussian Q-function obtained by replacing the integrand by its
value at � D �/2 (see Chapter 4) is one-half of the result obtained from the conventional Chernoff
bound.



COHERENT DETECTION 517

For the case of no channel state information, the branch gains of Fig. 12.5
would become

a D I

2
e2N0s2M˛��2s

√
2Es�, b D I

2
eN0s2M˛��s

√
2Es�,

c D 1

2
eN0s2M˛��s

√
2Es� �12.63�

and thus from (12.57), the transfer function is given by

T�s, I� D I[eN0s2M˛��s
p

2Es�][e2N0s2M˛��2s
p

2Es�]

1 � I[eN0s2M˛��s
p

2Es�]

D I[e3N0s2M˛��s
p

2Es�M˛��2s
p

2Es�]

1 � I[eN0s2M˛��s
p

2Es�]
�12.64�

with the corresponding TUB

Pb�E� � 1

2�j

∫ �Cj1

��j1

1

s

[
e3N0s2M˛��s

p
2Es�M˛��2s

p
2Es�

[1 � eN0s2M˛��s
p

2Es�]2

]
ds �12.65�

For even the simplest of fading channels (e.g., Rayleigh) the MGF is not
available in a simple form involving elementary functions which lend themselves
to integration. Nevertheless, as we shall see momentarily, for the Rayleigh fading
channel it is still relatively straightforward to obtain results using the method of
Gauss–quadrature (in particular, Gauss–Hermite) integration. The procedure is
as follows.

The MGF of a Rayleigh RV with mean-square value ˛2 D 3 is given by

M˛�s� D exp
(
s23

4

)[
1F1

(
�1

2
;

1

2
; � s

23

4

)
C s

p
3

p
�

2

]
�12.66a�

where 1F1�ž; ž; ž� is the Kummer confluent hypergeometric function [20,
Eq. (12.2)] or equivalently, using the relation between 1F1�ž; ž; ž� and the error
function erf�ž�,

M˛�s� D 1 C
p
�

2
s
p
3 exp

(
s23

4

)
erfc

(
� s

p
3

2

)
�12.66b�

Renormalizing the complex integration variable in (12.65) as 2 D s
p
N0! , the

TUB can be written as

Pb�E� � 1

2�j

∫ �0Cj1

�0�j1

1

2

[
e322/!M0

˛��2�M0
˛��22�

[1 � e22/!M0̨ ��2�]2

]
d2 �12.67�
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where now � 0 D �
p
N0! and

M0
˛�2� D exp

(
22

2

)
A�2�, A�2�

D 1F1

(
�1

2
;

1

2
; �2

2

2

)
C 2

√
�

2
�12.68a�

or equivalently,

M0
˛�2� D 1 C

√
�

2
2 exp

(
22

2

)
erfc

(
� 2p

2

)
�12.68b�

To evaluate the bound on average BEP in (12.67), one has the option of using
either of two Gauss–quadrature methods. First, substituting (12.68a) into (12.67)
and simplifying gives

Pb�E� � 1

2�j

∫ �0Cj1

�0�j1

1

2

[
e2

2[�!C3�/!]A��2�A��22�

�1 � e22[�!C2�/2!]A��2��2
]
d2 �12.69�

To evaluate the integration along the vertical line in (12.69), we recognize that
along this line the complex integration variable can be expressed as 2 D � 0 C jω,
where � 0 is fixed and ω varies from �1 to 1. Thus, making this change of
variables in (12.69) gives

Pb�E� � 1

2�

∫ 1

�1

1

� 0 C jω

[
e��

0Cjω�2[�!C3�/!]A��� 0 � jω�A��2� 0 � 2jω�

�1 � e��0Cjω�2[�!C2�/2!]A��� 0 � jω��2

]
dω

�12.70�
which is of the form12

Pb�E� �
∫ 1

�1
e�aω2

f�ω� dω D 1p
a

∫ 1

�1
e�x2

f�x/
p
a� dx �12.71�

and thus can be evaluated by Gauss–Hermite integration [20, Sec. 25.4.46],
namely, ∫ 1

�1
exp��x2�f

(
xp
a

)
dx '

Np∑
nD1

Hxnf

(
xnp
a

)
�12.72�

where fxng are the Np zeros of the Np-order Hermite polynomial HNp�x� and Hxn
are corresponding weight factors defined by

Hxn
D 2Np�1Np!

p
�

�Np�2[HNp�1�xn�]2
�12.73�

12 Note that f�ω� is a complex function of ω, and thus it might appear that the upper bound is also

complex. However, the imaginary part of f�ω� will be an odd function of ω, and thus since e�aω2

is an even function of ω, the imaginary part of the integral will evaluate to zero.
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The zeros and the weight factors are both tabulated in Table 25.10 of Ref. 20, for
various polynomial orders. Typically, Np D 20 is sufficient for excellent accuracy.

The second approach to evaluating an upper bound on average BEP is
to substitute (12.68b) into (12.67) and use the Gauss–Chebyshev method of
Appendix 9B. In particular,

1

2�j

∫ �0Cj1

�0�j1

1

2

[
e322/!M0

˛��2�M0
˛��22�

�1 � e22/!M0̨ ��2��2
]
d2

D 1

2�j

∫ �0Cj1

�0�j1

1

2
f�2� d2

' 1

n

n/2∑
kD1

[Reff�� 0 C j� 07k�g C j Imff�� 0 C j� 07k�g],

7k D tan
�2k � 1��

2n
�12.74�

where the choice of n and � 0 are discussed in Appendix 9B.13 This approach is
perhaps the simpler of the two in that it does not involve computation of the
zeros and weight factors of the Hermite polynomials.

The MGF of a Nakagami-m RV with mean-square value ˛2 D 3 is given by

M˛�s� D exp
(
s23

4m

)[
1F1

(
1

2
� m;

1

2
; � s

23

4m

)

C s
p
3

(
m C 1

2

)
p
m�m�

1F1

(
1 � m;

3

2
; � s

23

4m

)]
�12.75�

Again renormalizing the integration variable in (12.65) as 2 D s
p
N0! , the TUB

can be written as in (12.67), where now

M0
˛�2� D exp

(
22

2m

)
A�2;m� �12.76�

with

A�2;m� D 1F1

(
1

2
� m;

1

2
; � 22

2m

)
C 2

√
2

m


(
m C 1

2

)
�m�

1F1

(
1 � m;

3

2
; � 22

2m

)
�12.77�

[Note that for m D 1 (i.e., Rayleigh fading), A�2; 1� reduces to A�2� of (12.68a)
as it should.] It should now be obvious that the TUB on average BEP is given
by (12.70) with the appropriate substitution of A�2; 1� for A�2�, which again can
be evaluated using the Gauss–Hermite integration method.

13 Specifically, the function f�2� in (12.74) should be numerically minimized and the resulting value
of 2 > 0 at which this minimum occurs is then equated to �0. Note that the minimization must be
performed for each ! and thus the value of �0 used to evaluate (12.74) is a function of ! .
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12.2 DIFFERENTIALLY COHERENT DETECTION

12.2.1 System Model

Consider the block diagram of a trellis-coded M-DPSK system14 illustrated in
Fig. 12.6. The only difference between this block diagram and that of Fig. 12.1
is the inclusion of a differential (phase) encoder prior to the modulator and
the replacement of the coherent demodulator by a differential (phase) detector.
Thus, if xk still denotes the kth trellis-coded M-PSK symbol corresponding
to the information symbol uk , the actual M-PSK symbol transmitted over the
channel is15

vk D vk�1xk �12.78�

Analogous to (12.3), the fading channel output at time k is

wk D ˛k
√

2Esvk C nk �12.79�

where the noise sample nk has the same properties as for the coherent detection
case, and the output of the differential detector is

yk D wkw
Ł
k�1 �12.80�

If we again assume that the fading is independent from symbol to symbol, we can
represent the combination of the differential encoding/detection operations and
the fading channel as a memoryless coding channel whose input is the information
M-PSK symbol xk and whose output is the decision variable yk . As such, Fig. 12.2
also represents a simple block diagram of the trellis-coded M-DPSK system that
is suitable for performance analysis the primary difference being that, conditioned
on the fading, the memoryless coding channel is no longer AWGN. This is easily
seen by combining Eqs. (12.78) through (12.80), which yields

yk D wkw
Ł
k�1 D �˛k

√
2Esvk�1xk C nk��˛k�1

√
2Esvk�1 C nk�1�

Ł

D ˛k˛k�12Esxk C noise (non-Gaussian) terms �12.81�

The optimum decision metric still depends on the availability or lack thereof
of CSI. Such metrics for multiple channel reception of differentially detected
M-PSK were considered in Chapter 7 and also in Ref. 2. For the case of perfect
CSI, the branch decision metric is complicated (involving the zero-order Bessel
function) and thus theoretical analysis of the average BEP is difficult, if not
impossible. Even for the case of no CSI, depending on the statistics of the fading
amplitude, the optimum branch metric can also be quite complicated. [The one

14 By M-DPSK, we refer in this chapter to the conventional (two-symbol observation) form of
differentially detected M-PSK.
15 Note that the transmitted M-PSK symbols are still normalized such that jvk j D 1.
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case that has a simple solution is the branch metric for Rayleigh fading with
no CSI, which happens to be the same as that for the pure AWGN channel (see
Chapter 7).] In view of this difficulty, we will follow the approach taken in Ref. 2
and assume the simpler Gaussian metric for both the known and unknown CSI
cases. This approach was also taken by Johnston and Jones [21] in analyzing the
performance of a block-coded M-DPSK system over a Rayleigh fading channel.
Thus, analogous to (12.7) and (12.8) the decision metrics for the differentially
detected M-PSK case become

m�y, x; a�
D �

N∑
nD1

jyn � ˛n˛n�12Esxnj2 �12.82�

and

m�y, x�
D �

N∑
nD1

jyn � 2Esxnj2 �12.83�

corresponding, respectively, to perfectly known and unknown CSI. Since, as
mentioned above, the Gaussian decision metric is (at least for Rayleigh fading)
optimum for unknown CSI, we focus our attention first on this case since the
suboptimality of the metric for known CSI will tend to reduce the performance
improvement.

12.2.2 Performance Evaluation

In this section we evaluate the TUB on the average BEP starting first with
evaluation of the pairwise error probability.

12.2.2.1 Unknown Channel State Information. As for the coherent
detection case, we must first find the pairwise error probability in a form suitable
for application of the transfer function bound approach. The first approach to try
is find the conditional pairwise error probability and then average this result over
the fading PDF. Substituting (12.81) into (12.83), then, the conditional pairwise
error probability of (12.28) becomes

P�x ! x̂ja� D Pr

{∑
n2�

Re
{
wnw

Ł
n�1�Oxn � xn�

Ł} ½ 0jx
}

D Pr

{∑
n2�

Re
{
wnw

Ł
n�1�xn � Oxn�Ł

}
< 0jx

}
�12.84�

Since wn and wn�1 are conditionally (on the fading) complex Gaussian, the
probability required in (12.84) is an extension of the problem considered in
Appendix 8A to a sequence of weighted RVs. In particular, because of the
assumption of ideal interleaving/deinterleaving the decision variable in (12.84) is
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a sum of independent complex conjugate products of Gaussian RVs, which would
be appear to be a special case of the quadratic form considered in Appendix B
of Ref. 22. However, because each Gaussian product RV in the sum is weighted
by �Oxn � xn�Ł, a constant that, in general, depends on the summation index n,
the approach taken in Ref. 22, which would lead to a conditional pairwise error
probability expressed in terms of the Marcum Q-function, does not apply here.
Nevertheless, because of the independence of the terms in the sum, we can still
apply the method used in Section 12.1.2.2, in particular, (12.38), where we must
now find the MGF of zn

D RefwnwŁ
n�1�xn � Oxn�Łjxg. The solution is presented

in Appendix 12A, which for the case of slow fading (i.e., ˛n�1 D ˛n D ˛) gives
the result

Mzn�s� D 1

1 � �sN0jxn � Oxnj�2 exp

{
˛2�Es/N0�jxn � Oxnj2[�2s2N2

0 C sN0�]

1 � �sN0jxn � Oxnj�2
}˛

�12.85�
where as before the overbar denotes statistical averaging with respect to the
fading RV ˛. Defining as before the instantaneous SNR per bit !

D˛2Eb/N0 and
recalling that Es D ncEb, then (12.85) can be rewritten as

Mzn�s� D 1

1 � �sN0jxn � Oxnj�2 exp

{
!
ncjxn � Oxnj2[�2s2N2

0 C sN0�]

1 � �sN0jxn � Oxnj�2
} !

�12.86�

Statistical averages of the type required in (12.86) are in fact Laplace
transforms of the PDF p!�!� (with exponent reversed) and have been evaluated
in Chapter 5 for a wide variety of fading channels. Finally, making the change of
complex variables 2 D sN0 in (12.86) and then substituting the result in (12.38)
gives the pairwise error probability with an integrand in the desired product form,
namely,

P�x ! x̂� D 1

2�j

∫ �Cj1

��j1

1

2

∏
n2�
M0
zn ��2� d2 �12.87�

where

M0
zn �2� D 1

1 � 22jxn � Oxnj2 exp
{
!
ncjxn � Oxnj2�222 C 2�

1 � 22jxn � Oxnj2
} !

�12.88�

For the fast-fading case where ˛n�1 6D ˛n but because of the interleaving and
deinterleaving the products ˛n�1˛n are still independent of each other, (12.87) is
still valid, now with

M0
zn �2�D

1

1 � 22jxn � Oxnj2 exp

{
ncjxn�Oxnj2[�!n�1C!n�22Cp

!n�1!n2]

1�22jxn�Oxnj2
} !n�1,!n

�12.89�
Note that evaluation of (12.89) now requires second-order fading statistics.
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12.2.2.2 Known Channel State Information. Comparing the decision
metrics of (12.82) with (12.83), then following the same approach as for the
unknown CSI case, we immediately see that to evaluate the pairwise error
probability as given by (12.38), we now need to obtain the MGF of the decision
variable zn

D Ref˛n˛n�1wnwŁ
n�1�xn � Oxn�Łjxg or, for the slow-fading assumption,

zn
D Ref˛2

nwnw
Ł
n�1�xn � Oxn�Łjxg. The approach taken in Appendix 12A is still

appropriate, and with suitable redefinition of the constant C in (12A.7), we obtain
the following result:

Mzn�s� D
exp

[
˛4
n�Es/N0�jxn � Oxnj2

(
2˛2

ns
2N2

0 C sN0
)

1 � (
sN0˛2

njxn � Oxnj
)2

]˛n

1 � (
sN0˛2

njxn � Oxnj
)2 �12.90�

Analytical evaluation of the statistical averages of (12.90) in closed form is
not possible even for the simplest of fading channels such as the Rayleigh.
Similar evaluation problems were noted in Ref. 2 in connection with trying
to Chernoff bound this very same pairwise error probability. Furthermore,
Divsalar and Simon [2] reported that computer simulation results corresponding
to several examples revealed that for the Gaussian metric under consideration,
little performance was gained from having knowledge of CSI available at the
receiver. Thus, because of the difficulty associated with the analysis, we shall
abandon pursuit of the known CSI case as was done there.

12.2.3 Example

Consider the same example as in Section 12.1.5, namely rate � 1
2 coded QPSK

using the two-state trellis illustrated in Fig. 12.4. Here we are interested in
computing the TUB on average BER when differential detection is employed
at the receiver and no CSI is available. We now develop the specific result for
the case of slow Rayleigh fading. Results for other fading channel models follow
directly from the Laplace transforms given in Chapter 5.

Using the Laplace transform of (5.5) to evaluate the statistical average over
the fading, the MGF of (12.88) becomes

M0
zn�2� D 1

1 � 22jxn � Oxnj2
(

1 � !
jxn � Oxnj2�222 C 2�

1 � 22jxn � Oxnj2
)�1

D 1

1 � jxn � Oxnj2[�2! C 1�22 C !2]
�12.91�

Replacing D���jxn�Oxnj2 with M0
zn ��2�, the branch gains of Fig. 12.5 are now

given by

a D I

2
M0
zn��2�

∣∣∣
jxn�Oxnj2D4

D I

2

[
1

1 � 4[�2! C 1�22 � !2]

]
,
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b D I

2
M0
zn��2�

∣∣∣jxn�Oxnj2D2
D I

2

[
1

1 � 2[�2! C 1�22 � !2]

]
,

c D 1

2
M0
zn��2�

∣∣∣
jxn�Oxnj2D2

D 1

2

[
1

1 � 2[�2! C 1�22 � !2]

]
�12.92�

Thus, from (12.57), the transfer function is

T�2, I� D 4ac

1 � 2b
D I

f1 � 4[�2! C 1�22 � !2]gf1 � 2[�2! C 1�22 � !2] � Ig
�12.93�

which from the TUB analogous to (12.52), namely,

Pb�E� � 1

2�j

∫ �0Cj1

�0�j1

1

2

∂

∂I
T�2, I�

∣∣∣
ID1

d2 �12.94�

results in

Pb�E� � 1

2�j

∫ �0Cj1

�0�j1

1

2

[
1 � 2[�2! C 1�22 � !2]

4f1 � 4[�2! C 1�22 � !2]g[�2! C 1�22 � !2]2

]
d2

�12.95�
For the case of fast Rayleigh fading, the MGF of (12.88) can be evaluated

using a result in Ref. 23 which gives

M0
zn �2� D 1

1 � jxn � Oxnj2[�2! C 1 C �1 � =2�!2�22 C !=2]
�12.96�

where = is the correlation between the underlying complex Gaussian fading
variables whose amplitudes are ˛n�1 and ˛n. Note that for = D 1, (12.96) reduces
to the result for slow fading given in (12.91), as it should. Analogous to (12.93),
the transfer function is now

T�2, I� D I

f1 � 4[�2! C 1 C �1 � =2�!2�22 � !=2]g
ðf1 � 2[�2! C 1 C �1 � =2�!2�22 � !=2] � Ig

�12.97�

which can then be used to obtain the TUB from (12.94), namely,

Pb�E� � 1

2�j

∫ �0Cj1

�0�j1

1

2


 1 � 2[�2! C 1 C �1 � =2�!2�22 � !=2]

4f1 � 4[�2! C 1 C �1 � =2�!2�22 � !=2]g
ð[�2! C 1 C �1 � =2�!2�22 � !=2]2


d2
�12.98�
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12.3 NUMERICAL RESULTS: COMPARISON OF THE TRUE UPPER
BOUNDS AND UNION–CHERNOFF BOUNDS

In this section we compare the various TUBs derived thus far with the
corresponding union–Chernoff bounds obtained in Refs. 1, 2 and 23. For the
purpose of illustration, we present numerical results for the rate � 1

2 coded QPSK
with two-state trellis example and only for the Rayleigh channel.

For coherent detection with known CSI, the TUB and union–Chernoff bounds
are given in (12.61) and (12.62). Figure 12.7 is a plot of these two upper bounds.
We observe a uniform superiority of about 1.5 dB for the TUB relative to the
union–Chernoff bound.

For coherent detection with unknown CSI, the TUB is obtained by evaluating
either (12.70) or (12.74). The union–Chernoff bound is obtained from Eqs. (58)
and (60) of Ref. 1 and is given by

Pb�E� � min
>½0

2122D�24>2

�1 � 22D�8>2�2
�12.99�
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Figure 12.7. Upper bounds on the average bit error probability for rate � 1
2 trellis-coded QPSK

with two-state trellis: coherent detection with known channel state information, Rayleigh fading.
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where

D
D e�!/4

21 D 1 � 4
p
�>! exp[�2>!�2]Q�2

p
2>!�

22 D 1 � 2
p
�>! exp[�>!�2]Q�

p
2>!�

�12.100�

Superimposed on Fig. 12.8 are the TUB and union–Chernoff bound for the no
CSI case as given above.

For differential detection with unknown CSI and slow fading, the TUB is
obtained from (12.95), which can be evaluated using the Gauss–Chebyshev
quadrature technique described in Appendix 9B.16 In this regard, it is convenient
to first to write the transfer function T�2, I� of (12.93) in its infinite series form,
namely,
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Figure 12.8. TUB and union–Chernoff bound on average BEP performance of coherent
detection with unknown CSI in slow Rayleigh fading.

16 For the particular integrand in (12.95), the best value of �0 (denoted by c in (9B.15)) to guarantee
quick convergence can easily be evaluated as

�0 D !

2�2! C 1�
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T�2, I� D 4ac�1 C 2bC �2b�2 C Ð Ð Ð�

D I

f1 � 4[�2! C 1�22 � !2]gf1 � 2[�2! C 1�22 � !2]g

ð
[

1 C I

1 � 2[�2! C 1�22 � !2]
C I2

f1 � 2[�2! C 1�22 � !2]g2
C Ð Ð Ð

]
�12.101�

from which the derivative required in (12.94) has the corresponding infinite
series form

∂

∂I
T�2, I�

∣∣∣
ID1

D 1

f1 � 4[�2! C 1�22 � !2]gf1 � 2[�2! C 1�22 � !2]g

C 2

f1 � 4[�2! C 1�22 � !2]gf1 � 2[�2! C 1�22 � !2]g2

C 3

f1 � 4[�2! C 1�22 � !2]gf1 � 2[�2! C 1�22 � !2]g3
C Ð Ð Ð
�12.102�

Substituting (12.102) in (12.94) and applying the Gauss–Chebyshev technique of
Appendix 9B term by term until additional terms produce a negligible change in
the result is the most efficient method of evaluating (12.95). The union–Chernoff
bound on average BEP for differential detection with unknown CSI and slow
fading is given by

Pb�E� � ∂

∂I
T�2, I�

∣∣∣
ID1,2D!/2�2!C1�

D 4�1 C 2! C !2/2��2! C 1�2

!4�1 C !�2
�12.103�

which agrees with Eq. (40) of Ref. 2 after being specialized to the case
of symmetric QPSK. Figure 12.9 is an illustration of the TUB and the
union–Chernoff bound.

Finally for differential detection with unknown CSI and fast fading, the
TUB is obtained from (12.98) which again is conveniently evaluated using
the Gauss–Chebyshev quadrature technique.17 Again, analogous to (12.102), an
infinite series representation of the derivative of the transfer function in (12.97) is
particularly helpful in efficiently carrying out the evaluation. The corresponding
union–Chernoff bound is given by

Pb�E� � ∂

∂I
T�2, I�

∣∣∣
ID1,2D!=/2[2!C1C�1�=2�!2]

D 1 C 2?

4?2�1 C 4?�
, ?

D =2!2

4[2! C 1 C �1 � =2�!2]
�12.104�

17 Here, the best value of �0 to guarantee quick convergence becomes

�0 D !=

2[2! C 1 C �1 � =2�!2]
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Figure 12.9. TUB and union–Chernoff bound on average BEP performance of differential
detection with unknown CSI in slow Rayleigh fading.

which agrees with [23, Eqs. (34) and (35)] and furthermore reduces to (12.103)
when = D 1 (slow fading). Note that in the limit of large ! and = 6D 1, the bound
on BEP as given by (12.104) approaches a finite value given by

Pb�E� � 2�1 � ?2�2�2 � ?2�

?4
�12.105�

which represents an error floor (i.e., regardless of how large we make the average
SNR, the upper bound predicts a nonzero BEP).

To obtain numerical results for this case, we must apply an appropriate
correlation model for the fading process. Mason [24] has tabulated the auto-
correlation function (or equivalently, the power spectral density) for various
types of fast fading processes of interest. These results were given in Table 2.1
where fd denotes the Doppler spread and for convenience the variance of the
fading process has been normalized to unity. Figure 12.10 is an illustration
of the union–Chernoff bound and the TUB as computed from (12.104) and
(12.98), respectively, for the land mobile channel with fdTb as a parameter. The
value of fdTb D 0 corresponds to the case of slow fading as per the results in
Fig. 12.9.



530 CODED COMMUNICATION OVER FADING CHANNELS

10 12 14 16 18 20 22 24 26 28 30

Average SNR per Bit [dB]

(a)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y

10−6

10−5

10−4

10−3

10−2

10−1

100

10 12 14 16 18 20 22 24 26 28 30

Average SNR per Bit [dB]

(b)

B
it 

E
rr

or
 P

ro
ba

bi
lit

y

10−6

10−5

10−4

10−3

10−2

10−1

100

Figure 12.10. TUB (solid line) and union–Chernoff (dashed line) bound on average BEP
performance of differential detection with unknown CSI in fast Rayleigh fading: land-mobile
channel: (a) fdTb D 0.05; (b) fdTb D 0.1.
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APPENDIX 12A: EVALUATION OF A MOMENT GENERATING
FUNCTION ASSOCIATED WITH DIFFERENTIAL DETECTION
OF M-PSK SEQUENCES

The decision variable associated with the pairwise error probability of differential
detection of M-PSK sequences transmitted over a fading channel with no channel
state information available to the receiver is a sum of RVs of the form1

zn D RefwnwŁ
n�1�xn � Oxn�Łg �12A.1�

where wn and wn�1 are conditionally (on the fading) complex Gaussian random
variables and �xn � Oxn�Ł is a complex constant. Of interest in this appendix is
the evaluation of the moment generating function (MGF) of zn.

Recalling (12.78) and (12.79), then (12A.1) can be expressed as

zn D �˛n
√

2Esvn�1xn C nn��˛n�1

√
2Esvn�1 C nn�1�

Ł�xn � Oxn�Ł �12A.2�

Proakis [22, App. B] considers a quadratic form of complex Gaussian RVs Xn
and Yn, that is,

dn D AjXnj2 C BjYnj2 CCXnY
Ł
n C CŁXŁ

nYn �12A.3�

in which A, B, and C are constant weights. Our interest is in the case where
A D B D 0 and Xn, Yn are uncorrelated, whereupon (12A.3) becomes

dn D 2 RefCŁXŁ
nYng �12A.4�

1 For simplicity of notation we shall omit the conditioning on x with the understanding that the RVs
wn�1 and wn are evaluated assuming that x is the transmitted vector.
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whose MGF is given by Eq. (B-5) of Ref. 22, which for this special case becomes

Mdn�s� D v2

�s2 C v2
exp

[
v2�21ns2 C 22ns�

�s2 C v2

]
�12A.5�

with

*xx D 1

2
EfjXn � Xnj2g, *yy D 1

2
EfjYn � Ynj2g

v D
√

1

4*xx*yyjCj2

21n D 2jCj2�jXnj2*yy C jYnj2*xx�,
22n D CXnY

Ł
n CCŁXŁ

nYn D 2 RefCŁXŁ
nYng

�12A.6�

Comparing (12A.1) with (12A.4), we draw the equivalences

Xn D wn�1, Yn D wn, C D xn � Oxn
2

�12A.7�

Recognizing the normalizations jvk�1j D jvkj D jxkj D 1, the parameters in
(12A.6) then become

jXnj D ˛n�1

√
2Es, jYnj D ˛n

√
2Es

*xx D 1

2
Efjnk�1j2g D N0, *yy D 1

2
Efjnnj2g D N0,

v D 1

N0jxn � Oxnj
21n D N0�˛

2
n�1 C ˛2

n�Esjxn � Oxnj2,
22n D 2˛n�1˛nEs Refxn�xn � Oxn�Łg D ˛n�1˛nEsjxn � Oxnj2

�12A.8�

where the last equality in 22n is obtained by using (12.11). Substituting (12A.8)
in (12A.5) gives the conditional MGF of zn as

Mzn�s�j˛n�1, ˛nD 1

1 � �sN0jxn � Oxnj�2

ð exp

{
�Es/N0�jxn � Oxnj2[�˛2

n�1 C ˛2
n�s

2N2
0 C ˛n�1˛nsN0]

1 � �sN0jxn � Oxnj�2
}

�12A.9�
Since the unconditional PDF of zn, namely, pzn�zn�, is obtained by averaging
the conditional PDF pznj˛n�znj˛n� over the PDF of ˛n, the unconditional MGF is
also the average of the conditional MGF over the PDF of ˛n [see, e.g., (12.41)
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for the case of a Gaussian zn]. Finally, then, the unconditional MGF of zn is,
from (12A.9)

Mzn�s� D 1

1 � �sN0jxn � Oxnj�2

ð exp

{
�Es/N0�jxn � Oxnj2[�˛2

n�1 C ˛2
n�s

2N2
0 C ˛n�1˛nsN0]

1 � �sN0jxn � Oxnj�2
}˛n�1,˛n

�12A.10�
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characteristics of, generally, 311–312
coherent EGC, 313–314
MRC and noncoherent EGC, 312–313
numerical examples of, 314–315

outdated or imperfect channel estimates,
performance in presence of:

MRC, 370–371
noncoherent EGC over Rician fast fading,

371–373
numerical results, 377–378
selection combining, 373–374
switched diversity, 374–477

selection combining:
average output SNR, 336–338
average probability of error, 340–347
characteristics of, generally, 333–335
MGF of output SNR, 335–336
outage probability, 338–340

switched diversity:
branch correlation, effect of, 366–369
branch unbalance, effect of, 362–366
performance of SSC over independent

identically distributed branches,
348–362

Multipath fading:
defined, 18
Nakagami-m model, 22–23
Nakagami-n (Rice) model, 21–22
Nakagami-q (Hoyt) model, 20–21
optimum receivers, detection of, 189
Rayleigh model, 18, 20

Multiple access interference (MAI):
single carrier DS-CDMA systems, 477
multicarrier DS-CDMA systems, 483

Multiple amplitude modulation (M-AM):
characteristics of, 33
single channel receivers, 194–195,

220–221
multichannel receivers, 272

Multiple amplitude-shift-keying (M-ASK), see
Multiple amplitude modulation (M-AM)

Multiple interferers, optimum combining,
454–466

Multiple symbol detection, see Differentially
coherent detection



542 INDEX

Nakagami-m fading channel:
coded communication, 513
definite integrals associated with, 124–139
Gaussian Q-function and, 102–107, 119–121
Marcum Q-function and, 109–113
multicarrier systems, DS-CDMA, 488–492
multichannel receivers, switched diversity:

average output SNR, 352
average probability of error, 359
fading correlation, 318, 327, 331
hybrid diversity schemes, 391–403
noncoherent equal-gain combining, 308
numerical examples, 314
switched diversity, 349, 355

optimum combining receivers, 451–454
optimum receivers:

characteristics of, 164–165
detection by, 186–191

single carrier systems, DS-CDMA, 478–479
single channel receivers, 222, 246–247

Nakagami-n (Rice) fading channel, see Rician
fading channel

Nakagami-q (Hoyt), see Hoyt fading channel
Noncentrality parameter, 74
Noncoherent combining loss, 172
Noncoherent detection:

in communication systems, 53–55
multichannel receivers, see Noncoherent

equal-gain combining
optimum receivers:

Nakagami-m fading, 175–181
Rayleigh fading, 168–175

single channel receivers:
AWGN channel performance, 209–210
slow fading channel performance,

239–242
Noncoherent equal-gain combining,

multichannel receivers:
DPSK, DQPSK, and BFSK, 290–303
M-ary orthogonal FSK, 304–311
outage probability performance, 312–313
outdated/imperfect channel estimates,

371–373
Nonideal coherent detection:

in communication systems, 47–52
single channel receivers:

AWGN channel performance, 206–209
slow fading channel performance,

234–239
Numerical techniques, inversion of Laplace

transform of CDFs:
Euler summation-based technique, 427–428
Gauss-Chebyshev quadrature-based

technique, 428–429

Offset QPSK (OQPSK)
characteristics of, 41–42
single channel receivers:

AWGN channel performance, 204
slow fading channel performance, 229

Optimum combining (OC):
characteristics of, 437–438
multiple interferers:

number of interferers equal to or greater
than number of array elements,
462–466

number of interferers less than number of
array elements, 456–462

single interferer, 438–454
Optimum reception, performance evaluation:

fading channels, optimum receivers for,
157–191

ideal coherent detection, 36, 38–40, 44, 48,
50

multichannel receivers, 259–433
multiple symbol detection, 58
for noncoherent detection, 54
for partially coherent detection, 56
single channel receivers, 193–258

Outage probability:
as performance criterion, 5–6
diversity combining, 141
multichannel receivers:

coherent EGC, 313–314
MRC and noncoherent EGC, 312–313
numerical examples of, 314–315
performance, 311–312
hybrid diversity schemes, 386–388
switched diversity, 354–357

Outdated or imperfect channel estimates,
performance in presence of:

maximal-ratio combining, 370–371
noncoherent EGC over Rician fast fading,

371–373
numerical results, 377–378
selection combining, 373–374
switched diversity, 374–477

Pairwise error probability, coded
communication:

defined, 8, 497
evaluation of:

known channel state information, 503–506
overview of, 502–503
unknown channel state information,

506–510
Partial-band interference (PBI)

multicarrier DS-CDMA systems, 485–487
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Partially coherent detection:
conventional detection, one-symbol

observation, 55–57
defined, 49
M-ary phase-shift-keyed (M-PSK) signal, 57
multiple symbol detection, 57–59
single channel receivers:

AWGN channel performance, 210–213
slow fading channel performance,

242–243
Phase-locked loop (PLL), 51
Phase-shift-keying (PSK), see Binary

phase-shift-keying
Phases, fading channels (state of knowledge for

optimum reception):
known:

known amplitudes and delays, 159–163
known phases, unknown amplitudes,

163–166
unknown:

known amplitudes and delays, 166–167
known delays and unknown amplitudes,

168–188
unknown amplitudes, phases, and delays,

188–191
�/4-QPSK, 202–204, 218
�/4-differential QPSK, detection of:

communications systems, 65
optimum receivers, detection of, 218
single channel receivers, 251

Pilot tone-aided detection, 51
Power decay factor, 28
Precoded MSK, 47, 49–50
Probability density function (PDF):

bivariate Rayleigh, 142–146
composite gamma/log-normal, 25
for maximum of two Nakagami-m random

variables, 149–152
for maximum of two Rayleigh random

variables, 146–149
Hoyt, see Nakagami-q
Nakagami-m, 22–23
Nakagami-n, 21–22
Nakagami-q, 20–21
Rayleigh, 18
Rice, see Nakagami-n
shadowed/unshadowed fading, 26

Quadrature phase-shift-keying (QPSK):
characteristics of, 37–39
error probability performance of, in AWGN,

197
error probability performance of, in slow

fading:
single channel reception, 224

Quadrature amplitude modulation (QAM):
characteristics of, 34–35
error probability performance of, in AWGN,

195–197
error probability performance of, in slow

fading:
single channel reception, 224
multichannel reception, 272–275, 278,

361, 391, 404–405
Quadrature amplitude-shift-keying (QASK),

see Quadrature amplitude
modulation

RAKE receivers:
fading channels, optimum receivers,

160–161
multicarrier DS-CDMA systems, 479, 484
multichannel, 263, 304, 314, 317, 330, 409
optimum combining receivers, 439
single carrier DS-CDMA systems, 478

Rayleigh fading channel:
coded communication, 513
evaluation of definite integrals associated

with, 124–139
Gaussian Q-function and, 101, 105–106,

118–119
Marcum Q-function and, 108, 112
M-PSK error probability integrals, integer

powers of, 122–124
multichannel receivers:

hybrid diversity schemes, 381, 401
outdated/imperfect channel estimates, 378
switched diversity, 351–352, 354–355

optimum combining (OC), average bit error
probability, 442–448

optimum receivers:
characteristics of, 163–164
detection by, 183–190

single channel receivers, 223, 238, 245
Rician fading channel:

characteristics of, 21–22, 102, 109, 113
coded communication, 513
fast, 248–249, 371–373
Gaussian Q-function and, 102
Marcum Q-function and, 109
multichannel receivers, outdated/imperfect

channel estimates, 371–373
optimum combining receivers, 449–451
single channel receivers, 223, 234, 239, 246,

248–249

Selection combining (SC):
characteristics of, generally, 262–263
defined, 141



544 INDEX

Selection combining (SC): (Continued)
multichannel receivers:

average output SNR, 336–338
average probability of error, 340–347
characteristics of, generally, 333–335
MGF of output SNR, 335–336
outage probability, 338–340
outdated/imperfect channel estimates,

373–374
switched diversity, 360–361

Self-adaptive receivers, 159
Self-interference, 485
Shadowing:

combined (time-shared)
shadowed/unshadowed fading,
25–26

composite multipath, 24–25
log-normal, 23–24, 104–117, 109–111

Signal-to-noise ratio (SNR):
as performance criterion, 4–5
common fading channels, 19
conditional, in multicarrier DS-CDMA

systems, 483–484, 486
flat fading channels, 17–18
instantaneous, 99–100, 102, 107–109, 148,

150–151, 219
multichannel receivers:

coherent equal gain combining, 279–281
diversity combining, 260, 264
fading correlation, 323, 325, 327
hybrid diversity schemes, 384–386
M-ary orthogonal FSK, 304–307, 310
noncoherent equal-gain combining,

300–301
outage probability performance, 312–313,

331
selection combining, 333–347
switched diversity, 348–349, 352–354,

365–368, 376–377
multipath fading, 20
optimum receivers and, 164, 172
shadowed/unshadowed fading, 26

Single carrier systems, DS-CDMA. See also
Direct-sequence code-division multiple
access (DS-CDMA):

performance analysis:
characteristics of, 477–478
general case, 478
Nakagami-m fading channels, application

to, 478–479

system and channel models:
channel model, 475–476
receiver, 476
transmitted signal, 474–475

Single channel reception:
performance over AWGN channel, 193–219
performance over fading channels, 219–251

Slow fading, defined, 16
Staggered QPSK (SQPSK),

see Offset QPSK
Stein’s unified analysis of error probability

performance, 253–258
Switch and stay combining (SSC), see

Switched diversity
Switched diversity:

branch correlation, effect of, 366–369
branch unbalance, effect of, 362–366
generalized, hybrid diversity schemes:

average probability of error, 406–407
characteristics of, 403–405
output statistics, 406

multichannel receivers:
branch correlation, effect of, 366–369
branch unbalance, effect of, 362–366
outdated/imperfect channel estimates,

374–377
performance of SSC over independent

identically distributed branches,
348–362

System performance measures:
bit error probability (BEP), average, 6–12
average signal-to-noise ratio (SNR), 4–5
outage probability, 5–6

TDMA system, 455
Tikhonov distribution, 51
Toronto function (incomplete), relation to

generalized Marcum Q-function, 81
Transfer function bound, see Coded

communication, coherent detection
Trellis-coded modulation (TCM),

498, 511–512
True upper bounds (TUB),

see Coded communication, coherent
detection

Uniform error probability (UEP), 512
Union-Chernoff bound, 514, 526–530

Viterbi algorithm, 499
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