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PREFACE

Regardless of the branch of science or engineering, theoreticians have always
been enamored with the notion of expressing their results in the form of
closed-form expressions. Quite often, the elegance of the closed-form solution
is overshadowed by the complexity of its form and the difficulty in evaluating
it numerically. In such instances, one becomes motivated to search instead for
a solution that is simple in form and simple to evaluate. A further motivation
is that the method used to derive these alternative simple forms should also be
applicable in situations where closed-form solutions are ordinarily unobtainable.
The search for and ability to find such a unified approach for problems dealing
with evaluation of the performance of digital communication over generalized
fading channels is what provided the impetus to write this book, the result of
which represents the backbone for the material contained within its pages.

For at least four decades, researchers have studied problems of this type, and
system engineers have used the theoretical and numerical results reported in the
literature to guide the design of their systems. Whereas the results from the earlier
years dealt mainly with simple channel models (e.g., Rayleigh or Rician multipath
fading), applications in more recent years have become increasingly sophisticated,
thereby requiring more complex models and improved diversity techniques.
Along with the complexity of the channel model comes the complexity of the
analytical solution that enables one to assess performance. With the mathematical
tools that were available previously, the solutions to such problems, when
possible, had to be expressed in complicated mathematical form which provided
little insight into the dependence of the performance on the system parameters.
Surprisingly enough, not until recently had anyone demonstrated a unified
approach that not only allows previously obtained complicated results to be
simplified both analytically and computationally but also permits new results
to be obtained for special cases that heretofore had resisted solution in a simple
form. This approach, which the authors first presented to the public in a tutorial-
style article that appeared in the September 1998 issue of the IEEE Proceedings,
has spawned a new wave of publications on the subject that, we foresee based
on the variety of applications to which it has already been applied, will continue
well into the new millennium. The key to the success of the approach relies

XV
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on employing alternative representations of classic functions arising in the error
probability analysis of digital communication systems (e.g., the Gaussian Q-
function! and the Marcum Q-function) in such a manner that the resulting
expressions for average bit or symbol error rate are in a form that is rarely more
complicated than a single integral with finite limits and an integrand composed of
elementary (e.g., exponential and trigonometric) functions. By virtue of replacing
the conventional forms of the above-mentioned functions by their alternative
representations, the integrand will contain the moment generating function (MGF)
of the instantaneous fading signal-to-noise ratio (SNR), and as such, the unified
approach is referred to as the MGF-based approach.

In dealing with application of the MGF-based approach, the coverage in
this book is extremely broad, in that coherent, differentially coherent, partially
coherent and noncoherent communication systems are all handled, as well as
a large variety of fading channel models typical of communication links of
practical interest. Both single- and multichannel reception are discussed, and
in the case of the latter, a large variety of diversity types are considered. For
each combination of communication (modulation/detection) type, channel fading
model, and diversity type, the average bit error rate (BER) and/or symbol error
rate (SER) of the system is obtained and represented by an expression that is in
a form that can readily be evaluated.”> All cases considered correspond to real
practical channels, and in many instances the BER and SER expressions obtained
can be evaluated numerically on a hand-held calculator.

In accomplishing the purpose set forth by the discussion above, the book
focuses on developing a compendium of results that to a large extent are not
readily available in standard textbooks on digital communications. Although
some of these results can be found in the myriad of contributions that have
been reported in the technical journal and conference literature, others are new
and as yet unpublished. Indeed, aside from the fact that a significant number
of the reference citations in this book are from 1999 publications, many others
refer to papers that will appear in print in the new millennium. Whether or
not published previously, the value of the results found in this book is that
they are all colocated in a single publication with unified notation and, most
important, a unified presentation framework that lends itself to simplicity of
numerical evaluation. In writing this book, our intent was to spend as little space
as possible duplicating material dealing with basic digital communication theory
and system performance evaluation, which is well documented in many fine
textbooks on the subject. Rather, this book serves to advance the material found
in these books and so is of most value to those desiring to extend their knowledge

! The Gaussian Q-function has a one-to-one mapping with the complementary error function erfc x
[i.e., Q(x) = %erfc(x/ﬁ)] commonly found in standard mathematical tabulations. In much of the
engineering literature, however, the two functions are used interchangeably and as a matter of
convenience we shall do the same in this text.

2 The terms bit error probability (BEP) and symbol error probability (SEP) are quite often used as
alternatives to bit error rate (BER) and symbol error rate (SER). With no loss in generality, we shall
employ both usages in this book.
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beyond what ordinarily might be covered in the classroom. In this regard, the
book should have a strong appeal to graduate students doing research in the
field of digital communications over fading channels as well as to practicing
engineers who are responsible for the design and performance evaluation of
such systems. With regard to the latter, the book contains copious numerical
evaluations that are illustrated in the form of parametric performance curves
(e.g., average error probability versus average SNR). The applications chosen
for the numerical illustrations correspond to real practical channels, therefore
the performance curves provided will have far more than academic value. The
availability of such a large collection of system performance curves in a single
compilation allows the researcher or system designer to perform trade-off studies
among the various communication type/fading channel/diversity combinations so
as to determine the optimum choice in the face of his or her available constraints.
The book is composed of four parts, each with an express purpose. The
first part contains an introduction to the subject of communication system
performance evaluation followed by discussions of the various types of fading
channel models and modulation/detection schemes that together form the overall
system. Part 2 starts by introducing the alternative forms of the classic functions
mentioned above and then proceeds to show how these forms can be used
to (1) evaluate certain integrals characteristic of communication system error
probability performance, and (2) find new representations for certain probability
density and distribution functions typical of correlated fading applications.
Part 3 is the “heart and soul” of the book, since in keeping with its title, the
primary focus of this part is on performance evaluation of the various types of
fading channel models and modulation/detection schemes introduced in Part 1
for both single- and multichannel (diversity) reception. Before presenting this
comprehensive performance evaluation study, however, Part 3 begins by deriving
the optimum receiver structures corresponding to a variety of combinations
concerning the knowledge or lack thereof of the fading parameters (i.e.,
amplitude, phase, delay). Several of these structures might be deemed as too
complex to implement in practice; nevertheless, their performances serve as
benchmarks against which many suboptimum but practical structures discussed
in the ensuing chapters might be compared. In Part 4, which deals with practical
applications, we consider first the problem of optimum combining (diversity) in
the presence of co-channel interference and then apply the unified approach to
studying the performance of single- and multiple-carrier direct-sequence code-
division multiple-access (DS-CDMA) systems typical of the current digital
cellular wireless standard. Finally, in Part 5 we extend the theory developed in the
preceding parts for uncoded communication to error-correction-coded systems.
In summary, the authors know of no other textbook currently on the market
that addresses the subject of digital communication over fading channels in as
comprehensive and unified a manner as is done herein. In fact, prior to the
publication of this book, to the authors’ best knowledge, there existed only two
works (the textbook by Kennedy [1] and the reprint book by Brayer [2]) that like
our book are totally dedicated to this subject, and both of them are more than a
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quarter of a century old. Although a number of other textbooks [3—11] devote
part of their contents® to fading channel performance evaluation, by comparison
with our book the treatment is brief and therefore incomplete. In view of the
above, we believe that our book is unique in the field.

By way of acknowledgment, we wish to thank Dr. Payman Arabshahi of the
Jet Propulsion Laboratory, Pasadena, CA for providing his expertise in solving
a variey of problems that arose during the preparation of the electronic version
of the manuscript. Mohamed-Slim Alouini would also like to express his sincere
acknowledgment and gratitude to his PhD advisor Prof. Andrea J. Goldsmith
of Stanford University, Palo Alto, CA for her guidance, support, and constant
encouragement. Some of the material presented in Chapters 9 and 11 is the result
of joint work with Prof. Goldsmith. Mohamed-Slim Alouini would also like to
thank Young-Chai Ko and Yan Xin of the University of Minnesota, Minneapolis,
MN for their significant contributions in some of the results presented in Chapters
9 and 7, respectively.

MarviN K. SMoN
MOHAMED-SLIM ALOUINI

Jet Propulsion Laboratory
Pasadena, California
University of Minnesota
Minneapolis, Minnesota
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1

INTRODUCTION

As we step forward into the new millennium with wireless technologies leading
the way in which we communicate, it becomes increasingly clear that the
dominant consideration in the design of systems employing such technologies
will be their ability to perform with adequate margin over a channel perturbed
by a host of impairments not the least of which is multipath fading. This is not
to imply that multipath fading channels are something new to be reckoned with,
indeed they have plagued many a system designer for well over 40 years, but
rather, to serve as a motivation for their ever-increasing significance in the years
to come. At the same time, we do not in any way wish to diminish the importance
of the fading channel scenarios that occurred well prior to the wireless revolution,
since indeed many of them still exist and will continue to exist in the future. In
fact, it is safe to say that whatever means are developed for dealing with the
more sophisticated wireless application will no doubt also be useful for dealing
with the less complicated fading environments of the past.

With the above in mind, what better opportunity is there than now to
write a comprehensive book that provides simple and intuitive solutions to
problems dealing with communication system performance evaluation over fading
channels? Indeed, as mentioned in the preface, the primary goal of this book
is to present a unified method for arriving at a set of tools that will allow
the system designer to compute the performance of a host of different digital
communication systems characterized by a variety of modulation/detection types
and fading channel models. By set of tools we mean a compendium of analytical
results that not only allow easy, yet accurate performance evaluation but at the
same time provide insight into the manner in which this performance depends
on the key system parameters. To emphasize what was stated above, the set of
tools developed in this book are useful not only for the wireless applications
that are rapidly filling our current technical journals but also to a host of others,
involving satellite, terrestrial, and maritime communications.

Our repetitive use of the word performance thus far brings us to the purpose
of this introductory chapter: to provide several measures of performance related
to practical communication system design and to begin exploring the analytical

3



4 INTRODUCTION

methods by which they may be evaluated. While the deeper meaning of these
measures will be truly understood only after their more formal definitions are
presented in the chapters that follow, the introduction of these terms here serves to
illustrate the various possibilities that exist, depending on both need and relative
ease of evaluation.

1.1 SYSTEM PERFORMANCE MEASURES

1.1.1 Average Signal-to-Noise Ratio

Probably the most common and best understood performance measure charac-
teristic of a digital communication system is signal-to-noise ratio (SNR). Most
often this is measured at the output of the receiver and is thus related directly to
the data detection process itself. Of the several possible performance measures
that exist, it is typically the easiest to evaluate and most often serves as an excel-
lent indicator of the overall fidelity of the system. Although traditionally, the
term noise in signal-to-noise ratio refers to the ever-present thermal noise at the
input to the receiver, in the context of a communication system subject to fading
impairment, the more appropriate performance measure is average SNR, where
the word average refers to statistical averaging over the probability distribution
of the fading. In simple mathematical terms, if y denotes the instantaneous SNR
[a random variable (RV)] at the receiver output, which includes the effect of
fading, then

Vé/O yp, () dy (D)

is the average SNR, where p, (y) denotes the probability density function (PDF)
of y. To begin to get a feel for what we will shortly describe as a unified
approach to performance evaluation, we first rewrite (1.1) in terms of the moment
generating function (MGF) associated with y, namely,

M, (s) = /0 py(Ve’ dy 1.2)

Taking the first derivative of (1.2) with respect to s and evaluating the result at
s = 0, we see immediately from (1.1) that

dM.(s)

o (1.3)

y =

s=0

That is, the ability to evaluate the MGF of the instantaneous SNR (perhaps
in closed form) allows immediate evaluation of the average SNR via a simple
mathematical operation: differentiation.

To gain further insight into the power of the foregoing statement, we note
that in many systems, particularly those dealing with a form of diversity
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(multichannel) reception known as maximal-ratio combining (MRC) (discussed
in great detail in Chapter 9), the output SNR, y, is expressed as a sum
(combination) of the individual branch (channel) SNRs (i.e., y = 21L=1 Vi,
where L denotes the number of channels combined). In addition, it is often
reasonable in practice to assume that the channels are independent of each
other (i.e., the RVs )/1|1L:1 are themselves independent). In such instances, the
MGF M, (s) can be expressed as the product of the MGFs associated with
each channel [ie., M,(s) = H/L:1M » (8)], which for a large variety of fading
channel statistical models can be computed in closed form." By contrast, even
with the assumption of channel independence, computation of the probability
density function (PDF) p,(y), which requires convolution of the various PDFs
Dy, ()/1)|,L=1 that characterize the L channels, can still be a monumental task. Even
in the case where these individual channel PDFs are of the same functional
form but are characterized by different average SNR’s, y,, the evaluation of
Dy (y) can still be quite tedious. Such is the power of the MGF-based approach;
namely, it circumvents the need for finding the first-order PDF of the output SNR
provided that one is interested in a performance measure that can be expressed
in terms of the MGF. Of course, for the case of average SNR, the solution
is extremely simple, namely, Y = Zle ¥,, regardless of whether the channels
are independent or not, and in fact, one never needs to find the MGF at all.
However, for other performance measures and also the average SNR of other
combining statistics [e.g., the sum of an ordered set of random variables typical
of generalized selection combining (GSC) (discussed in Chapter 9)], matters are
not quite this simple and the points made above for justifying an MGF-based
approach are, as we shall see, especially significant.

1.1.2 Outage Probability

Another standard performance criterion characteristic of diversity systems oper-
ating over fading channels is the outage probability denoted by P, and defined as
the probability that the instantaneous error probability exceeds a specified value
or equivalently, the probability that the output SNR, y, falls below a certain
specified threshold, yy,. Mathematically speaking,

Yih
Py = / pPy(y)dy (1.4)
0

which is the cumulative distribution function (CDF) of y, namely, P,(y),
evaluated at y = yy. Since the PDF and the CDF are related by p,(y) =

! Note that the existence of the product form for the MGF M y(s) does not necessarily imply that the
channels are identically distributed [i.e., each MGF M, (s) is allowed to maintain its own identity
independent of the others]. Furthermore, even if the channels are not assumed to be independent,
the relation in (1.3) is nevertheless valid, and in many instances the MGF of the (combined) output
can still be obtained in closed form.
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dP,(y)/dy, and since P,(0) = 0, the Laplace transforms of these two functions
are related by?
ﬁy(s)

P,(s) = -

(1.5)

Furthermore, since the MGF is just the Laplace transform of the PDF with
argument reversed in sign [i.e., p,(s) = M,(—s)], the outage probability can
be found from the inverse Laplace transform of the ratio M, (—s)/s evaluated at

Y = Vu, that is,
0+ joo _
Pou = L / M(es”‘h ds (1.6)
2 J Jo—joo s

where o is chosen in the region of convergence of the integral in the complex
s plane. Methods for evaluating inverse Laplace transforms have received
widespread attention in the literature. (A good summary of these can be found
in Ref. 1.) One such numerical technique that is particularly useful for CDFs
of positive RVs (such as instantaneous SNR) is discussed in Appendix 9B and
applied in Chapter 9. For our purpose here, it is sufficient to recognize once
again that the evaluation of outage probability can be performed based entirely
on knowledge of the MGF of the output SNR without ever having to compute
its PDF.

1.1.3 Average Bit Error Probability

The third performance criterion and undoubtedly the most difficult of the three
to compute is average bit error probability (BEP).> On the other hand, it is the
one that is most revealing about the nature of the system behavior and the one
most often illustrated in documents containing system performance evaluations;
thus, it is of primary interest to have a method for its evaluation that reduces the
degree of difficulty as much as possible.

The primary reason for the difficulty in evaluating average BEP lies in the
fact that the conditional (on the fading) BEP is, in general, a nonlinear function
of the instantaneous SNR, the nature of the nonlinearity being a function of
the modulation/detection scheme employed by the system. For example, in the
multichannel case, the average of the conditional BEP over the fading statistics
is not a simple average of the per channel performance measure as was true
for average SNR. Nevertheless, we shall see momentarily that an MGF-based
approach is still quite useful in simplifying the analysis and in a large variety of
cases allows unification under a common framework.

2 The symbol “A” above a function denotes its Laplace transform.

3 The discussion that follows applies, in principle, equally well to average symbol error probability
(SEP). The specific differences between the two are explored in detail in the chapters dealing with
system performance. Furthermore, the terms bit error rate (BER) and symbol error rate (SER) are
often used in the literature as alternatives to BEP and SEP. Rather than choose a preference, in this
book we use these terms interchangeably.
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Suppose first that the conditional BEP is of the form
Py(Ely) = Ciexp(—aiy) (1.7)

such as would be the case for differentially coherent detection of phase-shift-
keying (PSK) or noncoherent detection of orthogonal frequency-shift-keying
(FSK) (see Chapter 8). Then the average BEP can be written as

Py(E) 2 /O PyEly)p,(n) dy

_ /0 C1exp(—ary)p, () dy = C1iM(~ay) (1.8)

where again M, (s) is the MGF of the instantaneous fading SNR and depends
only on the fading channel model assumed.

Suppose next that the nonlinear functional relationship between P, (E|y) and y
is such that it can be expressed as an integral whose integrand has an exponential
dependence on y in the form of (1.7), that is,*

&
Pb(Ell/):/‘5 Cah(§) expl—axg(§)y1dE (1.9)

where for our purpose here /(£) and g(&) are arbitrary functions of the integration
variable, and typically both & and &, are finite (although this is not an
absolute requirement for what follows).> Although not at all obvious at this
point, suffice it to say that a relationship of the form in (1.9) can result from
employing alternative forms of such classic nonlinear functions as the Gaussian
QO-function and Marcum Q-function (see Chapter 4), which are characteristic of
the relationship between P, (E|y) and y corresponding to, for example, coherent
detection of PSK and differentially coherent detection of quadriphase-shift-keying
(QPSK), respectively. Still another possibility is that the nonlinear functional
relationship between P,(E|y) and y is inherently in the form of (1.9); that is,
no alternative representation need be employed. An example of such occurs
for the conditional symbol error probability (SEP) associated with coherent
and differentially coherent detection of M-ary PSK (M-PSK) (see Chapter 8).
Regardless of the particular case at hand, once again averaging (1.9) over the
fading gives (after interchanging the order of integration)

00 oo &
Py(E) = /0 PyEl)p, () dy = /0 /S Cah(&) expl—azg€)y1dEp, (v) dy

1

41In the more general case, the conditional BEP might be expressed as a sum of integrals of the type
in (1.9).

5In principle, (1.9) includes (1.7) as a special case if h(£) is allowed to assume the form of a Dirac
delta function located within the interval & < & < &.
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& o0
o /S h) /0 expl—ag(®)y1p, (v) dy dE

&
= hEM ,[—axg(§)] d§ (1.10)

&

As we shall see later in the book, integrals of the form in (1.10) can, for many
special cases, be obtained in closed form. At the very worst, with rare exceptions,
the resulting expression will be a single integral with finite limits and an integrand
composed of elementary functions.® Since (1.8) and (1.10) cover a wide variety
of different modulation/detection types and fading channel models, we refer to
this approach for evaluating average error probability as the unified MGF-based
approach and the associated forms of the conditional error probability as the
desired forms. The first notion of such a unified approach was discussed in Ref. 2
and laid the groundwork for much of the material that follows in this book.

It goes without saying that not every fading channel communication problem
fits the foregoing description; thus, alternative, but still simple and accurate tech-
niques are desirable for evaluating system error probability in such circumstances.
One class of problems for which a different form of MGF-based approach is
possible relates to communication with symmetric binary modulations wherein
the decision mechanism constitutes a comparison of a decision variable with a
zero threshold. Aside from the obvious uncoded applications, the class above
also includes the evaluation of pairwise error probability in error-correction-
coded systems, as discussed in Chapter 12. In mathematical terms, letting D|y
denote the decision variable,’ the corresponding conditional BEP is of the form
(assuming arbitrarily that a positive data bit was transmitted)

0

Py(Ely) =Pr{D|y < 0} = / Poiy(D)dD = Pp),(0) (1.11)

where pp), (D) and Pp, (D) are, respectively, the PDF and CDF of this variable.
Aside from the fact that the decision variable D|y can, in general, take on
both positive and negative values whereas the instantaneous fading SNR, y,
is restricted to positive values, there is a strong resemblance between the binary
probability of error in (1.11) and the outage probability in (1.4). Thus, by analogy
with (1.6), the conditional BEP of (1.11) can be expressed as

1 o+ joo M _
Py(Ely) = 2—/ Mpiy(=9) ;¢ (1.12)
7] Jo—joo s

6 As we shall see in Chapter 4, the h(§) and g(£) that result from the alternative representations of
the Gaussian and Marcum Q-functions are composed of simple trigonometric functions.

7 The notation D|y is not meant to imply that the decision variable explicitly depends on the fading
SNR. Rather, it is merely intended to indicate the dependence of this variable on the fading statistics
of the channel. More about this dependence shortly.
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where M p), (—s) now denotes the MGF of the decision variable D|y [i.e., the
bilateral Laplace transform of pp), (D) with argument reversed].

To see how Mp,(—s) might explicitly depend on y, we now consider the
subclass of problems where the conditional decision variable D|y corresponds to a
quadratic form of independent complex Gaussian RVs (e.g., a sum of the squared
magnitudes of, say, L independent complex Gaussian RVs, or equivalently, a
chi-square RV with 2L degrees of freedom). Such a form occurs for multiple
(L)-channel reception of binary modulations with differentially coherent or
noncoherent detection (see Chapter 9). In this instance, the MGF M p;,, (s) happens
to be exponential in y and has the generic form

Mpy,(s) = f1(s) explyf2(s)] (1.13)

If, as before, we let y = Zlel y;, then substituting (1.13) into (1.12) and
averaging over the fading results in the average BEP:®

Py(E) = 5—

1 fotioe pp(—
/ o5 4 (1.14)
27 j

o—joo s

where

Mo (s) 2 /0 Moy, (8)p, () dy
= f1(s) /0 explyf2)]p, (N dy = F&M,(f2(5)  (L15)

is the unconditional MGF of the decision variable, which also has the product
form

L
Mp(s) = fi(s) [[ My, (f20)) (1.16)

=1

Finally, by virtue of the fact that the MGF of the decision variable can be
expressed in terms of the MGF of the fading variable (SNR) as in (1.15) [or
(1.16)], then analogous to (1.10), we are once again able to evaluate the average
BEP based solely on knowledge of the latter MGF.

It is not immediately obvious how to extend the inverse Laplace transform
technique discussed in Appendix 9B to CDFs of bilateral RVs; thus other methods
for performing this inversion are required. A number of these, including contour
integration using residues, saddle point integration, and numerical integration
by Gauss—Chebyshev quadrature rules, are discussed in Refs. 3, through 6 and
covered later in the book.

8 The approach for computing average BEP as described by (1.13) was also described by Biglieri
et al. [3] as a unified approach to computing error probabilities over fading channels.
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Despite the fact that the methods dictated by (1.14) and (1.8) or (1.10) cover a
wide variety of problems dealing with the performance of digital communication
systems over fading channels, there are still some situations that don’t lend
themselves to either of these two unifying methods. An example of this is
evaluation of the bit error probability performance of an M-ary noncoherent
orthogonal system operating over an L-path diversity channel (see Chapter 9).
However, even in this case there exists an MGF-based approach that greatly
simplifies the problem and allows for a more general result [7] than that reported
by Weng and Leung [8]. We now outline the method, briefly leaving the more
detailed treatment to Chapter 9.

Consider an M-ary communication system where rather than comparing a
single decision variable with a threshold, one decision variable U, |y is compared
with the remaining M — 1 decision variables U,,, m = 2,3, ..., M, all of which
do not depend on the fading statistics.® Specifically, a correct symbol decision is
made if U;|y is greater than U,,, m = 2,3, ..., M. Assuming that the M decision
variables are independent, then in mathematical terms, the probability of correct
decision is given by

Py(Clysu)) =Pr{Us < uy, Us < uy, ..., Uy < wg|Uply = uy}
uy M—-1
= [Pr{U; < m|Usly =]~ " = U PUz(Mz)duz]
0

=[1—(1—Py,N"! (1.17)

Using the binomial expansion in (1.17), the conditional probability of error
Py(Ely;u;) =1 — Py(Cly;u;p) can be written as

N rm—a : A
Py(Ely;uy) = Z ( ; ) (=D = Py, )] =g (ur) (1.18)

i=1

Averaging over u; and using the Fourier transform relationship between the PDF
pu,y (1) and the MGF My, |, (jw), we obtain

PAE) = [ ) puyy )i
:/ —/ My, (jo)e " g(ur) dow du, (1.19)
0 27 J

Again noting that for a noncentral chi-square RV (as is the case for U,|y) the
conditional MGF My, ,,(jw) is of the form in (1.13), then averaging (1.19) over y

9 Again the conditional notation on y for U is not meant to imply that this decision variable is
explicitly a function of the fading SNR but rather, to indicate its dependence on the fading statistics.
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transforms My, (jw) into My, (jw) of the form in (1.15), which when substituted
in (1.19) and reversing the order of integration produces

1 o0 o0 i
P.Y(E)=E/ f1(jo)My, (f2(jw)) [/0 e /Mg(u)duy | do  (1.20)

Finally, because the CDF Py, (u;) in (1.18) is that of a central chi-square RV
with 2L degrees of freedom, the resulting form of g(u;) is such that the integral
on u; in (1.20) can be obtained in closed form. Thus, as promised, what remains
again is an expression for average SEP (which for M-ary orthogonal signaling
can be related to average BEP by a simple scale factor) whose dependence on
the fading statistics is solely through the MGF of the fading SNR.

All of the techniques considered thus far for evaluating average error
probability performance rely on the ability to evaluate the MGF of the
instantaneous fading SNR y. In dealing with a form of diversity reception referred
to as equal-gain combining (EGC) (discussed in great detail in Chapter 9),
the instantaneous fading SNR at the output of the combiner takes the form
y=[INLY L J7 ]2. In this case it is more convenient to deal with the MGF
of the square root of the instantaneous fading SNR

L e I
x_\/?_\/zlz:;\/% \/le:;l

since if the channels are again assumed independent, then again this MGF takes
on a product form, namely, M, (s) = H1L=1 M, (s/ VL). Since the average BER
can alternatively be computed from

1mm=£ Py(ELx) py(x) dx (121)

then if, analogous to (1.9), P,(E|x) assumes the form

&
Py(Elx) = Caoh(€) exp [ — arg(§)x°|dE (1.22)

&

a variation of the procedure in (1.10) is needed to produce an expression for
P, (E) in terms of the MGF of x. First, applying Parseval’s theorem [9, p. 27] to
(1.21) and letting G(jw) = F{Pp(E|x)} denote the Fourier transform of P,(E|x),
then independent of the form of P,(E|x), we obtain

1 o0
m®=g/cmwwwm

e¢)

= % / ~ Re{G( joM,(jo)} dw (1.23)
0
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where we have recognized that the imaginary part of the integral must be equal
to zero since P,(E) is real, and that the even part of the integrand is an even
function of w. Making the change of variables 6 = tan~' w, (1.23) can be written
in the form of an integral with finite limits:

1 [ 1
Ph(E)Z;/O cos2 6

Re{G(jtanO)M , (j tan0)} d6

2 (721
= —/ - Ref{tan 6 G(jtan O)M . (j tan 0)} d6 (1.24)
T Jo sin260

Now, specifically for the form of P,(E|x) in (1.22), G(jw) becomes

& 00
G(jw) = /E Czh(é)/o exp [ — Clzg(é)x2 + ja)x] dx d& (1.25)

The inner integral on x can be evaluated in closed form as

o0 ) 1 (jo)?
/0 exp [ — wg(§)x® + jox|dx = {\/nazg@)exp[ ]

2a,8(8) 4axg(8)

. 3 (jw) H
Fill, = —— 1.26
e ‘[ 2’ darg(®) (1.20)

where | F(a, b; c) is the confluent hypergeometric function of the first kind [10,
Eq. (9.210)]. Therefore, in general, evaluation of the average BER of (1.24)
requires a double integration. However, for a number of specific applications
[i.e., particular forms of the functions A(£) and g(&)], the outer integral on & can
also be evaluated in closed form; thus, in these instances, P,(E) can be obtained
as a single integral with finite limits and an integrand involving the MGF of
the fading. Methods of error probability evaluation based on the type of MGF
approach described above have been considered in the literature [11-13] and are
presented in detail in Chapter 9.

1.2 CONCLUSIONS

Without regard to the specific application or performance measure, we have
briefly demonstrated in this chapter that for a wide variety of digital communi-
cation systems covering virtually all known modulation/detection techniques and
practical fading channel models, there exists an MGF-based approach that simpli-
fies the evaluation of this performance. In the biggest number of these instances,
the MGF-based approach is encompassed in a unified framework which allows
the development of a set of generic tools to replace the case-by-case analyses
typical of previous contributions in the literature. It is the authors’ hope that
by the time the reader reaches the end of this book and has experienced the
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haustive set of practical circumstances where these tools are useful, he or she

will fully appreciate the power behind the MGF-based approach and as such will

generate for themselves an insight into finding new and exciting applications.
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2

FADING CHANNEL
CHARACTERIZATION
AND MODELING

Radio-wave propagation through wireless channels is a complicated phenomenon
characterized by various effects, such as multipath and shadowing. A precise
mathematical description of this phenomenon is either unknown or too complex
for tractable communications systems analyses. However, considerable efforts
have been devoted to the statistical modeling and characterization of these
different effects. The result is a range of relatively simple and accurate
statistical models for fading channels which depend on the particular propagation
environment and the underlying communication scenario.

The primary purpose of this chapter is to review briefly the principal
characteristics and models for fading channels. More detailed treatment of this
subject can be found in standard textbooks, such as Refs. 1,3. This chapter
also introduces terminology and notation that are used throughout the book.
The chapter is organized as follows. A brief qualitative description of the main
characteristics of fading channels is presented in the next section. Models for
frequency-flat fading channels, corresponding to narrowband transmission, are
described in Section 2.2. Models for frequency-selective fading channels that
characterize fading in wideband channels are described in Section 2.3.

2.1 MAIN CHARACTERISTICS OF FADING CHANNELS

2.1.1 Envelope and Phase Fluctuations

When a received signal experiences fading during transmission, both its envelope
and phase fluctuate over time. For coherent modulations, the fading effects on the
phase can severely degrade performance unless measures are taken to compensate
for them at the receiver. Most often, analyses of systems employing such
modulations assume that the phase effects due to fading are perfectly corrected

15
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at the receiver, resulting in what is referred to as ideal coherent demodulation.
For noncoherent modulations, phase information is not needed at the receiver
and therefore the phase variation due to fading does not affect the performance.
Hence performance analyses for both ideal coherent and noncoherent modulations
over fading channels requires only knowledge of the fading envelope statistics
and is the case most often considered in this book. Furthermore, for slow fading
(discussed next), wherein the fading is at least constant over the duration of a
symbol time, the fading envelope random process can be represented by a random
variable (RV) over the symbol time.

2.1.2 Slow and Fast Fading

The distinction between slow and fast fading is important for the mathematical
modeling of fading channels and for the performance evaluation of communica-
tion systems operating over these channels. This notion is related to the coherence
time T, of the channel, which measures the period of time over which the fading
process is correlated (or equivalently, the period of time after which the correla-
tion function of two samples of the channel response taken at the same frequency
but different time instants drops below a certain predetermined threshold). The
coherence time is also related to the channel Doppler spread f; by

.
~ fa

The fading is said to be slow if the symbol time duration 7 is smaller than the
channel’s coherence time T,; otherwise, it is considered to be fast. In slow fading
a particular fade level will affect many successive symbols, which leads to burst
errors, whereas in fast fading the fading decorrelates from symbol to symbol. In
the latter case and when the communication receiver decisions are made based
on an observation of the received signal over two or more symbol times (such
as differentially coherent or coded communications), it becomes necessary to
consider the variation of the fading channel from one symbol interval to the
next. This is done through a range of correlation models that depend essentially
on the particular propagation environment and the underlying communication
scenario. These various autocorrelation models and their corresponding power
spectral density are tabulated in Table 2.1, in which for convenience the variance
of the fast-fading process is normalized to unity.

T. @2.1)

2.1.3 Frequency-Flat and Frequency-Selective Fading

Frequency selectivity is also an important characteristic of fading channels. If
all the spectral components of the transmitted signal are affected in a similar
manner, the fading is said to be frequency nonselective or, equivalently, frequency
flat. This is the case for narrowband systems in which the transmitted signal
bandwidth is much smaller than the channel’s coherence bandwidth f.. This
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TABLE 2.1 Correlation and Spectral Properties of Various Types of Fading Processes of
Practical Interest

Type of Fading Spectrum Fading Autocorrelation, p Normalized PSD
Rectangular Sin(@rfaTs) @i, Il <fy
2nfyTs
£\2
Gaussian exp[—(nfyTs)?] exp [— (f—) ] (Jfy)™T
d
Land mobile Jo@nfyTs) P2 (f2 — 1712, |f| < fy
-1
£\ 2
First-order Butterworth exp(—2r|fgTs|) {m‘d <1 + f—> }
d
lfyTe| F\4]
Second-order Butterworth ex —A> 1+16 (—>
P ( V2 fa
wfaTs . 7T|des|>
x | cos + sin
< V2 V2

Source: Data from Mason [4].
2PSD is the power spectral density, f4 the Doppler spread, and Ts the symbol time.

bandwidth measures the frequency range over which the fading process is
correlated and is defined as the frequency bandwidth over which the correlation
function of two samples of the channel response taken at the same time but
at different frequencies falls below a suitable value. In addition, the coherence
bandwidth is related to the maximum delay spread tpy.x by

1
fo 2.2)

Tmax

On the other hand, if the spectral components of the transmitted signal are affected
by different amplitude gains and phase shifts, the fading is said to be frequency
selective. This applies to wideband systems in which the transmitted bandwidth
is bigger than the channel’s coherence bandwidth.

2.2 MODELING OF FLAT FADING CHANNELS

When fading affects narrowband systems, the received carrier amplitude is
modulated by the fading amplitude «, where « is a RV with mean-square value
Q = o? and probability density function (PDF) p,(«), which is dependent on the
nature of the radio propagation environment. After passing through the fading
channel, the signal is perturbed at the receiver by additive white Gaussian noise
(AWGN), which is typically assumed to be statistically independent of the fading
amplitude o« and which is characterized by a one-sided power spectral density
No (W/Hz). Equivalently, the received instantaneous signal power is modulated
by «. Thus we define the instantaneous signal-to-noise power ratio (SNR) per
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symbol by y = «?E;/N, and the average SNR per symbol by y = QE,/N,
where E; is the energy per symbol.' In addition, the PDF of y is obtained by
introducing a change of variables in the expression for the fading PDF p,(«) of

o, yielding
() = Pa(V2Y/V)
SRV

The moment generating function (MGF) M, (s) associated with the fading
PDF p,(y) and defined by

2.3)

M (s) = /0 p,(Pe” dy (2.4)

is another important statistical characteristic of fading channels, particularly in
the context of this book. In addition, the amount of fading (AF), or “fading
figure,” associated with the fading PDF is defined as

2 2 2 2 2
AL V@) El@— Q7] _ EGA) — (ElyD) 05)

(E[a?])? Q? (E[y])?
with E[-] denoting statistical average and var(-) denoting variance. This figure
was introduced by Charash [5, p. 29; 6] as a unified measure of the severity of
the fading and is typically independent of the average fading power €2.

We now present the various radio propagation effects involved in fading
channels, their corresponding PDF’s, MGF’s, AF’s, and their relation to physical
channels. A summary of these properties is tabulated in Table 2.2.

2.2.1 Multipath Fading

Multipath fading is due to the constructive and destructive combination of
randomly delayed, reflected, scattered, and diffracted signal components. This
type of fading is relatively fast and is therefore responsible for the short-term
signal variations. Depending on the nature of the radio propagation environment,
there are different models describing the statistical behavior of the multipath
fading envelope.

2.2.1.1 Rayleigh Model. The Rayleigh distribution is frequently used to
model multipath fading with no direct line-of-sight (LOS) path. In this case
the channel fading amplitude « is distributed according to

(o) = Q ——Qz z (2.6)
o X , 0 2.
Dol exp o 6

"'Our performance evaluation of digital communications over fading channels will generally be a
function of the average SNR per symbol .



mbN \_>th>
mpl——————|dxe —— x
P 2(1 — mOBojgl) 2
L=u
u E M (unJum O _
w—(W/Sqy gz p)OF = 1) fww o A§|v dxe el 0> Qpuew [ewJou-6o|/ewwed sysodwo)
N
=u
u E7 292 Aoxg )
X, = - ©6 ~ _ |
(Sgy/(r1+uxog MO LIAX® IM | Z( — 4 06oj}) i 1497 0 Buimopeys [ewiou-Ho
w 4 (W) 1,4 -z
E\A% v A\HE vaxm ol w> ¢ w-lwebexeN
M 0,
— /' X
A(u+ 1) ¢l
As—(Gu+ 1) Ads—(zu+1) 4 4 _
dxa —— | dxe ——— u 901Y) U-lwebeye,
dszu Gu+1) AU+ 1) RCETERY >0 (e014) u-lwebeseN
Aby 0 x
2b+ 1) Azby 4Abg _
ce” P 4 Asg — —| dxa b AoH) b-lwebee
2b(4s2) +4sg—1 A,b+ 1) X b+ L>b>0 (1hoH) b-lwebexeN
e/ L=
A 4 d 4 Bis|A
—ds—1) i Aadn ublelkey
)*'w ‘4o (H*d *4ad Jejeweled Buipe Buiped jo adA1

sjauuey)n

Buipe4 uowwod swog 1oy A |oquiAs Jad HUNS aUl JO (D) uonouny Bunesausn JUSWOW pue (4ad) uonouny Ausuaqg Aniigeqold gz 318Vl

19



20 FADING CHANNEL CHARACTERIZATION AND MODELING

and hence, following (2.3), the instantaneous SNR per symbol of the channel, y,
is distributed according to an exponential distribution given by

1 Y
py(y) = —exp (—:) . v=0 (2.7)
4 i
The MGF corresponding to this fading model is given by
M, (s) = (1 —5p)"! (2.8)

In addition, the moments associated with this fading model can be shown to be
given by
Ey"1=T01+ k7 (2.9)

where I'(-) is the gamma function. The Rayleigh fading model therefore has
an AF equal to 1 and typically agrees very well with experimental data for
mobile systems, where no LOS path exists between the transmitter and receiver
antennas [3]. It also applies to the propagation of reflected and refracted paths
through the troposphere [7] and ionosphere [8,9] and to ship-to-ship [10] radio
links.

2.2.1.2 Nakagami-q (Hoyt) Model. The Nakagami-g distribution, also

referred to as the Hoyt distribution [11], is given in Nakagami [12, Eq. (52)]
by

Pa(a) =

(14 ¢ [(1+q2)za2] ((1—61“)012
————exp |— Iy

e o 7o ) a>0 (2.10)

where I (-) is the zeroth-order modified Bessel function of the first kind, and ¢ is
the Nakagami-q fading parameter which ranges from 0 to 1. Using (2.3), it can
be shown that the SNR per symbol of the channel, y, is distributed according to

1+ 4¢* [ (1+q2)2y} ((1—q4)y>
py(y) = —exp |———————|lo| ——— |, y >0 (2.11)
4 247 4q%y 4q%y

It can be shown that the MGF corresponding to (2.11) is given by

5 5 —1)2
M, (s) = [1 2y 4 M}

(+ ) 12

Also, the moments associated with this model are given by [12, Eq. (52)]

EGN =T+ k), [ =1 Ky L-a\*\ (2.13)
y - 2001 2 ’ 27 ’ 1+q2 y .
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where ,F(-, -;+, ) is the Gauss hypergeometric function, and the AF of the
Nakagami-qg distribution is therefore given by
2(1 4
41:7( +q)’ <g=<l1 (2.14)
(1 +4%)?

and hence ranges between 1 (g = 1) and 2 (¢ = 0). The Nakagami-g distribution
spans the range from one-sided Gaussian fading (¢ = 0) to Rayleigh fading
(g = 1). It is typically observed on satellite links subject to strong ionospheric
scintillation [13,14]. Note that one-sided Gaussian fading corresponds to the
worst-case fading or, equivalently, the largest AF for all multipath distributions
considered in our analyses.

2.2.1.3 Nakagami-n (Rice) Model. The Nakagami-n distribution is also
known as the Rice distribution [15]. It is often used to model propagation
paths consisting of one strong direct LOS component and many random weaker
components. Here the channel fading amplitude follows the distribution [12,
Eq. (50)]

a>0

2(1 + n®)e " a (1 + n?)a? 1+ n?
pald) =" “exp|-—— | Iy | 2ne

Q Q Q '

(2.15)
where n is the Nakagami-n fading parameter which ranges from O to oo and
which is related to the Rician K factor by K = n?. Applying (2.3) shows that
the SNR per symbol of the channel, y, is distributed according to a noncentral
chi-square distribution given by

(1 +ne™ (1+n?) (1 +n?)
py(y) = v eXP{— v Y Iy | 2n Ty s y=0

(2.16)
It can also be shown that the MGF associated with this fading model is given by
1 2 2.
M, (s) = A+m) o Y 2.17)
(1+n?) —sy (1+n?) —sy
and that the moments are given by [12, Eq. (50)]
ra+k -
EGM) = ——1Fi(—k 1;—n** 2.18
") (14 n2)! 1( n°)y (2.18)

where | F (-, -;-) is the Kummer confluent hypergeometric function. The AF of
the Nakagami-n distribution is given by

1 4 2n?

AF, = ——,
(14 n2)?

n>0 (2.19)
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and hence ranges between O (n = oo0) and 1 (n = 0). The Nakagami-n distribution
spans the range from Rayleigh fading (n = 0) to no fading (constant amplitude)
(n = 00). This type of fading is typically observed in the first resolvable
LOS paths of microcellular urban and suburban land-mobile [16], picocellular
indoor [17], and factory [18] environments. It also applies to the dominant LOS
path of satellite [19,20] and ship-to-ship [10] radio links.

2.2.1.4 Nakagami-m Model. The Nakagami-m PDF is in essence a central
chi-square distribution given by [12, Eq. (11)]

2™ 2m—1 2
Pala) = S exp (—ma) , >0 (2.20)
m Q

where m is the Nakagami-m fading parameter which ranges from % to oo.

Figure 2.1 shows the Nakagami-m PDF for Q2 =1 and various values of the
m parameter. Applying (2.3) shows that the SNR per symbol, y, is distributed
according to a gamma distribution given by

0 iy ( my) -0 @221)
pPy\yY) = — €X -, Y = .
= P\ Ty

B R S S . S ]
: : —m=ip |

Probability Density Function p,(c)

Channel Fade Amplitude o

Figure 2.1. Nakagami PDF for Q = 1 and various values of the fading parameter m.
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It can also be shown that the MGF is given in this case by

M, (s) = <1 - %>_m (2.22)

and that the moments are given by [12, Eq. (65)]

Fm+k)_
E[yf = ——29* 2.23
[v'] T ok (2.23)
which yields an AF of
1 1
AF, = —, mz = (2.24)
m 2

Hence, the Nakagami-m distribution spans via the m parameter the widest range of
AF (from 0 to 2) among all the multipath distributions considered in this book. For
instance, it includes the one-sided Gaussian distribution (m = %) and the Rayleigh
distribution (m = 1) as special cases. In the limit as m — +o00, the Nakagami-m
fading channel converges to a nonfading AWGN channel. Furthermore, when
m < 1, equating (2.14) and (2.24), we obtain a one-to-one mapping between the
m parameter and the g parameter, allowing the Nakagami-m distribution to closely
approximate the Nakagami-¢g (Hoyt) distribution, and this mapping is given by

1 2\2
N e A (2.25)
201+ 244

Similarly, when m > 1, equating (2.19) and (2.24) we obtain another one-to-one
mapping between the m parameter and the n parameter (or, equivalently, the
Rician K factor), allowing the Nakagami-m distribution to closely approximate
the Nakagami-n (Rice) distribution, and this mapping is given by

1 252
m:( +n°) n>0
1+2n2"° -
2 (2.26)
N R
m—~m2—m -

Finally, the Nakagami-m distribution often gives the best fit to land-
mobile [21-23] and indoor-mobile [24] multipath propagation, as well as
scintillating ionospheric radio links [9,25-28].

2.2.2 Log-Normal Shadowing

In terrestrial and satellite land-mobile systems, the link quality is also affected
by slow variation of the mean signal level due to the shadowing from
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terrain, buildings, and trees. Communication system performance will depend
on shadowing only if the radio receiver is able to average out the fast multipath
fading or if an efficient microdiversity system is used to eliminate the effects of
multipath. Based on empirical measurements, there is a general consensus that
shadowing can be modeled by a log-normal distribution for various outdoor and
indoor environments [21,29-33], in which case the path SNR per symbol y has
a PDF given by the standard log-normal expression

§ X _(1010g1oV—M)2

= — 2.27
PV(V) \/EO"}/ € p 20,2 ( )

where £ = 10/1n 10 = 4.3429, and u (dB) and o (dB) are the mean and standard
deviation of 10log,, v, respectively.
The MGF associated with this slow-fading effect is given by

N,

M, (s) ~ f ZHXI exp(100Y2o /105 (2.28)

where x, are the zeros of the N,-order Hermite polynomial, and H,, are the
weight factors of the N,-order Hermite polynomial and are given by Table 25.10
of Ref. 50. In addition, the moments of (2.27) are given by

ko1 [(k\*,
EM“FE (g) o (2.29)

o2
AF, = exp (52) -1 (2.30)

E[y*] =exp

yielding an AF of

From (2.30) the AF associated with a log-normal PDF can be arbitrarily high.
However, as noted by Charash [5, p. 29], in practical situations the standard
deviation of shadow fading does not exceed 9 dB [3, p. 88]. Hence, the AF of
log-normal shadowing is bounded by 73. This number exceeds the maximal AF
exhibited by the various multipath PDFs studied in Section 2.2.1 by several order
of magnitudes.

2.2.3 Composite Multipath/Shadowing

A composite multipath/shadowed fading environment consists of multipath fading
superimposed on log-normal shadowing. In this environment the receiver does
not average out the envelope fading due to multipath but rather, reacts to the
instantaneous composite multipath/shadowed signal [3, Sec. 2.4.2]. This is often
the scenario in congested downtown areas with slow-moving pedestrians and
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vehicles [21,34,35]. This type of composite fading is also observed in land-
mobile satellite systems subject to vegetative and/or urban shadowing [36—40].
There are two approaches and various combinations suggested in the literature
for obtaining the composite distribution. Here, as an example, we present the
composite gamma/log-normal PDF introduced by Ho and Stiiber [35]. This PDF
arises in Nakagami-m shadowed environments and is obtained by averaging the
gamma distributed signal power (or, equivalently, the SNR per symbol) of (2.21)
over the conditional density of the log-normally distributed mean signal power
(or equivalently, the average SNR per symbol) of (2.27), giving the following
channel PDF:

() = /oo iy exp (- 2¥ d exp | — (101ogyo w — 1)° dw
by o w"l(m) P w 2mwow P 202
2.31)

For the special case where the multipath is Rayleigh distributed (m = 1), (2.31)
reduces to a composite exponential/log-normal PDF which was initially proposed
by Hansen and Meno [34].

The MGEF is given in this case by

N,
1 &
M, (s) ~ 7 ST H,, (1 — 1062t/ 10g )= (2.32)
n=1

and the moments associated with a gamma/log-normal PDF are given by

T(m + k) ko1 (k\?
E[yf]= ———- - ol 2 2.33
[v"] Fmmt §u+2<§) o (2.33)
and the resulting AF is given by
14+ m o’
AF,,, = exp| — | —1 (2.34)
m g2

Note that when shadowing is absent (o = 0), (2.34) reduces to (2.24), as expected.
Similarly, as the fading is reduced (m — o0), (2.34) reduces to (2.30), as
expected.

2.2.4 Combined (Time-Shared) Shadowed/Unshadowed Fading

From their land-mobile satellite channel characterization experiments, Lutz
et al. [39] and Barts and Stutzman [41] found that the overall fading process for
land-mobile satellite systems is a convex combination of unshadowed multipath
fading and a composite multipath/shadowed fading. Here, as an example, we
present in more detail the Lutz et al. model [39]. When no shadowing is present,
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the fading follows a Rice (Nakagami-#n) PDF. On the other hand, when shadowing
is present, it is assumed that no direct LOS path exists and the received signal
power (or, equivalently, SNR per bit) is assumed to be an exponential/log-
normal (Hansen—Meno) PDF [34]. The combination is characterized by the
shadowing time-share factor, which is denoted by A, 0 <A < 1; hence, the
resulting combined PDF is given by

1+ K)e X 1+K KA+K
py = - [—(t—)y] 1y |2,/ KL R
v v v
~ | v\ & (10log;ow — ')
+A/o ;exp< )«/_aw P {_ 2(0%)? ]dw

(2.35)

where " is the average SNR per symbol during the unshadowed fraction of time,
and p’ and o® are the average and standard deviation of 10log,,y during the
shadowed fraction of time, respectively. The overall average SNR per symbol,
¥, is then given by

7 — (1 _A)7u 1A 10;1:/10+(]n10)((75)2/200 (236)

Finally, the MGF can be shown to be given by

M, (s) = (1 — A) (d+K) exp[ Ksy' ]

14+ K — sy 1+ K)—spy*
N,
+A—ZHX,,(1 — 102 i) /10) 1 (2.37)

N

2.3 MODELING OF FREQUENCY-SELECTIVE FADING CHANNELS

When wideband signals propagate through a frequency-selective channel, their
spectrum is affected by the channel transfer function, resulting in a time
dispersion of the waveform. This type of fading can be modeled as a linear
filter characterized by the following complex-valued lowpass equivalent impulse
response:
L,
h(t) = o™ 8(t — 1)) (2.38)

=1

where 8(-) is the Dirac delta function, / the channel index, and {a;},Lil, {9;},21,
and {rl}lLi] the random channel amplitudes, phases, and delays, respectively.
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In (2.38) L, is the number of resolvable paths (the first path being the reference
path whose delay 7; = 0) and is related to the ratio of the maximum delay
spread to the symbol time. Under the slow-fading assumption, L, is assumed
to be constant over a certain period of time, and {oel}lLi 1 {612, and {tl}lLL |
are all constant over a symbol interval. If the various paths of a given impulse
response are generated by different scatterers, they tend to exhibit negligible
correlations [33,42] and it is reasonable in that case to assume that the {o; }ILL |
are statistically independent RV’s. Otherwise, the {ozl}lLL | have to be considered
as correlated RV’s and various fading correlation models of interest will be
presented in Section 9.6.

Extending the flat fading notations, the fading amplitude «; of the /th resolved
path is assumed to be a RV whose mean-square value oz,z is denoted by €; and
whose PDF p,, (a;) can be any one of the PDFs presented above. Also as in the
flat fading case, after passing through the fading channel, a wideband signal is
perturbed by AWGN with a one-sided power spectral density Ny (W/Hz). The
AWGN is assumed to be independent of the fading amplitudes {o;})-;. Hence
the instantaneous SNR per symbol of the /th channel is given by y; = ozleS /No,
and the average SNR per symbol of the /th channel is given by y;, = ;E/Ny.

The first arriving path in the impulse response typically exhibits a lower
amount of fading than subsequent paths, since it may contain the LOS
path [16,23,42] Furthermore, since the specular power component typically
decreases with respect to delay, the last arriving paths exhibit higher amounts
of fading [23,42]. The {QI}ILL , are related to the channel’s power delay profile
(PDP), which is also referred to as the multipath intensity profile (MIP) and
which is typically a decreasing function of the delay. The PDP model can
assume various forms, depending on whether the model is for indoor or outdoor
environments and for each environment, the general propagation conditions.
PDP’s for indoor partitioned office buildings, indoor factory buildings with heavy
machinery, high-density office buildings in urban areas, low-density residential
houses in suburban areas, open rural environment, hilly or mountainous regions,
and maritime environment are described in Ref. 43. For example, experimental
measurements indicate that the mobile radio channel is well characterized by an
exponentially decaying PDP for indoor office buildings [33] and congested urban
areas [29,44]:

Q= Qe o/, l=1,2,...,L, (2.39)

where €2; is the average fading power corresponding to the first (reference)
propagation path and 7y, is the channel maximum delay spread. In the literature
the delays are often assumed to be equally spaced (t;4+; — 7; is constant and equal
to the symbol time 7T) [1, Sec. 14-5-1; 45], and with this assumption, we get the
equally spaced exponential profile given by

Q= Qe 712, §>0 and 1=1,2,...,L, (2.40)
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where the parameter § is the power decay factor, which reflects the rate at which
the average fading power decays. Other idealized PDP profiles reported or used in
the literature include the constant (flat) [46], the flat exponential [47], the double
spike [46], the Gaussian [46], the power function (polynomial) [48], and other
more complicated composite profiles [49].

REFERENCES

\S]

10.

11.

12.

13.

14.

15.

16.

. J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-Hill, 1995.

. T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle
River, NJ: Prentice Hall, 1996.

. G. L. Stiiber, Principles of Mobile Communications. Norwell, MA: Kluwer Academic
Publishers, 1996.

. L. J. Mason, “Error probability evaluation of systems employing differential detection
in a Rician fading environment and Gaussian noise,” IEEE Trans. Commun.,
vol. COM-35, May 1987, pp. 39-46.

. U. Charash, “A study of multipath reception with unknown delays.” Ph.D. disserta-
tion, University of California, Berkeley, CA, January 1974.

. U. Charash, “Reception through Nakagami fading multipath channels with random
delays,” IEEE Trans. Commun., vol. COM-27, April 1979, pp. 657-670.

. H. B. James and P. I. Wells, “Some tropospheric scatter propagation measurements
near the radio-horizon,” Proc. IRE, October 1955, pp. 1336—1340.

. G. R. Sugar, “Some fading characteristics of regular VHF ionospheric propagation,”
Proc. IRE, October 1955, pp. 1432—-1436.

. S. Basu, E. M. MacKenzie, S. Basu, E. Costa, P. F. Fougere, H. C. Carlson, and

H. E. Whitney, “250 MHz/GHz scintillation parameters in the equatorial, polar, and

aural environments,” IEEE J. Selt. Areas Commun., vol. SAC-5, February 1987,

pp. 102-115.

T. L. Staley, R. C. North, W. H. Ku, and J. R. Zeidler, “Performance of coherent

MPSK on frequency selective slowly fading channels,” Proc. IEEE Veh. Technol.

Conf. (VIC’96), Atlanta, GA, April 1996, pp. 784-788.

R. S. Hoyt, “Probability functions for the modulus and angle of the normal complex

variate,” Bell Syst. Tech. J., vol. 26, April 1947, pp. 318-359.

M. Nakagami, “The m-distribution: a general formula of intensity distribution of rapid

fading,” in Statistical Methods in Radio Wave Propagation. Oxford: Pergamon Press,

1960, pp. 3-36.

B. Chytil, “The distribution of amplitude scintillation and the conversion of scintil-

lation indices,” J. Atmos. Terr. Phys., vol. 29, September 1967, pp. 1175-1177.

K. Bischoff and B. Chytil, “A note on scintillaton indices,” Planet. Space Sci., vol. 17,

1969, pp. 1059-1066.

S. O. Rice, “Statistical properties of a sine wave plus random noise,” Bell Syst. Tech.

J., vol. 27, January 1948, pp. 109-157.

K. A. Stewart, G. P. Labedz, and K. Sohrabi, “Wideband channel measurements

at 900 MHz,” Proc. IEEE Veh. Technol. Conf. (VIC’95), Chicago, July 1995,

pp- 236-240.



17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

REFERENCES 29

. R. J. C. Bultitude, S. A. Mahmoud, and W. A. Sullivan, “A comparison of indoor
radio propagation characteristics at 910 MHz and 1.75 GHz,” IEEE J. Selt. Areas
Commun., vol. SAC-7, January 1989, pp. 20-30.

T. S. Rappaport and C. D. McGillem, “UHF fading in factories,” IEEE J. Selt. Areas
Commun., vol. SAC-7, January 1989, pp. 40—48.

G. H. Munro, “Scintillation of radio signals from satellites,” J. Geophys. Res., vol. 68,
April 1963.

P. D. Shaft, “On the relationship between scintillation index and Rician fading,” IEEE
Trans. Commun., vol. COM-22, May 1974, pp. 731-732.

H. Suzuki, “A statistical model for urban multipath propagation,” IEEE Trans.
Commun., vol. COM-25, July 1977, pp. 673-680.

T. Aulin, “Characteristics of a digital mobile radio channel,” IEEE Trans. Veh.
Technol., vol. VT-30, May 1981, pp. 45-53.

W. R. Braun and U. Dersch, “A physical mobile radio channel model,” IEEE Trans.
Veh. Technol., vol. VT-40, May 1991, pp. 472—-482.

A. U. Sheikh, M. Handforth, and M. Abdi, “Indoor mobile radio channel at 946 MHz:
measurements and modeling,” Proc. IEEE Veh. Technol. Conf. (VTC’93), Secaucus,
NJ, May 1993, pp. 73-76.

E. J. Fremouw and H. F. Bates, “Worldwide behavior of average VHF—UHF scintil-
lation,” Radio Sci., vol. 6, October 1971, pp. 863—-869.

H. E. Whitney, J. Aarons, R. S. Allen, and D. R. Seeman, “Estimation of the cumula-
tive probability distribution function of ionospheric scintillations,” Radio Sci., vol. 7,
December 1972, pp. 1095-1104.

E. J. Fremouw, R. C. Livingston, and D. A. Miller, “On the statistics of scintillating
signals,” J. Atmos. Terr. Phys., vol. 42, August 1980, pp. 717-731.

P. K. Banerjee, R. S. Dabas, and B. M. Reddy, “C-band and L-band transionospheric
scintillation experiment: some results for applications to satellite radio systems,”
Radio Sci., vol. 27, June 1992, pp. 955-969.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, “A statistical
model of urban multipath propagation,” IEEE Trans. Veh. Technol., vol. VT-21,
February 1972, pp. 1-9.

H. Hashemi, “Simulation of the urban radio propagation channel,” IEEE Trans. Veh.
Technol., vol. VT-28, August 1979, pp. 213-225.

T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, “Statistical channel impulse
response models for factory and open plan building radio communication system
design,” IEEE Trans. Commun., vol. COM-39, May 1991, pp. 794-807.

P. Yegani and C. McGlilem, “A statistical model for the factory radio channel,” IEEE
Trans. Commun., vol. COM-39, October 1991, pp. 1445-1454.

H. Hashemi, “Impulse response modeling of indoor radio propagation channels,”
IEEE J. Selt. Areas Commun., vol. SAC-11, September 1993, pp. 967-978.

F. Hansen and F. I. Meno, “Mobile fading-Rayleigh and lognormal superimposed,”
IEEE Trans. Veh. Technol., vol. VT-26, November 1977, pp. 332—-335.

M. J. Ho and G. L. Stiiber, “Co-channel interference of microcellular systems on
shadowed Nakagami fading channels,” Proc. IEEE Veh. Technol. Conf. (VIC’93),
Secaucus, NJ, May 1993, pp. 568-571.



30 FADING CHANNEL CHARACTERIZATION AND MODELING

36. C. Loo, “A statistical model for a land-mobile satellite link,” IEEE Trans. Veh.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Technol., vol. VT-34, August 1985, pp. 122-127.

G. Corazza and F. Vatalaro, “A statistical model for land mobile satellite channels
and its application to nongeostationary orbit systems,” IEEE Trans. Veh. Technol.,
vol. VT-43, August 1994, pp. 738-742.

S.-H Hwang, K.-J. Kim, J.-Y. Ahn, and K.-C. Wang, “A channel model for nongeo-
stationary orbiting satellite system,” Proc. IEEE Veh. Technol. Conf. (VIC’97),
Phoenix, AZ, May 1997, pp. 41-45.

E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, “The land mobile
satellite communication channel: recording, statistics, and channel model,” IEEE
Trans. Veh. Technol., vol. VT-40, May 1991, pp. 375-386.

M. Rice and B. Humphreys, “Statistical models for the ACTS K-band land mobile
satellite channel,” Proc. IEEE Veh. Technol. Conf. (VTC’97), Phoenix, AZ, May 1997,
pp- 46—50.

R. M. Barts and W. L. Stutzman, “Modeling and simulation of mobile satellite
propagation,” IEEE Trans. Antennas Propagat., vol. AP-40, April 1992, pp. 375-382.
S. A. Abbas and A. U. Sheikh, “A geometric theory of Nakagami fading multipath
mobile radio channel with physical interpretations,” Proc. IEEE Veh. Technol. Conf.
(VTC’96), Atlanta, GA, April 1996, pp. 637-641.

D. Molkdar, “Review on radio propagation into and within buildings,” IEE Proc. H,
vol. 138, February 1991, pp. 61-73.

COST 207 TD(86)51-REV 3 (WG1), “Proposal on channel transfer functions to
be used in GSM test late 1986,” Tech. Rep., Office Official Publications European
Communities, September 1986.

T. Eng and L. B. Milstein, “Coherent DS-CDMA performance in Nakagami multi-
path fading,” IEEE Trans. Commun., vol. COM-43, February—March—April 1995,
pp. 1134—1143.

B. Glance and L. J. Greenstein, “Frequency-selective fading effects in digital mobile
radio with diversity combining,” IEEE Trans. Commun., vol. COM-31, September
1983, pp. 1085-1094.

P. F. M. Smulders and A. G. Wagemans, “Millimetre-wave biconical horn antennas
for near uniform coverage in indoor picocells,” Electron. Lett., vol. 28, March 1992,
pp- 679-681.

S. Ichitsubo, T. Furuno, and R. Kawasaki, “A statistical model for microcellular
multipath propagation environment,” in Proc. IEEE Veh. Technol. Conf. (VTC’97),
Phoenix, AZ, May 1997, pp. 61-66.

M. Wittmann, J. Marti, and T. Kiirner, “Impact of the power delay profile shape on
the bit error rate in mobile radio systems,” IEEE Trans. Veh. Technol., vol. VT-46,
May 1997, pp. 329-339.

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. New York: Dover Publications, 1970.



Digital Communication over Fading Channels: A Unified Approach to Performance Analysis
Marvin K. Simon, Mohamed-Slim Alouini

Copyright © 2000 John Wiley & Sons, Inc.

Print ISBN 0-471-31779-9 Electronic ISBN 0-471-20069-7

3

TYPES OF COMMUNICATION

Digital modulation techniques are typically classified based on (1) the carrier
attribute (e.g., phase, amplitude, frequency) that is being modulated, (2) the
number of levels assigned to the modulated attribute, and (3) the degree to which
the receiver extracts information about the unknown carrier phase in performing
the data detection function (e.g., coherent, partially coherent, differentially
coherent, noncoherent). Although most combinations of these classification
categories are possible, some are more popular than others. In the simplest
case, only a single carrier attribute is modulated, whereas a more sophisticated
modulation scheme would allow for modulating more than one attribute (e.g.,
amplitude and phase), the latter affording additional degrees of freedom in
satsifying the power and bandwidth requirements of the system.

Our goal in this chapter is to review the most popular digital modulation
techniques (i.e., those that are most often addressed in the literature) and
discuss their transmitted signal form as well as their detection over the additive
white Gaussian noise (AWGN) channel. In all cases we limit our consideration
to receivers that implement the maximum a posteriori (MAP) decision rule
[maximum-likelihood (ML) for equiprobable signal hypotheses] and as such
are optimum from the standpoint of minimizing error probability. Emphasis is
placed on those modulations that might be used in applications where the channel
exhibits multipath fading.

3.1 IDEAL COHERENT DETECTION

Consider a complex sinusoidal carrier, ¢, () = A.e/?™/<"+%) which in the simplest
case is amplitude, phase, or frequency modulated by an M-level (M = 2" > 2)
digital waveform, a(t), 6(¢t), or f(t), respectively, in accordance with the
digital data to be transmitted over the channel (Fig. 3.1). The corresponding
bandpass complex transmitted signal then becomes 5(r) = S(r)e/@™/e'+0)  where
S(t) is the equivalent baseband complex transmitted signal and takes on the
specific forms S(t) = Aca(r), S(t) = A.e/®®, and S(t) = A.el/ ', respectively.

31
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Figure 3.1. Generic complex form of transmitter and receiver for ideal coherent detection over
the AWGN. (The asterisk on the multiplier denotes complex conjugate multiplication.)

When more than one attribute of the carrier is modulated (e.g., amplitude and
phase), the transmitted signal would have the form 5(t) = A.a(t)e/127/c! 6461
Corresponding to any of the cases above, the total received complex signal
is 7(t) = anS(t) + n(t), where 7n(r) is a complex white bandpass Gaussian
noise process with single-sided power spectral density (PSD) Ny (W/Hz) [i.e.,
E{n(t)n*(t + 1)} = Noé(t — 7)] and «, is the attenuation introduced by the
channel. For the case of a pure AWGN channel as considered here, o, is a
deterministic constant and for our purposes can be set equal to unity. For the
fading channel considered later in the book, «, is a complex random variable
whose statistics depend on the particular type of fading (e.g., for a Rayleigh or
Rician channel, o, would be a complex Gaussian random variable).

In the case of ideal phase coherent detection (often called simply coherent
detection), the receiver reconstructs the carrier with perfect knowledge of
the phase and frequency. Thus, the receiver forms the signal' &.(¢) =
e/?mfe+0) — &,(¢) and uses this to perform a complex conjugate demodula-
tion of the received signal (Fig. 3.1). The output of this demodulation is then
X)) =r@)ci) = S(t) + n(t)ci(¢t) which depending on the particular form of
modulation corresponding to the three simple cases above is either x(z) =
Aca(t) + () (1), X(t) = A/ + (1) (1), or %(t) = Ae/PTT DN 4 i (1)ex(1).
The optimum receiver then performs matched filtering operations on x(¢) during
each successive transmitted interval corresponding to the M possible transmitted
information symbols in that interval and proceeds to make a decision based on
the largest of the resulting M outputs. We now discuss a number of specific
cases of the foregoing generic signal model along with the characteristics of the
corresponding ideal coherent receiver.

! Again since we are considering here only the pure AWGN channel with idealized demodulation,
the amplitude of the carrier reference signal is deterministic and may be normalized to unity with
no loss in generality. Later when considering the fading channel, we shall see that the statistics of
the fading channel must be taken into account in modeling the demodulation reference signal.



IDEAL COHERENT DETECTION 33

3.1.1 Multiple Amplitude-Shift-Keying or Multiple Amplitude
Modulation

A multiple amplitude-shift-keyed (M-ASK) signal [more often referred to as
multiple amplitude modulation (M-AM)] occurs when a(t) takes on equiprobable
symmetric? values o; =2i — 1 —M,i=1,2,..., M, in each symbol interval 7,
which is related to the bit time 7, by Ty = T, log, M. As such, a(t) is modeled
as a random pulse stream, that is,

oo

a(ty= > ayp(t—nTy) 3.1)

n=—0oo

where a, is the information (data) amplitude in the nth symbol interval n7T; <
t < (n + 1)T, ranging over the set of M possible values «; as above, and p(¢) is a
unit amplitude rectangular pulse of duration 7 seconds. The signal constellation
(i.e., the locus of points of the baseband complex signal in two dimensions) is a
straight line along the horizontal axis with points spaced uniformly by two units.
In the nth symbol interval the transmitted complex signal is

5(t) = Aay el Flet0 (3.2)

Note that because of the rectangular pulse shape, the complex baseband signal
S‘(t) = A.a, is constant in this same interval. At the receiver, after complex-
conjugate demodulation by the ideal phase coherent reference ¢, (t) = e/(?7/c/+6c),
we obtain

X(t) = Acan +N(t) (3.3)

where N(r) = n(t)ci(t) is a zero-mean baseband complex Gaussian process.
Passing x(¢) through M matched filters [integrate-and-dump (I&D) circuits for
the assumed rectangular pulse shape of the modulation]? results in the M outputs
(Fig. 3.2a)

- - (}’l+1)Ts ~
S}nkz(xkanAcTs'i_aans k=12,..., M, an/ N(t)dt
n

Ty

‘ (3.4)
whereupon a decision corresponding to the largest Re{y,x} = oxa,A Ty +
Re{oxN,} is made on the transmitted amplitude. Alternatively, the amplitude
scaling by the M possible levels «; and maximum selection can be replaced by
an M-level quantizer acting on the single real decision variable (see Fig. 3.2b)

Yn ZanAcTs'i'Nn, Nn ZRG{N,,} (35)

2 In our discussions of AM, we consider only the case wherein the amplitude levels are distributed
symmetrically around the zero level. For a discussion of asymmetric AM, see Ref. 1.

3 As is well known, only a single matched filter is required whose output is scaled by the M possible
values of ;.
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Figure 3.2. Complex forms of optimum receiver for ideal coherent detection of M-AM over the
AWGN: (a) conventional maximume-likelihood form; (b) simpler decision threshold form.

3.1.2 Quadrature Amplitude-Shift-Keying or Quadrature Amplitude
Modulation

A quadrature amplitude-shift-keyed (QASK) signal [more commonly referred to
as quadrature amplitude modulation (QAM)] is a two-dimensional generalization
of M-AM which can be viewed as a combined amplitude/phase modulation
or more conveniently as a complex amplitude-modulated carrier. The signal
constellation is a rectangular grid with points uniformly spaced along each axis
by 2 units. Letting M still denote the number of possible transmitted waveforms,
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then in the nth symbol interval a QAM signal can be expressed as*
5(t) = Aclar, + jagy)e! @I (3.6)

where the information amplitudes a;, and ag, range independently over the
sets of equiprobable values o; =2i — 1 — VM, i=1,2,...,/M, and o =
20—-1—-M,1=1,2,..., VM , respectively, and the I and Q subscripts denote
the in-phase and quadrature channels. Here again, because of the assumed
rectangular pulse shape, the complex baseband signal S(r) = A.(a;, + Jaon) is
constant in this same interval. At the receiver the signal is again first complex-
conjugate demodulated by ¢,(¢), which results in

%(t) = Aclag, + jagn) + N(1) (3.7)

Performing matched filter operations on x(#) and recognizing the independence
of the I and Q channels produces the decision variables (Fig. 3.3a)

Yink = Re{s)k} = OlkalnAcTs + akNIns k= 1,2,...,~ M/29

(n+DT;
N,ane{/ N(t)dt}
nT;

Yok = Im{3} = apagnATs + 4No,, k=1,2,...,vM/2,
(41T _
Non = Im{/ N(t)dt} (3.8)

TS

whereupon separate decisions corresponding to the largest yp,x and yg,r are
made on the I and Q components of the amplitude transmitted in the zeroth
signaling (symbol) interval 0 < < T,. Alternatively, the scaling by the M
possible amplitude levels and maximum selection for the real and imaginary parts
of the complex decision variable can be replaced by separate M-level quantizers
acting on the single pair of I and Q decision variables

Yin = aInAcTY + Ny,
Yon = aQnAcTs + NQn (39)

in which case the complex receiver of Fig. 3.3a can be redrawn in the I-Q form
of Fig. 3.3b.

3.1.3 M-ary Phase-Shift-Keying
An M-ary phase-shift-keyed (M -PSK) signal occurs when 6() takes on equiprob-
able values 8, = 2i — l)n/M, i=1,2,..., M, in each symbol interval T;. As

4 Again, one can think of the complex carrier as being modulated now by a complex random pulse
stream, namely, a(t) = Zioz,oo(am + jagn)p(t — nTy).
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Figure 3.3. Complex forms of optimum receiver for ideal coherent detection of QAM over the
AWGN: (a) conventional maximum-likelihood form; (b) simpler decision threshold form.

such, 6(¢) is modeled as a random pulse stream, that is,

0()= Y 6up(t —nTy) (3.10)

n=—00

where 6, is the information phase in the nth symbol interval n7y; <t < (n + 1)T;
ranging over the set of M possible values B; as above, and p(¢) is again a unit
amplitude rectangular pulse of duration 7y seconds. The signal constellation is
a unit circle with points uniformly spaced by 27/M radians. Thus, the complex
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signal transmitted in the nth symbol interval is
5(0) = Ace.i(znfct+9(+9n) (3.11)

Note again that because of the assumed rectangular pulse shape, the complex
baseband signal S(t) = A.e/% is constant in this same interval. After demodu-
lating with the complex conjugate of ¢, () at the receiver, we obtain

() = A’ + N(@) (3.12)

Passing (3.12) through an I&D and then multiplying the output by e /%,
k=1,2,..., M, produces the decision variables (Fig. 3.4)

Sjnk ZACTSej(en_ﬁk)-i_e_jﬂan’ k= 1723"”M3

3 (1T,
w, =/ N di (3.13)
nTy

from which a decision corresponding to the largest Re{y,;} = A.T;cos(6, —
Be) + Re{e 7PN,} is made on the information phase transmitted in the nth
signaling interval.

A popular special case of M-PSK modulation is binary PSK (BPSK), which
corresponds to M = 2. Since ideally the detection of M-PSK is independent of
the location of the points around the unit circle (as long as they remain uniformly
spaced by 27/M radians), we can alternatively take as the possible values for 6,
the set 8; = 2in/M,i=0,1,2,...,M — 1, which for M = 2 become 8; =0, «.
Since e/ = 1 and e/™ = —1, the transmitted signal of (3.11) can be written in the
form (3.2), where, in each transmission interval (now a bit interval 7), a, takes
on the pair of equiprobable values 1. Thus, we observe that BPSK is the same
as M-AM with M = 2. That is, binary amplitude and binary phase modulation
are identical and are referred to as antipodal signaling. The receiver for BPSK is
a special case of Fig. 3.4 which takes on the simpler form illustrated in Fig. 3.5
wherein the £1 amplitude scaling and maximum selection are replaced by a
two-level quantizer (hard limiter) acting on the single real decision variable

Yn = a,ATp + Ny, N, :Re{Nn} (314)

Another special case of M-PSK which because of its throughput efficiency
(bits/second per unit of bandwidth) is quite popular is QPSK, which corre-
sponds to M = 4. Here it is conventional to assume the phase set B; =
w/4,3m/4, 57/4, Tm/4. Projecting these information phases on the quadrature
amplitude axes, we can equivalently write QPSK in the [-Q form of (3.6),
where ay, and ag, each take on values +1.5 We thus see that QPSK can also be
looked upon as a special case of QAM with M = 4, and thus the detection of an

3 The actual projections of the unit circle on the I and Q coordinate axes are 1/+/2. However, since
the carrier amplitude is arbitrary, it is convenient to rescale the carrier amplitude such that the
equivalent I and Q data amplitudes take on +1 values.
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Figure 3.4. Complex form of optimum receiver for ideal coherent detection of M-PSK over the
AWGN.
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Figure 3.5. Complex form of optimum receiver for ideal coherent detection of BPSK over the
AWGN.

information phase can be obtained by combining the detections on the I and Q
components of this phase. The receiver for QPSK is illustrated in Fig. 3.6 and
is a two-dimensional version of that for BPSK and a special case of that for
QAM. The decision variables that are input to the hard-limiting threshold
devices are

(+DT,
Yin ZRe{j)n} = anAcTs + Ny, Ny, ZRe{/ N(t)dt}
nT;
(n+1D)T;

Yon :Im{yn} zaQnAch +Nan NQn =Im{/ N(t)dt
nTs

(3.15)
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Figure 3.6. Complex form of optimum receiver for ideal coherent detection of QPSK over the
AWGN.

While for M-PSK with M = 2" and m arbitrary, one can also project the
information phases on the I and Q coordinates and thus make decisions on each
of these multilevel amplitude signals, it should be noted that these decisions
are not independent, and furthermore each pair of amplitude decisions does not
necessarily render one of the transmitted phases. That is, the number of possible
I-Q amplitude pairs obtained from the projections of the M possible transmitted
phases exceeds M. Thus, for M > 8 it is not practical to view M-PSK in an I-Q
form.

3.1.4 Differentially Encoded M-ary Phase-Shift-Keying

In an actual coherent communication system transmitting M-PSK modulation, a
means must be provided at the receiver for establishing the local demodulation
carrier reference signal. This means is tradionally accomplished with the aid of a
suppressed carrier tracking loop [1, Chap. 2]. Such a loop for M-PSK modulation
exhibits an M-fold phase ambiguity in that it can lock with equal probability at
the transmitted carrier phase plus any of the M information phase values. Hence,
the carrier phase used for demodulation can take on any of these same M phase
values, namely, 6, + 8; =06, + 2in/M,i =0,1,2,..., M — 1. Clearly, coherent
detection cannot be successful unless this M-fold phase ambiguity is resolved.
One means for resolving this ambiguity is to employ differential phase
encoding (most often simply called differential encoding) at the transmitter
and differential phase decoding (most often simply called differential decoding)
at the receiver following coherent detection. That is, the information phase
to be communicated is modulated on the carrier as the difference between
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Figure 3.7. Complex form of optimum receiver for ideal coherent detection of OQPSK over the
AWGN.

two adjacent transmitted phases, and the receiver takes the difference of two
adjacent phase decisions to arrive at the decision on the information phase.®
In mathematical terms, if A6, was the information phase to be communicated
in the nth transmission interval, the transmitter would first form 6, = 6,,_; +
A6, modulo 2 (the differential encoder) and then modulate 8, on the carrier.’
At the receiver, successive decisions on 6,,_; and 6, would be made and then
differenced modulo 27 (the differential decoder) to give the decision on A6,.
A block diagram of such a differentially encoded M-PSK system is illustrated
in Fig. 3.7. It should be clear from this diagram that since the decision on the
true information phase is obtained from the difference of two adjacent phase
decisions, a performance penalty is associated with the inclusion of differential
encoding/decoding in the system. The quantification of this performance penalty
is discussed later in the book.

3.1.4.1 =/4-QPSK. Depending on the set of M phases {Ag;} used to represent
the information phase A6, in the nth transmission interval, the actual transmitted
phase 6, in this same transmission interval can range either over the same set

6 We note that this receiver (i.e., the one that makes optimum coherent decisions on two successive
symbol phases and then differences these to arrive at the decision on the information phase) is
suboptimum when M > 2 [3]. However, this receiver structure, which is the one classically used for
coherent detection of differentially encoded M-PSK, can be arrived at by a suitable approximation
of the likelihood function used to derive the true optimum receiver and at high SNR the difference
between the two becomes mute.

7 Note that we have shifted our notation here insofar as the information phases are concerned so as
to keep the same notation for the actual transmitted phases.
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{B:} = {AB;} or over another phase set. If for M = 4 we choose the set AB; =
0, /2, m, 3/2 to represent the information phases, then starting with an initial
transmitted phase chosen from the set 7/4,37/4, 57/4, 7m/4, the subsequent
transmitted phases {6,} will also range over the set w/4,3mw/4,57/4,Tm/4
in every transmission interval. This is the conventional form of differentially
encoded QPSK. Now suppose instead that the set Ag; = /4, 3n/4, 5 /4, Tr /4
is used to represent the information phases {A6,}. Then, starting, for example,
with an initial phase chosen from the set w/4, 37/4, 5/4, T /4, the transmitted
phase in the next interval will range over the set 0, /2, &, 37r/2. In the following
interval the transmitted phase will range over the set 7/4, 37 /4, Sm/4, Tr/4,
and in the interval following that one the transmitted phase will once again
range over the set 0, /2, m, 37/2. Thus we see that for this choice of phase set
corresponding to the information phases {A#,}, the transmitted phases {6,} will
alternatively range over the sets 0, 7/2, &, 37/2 and /4, 37 /4, Sm/4, T /4. Such
a modulation scheme, referred to as m/4-QPSK [4], has an advantage relative to
conventional differentially encoded QPSK as follows.

In the case of conventional differentially encoded QPSK, the maximum change
in phase from transmission to transmission (which occurs when both I- and Q-
channel data streams switch polarity) is 7 radians, which results in a complete
reversal (maximum fluctuation) of the instantaneous amplitude of the transmitted
waveform. In the case of m/4-QPSK, the maximum change in phase from
transmission to transmission is 37/4 radians, which clearly results in a smaller
instantaneous amplitude fluctuation. On nonlinear transmission channels the
fluctuation of the instantaneous amplitude is related to the regeneration of spectral
sidelobes of the modulation after bandpass filtering and nonlinear amplification at
the transmitter — the smaller the instantaneous amplitude fluctuation, the smaller
the sidelobe regeneration, and vice versa. On a linear AWGN channel with
ideal coherent detection, there is theoretically no advantage of 7/4-QPSK over
conventional differentially encoded QPSK; in fact, the two have identical error
probability performance.

3.1.5 Offset QPSK or Staggered QPSK

For the same reason as using 7/4-QPSK versus conventional differentially
encoded QPSK on a nonlinear channel, another form of QPSK, namely, offset
OPSK (OQPSK) [alternatively called staggered QPSK (SQPSK)] has become
quite popular. OQPSK or SQPSK is a form of QPSK wherein the I and Q signals
components are misaligned with respect to one another by half a symbol time
(i.e., a bit time) interval. In mathematical terms, the complex carrier is amplitude
modulated by a;(¢) + jag(t), where

af()= Y ampt—nT),  ag(t)= Y ag,p(t—nT,—T,/2) (3.16)

n=-—0o n=—0oo

where a;, and ag, are the I and Q data symbols for the nth transmission interval
that take on equiprobable +1 values. Thus, in the nth transmission interval
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corresponding to the I channel, the transmitted signal has the complex form

Ac(ar, + jagn—1)e/ @t pTo <t < (n+ 3T,
§(t)={ (@ + Jagn-1) (n+3) (3.17)

Ac(aln + jaQn)ej(zﬂfEt-i_eL)v (n + %)Ts <t=(@n+ I)Ts

Similarly, for the nth transmission interval corresponding to the Q channel, the
transmitted signal has the complex form

Ac(ag, + jag,)el I+, n+ DTy <t<@m+ DT
E(t)z{ c( In J Qn) ( 2) s <1 =( )T (318)

Ac(ar st + jag)el @0 (4 DT, <1 < (n+ )T,

At the receiver the signal x(t) = 5(¢) + n(t) is complex-conjugate demodulated
by ¢,(¢) and then matched filtered producing the I and Q decision variables
(Fig. 3.7)

(n+1)T; -
Yin =a1nAcTs+Nlns Nln ZRC{/ N(t)dt}
nTy
(e
Yon = adgnAcTs + Now,  Ngn =1Im /( ' Noydt S 3.19)
n+§ Ts

each of which is hard-limited to produce decisions on the I and Q transmitted
amplitudes. Note that independent of the time offset between the I and Q channels,
the decision variables of (3.19) have statistics identical to those of conventional
QPSK as given by (3.15). Thus, for ideal coherent detection, QPSK and OQPSK
have identical error probability performance, as will be reiterated later in the
book.

Returning now to the issue of spectral sidelobe regeneration on a nonlinear
channel, since the I and Q channels do not change phase at the same time instant
(i.e., they are staggered by half a symbol with respect to each other), a phase
change of 7 radians cannot occur instantaneously. Rather, if both the I and Q
channels switch data polarities, the 7 radians that ultimately results occurs in
two steps: after half a symbol the phase changes by /2 radians, and then after
the next half a symbol the phase changes by another 7/2 radians. Thus we see
that at any given time instant, the maximum change in phase that can occur is
7/2 radians, which results in a smaller instantaneous amplitude fluctuation than
either w/4-QPSK or conventional differentially encoded QPSK.

In summary, on a linear AWGN channel with ideal coherent detection, all
three types of differentially encoded QPSK (i.e., conventional, /4, and offset)
perform identically. The differences among the three types on a linear AWGN
channel occur when the carrier demodulation phase reference is not perfect (i.e.,
nonideal coherent detection).
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3.1.6 M-ary Frequency-Shift-Keying

An M-ary frequency-shift-keyed (M-FSK) signal occurs when f(¢) takes on
equiprobable values & = 2i — 1 —M)Af/2,i=1,2,...,M, in each symbol
interval 7, where the frequency spacing A f is related to the frequency modulation
index i by h = A fT,. As such, f(¢)is modeled as a random pulse stream, that is,

f@ =Y fupt—nTy) (3.20)

n=—oo

where f, is the information frequency in the nth symbol interval n7T, <t <
(n + 1)T; ranging over the set of M possible values &; as above, and p(t) is
again a unit amplitude rectangular pulse of duration 7 seconds. Thus the complex
signal transmitted in the nth symbol interval is

5() = Acejl2ﬂ(faf+fn(f—VlT.‘))+9cJ (3.21)

Note here that in contrast to the amplitude- and phase-shift-keying modulations
discussed previously, the complex baseband modulation S(f) = A.el/»@=nT9) g
not constant over this same interval but rather has a sinusoidal variation. After
demodulating with the complex conjugate of c,(¢) at the receiver, we obtain

X(t) = AT 4 N (r) (3.22)

Multiplying (3.22) by the set of harmonics e /27— k=12 .. . M, and
then passing each resulting signal through an I&D produces the decision variables
(Fig. 3.8)

0T, )
Ynk = Ac/ eTUn=E ) g L N k=1,2,..., M,
nT;

- (n+1D)T; . -
N, = / e~ P2TEOTO (1) dt (3.23)
nT;

from which a decision corresponding to the largest Re{y,;} is made on the
information frequency transmitted in the nth signaling interval.

For orthogonal signaling wherein the cross-correlation Ref{ n(;:rl)TS S ()57 (2) dt}

=0,k #1, the frequency spacing is chosen such that Af = N/2T, with
N integer. If, for example, the transmitted frequency f, is equal to & =
(21 — 1 — M)A f/2, then (3.23) can be expressed as

AT, emt—on2 ST =ON2L 5

Yk = 7 — k)N/2

Tx . ~
Nk = / ¢ TAHRTAMNIELN (1 4 nTy) di (3.24)
0
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e (t-nTy)
I(n+1)rs Im
nTs (.)dt o
e alt-nTy)
Choose Data
Data Frequency
. Frequency | Decision
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Er(f) — e](21\:fct+60)
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Figure 3.8. Complex form of optimum receiver for ideal coherent detection of M-FSK over the
AWGN.

or, taking the real part,

. sin[(l — k)N] -
Re{yu} = AcTs——————— + Re{N}, k=1,2,....M 3.25
(i) = ATy + Rell) (3.25)
Thus we observe that for orthogonal M-FSK, only one decision variable has a
nonzero mean: the one corresponding to the transmitted frequency. That is,

Re{yn} = ATy, Re{yu} =0, k#I (3.26)

A popular special case of M-FSK modulation is binary FSK (BFSK),
which corresponds to M = 2. In addition to orthogonal signaling (zero cross-
correlation), it is possible to choose the modulation index so as to achieve the
minimum cross-correlation that results in the minimum error probability (see
Chapter 8). Since for arbitrary A f we have

(Vl+1)T}, Ty . .
Re{/ 51 (t)E;(t)dt} = Re {A?/ eJQJTAftdt}
nTb 0

in2wA fT
zAgTbM (3.27)
27‘[AfTb

the minimum of this cross-correlation is achieved when h = A fT;, = 0.715 [1],
which results in a minimum normalized cross-correlation value
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(n+1)Ty (n+1)Ty
Re {/ 51055 (@1) dt} Re {/ §1(t)§§(t)dt}
nTy nTy

A
p= i+ 1)T, = 1T,
/ 50 dr / 5,00 dr
nTy nTy
_ sin2JTAfTb| 00T~ 2 (3.28)
B 7N 7 i P '

3.1.7 Minimum-Shift-Keying

Consider a BFSK signal whose phase is maintained continuous from bit interval to
bit interval, called continuous phase frequency-shift-keying (CPFSK) [5]. Because
of this phase continuity, such a modulation has memory, and thus data bit
decisions should be based on an observation longer than a single bit interval. A
special case of CPFSK corresponds to a modulation index & = % and is referred
to as minimum-shift-keying (MSK) [6,7]. For this special case, the transmitted
signal in the nth bit interval takes the form

5(t) = A e/Prfettdn (/2T )+nl nTy, <t <+ T (3.29)

where d,, is the binary (1) information bit and x,, is chosen to maintain the phase
continuous at t = nTj. Writing (3.29) in the form that characterizes the (n — 1)st
bit interval, to maintain the phase continuous at t = nT), it is straightforward to
show that, assuming an initial condition x_,, = 0, the phase x, satisfies the
relation

mn
Xp = Xp—1 + T(dnfl - dn) (330)

and thus can only take on values (0, w) (modulo 2). Substituting (3.30) into
(3.29) and applying simple trigonometry it can be shown that MSK has an
equivalent I-Q form that resembles OQPSK with, however, a pulse shape that
is not rectangular. Specifically, an MSK signal has the pulse-shaped OQPSK
representation

5 = Aclar (t) + jag(t)]e! /<! +0) (3.31)

where a;(t) and ap(t) are random data streams of the form in (3.16), with binary
(£1) data symbols (each of duration Ty = 2T})

A, = COS X, agn = d, cosx, =dyay, (3.32)

and p(¢) is a half sinusoid of duration Ty, that is,

Tt T - - T
p(z)={c°sn’ B (3.33)

0, otherwise.
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Note that the pulse shape for the Q data stream is

T 1 0<i<T
p(t__s>:{slni, <t=1 (3.34)

0, otherwise.

There exists a direct relation between the binary data bits {d,, } of the frequency
modulation form of MSK in (3.29) and the equivalent binary data bits {a;,} and
{agn} of the I-Q form in (3.31). In particular, {a;,} and {ap,} are the odd
and even bits of the differentially encoded version of {a,} (Fig. 3.9). That is, if
v, = d,v,—; is the differentially encoded version of d,, the equivalent I and Q
data bits are given by

am = (=1)" oy, agn = (=1)"*vy, (3.35)

Thus, if the MSK modulation is implemented by continuous phase frequency
modulating the carrier oscillator with the sequence {d,} and the data are to
be recovered by implementing a pulse-shaped OQPSK receiver (Fig. 3.10), then
following the interleaving of the I and Q decisions {d;,} and {ag, }, one must undo
the implicit differential encoding operation at the transmitter and thus employ
a differential decoder to obtain the decisions on the information bits {d,}. To
get around the need for differential decoding at the receiver and the associated
performance penalty (discussed in Chapter 8), one can precode the data entering
the MSK modulator with a differential decoder, resulting in precoded MSK [1,
Chap. 10]. The combination of differential decoder and MSK modulator is then
identically equivalent to a pulse-shaped OQPSK modulator whose equivalent I
and Q binary data bits {a;,} and {ag,} are now just the odd and even bits of
{d,} itself (Fig. 3.11). That is, if prior to frequency modulating the carrier the
information bits {d,} are first differentially decoded to the sequence {u,}, where
u, = d,d,_1, the equivalent I and Q bits for the pulse-shaped OQPSK modulator
would be

an = (=1 dopst,  age = (=1)"dy, (3.36)

Thus, for precoded MSK, no differential decoder is needed at the receiver in order
to recover the decisions on {d,} (Fig. 3.12). Since the precoder has no effect on
the power spectral density of the transmitted waveform, then from a spectral point
of view, MSK and pulse-shaped OQPSK are identical. Thus, from this point on,
when discussing MSK modulation and demodulation, we shall assume implicitly
that we are referring to precoded MSK or equivalently, pulse-shaped OQPSK.

3.2 NONIDEAL COHERENT DETECTION

In Section 3.1 we considered the ideal case of phase coherent detection wherein
it was assumed that the attributes of the local carrier used to demodulate the
received signal were perfectly matched to those of the transmitted carrier [i.e.,
¢,(t) = ¢;(t)]. In practice, this ideal condition is never met since the local
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{dn} |y; | vl s(t)=Re{5(t
1 |pifferentiall ™| MSK (1)=Re{s(1)}
Decoder Modulator
(_1)n+1
{dops1} Pulse
o > >< Shaping
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Figure 3.11. Equivalent real forms of precoded MSK transmitters.

carrier must be derived from the received signal itself, which contains the
random perturbations introduced by the channel (e.g., the additive noise, fading,
Doppler shift, etc.). Regardless of the manner in which the receiver creates its
demodulation reference, there will result a mismatch between the phase and
frequency of the received carrier and that of the locally generated carrier. Ignoring
any frequency mismatch, if, as before, 6, denotes the phase of the received carrier
and éc now denotes the phase of the locally generated carrier at the receiver, the

phase error ¢, 2 6. — éc would be a random variable with a specified PDF p(¢.),
which, in general, depends on the scheme used for extracting the phase estimate
0.. We shall have more to say about the form of this PDF momentarily. For the
special case of ideal phase coherent detection treated in Section 3.1, the phase
error PDF was assumed to be a delta function [i.e., p(¢.) = 6(¢.)].

When the nonideal carrier reference signal as above is used to demodulate
the received signal, two possibilities exist with regard to the manner in which
detection is subsequently performed. On the one hand, the detector can be
designed assuming a perfect carrier reference (i.e., ideal coherent detection) with
the nonideal nature of the demodulation reference accounted for in evaluating
receiver performance. This is the case to which we direct our attention in this
section. On the other hand, given the PDF of the phase error, p(¢.), the remainder
(baseband portion) of the receiver can be designed to exploit this statistical
information, thereby coming up with an improved detection scheme. Such a
scheme, which makes use of the available statistical information on the carrier
phase error to optimize the design of the detector, is referred to as partially
coherent detection and is discussed in Section 3.4.
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Returning now to the manner in which the locally generated carrier is obtained
at the receiver, the most common method for accomplishing this purpose is to
employ a carrier synchronization loop® (e.g., a Costas loop), decision-directed
loop, or form thereof [2, Chap. 2] that regenerates a carrier by continuously
estimating the phase and frequency of the data-bearing received signal. Such
loop structures are motivated by the MAP estimate of the carrier phase of a
suppressed carrier signal and precede the data detection portion of the receiver.
For a broad class of carrier reconstruction loops of the type mentioned above,
the PDF of the modulo 2r7-reduced phase error can be modeled as a Tikhonov
distribution [10] which has the generic form’

__exp(p. cos @)
p@e) = SRS lpe| <7 (3.37)

with p, called the loop SNR.

Another method for producing the necessary carrier synchronization at the
receiver is to transmit a separate unmodulated carrier along with the data-
modulated carrier and extract it at the receiver for use as the demodulation
reference. Detection schemes based on such a transmitted reference are referred
to as pilot tone—aided detection techniques and have the advantage that the
method of extraction [e.g., a phase-locked loop (PLL) or narrowband filter] is
not encumbered by the presence of the unknown data. On the other hand, for a
given amount of total power, a portion of it must be allocated to the pilot signal
and thus is not available for purposes of data detection.

In yet another method, a combination of the received signals in the previous
intervals, the simplest case being just that from the previous interval, is used
directly as the demodulation reference. Such detection schemes are based on
observation of the received signal for more than a single symbol interval and
are referred to as differential detection. Since these schemes in effect integrate
the carrier demodulation as part of the detection operation, they are usually
considered to form a class of their own, and we treat them as such in Section 3.5.

In accordance with the discussion above, the mathematical model used to
define the demodulation reference signal is a complex carrier with a phase equal
to the estimate of the received carrier phase [i.e., ¢,(f) = e/ /<"+0)]. Thus,
for any of the complex bandpass transmitted signals 5(t) = A.a(t)e/F/ei+6),
5(t) = Ao e/t H04001  or 5(1) = Ae/PTUetfONF6] the received signal after
complex-conjugate demodulation becomes 5c(t) =S (1)el® + N(t), which takes
on the specific forms ¥(1) = Aca(t)e!® + N (1), X(1) = Aca(t)e/0O+o] L N (1),
and ¥ (1) = Aca(t)e// O +%) 1 N (1), respectively, where N () = n(1)&*(¢) is again
a zero-mean baseband complex Gaussian process. Since ¢, is constant over

8 Open-loop carrier synchronization techniques are also possible (see, e.g., Refs. 8 and 9), but are
beyond the scope of our discussion here.
° The modeling of the phase error PDF for a phase-locked loop (PLL) in the form of (3.37) was also
arrived at independently by Viterbi [11].
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the symbol (bit) interval'® the outputs of the matched filter for each of these
types of modulation are as given in Section 3.1 [e.g., (3.4), (3.13), and (3.23),
multiplied by e/?]. As such, one can view the receiver structures for nonideal
phase coherent detection as having baseband equivalents to those of ideal phase
coherent detection with the addition of a phase rotation ¢.. Thus, if as before
Yak, k =1,2,..., M, denotes the set of matched filter outputs for ideal phase
coherent detection of the nth symbol, the decision variables for nonideal phase
coherent detection in that same interval become y,;e/%, k =1,2,..., M, where
¢, is distributed according to (3.37) or an appropriate variation thereof and is
assumed to be independent of the y,,;’s. Equivalently, one can postulate a complex
baseband receiver model where the kth matched filter output in the nth symbol
interval is ~

nk = Ske’* + N (3.38)

which is then complex-conjugate demodulated by the complex baseband nonideal

reference ¢, = e/%. Here 5, represents the signal component of the matched filter
output under ideal phase-coherent conditions [i.e., the kth matched filter response
to the complex baseband transmitted signal S(z)].

Another mathematical model for nonideal phase coherent detection, which
is based on the complex baseband equivalent receiver above, is to treat the
randomness of the phase of the demodulation reference ¢, = e/% as an equivalent
AWGN source. As such, ¢, is modeled as the sum of an ideal phase coherent

reference and a Gaussian random variable, that is,
¢ = VGA, e’ + N, (3.39)

where G is a normalized gain factor intended to reflect the SNR of the carrier
synchronization technique used to produce 6. in the actual physical model.
Although few carrier synchronizers produce a complex Gaussian reference signal,
pragmatically, the mathematical nonideal reference model described by (3.39)
has been demonstrated by Fitz [9,12] to be an accurate approximation of
a large class of nonlinear phase estimation techniques (including the above-
mentioned carrier synchronization architectures) in evaluating the average error
probability performance of the system for moderate- to high-SNR applications.
The advantage of the representation in (3.39) is that it affords a unified analysis
akin to that suggested by Stein [13] wherein the demodulation phase reference
signal and the matched filter output are both complex Gaussian processes and
thus includes as a special case conventional (two-symbol observation) differential
detection corresponding to G =1 (see Section 3.5). This representation has a
similar unifying advantage when evaluating the average error probability of such
nonideal phase coherent systems in the presence of certain types of fading (see
Chapter 8).

10We assume here the case where the data rate is sufficiently high relative to the carrier
synchronization loop bandwidth that the phase of the demodulation reference produced by this
loop is essentially constant over the duration of the data symbol.
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3.3 NONCOHERENT DETECTION

In the preceding two sections it was assumed that either the carrier phase
reference was provided to the receiver exactly (idealistically, by a genie), or
at the very least an attempt was made to estimate it. At the other extreme,
one can make the much simpler assumption that the receiver is designed
not to make any attempt at estimating the carrier phase at all. Thus the
local carrier used for demodulation is assumed to have an arbitrary phase
which, without any loss in generality, can arbitrarily be set to zero. Detection
techniques based on the absence of any knowledge of the received carrier
phase are referred to as noncoherent detection techniques. In mathematical
terms, the receiver observes the equivalent baseband signal R(1) 2 F(t)e i¥fel =
S(t)e'% + fi(t)e /¥ /<!, where 6, is unknown [and thus may be assumed to be
uniformly distributed in the interval (—m, )] and attempts to make a decision
on S(1).

The optimum receiver under such a scenario is well known [1] to be a
structure that incorporates a form of square-law detection. Specifically, in each
symbol interval the receiver first complex-conjugate demodulates the received
signal with the zero-phase reference signal c,(f) = e/2™/', then passes the
result of this demodulation through M matched filters, one each corresponding
to the transmitted baseband signals. The decision variables are then formed
from the magnitudes (or equivalently, the squares of these magnitudes) of
the matched filter outputs and the largest one is selected (see Fig. 3.13). In
mathematical terms, the decision variables (assuming square-law detection) are
given by

2

(n+DT; - -
Zok = |Fuil* = / R®S; () dt| k=1,2,....M (3.40)
nT

where S'k(t), k=1,2,..., M, is the set of possible realizations of S (t) and the
decision is made in favor of the largest of the z,;’s.

Suppose now that the modulation was, in fact, M-PSK and one attempted to
use the receiver above for detection. Since in the absence of noise the matched
filter outputs in the nth symbol interval would be given by [see Eq. (3.13),
now with the addition of the unknown carrier phase 6.] y,x = A.Tye/ O =Pei%
k=1,2,..., M, the magnitudes of these outputs would all be identical and hence
cannot be used for making a decision on the transmitted phase 6,,. Stated another
way, since for M-PSK the information is carried in the phase of the carrier, then
since the noncoherent receiver is designed to ignore this phase, it certainly cannot
be used to yield a decision on it. In summary, noncoherent detection cannot be
employed with M -PSK modulation.

Having ruled out M-PSK modulation (which would also rule out binary AM
because of its equivalence with BPSK), the next most logical choice is M-FSK.
Based on the results obtained in Section 3.1.6 for the matched filter outputs under
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ideal phase coherent conditions, we immediately write these same outputs for the
noncoherent case as

) (n+DT, -
nk = Ace’ / ST G 4 Ny, k=1,2,..., M,
nT;

. (DT, .
Nk = / e I TIN (1) dt (3.41)
nT;

where now N () = 7i(t)e/>"/<!. Taking the absolute value (or its square) of the
Yak's in (3.41) in the absence of noise removes the unknown carrier phase but
leaves the data information, which is now carried in the frequency f,,, unaltered.
Thus it is feasible to use noncoherent detection with M-FSK modulation. Note,
however, that the additional use of an envelope (or square-law) detector following
the matched filters in the noncoherent case will result in a performance penalty
relative to the coherent case, where the decision is made based on the matched
filter outputs alone (see Chapter 8).

3.4 PARTIALLY COHERENT DETECTION

3.4.1 Conventional Detection: One-Symbol Observation

In Section 3.2, the assumption was made that although the true carrier demodu-
lation was accomplished prior to data detection, the design of the detector was
not in any way influenced by the randomness of the phase error statistics at the
output of the demodulator (i.e., the form of the detector that is optimum for ideal
phase coherent detection was still employed). When the statistics of the phase
error are taken into account in the design of the detector, then based on observa-
tion of a single symbol interval, it can be shown [1,14] that the optimum detector
is a linear combination of the coherent and noncoherent detectors discussed in
Sections 3.1 and 3.3, respectively. In mathematical terms, the decision variables
{zq} are formed from the matched filter outputs as

Znk = (Re{Tui} + pcNo/2)” + (Im{Fu}), k=1,2,....M (3.42)

or ignoring the term (p.No/2)?, which is common to all M z,;’s, we have the
equivalent decision variables (keeping the same notation)

(L ress 2 L 2 L rels
Znk = (N—O e{ynk}) +<]70 m{ynk}> +10c (N_O e{ynk}>

2
1

+ 0 (Re{jznk}), k=1,2,....M (3.43)
No

— ] oy
- NO Ynk
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where the first term is characteristic of noncoherent detection and the second
term is characteristic of coherent detection. A receiver implementation based
on (3.43) is illustrated in Fig. 3.14. Note that knowledge of both p. and N
is required to implement this receiver. Such knowledge must be obtained by
measurements taken on the channel and the accuracy of this knowledge will
have an impact on the ultimate performance of the receiver. Since as mentioned
in Section 3.3 for M-PSK modulation the first (noncoherent) term of (3.43) does
not aid in the decision-making process, it can be ignored and hence the optimum
partially coherent receiver of M-PSK reduces to the coherent receiver (Fig. 3.8
with a nonideal reference signal) whose performance is determined on the basis
of the decision variables in Section 3.2. Regardless of the type of modulation,
for p. = 0, the receivers of Fig. 3.14 reduce to those for noncoherent detection
whereas for p. = oo they reduce to those for coherent detection.

3.4.2 Multiple Symbol Detection

Suppose now that we consider partially coherent detection of M-PSK based
on an observation greater than a single symbol interval. If the phase error, ¢,
between the received carrier phase and the receiver’s estimate of it is sufficiently
slowly varying that it can be assumed constant over say N symbol intervals
(Ng > 2), then an N -symbol observation of the received signal now contains
memory, and the receiver should be able to exploit this property in arriving at an
optimum design with improved performance [1, Chap. 6; 15]. As in any optimum
(ML) receiver for a modulation with memory transmitted over the AWGN, the
structure should employ sequence detection [i.e., joint (rather than symbol-by-
symbol) decisions should be made on groups of N symbols on a block-by-block
basis].

Analogous to the results in Section 3.4.1, the optimum detector based on an
observation of the received signal now spanning N symbols, is again a linear
combination of coherent and noncoherent detectors in which a set of M"s decision
variables is formed from the matched filter outputs to enable selection of the most
likely N,-symbol sequence of phases. In mathematical terms, the M"s symbol-
by-symbol matched filter outputs

(n—i4DT,
Fcin = / ROS:(0de, k=1.2.....M,
(n—i)T;

i=0,1,...N,— 1 (3.44)

with
Si. (1) = AcelPi = A e/ Phi=Dm/M k=12....M (3.45)

are summed over i in groups of size N, and then used to produce the M":
decision variables
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2

Ny—1 1 y Ny—1 1 5
e ol ) B )
Nl 2

N;—1

— 1
. | R — Vn—ik; , k=12,....M 3.46
+p<e{ZNoy }) (3.46)

i=0

2

Nl

Z ﬁoyn—i,k;

i=0

The notation k; in (3.44), (3.45), and (3.46) is used to indicate the fact that for each
value of the transmission interval index i in the range O to Ny — 1, the transmitted
signal index k can range over the set 1,2,..., M. Also, the boldface subscript
k on the variable z, denotes the vector (ki, ko, ..., ky,—1). Finally, a decision is
made on the transmitted phase sequence in the observation interval in accordance
with the largest of the z,x’s. Clearly, for Ny = 1, (3.46) reduces to (3.43).

Note that for Ny > 1, the first (noncoherent) term in (3.46) in the absence
of noise is not identical for all phase sequences and thus contributes to the
decision-making process. This term does, however, have an associated phase
ambiguity in that multiplication of each term in the sum by e /% where 6, is
an arbitrary fixed phase, does not change the value of the term. Hence, based
on the first term alone (i.e., for p. = 0), the decision on the transmitted phase
sequence would be ambiguous by 6, radians, where 6, could certainly assume
the value of one of the transmitted information phases. The second term in
(3.46) does not have such an associated phase ambiguity, and thus for p. #% 0
the decision rule would be unique. To guarantee a unique decision rule for the
pc = 0 case, one can employ differential phase encoding of the information
phase symbols as discussed in Section 3.1.4. The specific details of how such
differential encoding provides for a unique decision rule in this special case is
discussed in Section 3.5 in connection with differential detection of M-PSK with
multiple symbol observation. Figure 3.15 is an illustration of a partially coherent
receiver for M-PSK based on the decision statistics of (3.46). The performance
of this receiver is presented in Chapter 8.

3.5 DIFFERENTIALLY COHERENT DETECTION

3.5.1 M-ary Differential Phase Shift Keying

Suppose once again that one does not specifically attempt to reconstruct a
local carrier at the receiver from an estimate of the received carrier phase. We
saw in Section 3.3 that for an observation interval corresponding to a single
transmitted symbol, the optimum noncoherent receiver could not be used to detect
M-PSK modulation. Instead let us now reconsider the noncoherent detection
problem assuming an observation interval greater than one symbol in duration.
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This problem is akin to the partially coherent detection problem considered
in the preceding section except that the memory that is introduced into the
modulation now comes directly from the received carrier phase 6, (assumed
to be constant over, say, Ny symbols) rather than the phase error ¢, that results
from its attempted estimation. As such, the maximum-likelihood solution to the
problem would involve averaging the conditional likelihood function based on
an N;-symbol observation over a uniformly distributed phase (i.e., 6.) rather
than a Tikhonov-distributed phase (i.e., ¢.). Receivers designed according to
the foregoing principles are referred to as differential detectors and clearly
represent an extension of noncoherent reception to the case of multiple symbol
observation. The term differential came about primarily due to the fact that
in the conventional technique, a two-symbol observation is used (Ny = 2) and
thus, as we shall see, the decision is made based on the difference between two
successive matched filter outputs. However, Divsalar and Simon [16] showed
that by using an observation greater than two symbols in duration, one could
obtain a receiver structure that provided further improvement in performance in
the limit as Ny — oo, approaching that of differentially encoded M-PSK (see
Section 3.1.4). Practically speaking, it is only necessary to have N on the order
of 3 to achieve most of the performance gain. With a little bit of thought, it should
also be clear that the Tikhonov PDF of (3.37) with p, = 0 becomes a uniform
PDF, and thus from the above-mentioned analogy, the solution to the multiple-
symbol (including N, = 2) differential detection problem can be obtained directly
as a special case of the results obtained for the multiple-symbol partially coherent
detection problem.

3.5.1.1 Conventional Detection: Two-Symbol Observation. We begin
our discussion of differential detection of M-PSK by considering the conventional
case of a two-symbol observation. Based on the discussion above, the decision
variables can be obtained from the first term of (3.46) with Ny = 2. Substituting
(3.44) together with (3.45) in this term gives

1 2
- - 2
Lk = (N_()) [Ynko + Yn—1.4|

()

ko ki =1,2,.... M (3.47)

(n+DT, _ ‘ nTy _ 2
/ R(t)e P dr + / R(t)e P dt
n (

T n—1T;

where fy, represents the assumed value for the information phase 6y transmitted in
the nth symbol interval and By, represents the assumed value for the information
phase 6_; transmitted in the (n — 1)st symbol interval. As mentioned above,
multiplying each of the two matched filter outputs in (3.47) by e /% with
6, arbitrary does not change the decision variables. To resolve this phase
ambiguity we employ differential phase encoding at the transmitter as discussed
in Section 3.1.4. In particular, the transmitted information phases, now denoted
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by {A#6,}, are first converted (differentially encoded) to the set of phases {6,} in
accordance with the relation

0p = 6,—1 + A6, modulo 27 (3.48)

where S, and B, in (3.47) now represent the assumed values for the differentially
encoded phases in the nth and (n — 1)st symbol intervals, respectively. Note that
for 6, and 6,_; to both range over the set 8, = 2k — D)o/ M, k=1,2,..., M,
we must now restrict the information phase A8, to range over the set Af; =
2kn/M,k=0,1,2,...,M — 1. If we now choose the arbitrary phase equal to
the negative of the information phase in the (n — 1)st interval (i.e., 8, = —fk,),
then multiplying each matched output term in (3.47) by e /% = ¢/t we can
rewrite (3.47) as [ignoring the (A./Nj)?* scaling term]

(n+DT; _ nTy )
/ R(t)dt + / R(t)e™ /PP gy
nTs (n—1)T;

(n+DT; _ nTy )
/ R(r)dt + / R(t)e /2P dt
nTy (n—DT;

k=0,1,....,M—1 (3.49)

2
Znk =

2

Choosing the largest of the z,;’s in (3.49) then directly gives an unambiguous
decision on the information phase A6,. Expanding the squared magnitude in
(3.49) as

2

(n+1)T; 5 nTg - )
/ R(@t)dt + / R(t)e /2P dt
n (

T n—1T;

(DT, _
/ R(t)dt

TS

(n+DTs * nTy B )
+2Re { ( / R(1) d;) ( / R(t)e /2P dt) } (3.50)
nT, (n—1)T;

and noting that the first two terms of (3.50) are independent of the decision index
k, an equivalent decision rule is to choose the largest of

(n+DTs * nT B )
i = Re { ( / R(7) d;) < / R(t)e /2P dt) }
nTy (n—1)T;
, (n+DT; _ * ol
= Re{ e 12k ( / R(1) dt) ( / R(t)dt) ,
nT; (n—1)T;

k=0,1,....,M—1 (3.51)

2

2 nT;
+ ‘ / R(t)e /8P dt
(n—1DT;
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1] it
o)t Re{e} -
-1
Gt) = el(@nfd)
_ | Delay
Received T
Carrier
Oscillator

Figure 3.17. Complex form of optimum receiver for conventional (two-symbol observation)
differentially coherent detection of DPSK over the AWGN.

A receiver that implements this decision rule is illustrated in Fig. 3.16 and is the
optimum receiver under the constraint of a two-symbol observation. For binary
DPSK, the decision rule simplifies to

(n+1)Ty - * nT, -
Re { </ R(t)dt) </ R() dt> }] (3.52)
nT) (n—=1T,

and is implemented by the receiver illustrated in Fig. 3.17. Note that the structure
of the receiver in Fig. 3.16 and its special case in Fig. 3.17 is such that the
previous matched filter output acts as the effective baseband demodulation
reference for the current matched filter output. In this context the differentially
coherent receiver behaves like the nonideal coherent receiver discussed in
Section 3.2 with a reference signal as in (3.39) having a gain G =1 and an
additive noise independent of that associated with the received signal.

e/ = sgn

3.5.1.2 Multiple-Symbol Detection. Analogous to what was true for
partially coherent detection, the performance of the differentially coherent detec-
tion system can be improved by optimally designing the receiver based on an
observation of the received signal for more than two symbol intervals [16].
The appropriate decision variables are now obtained from the first term of
(3.46) with N > 2. Once again using differential phase encoding to resolve the
phase ambiguity inherent in this term —in particular, setting the arbitrary phase
0, = —6,_n,+1 and using the differential encoding algorithm of (3.48) —we
obtain analogous to (3.49) the decision variables

(n+1D)T; - nT ~ .
/ R(r)dt + / R(t)e /2P dp + ...
nTy (n—1DT;

ink =

2

(n—NA+T; _ )
+ / R(t)e /2Pw gt
(n—N,+1)T;

k=0,1,....M—1, i=12,...,N,—1 (3.53)
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from which a decision on the information sequence Af,_y 12, Aby_n 43, ...,
A6,_1, Ab, is made corresponding to the largest of the z,i’s. Note that an Nj-
symbol observation results in a simultaneous decision on N; — 1 information
phase symbols. The squared magnitude in (3.53) can be expanded analogous to
(3.50) to simplify the decision rule. For example, for Ny = 3 the decision rule
is to choose the pair of information phases A6,_;, A6, corresponding to the
maximum over k; and ky of

‘ (n+DT; *omnTe
Zuk = Re { e772Pu ( / R(t)dt> ( / R(t)dt)
nT (n—1)T;
) nT, ~ * (n=DT; _
+ e/ 2Pk ( / R(t)dt) < / R(1) dt)
(n—1)T; (n—2)T;
) (n+1)T; _ * (n—=D)T; _
versscesn ([ wgar) ([ Roar) |
nTy (n—=2)T;

ki,kop=0,1,...,.M -1 (3.54)

A receiver that implements this decision rule is illustrated in Fig. 3.18.

We conclude this section by mentioning that although it appears that
the complexity of the receiver implementation grows exponentially with the
observation block size N [1, Sec. 7.2.3], Mackenthun [17] has developed
algorithms for implementing multiple symbol differential detection of M-PSK
that considerably reduce this complexity, thus making it a feasible alternative to
coherent detection of differentially encoded M-PSK. These algorithms and their
complexity in terms of the number of operations per N;-symbol block being
processed are also discussed in Ref. 1.

3.5.2 =/4-Differential QPSK

The m/4-QPSK introduced in Section 3.1.4.1 in combination with coherent
detection as a means of reducing the regeneration of spectral sidelobes in
bandpass filtered/nonlinear systems can also be used for the same purpose when
combined with differential detection. The resulting scheme, called n/4-differential
QPSK (n/4-DQPSK), behaves quite similar to ordinary differential detection of
QPSK as discussed in Section 3.5.1, with the following exception. Since the
set of phases {Af;} used to represent the information phases {A6,} is now
ABr = 2k — Dm/4, k= 1,2,3,4, this set must be used in place of the set
ABry =km/4,k =0,1,2,3, in the phase comparison portion of Fig. 3.16.
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4

ALTERNATIVE REPRESENTATIONS
OF CLASSICAL FUNCTIONS

Having characterized and classified the various types of fading channels
and modulation/detection combinations that can be communicated over these
channels, the next logical consideration is evaluation of the average error
probability performance of the receivers of such signals. Before moving on in
the next part of the book to a description of these receivers and the details of
their performance on the generalized fading channel, we divert our attention
to developing a set of mathematical tools that will unify and greatly simplify
these evaluations. The key to such a unified approach is the development
of alternative representations of two classical mathematical functions (i.e.,
the Gaussian Q-function and the Marcum Q-function) that characterize the
error probability performance of digital signals communicated over the AWGN
channel in a form that is analytically more desirable for the fading channel.
The specific nature and properties of this desired form will become clear
shortly. For the moment, suffice it to say that the canonical forms of the
Gaussian and Marcum Q-functions that have been around for many decades
and to this day still dominate the literature dealing with error performance
evaluation have an intrinsic value in their own right with respect to their
relation to well-known probability distributions. What we aim to show, however,
is that aside from this intrinsic value, these canonical forms suffer a major
disadvantage in situations where the argument(s) of the functions depend on
random parameters that require further statistical averaging. Such is the case
when evaluating average error probability on the fading channel as well as on
many other channels with random disturbances. Herein lies the most significant
value of the alternative representations of these functions: namely, their ability
to enable simple and in many cases closed-form evaluation of such statistical
averages.

69
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4.1 GAUSSIAN Q-FUNCTION

4.1.1 One-Dimensional Case

The one-dimensional Gaussian Q-function (often referred to as the Gaussian
probability integral), Q(x), is defined as the complement (with respect to unity)
of the cumulative distribution function (CDF) corresponding to the normalized
(zero mean, unit variance) Gaussian random variable (RV) X. The canonical
representation of this function is in the form of a semi-infinite integral of the
corresponding probability density function (PDF), namely,

00 1 2
0(x) =/ s (—y?) dy @.1)

In principle, the representation of (4.1) suffers from two disadvantages. From a
computational standpoint, this relation requires truncation of the upper infinite
limit when using numerical integral evaluation or algorithmic techniques. More
important, however, the presence of the argument of the function as the lower
limit of the integral poses analytical difficulties when this argument depends
on other random parameters that ultimately require statistical averaging over
their probability distributions. For the pure AWGN channel, only the first of the
two disadvantages comes into play which ordinarily poses little difficulty and
therefore accounts for the popularity of this form of the Gaussian Q-function
in the performance evaluation literature. However, for channels perturbed by
other disturbances, in particular the fading channel, the second disadvantage
plays an important role since, as we shall see later, the argument of the Q-
function depends, among other parameters, on the random fading amplitudes
of the various received signal components. Thus, to evaluate the average error
probability in the presence of fading, one must average the Q-function over the
fading amplitude distributions. It is primarily this second disadvantage, namely,
the inability to average analytically over one or more random variables when they
appear in the lower limit of an integral, that serves as the primary motivation for
seeking alternative representations of this and similar functions. Clearly, then,
what would be more desirable in such evaluations would be to have a form for
Q(x) wherein the argument of the function is in neither the upper nor the lower
limit of the integral and furthermore, appears in the integrand as the argument
of an elementary function (e.g., an exponential). Still more desirable would be
a form wherein the argument-independent limits are finite. In what follows, any
function that has the two properties above will be said to be in the desired form.

A number of years ago, Craig [1] cleverly showed that evaluation of the
average probability of error for the two-dimensional AWGN channel could be
considerably simplified by choosing the origin of coordinates for each decision
region as that defined by the signal vector as opposed to using a fixed coordinate
system origin for all decision regions derived from the received vector. This shift
in vector space coordinate systems allowed the integrand of the two-dimensional
integral describing the conditional (on the transmitted signal) probability of error
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to be independent of the transmitted signal. A by-product of Craig’s work was
a definite integral form for the Gaussian Q-function, which was in the desired
form.!

In particular, Q(x) of (4.1) could also now be defined (but only for x > 0) by

1 /2 x2
Ox) = ;/0 exp (_ZSinzﬁ) do 4.2)

The form in (4.2) is not readily obtainable by a change of variables directly in
(4.1). However, by first extending (4.1) to two dimensions (x and y) where one
of the dimensions (y) is integrated over the half plane, a change of variables from
rectangular to polar coordinates readily produces (4.2). Furthermore, (4.2) can be
obtained directly by a straightforward change of variables of a standard known
integral involving Q(x), in particular [5, Eq. (3.363.2)]. Both of these techniques
for arriving at (4.2) are described in Appendix 4A. Yet another derivation of
(4.2) is given in Ref. 6 and is based on the fact that since the product of
two independent random variables, one of which is a Rayleigh and the other
a sinusoidal random process with random phase, is a Gaussian random variable,
determining the CDF of this product variable is equivalent to evaluating the
Gaussian Q-function.

Based on our previous discussion, it is clear that Q(x) of (4.2) is in the
desired form, that is, in addition to the advantage of having finite integration
limits independent of the argument of the function, x, it has the further advantage
that the integrand now has a Gaussian form with respect to x! We shall see in
Chapter 5 that this exponential dependence of the integrand on the argument of
the Q-function will play a very important role in simplifying the evaluation
of performance results for coherent communication over generalized fading
channels. Before exploiting this property of (4.2) in great detail, however, we wish
to give further insight into the alternative definition of the Gaussian Q-function
with regard to how it relates to the well-known Chernoff bound.

Note that the maximum of the integrand in (4.2) occurs when 6 = /2 [i.e.,
the integrand achieves its maximum value, namely, exp(—x>/2), at the upper
limit]. Thus, replacing the integrand by its maximum value, we immediately
get the well-known upper bound on Q(x), namely, Q(x) < % exp(—x?/2), which
is the Chernoff bound. As we shall see on many occasions later in the book,
the advantage of this observation is that the form of Q(x) in (4.2) allows
manipulations akin to those afforded by the Chernoff bound but without the
necessity of invoking a bound! In principle, one simply operates on the integrand
in the same fashion as if the Q-function had been replaced by the Chernoff
bound, and then at the end performs a single integration over the variable 6. For

' This form of the Gaussian Q-function was earlier implied in the work of Pawula et al. [2] and
Weinstein [3]. The earliest reference to this form of the Gaussian Q-function found by the authors
appeared in a classified report (which has since become unclassified) by Nuttall [4]. The relation given
there is actually for the complementary error function, which is related to the Gaussian Q-function

by erfc(x) = 20(+/2x).
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example, many problems dealing with sequence detection whose error probability
performance was heretofore characterized by a combined union—Chernoff bound
can now be described by just a union bound, thereby improving its tightness.
This behavior is discussed in more detail in Chapter 12.

4.1.2 Two-Dimensional Case

The normalized two-dimensional Gaussian probability integral is defined by

x* + y? —2pxy

l oo oo
Q(-xls )’1,;0) = o /—1 — I()z /x\l /yl exp |:_ 2(1 _ pz) :| d-Xdy (43)

Rewriting (4.3) as

1
Q(xl,yl,P)—m
/oo/oo { (x+x1)? 4+ (y+ y1)* = 2p(x 4+ x1)(y + y1)
X exp|—
o Jo 2(1 — p?)

dxdy

4.4)
we see that we can interpret this double integral as the probability that a signal
vector s = (—xj, —y;) received in correlated unit variance Gaussian noise falls
in the upper right quadrant of the (x, y) plane. Defining

S=+/x*+y% ¢, =tan" % (4.5)
1

then using the geometry of Fig. 4.1, it is straightforward to show that Q(xy, y;; p)
can be expressed as

1 /n/z—qx V1= p? [ 51— o sin 260 cos? %] 40
0

QU yizp) = 50 1—psin20 P17 0= 2 sinto

1% J1-p2 l 52 1 — psin 26 sin2 ¢,

_l’_ -
2 (1—p% sin%6

- do  (4.6)
27 Jo 1 — psin26

which using (4.6) simplifies still further to

1 7/2—tan" !y /x| 1 — p2 21— psin26
/ VIZP ol Lz psinst b,
0

O(x1, y1; p) = o

1— psin260 2 (1 — p2)sin?6
1 n/a 1 — p? y? 1 — psin26
+ 5= o exp [~
2 Jo 1 — psin20 2 (1 - p?)sin“4

4.7
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Ne ®O=(x+x))+j(y+y;)
(0024 )22 06+ X1 ) (y+ 1) =NZ(1-psin 20)
s
6=%-0

<p<” T_ y N
¢s—®—2 0<6<5-¢s A

ds
00% R
% 0{59 /

NeJ'=(x+x)+j(y+y1)
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e Vs

Figure 4.1. Geometry for (4.6).

For the special case of p = 0, (4.7) simplifies to

O(x1, y1;0) = O(x1)O(y1)

1 /2—tan~! y; /x; X]Z
= — exp 3. do
21 Jo 2sin“ 6

1 tan~! y; /x| 2
N
+ exp| ———5— | db 4.8)

27 Jo 2sin? 0

In addition, when x; = y; = x, we have

2

/4
0(x, x;0) = 0*(x) = %/ exp< a >d9 (4.9)
0

" 2sin0
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which is a single-integral form for the square of the Gaussian Q-function.” The
form of the result in (4.9) can also be obtained directly from (4.1) by squaring
the latter, rewriting it as a double integral of a two-dimensional Gaussian PDF,
and then converting from rectangular to polar coordinates (see Appendix 4A).
Comparing (4.9) with (4.2), we see that to compute the square of the one-
dimensional Gaussian probability integral, one integrates the same integrand but
only over the first half of the domain.

4.2 MARCUM Q-FUNCTION

Motivated by the form of the alternative Gaussian Q-function in (4.2), one
questions whether a similar form is possible for the generalized Marcum Q-
function [8], which as we shall see in later chapters is common in performance
results for communication problems dealing with partially coherent, differentially
coherent, and noncoherent detection. We now present the steps leading up to this
desirable form and then show how it offers the same advantages as the alternative
representation of the Gaussian Q-function. For simplicity of the presentation,
we shall first demonstrate the approach for the first-order (m = 1) Marcum Q-
function and then generalize to the mth-order function, where in general m can
be noninteger as well as integer. The derivations and specific forms that will
be derived can be found in Ref. 9, with similar derivations and forms found
in Ref. 10.

4.2.1 First-Order Marcum Q-Function

The first-order Marcum Q-function, Q;(s, ,/y), is defined as the complement
(with respect to unity) of the CDF corresponding to the normalized noncentral chi-
square random variable, ¥ = Zizl X2, whose canonical representation is in the
form of a semi-infinite integral of the corresponding probability density function
(PDF), namely,’

[e'¢) 2 2
Ql(&ﬁ)=/ Xexp <_x ;—s

J3

) To(sx) dx (4.10)

where s? is referred to as the noncentrality parameter. Also, for simplicity

of notation, we shall replace the arguments s and ,/y in (4.10) by o and B,

2 This result can also be obtained from Lebedev [7, Chap 2, Prob. 6] after making the change of
variables 6 = /2 — tan~! ¢.

31t is common in the literature to omit the “1” subscript on the Marcum Q-function when referring
to the first-order function. For the purpose of clarity and distinction from the generalized (mth-order)
Marcum Q-function to be introduced shortly, we shall maintain the subscript notation.
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respectively, in which case (4.10) is rewritten in the more common form*

00 2 2
0i(a, B) =/ xexp <—’“2L“) To(ax) dx @.11)
B

Using integration by parts, it has also been shown [12,13] that the first-order
Marcum Q-function has the series form

2 2 o0 k
0@, ) = exp (—#) (%) Iu(@p)

k=0

2 00
=exp [—7(1 + zz)} 3 LB (4.12)

k=0

where ¢ 2q /B. The reason for introducing the parameter ¢ to represent the ratio
of the arguments of the Marcum Q-function is in the same sense that the definition
in (4.10) has one argument that represents the true argument of the function (i.e.,
J/¥), whereas the second argument (i.e., s) is a parameter. More insight into the
significance of ¢ in the digital communications application and its dependence
on the modulation/detection form is given in Chapter 5. Suffice it to say at the
moment that in terms of the analogy with Craig’s result, we are attempting to
express the Marcum Q-function as an integral with finite limits and an integrand
that is a Gaussian function of 8.

41t is interesting to note that the complement (with respect to unity) of the first-order Marcum Q-
function can be looked upon as a special case of the incomplete Toronto function [11, pp. 227-228],
which finds its roots in the radar literature and is defined by

‘B
Tg(m,n,r) = ppn=ml =1 / t’"fneftzln 2rt)dt.
0

In particular, we have

Ty (1,0, %) =1-0i( B).

Furthermore, as § — oo, Q;(«a, B) can be related to the Gaussian Q-function as follows. Using the
asymptotic (for large argument) form of the zero-order modified Bessel function of the first kind,
we get [4, Eq. (A-27)]

e X2+ a2\ exp(ax)
Oi(e, B) = /ﬁ X exp <_ P > m dx

OO I Y e G S _\/§ _
~ am/ﬁ exP[ > }dx— “0(B -
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The modified Bessel function of kth order can be expressed as the integral
[5, Egs. (8.406.3) and (8.411.1)]

1 T . .
L) = — [ (—je /P)*e 500 4.13)
2w J_»

where j = /=1 and it is clear that the imaginary part of the right-hand side of
(4.13) must be equal to zero [since /;(z) is a real function of the real argument
z]. Although (4.13) is not restricted to values of ¢ less than unity, to arrive at the
alternative representation of the Marcum Q-function it will be convenient to make
this assumption. (Shortly we shall give an alternative series form from which an
alternative representation can be derived for the case where the ratio «/f is
greater than unity.) Thus, assuming in (4.13) that 0 < ¢ < 1, after substitution in
(4.12) we obtain

2 1 o0 . .
Oi(a, B) =exp |:—%(1 4 ZZ):| E / Z[é-(_je—ﬂ)]ke—ﬂ“;smede

T k=0
_ /32 2 1 " 1 —p%¢sind
= exp |:—2(1+§ ) g[ﬂ me do (4.14)

Simplifying the complex factor of the integrand as

1 . 1 1 +&(sin® — jcosb)
14+¢(je %) 1+(sin@+ jcos) (1 +¢sind)? + (£ cosb)?
. 1 4 &(sin@ — jcosb)
14 2sin6 422

(4.15)

and recognizing again that the imaginary part of (4.15) must result in a zero
integral [since Q;(«a, B) is real], substituting (4.15) into (4.14) gives the final
result

B 1 [T 14¢&sing
Ql(a,ﬂ)—Ql(ﬁz,ﬂ)—E/_ﬂm
2

X exp {—%(1 +2§sin¢9+§2)] do, B>a>0 (0<c<l)

(4.16)
which is in the desired form of a single integral with finite limits and an integrand
that is bounded and well behaved over the interval —7 < @ < 7 and is Gaussian
in the argument S.

We observe from (4.16) that ¢ is restricted to be less than unity (i.e., o # f).
The reason for this stems from the closed form used for the geometric series
in (4.14), which, strictly speaking, is valid only when ¢ < 1. This special case,
which has limited interest in communication performance applications, has been
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evaluated [14, Eq. (A-3-2)] and has the closed-form result

2 2
01 (e, o) = X 2“ o) (4.17)

For the case o > B > 0, the appropriate series form is [12,13]°

2 2 o k
Oi(e. B) = 1 — exp (—“ Sl )Z<§> Iu(@p)

2 k=1
2 0
=1—exp [—%(1 +§2)} PRI ACKS! (4.18)
k=1

whereupon an analogous development to that leading up to (4.16) would yield
the result’

B _ 1 [™ &+¢sinf
QI(O{’,B)—QI(C(’O[;)—I‘FE _ﬂm

2
X exp {—‘2(1 +2§sin9+§'2)} do, a>p>0 (0<¢<l)

(4.19)

where now ¢ 2 B/a < 1. Once again the expression in (4.19) is a single integral
with finite limits and an integrand that is bounded and well behaved over the
interval —m <60 < m and is Gaussian in one of the arguments, in this case,
«. Aside from its analytical desirability in the applications discussed in later
chapters, the form of (4.16) and (4.19) is also computationally desirable relative
to other methods suggested previously by Parl [16] and Cantrell and Ojha [17]
for numerical evaluation of the Marcum Q-function.

The results in (4.16) and (4.19) can be put in a form with a more
reduced integration interval. In particular, using the symmetry properties of
the trigonometric functions over the intervals (—m, 0) and (0, ), we obtain the
alternative forms

( )= 01 e 1+£¢&cosb
O, B) = Oy ,3@/3)—;/0 m
2
xexp[—%(l:ﬁ:Z{cos@—l—(z)}d@, B>a>0 O0O<¢<)

(4.20)

5 We note that (4.18) is valid even if o < B, but for our purpose the series form given in (4.12) is
more convenient for this case.

6 At first glance it might appear from (4.19) that the Marcum Q-function can exceed unity. However,
the integral in (4.19) is always less than or equal to zero. It should also be noted that the results
in (4.16) and (4.19) can also be obtained from the work of Pawula [15] dealing with the relation
between the Rice le-function and the Marcum Q-function. In particular, equating Egs. (2a) and
(2¢) of Ref. 15 and using the integral representation of the zero-order Bessel function obtained from
(4.13) with k£ = 0 in the latter of the two equations, one can, with an appropriate change of variables,
arrive at (4.16) and (4.19).
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and

~ _ 1 (™ & 4¢&cosh
Qi(a, p) = Qi(e, af) = +;/0 1+2¢cosf + 22

2
X exp {—2(1:&2&0059—{-52)] deé, a>B>0 0<¢<1)

4.21)
Since, as we shall soon see, for the generalized (mth-order) Marcum Q-function
the reduced integration interval form is considerably more complex than the form
between symmetrical (—z, 7r) limits, we shall tend to use (4.16) and (4.19) when
dealing with the applications.
As a simple check on the validity of (4.16) and (4.19), we examine the limiting
cases Q;(0, B) and Q; (e, 0). Letting £ = 0 in (4.16), we immediately have the
well-known result

,32
01(0, p) = exp <—7> (4.22)

Similarly, letting £ = 0 in (4.19) gives
Oi(er, 0) =1 (4.23)

Simple upper and lower bounds on Q;(«, 8) can be obtained in the same
manner that the Chernoff bound on the Gaussian Q-function was obtained from
(4.2). In particular, for 8 > « > 0, we observe that the maximum and minimum
of the integrand in (4.16) occurs for 8 = —m/2 and 6 = 7/2, respectively. Thus,
replacing the integrand by its maximum and minimum values leads to the upper
and lower “Chernoff-type” bounds

1 2(1 4+ &)2 1 201 — £)?
TP [—'B(%} = Q1B B) = Tz P {—'B(%} (4.24a)
or equivalently,
2 o2
T R L sl IR EX

which, in view of (4.22), are asymptotically tight as « — 0.

For a > >0, the integrand in (4.19) has a minimum at 6 = —x/2
and a maximum at 6 = 7/2. Since the maximum of the integrand, [{/(1 +
o)l exp[—a?(1 + £)?/2], is always positive, the upper bound obtained by replacing
the integrand by this value would exceed unity and hence be useless. On the other
hand, the minimum of the integrand, —[¢/(1 — &)] exp[—a?(1 — £)?/2] is always
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negative. Hence a lower Chernoff-type bound on Q) (a, B) is given by’

¢ { (1 =¢)
l———exp|——

s o (4.25a)

or equivalently,

[ (@ — )
exp |—
oa—p 2
Another alternative and in some sense simpler form of the first-order Marcum
Q-function was recently disclosed in Ref. 18. This form dispenses with the
trigonometric factor that precedes the exponential in the integrands of (4.16)
and (4.19) in favor of the sum of two purely exponential integrands each still
having the desired dependence on 8 or « as appropriate. In particular, with a
change in notation suitable to that used previously in this chapter, the results
obtained in Ref. 18 can be expressed as follows:

1—

] < 0@ B 4.25b)

b4 2
Oi(a, B) = Qi1(Bg, p) = %/ {exp {—%(1 +2Zsin6 + 52)]

-7

2 2N\2
+exp {—ﬂ <“‘“>]}d@ B=a>0 (0<¢<1)
2 \1+2¢sinf + &2
(4.26)

2

Oi(a, B) = O1(a,ag) =1+ L ! {exp {—a—(l + 2&sinf + Cz)}
4 J_, 2

052 < (] _ 4—2)2

—exp {_ 1+ 22sin6+ 22

5 >Hd@, a>p>0 (0<¢<1)

4.27)

or equivalently, in the reduced forms analogous to (4.20) and (4.21):

01(@. ) = 01 (BL. B) = i/ﬂ {ex {—’B—z(lizgcose—kgz)}
RGPy =tbs = |, 15|72

+exp[—ﬁ—2(—(1_52)2 )”de, B=a>0 (0<Z<I)
2 \1+2cosf+ &2
(4.28)

1 T az 5
Ql(a,ﬂ)=Q1(a»a§)=1+—/ {exp [——(lzl:zgcose—i-;)]
2 0 2

a2 ( (1 _ ;2)2

— P [__ 1+2Lcos6 + &2

> )]}dG, a>=p=0 (0=f=<1

(4.29)

7 Clearly, since Q1 (c, B) can never be negative, the lower bound of (4.25a) or (4.25b) is only useful
for values of the arguments that result in a nonnegative value.
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Since the first exponential integrand in each of (4.26) through (4.29) is identical
to the exponential integrand in the corresponding equations (4.16), (4.19), (4.20),
and (4.21), we can look upon the second exponential in the integrands of the
former group of equations as compensating for the lack of the trigonometric
multiplying factor in the integrands of the latter equation group.

The forms of the Marcum Q-function in (4.26) and (4.27) [or (4.28) and (4.29)]
immediately allow obtaining tighter upper and lower bounds of this function than
those in (4.24) and (4.25). In particular, once again recognizing that for § > o > 0
the maximum and minimum of the first exponential integrand in (4.26) occurs for
0 = —m/2 and 6 = 7/2, respectively, and vice versa for the second exponential
integrand, we immediately obtain®

2 2
exp {—w (4.30a)

B —4)2]
2

] =< Qi(BS, B) < exp [—f

or equivalently,

2
@ (4.30b)

B —Ot)z]

] < Oi(a, B) <exp {— 2

exp |-

Making a similar recognition in (4.27), then for @ > > 0 we obtain the lower
bound

] (1 — &)? o?(1+¢)?
oo 2 o]

]} < Oi(a,as) (4.3la)

or equivalently,’

_ B)2 2
= % {eXP [_w} —exp [—@} } < Qi(@, B) (4.31b)

81t has been pointed out to the authors by W. F. McGee of Ottawa, Canada that the same tighter
bounds can be obtained from (4.16) by upper and lower bounding only the exponential factor in
the integrand (thus making it independent of the integration variable 6) and then recognizing that
the integral of the remaining factor of the integrand can be obtained in closed form and evaluates
to unity. We point out to the reader that this procedure of only upper and lower bounding the
exponential is valid when the remaining factor is positive over the entire domain of the integral as
is the case in (4.16).

9 Note that the upper bound in this case would become

a2
Ql(a,ﬂ)<1+%{exp [—(“ 2’3) } —ex

_@+p)?
2

which exceeds unity and is thus not useful.
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We note that the bounds in (4.31a) and (4.315) cannot be obtained directly from
(4.19) by lower bounding the exponential in the integrand since the factor that
precedes it is not positive over the entire domain of the integral. We also note
that although tighter bounds on the first-order Marcum Q-function have recently
been obtained by Chiani [19], they are not in the desired form and thus are not
helpful in applying the MGF-based approach to upper bound the average BEP
performance of noncoherent and differentially coherent communication systems
perturbed by slow fading.

Before concluding this section, we alert the reader to the inclusion of the
endpoint « = 8 (¢ = 1) in the alternative representations of (4.26) through
(4.29), all of which yield the value of Q)(x, «) in (4.17). This is in contrast
to the alternative representation pairs (4.16), (4.19) or (4.20), (4.21), which yield
different limits as o approaches g (¢ approaches 1) from the left and right, respec-
tively. The reason for these different left and right limits [the arithmetic average
of which does in fact produce the result in (4.17)] is again tied to the fact that
these representations rely on the convergence of a geometric series which, strictly
speaking, is not convergent at the point £ = 1. On the other hand, the derivation of
the representations in (4.26) through (4.29) is based on a different approach [18]
and as such are continuous across the point & = 1. Thus, even in the neighborhood
of £ = 1, one would anticipate better behavior from these representations.

4.2.2 Generalized (mth-Order) Marcum Q-Function

The generalized Marcum Q-function is defined analogous to (4.10) by

o0 ( x2+s2

1
Qm(ss ﬁ) = xm eXP 2

; > L1 (sx)dx (4.32)
s Jy

or, equivalently,'®

10 The complement of the generalized Marcum Q-function can also be viewed as a special case of
the incomplete Toronto function. In particular,

Tﬁ/ﬁ <2m_ I,m—1, %) =1-0nla, B)

Furthermore, as 8 — 0o, Oy, («, B) can be related to the Gaussian Q-function in the same manner
as was done for the first-order Marcum Q-function. Specifically, since the asymptotic (for large
argument) form of the kth-order modified Bessel function of the first kind is independent of the

order, then
o0 /] 2+ a? )\ exp(ax)
Qm(as ﬁ) — /ﬁ X (a) exp <_ 2 ) m dx
(ﬂ)”l—l/z 1 /ooe (xia)z 4
~ = — Xp | — x
o 2w Jp P 2

m—1/2
= (g) 0B -
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00 2 2
/ X" exp (—x to )Im_l(ax)dx (4.33)
B

Om(a, B) = 2

am—l

where for m integer, the canonical form in (4.32) has the significance of
being the complement (with respect to unity) of the CDF corresponding to the
normalized noncentral chi-square random variable, ¥ = ZZ’;] X2. It would be
desirable to obtain integral forms analogous to (4.16) and (4.19) to represent the
generalized Marcum Q-function regardless of whether m is integer or noninteger.
Unfortunately, this has been shown to be possible only for the case of m integer,
at least in the sense of an exact representation [9,10]. As we shall see from
the derivation of these forms, however, the ones derived for m integer are also
applicable in an approximate sense to the case of m noninteger in certain regions
of the function’s arguments. Thus, we begin by proceeding with an approach
analogous to that taken in arriving at (4.16) and (4.19) without restricting m to
be integer, applying this restriction only when it becomes necessary. The details
are as follows.

Applying integration by parts to (4.33) with u = x""'1,_j(ax) and dv =
x exp[— (x> + &?)/2]dx and using the Bessel function recursion relation
L1 (x) — Iy (x) = 2m/x)I,(x) [20, Eq. (9.6.26)], it is straightforward to show
that the generalized Marcum Q-function satisfies the recursion relation

m—1 2 2
Onle. B) = (g) exp (—“ ;’3 >1m_1(oeﬂ>+Qm_1<a, B (434

Recognizing that regardless of the values of o and B, Q_(«, B) =0 and
Oco(a, B) = 1, then iterating (4.34) in both the forward and backward directions
gives the series forms

2 2 o r
(e, p) = exp (—“ Sl ) 3 (%) 1_,(@p) (4.35)

2

r=1—-m

and

2 2 o r
Ol f) = 1 — exp (—“ f )Z (5) 1,(@p) (436)

Note that when m is integer, the values of the summation index r are also integer,
and since in this case I_,(x) = I,.(x), we can rewrite (4.35) as

2 2 S r
On(@, ) = exp (—“ ;ﬁ ) > (%) I(@p) (4.37)

r=1—m

Equations (4.36) and (4.37) are the series forms of the generalized Marcum Q-
function that are found in the literature and apply when m is integer. When m is
noninteger, the values of the summation index r are also noninteger, and since
in this case I_,(x) # I,(x), then (4.37) is no longer valid; instead one must use
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(4.35). Note that (4.36) is valid for m integer or m noninteger and together with
(4.37) reduce to (4.18) and (4.12), respectively, for m = 1.

Although the discussion above appears to make a mute point, it is important
in the approach taken in Ref. 9 since certain trigonometric manipulations
applied there when deriving the alternative representation of the Marcum
QO-function from the series representation hold only for m integer. Despite
this fact, however, if the /,(x) function could still be represented exactly
by the integral I,(x) = (1/27) [7 (—je #%)'e*5"?df [which is the same as
(4.13) with r substituted for k], then even though the summation indices in
(4.36) and (4.37) are noninteger, adjacent values are separated by unity and
the same geometric series manipulations could be performed as were done
previously for the first-order Marcum Q-function. Unfortunately, however, the
integral representation of /,(x) above is approximately valid only when its
argument x is large irrespective of the value of r, and thus the steps that
follow and the results that ensue are only approximate when m, the order
of the Marcum Q-function, is noninteger. In what follows, however, we shall
proceed as though this integral representation is exact (which it is for r
integer, or equivalently, m integer) with the understanding that the final integral
representations obtained for the mth-order Marcum Q-function will be exact for m
integer and approximate (for large values of the argument 8 or « as appropriate)
for m noninteger.

As discussed previously with regard to the application of the alternative
representation, it is convenient to introduce the parameter { < 1 to represent the
ratio of the smaller to the larger of the two variables of the Marcum Q-function.
We can therefore rewrite (4.35) and (4.36) as

2 o0
0n(BE, B) = exp [—’i(lﬂ%} S UL, 0t <c=a/f<1 (438)
r=1-m
2 o0
On(e, a8) = 1 —exp {—0‘2(1+;2>]Z¢’1r(a2¢), 0<¢2pla<1 (439)

Letting N <m < N + 1 (i.e,, N is the largest integer less than or equal to m),
substituting the integral form of the modified Bessel function in (4.38) gives

e ¢}

2 1 7 . o
Om(BE, B) = exp {—%(1 +§2)] o /_ﬂ (= je )T B gg

r=1—-m

T Lr=1-m

ﬁZ 1 x [ N-m )
= exp |:_2(1 +é.2):| g/. l Z (ej(0+”/2)g‘)’

e ¢}
+ ) (ej(9+”/2)§)’1 e~FEsin? gg (4.40)
r=N-m+1
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Recognizing as mentioned above that the sums in (4.40) are still geometric series
despite the fact that the summation index r does not take on integer values, we
obtain

B ,] 1
mwam=WpP7a+gﬂf_
JT

T ) 1— ;NejN(O-&-ﬂ/Z)
% é-*(mfl)e*j(mfl)((?‘lrﬂ/z)
1 — é‘ej(9+ﬂ/2)

-
1

N+1—m j(N-+1—m)(6+7/2)
+¢ ¢ 1 — £elO+/D

] e P09 (4.41)

Since Q,,(a, B) is a real function of its arguments, then taking the real part of
the right hand side of (4.41) and simplifying results in the desired expression

17 Dcos[(m — 1)(6 + 7/2)] — & cos[m(60 + 1/2)]}
Qm(ﬂgﬂﬁ)_gln 1+2§s1n9—|—§’2
2

xexp{—%(l—i—nginQ—}—Zz) ds, 0" <c=a/B<1 (4.42)

Note that the limit of Q,,(8¢, B) as & — 0 is difficult to evaluate directly from the
form in (4.42), which explains the restriction on its region of validity. However,
this limit can be evaluated starting with the integral form of (4.33) and using the
small argument form of the modified Bessel function, that is,

(z/2)"

1,(2) ~ 443
(2) ot D) (4.43)
When this is done, the following results:
['(m, B2/2)
On(0, B) = Fiﬂ/ (4.44)
(m)

where I'(«, x) is the complementary Gauss incomplete gamma function [5,
Eq. (8.350.2)]. Using a particular integral representation of I'(o,x) [21,
Eq. (11.10)], then after some changes of variables, Q,,(0, 8) can be put in the
desired form,

2m /2 2
0n(0.8) = cos6 m« p >w 4.45)

21T (m) Jo (sin §)1+2m - 25sin2 6

For m integer, the gamma function can be evaluated in closed form [5,
Eq. (8.352.2)] and (4.44) reduces to
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2 n!

m—1 2 2 /2y
0(0, B) = Zexp( ) G (4.46)
n=0

which is a special case of another form of the Marcum Q-function proposed by
Dillard [22], namely,

00 2 2 2y n+m—1 o ) 2 k
Onl@. )= exp (_%) GRS . (_ﬁ_) E2

] |
= n! pars 2 k!

In a similar fashion, substituting the integral form of the modified Bessel
function in (4.39) gives

2 T 00
On(@, @) =1 —exp [—%(1 + 52)] % /_ ) Z;ﬂ4“(—J'e‘f9)"e—f’2Z SN g

,82 1 T 00 A L
=1—exp {——(1 + 2;2)] _/ Z(ej(eﬁ/z)z:)re—ﬂ-zsmede
2 2 T r=m

(4.48)
where upon recognizing the sum as a geometric series, we get

=1 az 1 2 1
Om(a, 2f) =1 —exp {—7( +¢ )] o

1
1 — zel©@+7/2)

> /” |:é.m+1€j(m+1)(0+71/2) :|e—ﬂ2{sin6 do (4.49)
—7JT

Finally, taking the real part of the right-hand side of (4.49) and simplifying gives
the complementary expression to (4.42), namely,

On(o,af)=1— i /n g"™{cos[m(0 + 7 /2)] — ¢ cos[(m — 1)(6 + 7 /2)]}

2 J_ 1 +2sin6 + &2

2
X exp [—%(1 +2¢sinf + ;2)] do, 0<¢=pBla<1 (4.50)

For m integer, (4.42) and (4.50) simplify slightly to

1T (=)D Dlcos(m — 1)0 + £ sinmb)]
Qm(ﬂé" ﬁ) - Z . 1 + 2&-511,19 _}_4—2

2
X exp [—%(1 +2§sin9+§2)] do, 0" <i=a/f<1, modd

4.51)
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1T (=12 D[sin(m — 1)6 — & cos mb]
Qm(ﬂé" ﬁ) - Z . 1 + 2&— sin O + 2:2

2
X exp {—%(1 +2§sin9+§2)] dg, 0" <¢=a/B<1, meven

m=D/2pmsin m + & cos(m — 1)0]
1 +2¢sind + &2

L)
(e, o) = 1 +—/
21 ),

2
X exp [—%(l—i—Z{sin@—l—(z)} do, 0=¢=p/a<1, modd

(4.52)
1 (7 (=1)"2¢"[cosmd — & sin(m — 1)0]

Om (0, Gor) = . 1 +2¢sin6 + &2

2
xexp{—%(l—l—ksin@—l—é‘z)}d@, 0<t=pBJa<1, meven

which are the forms reported by Simon [9, Eqs. (8) and (10)]. Finally, the limit
of (4.50) as £ — 0 is easily seen to be Q,,(«, 0) = 1, which is in agreement with
the similar result in (4.23) for the first-order Marcum Q-function.

As before, we observe from (4.42) and (4.50) that ¢ is restricted to be less than
unity (i.e., o # B) for the reason mentioned previously relative to the alternative
representations of the first-order Marcum Q-function. For m integer, this special
case has the closed-form result [10]

1 ) llo(az) m—1 ) ‘|

Onla, &) = = +exp(—a) | —— + > L) (4.53)
2 2 p

For m noninteger, the authors have been unable to arrive at an approximate

closed-form result.

Finally, we note that the approach taken in Ref. 18 for arriving at the
alternative forms for the first-order Marcum Q-function given in (4.26) through
(4.29) unfortunately does not produce an equivalent simplification in the case of
the mth-order Marcum Q-function. Similarily, upper and lower bounds on the
mth-order Marcum Q-function are not readily obtainable by upper and lower
bounding the exponential in the integrands of (4.42) and (4.50) since the first
factor of these integrands is not positive over the domain of the integral. Thus,
throughout the remainder of the book, unless the forms in (4.26) through (4.29)
produce a specific analytical advantage, we shall tend to use the alternative forms
of the first-order Marcum Q-function function given in (4.16) and (4.19) because
of their synergy with the equivalent forms in (4.42) and (4.50) for the mth-order
Marcum Q-function.

Despite the fact that upper and lower bounds on the mth-order Marcum Q-
function are not readily obtainable from (4.42) and (4.50), it is nevertheless
possible [23] for m integer to obtain such bounds by using the upper and
lower bounds on the first-order Marcum Q-function given in (4.30a) and (4.30b)
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together with the recursive relation of (4.34).!' In particular, (4.34) can first be
rewritten as

2 2N m—l n
Qu(a, B) = exp <—“ ;ﬂ )Z(f) L(@B) + Qi(e, B) (4.54)

n=1

Now expressing /,(z) in its integral form analogous to (4.13), that is,
1 T
1,(z) = — / €% cos nb do (4.55)
T Jo

and recognizing that the exponential part of the integrand has maximum and
minimum values of e* and e~%, respectively, then because of the n-fold peri-
odicity of cosnf and the equally spaced (by m/n) regions where cosn6 is
alternately positive and negative within the interval 0 < 6 < &, we can upper
bound 7, (z) by'?

n 1 7/2n 1 37/2n 1 2 /n
I,(z) < - <ez/ cosn@d@—i—e‘z—/ cosn@d@—i—ez—/ cosn@a’@)
2 7 Jo 7T Jr/2n 7T J3x/2n

= , z>0 (4.56)

which is independent of n for n > 1. This allows the series in (4.54) to be
summed as a geometric series that has a closed-form result. Finally, using (4.56)
in (4.54) together with the upper bound on Q;(x, B) for 0" < ¢ =a/B < 1 as
given by (4.300), we obtain after some manipulation

—a)? 0
ooz 057 o 57

m—1 m—
e [_(ﬁ+a)2]} (g) {1—@(/;3) 1} w570
2 o 1—a/p

or equivalently,

ﬂz(l—oz} +1{ex {_ﬁz(l—z)z}
2 e 2

B+ 1 [1—g!
_‘”‘p{_ 2 ]}zm-l(l—z) @27)

Om(BE, B) < exp {—

'We emphasize that we are again looking for simple (exponential-type) bounds recognizing that
although these may not be the tightest bounds achievable over all ranges of their arguments, relative
to others previously reported in the literature [23], they are particularly useful in the context of
evaluating error probability performance over fading channels.

12 Note that (4.56) is valid for n odd as well as n even.
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The first term of (4.57a) or (4.57b) represents the upper bound on the first-order
Marcum Q-function, and thus, as would be expected, for m = 1 the remaining
terms in these equations evaluate to zero.

To obtain the lower bound on Q,,(c, B) for 07 < ¢ = a/B < 1, we can again
use the lower bound on Q;(«, B) as given by (4.30b) in (4.54); however, the
procedure used to obtain the upper bound on 7, (z) that led to (4.56) would now
yield the lower bound

6% — ¢F

1,(z) =

(4.58)

which for z > 0 is always less than or equal to zero and therefore not useful
relative to the simpler lower bound 7,,(z) > 0, n > 1. Thus, to get a useful lower
bound on /,(z), we must employ an alternative form of its integral definition,
namely [20, Eq. (9.6.18)]

(z/2)" /n zcos i 2n
I,(2)= ————~ : 4.
(@) Jal(n %) A e sin“ 6d6 (4.59)

Once again replacing the exponential factor of the integrand by its minimum
value, e, we obtain the lower bound

1,(z) > %61 /0 i sin®" 6 d6 (4.60)
2

which using [5, Egs. (3.621.3) and (8.339.2)] yields

n

Z

1@ = Z e

= 4.61)

Finally, substituting (4.61) in (4.54) and using the lower bound on Q;(«, B) as
given by (4.30b) results after some simplification in

27 m=1 92\
(’“"‘)]Z(ﬂ 2V Oup),  O<a<fp @6

P {_ 2 &

or equivalently,

2 1 2+ m—1 2 2 n
exp [—M] > % <Ou(Bs. B, 0<i=a/f<1 (4.63)

2 n=0

Again the first term (corresponding to n = 0) is the lower bound on the first-
order Marcum Q-function, and as would be expected, for m = 1 there are no
other terms in the sum. Also, for { = 0, (4.63) becomes equal to the exact result
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for 0,,(0, B) as given by (4.46). Thus one would anticipate that the lower bound
would be asymptotically tight for small values of ¢.

For the parameter range 0 < ¢ = /o < 1, we can obtain a lower bound on
On(a, B) by using the lower bound on the first-order Marcum Q-function as
in (4.31b) together with the lower bound on /,(z) as given by (4.61), which

results in
= oo [ E5E] -ap[-£27])
2P 2 P 2

{ (a+ﬁ>2r ‘(ﬂZ/ 2y

n=1

+exp < Oula, B) (4.64a)

or equivalently,

o [ e[
5 1 XP > exp 5

201 _ 27 m-1 242 n
M] &2y < Qula,al)  (4.64b)

+ exp {— 2 0

n=1

Figures 4.2, 4.3, and 4.4 are plots of Q|(«, B), O2(«, B), and Q4(c, B) versus S
together with their upper and lower bounds, as determined from (4.57a) and (4.62)
for values of @ = 1, 5, and 10, respectively. Also illustrated are Chernoff-type
upper and lower bounds derived from Ref. 23.'3 We observe that as anticipated
the upper bound of (4.57a), corresponding to B > « is asymptotically tight,
whereas for the same region, the lower bound as given by (4.62) is quite loose and
gets looser as «/ B increases. Fortunately (we shall see why in later chapters), the
reverse is true for the lower bound of (4.64a), corresponding to the region o > S
(i.e., it is always extremely tight). In the case of (4.64a), the lower bound was
examined both with and without the additional term involving the summation,
the latter being equivalent to (4.31b). Over the range of values considered, the
numerical results that take into account the presence of the extra series term are
indistinguishable (when plotted) from those without it. Hence we can conclude
that this series term can be dropped without losing tightness on the overall result.
This observation will be important in the application discussions that follow in
later chapters.

131t is to be noted that whereas these upper and lower bounds of Ref. 24 are of interest on their own,
their regions of validity do not share a common boundary in the o versus § plane, thus prohibiting
their use in evaluating upper bounds on expressions containing the difference of two Marcum Q-
functions with reversed arguments [i.e., Oy, (c, 8) — O (B, «)]. We shall see later in the book that
expressions of this type are characteristic of many types of error probability evaluations over fading
channels, and thus upper bounding such error probabilities requires an upper bound on the first
Q-function and a lower bound on the second, with a boundary between their regions of validity
given by o« = . The bounds presented in this chapter clearly satisfy this requirement, and thus with
regard to the primary subject matter of this book, they are the only bounds of interest.
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Exponential Bounds on the First Order Marcum Q—-function
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Figure 4.2. Plots of Q1(1, 8), Q2(1, B), Q4(1, B), and their bounds versus B: —, Exact; *, upper
bound (4.57a); x, Chernoff upper bound from Ref. 23; %, Chernoff lower bound from Ref. 23;
A, lower bound of (4.62).

4.3 OTHER FUNCTIONS

Before going on to discuss how these alternative representations of the
Gaussian and Marcum Q-functions allow for unification and simplification of
the evaluation of average error probability performance of digital communication
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Exponentlal Bounds on the First Order Marcum Q-function
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Figure 4.3. Plots of Q1(5, 8), Q2(5, B), Q4(5, B), and their bounds versus 8. —, Exact; *, upper
bound of (4.57a); x, Chernoff upper bound from Ref. 23; %, Chernoff lower bound from Ref. 23;
A, lower bound of (4.62).

107%0

0 2 4

over generalized fading channels, we consider alternative representations of yet
two other functions that can be derived from the results above and are also of
interest in characterizing this performance.

One function that occurs in the error probability analysis of conventional
noncoherent communication systems and also in certain differentially and
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Exponential Bounds on the First Order Marcum Q-function

0 Exponential Bounds on the Second Order Marcum Q—function
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o Exponential Bounds on the Fourth Order Marcum Q—function
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Figure 4.4. Plots of Q1(10, B), Q2(10, 8), Q4(10, B), and their bounds versus B. —, Exact;
*, upper bound of (4.57a); x, Chernoff upper bound from Ref. 23; +, Chernoff lower bound
from Ref. 23; A lower bound of (4.62). Note that the lower bound given by (4.62) and the
Chernoff upper bound from Ref. 23 (m = 4) are out of the range of the plot.
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partially coherent communication systems is exp[—(a? + 8%)/2]Io(aB), where
typically, 8 > a > 0. Once again defining { = o/8 < 1 and using (4.12), we get
a form analogous to (4.16), namely,

2 2 T 2
exp (—“ il >Io(aﬂ)= = [Cew [—ﬂ—(uzzsmeﬂz) do (4.65)
2 2 ). 2

A second function that is particularly useful in simplifying the error probability
analysis of conventional differentially coherent communication modulations (i.e.,
M-DPSK) transmitted on the AWGN and fading channels and again has the
desirable properties of finite integration limits and a Gaussian integrand was
developed by Pawula et al. [2] in the general context of studying the distribution
of the phase between two random vectors. In particular, for the M-DPSK
application, consider the geometry of Fig. 4.5, where s; = Ae/?' and s, = Ae/??
represent the signal vectors transmitted in successive symbol intervals and
Vi = Rie/" and V, = Rye/” are the corresponding noisy observations. The
components of the zero-mean Gaussian noise vectors that produce V; from s;
and V, from s, each have variance o> and are uncorrelated. Denoting the angle
between the signal vectors by A® = (¢ — ¢;) modulo 2 and the corresponding
angle between the noisy observation vectors by ¢ = (6, — 6;) modulo 27, Pawula
et al. [2] defined the function

Fooy — sin(A¢ — ) [7/? 1
W) = 4 —x2 1 —cos(A¢p — yr)cost
2
X exp {—%[1 — cos(A¢ — ) cos t]} dt (4.66)

which like a probability distribution function is monotonically increasing in
the interval —m < v < except for a jump discontinuity at ¢ = AP, where

Figure 4.5. Geometry for angle between vectors perturbed by Gaussian noise.
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F(A®™) — F(A®"T) = —1. For evaluating the symbol error probability of
M-DPSK conditioned on a fixed amplitude A, the special case of A® =0 is
of interest since the symmetry of the problem allows one arbitrarily to assume
transmission of a zero information phase (i.e., successive transmission of two
identical signal vectors). For this case, (4.66) simplifies to

siny [7/? 1 A?
— Xp —F(I—COSWCOSI) dr (4.67)

F(y) =

e
4w J_zp 1 —cosycost

Once again notice the similarity in form of (4.66) and (4.67) with the
representations of the Gaussian and Marcum Q-functions in (4.2) and (4.16),
respectively.

Using the approach taken in Ref. 18 to arrive at the alternative forms of the
first-order Marcum Q-function in (4.26) through (4.29), a somewhat simpler form
of (4.67) can be obtained as

F() o A SV ) )
=—— exp|l —————"— .
4 J_ ey Pl 72021 + cosyrcost
Here the trigonometric factor in the integrand of (4.67) is replaced by a different
integrand for the exponential as well as integration limits that depend on the
argument of the function.
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APPENDIX 4A: DERIVATION OF EQ. (4.2)

In this appendix we present two proofs of the alternative form of the Gaussian
QO-function given in Eq. (4.2). (A third proof can be obtained by applying the
asymptotic relation between the Marcum and Gaussian Q-functions as given in
footnote 4 of this chapter to the closed form of the integral in Nuttall [4, Eq. (74)]
in the limit as b approaches unity.)

Consider the integral in Gradshteyn and Ryzhik [5, Eq. (3.363.2)], namely,

v

00 e 1
/M = ety (4A.1)
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Multiplying both sides of (4A.1) by %e”" and then letting u = y* gives

1 [0 e—Hxohy
¢ ¢ = o erfe(y /i) (4A.2)

= ——dx
2 2 x1/x_y2 2y

Now let u = x — y? in (4A.2). Then

1 /00 e Hu J Ty erfc(y/F) (4A.3)
— ———=aUu = —¢€ T .
2 )0 Wy T 2y IV

Next, let u = t?, and du = 2t dt = 2./udt. Thus (4A.3) becomes

© e Ty

This intermediate form of the desired result appears as Eq. (3.466.1) in Ref. 5
and also as Eq. (7.4.11) in Ref. 19. In addition, Pawula et al. [2, Eq. (34)] used
it to derive their expression [2, Eq. (71)] for the average symbol error probability
of M-PSK. The reason for mentioning this here is that Pawula et al. point out
clearly that for M = 2, [2, Eq. (71)] reduces to the well-known result for binary
PSK, which is expressed strictly in terms of the Gaussian Q-function. Since for
M =2, [2, Eq. (71)] becomes the representation of Craig [1, Eq. (9)], as given
here in (4.2), it is worthy of note that as early as 1982, Pawula recognized the
existence of this alternative representation. We now proceed with the final steps
to arrive at (4.2).
Let y =1 and u = z? in (4A.4), which results in

2 o0 e—zz(tz—H)
— ——dt = erfc(z 4A.5
- /0 2 erfe(z) ( )

Finally, let sin>0 = (1> + 1)7!, cos?0 = r2(1* + 1)~ and dr = — (1> + 1)d6, in
which case (4A.5) becomes the desired result

2 /2 Z2
— / exp <——> do = erfc(z) (4A.6)
0

T sin” 6

or equivalently, letting z = x/+/2,

1 /2 .X2
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Another neat method of arriving at (4.2) is to start by extending the definition
in (4.1) (with some name changes in the variables) to two dimensions, namely,

0 2 2
w1 T er (D) ()

// ( ¥+ y)dydx (4A.8)

Now make the change of variables from rectangular to polar coordinates, that is,

X =rcos¢
y=rsing
dxdy =rdrd¢ (4A.9)
Thus
1 /2 oo r2
0@ =— / / rexp (——) drd¢
T Jo z/cos¢ 2
1/ﬂ ( 3 )d¢ (4A.10)
= — exp| ——— .
7 Jo P 2cos? ¢

Finally, letting x = z and 0 = /2 — ¢, we obtain (4.2).

The advantage of this proof over the former is that it can readily be extended to
arrive at (4.9) for Q°(z) as follows. Once again, start by extending the definition
to two dimensions, namely,

) B © 1 y2 J © 1 xz J
Q(Z)—/ mexp <—7) y mexp <—5) x

2
//ep< +y)dydx (4A.11)

Making the same change of variables as in (4A.9) and dividing the rectangular
region of integration into two triangular parts gives

/4 2
Q2(Z)= / r exp (—) drd¢+—/ / rexp( )drdd)
z/sin¢g 7/ z/cos ¢

: < z >d¢+ : /n/ ( z >d¢ (4A.12)
ex — — ex )
27 Jo P 2sin’ ¢ 27 J 4 P\ 7 2cos2 1)

Letting x = z and also 6 = /2 — ¢ in the second integral, then combining the
two terms, we obtain (4.9).
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USEFUL EXPRESSIONS FOR
EVALUATING AVERAGE ERROR
PROBABILITY PERFORMANCE

As alluded to in Chapter 4, the alternative representations of the Gaussian
and Marcum Q-functions in the desired form are the key mathematical tools
in unifying evaluation of the average error probability performance of digital
communication systems over the generalized fading channel. Before going on
to present the specific details of such performances in the remaining parts
of the book, we digress in this chapter to derive a set of expressions which
can be looked upon as additional mathematical tools that will prove to be
particularly useful in carrying out these evaluations. Each of these expressions
will consist of an integral of the product of the Gaussian or Marcum Q-function
and an instantaneous SNR per bit PDF that is characteristic of the fading
channels discussed in Chapter 2 and will be specified either in closed form,
as a single integral with finite limits and an integrand composed of elementary
(e.g., trigonometric and exponential) functions, or as a single integral with finite
limits and an integrand consisting of a Gauss—Hermite quadrature integral [1,
Eq. (25.4.46)]. Since, as we shall see later, a great deal of commonality exists
among the performances of various modulation/detection schemes over a given
channel type, it will be convenient to have these expressions at one’s disposal
rather than have to rederive them in each instance. It is for this reason that we
have elected to include a mathematical chapter of this type prior to discussing
the practical applications of such tools.

5.1 INTEGRALS INVOLVING THE GAUSSIAN Q-FUNCTION

When characterizing the performance of coherent digital communications, the
generic form of the expression for the error probability involves the Gaussian
Q-function (and occasionally, the square of the Gaussian Q-function) with an
argument proportional to the square root of the instantaneous SNR of the

99
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received signal. In the case of communication over a slow-fading channel, the
instantaneous SNR per bit, y, is a time-invariant random variable with a PDF,
py(y), defined by the type of fading discussed in Chapter 2. To compute the
average error probability! one must evaluate an integral whose integrand consists
of the product of the above-mentioned Gaussian Q-function and fading PDF,
that is,2

1=/0 O(a/y)py(y)dy (3.1

where a is a constant that depends on the specific modulation/detection
combination. If one were to use the classical definition of the Gaussian Q-function
of (4.1) in (5.1) then, in general, evaluation of (5.1) is difficult because of the
presence of ,/y in the lower limit of the Gaussian Q-function integral. If, instead,
we were to use the desired form of the Gaussian Q-function of (4.2) in (5.1), the
result would be

© 1 azy
1=/ / ( 9) do p,(y)dy
" “2” dy| do 52
;/0 UO eXp( 2Sm29) py(¥) V} (5.2)

where the inner integral (in brackets) is in the form of a Laplace transform with

respect to the variable y. Since the moment generating function (MGF)?® of y [i.e.,
A X . .

M, (s)= fooo e*’ p,(y)dy] is the Laplace transform of p,(y) with the exponent

"In this chapter we do not distinguish between bit and character (symbol) error probability.

2 This is the simplest form of integral required to evaluate average error probability performance
and is characteristic of single-channel reception, which we discuss in great detail in Chapter 8. More
complicated (e.g., multidimensional) forms of integrals are required to evaluate the performance of
multichannel reception (see Chapter 9). However, in a large majority of cases, the new representation
of the Gaussian Q-function allows these to be partitioned into a product of single-dimensional
integrals of the type in (5.1). Thus it is sufficient at this point to consider only integrals of this type.
3 For a real nonnegative continuous random variable X, most textbooks dealing with probability
define the moment generating function by Mx(t) = E{e™X} = foo e px (x)dx, where t is a real
variable. Based on this definition the nth moment of X would then be obtained from

dar
E{X"} = WMX(T) o

Since our interest is primarily in the transform property of the moment generating function rather
than on its ability to generate the moments of the random variable, for convenience of notation
we replace the real variable ¢ with the complex variable s, in which case the Laplace transform of
the PDF is given by Mx(—s) = Do e ¥ px(x)dx. Also, if s is purely imaginary (i.e., s = jw) one
obtains the characteristic funcnon namely,

Yy (@) = E(eX) = /0 % py (x) dx = My (jo)
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reversed in sign, (5.2) can be rewritten as

1 /2 a2
I =— M,|———]db 5.3
T /0 4 < 25in29) (5-3)

Since tables of Laplace transforms are readily available, the desired form of
the Gaussian Q-function therefore allows evaluation of 7 in the simplest possible
way, in most cases resulting in a single integral on 6 (when the Laplace transform
is available in closed form). In the remainder of this section, we evaluate I of
(5.3) for the variety of fading channel PDF’s derived in Chapter 2.

5.1.1 Rayleigh Fading Channel

The simplest fading channel from the standpoint of analytical characterization
is the Rayleigh channel, whose instantaneous SNR per bit PDF is given by
[see (2.7)]

1
py(¥) = —exp (_E) , y=>0 (5.4)
Y Y

where ¥ is the average SNR per bit. The Laplace transform of the Rayleigh PDF
can be evaluated in closed form with the result [2, Eq. (17)]

1
My(—S) = m, s> 0 (55)

Substituting (5.5) into (5.3) gives

A 12 @’y )‘ 1 a*y/2
I=I,(a,y)=— 14+ — dd=—-|1—/———— 5.6
@) n/o < 2sin% 0 2 1+a%y/2 (5-6)

5.1.2 Nakagami-q (Hoyt) Fading Channel

For the Nakagami-g (Hoyt) distribution with instantaneous SNR per bit PDF
given by [see (2.11)]

y=0 (5.7)

14 ¢ (1+¢*%y (1 —qhy
py(V) = €Xp [— I

2qy 4q%y 4q%y

with Laplace transform [2, Eq. (109)]

202 7712
_ | 4asy
M, (=s)=|14+2s5y + ——= , s> 0 (5.8)

(1+4¢%?
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the integral in (5.3) evaluates to

A B 1 /2 2
I:Iq(av q, V) = -
T Jo

B C]261272

1+ +
sin20” (14 ¢2)?sin* 6

-1/2
1 o (5.9)

5.1.3 Nakagami-n (Rice) Fading Channel

For the Nakagami-n (Rice) distribution with instantaneous SNR per bit PDF
given by [see (2.16)]

1 2y ,—n? 1 2 1 2
py(y)=( +'i)e exp [—( +7n )y} Iy 2nww : y=0
4 Y Y

(5.10)

with Laplace transform*

1 2 25
M—)= " (=" ), ss0 (5.11)
1+n2+sy 1+n2+sy

the integral in (5.3) evaluates to

I=1I,(a,n,vy

1 (72 (1 + n?)sin’6 n’a*y/2

= _ ) — - CXp |[— ) —
7Jo (1+n2)sin°0+ a?y/2 (1 4+ n2)sin° 0 + a?y/2

s>0 (5.12)

k]

To obtain the desired result for the Rician fading channel, we merely substitute
n* = K in (5.12), which results in

121, K,7)
1 [7/2 (1+K)sin’6 Ka*y/2
E/O (14 K)sin? 6 + a2y /2 P A+ K)sin?0+ay/2]
s> 0 (5.13)

5.1.4 Nakagami-m Fading Channel

For the Nakagami-m distribution with instantaneous SNR per bit PDF given by
[see (2.21)]

m., m—1

m"y my

(V) ==, ex (—_> , y>0 (5.14)
7= e P\ Ty

4 This particular Laplace transform is not tabulated directly in Ref. 2 but can be evaluated from a
definite integral in the same reference, in particular, Eq. (6.631.4).
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with Laplace transform [2, Eq. (3)]

My(—s)=<1+57)_ ., s>0 (5.15)
m

the integral in (5.3) evaluates to

1 /2 2= -m
121, m7) = 7/ (1 + ‘”) do (5.16)
T Jo

2msin® 0

which can be evaluated in closed form using the definite integral derived in
Appendix 5A, namely,’

1 [7/? c \ "
—/ <1 +— ) do
T Jo sin” 6

1 2 2N (1= @) s [ c

k=0
. m integer (5.17a)
1 r ! 1 1
ve (m + 2) I,m+—-m+1;, ——
27 (1 4 c)y"V2 T'(m + 1) 2’ 1+c
m noninteger (5.17b)

where F (-, -;-; ) is the Gauss hypergeometric function [1, Eq. (15.1.1)]. Thus,
using (5.17) in (5.16) gives

In(a, m,y)

()3
)

~~_
IT E
(=} .—
A

N
'
VR
N

1 u2<a27/2m)>"]

2y 2
— <ay 2 a y/_ m integer (5.18a)
m m+a?y/2’
1 Va2 T(m+ 1 1
a7y /2m (m 2)2F1 (1,m+—;m+1;7m_ ,
27 (1 +a*y/2m)y"1/2 T'(m + 1) 2 m+ a?y/2
m noninteger (5.18b)

Note that for m = 1, (5.18a) reduces to the result for the Rayleigh case as given
by (5.6).

3 This definite integral appears not to be available in standard integral tables such as Ref. 2.
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5.1.5 Log-Normal Shadowing Channel
For the log-normal shadowing distribution with instantaneous SNR per bit PDF
given by [see (2.25)]

10/1n 10 (101og, ¥ — p)?
exp | —————

py(yY) = —/—— ; >0
7 vV 2mo?y 202
u(in dB) = 10log,y ¥
o(in dB) = logarithmic standard deviation of shadowing (5.19)

the Laplace transform cannot be obtained in closed form. Instead, we substitute
(5.19) into (5.2) directly and then make a change of variables, namely, x =
(101og,y y — i)/~/20, which results in

A
I = ]ln(a’ ,bL, 0)

1 /2 1 00 2
=- / { / exp (— - -1o<xﬁa+ﬂ>/1°) e—xzdx} do (5.0
7 Jo NZ - 2sin” 6

The inner integral can be efficiently computed using a Gauss—Hermite quadrature
integration [1, Eq. (25.4.46)], that is,

lo(xﬁa-&-li)/l()) —de
\/—/ < 25sin% 6 ¢ *

Zw, exp( Y 10<Xfﬁ”+“>/1°> (5.21)

where {x;}, i =1,2,...,n, are the zeros of the nth-order Hermite polynomial
He,(x) and {w;}, i = 1,2, ..., n, are weight factors tabulated in Table 25.10 of
Ref. 1 for values of n from 2 to 20. Since the x;’s and w;’s are independent of 6,
substituting (5.21) in (5.20) and making use of the desired form of the Gaussian
Q-function as given in (4.2), we get

1 n
In(a, p,0) = NE: ZWiQ(aV 10<Xf«/ia+u>/10) (5.22)
i=1

where the value of n is chosen depending on the desired degree of accuracy.

5.1.6 Composite Log-Normal Shadowing/Nakagami-m

Fading Channel

The class of composite shadowing—fading channels is discussed in Section 2.2.3.
A popular example of this class that is characteristic of congested downtown areas
with a large number of slow-moving pedestrians and vehicles is the composite
log-normal shadowing/Nakagami-m fading channel. For this channel, p,(y) is
obtained by averaging the instantaneous Nakagami-m fading average power
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(treated now as a random variable) over the conditional PDF of the log-normal
shadowing, which from (5.14) and (5.19) results in the composite gamma/log-
normal PDF

o) mmym—l my
0= [ gt (-'g)
10/1n 10 10log,) @ — p)?
x {/711 exp {—( P80 2 ]}dsz, y>0  (5.23)
27?2 Q 20

Since the Laplace transform of the Nakagami-m fading portion of (5.23) is known
in closed form [see (5.15)], the Laplace transform of the composite PDF in (5.23)
can be obtained as the single integral

M, (—s) :/0 (1 + %)_

10/1n 10 1010g,0 @ — 11)?
x{/inexp[—( 2810 “)Hdsz, >0 (5.24)
V2mo?Q 20

Substituting (5.24) into (5.2) and then making a change of variables, namely,
x = (10log;, 2 — w)/~/20, results in

A
I = Ig/ln(a, //La o, m)
—m

= — 10W§”+“>/10> e dx| do (525
71/0 «/_/ ( 2msin® 0 ( )

Once again the inner integral can be computed efficiently using a Gauss—Hermite
quadrature integration [1, Eq. (25.4.46)], that is,

—m

1 OO <1 + a 10(}6\/50"1‘#)/10) _xzd
— T e X
VT ) 2m sin’ 6
l n a2 f —m
=— ) w1+ —— - 10% 2”/*)/“’) 5.26
ﬁ; ( 2m sin® 0 20

Since, as mentioned previously, the x;’s and w;’s are independent of 6, then
substituting (5.26) in (5.25) and making use of the closed-form integral in (5.17a),
we get

m—1 | — 2 i k
Ig/ln(a’ w, o, m) ZWl l _M(ci Z <2}€k> ('Z‘((:)> ] s

Ci é

- 10WiV20+1)/10 (5.27)
1 + Ci

i) =
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Before moving on to a consideration of integrals involving the Marcum Q-
function, we give brief attention to integrals involving the square of the Gaussian
Q-function, since these will be found useful when we discuss evaluating average
symbol error probability of coherently detected square QAM over generalized
fading channels. Analogous to (5.1), then, it is of interest to evaluate

1= /O 0*(ay7)p,(v)dy (5.28)

for the various fading channel PDFs. Using the classical definition of the Gaussian
Q-function, such integrals would be extremely difficult to obtain in closed form
since Q? (a,/y) would be written as a double integral each of which has ,/y in its
lower limit. However, in view of the similarity between the desired forms of the
Gaussian Q-function and the square of the Gaussian Q-function [compare (4.2)
and (4.9)], in principal it becomes a simple matter to evaluate I of (5.28) —in
particular, one merely need replace the 7/2 upper limit in the integration on 6 in
the evaluations of I of (5.1) with 7r/4 to arrive at the desired results. Although this
may seem like a simple generalization, depending on the channel, the foregoing
replacement of the upper limit can lead to closed-form expressions that are
significantly more complicated. For the Rayleigh fading channel, the analogous
result to (5.6) is straightforward in view of the fact that the indefinite integral
form of this equation has a closed-form result [see (5A.11) in Appendix SA].
Thus, using (5A.13), we arrive at

A 1[4 a*y !
1=21%a,y) = —/ (1+ ) do
@)= 2sin0

1 22 (4 1+a’y)2
L PN O 7E T WY St 7 (5.29)
4 1+d2y2 \ a*y /2

For the Nakagami-m channel with m integer, the result is considerably more
complex than (5.18a). However, using (5A.17) with M = 4, we obtain

Iélff)(a, m,y)

1 4 25 —m
= 7/ (l + 61}/2> do
7 Jo 2msin” 6

_ror [ ( )%
=1 na ( an™ a) 2 40+ oF

m—1

k
— sin(tan™! @) Z( Tix [cos(tan )P+ } (5.30)

k=1 i=1
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where

c=—,

2m
A c a*y/2
o=y = = = (5.31)
1+c¢ m+ a*y/2
(%)
k
Ty =

(2;"__1.")) 42k — i)+ 1]

and

(5.32)

5.2 INTEGRALS INVOLVING THE MARCUM Q-FUNCTION

When characterizing the performance of differentially coherent and noncoherent
digital communications, the generic form of the expression for the error
probability typically involves the generalized Marcum Q-function, both of whose
arguments are proportional to the square root of the instantaneous SNR of the
received signal. To compute the average error probability over a slow-fading
channel, one must evaluate an integral whose integrand consists of the product
of the above-mentioned Marcum Q-function and the PDF of the instantaneous
SNR per bit. Thus, analogous to (5.1), we wish to investigate integrals having
the generic form

= /0 01(a/7, b/7)p, (¥ dy (5.33)

where a and b are constants that depend on the specific modulation/detection
combination, / the order of the Marcum Q-function, and p,(y) again depends on
the type of fading, as discussed in Chapter 2. As was true for the Gaussian
Q-function, if one were to use the classical definition of the Marcum Q-
function given by Eq. (4.33) in (5.33), then, in general, evaluation of (5.33)
is difficult because of the presence of ,/y in the lower limit of the Marcum
Q-function integral. If, instead, we were to use the desired form of the
Marcum Q-function of (4.42) or (4.50) in (5.33), the result of this substitution
would be

I 1 (7™ &=U=Dicos[(I — 1)(O + m/2)] — & cos[l (O + m/2)]}
_E/_ﬂ 1+ 2¢sin6 + &2

o0 b2y ) 5
X {/ exp {—2(1 +2&sinf + ¢ )} py(y)dy} de,
0

0t <¢=a/b<1 (5.34)
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or

17 geos[1(0 + 7/2)] — geosl(I — 1) + 7/2)]}

I=1-— ;
21 ), 1 +2¢sinf + &2

o0 02}/ ) 5
X {/ exp [—2(1 +2¢sinf + ¢ )] py(y)dy} de,
0
0t <¢=bja<1 (5.35)

where the inner integral is again in the form of a Laplace transform with respect

to the variable y. That is, if, as in Section 5.1, M, (s) 2 fooo e*’ p,(y)dy denotes
the MGF of y, (5.34) and (5.35) can be rewritten as

1™ & Dfcos[(I — 1)(0 + 7/2)] — & cos[1(0 + 7/2)]}

I=— ;
2 ), 1+2¢sinf 4 &2
2
xM, {—%(1 +2¢ sin@—l—{z)} de, 0t <¢=a/b<1 (5.36)
or
J_q_ L [T &Heosll®+7/2)] — feosl( — DO +7/2)])
- 27 ) 1 4 2¢sinf + &2
2
« M, [—%(1 +2§sin0+§2)} 4o, 0" <¢=bla<l  (537)

In the remainder of this section, we evaluate /I of (5.36) for the variety of
fading channel PDFs derived in Chapter 2, where, for simplicity of notation, we
introduce the functions

g(0:0) 2 1+ 2 sin6 + 2
e WA - _ ™\ _ T
he;e )2 ¢ {cos {(1 1)(9+ 2)} £ cos {1 <9+ 2)” (5.38)
Also, the corresponding results for / of (5.37) can then be obtained by inspection.

5.2.1 Rayleigh Fading Channel

For the Rayleigh channel with a Laplace transform of the instantaneous SNR per
bit PDF given by (5.5), the integral I of (5.36) [or equivalently, (5.33) for a < b]
evaluates to

1 (7 hb:¢,1 b2y -
127,067, 1) = E/_ ;(92)) {l—f—Tyg(@;{)] a9 (5.39)



INTEGRALS INVOLVING THE MARCUM Q-FUNCTION 109

5.2.2 Nakagami-q (Hoyt) Fading Channel

For the Nakagami-g (Hoyt) distribution with a Laplace transform of the
instantaneous SNR per bit PDF given by (5.7), the integral I of (5.36) evaluates to

A —
]=Jq(b9é-sq9 V,l)

AR
C2n ). 8650

1/2

2b4—2 2 9; -
TV E @Dl (540

(1+¢*)?

1+ b°yg(6;8) +

5.2.3 Nakagami-n (Rice) Fading Channel

For the Nakagami-n (Rice) distribution with a Laplace transform of the
instantaneous SNR per bit PDF given by (5.11), the integral I of (5.36)
evaluates to

A
I:Jn(baé‘vnaial):
U= or L 560

{ 1+ n? ( n*(b*y/2)8(0; %)
X — exp | — —
1 +n?+ (B*7/2)8(6;) 1+ n%+ (B?7/2)8(6;0)

1 /” h(;¢, 1)

)] do (5.41)

or equivalently, in terms of the Rician parameter

A _ 1 (™ h®;¢, 1)
1=J,0b,6K,7,1) = —
&Ky =50 /_ 5(0:0)
[ 1+ K ( (Kb*7/2)g(6;8)
X — exp | — —
1+ K+ (b?y/2)8(6;%) 1+ K+ (b%y/2)8(6;%)

)} o (5.42)

5.2.4 Nakagami-m Fading Channel

For the Nakagami-m distribution with a Laplace transform of the instantaneous
SNR per bit PDF given by (5.15), the integral I of (5.36) evaluates to

A _ 1 [T @) vy N\
1=J,(,¢& m, y’l)_ﬂ/_ﬂ 20:0) <1+%g(9,§)> do (5.43)

which reduces to (5.39) for the Rayleigh (m = 1) case.

5.2.5 Log-Normal Shadowing Channel

As discussed in Section 5.1.5, the Laplace transform of the instantaneous SNR
per bit PDF for the log-normal shadowing distribution cannot be obtained in
closed form. Thus, we proceed as before and substitute (5.19) directly into (5.34)
and then make a change of variables, namely, x = (10log,, ¥y — 1)/ V20, which
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results in

1 T ho;¢,l

2
[\/_/ ( b g(9 é‘) O(xﬁcr+u)/10 ) e_xzdx :| do (5.44)

The inner integral can be efficiently computed using a Gauss—Hermite quadrature
integration [1, Eq. (25.4.46)], that is,

/ < ng(e é‘) 0(x«/§0+ﬂ)/10> e—xzdx
/J—

1 b*8(6:8) o votsi0
= — Zw,» exp (— . 10201/ ) (5.45)
NE S 2

Substituting (5.45) into (5.44) and making use of the desired from of the
generalized Marcum Q-function as given in (4.42), we get

T &0, 1) = —= > wiQ (bg V10620410, /100 20+10/10)

1
ﬁ i=1
(5.46)

5.2.6 Composite Log-Normal Shadowing/Nakagami-m
Fading Channel

Finally, we consider the composite log-normal shadowing/Nakagami-m fading
channel treated in Section 5.1.6. For this channel, we again make use of the
single integral form of the Laplace transform of p,(y) as given in (5.24),
which upon substitution into (5.36) together with the change of variables
x = (10log,, 2 — i)/~/20 results in

A
I= Jg/ln(b’ é-a M, o, m, l)

_ L [T D / ( bzg(e ) 10(xﬁﬂ+u)/10>_me_xzdx do
2r J-x 8(659) \/_

(5.47)
Once again the inner integral can be computed efficiently using a Gauss—Hermite
quadrature integration [1, Eq. (25.4.46)], that is,

—m

2 .
\/_ / < gz(e’ é‘) . lo(xﬁ(f—ﬂi)/lo) e—xzdx
m

Z ( b? b'g(6;¢) O(x,ﬁa+u)/10> - (5.48)

2m
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Substituting (5.48) in (5.47) and making use of the closed-form integral in (5.17),
we get

_ L | LM resD
Jo/m(b, 8, . 0,m, 1) = ﬁ;wll2n/n g(0:%)

b2 9; —m
x <1 + # : 10<Xfﬁo+u>/10) d@] (5.49)
m

Unfortunately, because a closed-form result was not obtainable for (5.43), we
cannot similarly obtain a closed-form result for (5.49).

5.3 INTEGRALS INVOLVING THE INCOMPLETE GAMMA FUNCTION

In the preceding section, we considered integrals involving the Marcum Q-
function Q,,(«, B), 0 < @ < B, where the desired form of this function as given
by (4.42) was used to simplify the evaluations. A special case of the Marcum
Q-function corresponding to its first argument equal to zero is expressible as
a ratio of complementary Gauss incomplete gamma functions [see Eq, (4.44)].
As we shall see in Chapter 8, integrals involving such a ratio are appropriate
to the unification of the error probability performance of coherent, differentially
coherent, and noncoherent binary PSK and FSK systems over generalized fading
channels. However, since the desired form of the Marcum Q-function of (4.42)
requires that the first argument be greater than zero, the specific results derived
in Section 5.2 cannot be used in this instance. Fortunately, however, the special
case 0,,(0, B) can be put in a separate desired form® as given by (4.45). In this
section we derive the analogous results to those in Section 5.2 using this special
desired form of Q,,(0, B).
Based on the discussion above, then, we are interested in evaluating

> I'(l, b*y/2)

N0 py(n)dy (5.50)

I= /0 010, byP)p, () dy = /0

for the various characterizations of p,(y) or substituting the form of (4.45) in
(5.50), we are equivalently interested in evaluating

° (byy)> [™* cosb b’y
I = _ Y Ndop. (v d 5.51
/0 D) Jo ey P\ Togng ) Oy 55D

6 The desired form of the integral for Q,,(0, B) is slightly less desirable than that for Q,,(a, ), 0 <
a < B, in that the integrand contains a term 2" in addition to the usual Gaussian dependence on S.
Nevertheless, it is still useful in carrying out integrals involving the statistics of the fading channel
by using Laplace transform manipulations.
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Reversing the order of integration and grouping together like variables, we can
rewrite (5.51) as

cos 6 * b2y
— g dyds (552
2 ll“(l)/ (s1n9)1+21/0 v eXp( 25in29> py(dy (5.52)

where the integral on y is in the form of a Laplace transform that is similar to
but slightly more complicated than the MGF of y.

5.3.1 Rayleigh Fading Channel
Substituting (5.4) in (5.52) and making use of Eq. (3.381.4) of Ref. 2, we obtain

vy
127,05,7,1) =21 <—”>

1 —1-1

/2 cos@ by
1 do  (5.53
/0 (sin 0)1+2 ( + 25in20) (5-53)

Making the change of variables t = (1 + b*¥/2sin” §)~!, after some manipulation
we arrive at the equivalent compact result

2

(1+077/2)™!
I (b7, 1) = z/ (1 —0'7'dt = 1B 501 (1, 1) (5.54)
0

where N
B.(p, q)é/ P11 =01 dt (5.55)
0

is the incomplete beta function [2, Eq. (8.391)].

5.3.2 Nakagami-q (Hoyt) Fading Channel

Substituting (5.7) in (5.52) and making use of the Laplace transform found
in Erdelyi et al. [3, Eq. (8)], recognizing the relation between the associated
Legendre function and the Gaussian hypergeometric function [2, Eq. (8.771.1)],
we obtain

120,06.q.7.0=1(27) (1A /”/2 cosg
¢ 2 g )Jo (Ging+

b27 (1+q2)2 2 1—q4 27 —l(I+1)/2]
<|Gams t i) - (5F)
2sin“ 0 4q 4q

Py (1+¢*)?

11 ) >
X 2Fy —l,l+1;1;§_, 2sin” 6 4q

. 2 2
2 ( vy, (1+q2>2> _<l—q4)
2sin” 0 44> 442

(5.56)

do
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5.3.3 Nakagami-n (Rice) Fading Channel

Substituting (5.11) in (5.52) and making use of the Laplace transform found in
Endelyi et al. [3, Eq. (20)], then recognizing the relation between the Whittaker
function and the confluent hypergeometric function [2, Eq. (9.220.2)], we obtain

127,0b,n.7,.0)

b7\’ » [™? cosf by
=20 (—==) A +n? *"/ — (1 +n?
( > ) (1+n)e | Gmo? ( +n +25in29>

21 2
n=( —|—_n )' i >d0
1+ n? + b%y/2sin” 6

—1-1

x 1F (l—l—l,l; (5.57)

or equivalently in terms of the Rician parameter,

I127,0b.K.7.1)

7\ /2 cos® Py N\
=21 | — 1+K _K/ —_— |14+ K+ ———

( > > (K™ ), <sin9>1+21< * +2sir129)

K(1+K) >d0

5.58
14+ K + b?y/2sin’ 0 (5:38)

x 1F <1+l;1;

where | F(-;-;-) is the confluent hypergeometric function [2, Sec. 9.20].

5.3.4 Nakagami-m Fading Channel
Substituting (5.15) in (5.52) and making use of Eq. (3.381.4) of Ref. 2, we obtain

2 (P 2 0 Py N\
1210, m,7, )= ( V)/ o <1+ Y ) do
0

B(m, 1) \2m (sin §)1+2 2m sin @
(5.59)
where
B A T ()
B(m, 1) = B(l,m)= T+l (5.60)

is the beta function [2, Eq. (8.384.1)]. Making the change of variables t =
(1 4 b*y/2msin® 0)~', then after some manipulation we arrive at the equivalent
compact result

27 —1
7 (b 7 l) _ 1 /(1+b y/2m) tm—l(l B t)l_ldt . B(1+h2?/2m)7l(m, l)
m ’ ’ - -
0

B(m, 1) B(m, 1) 5.61)
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or in terms of the incomplete beta function ratio [2, Eq. (8.392)],

A Bx(pa CI)
L(p,q)= (5.62)
B(p. q)
the still simpler form
(b, v, 1) = I14p25/2m)-1 (m, 1) (5.63)

For the Rayleigh (m =1) case, (5.61) clearly reduces to (5.54) since
B, =1"".

5.3.5 Log-Normal Shadowing Channel

Substituting the PDF of (5.19) into (5.52) and making the change of variables,
x = (10log,o y — it)/+/20 results after much simplification in

A 1 n b2 s .

[=Jn(b, u,0,1) = § r(z,—.lo(x" ot/ 0) (5.64)
NZANO) P 2

where again {x;}, i=1,2,...,n, are the zeros of the nth-order Hermite

polynomial He, (x), as discussed in Section 5.1.5.

5.3.6 Composite Log-Normal Shadowing/Nakagami-m
Fading Channel

Finally, for the composite log-normal shadowing/Nakagami-m fading channel
treated in Section 5.1.6, we substitute the PDF of (5.23) into (5.52) together with
the change of variables x = (101log,, 2 — n)/+/20, resulting in

A 1 Zn
I :Jg/]n(bv l'Lv o, m, l) = ﬁ Wi I[1+(b2/2m),lo(xiﬁa+/4)/10]—l (mv l) (565)
i=1

where now in addition {w;},i = 1,2, ..., n, are the Gauss—quadrature weights
as discussed in Section 5.1.5.

5.4 INTEGRALS INVOLVING OTHER FUNCTIONS

When studying the error probability performance of certain modulation schemes
over generalized fading channels, we shall have reason to evaluate integrals
involving special functions other than the three considered previously in this
chapter. In this section we consider integrals involving two such special functions
corresponding to well-known modulation schemes.
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5.4.1 M-PSK Error Probability Integral

When studying the average error probability performance of M-PSK over
generalized fading channels, we shall have reason to evaluate integrals of the

form
k= [TLT e (——“ZZ )aop,
o TJo 2sin” 6
1

M—1)m/M 00 a2y
= exp [ — dy| do 5.66
7T/0 [/0 p( 2sin29) Py(¥) V} (5.66)

where specifically a> = 2sin? 7/M. The integral in (5.66) is a generalization
of the one in (5.2) in the sense that the latter is a special case of the form
corresponding to M = 2. Thus (5.66) follows directly from (5.3) and is given by

1 [M=Da/M a2
K=— M, | — do 5.67
T /0 v < 25in29) ( )

Although this may seem like a simple generalization, unfortunately the replace-
ment of the /2 upper limit in (5.3) by (M — 1)w/M results wherever possible
in closed-form expressions for (5.67) that, in general, are significantly more
complicated. Without further ado, we present the results for the evaluation of
(5.67) corresponding to the various types of fading channels, where closed-form
results can be obtained. The results corresponding to the remainder of the fading
channels can be obtained by the same upper limit replacement as mentioned
above in the corresponding expressions of Section 5.1.

5.4.1.1 Rayleigh Fading Channel. Substituting (5.5) in (5.67) and making
use of (5A.15), we obtain

A B 1 [M=Dr/M a27 -1
K=K,(a,y,M)=— 1+ do
0

b4 25sin @
M—1 a*y/2 M T . a*y/2 T
== i ~ +tan =T cot—
M 1+a?y/2M — 1) |2 1+a?y/2 M
(5.68)

which reduces to (5.6) when M = 2.

5.4.1.2 Nakagami-m Fading Channel. Here we need to substitute the
Laplace transform of (5.15) into (5.67). After this is done, then making use
of (5A.17), we obtain
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K 2 Ku(a, 7.m, M)

1 [M=Dm/M 25 —m
= — / (1 + 61}/2> do
7 Jo 2msin” 0

M—1 1| &9/2m P V&R (% 1
= — (S 4t
M x\ 1+av/om {(2 +tan~la) ,; < k > [4(1 + a7/ 2m)F

m—1 k

+ sin(tan™ oe)zzm_a];_/z)k[cos(tan o) *= ’)H} (5.69)

k=1 i=1

2%/2
S e . (5.70)
+ay/2m M

and Tj is again given by (5.32).

where

5.4.2 Arbitrary Two-Dimensional Signal Constellation Error
Probability Integral

As a generalization of QAM, Craig [4] showed that the evaluation of the average
error probability performance of an arbitrary two-dimensional (2-D) signal
constellation with polygon-shaped decision regions over the AWGN channel can
be expressed as a summation of integrals of the form’

(5.71)

1 % a? sin’ ;
X —
21

Pi=—— YRy
2sin” (6 + ;)

where ai2 is a signal-to-noise ratio parameter associated with the ith signal in

the set and 6; and 1; are angles associated with the correct decision region
corresponding to that signal. Thus, when studying the average error probability
performance of these 2-D signal constellations over generalized fading channels,
we shall have reason to evaluate integrals of the form

/ / a ysm Vi
27 ~ 2sin 204 v))

1 /°° aty sin® y;
=5 eXp |~ T
27 Jo 0 2sin” (0 + ;)

7 Equation (5.71) appears as Eq. (13) in Ref. 4 but with an error of a factor of % [i.e., the factor 1/
that premultiplies the integral there should be 1/27, as shown in (5.71)].

dop,(y)dy

py(¥) dy} do (5.72)
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By comparison with (5.66), we observe that (5.72) can be expressed in the form
of (5.67), namely,

1 0; 2 o 2 2
L= M, [— ai sin” y (5.73)

27 251020 + Y1)

where again M, (s) is the MGF of y. Evaluation of the Laplace transform
integrand in (5.73) for the various types of fading channels follows exactly along
the lines of the previous results and hence is not repeated here. Unfortunately,
however, for arbitrary 6; it is not always possible now to obtain closed-form
expressions for L even when the integrand is obtainable in closed form. However,
for the Rayleigh channel, using (5.5) for M, (—s) and the indefinite form of the
integral in (5A.11), it is straightforward to obtain the following closed-form
solution:

A _
L:Lr(ai7 Vs Giv 1//l)

1 ¢ 1 . I +¢
= - — — ———  tan tan @
4 2r\ca(+c) Ci i
1 ¢ 1 4 I+
= - — —/——At t 9,' — Vi
4 2w\ a(+a) { an [\/ o @ =y )]
+ tan™! ( L - m) } (5.74)
ci

sin” ¥, (5.75)

0i—yi

where

For Nakagami-m fading, using the Laplace transform in (5.15), we obtain

L2 Ly (a;, vy, m, 60;, ;)

_ 1 0;i—Vi Sil‘l2¢ m Vi sin? & m
o l/o (W) 9+ / (sm 2¢ +ci/m ) d¢] (5.76)

with ¢; still as defined in (5.75). If, depending on the signal constellation, 6; and
6; — ¥; both turn out to be either in the form (M — 1)x/M or n/M for M = 2™,
m integer, the closed-form results of (5A.16) and (5A.21) can be used to obtain
(5.76) in closed form. Otherwise, the single-integral form of (5.76) must be used.

The results for the other fading channel types will, in general, be expressed
as a single integral with finite limits (0, 6;) in accordance with (5.73) and the
various closed-form expressions previously obtained for M, (—s).
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5.4.3 Integer Powers of the Gaussian Q-Function

Associated with the study of the average error probability performance of
coherent communication systems using differentially encoded QPSK and M-ary
orthogonal signals in the presence of slow fading, we shall have need to evaluate
integrals of the form

2 /0 0 ay7)p, (1) dy (5.77)

where k is assumed to be integer. In general, for arbitrary integer values of k, I
cannot be obtained in the desired form. However, certain special cases, namely,
k=1,2,3,4, do exist either in closed form or in the form of a single integral
with finite limits and an integrand composed of elementary functions. For k = 1,
the results were presented in Section 5.1. The specific results corresponding to
k = 2, 3,4 for Rayleigh and Nakagami-m fading are presented in what follows.

5.4.3.1 Rayleigh Fading Channel. To evaluate (5.77) for k = 2, we substi-
tute the alternative form of Q?(x) of (4.9) into this equation, resulting in

1 /4 612
I, = — M,|———|db 5.78
2 n/o y( 251n29> ( )

which is identical to (5.3) except that the upper limit is now /4 rather than /2.
Using (5.5) for M, (—s), (5.78) becomes [analogous to (5.6)]

A 1 n/4( 6127 >1
I,=1,,(a7y)=— 1+ —S—
2=12,(a.7) n/o 2sin @

1 (™% sin?6
=— / LT (5.79)
wJo sin” 0+ a%y/2

The integral in (5.79) is evaluated in closed form in Appendix 5A. In particular,
using (5A.13), we obtain

1. (@.7) 1 ] c 4t 1 [1+c
Aa,P)=-|1— —tan” 4/
2 ¥ 4 l4+c\m c

For k = 3, an expression for Q% (x) in the form of (4.2) and (4.9) has not been
found. Nevertheless, it is still possible to evaluate /3 in the single-integral form
referred to above. In particular, writing Q3 (x) as the product Q(x)Q?(x) and using
(4.2) and (4.9) in (5.77), the following sequence of steps occurs.

L21,a7) 1/,,/41/7,/2/02 [“2y< L, )} () dy dode
= ra’ = — — X —_— —_— —_—
3T 4 TJo wJo 0 P 2 \sin?0 sin2¢ Priv)ay

1[4 1 72 a? 1 1
= — — P,|—|——+ dod
JT/() 71/0 4 [2 <sin29 sin2¢)] ¢

[I>

(5.80)

az?
’ c N
2
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1 (/41 w2 v v =1
=_/ _/ <1+ A ’;) d6d¢
TJo wJo 2sin“6  2sin” ¢
1 [+ 2 1 (™%  sin’6
= - / ——c(@) | = / —————df| d¢,
T Jo a*y T Jo sin“ 6+ c(¢p)

2 - 2
2 <%> (5.81)

2 \sin’ ¢ +a?y/2

Using the closed-form result from (5A.9) for the inner integral (in brackets), we
get the desired result

e _11/”/“ | @
I3 .(a,7) = (a"y) <)o c(@) |1 T @)

It is also possible to obtain a single-integral form for I, by writing Q*(x)
as the product Q?(x)Q?(x) and then using (4.9) twice in (5.77) followed by the
closed-form expression in (5.80) to evaluate the inner integral. The steps leading
to the result parallel those in (5.81) and produce

A _ 1[4 2 1 /™%  sin?6
LEnen=_ [ o | [ aslas 58y
TJo avy 0

do (5.82)

T sin? 6 + ¢(¢)

Finally, using Eq. (5A.13) for the integral in brackets in (5.83) produces the
desired result:

_ 027 -1 1 7'(/41
I4.(a,y) = N ) 3

S I I CO P e i CO B L O P T
1+c(¢) |7 c(p)

5.4.3.2 Nakagami-m Fading Channel. Following the same procedure as for
the Rayleigh fading channel, we can evaluate (5.77) for the Nakagami-m fading
channel as follows. For k = 2, we again start with (5.78) but now use (5.15) for
M, (—s), which produces [analogous to (5.16)]

1 /4 2= -m
L2 (a, my) = —/ <1+ a ) do
T Jo

2sin” 0

_ 1! / (st " (5.85)
o Jo sin” 0 4 ay/2 ’
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The integral in (5.85) is evaluated in closed form in Appendix SA. In particular,
using (5A.21), we obtain (for m integer)

! 11 c T c nl ok
z,m(a,m,y)—4—n 1+c¢ 2—an 1+¢ — k
1 . L [ \&® Ti
— - t
41+ o Sm<a“ 1+c> 2 T oy

2(k—i)+1
X {cos (tan_1 ¢ )] } (5.86)
1+¢

where c is defined in (5.80) and Ty in (5.32). For k = 3, the steps analogous to
(5.81) are as follows:

A _
I3 =13,,(a,m,y)

/4] 1 1
+ —— )| dod
/ / [ (sm ) sin2¢>} ¢
/4 /2 2 2 —-m
L (s ) e
2ms1n 0  2msin® ¢

_l/ﬁ/4 (i <¢)>m l/ﬁ/2 st md@ do  (5.87)
1 Jo (127C T Jo sin” 6 + c(¢) ’

where c(¢) is still as defined in (5.81). Using the closed-form result in (5A.4b)
we obtain the desired result as

1 /4 2 mry_ m
I3,m(a7 m, 7) = ; /0\ (ﬁc((p)) I:M}

2
m—1 k
" (m—;Jrk) [1+M(C(¢))} ¢ (5.88)
k=0 2
where [see (5A.4a)]
MOENE frc (5.89)

Finally, for k = 4 we get

A _
Iy =14,(a,m7y)

IR e a? 1 1
= — — M,| = |——=+——]|dbd
JT/O 71/0 v {2 (sin29 sin2¢>} ¢
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1 /4 q /4 a2 aty -m
=_/ _/ <1+ LA A ) d9d¢
TJo wJo 2msin“ 60  2msin” ¢

_l/ R (i <¢>)m l/ () o] ae 590
) \&F 7)o \sin?6+c(o) '

whereupon using (5.86) for the term in brackets with ¢ replaced by c(¢), we get

I4,m(aa m, ?)

1 /4 1 9 1 1 c(¢) T 4 c(¢)
= ;/0 (az——“‘”) lz "7\ T {(5 Sy W)
m—1
2k 1 . 1 [ c@)
§ g ( k ) 40+ c@nF (tan \ T+ c(¢)>

2(k—i)+1

m—1
-1 c(9)
) :1;[1+c(¢>]'< [COS (ta“ \/;c@))] dp  (591)

Although an equation like (5.91) gives the appearance of being complex, we
remind the reader that we have accomplished our goal, namely, to express
the result in a form no more complicated than a single integral with finite
limits and an integrand containing elementary (in this case, pure trigonometric)
functions.

5.4.4 Integer Powers of M-PSK Error Probability Integrals

Associated with the study of the average error probability performance of
coherently detected differentially encoded M-PSK in the presence of slow fading,
we shall have need to evaluate integrals of the form

2

A [®[1 [M-Dr/M a2y
K2=/ {—/ exp( )d@] py(y)dy (5.92)
o LT Jo 2sin’ 6

and

L (9 0 ) A /00 1 /Qul a%); 40
ul, Oyo, a1, az) = — exXp | —
2\Yul 2, U1, 42 ) o 2si 2,
1 02 2
- exXp do pyy d 593
X 71/0 2 249 y( ) v ( )
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where, as was the case in Section 5.4.1, a® = 2 sin’ /M, and now, in addition,
a2 and a assume the possible values 2 sin*(2k + 1)r/M, k =0,1,2,..., M — 1,
and 6, and 6,, assume the possible values 7w[1 — (2k = 1)/M]. While (5.92) can
be evaluated in the desired form for both Rayleigh and Nakagami-m fading,
unfortunately, (5.93) can be obtained in such a form only for the Rayleigh case.
Thus we shall only present the results for this single fading case.

5.4.4.1 Rayleigh Fading Channel. Since (5.92) can be viewed as a special

case of (5.93) corresponding to a? = a3 = a* and 6,1 = 0,, = (M — 1)w/M, we

shall consider only the generic form in (5.93), where a%, a%, 6,1, and 0,5, are
allowed to be completely arbitrary. Following steps analogous to those in (5.81),
we proceed as follows:

Ly (1, Ou2, ay, a2)

1 Ou1 1 Ou2 1 2 2
=—/ —/ My |- |-+ -2 )| dod¢
TJo wJo 2 \sin"f  sin“¢
-1
1 (fa 1 [P 25 25
__ [ 2 1+ -2 DY) gpag
2 2
TJo mwJo 2sin“6  2sin” ¢

1 [0/ 2 1 [ sin” 6
= — — - 94
7T/0 (a%7612(¢)> LT/O sin% 0 + C12(¢)d9] a9 69

where c13(¢) is defined analogous to c(¢) in (5.81) as

2= )
A ayy sin” ¢
c12(¢)—72 (sin2¢+a%y/2> (5.95)

Rewriting the integral in brackets as

O 1 29 O
/ =6, - / A R— (5.96)
0o sin“ 6+ ca(e) o sin“ 6+ cpp(e)

then making use of Eq. (2.562.1) of Ref. 2, we obtain
6.0 in20
/ - sin 20
0 sin“ 0 + C12(¢)

_ 1 | (@) af [1+cne)
= l@uz Thotd) @) tan ( 702(@ tan@,ﬂ)] 5.97)
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and hence
1\* 2 [
Lr(u1, Ou2, a1, az2) = (-) T/ c12(¢)
T aiy Jo
X (B — Clzi(gmtan_1 Mtan@,ﬂ do
1+ cia(e) c2(p)

(5.98)
Since as mentioned above, K, = L,((M — )n/M, (M — 1)7/M, a, a), this
special case evaluates as

L (1\2 2 p-bm M — Dr c(¢)
k=(7) & C“’)l v _m
o tan~] L+ c() tan M — Dr deo (5.99)
c(®) M

where c(¢) is as defined in (5.81). The other special cases that will be of interest
in later chapters dealing with differentially encoded, coherently detected M-PSK
are Ly(0y,04,a.,a.), Ly(0_,0_,a_,a_), and L,(04,0_,a,,a_), where
01 2 7[l — 2k £ 1)/M], a2 2 25sin22k + D)a/M, k=0,1,2, ..., M — 1.
These special cases of (5.98) evaluate as

Ly(04, 0+, ax, at)

(TN 2 iR/ | 2kl c(9)
- <E) <E>/o @) ”( M >_ 1+ cx(9)
wtan—! 4 | LECE@ {n (1 — ﬁ)] de (5.100)
c+() M
L,(64+,0_,a4,a-)
B 1 2 2 w(1—(2k+1)/M) 2k — 1 C+_(¢)
B <n) <a2+7)/o “+-@) ln <1 M > VTt
xtan—t 4 | 1E=@) [n (1 - b)} do (5.101)
ci—(¢) M

and
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23 L2 2o .2
Adyy sin” ¢ A ayy sin” ¢
c+(9) (sinzq&—}—ai?/Z) -9 2 (sin2¢+a2_7/2> (5.102)
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APPENDIX 5A: EVALUATION OF DEFINITE INTEGRALS ASSOCIATED
WITH RAYLEIGH AND NAKAGAMI-m FADING

1 72 ( sin2e \"
1. —/ ———| de
7T Jo sin“0+c

We wish to consider evaluating the integral

12 sin?6
T Jo sin“ 8 + ¢

for m both integer and noninteger. To do this we shall make an equivalence with
another definite integral for which closed-form results have been reported in the
literature. In particular, it has been shown [5, Eq. (A8)] that the integral

A a”
Jm(a’b)=r(m) ;

o0
e " o(Vbt) dt, n>0 (5A.2)
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has the closed-form result

c/r T (m+1) 1
17 79 1; )
20+ oy t2 Tt 2\l
A Db

c=— m noninteger (5A.3)
2a

Tu(a, b)=7,,(c) =

When m is restricted to positive integer values, it has been further shown [5,
Eq. (A13)] that (5A.3) simplifies to

1 m—1 | — 2 k
Jn(a, )2 () = 3 [1 e (Zk") <+(C)) ] ,
k=0

u(c) 2 7/ IL—FC m integer (5A.4a)

which was also obtained previously by Proakis [6, Eq. (14-4-15)] in the form

mm—1 k
Jm(c) = (1 _ZM(C)> Z (m—kl +k> (71 +2M(C)> , m integer

k=0
(5A.4b)
Using the alternative representation of the Gaussian Q-function as given in
Eq. (4.2) in (5A.2) gives

a” oo 1 /2 .,
Tm(a, b) = / e ! ( / e P2sin 9d9> di
['(m) Jo 7 Jo
a” /2 e —1_—(a+b/2sin® )t
= " e TSSO A do (5A.5)
xl'(m) Jo 0

The inner integral on ¢ can be expressed in terms of the integral definition of the
gamma function, namely [1, Eq. (6.1.1)],

C(m) = o™ / e dt (5A.6)
0

Thus, using (5A.6) in (5A.5), we obtain

a” /2 ['(m) 1 (7?2 1
Jm(avb): / ) =_/ 5 do
al'(m) Jo  (a+ b/2sin” Oy T Jo (1+b/2asin” )"
(5A.7)
Finally, letting ¢ = b/2a, we can rewrite (5A.7) as

A 1 [m2 sinzo \"
I, 52T n(e) = — / SO ) g (5A.8)
0

sin®0 + ¢
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which is identical with I,, of (5A.1). Thus, equating (5A.8) with (5A.3) and
(5A.4) establishes the desired results for m noninteger and m integer, respectively.

One final note is to observe from (5A.4) that J(c) = [1 — u(c)]/2. Thus, a
special case of (5A.8) that is of interest on Rayleigh channels is

1/71/2 sin’ 0 d9_1<1 c ) 5A.9)
wJo sin’64c¢ 2 l+c¢ '

which could also be obtained directly as follows:

1 [™? sin’6 1 [/ c
T Jo sin“6+4c 7 Jo sin“ 0 + ¢
1 1 (72 c
= - — —/ ———df (5A.10)
2 mwJ)o sin“84+c

Making use of the definite integral in Eq. (2.562.1) of Ref. 2, we arrive at
1 (™2 sin?6 1 ¢ 1 4 1+c
— ————df =~ —— tan tan 6
T Jo sin“f-+c 2 w\lcdl+c) c 0
1 c A
=—(1—4/— |=P 5A.11
) ( Jis C) ©) (5A.11)

The reason for including this alternative derivation is that it is useful in deriving
closed-form results for two other integrals of interest related to evaluating the
performance of QAM and M-PSK over Rayleigh channels. In particular, for
QAM we will have a need to evaluate

1 ™% sin?6 1 (74 c
mTJo sin“f+c T Jo sin“ 6 +c¢

L SA12
—-_Z a0 A.
4 71/0 sin6 + ¢ ( )

/2

Making use of the same indefinite integral as used in (5A.11) we immediately
arrive at the desired result, namely,

1 [™* sin?6 1 ¢ 1 4 1+c
— ﬁdez——— tan tan 6
T Jo sin“f+c 4 mw\ c(l+c) c

1 c 4 1 J1+c
=-|1- — tan
4 l4+c\m c

/4

0

(5A.13)
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1 (M-Nx/M  Gin2g
/ do
0

2. — 2. _
T sin“0+c

For M-PSK, we will have a need to evaluate

1 [M=Dr/M  ¢in2 g M—-1 1 [WM-Drx/M c
7w Jo sin“ 6 + ¢ M T Jo sin“ 60 + ¢

(5A.14)
Making use of the same indefinite integral as used in (5A.11) we immediately
arrive at the desired result, namely,

1 (M=Dm/M - gin? g
/ do
0

T sin?6 + ¢

(M—l) [ c M ( 1+c (M—1)n>1
_— 1— ———tan~ tan
M l+cM - Drm c M

S I T R (et )

(5A.15)

v

1 (M=M [ gin2zg \7
0 sin“6+c

For evaluation of symbol error probability corresponding to single-channel
reception of M-PSK on Nakagami-m fading channels and also for multichannel
reception of M-PSK on Rayleigh fading channels, we shall have need to evaluate

1 [WM-Dr/M sin’ 6 "
7 Jo sin“ 0 + ¢

Using a result [7, Eq. (21)] for the symbol error probability performance of
M-PSK over a Rayleigh channel with multichannel reception, it is straightforward
to show that for m integer,

1 [M=Dr/M sin2 0 mn
—/ 2 do
T Jo sin“ @ + ¢
M — 1 m—1 2 1
= — — — t e
M =\ { g Han )§<k>[4(l+c)]k

m—1 k
+ sin(tan~! @)
k=1 i=1

[cos(tan )P+ } (5A.17)
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where

cot — (5A.18)

(2k>
k
T, 2

(2(1‘_ l)>4’[2(k i)+ 1]

For m = 1, (5A.17) reduces to (5A.15).

1 (™4 sin?e \"
7 Jo sin“6+c
For evaluation of symbol error probability corresponding to single-channel

reception of QAM on Nakagami-m fading channels and also for multichannel
reception of QAM on Rayleigh fading channels, we shall have need to evaluate

14 sin?o
T Jo sin“ 0 + ¢

Using a result [7, Eq. (18)] with 8y = (M + 1)n/M and 6, = (M — 1)w/M, it
is straightforward to show that for m integer,

1™ (0 sin2e \"
—/ —— | db
T Jo sin“ @ + ¢
1 1 [ ¢ " N =) 1
=— —— ——t —
Mz 1+c{(2 an Ol)kz:%(k)m(wc)]k

m—1 k
— sin(tan™ O‘)Z
k=1

and

(5A.19)

(1 [cos(tan ) Pk=+l } (5A.21)
1

i=
where o and Tj; are as evaluated in (5A.18) and (5A.19), respectively. Letting
M = 4in (5A.21) whereupon o = +/c/(1 + ¢) gives the desired result in (5A.20).

Finally, for exact evaluation of bit error probability corresponding to single-
channel reception of M-PSK on Nakagami-m fading channels and also for
multichannel reception of M-PSK on Rayleigh fading channels, we shall have
need to evaluate integrals of the form in (5A.17) or (5A.21) but with upper
limits given by 7[1 — (2k £ 1)/M] for k =1,2,..., M — 1. What is needed to
evaluate the bit error probabilities above is the difference of specific pairs of
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these integrals which can be related to the generic closed-form result given by
Eq. (18) of Ref. 7. Specifically, it can be shown that

1,0y, 0L K)

1 =00 sin® @ " 1 =0y sin® @ "
= — - do — — — de
2w Jo sin“ 6 4 uz 2w Jo sin” 6 + uy

-6, 1 7 - 1
T +2ﬂﬂU{<2+tan )k=0< >[4(1+M)]"

m—1 k
+ sin(tan™ ch)ZZ(1+ 2)k[cos(tan Vo) P*= ’)+1}

k=1 i=1

1 m—1 2% 1
_ZJTﬂL{( + tan™ m)?( >[4(1+ML)]k

m—1 k

+ sin(tan™ ch)ZZ i+ 2)k [cos(tan™ ozL)]z(k—i)+1} (5A.22)

k=1 i=1

where

K

MLé\/_SineLs ﬁLéL, aLé/gLCOtGL
m 1+l

(5A.23)

K

HUé\/_Siner ﬂUéL aUéﬂUCOtQU
m

Ji+ud

with K a constant. Our interest will be in the case where 6y = 2k + 1)n/M,
0, = 2k — 1)mr/M and K is related to signal-to-noise ratio. Alternatively, for

A
Oy =M + /M, 6, = (M — 1)/M, then pp =—puy=4+/c, B =—Pu =

Ve/(1+c?), and af = ay éa, in which case (5A.22) simplifies immediately
to (5A.21).

1 ¢ sin?g

7 Jo \sin“0+c
Interestingly enough, a closed-form expression for the integral in (5A.16) or
(5A.21) with arbitrary upper limit, say ¢, can be obtained from (5A.22). In

particular, setting 8, = 7 — ¢ and 6y = 7, whereupon the second integral in
(5A.22) disappears, we arrive at the result
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1 (¢ sin® 6 " ¢ 1 T
1,(¢;¢c) = — — | =L =B (= +tan '«
(@) 7T/o (sinzé—i—c) T (2 an )

m—

2k 1 . y
§ k=0 < k > 40 + o) + sin(tan”" o)

—

3

-1k

T; '
Z a _;kc)k [cos(tan™" Ot)]z(kl)ﬂ}» —7 = ¢ =7 (OA24)
-1 i=1

X

>~

where
c

14+¢

1>

e

sgn @, o=—fcot¢ (5A.25)

Clearly, (5A.24) reduces to (5A.16) and (5A.21) when ¢ = (M — 1)n/M and
¢ = /M, respectively.

Another closed form for the integral in (5A.24) has been suggested to the
authors by R. F. Pawula, which is readily derived using a clever change of
variables due to Euler and Legendre [8, p. 316]. Although this alternative
closed form is quite similar in structure to (5A.24) and therefore does not
offer a significant computational advantage, it is nevertheless worth documenting
because of the elegance associated with its derivation and the simplicity with
which the final result is obtained relative to that employed in arriving at (5A.24).

To begin, we first employ simple trigonometry to convert the integral to a
slightly different form as follows:

1 ¢ sine 1 ¢/ 1—cos20 \"
I(p;¢c) = — —— do = — _ do
7 Jo \sin“0+c wJo \1+2c—cos26

1 2 (1 —cos& \"
= / — | d& (5A.26)
2 (1 4+ 2¢)™ Jy 1 —dcosé&
where d 2 1 /(1 4+ 2¢). Next, employing the Euler—Legendre change of variables
1 —d? V1-—d?
1-d =— dé=——7"—d 5A.27
cosé 1+ dcosx § 1+ dcosx * ¢ )

then after some algebraic and trigonometric manipulation, we obtain the form

1610 d/c /xmﬂx (1 — cosx)™ 4 (5A.28)
m(@;0) = ———————— - dx .
2ma(1 4 cyn=1/2 Jo 1+dcosx
where
V1 —d?sin2¢ 2c(1+c)sin2¢
fan Xpngy = - (5A.29)

cos2¢p —d  (14+2c)cos2¢ — 1
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Finally, letting x = 2¢ and taking care to assure that x,x as derived from (5A.29)
is intepreted in the four-quadrant arctangent sense, we get the simpler integral

form [ T s 2m
c sin”" ¢
Lu(¢;c) = 5A.30
(@:¢) a(l 4+ )12 Jy ¢+ cos?t ( )
where
Xmax N 7 1+sgnD
T= =—t -4+ |1—-(— N 5A.31
> 2™ pt3 [ ( 2 el (°A31)
with
N =2+/c(1 + ¢)sin2¢, D=1 +2c)cos2¢ — 1 (5A.32)

The integral form of (5A.30) is valid for m integer as well as m noninteger but
is restricted to values of ¢ [the upper limit in the integral of (5A.26)] between
zero and . Later, after obtaining the desired closed-form result, we will show
how to remove this restriction.

To obtain the closed form of (5A.30), we use the well-known geometric series
Do lek = (1 —x™)/(1 — x) to rewrite this equation as

L(ic) = ,/ /Tl SRLEDN
i€ 1+c l—azsmt
1 T 1 1 m—1 T
= — ¢ / ——dt — — ¢ Zazk/ sin?* ¢ dt
a\V14+cto 1—a2sin®t TV 1l4c 0

k=0
(5A.33)

where a2 1 /(1 4 c¢). The first term is the original integral when m = 0 and
thus from (5A.26) must be equal to ¢/m. The second integral is available in
Eq. (2.513.1) of Ref. 2, namely,

r T (D& 2k \ sin[(2k — 2))T]
.2k _
/0 sin tdt_ﬁ< ) T Z( 1)/( ) Y
(5A.34)
Combining these two results and simplifying gives the alternative closed-form

result
2k 1
In($ic) = ———\/?Z( )[4(1+c)]"
2Fn1 1 k-1 2% _])j+k Sll’l[(2k_2.1)T]
TaV e ( )[4<1+c)]k %—2j

0O<¢p<n (5A.35)

‘M

To extend this result so as to apply for upper integration limits in the region
m < ¢ < 2m, we proceed as follows. First we partition the integral in (5A.26) as
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Lu(gic) 1/¢ sino )",
j0) = = —
" 7 Jo c+sin’0

17 sin?e \ 1 r® in2o \
_! / LGN BRI / ST ) a4 (5A36)
T Jo ¢+ sin“ 0 T Jr \c+sin“6

In the second integral make the change of variables 6’ = 6 — 7. Then

1 (o) 1 / *( sin2o \" o + 1 / o= [ sin2g ) d0
; C)= — _— — _—
" 7 Jo ¢+ sin?0 T Jo ¢+ sin? ¢

(5A.37)
The second integral in (5A.37) can be evaluated using (5A.35) with ¢ replaced by
¢ — 7. For the first integral we have to first evaluate 7 in the limit when ¢ =
and then use (5A.35). Since ¢ approaches m from below, it is straightforward
to show that the first term of (5A.31) will be zero and the second term will
approach . Thus, limg_,, T = 7. Using this value of T in (5A.35), the double
sum evaluates to zero and hence the first integral above becomes

17 sin?e \ c =l ok 1
- ] do=1-,]  (5A38
n/o <c+sin29> 1+ckzzg<k>[4(l+c)]k ( )

Thus, when 7 < ¢ < 2, the final result can be written as

, 2%k 1
In(@r0) = \/l—i-c ( )[4<1+c)]k
op—n T < 1
T T wV ;( )[4(1+c)]k
m— 1
__\/1+ck0_0

1k—
where T’ is T evaluated with ¢ replaced by ¢ — w. However, because of the

periodicity of T" with respect to the 2¢ process, we have 77 = T. Thus, the final
result is

T 2k 1
In(@:0) = “(”n)v Z( )[4<1+c)]k

2/ c 'i””(Zk) (—1)*% sin[(2k — 2/)T]
aVit+eiz g \J) Ba+or  2%-2j

T<¢<2nm (5A.40)

(5A.39)

Zk) (=17 sin[(2k —2)T"]
(1 @41 +o  2k—2j
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or combining this with (5A.35)

¢ (ltsg@-—m) T c ok 1
Im(ic) = = ( 2 * E) I+c& < > [4(1 + oF
= 1% (2k> (=)t sin[(2k — 2j)T]
\/ ¢ 41+ o 2k-2j
0<¢<2m (5A.41)

1 ¢( sin26 \" [ sin%6
6. — — — dé
7 Jo \sin“6+ cy sin“ 6+ co
In the study of generalized diversity selection combining to be discussed in

Chapter 9, we shall have need to evaluate an extension of the integral in (5A.24),
namely,

16 ) 1 / ¢ sin” @ " sin” @ » (5A.42)
11, 00) = — )
" P2 = o )y \sin?o + c1 sin 6 + ¢,

where, in general c; # c¢,. Since a closed form for such an integral cannot be
obtained from the results of Ref. 7 nor for that matter from any other reported
contributions, we turn once again to the method suggested by Pawula for arriving
at the alternative closed form for 7,,(¢;c) given in (5A.35), but instead apply
it now to (5A.42). In particular, following steps analogous to (5A.26) through
(5A.30), it is straightforward to show that

Ja(l —dd Tr [ gin?m+D g 1
In(@scr,02) = o / 5 = | dt
(1 +c )y V2(dy — dy) c; +cos?t ) \D+cos?t

(5A.43)

where, as before, d; 2 1/(1 4+ 2¢;), i = 1,2 and now also

sl —didy—d) +dy
2(dy — d3)

(5A.44)

In addition, T'; corresponds to 7' of (5A.31) with ¢ replaced by c;.
Now using the same geometric series manipulation as in (5A.33), we can
rewrite (5A.43) as

In($;ci,00) =

Vaa+en(l —dy)dyb} /Tl 1— (1 — " sin?m+D 1)
n(dy —dy) o (1 —a}sin®r)(1 — b?sinr)
(5A.45)
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where, as before, aj 2 1/(1 4+ ¢;) and now, in addition,

1 o 2(d1 - dz) _ Cy) — (1

= = (5A.46)
1+D 1+d1—d2—d1d2 Cz(l+6‘1)

24
by =

Expanding the integrand of (5A.45) into a partial fraction expansion and
evaluating the fractional coefficient in front of the integral purely in terms of
c1 and ¢, we obtain, after considerable algebraic simplification,

e en= | / Mlod-atsintn
cl,Cc) =
o2 l+c1 l—alsmt

T, 1—(1 = b2m : 2mt
L ( @ ) / A =0"sin ™D 4 (sA.47)
T 0

14+c¢ \ca—cy 1—b%Sln2l

Comparing the first term of (5A.47) with (5A.33), we see immediately that

a e \" (M1 =1 —bsin* 1)
Im(¢ C1, 62)—I'n(¢ Cl)__ / . dt
0

14+c¢ \ca—cy 1—b%sm2t
(5A.48)
which indicates that the second term in (5A.48) accounts for the additional factor
in the integrand of I,,(¢; ¢, cz) that is not present in the integrand of 7,,(¢; cy).
Since for ¢; = ¢, we have from (5A.46) that b% = 0, then writing the second
term of (5A.48) as

| ( e )’"/Tl b%msinzmrdt
7V 1l4+c¢ \e—c¢ o 1—blsin’t

1 C1 1 T S th
= D) dt
aVIi+e(d+e)"Jo 1—bysin“t

1 Cq 1 T . om
= — Tﬁm/ sin“" t dt (5A49)

and using (5A.34), we obtain
1 T 2m 2m
1 C1 < 2 ) / b t dt
7V 1l4+c¢ \e—c¢ 0 l—b%smt
. l C1 < 2m ) 1
a\V14+c \m )[40+ c)H™

m—1 _1\j+m . Y
< ) (—1)/ sin[(2m 2]')T1] (5A.50)
\/ — [4(1 4 c)I™ 2m—12j

J
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Substituting (5A.50) into (5A.48) and recognizing the form of 1,,(¢; ¢) in (5A.35),
we immediately see that for ¢; = ¢,

Iy(¢;c1,c1) = 1ny1(d; 1) (5A.51)
as it should from the definition of 7,,(¢; c1, ¢3) in (5A.42).

For the case ¢ # c¢;, we return to the form in (5A.48) and analogous to
(5A.33) partition it into two integrals, that is,

T,
Im 5 ) =Im ; - dt
(¢5c1,2) (¢5c1) (2_C1) [ \/:/ 1—b251nt
m—1
FZ Zk/ sin 1 d ] (5A.52)
1+

The first integral in (5A.52) can be evaluated by first noting from (5A.47) that

1 ¢ sin%0
mwwhqﬁ=—/ 0 49— 1(gien)
0

b4 sin® 0 + ¢,

1 Cq T‘ 1 1 Cq T' 1
— s dt — — s dt
7\ 1+4+ciJo 1 —ajsin“t 7V 1+ciJo 1—bysin“t
1 T 1
_e_ 1/ a / S — (5A.53)
7 mV1l+cJo 1—bysin“t

Evaluating 1,(¢; cp) from (5A.35) as

T
m¢m—?—i Lﬁz

(5A.54)

where T, now corresponds to 7 of (5A.31) with ¢ replaced by c,, then combining
(5A.53) and (5A.54), we get

1 T 1 T
Sy / di= 22 (5A.55)
7V 1+cJo 1—Dbisin“t 7 \V1+c

The second integral of (5A.52) is evaluated as before using (5A.34). Without
further ado we present the desired closed-form result for 7,,(¢; ¢y, ¢2), which is

Ln(psc1,c2) = I (¢c1)—7 2 < C2 >

14+c¢ \co—c

S () (e
1 + ¢ ¢ — k ) [4(1 4 ek
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) ) m—1 k—1 ¢ m—k 2%
itexx () ()

=0 i=0 \¢2 7€

\

(=1)/** sin[(2k — 2)T4]
“BA+ea k| 2%k—2)

, 0<¢<m  (5A.56)

To extend the range of coverage of the upper integration limit from 0 < ¢ <
to 0 < ¢ < 2m, we proceed as before and arrive at the final desired result:

L, (¢;cr, c2)

=1m<¢;c1)—(w+%> & ( & >m

(1+sgn<¢> ), T]) /7’"1< )k(zk)
1+C1 Cy) — C1 k

1 m—1 k—1 m—k U
[4(1+C1)]k 1+CIZZ(C2_C1) (J)

k=0 j=0

5 (=1)y/** sin[(2k — 2j)T]
4l +c)lF 2k—-2j

0<¢<2r (5A.57)

where now 1,,(¢; cy) is evaluated from (5A.41).

1 (2 ( sin?9 )"" ( sin?9 )"’2
L (s s s

T Jo sin“ 6 + ¢4 sin“6 + co
An extension of the preceding integral wherein each of the two factors in the
integrand is raised to an arbitrary power is of interest in the study of diversity
(optimum) combining in the presence of interference (see Chapter 10 for a
complete discussion of this topic). Unfortunately, it appears difficult to apply
the previous derivation approaches to obtain a result for the most generic form
of this integral, where the powers are not necessarily restricted to be integer
and the upper limit of the integral is arbitrary. However, for the case where the
upper limit is equal to /2 and the powers are restricted to be integer, which is
of interest in evaluating the average error probability performance of PSK with
optimum combining over a Rayleigh fading channel, making an association with
a closed-form result obtained by Villier [9], we present (without derivation) the
following result:




APPENDIX 5A: EVALUATION OF DEFINITE INTEGRALS 137
. my . my
1 / /2 sin’ 6 sin” 0 »
T Jo sin? 0 + ¢, sin? 6 + ¢,

@ [ e )
B 2(1 — cl/cz)'”lerz*l [Z <Cl - l) Bl (c2)

k=0

mp—1 k
—_— (1 — Z—D Cklk(cl)] (5A.58)

€2 =0
where!
Ak Amz_ n
B = 5 C = ns
k my+my — 1 k ,,Z:ZO my+mpy — 1
k n
<m2—1) ”
A my—1+k k :
Ap=(=1)™ -z - 5A.59
L =(=1) =T E(murmz n) (5A.59)
n#k+1
and

k
2n — 1!
1 e
+Z n!2"(1 4+ c)*

n=1

(5A.60)

L) =1— /-~
l1+c¢

with the double factorial notation denoting the product of only odd integers from 1
to 2k — 1. It is straightforward (although requiring some tedious manipulations)
to show that (5A.58) reduces to (5A.56) when m; = m and m,; = 1. Also, by
symmetry it can be shown that (5A.58) reduces to (5A.56) with ¢; and ¢, switched
when m; = 1 and mp, = m.

1 (¢ sin®"9
7 Jo €+ sin“0

Yet another integral that arises in the study of generalized diversity selection
combining to be discussed in Chapter 9 is

Al [? sin®0
Jm(¢;c)=—/ 4o (5A.61)
0

T ¢+ sin’6

I'Note that by convention, (ﬁ) =0 for n > k. Also, for my =1, by convention the product
H’"z (my +my —n) =1 and the only nonzero-valued coefficients are Ag = Bp = Cx = 1. For

n=1

n#k+1
my>1, the coefficients Ay, By, and Cy clearly depend on both m; and my.
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This integral is similar in form to (5A.30) and can be evaluated by following an
approach analogous to that used in arriving at the closed form in (5A.35). The
procedure is as follows. Let a> = 1/c. Then

1 2 ¢ 2m 2m0
Jm(¢;c)=_a_/ 4T e
0

T a?m 1+ a?sin’6

1 ¢1_1_2m-2me
/ ( a”™ sin )a’G

= 7a2m— 1 + a?sin®6
1 ¢ 1 ¢ 1 —a* sin®" 0
= m-1) 2 a2 do — 2 ain do
wa o 1+a*sin“6 o 1+a*sin“6

For [ odd, >'_o(—=1)ix' = (1 — x*1)/(1 4 x). Thus, letting x = a?sin’ ¢, then
for m even we get

(5A.62)

m—1

¢ 1 LI
do — Dia* / sin® 0 do
/01+a251n 29 Z( ya 0

i=0

(5A.63)

Jm (¢; C) az(m ])

Finally, using Gradshteyn and Ryzhik [2, Eq. (2.562)] to evaluate the first
integral, that is,

¢ 1 1
do = tan™' (v/1 + @2 tan 5A.64
/o 1 + a?sin®6 V1+a? ( ?) ¢ )

and (5A.34) for the second integral, we arrive at the desired result (for m even)

m 1 1
Ju(@;c) = - { 1_7_Ctan_1 (\/ tanqb) Z( 1)’
¢ (1) 2i\ sin[(2i —2j)¢]
= (7)o 3 v (F) e

(5A.65)
For m odd we slightly change the procedure. First rewriting (5A.62) as

do

I ()= ) ? —1+ (1 +a™sin™ 6)
m(@;c) = q2m=1) / 1 4+ a? Sil’lz(9

1 /¢ 1 d9+/¢’1+azmsinzm9d9
wa2m=1) o 1+ a2sin’0 o 1+asin’0

(5A.66)




APPENDIX 5A: EVALUATION OF DEFINITE INTEGRALS 139

then noting that for / even, Y>/_;(—1)'x’' = (1 +x*1)/(1 4 x), we obtain

1 @ 1 m—1 o @ )
In(@;0) = —— [ — ——do+ -1 ’az’/ sin® 0.d6
(¢:¢) ma?m=1 l /o 1+ a?sin®6 ;( ) 0
(5A.67)
which is the negative of (5A.63). Thus, for arbitrary integer m, we have

. _ mcm_1 C -1 1+c¢ m-l il
Im(p;0) = (—=1) T{,/I—Jrctan (,/ . tan¢> —;(—1);

¢ (1) & 2\ sin[(2i — 2,/)¢]
2_2<z> 22i-1 Z ”J() 2i—2j

=0

(5A.68)
A special case of interest is when ¢ = /2, in which case (5A.68) simplifies to

Vs Z(— Y i (21’ )] (5A.69)

which reduces to (5A.9) when m = 1, as it should.

Im(/2;5¢) = (= 1)'”
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6

NEW REPRESENTATIONS OF
SOME PDF’s AND CDF’s
FOR CORRELATIVE FADING
APPLICATIONS

Later in the book we shall have reason to study the performance of digital
communication systems over correlative fading channels. Such channels occur,
for example, in small terminals equipped with space antenna diversity where
the antenna spacing is insufficient to provide independent fading among the
various signal paths. In such instances, the received signal will consist of two or
more replicas of the transmitted signal with fading amplitudes that are correlated
random variables. To assess the performance of receivers of such signals, it is
therefore necessary to study the joint statistics of correlated random variables
with probability distributions characterized by the various fading channel models
of Chapter 2.

One important application of the above scenario pertains to a system
wherein the channel is assumed to be modeled by two paths and the receiver
thus implements a diversity combiner with two branches. Evaluation of the
performance of such a dual diversity combining receiver (discussed in great detail
in Chapter 9) requires, in general, knowledge of the two-dimensional (bivariate)
fading amplitude PDF and CDF. For the specific case of selection combining
(SC) [1, Sec. 10-4], the combiner chooses the branch with the highest signal-
to-noise ratio (or equivalently, with the strongest signal assuming equal noise
power among the branches) and outputs this signal to the threshold decision
device. To evaluate performance in this instance, it is sufficient to obtain the
one-dimensional PDF and CDF of the SC output, which is tantamount to finding
the PDF and CDF of the maximum of two correlated fading random variables.
The SC output CDF is used to evaluate outage probability (the probability that
neither SC input exceeds the detection threshold, or equivalently, the probability
that the SC output falls below this threshold), while the SC output PDF is used
to evaluate average error probability.

141
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In what follows we focus on the Rayleigh and Nakagami-m fading channels
since they are the most commonly used in digital communication system analyses
and, as discussed previously, are typical of many wireless environments.

6.1 BIVARIATE RAYLEIGH PDF AND CDF

From a purely mathematical standpoint, the bivariate Rayleigh and Nakagami-m
distributions can be viewed as the joint statistics of the envelopes, R; and Rj,
of two correlated chi-square random variables of degree 2 and 2m, respectively.
Specifically, the bivariate Nakagami-m PDF is given by [1, Eq. (126); 3, Eq. (1)]

DR,.R, (11, 21512, 2]m, p)

Am" ()" m r12 n r%
L(m)Q212(1 — p)(V/Q1Q20)"! I—p\Q 2

2m./prir )
X Iy (— ) r, >0 (6.1)
TAVRIQ( - p)

where Q; = ?, i=1,2and p = cov(rl, r2)/\/Var(r1)Var(r2) is the correlation
coefficient (0 < p < 1). The special case of the bivariate Rayleigh PDF is given

by [2, Eq. (122); 4, Eq. (3.7-13)]
1 ”12 +r_22
1—p Q0

2\/57'1}’2
I <(1 SN owox ) ri,, >0 (6.2)

Tan and Beaulieu [3] were successful in finding infinite series representations of
the CDFs corresponding to (6.1) and (6.2), in particular,

41"1}"2

79; 79 = . <
DR R, (71, 21572, Q2] p) 90 — )

exp

Pg, g, (11, 21572, Q2|m, p)

=" y(mt kom0 = p)y(m 4k mr3 /(1 — p))
© T(m) k!T'(m + k)

k=0
(6.3)

where y(«, x)— Jo e 't dt,Re{a} > 0 is the incomplete gamma function [5,
Eq. (6.5.2)] and

Pgr, r,(r1, 1572, 22|0)

2 2
— (- k41, —1 k41, —2 6.4
DY, ( i 91<1—p>> ( i Qzﬂ—ﬂ)) ©

k=0
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where P(«o, x) = (1/T'(x)) fg e 't* 1 dr, Re{a} > 0 is another common form of
the incomplete gamma function [5, Eq. (6.5.3)]. Although (6.3) and (6.4) appear
to have a simple structure, they have the drawback that because they are infinite
series of the product of pairs of integrals, their computation requires truncation of
the series. Bounds on the error resulting from this truncation along with empirical
results for indicating the rate of convergence and tightness of the ensuing bounds,
are discussed in Ref. 3. Tan and Beaulieu [3] go further to point out that the
complementary Rayleigh bivariate CDF (and thus also the Rayleigh bivariate
CDF itself) had previously been expressed in terms of the Marcum Q-function
[1, App. A], that is,

Pr g, (r1, 1512, S22 p)
=1—=Pr{R| > ri} —=Pr{Ry > rn}+Pr{R| > ri, Ry > 1}

r? 2 193 20
=l—-exp|—-—2)0 ;
Ql l—,O«/Qz 1—,0«/91

r2 20 2 r
—exp(—2 | [1-0 ,
Q2 1—,0«/92 1—,0«/521

Although Tan and Beaulieu [3] abandoned this result because of the lack
of availability of the Marcum Q-function in standard distributions of such
mathematical software packages as Maple V, MATLAB, and Mathematica, Simon
and Alouini [6] recognized the value of (6.5) in terms of the desired form
of the Marcum Q-function as described by (4.16) and (4.19). Indeed, as we
shall soon see, this desired form of the Marcum Q-function allows the bivariate
Rayleigh CDF to be similarly expressed as a single integral with finite limits
and an integrand that includes a type of bivariate Gaussian PDF. This resulting
form is simple, exact, and requires no special function evaluations (i.e., the
integrand is entirely composed of elementary functions such as exponentials and
trigonometrics).

Since the Marcum Q-function as represented by (4.16) and (4.19) depends on
the relative values of its arguments, we must consider its use in (6.5) separately
for different regions of the arguments r; and r,. For simplicity of notation, we
shall also introduce the normalized (by the square root of the average power)

envelope random variables Y; 2 i/, i =1,2.
Consider first the region of 7, and r, such that

2 20
rn < r
\/Qz(l ) \/wl — )

or, equivalently, ¥, < ,/pY which corresponds to the first argument being less
than the second argument in the first Marcum Q-function in (6.5). Since in this

(6.5)
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region we would also have ,/pY; < Y, then in the second Marcum Q-function
in (6.5), the first argument is also less than the second argument. As such, we
now substitute (4.16) in both of these two terms. After much simplification, one
arrives at the desired result, namely,

Pr, &, (1, Q372, ]p) = 1 — exp(—Y3)

+L/n o0 (_Y%+Y§+2@Y1Y2sin9>
27 J_»

L—p
(1 —pHYiy3
+ /o — p)Y1Y5(Y? 4+ Y3)sin6
(Y} +2/pY Y, sin6 + Y3)
x (Y1 +2/pY1Y2sin6 + pY3)

(6.6)

The complement of the region just considered is where Y, > ,/pY; or
equivalently, ,/pY> > pY;. Here, however, we can have either /pY, > Y or
pYy < /pY> < Y. Thus, two separate subcases must be considered. For the
first subcase where /oY, > Y, we would certainly also have ,/pY> > pY;
and thus for both Marcum Q-function terms in (6.5), the second argument
is greater than the first argument. Thus, substituting (4.19) in both of these
terms, we obtain after much simplification the identical result of (6.6) except
that the second term, namely, exp(—Y %), now becomes exp(—Y %). Finally, for
the second subcase where pY;| < ,/pY> < Yy, once again (6.6) is appropriate
with, however, the second term, exp(—Y3), now replaced by exp(—Y?)+
exp(—=¥3).

What remains is to evaluate the bivariate Rayleigh CDF at the endpoints
between the regions where one must make use of the relation in (4.17). When
this is done, the following results are obtained for the second term in (6.6).
When Y; = .,/pY|, use %exp(—Y%) —i—exp(—pY%) and when Y| = ./pY, use
% exp(—Y %) + exp(—pY %). Summarizing, the bivariate Rayleigh can be expressed
in the form of a single integral with finite limits and an integrand composed of
elementary functions as follows:

PR g, (11, Q1512, Q2|p) =1 —g(Y1, Y2|p)

+i/nexp _Y%+Y§+2ﬁY1Y2sin9
2 ) _» 1—p

(1—pHYiY3
+/p(1 = p)Y Yo (YT + Y3)sing
(pYT+2/PY 1Y sin60 + Y3)
x (Y1 +2,/pY Yssin6 + pY3)

Yi =/ 6.7)
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where
exp(—Y?3), 0<Y,<. pY
Jexp(—Y]) +exp(—pY?).  Yo=pY
g(Y1, Yalp) = { exp(—Y7) +exp(—Y3), JPY1 <Yy <Yi/Jp (6.8)
Texp(—=Y3) +exp(—pY3), Yo=Y/ /p
exp(—Y?), Yi/JP <Y

At first glance, one might conclude from (6.8) that the bivariate CDF as
given by (6.7) is discontinuous at the boundaries Y, = ,/pY| and Y, =Y/, /p.
Clearly, this cannot be true since the Marcum Q-function itself is continuous over
the entire range of both of its arguments and thus from the form in (6.5), the
CDF must also be continuous over these same ranges. The explanation for this
apparent discontinuity is that the integral portion of (6.7) is also discontinuous
at these same boundaries but in such a way as to compensate completely for the
discontinuities in g(Y1, Y»|p) and thus produce a CDF that is continuous for all
positive Y and Y.

The bivariate Rayleigh CDF of (6.7) has been evaluated numerically using
Mathematica and compared with the double-integral representation [3, Egs. (1)
and (2)], the infinite series representation [3, Eq. (4)] and (6.5) using direct
evaluation of the Marcum Q-function. Both the infinite sum and the proposed
integral representation have a significant speed-up factor compared to the other
two methods (double-integral approach and the one where Marcum-Q is evaluated
numerically). Furthermore, the proposed approach always gives the exact result
(up to the precision/accuracy allowed by the platform), whereas the infinite series
representations (when programmed with the available Mathematica routines and
setting the upper limit to infinity as allowed by Mathematica) loses its accuracy
for high values of p such as 0.8 and 0.9 and a truncation of the series is required. !
Note that the number of terms for the truncation must be determined for each
set of values of r;, r, and p. Tan and Beaulieu [3] derived a bound on the
error resulting from truncation of the infinite series but reported that this bound
becomes loose as p approaches 1, which we have verified is the case.

An alternative simple form of the bivariate Rayleigh CDF can be obtained by
substituting the representations of the first-order Marcum Q-function of (4.26)
and (4.27) in (6.5). When this is done, then after considerable algebraic
manipulation the following result is obtained:

P, g, (r1, Q137r2, Q|p) =1 — g(Y1, Yalp) +sgn(Yo — /pY DI(Y1, Y2|p)
+sgn(Y1 — /pY)I(Y2, Y1|p) (6.9)
! Note that the infinite series representation itself converges to the correct result for all values of p

between zero and one. It is the limitation of the numerical evaluation of this series caused by the
software used to make this evaluation that results in the loss of accuracy for large p.
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where analogous to (6.8),

exp(—Y3), 0<Y, <. pY:
g(Y1,Y2|p) = exp(—=Y?) +exp(—Y3), VPY1 <Y<Y/ P (6.10)
exp(—Y7), Yi/Jp <Y

1 (oY} = ¥3)

Y%+ 2 : 2
I —pY54+2,/pYY>sin0 + pY

and

1 s
I(Yy,Y2lp) = E/ eXP{—
©.11)

Note that the compensation for the discontinuities in g(Y, Y»|p) at the boundaries

Yy =,/pY1and Y, = Y/,/p is now immediately obvious from the form of the

last two terms in (6.9). Moreover, the values of the CDF at these endpoints are
1 2 2

PR g, (11, 21512, Q2]p) =1 — 3 exp(—Y7) —exp(—Y3)

given as
1 T
_ e j— s
* 4 [ﬂ *P

Yy = /pYy (6.12)
1 2 2
Pr, g, (r1, Q1312, |p) =1~ 3 exp(—Y3) —exp(=Y7)

] T
+ E /ﬂexp{_ }7
Y\ = J/pYs 6.13)

One might anticipate that the bivariate Nakagami-m CDF could be expressed
in a form analogous to (6.5), depending instead on the mth-order Marcum Q-
function. If this were possible, then using the desired form of the generalized
Marcum Q-function as in (4.42) and (4.50), one could also express the bivariate
Nakagami-m CDF in the desired form. Unfortunately, to the author’s knowledge
an expression analogous to (6.5) has not been reported in the literature and the
author’s have themselves been unable to arrive at one.

1 via-py

Yz
2+1—,01+2psin9+,02

and

1 v —p?y

2
1+1—p1+2psin9+,02

6.2 PDF AND CDF FOR MAXIMUM OF TWO RAYLEIGH RANDOM
VARIABLES

In this section we consider the distributions of the random variable R =
max(Ry, R;), where R and R; are correlated Rayleigh random variables with joint
PDF as in (6.2). As mentioned previously, the random variable R characterizes
the output of an SC whose inputs are R; and R,. Since Pr{R < R*} = Pr{R; <
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R*, R, < R*}, the CDF of R is obtained immediately from the joint CDF of
Ry, R, by equating its two arguments. Since we are ultimately interested in the

PDF of the instantaneous SNR per bit,> y 22 »/No with mean y = r2E), /Ny =
QE,/Ny, it is convenient for the Rayleigh case to start by renormalizing the
bivariate CDF of (6.7).> Thus, noting that ¥? 2 r?/Q = vi/V: i = 1,2, the joint

CDF of y; and y; is given by

Py, Vv, Valp) = 1= GH (1, ¥1), H(va, ¥2)1p)

Vi

,—+§+2 p<ﬂ> (ﬁ)sine
1/” Y1 V2 Vi V2
+ — exp [—
2 J_,

where

G(H(yls 71)5 H(V27 72)|p) =

Vi Y2 Y1 V2 .
+ o= () (2) (2 +2)sing
VP =o) (Vl) (J’z) <V1 Vz) o

l—p

- (2)(2)
Y1 Y2

do
,02 +2 P<ﬂ> <£> sin9+¥
Y1 Y1 V2 Y2
X ?-1—2 p(?) <?)sin9+p)_/—2
Vi Vi V2 V2

(6.14)
_ V2 Vi
H(y2,7,), 0<—=<p=—
V2 Y1
1 _ _ V2 V1
=H(, 7)) +H (2, V2)s — =P
2 2B
_ _ Y1 V2 1!
H(y1,v) +H(2, 7)), — <= <-=
Y1 Y2 P Y1
1 _ _ v 1n
H(2, 7)) + Hn, 7)), —=-=
2 Y2 PV
_ lyr, w»
H(y1, 7)), —_— < =
PV 2
(6.15)

2 As in Chapter 5, we do not distinguish between bit and character instantaneous SNR. Thus, the
results derived here apply equally to the instantaneous SNR per symbol when relating to digital
communication systems with modulations that are higher order than binary.

3 We shall use the form of the CDF in (6.7) rather than that in (6.9) because of its synergy with the
corresponding results for correlated Nakagami-m RVs discussed in the next section.
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with H (y;, ¥;) = exp(—yi/7;), i = 1, 2. Defining the instantaneous SNR per bit
at the SC output by y = max(y1, y»), the CDF of y, namely P, (y), is obtained
immediately by substituting y; = y, = y in (6.14), that is,*

_ _ 1 /7 Y+ 7V, +2pYV,sin0
P,(y)=1—GH(y, 7)), H(y, J/z)|/0)+—/ exP[—y L2 1 172
27 V17.(1—p)

-7

(1 = P2V, 72 + Vol — V7, 72(V1 + 7,) sin6 "
(072 + 2PV V2 5in0 4+ 7,) (V2 + 2407 V2 sinb + py))

T

1
21— Glexp(—y/7)). exp(—v/T2)lp) + E/ exp[—yh1(61p)1h2(61p) db

(6.16)
where
A V1 + V24 2Py ¥, 8in6
@y 2 V1T T2t VPV 7
V17,1 —p)
2\ o o 6.17)
ha@lp) 2 L= PN V2 & /oL = V71 721 + 7o) sin
(072 + 23/P71 V2 5in0 + 7,) (V2 + 24/P71 2 sin 0 + p7))

To obtain the PDF of y, we differentiate (6.16). Since the dependence y in
(6.16) is purely exponential, it is a simple matter to arrive at the result, namely,

py(¥) =—=G'(H(y. 7)), H(y, 7,)|p)

1
+5. | [=m@le)lexpl=y hi©]p)1h(0lp) a0

=G(-H'(y. 7)), —H'(r. 72)lp)

1
+5. | [Fu@lp)lexpl=y h@lp)lha(0lp) d6 (6.18)

where the prime denotes differentiation with respect to y and thus —H'(y, ;) =
(I/y) exp(—=y/v;),i =1,2. Note that the dependence of p,(y) on y is also
purely exponential and as such resembles the behavior of the instanta-
neous SNR per bit corresponding to a single Rayleigh RV, namely, p,(y) =
(1/y)exp(—y/y). Because of this similarity, it is possible to draw an analogy
with results for the average error probability performance of single-channel (no
diversity) digital modulations transmitted over a Rayleigh fading channel (see

4Note that when y| = y» = y, as will be the case for the SC output PDF and CDF, the five regions
of validity for G(e, |p) of (6.15) are independent of y and become (1) 0 <y < p¥», (2) ¥| = pV>,
(3) py2 < V1 <¥a2/ps D Y1 =V2/p, and (5) ¥2/p < V1.
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Chapter 8) which make use of the integrals developed in Sections 5.1.1 and 5.2.1
based on the desired forms of the Gaussian and Marcum Q-functions. However,
because of the additional integration on 6 required by the second term in (6.18),
the functional form of the results will be somewhat different.

6.3 PDF AND CDF FOR MAXIMUM OF TWO NAKAGAMI-m RANDOM
VARIABLES

As mentioned in Section 6.1, the alternative representation of the Marcum
Q-function discussed in Chapter 4 is not helpful in simplifying the bivariate
Nakagami-m CDF in the form of a single integral with finite limits as was
possible for the Rayleigh case; thus, the method used to arrive at the CDF
and PDF of the SC output in Section 6.2 cannot be used here. Fortunately,
however, Fedele et al. [7] were able to arrive directly at an expression for the
SC output PDF in terms of the mth-order Marcum Q-function directly from the
defining expression for the bivariate Nakagami-m CDF as in (6.3). Using the
alternative representation of the generalized Marcum Q-function given in (4.42)
and (4.50), Simon and Alouini [8] were then able to simplify the expression
for the SC output PDF and working backward (i.e., integrating rather than
differentiating), obtain the SC output CDF. Following this approach, one never
needs to find the joint CDF of the SC input. While it is true that the results
from Ref. 7 could also be used to obtain directly the PDF and CDF of the SC
output for Rayleigh fading by considering the special case of the Nakagami-m
distribution corresponding to m = 1, the method used in Section 6.1 for solving
the Rayleigh case allows for additional simplifications of the resulting expressions
for outage probability and average error probability, as will be demonstrated later
in the book.

The PDF of the SC output R = max(R;, R;) can be found directly from the
bivariate Nakagami-m PDF of R; and R, as

d r r
mm=5//Um&mﬂmmmmmWMn (6.19)
0 0

Substituting (6.3) in (6.19) results in [7, Eq. (20)]

(r) B meerfl ox (_m—rz> | — Q Zmp - 2m r
PR = Tamay P\ g "\Wa=—pa "V a-pe
2mp 2m
- Qm r, rili,
<¢a—mm ¢u—mm>

2mmpm—l mr?
+ ————¢xp <——>
r>0 (6.20)

T (m)Q Q



150 NEW REPRESENTATIONS OF SOME PDF’s & CDF’s FOR CORRELATIVE FADING APPLICATIONS

which when rewritten in terms of the instantaneous SC output instantaneous SNR
per bit, y, becomes

=i ()0 ()
Py = Cim)y; \7, P Y1

[oo (N

1—p\y 1—p\7
m m—1

14 my

T Tonr, (72> exP( 72)

X |1 =0 \/Zm—p(_l)\/z—m(_l) , y>0 6.21)
1—p\7, I—p\7

Applying the alternative representation of the generalized Marcum Q-function to
(6.21), then analogous to (6.18) we obtain for p # 0°:

py() = G(=H'(y, 7, m), =H'(y, 75, m)|p)

m" 1 T
/ Y™~ expl—myhi (0] p)h(0lp)d6, ¥ >0

CT(m)2rm ),
(6.22)
with
A om" y\"! my
—H'(y,y;,m)= — <r) exp <—_—) , i=1,2 (6.23)
Fim)y; \v; Vi
Also, h(0|p) is still given by (6.17), which is independent of m and
A1 /7 \mh2
h6lp) = = (y—_1>
Y1 \PY2
y [—71 cos[(m — 1)(0 + 7/2)] + </ pY; ¥, cos[m(6 + 71/2)]}
PY2 + 24PV V2 8in6 +7,
1 =\ —(m—1)/2
+ = (@)
Y2 \ V2
o« [Vz cos[(m — 1)(0 + 7/2)] — \/py; ¥, cos[m(6 + ﬂ/Z)]] 6.24)
Y2+ 20y, vysin0 + py,

5 Note that the alternative representation of the generalized Marcum Q-function (m 5 1) is valid only
for p # 0.
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Note that m = 1, (6.24) simplifies to

h(9|p)=i Y1+ /pPy1v,sinb ] +i [ Y2+ /Py 7,506
Y1 LoVy + 2 0¥V, sinf + 7y, V2 V2 + 240V, 7V, 8in0 +(/067215)

which can be shown to be equal to h;(6|p)h,(6|p) with hy(6|p) obtained from
(6.17). Thus, also noting that —H'(y, y;, 1) = (1/y,) exp(—y/v;), i = 1, 2, the
PDF of (6.24) reduces to (6.18), as it should.

Note here that the dependence on y of p,(y) in (6.22) resembles the behavior
of the instantaneous SNR per bit corresponding to a single Rayleigh RV,
namely, p,(y) = [m™y"=1 /"I (m)] exp(—my/y). Because of this similarity, it
is possible to draw an analogy with results for the average error probability
performance of single-channel (no diversity) digital modulations transmitted over
a Nakagami-m fading channel (see Chapter 8) which make use of the integrals
developed in Sections 5.1.4 and 5.2.4 based on the desired forms of the Gaussian
and Marcum Q-functions. However, because of the additional integration on 6
required by the second term in (6.18), the functional form of the results will be
somewhat different.

The CDF of the SC output can now be found directly by integration of (6.22)
with the result (for p # 0)

P]/(y) = G(_H(]/, ?1’ m)v _H()/, 72’ m)|p)

m" 1 T 14 m—l _
_ F(m)g/,n {/0 y"Lexpl myh1(9|p)]dy} h(@|p)do

= G(_H(V» 711 m)’ —H(]/, 727 m)')o)

mm 1 T e 1
- o / i @1p) "= i Glp), mVh(Olp)d0 (6.26)

where now

- A [V -
—H(y, J/i,m)=/0 —H'(y,v;, m)dy

m—1 — \k
—1—exp <—@/>Z(Wk/3/) i=1,2  (627)

yl k=0

For p = 0, the PDF y can be obtained from Fedele et al. [7, Eq. (20)], which
after some changes of variables becomes

p = <y>ml exp (—my> [1 _ F('”my/_”z)]
Y C'm)y, \7; 7, T'(m)

m—1 —
m" 4 my '(m, my/y, )]
z STV - R >0
T Toom, (7) exp( 72> [ I(m) V=

(6.28)
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where I'(m, x) = [ *e~'t"=1dt is the complementary incomplete gamma func-
tion [5, Eq. (6.5.3)]. For m integer I'(m, x) has a closed-form expression [9,

Eq. (8.352.2)] and (6.28) simplifies to

( )—mim<1)mlex (—ﬂ) [—H (y, 75, m)]
Py = (m =Dy, \7, P Y1 vy

m m—1
o (f) exp (—’fy) [~Hy. 71, m],  y=0
(m — Dy, \7, V2
(6.29)
The corresponding CDFs are obtained by integration of (6.28) and (6.29) between
0 and y. For m noninteger, integration of (6.28) does not produce a closed-form
result, whereas for m integer, integration of (6.29) results in

P]/(y) = —H()/, 71’ m) - H()/, 72’ m)

-1

_ Z m+m—=D!F)" )"+ @) @) |:_Hn ()/ Y12 m)}

 nl(m — 1) @1+ 7" Vi+7
(6.30)
where analogous to (6.27),
m+n—1 —k
A my (my/y)
—H,(p,y,m)=1—exp (—— ) Y —5— (6.31)
Y = k!

Note that —Hy(y, ¥, m) is equal —H (y, ¥, m) of (6.27).
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7

OPTIMUM RECEIVERS FOR
FADING CHANNELS

As far back as the 1950s, researchers and communication engineers recognized
the need for investigating the form of receivers that would provide optimum
detection of digital modulations transmitted over a channel composed of a
combination of AWGN and multiplicative fading. For the most part, most
of these contributions dealt with only the simplest of modulation/detection
schemes and fading channels (i.e., BPSK with coherent detection and Rayleigh
or Rician fading). In some instances, the work pertained to single-channel
reception, while in others multichannel reception was considered. Our goal in
this chapter is to present the work of the past under a unified framework
based on the maximum-likelihood approach and also to consider a larger
number of situations corresponding to more sophisticated modulations, detection
schemes, and fading channels. In addition, we treat a variety of combinations of
channel state knowledge relating to the amplitude, phase, and delay parameter
vectors associated with the fading channels. In many instances, implementation
of the optimum structure may not be simple or even feasible and thus a
suboptimum solution is preferable and is discussed. Also, evaluating the error
probability performance of these optimum receivers may not always be possible
to accomplish using the analytical tools discussed previously in this book or
anywhere else for that matter. Nevertheless, it is of interest to determine in
each case the optimum receiver since it serves as a benchmark against which
to measure the suboptimum structure, which is simpler both to implement and
to analyze.

We begin our discussion by reviewing the mathematical models for the
transmitted signal and generalized fading channel as introduced in previous
chapters. In particular, consider that during a symbol period of Ty seconds the
transmitter sends the real bandpass signal!

! Without any loss in generality, we shall assume that the carrier phase, 6., is arbitrarily set equal to
zero since the various paths that compose the channel will each introduce their own random phase
into the transmission.
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sk(t) = Re{5i (1)} = Re{Sy()e/>™/) (7.1)

where 5;(¢) is the kth complex bandpass signal and Si(r) is the corresponding
kth complex baseband signal chosen from the set of M equiprobable message
waveforms representing the transmitted information. At this point, we do not
restrict the signal set {Sk(0)} in any way (e.g., we do not require that the signals
have equal energy), and thus we are able to handle all of the various modulation
types discussed in Chapter 3.

The signal of (7.1) is transmitted over the generalized fading channel which
is characterized by L, independent paths, each of which is a slowly varying
channel which attenuates, delays, and phase shifts the signal and adds an AWGN
noise source. Thus the received signal is a set of noisy replicas of the transmitted
signal, that is,’

r(t) = Re{alik(t — ‘L’[)ejgl —+ ﬁl(t)}
= Re{Ol]Sk(l‘ _ -[[)ej(ZT[fct‘i’el) + N](l‘)ejznfft}
= Re{# (1)} = Re{R; (1)’ /"), 1=1,2,...,L, (7.2)

where {N ,(t)}lLi | 1s a set of statistically independent’ complex AWGN processes
each with PSD 2N, watts/Hz. The sets {«; }ILL 15 {9;},Lil, and {7 }fi | are the random
channel amplitudes, phases, and delays, respectively, which because of the slow-
fading assumption, are assumed to be constant over the transmission (symbol)
interval Ty. Also, without loss of generality, we take the first channel to be the
reference channel whose delay 7; = 0 and assume further that the delays are
ordered (ie., T1 < Tp < - -+ < er).

The optimum receiver computes the set of a posteriori probabilities
p(sk(t)l{rl(t)}lLil),k =1,2,...,M, and chooses as its decision that message
whose signal s;(f) corresponds to the largest of these probabilities.* Since the
messages (signals) are assumed to be equiprobable, then by Bayes rule, the
equivalent decision rule is to choose s;(¢f) corresponding to the largest of the
conditional probabilities (likelihoods) p({r; (t)}lLi1 [sp(), k=1,2,..., M, which
is the maximum-likelihood (ML) decision rule. Using the law of conditional

2 In deriving the various optimum receiver configurations, we assume a “one-shot” approach (i.e., a
single transmission), wherein intersymbol interference (ISI) that would be produced by the presence
of the path delays on continuous transmission is ignored.

31t should be noted that Turin [1] originally considered optimal diversity reception for the more
general case where the link noises (as well as the link fades) could be mutually correlated;
however, the noises and fades were statistically independent. Later, however, Turin [2] restricted
his considerations to link noises that were white Gaussian and statistically independent. (The link
fades, however, were still allowed to be correlated — statistically independent and exponentially
correlated fades were considered as special cases.)

4 The receiver is assumed to be time-synchronized to the transmitted signal (i.e., it knows the time
epoch of the beginning of the transmission).
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probability, each of these conditional probabilities can be expressed as’

/// pr O | se ), i 6070 (Tl )

x p({erdy?, 402l ) dan k2 di0n 2, dimdy, (1.3)

and as such depends on the degree of knowledge [amount of channel state infor-
mation (CSI)] available on the parameter sets {al},Lil, {6/},2,, and {'cl}lLil. For
instance, if any of the three parameter sets are assumed to be known (e.g., through
channel measurement), the statistical averages on that set of parameters need not
be performed. In the limiting case (to be considered shortly) where all parameters
are assumed to be known to the receiver, none of the statistical averages in (7.3)
need be performed, and hence the ML decision rule simplifies to choosing the
largest of p({ry (D}l (0), (e} 2y, O} 20 Tl k=1,2,..., M.

Receivers that make use of CSI have been termed self-adaptive [3] in that the
estimates of the system parameters are utilized to adjust the decision structure,
thereby improving system performance by adaptation to slowly varying channel
changes. We start our detailed discussion of optimum receivers with the most
general case of all parameters known since the decision rule is independent of
the statistics of the channel parameters and leads to a well-known classic structure
whose performance is better than all others that are based on less than complete
parameter knowledge. Also, since detection schemes are typically classified based
on the degree of knowledge related to the phase(s) of the received signal, ideal
coherent detection implying perfect knowledge falls into this category.

7.1 CASE OF KNOWN AMPLITUDES, PHASES, AND DELAYS:
COHERENT DETECTION

Conditioned on perfect knowledge of the the amplitudes, phases, and delays,
the conditional probability p({r;()}",Isc(®). {au}ity. (12, {z}it,) s a joint
Gaussian PDF which because of the independence assumption on the additive
noise components can be written as

L L L, L,
p({rz mh, ‘Sk(t)’ {ar}, 20 042, {771}1;1)
ﬁK exp { ! /

= I _——
I=1 N1 I
ﬁK exp { ! /

= I —_—
=1 2Nl T

5 Bach integral in (7.3) is, in fact, an L,-fold integral.

Ts+7 L
|7‘1(Z‘) — oy (t — ‘L’])ejg’} dl‘:|

Ts+7 - - I
|Ri(t) — oSkt — 11)e’” | dt] (7.4)
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where K; is an integration constant. Substituting (7.2) into (7.4) and simplifying
yields

pUrON sk @), da iy 1820 ATy

L, 2
) E
= KHeXP Re{%e_jelykl(fl)} _ 4 k}

=1 Ni
Ly Ly -
‘ E
—Kexp | :Re{;le_ﬁ’ykl(n)} -3 % (1.5)
1 l

=1 =1

where

T

T,y+fl~ - s -
@2 / RS — 1) di = /0 RU+wSiOd (16)

T

is the complex cross-correlation of the /th received signal and the kth signal
waveform and

1 rTs . ) 1 fTstu _ )
Ei= / Sy di = 5 / Sett — o) dr (1.7)
0

T

is the energy of the kth signal s; (7). Also, the constant K absorbs all the K;’s as
well as the factor exp[ZlLL1 (1/2Ny) f |I~i’1 (1)|? dt], which is independent of k and
thus has no bearing on the decision. Since the natural logarithm is a monotonic
function of its argument, we can equivalently maximize (with respect to k)

A L L, L, L,
Ar =In p({ri OV sk @), {ad, 20, 042 {uh2y)
L, 2
o) _ip OllEk
R _ Jo1 _
e {Nle Ykz(fl)} N,

where we have ignored the InK term since it is independent of k.5 The first
bracketed term in the summation of (7.8) requires a complex weight (c;e/%) to
be applied to the /th cross-correlator output (scaled by the noise PSD N;) and
the second bracketed term is a bias dependent on the signal energy-to-noise ratio
in the /th path. For constant envelope signal sets (i.e., Exy = E; [ = 1,2,..., M),
the bias can be omitted from the decision-making process.

A receiver that implements (7.8) as its decision statistic is illustrated in Fig. 7.1
and is generically referred to as a RAKE receiver [4,5] because of its structural

(7.8)

=1

6 For convenience, in what follows we shall use the notation Ay for all decision metrics associated
with the kth signal regardless of any constants that will be ignored because they do not depend on k.
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similarity with the teeth on a garden rake.” Note that this receiver is, for the CSI
conditions specified (i.e., perfect knowledge of all channel parameters), optimum
regardless of the statistics of these parameters. We shall see shortly that as soon
as we deviate from this ideal condition (i.e., one or more sets of parameters
are unknown), the receiver structure will immediately depend on the channel
parameter statistics.

We conclude this subsection by noting that if instead of the generalized
fading channel model consisting of L, independently received noisy replicas
of the transmitted signal, we had assumed the random multipath channel model
suggested by Turin [6], wherein the received signal would instead be of the form

L,
r(t) =Y Relaydi(t — 1)/} + Relii (1)}
=1

LF
= ZRe{algk(, — 7))e/@TIIHY 4 Re(N (1)e/ 2!
=1

= Re{R(t)e/>™ /<"y (7.9)

with N(r) a complex AWGN processes with PSD 2N, watts/Hz, the decision
metric analogous to (7.8) would be
Ollek

LF
A o
Ak:E RG{N—Oe Je’ykz(fz)}— No
=1

which is in agreement with Ref. 6. Since N is now a constant independent of /,
we can eliminate it from (7.10) in so far as the decision is concerned and rewrite
the decision metric as

(7.10)

L

,
A _
A=) [Refore "y (1)} — o Ex] (7.11)
=1

For single-channel reception (i.e., L, = 1), (7.8) or (7.11) simplifies to

A 2 Refae 7y, (7)) — o2E; (7.12)

which is identical to the decision metric for a purely AWGN channel except for
the scaling of the first term by the known fading amplitude « and the second
(bias) term by o?. For the special case of constant-envelope signal sets, the
second term becomes independent of k and can therefore be ignored, leaving
as a decision metric Ay = aRe{e /%y (1)}. Since o now appears strictly as a

7 Such a receiver is also considered to implement the maximum-ratio combining (MRC) form of
diversity and is discussed further in Chapter 9 which deals with the performance of multichannel
receivers.
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multiplicative constant that is independent of k, it has no bearing on the decision
and thus can also be eliminated from the decision metric. Hence, for single-
channel reception of constant envelope signal sets, the decision metric is identical
to that for the pure AWGN channel, and knowledge of the fading amplitude does
not aid in improving the performance. It should be emphasized, however, that
despite the lack of dependence of the optimum decision metric on knowledge of
the channel fading amplitude, the error probability performance of this receiver
does indeed depend on the fading amplitude statistics and will of course be
worse for the fading channel than for the pure AWGN channel. On the other
hand, for nonconstant envelope signal sets (e.g., M-QAM), the second term in
(7.12) cannot be ignored and optimum performance requires perfect knowledge
of the channel fading amplitude (typically provided by an AGC).

Finally, note that if in the generalized fading channel model all paths have
equal noise PSD (i.e., Ny =Ny, [ =1,2,...,L,), the decision metric of (7.8)
reduces to that of (7.10).

7.2 THE CASE OF KNOWN PHASES AND DELAYS, UNKNOWN
AMPLITUDES

When the amplitudes are unknown, the conditional probability of (7.5) must
be averaged over their joint PDF to arrive at the decision metric. Assuming

independent amplitudes with first-order PDFs {p,, (cxl)}lLil, we obtain

PN s @), 4602 )2y

_KH/ exp

We now consider the evaluation of (7.13) for Rayleigh and Nakagami-m fading.

o?
Re {e= /%

TEk
N, ]Pa,(al)dﬁfz (7.13)

7.2.1 Rayleigh Fading
For Rayleigh fading with channel PDFs,

—_—— e —_— s .
R Q[ Q[ !

and éE{oelz}, the integrals of (7.13) can be evaluated in closed form. In
particular, using Eq. (3.462.5) of Ref. 7, we obtain

pUrON sk @), 1832, 4Tty

L
e Tl 4oy Ua\ [, _,(Yu
_Kg(l—i—y;d) {1+[Uk,exp< 1 ) [1 Q(\/i)}} (7.15)
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where Q(x) is the Gaussian Q-function (see Chapter 4), ¥y, éQ,Ek /N, is the
average SNR of the kth signal over the /th path, and

A [Ex Y 1
Uy 2 o {

=S Refe Py (1) (7.16)
Ni1+7Yy LEk
The combination of (7.15) and (7.16) agrees, after a number of corrections, with
the results of Hancock and Lindsey [3, Eq. (28)] using a different notation.

The decision metric analogous to (7.8) is obtained by taking the natural
logarithm of (7.15) and ignoring the In K term, which results in

L, Ly 2
U U
Ac==> In(+yy)+ Y 1+ /mUgexp | L {1 -0 (l)]
=1 = 4 V2
(7.17)
The first summation in (7.17) is a bias, and the second summation is the decision

variable that depends on the observation. For large average SNR (i.e., v > 1),
the decision metric above simplifies to (ignoring the In /7 term)

L L

4 B P 1
Ay = — Zln Vi + Z <ln Uy + ZU,@) (7.18)

=1 =1

A receiver that implements the decision rule based on the high SNR decision
metric above is illustrated in Fig. 7.2.

7.2.2 Nakagami-m Fading
For Nakagami-m fading with channel PDFs,

2 my ! 2m;—1 m o 7.19
Pa o — - o CX[) - ) o = 0 .1
,( l) ] (ml) <SZ,> ! ! ( )

the integrals of (7.13) can be evaluated in closed form using Eq. (3.462.1), of
Ref. 7 with the result

PR ON sk @), 1820 4Ty

L,

F(Zml) ny m V%[ ( Vk[ )
K THND o (-2} (720
11 <2mz—1r<mz>) (mz +7,d> exp( 3 ) m\"m) O

where
A |E 5% 1 .
Vk,=,/ﬁ’; <m1 f7 ) {Ek Refe f‘”yk,m)}] (7.21)
kl

and D, (x) is the parabolic cylinder function [7, Eq. (3.462.1) and Sec. 9.24].
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7.3 CASE OF KNOWN AMPLITUDES AND DELAYS, UNKNOWN
PHASES

When the phases are unknown, the conditional probability of (7.5) must be
averaged over their joint PDF to arrive at the decision metric. Assuming
independent phases with PDFs specified over the interval (0, 27r), we obtain

PR N [se @)t} ATt

2w
=KH/O exp

=1

2
. E
~FRe(e™” ul ’“] pa 66, (1.22)
) )

For uniformly distributed phases as is typical of Rayleigh and Nakagami-m
fading, (7.22) becomes

PN sk @), dan)2y )2y

o' E 1 2 o .
—KHexp( ]l\/[k> 271/ exp [ﬁ]z Refe Je’)’kl(fl)}] do,

—K OtlEk 1 2 o d
= Hexp N 3 ), Py @l coslor —argCu (@] o)

L, 2
(XEk [04]
=K|[exp|—-= I <—|y (t, )|) (7.23)
E P( N, ) 0 N k(T

Taking the natural logarithm of (7.23) and ignoring the In K term , we obtain the
decision metric

A ilnl (“’ 1y € )|> i G E (7.24)
= — |y @) | =)y —— .
k 2 0 N, YTy 2 N,

which for constant envelope signal sets simplifies to (ignoring the bias term)

L,

A=Y "nl, (;—’Zwmn) (7.25)
=1

An implementation of a receiver that bases its decisions on the metric of (7.24)
is illustrated in Fig. 7.3.

For large arguments, the function In/((x) is approximated by a scaled version
of |x|, and thus for high SNR, the decision metric is similarly approximated by

L,

M=y ]O;—’l|ykz(n)| (7.26)

=1
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7.4 CASE OF KNOWN DELAYS AND UNKNOWN AMPLITUDES AND
PHASES

When only the delays are known, then the conditional probability of (7.5) must be
averaged over both the unknown amplitudes and phases to arrive at the decision.
Assuming, as was done in Section 7.3, the case of independent, identically
distributed (i.i.d.) uniformly distributed phases, the conditional probability needed
to compute the decision statistic is obtained by averaging (7.23) over the PDFs
of the independent amplitudes, resulting in

P2, |se @), {miey)

(o] 2E
= KH/O exXp (‘%) Iy <]O\[,ll|)’kl(fl)|> Do, () day  (7.27)

7.4.1 One-Symbol Observation: Noncoherent Detection

In this subsection we consider the case where the observation interval of
the received signal is one symbol in duration. Receivers that implement their
decision rules based on statistics formed from one-symbol duration-correlations
are referred to as noncoherent receivers. This is in direct contrast to the cases that
will be considered next, wherein the observation of the received signal extends
over two or more symbols, resulting in differentially coherent receivers. This
distinction in terminology regarding the method of detection (i.e., noncoherent
versus differentially coherent) employed by the receiver and its relation to
the observation interval is discussed by Simon et al. [8, App. 7A] for AWGN
channels.

7.4.1.1 Rayleigh Fading. For the Rayleigh fading PDF of (7.14), the
conditional probability of (7.27) can be evaluted in closed form. In particular,
using Eq. (6.633.4) of Ref. 7, we obtain after some manipulation

L,

, (Ujy)?
P @Yy |se (@), (mh2)) KH(I + V)" exp { j ] (7.28)
=1
where analogous to (7.16) for the coherent case,
;A [Ex vy
= — T 7.29
Kl Nl L+7, { [y ( l)@ ( )

Once again taking the natural logarithm of the likelihood of (7.28) and ignoring
the In K term, we obtain the decision metric

v 1 ?
Zln(l +7u) + Z W (Tklyk,) [E—kwu(rz)@ (7.30)
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A receiver that implements a decision rule based on the metric of (7.30) is
illustrated in Fig. 7.4.

For the special case of constant envelope signal sets, wherein the bias [first
term of (7.30)] becomes independent of k and can be ignored, the decision metric
becomes (ignoring the scaling by the energy E)

L,

_ Vi |y (7))
EEDEE o

=1

where 7léQIE/N1. If, further, we assume that N; =No; [ =1,2,...,L,,
(7.31) simplifies still further to (ignoring the scaling by Ng)

L,

A=Y (%’71) (o) (7.32)

=1

Finally, for a flat power delay profile (PDP), ©; =,/ =1,2,...,L,, then
ignoring the scaling by ¥/(1 4 ¥), the decision metric is simply

LP
A=) lyu(@) (7.33)
=1

which is identical in structure to the optimum receiver for a pure AWGN
multichannel; that is, each finger implements a complex cross-correlator matched
to the delayed signal for that path followed by a square-law envelope detector
with no postdetection weighting.

Methods for evaluating the average bit error probability (BEP) performance of
multichannel receivers with square-law detection are discussed in Chapter 9. In
general, the performance of the optimum receiver that implements the decision
metric of (7.32) is difficult to evaluate using these methods because of the
nonuniformity of the postdetection weights 3;/(1 4+ 7;). On the other hand,
the performance of a receiver that implements the unweighted decision metric
of (7.33), which for other than a uniform PDP would be suboptimum, is
straightforward. In what follows we examine the BEP of the optimum receiver
(for which results are obtained from computer simulation) and the BEP of
the suboptimum receiver [for which results are obtained from the analysis of
equal gain combining (EGC) diversity reception to be studied in Chapter 9]® for
the case of binary FSK and an exponential PDP described by 7 = yre %¢~1,
I=1,2,..., L,

8 Simulation results were also obtained for the BEP of the suboptimum receiver as a means of
verifying the simulation program and were shown to be in perfect agreement with the analytically
obtained results.
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TABLE 7.1 Average BEP Data for Optimum and Suboptimum Reception of Noncoher-
ently Detected Binary FSK over Rayleigh Fading with an Exponential PDP?

7 (dB)
L 0 2 4 6 8 10 12 14 16

Optimum Case (Simulation Result) for Sample Size = 108 for § = 0

1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 25925 19008 .12554 .07451 .03996 .01967 .00907 .00397 .001685
3 .20987 .13640 .07587 .03579 .01443 .00508 .00162 .00048 .000130
4 17333 .10042 .04729 .01782 .00541 .00138 .00030 .00006 .000011
Optimum Case (Analysis Result) for § = 0
1 .33333 27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .25926 .19003 .12559 .07451 .03996 .01968 .00906 .00398 .001689
3 .20987 .13637 .07589 .03580 .01443 .00509 .00161 .00047 .000132
4 17330 .10039 .04730 .01783 .00543 .00137 .00030 .00006 .000011
Optimum Case (Simulation Result) for Sample Size = 108 for § = 0.1
1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .26645 19740 .13192 .07920 .04293 .02130 .00989 .00436 .001853
3 22574 15124 .08713 .04259 .01776 .00643 .00208 .00062 .000173
4 19800 .12168 .06144 .02492 .00809 .00218 .00050 .00010 .000019
Suboptimum Case (Analysis) for § = 0.1
1 .33333 .27895 22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .26650 .19737 .13198 .07922 .04293 .02132 .00988 .00436 .001855
3 .22589 .15129 .08718 .04263 .01776 .00643 .00208 .00062 .000175
4 19827 .12183 .06154 .02495 .00813 .00218 .00050 .00010 .000019
Optimum Case (Simulation Result) for Sample Size = 108 for § = 0.5
1 .33333 27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .29083 .22373 .15638 .09848 .05584 .02883 .01379 .00621 .002682
3 .27520 .20311 .13241 .07457 .03590 .01482 .00535 .00173 .000519
4 26915 .19490 .12270 .06499 .02823 .01000 .00292 .00072 .000153
Suboptimum Case (Analysis) for § = 0.5
1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .29196 .22451 .15691 .09871 .05503 .02885 .01379 .00622 .002687
3 .27926 .20625 .13435 .07545 .03617 .01489 .00536 .00173 .000517
4 27793 20213 .12738 .06718 .02895 .01016 .00294 .00072 .000155
Optimum case (Simulation Result) for Sample Size = 108 for § = 1
1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 31137 .24835 .18213 .12149 .07322 .04001 .02011 .00941 .004179
3 .30802 .24323 17511 11273 .06385 .03149 .01354 .00512 .001731
4 30755 .24244 17400 .11127 .06219 .02981 .01216 .00421 .001234
5 .30739 .24230 .17381 .11106 .06190 .02957 .01190 .00402 .001129

(continued overleaf)
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TABLE 7.1 (continued)

7 (dB)
L 0 2 4 6 8 10 12 14 16

Suboptimum Case (Analysis) for § = 1

1 .33333 27895 22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .31594 25204 .18467 .12277 .07375 .04022 .02015 .00943 .004190
3 .32195 25612 .18497 .11872 .06666 .03252 .01382 .00517 .001738
4 33243 26714 19457 12518 .06958 .03290 .01314 .00443 .001277
5 .34279 27886 .20600 .13440 .07551 .03583 .01417 .00464 .001260
Optimum Case (Simulation Result) for Sample Size = 108 for § = 2
1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 .32884 27202 .21125 .15300 .10242 .06318 .03588 .01878 .009146
3 .32885 27181 .21098 .15249 .10190 .06248 .03500 .01783 .008290
4 32878 27184 .21097 .15253 .10191 .06246 .03500 .01784 .008256
Suboptimum Case (Analysis) for § = 2
1 .33333 .27895 .22163 .16719 .12034 .08333 .05603 .03687 .023917
2 34317 28588 .22268 .16062 .10665 .06507 .03653 .01897 .009197
3 .35916 .30381 .24044 .17584 11776 .07180 .03969 .01986 .008999
4 37163 .31859 .25610 .19048 .12976 .08040 .04509 .02281 .010394

aThe simulation is accurate to 10~*

Table 7.1 presents the numerical BEP data for the optimum and suboptimum
receivers corresponding to values of é equal to 0, 0.1, 0.5, 1.0, and 2.0. For each
value of g, the average SNR/bit of the first path, ,, is allowed to vary over a
range from O to 16 dB, and the number of paths, L, is varied from 1 to 4. For
6 =0 (i.e., a uniform PDP), the simulation and analytical data are seen to agree
exactly since in this case the suboptimum receiver corresponding to the decision
metric of (7.33) is indeed optimum, as mentioned previously. For § > 0, the
optimum receiver clearly outperforms (has a smaller BEP than) the suboptimum
receiver, as it should. To illustrate the behavior of the optimum and suboptimum
receivers as a function of the fading power decay factor, §, and the number
of paths, L,, the simulation data in Table 7.1 are plotted in Figs. 7.5a—e and
7.6a—e, respectively. We observe from the curves in Fig. 7.5a—e that for fixed
& the performance of the optimum receiver always improves monotonically with
increasing L, over the entire range of y; considered. By contrast, the curves
in Figs. 7.6a—e illustrate that for large 8, the performance of the suboptimum
receiver can in fact degrade with increasing L, as a result of the noncoherent
combining loss, which is more prevalent at low SNR’s. Comparing the various
groups of curves within each set of figures also reveals that the improvement in
BEP obtained by increasing L, is larger when the fading power decay factor, 4,
is smaller; that is, a uniform PDP stands to gain more from an increase in the
number of combined paths than one with an exponentially decaying multipath
and the same average SNR/bit of the first path.
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Figure 7.5. Average BEP performance for optimum reception of noncoherently detected binary
FSK over Rayleigh fading with an exponential PDP: (a) § = 0; (b) § = 0.1; (c) § = 0.5; (d) § = 1.0;
©es=20m=1,M=2.
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Figure 7.5. (continued)
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Figure 7.5. (continued)

To compare the behavior of the optimum and suboptimum receivers, Fig. 7.7a
and b illustrate their performance for two different combinations of § and L,:
namely,  =1,L, =5 and § =2, L, = 4. Also illustrated in these figures are
the corresponding results for L, = 1, in which case the two receivers once again
yield identical performance since the single scaling factor 3, /(1 4+ ;) in (7.32) is
now inconsequential. We observe from these figures that the suboptimum receiver
performs quite well with respect to its optimum counterpart but does in fact
exhibit a noncoherent combining loss at sufficiently low SNR, as mentioned
previously. As a further comparison of the behavior of the optimum and
suboptimum BFSK receivers, Fig. 7.8 illustrates their performance with L, = 4
and varying §. Finally, Fig. 7.9 gives an analogous performance comparison for
4-ary FSK with § = 1.0 and varying L.

7.4.1.2 Nakagami-m Fading. For the Nakagami-m fading PDF of (7.19),
the conditional probability of (7.27) can also be evaluated in closed form. In
particular, using Eq. (6.631.1) of Ref. 7 we obtain [9]

L

4 —m 2
p{r Y2 s @), {m)2) =K ( y"’) 1 F (mz,l ( Z”) (7.34)
1

1=
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Figure 7.6. Average BEP performance for suboptimum reception of noncoherently detected
binary FSK over Rayleigh fading with an exponential PDP: (a) § = 0; (b) § = 0.1; (c) § = 0.5;
@s=10;€)é=20m=1,M=2.
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Figure 7.6. (continued)
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Figure 7.6. (continued)

where analogous to (7.21) for the coherent case

, A |Eg Yu ) { 1 ]
V=] — | ——— | | =— T 7.35
ki N, (ml ey Ek|ykl( B] ( )

and | F(a, b;x) is Kummer’s confluent hypergeometric function [7, Sec. 9.210],
which has the property that for x > 0, a > 0, | F(a, 1;x) is a monotonically
increasing function of x. Also, the larger a is, the greater the rate of increase.
Finally, since 1 F1(1, 1;x) = e, thenform; = 1,1 =1, 2, ..., L,, the conditional
probability of (7.34) reduces to (7.28), as it should.

The decision metric for this case is obtained by taking the natural logarithm
of (7.34) with the result (ignoring the In K term)

e Yu el (Vi)

Ay =— mn|{1+— |+ InFy (my,1; 7.36
k ; I < ml) ; 1Fy ( ! 4 ) (7.36)
Once again the first summation in (7.36) is a bias term, whereas the second
summation has a typical term that is a nonlinearly processed sample (at time ;)
of the cross-correlation modulus yy; (|7;]). A receiver that implements a decision
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Figure 7.7. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected binary FSK over Rayleigh fading with an exponential PDP:
@38=10,Lp=5®)6=20,Lp=4m=1,M=2.
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Figure 7.8. Comparison of the average BEP performance for optimum and suboptimum

reception of noncoherently detected binary FSK over Rayleigh fading with an exponential PDP;

Lp =4,varyingé,m=1,M=2.
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Figure 7.9. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected 4-ary FSK over Rayleigh fading with an exponential PDP;
§=1.0,varyingLp,m=1,M=4.
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Figure 7.10. Comparison of the average BEP performance for optimum and suboptimum
reception of noncoherently detected binary FSK over Nakagami-m fading with an exponential
PDP; § =2.0, L, = 4, varying m.

rule based on (7.36) would be similar to Fig. 7.4, where, however, the square-law
nonlinearity is replaced by the In | F; (-, -; -) nonlinearity and the bias is modified
accordingly.

To compare the behavior of the optimum and suboptimum receivers, Fig. 7.10
illustrates their performance as a function of the m parameter for 6 =2 and
L, =4. Here we observe that the difference between the suboptimum and
optimum performances increases with m (i.e., as the severity of the fading
decreases).

7.4.2 Two-Symbol Observation: Conventional Differentially Coherent
Detection

We assume here that in addition to the channel phases and amplitudes being
unknown, the channel is sufficiently slowly varying that these parameters can
be considered to be constant over a time interval that is at least two symbols in
duration. Furthermore, we consider only constant envelope modulations, namely,
M-PSK. For a purely AWGN channel, the optimum receiver has been shown
[8, App. 7A] to implement differentially coherent detection which for M-PSK
results in M-DPSK. What we seek here is the analogous optimum receiver when
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in addition to AWGN, fading with unknown amplitude is present on the received
signal. The derivation of this optimum receiver to be presented here follows the
development by Simon et al. [8, App. 7A].

We begin by rewriting (7.4) with integration limits corresponding to a 27-
second observation, namely,

pri @Y7 |56 @) dadi 2y 0 Tty

T

Ly | 2T+ N o
=[] X exp {— / |Ri(t) — oSkt — 1)’ |"dt|  (7.37)
e 2N,
Defining the individual symbol energies of the kth signal as

1 +DTy (+D)T+7
Ey = —/ 1Sk()> dt = —/ ISe(t — )>dt, i=0,1 (7.38)
2 Jir, 2 )it +q

we obtain, analogous to (7.5),
L L, L,
se@), {20 4020 {nd2y)

2
o) _ i0 Oll (Ek() + Ekl)
Reld —e /% 7
{Nle y"’(f’)} N,

PN,

L,

=KHexp

=1

L, L, 2
o 2 (Exo + Er)
=Kexp | Re{Nle fefyk,(r,)}—E % (7.39)
=1 ! =1 !

where now

A 2T+7 - ~ 2T - -
ykl(‘L’l)Z/ Ri()S;(t — ) dt = / Ri(t + )S;()dt (7.40)
0

T

Since we have assumed constant envelope M-PSK modulation, the kth complex
baseband signal can be expressed as’

- E; .o . . .
Se(t) = Te”’k , iT,<t<(@G+DT,, i=0,1 (7.41)
N

where Eyo = Ey; = E; (the energy per symbol) and ¢,(€i) denotes the information

phase transmitted in the ith symbol interval of the kth signal and ranges over the

9 To avoid notational confusion with the channel fading phases, we use ¢ (as opposed to 6 from
Chapter 3) to denote the transmitted phases.
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set B = 2k — Da/M, k=1,2,..., M. Substituting (7.41) into (7.40), we can
rewrite (7.39) as

pUr Y2 sk (), (o, 1020 {Th?y)
Ll’

o .
= & [Jewn [re { 5 (i o) |
=1
LP
(07
k] exp{N_l, Q@) + yP ()| cos [0 — arg (y(z) + y“)(m)]} (7.42)
=1

where we have absorbed the constant term exp(—2E; Z, T 2/N;) in K and

(l+1)T3+‘E[ B O

YD) =2 Ri(H)e 1% dt, i=0,1 (7.43)
T sTT

As in Section 7.3, we first need to average (7.42) over the uniformly distributed

statistics of the unknown channel phases. Proceeding as was done in (7.23), we
arrive at the result

P ON2, [se @), {2y, (mh)

LI’
= KHexp <—
=1

Oles a0 (1)
zlvz Io(Nl!yk, (@) + vy (n)!) (7.44)

Next, we must average over the statistics of the unknown amplitudes.

7.4.2.1 Rayleigh Fading. Following steps analogous to those taken in
Section 7.4.1.1, we obtain

2
Qz!ylﬁ?)(rz) + y,E})(rz)!
4N,

L
PN se @), {m)2,) = H

] (7.45)

with the equivalent decision metric (ignoring the In K term)
_N o ()
A= Z 4N, |yk1 (T) + yu (Tl)|

T+t _ O 2T+1 B W 2
L / R/ (H)e /% dt + / R/(e /% dt|  (7.46)
7 Ts+1
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The decision rule based on the decision metric in (7.46) is to choose as the

transmitted signal that pair of phases ¢,({0) = Bjy» ,({1) = fB;, that results in the

largest Ax. We note that adding an arbitrary phase, say B, to both qb,({()) and ¢,(€1)
does not affect the decision metric, and thus in accordance with the decision

rule above, the joint decision on (,b,(co) and ¢,£1) will be completely ambiguous. To

resolve this phase ambiguity, we observe that although the decisions on ¢1£0) and
¢,(€1) can each be ambiguous with an arbitrary phase B, the difference of these
two decisions is not ambiguous at all. Thus, an appropriate solution is to encode
the phase information as the difference between two successive transmitted
phases (i.e., employ differential phase encoding at the transmitter). This is
exactly the solution discussed in Section 3.5 for phase-ambiguity resolution on
the pure AWGN channel (see also Simon et al. [8, App. 7A]). Mathematically
speaking, we can set the arbitrary phase S = —¢,(<O), in which case (7.46)
becomes

2

¥ T+ _ o) 2Ts+v o
/ Ri(t)e 19D qr 4 / Ri(t)e 1% +P) gy
4TS T T+u

¥ To+n 2MTs+u — i@V =) 2
AN R/ (t)dt + Ri(t)e™ /"% ~% M dt
T Ts+1

2T +1 2

v Ts+7 " . -
=S 2 Roare e [ ke
4Ts T T

s+T

(7.47)

where Ag.” éqb,i” — ¢~ represents the information phase corresponding to
the ith transmission interval, which ranges over the set of values By = 2kn/M,
k=0,1,...,M — 1. Expanding the squared magnitude in (7.47) and retaining
only terms that depend on the information phase Ad),il), we obtain (ignoring other
multiplicative constants)

L,
A=Y 7iRe(Vo Vel (7.48)
=1
where
-~ A (+DTs+w
Vi =/ R, () dt, i=0,1 (7.49)
iTs+7

A receiver that bases its decision rule on the decision metric of (7.48) is illustrated
in Fig. 7.11. For a flat power delay profile and equal channel noise PSDs, the
metric of (7.48) reduces to that corresponding to optimum reception in a pure
AWGN environment (see Section 3.5).
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7.4.2.2 Nakagami-m Fading. By comparing the conditional probabilities of
(7.23) and (7.44) corresponding, respectively, to noncoherent and differentially
coherent detection, it is straightforward to show that for Nakagami-m fading, the
decision metric becomes

LF
Ay = Zln VFi(my, 1, W3 /4) (7.50)
=1
where
A Y ©
Wu = ﬁj <E> [_‘ykl)(fl) + ykl)('fl)‘:|
E, 1 Ts+7 ) 2Ts+n )
(VZ) [ Ri(t)e %" dr + / Ri(t)e 79 dr ]
Nl EsTs Ts+7

(7.51)
As for the Rayleigh case, the decision metric of (7.50) in combination with (7.51)
is ambiguous to an arbitrary phase shift 8. With differential phase encoding
employed at the transmitter, the unambiguous decision metric is still given by
(7.50) with Wj; now defined as

A [Es (Y ) ~
Wy = 1% T
ki Nz < ) <«/ﬁ} ot+e 11|>

E /7 12
17;( l) [E T, (IVoil* + Vul* + 2Re { Vo, Vi€ A0 })] (7.52)

Note that because of the nonlinear postdetection processing via the In {F (-, -;+)
function, the terms |V(|?> and |Vy;|> cannot be ignored, nor can the other
multiplicative factors in (7.52), despite the fact that they are all indepen-
dent of k.

7.4.3 N;-Symbol Observation: Multiple Symbol Differentially Coherent
Detection

In Ref. 10, the authors considered differential detection of M-PSK over an
AWGN channel based on an N -symbol (N, > 2) observation of the received
signal. The optimum receiver (see Fig. 3.18) was derived and shown to yield
improved (monotonically with increasing N;) performance relative to that
attainable with the conventional (two-symbol observation) M-DPSK receiver.
Our intent here is to generalize the results of Divsalar and Simon [10] (see also
Simon et al. [8, Sec. 7.2]) to the fading multichannel with unknown amplitudes.
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Clearly, for Ny > 2, the decision metric and associated receiver derived here
will reduce to those obtained in Section 7.4.2. Without going into great detail, it
should be immediately obvious that for an N -symbol observation, the conditional
probability of (7.44) generalizes to

PO s, )2y {md2y)
_x Ly ales I o = ) 753
= l[[lexp o\ & nZ:Oyk, (@) (7.53)

7.4.3.1 Rayleigh Fading. Averaging (7.53) over Rayleigh statistics for the
unknown amplitudes results in the generalization of the decision metric in (7.46),

namely,
L, 71 N;—1 n+DTs+n - (n) ’
T T B
— 4T, w0 InTs+u

Using the same differential phase encoding rule as for the two-symbol observation
case to resolve the phase ambiguity in (7.54), the unambiguous form of this
decision metric becomes

2

P ?l N—1 ) A (n+D)Ts+1 »
A= TN i / Ri(t) dr (7.55)
4TS‘ nT+7
=1 n=0 st
where, by definition, Aqb,EO) = 0. As before, expanding the squared magnitude and

retaining only terms that depend on the information phases, we obtain (ignoring
other multiplicative constants)

N;—1N;—1

L, j
Ay = ;?z Re Z ]Z:% f/isz, exp <j Z A¢,((”)> (7.56)
- j

i=0 -
i< n=i+1

The decision rule based on the metric of (7.56) is to choose as the transmitted
signal that sequence of phases Aqb,({’) =Bj,i=1,...,Ny— 1, that results in the
largest A;. Once again note that for a flat power delay profile and equal noise
PSDs, the decision metric of (7.56) becomes equal to that discussed by Divsalar
and Simon [10] and Simon et al. [8, Sec. 7.2] for the fading-free AWGN channel.

7.4.3.2 Nakagami-m Fading. At this point it should be obvious to the reader
how to extend the results of Section 7.4.2.2 to the N-symbol observation case.
In particular, the decision metric of (7.50) applies, now with
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, Ns—1 n
Es (Y 1 -l . @)
Wi = —<—> Vauexp|—Jj) A
— Ny—1
Es Vi 1 ‘S 7 2
= (7 %
Nl <m1) ESTS ;)| Vl/|

Ny—1N;—1 i 1/2
+2Re > ViV exp (j > Aqs,ﬁ")) (7.57)
i=0 j=0 -
i<j n=i+1
As for the two-symbol observation case, (7.57) cannot be simplified by ignoring
the |V,;|? terms or any of the multiplicative constants.

7.5 CASE OF UNKNOWN AMPLITUDES, PHASES,
AND DELAYS

When all channel parameters are unknown, the conditional probability of (7.4)
must be averaged over the statistics of the amplitudes, phases, and delays, all
of which are assumed to be independent. Equivalently, since (7.23), (7.44), and
(7.53) already represent the average over the unknown i.i.d. uniformly distributed
phases, the desired likelihood functions can be obtained by averaging these
equations over the statistics of the unknown amplitudes, for example, Rayleigh,
Nakagami-m, and the unknown delays which, following Ref. 9, will be modeled
over the interval (A, B) as i.i.d. uniformly distributed random variables, that is,

1
Pr,(fl)=m7 A <71 <B, 1:1925~-'9Lp (7.58)

7.5.1 One-Symbol Observation: Noncoherent Detection

In Section 7.4.1 we derived likelihood functions and decision metrics for a one-
symbol observation conditioned on the delays being known. Here we simply
average these expressions over the i.i.d. uniform PDFs of (7.58) to arrive at the
optimum noncoherent receiver for fading channels with all parameters unknown.
In the most general case, the parameters that characterize the fading amplitude
PDFs (e.g., ©2;, m;) might depend on the delay ;. However, to simplify matters,
we shall assume, as in Ref. 9 that no such dependencies exist. This will enable us
more easily to derive suboptimum receiver structures based on approximations
to the optimum decision metrics.

7.5.1.1 Rayleigh Fading. Starting with (7.28), then averaging over the PDFs
in (7.58), results in the likelihood function
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L[) B —
Ly _ — =1 1 Yk 2
p{r )2, |sc (@) —KE(I +Vu) /A exp [ BN, (1 +7]d> |y ()] }dr

(7.59)
where we have absorbed the constant (B — A)~%» in K. For the multipath fading
model proposed by Turin [6] with constant envelope signals, equal noise PSDs,
and a uniform power delay profile (as assumed in Ref. 9), (7.59) simplifies to

_ B 1 7 ) L[’
p(r()|se (1)) —K{/A exp |:4EsNO (m) Lye(0 ] df} (7.60)

where, now analogous to (7.6),

A Ts+nu _ .
Vi (T) =/ R®S{(t —v)dt (7.61)

T

and the constant (1 4+ %)~%» has been absorbed into K. Since the decision rule is
based on choosing the largest (with respect to k) of the likelihood functions in
(7.60), then since their integrands are always positive, it is sufficient to ignore
the exponent L, and, keeping the same notation for convenience, redefine the
likelihoods as

. _
prlse () = K /A exp [ <L> mmﬁ} dr (7.62)

4E;No \1+y

To proceed further toward a simpler but suboptimum receiver, we must
approximate the integral in (7.62). Following the approach taken in Ref. 9,
the first step is to approximate the nonlinearity of the integrand (i.e., the
exponential) by its behavior for small arguments, namely, e* >~ 1 + x, which
leads to a likelihood function [ignoring the constant term K(B — A) and all other
multiplicative constants]

B
p(r®)lsi (1)) =/A I (0)* dt (7.63)

To evaluate the performance of a receiver that uses a decision rule based on
this likelihood function would require knowledge of the PDF of the integral in
(7.63). Even when the cross-correlation function y,(7) is stationary and Gaussian,
obtaining this PDF is not possible. To circumvent this problem, we proceed to
the second step in the approximation, namely, to replace the integral by the
discrete (Riemann) sum Zivz 1] ye(t1)|? A1, where the ;s are equally spaced over
the interval (A, B), with spacing At chosen equal to the correlation time of the
process yx(7).'° When this is done, the suboptimal decision metric becomes (here

10Such a sample spacing results in a set of independent complex-valued Gaussian RVs for
@,
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there is no need to take the natural logarithm of the likelihood function)

N
A=) Il (7.64)
i=1

Comparing (7.64) with (7.33), which corresponds to the case of known delays,
we see that the two metrics are of identical form, the difference being in the
sampling instants and number of samples taken of the cross-correlation function.

7.5.1.2 Nakagami-m Fading. Starting with (7.28), then averaging over the
PDFs in (7.58) and assuming constant envelope signals, equal noise PSDs, and
Turin’s multipath fading model with i.i.d. fading channels, results in a likelihood
function analogous to (7.62), namely,

B _
pr)lsi(0) = K / F) (m 1 (4ENg) ™! (L) |yk(r>|2> dr  (1.65)
A m+y
Once again, to obtain a simple but suboptimum receiver, we follow the approach
taken in Ref. 9 and approximate the nonlinearity of the integrand by its behavior
for small arguments, namely, | F'; (m, 1;x) >~ 1 + mx, which, ignoring the constant
term K(B — A) and all other multiplicative constants, leads to a likelihood
function identical to (7.63), and using the second step of approximation, a
decision metric identical to (7.64). Hence, the suboptimal receiver for Nakagami-
m fading would be identical to that for Rayleigh fading.

7.5.2 Two-Symbol Observation: Conventional Differentially
Coherent Detection

By analogy with the results obtained in Section 7.4.2 and their relation to those in
Section 7.4.1, we can immediately deduce from the foregoing, in particular (7.64),
that for Rayleigh and Nakagami-m fading the suboptimum decision metric for
conventional differential coherent detection with all fading parameters unknown
becomes

N
A=Y @+ @) (7.66)
i=1

Again comparing (7.66) with (7.46), which corresponds to the case of known
delays, we see that the two metrics are of identical form, the difference being
in the sampling instants and number of samples taken of the cross-correlation
function. Hence, a receiver implemention based on the suboptimum decision
metric of (7.66) for unknown delays and Rayleigh or Nakagami-m fading would
be identical in structure to that based on the optimum decision of (7.46) for
Rayleigh fading and known delays.

At this point, extension of the two-symbol observation results to multiple
(more than two)-symbol observation differentially coherent detection should be
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obvious in light of the discussion in Section 7.4.3 and thus requires no further
development here.
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PERFORMANCE OF SINGLE
CHANNEL RECEIVERS

As alluded to in Chapters 4, 5, and 6, the alternative representations of the
Gaussian and Marcum Q-functions and other related functions expressed in
the desired form are the key mathematical tools for unifying evaluation of
the average error probability performance of digital communication systems
over the generalized fading channel. Before discussing the specific details of
these performance evaluations later in this chapter and the ones that follow,
we first present the appropriate expressions for evaluating the performance of
these systems over the AWGN. We present these results in two forms: (1) the
classical expression for average bit error probability (BEP) or symbol error
probability (SEP) as originally reported by the contributing author(s) and the
one most commonly understood and familiar to those working in the field,
and (2) the expression based on the alternative representations of the above-
mentioned functions given in Chapter 4. These expressions, together with the
special integrals developed in Chapter 5, then form the basis for evaluating
the performance of digital communication systems in a fading environment
modeled as a single transmission channel. Extension of these results to multiple
transmission channels and the accompanying multichannel (diversity) reception
is discussed in Chapter 9.

8.1 PERFORMANCE OVER THE AWGN CHANNEL

The average BEP and SEP performances over the AWGN channel of the various
modulation/detection schemes discussed in Chapter 3 are well documented in many
recent textbooks on digital communications [1]—[7]. Since this section of the
chapter is intended to serve as a prelude of what is yet to come, our intent here
is merely to review these classical results without derivation and then put them
in a form that will be particularly suitable for arriving at simple expressions for
performance over the generalized fading channel. The reader who is interested in
the details of the derivations is referred to the above-mentioned textbook references.

193
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8.1.1 Ideal Coherent Detection

Following the hierarchy of Chapter 3, we shall first consider the error probability
performance of digital communication systems that employ ideal coherent
detection. As mentioned in that chapter, such idealized performance can never
by obtained in practice; nevertheless, these results serve as a benchmark against
which the performance of realistic communications systems can be compared.

8.1.1.1 Multiple Amplitude-Shift-Keying or Multiple Amplitude Modu-
lation. Referring to the signal model in Section 3.1.1 and the accompanying
forms of the optimum receiver in Fig. 3.2, then in terms of the carrier amplitude
A, the SEP for symmetrical M-AM is given by

PE)—2<M_1 24T, 8.1

where Q(-) is the Gaussian Q-function defined in (4.1). Since the average symbol
energy E is related to A, by

1 & - o M?—1
= E(Zl — 1 — M)A, =ACTST (8.2)

then in terms of E, the SEP becomes

Py =2 (M1 OF, 8.3

For binary AM (M = 2), (8.3) becomes the BEP

Py(E) = Q 2Ey (8.4)
No

In terms of the desired form of the Gaussian Q-function as given in (4.2), the
error probabilities of (8.2) and (8.4) become, respectively,

pEy = 2M =1 [ [ E,___ 3 ]de 8.5)
SETTM L TP TNy 2 = 1)sinZo '
and
P,(E) ]/H/2 < Ey 1 )de (8.6)
= — X _—— .
b 7)o TP\ TN, sinZe

To convert the M-ary symbol decisions to decisions on the information bits,
one must employ a bit-to-symbol mapping at the transmitter and then invert this
mapping at the output of the receiver of Fig. 3.2. For this purpose a Gray code
mapping is appropriate, which has the property that in transitioning from one
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symbol to an adjacent symbol, only one out of the log, M bits changes. Such
a mapping at the transmitter results in only a single bit error when an adjacent
symbol error is committed at the receiver. Although an exact computation of
average BEP is possible for any given M, it is most common to consider the
case of large symbol SNR (E;/Ny), for which the only significant symbol errors
are those that occur in adjacent signal levels. For this case, the average BEP is
approximated by [5, Chap. 4]

Ps(E)

PoE) = 1
2

8.7)

where Pg(E) is determined from (8.3) and it is convenient to replace the symbol
energy by E; = Eplog, M. Clearly, for the binary case, (8.7) is in agreement
with (8.4) and is thus exact.

8.1.1.2 Quadrature Amplitude-Shift-Keying or Quadrature Amplitude
Modulation. Referring to the signal model in Section 3.1.2 and the accompa-
nying forms of the optimum receiver in Fig. 3.3, the SEP for square QAM can
be obtained immediately from the SEP of /M —AM by making the following
observation. Since a QAM modulation is composed of the quadrature combina-
tion of two ~/M —AM modulations each with half the total power, and since a
correct QAM decision is made only when a correct symbol decision is made
independently on each of these modulations, the probability of correct symbol
decision for QAM can be expressed as

2
Ps(C) M—QAM — I:PS‘(C) WAM:| (8.8)
E E/2
or, equivalently in terms of the SEP,
2
PS(E)‘M_QAM =1- [1 — P(E) W—AM]
E, Es/2

=2P(E)

m_AM] (8.9)

g | 1= 1PE)
E,/2

E,/2

Substituting (8.3) into (8.9) gives the desired classical form of the SEP for QAM,
namely [5, Chap. 10],

VM -1 3E, VM -1 3E,
“E):“(W)Q(vm» ‘(WM mﬂ

M —1 3E, -1\ 3E,
:4<W)Q< m)“‘(w) Q(m)
(8.10)
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For 4-QAM, (8.10) reduces to

=20 B o2 B 8.1
s(E) =20 Ny -0 Ny A1)

Using the desired forms of the Gaussian Q-function and its square as given
by (4.2) and (4.9), respectively, in (8.10) and (8.11), we obtain

eyt (M-t /”/26 [_ﬂ;]d(g
SE=EINTA )L TP N2 — Dsinte

2
4 (VM -1 /4 E, 3
_A (M-t / exp {__ ; ] do (8.12)
T VM 0 No2(M — 1)sin“ 6
and

2 [T Es 1 1[4 Es 1
PS(E)=—/ exp(——,2 )d@——/ exp(——,2 )d@
7T Jo 2N sin~ 6 7 Jo 2Ny sin~ @
(8.13)
Once again using a Gray code (now in two dimensions) to map the information
bits into the QAM symbols, it is possible (but tedious) to obtain an exact closed-
form result for the average bit error probability for arbitrary M.' One method for
circumventing this difficulty is to use the approximate (valid for large-symbol
SNR) relation between bit and symbol error probability of (8.7) together with
(8.13) for the latter. However, as we shall see later in this chapter, to obtain the
average BEP in the presence of fading wherein the instantaneous SNR can vary
between zero and infinity, it is essential to have a BEP expression for AWGN that
is valid for low as well as high SNR. Recently, using a signal space approach, Lu
et al. [8] derived approximate expressions for the BEP of QAM and M-PSK (to be
discussed next) in AWGN, which have the above-mentioned desirable properties,
namely, they are quite accurate at both low and high SNR, and furthermore, are
valid for all M. In particular, for QAM it is shown in Ref. 8 that

-1 1o 2 3E, log, M
P;,(E)_4< T )(log2M> ;Q R g ICAT)

We note that, for large E;/Ny, the first term in the summation of (8.14) is
dominant in which case this equation simplifies to

L [YM -1 1 3E; log, M
Pb(E)_4< N ><10gzM>Q<vN0(M—1) ®19

I Two examples of this exact BEP computation corresponding to M = 16 and M = 64 can be found
in Egs. (10.36a) and (10.36b), respectively, of Ref. 5.
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Comparing (8.15) with (8.10) after ignoring the Q2(~) term (valid for large
E,/Ny), we observe that this is exactly the result that would be obtained
by applying the relation between the bit and symbol error probability as
given in (8.7). Thus, we conclude that the remaining terms of the summation
in (8.14) account for what is needed to make the expression accurate at
low Eb /N 0-

8.1.1.3 M-ary Phase-Shift-Keying. Referring to the signal model in Sec-
tion 3.1.3 and the accompanying optimum receiver in Fig. 3.4, then equating the
carrier amplitude with the average symbol energy (the same for all symbols since
M-PSK is a constant envelope modulation, i.e., A. = +/E/T;), the classical form
for the SEP of M-PSK is given by [5, Eq. (4.130)]

2
2 0o Ev utan(mw/M)
P(E)=1-— —/ exp |—(u—4]/— [/ exp(—vz)dv du
7 Jo No 0

(8.16)
which after some manipulation can be rewritten in terms of the Gaussian
Q-function as

2E,
PS(E) = Q ( NO )
2 E\
o0 s T
+ ﬁ/o exp | — (u — N_o> [0) (ﬁutanﬁ) du (8.17)

From the form in (8.17) we immediately see that for binary PSK (M = 2),
the second term evaluates to zero [since Q(co) = 0] and hence the bit error

probability is given by
2E),
Py(E) =0 | /=~ (8.18)
No

which agrees, as it should, with (8.4) corresponding to binary AM.
Another special case of (8.16) that yields a closed-form solution corresponds
to QPSK (M = 4). Here the average SEP is given by

ey =20 B o2 B (8.19
s(E) =20 Ny -0 Ny -19)

which agrees with (8.11) and assuming a Gray code mapping of bits to symbols,
the bit error probability is also given by (8.18). Thus, we see that the BEP of
BPSK and QPSK are identical, the latter having the advantage of being half the
bandwidth of the former.
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If one now applies the desired form of the Gaussian Q-function to (8.17), then
after considerable manipulation, the following result is obtained:

1 (72 E, 1 2 (72 E, tan> (/M)
PE)=—[ exp(—=2——)do+=[ exp|l-== {6
7 Jo Ng sin® 6 7 Jo Ny tan2 (/M) + sin” 6

y 2 /71/2 E, tan?(r/M) + sin® 6/ sin? ¢
- = exp | ——
72 Jo Jo

No  tan®(sw/M) + sin> 6

Even though (8.20) has the desired form of finite integration limits that are
independent of E;/N, and integrands that are exponential in E;/Ny, it does
contain a term with a double integral, which leaves a bit to be desired. Fortunately,
Pawula et al. [9] were able to simplify the symbol error probability analysis of
M-PSK by considering the more general case of the distribution of the angle
between two vectors when the variance of the noise components perturbing each
vector are in general unequal. Although this analysis was directly applicable
to differentially coherent detection of M-PSK, in the degenerate case where
one of the two vectors is noise free, the M-DPSK problem becomes the
coherent M-PSK problem and the symbol error probability is given by the single
integral

1 /22— /M E
P(E) = — / exp (——“‘*’%) d6,  gesk = sin’
T J_ap Ny sin” 0

1 dpdo  (8.20)

(8.21)

B

Many years later Craig [10] arrived at a similar result as a special case
of a generic method for evaluating the average error probability for arbitrary
two-dimensional modulations transmitted over the AWGN channel. This method
defined the origin of coordinates for each decision region by the associated signal
vector as opposed to using a fixed coordinate system origin for all decision
regions derived from the received vector. This shift in vector-space coordinate
systems allowed the integrand of the two-dimensional integral describing the
conditional (on the transmitted signal) probability of error to be independent of
the transmitted signal. For the particular case of coherently detected M-PSK,
Craig [10] obtained the average SEP as

| fM-Da/m E
Py(E) = —/ exp | ——= SPK ) 4 (8.22)
T Jo No sin“ 6

which is easily shown to be equivalent to (8.21). Note, however, that for M = 2
(BPSK), replacing 6 by —6 in (8.20) and letting E; = E;, must yield (8.18).
Equating the two results one immediately obtains the desired form of the Gaussian
Q-function as in (4.2), which is also obtained from equating (8.18) with (8.22)
under the same conditions.
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To obtain a quick assessment of the error probability performance of a
particular modulation/detection scheme and at the same time enable a simple
comparison of its performance with that of other modulation/detection schemes,
simple upper bounds on average SEP are quite useful, especially if they
can be obtained in closed form. Furthermore, when further integrations (e.g.,
statistical averages) are necessary over the SNR variable, as is the case
for fading channels, these bounds have even more significance in terms of
coming up with simple answers. The form of P(E) in (8.22) lends itself
nicely to the above-mentioned purpose. It is straightforward to show that
over the interval of integration in (8.22), the function f(0) =1 /sin29 has
a single minimum which occurs at 6 = 7/2 and corresponds to f(mw/2) = 1.
Using this in the argument of the exponential in (8.22) establishes the

inequality
E; gpsk ) ( Ej; )
exp| —— <exp|—— 8.23
p ( Ny sin?o) = p Ny 8psK (8.23)

which when used in the integrand of this same equation together with gpsx =
sin? 7/M leads to the simple (no integration) upper bound

pEy <M1 Es 2 ™ (8.24)
(E) < xp | ——= sin® — .
v PN M

A well-known union bound for the SEP of coherent M-PSK is (e.g., Ref. 11,
Prob. 5.2)

( 2E, . n)
Py(E) <20 sin — (8.25)
0

which applying the Chernoff bound to the Gaussian Q-function results in the
union—Chernoff bound

E
P.(E) < exp (—N—O sin? %) (8.26)

Comparing (8.24) with (8.26), we observe that for any fixed M, the former is
slightly tighter than the latter, the difference between the two becoming smaller
as M increases. Futhermore, in the limit of large SNR, all three upper bounds
[i.e., (8.24), (8.25) and (8.26)] become asymptotically tight with respect to the
exact result as given by (8.22) (see Fig. 8.1).

A method for determining the exact BEP of M-PSK using a Gray code bit-
to-symbol mapping? was first discovered by Lee [13] and is also discussed by

2 Extension of these results to arbitrary bit-to-symbol mappings (e.g., natural binary and folded binary
mappings) was considered by Irshid and Salous [12].
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Symbol Error Rate (SER)

Exact (8.22)

Union Bound (8.25)
Exponential Bound (8.24)
Union-Chernoff Bound (8.26)

+

0 5 10 15 20 25
Signal-to-Noise-Ratio (SNR) per Symbol [dB]

w
o

Figure 8.1. Comparison of three upper bounds on the symbol error probability of coherent
M-PSK.

Simon et al. [5, pp. 211-212]. This method requires evaluating the probability
that for a given transmitted phase, the received signal vector falls in each decision
region (wedge of 27r/M radians centered around each of the signal points) within
the circle. These probabilities, denoted by Py, k =0,1,2,..., M — 1, are given
in the classical form [5, Eq. (4.198a)]

1 00 E 2 utan[(2k+1)7/M]
P = —/ exp |— |u— [ — {/ exp(—v?) dv| du,
7 Jo Ny utan[(k—1)7/M]
k=01.2....M—1 (8.27)

where the index k denotes the kth decision away from the one corresponding to
the transmitted phase. [Note that (8.27) evaluated at k = O corresponds to the
probability of the received signal vector falling in the correct decision region,
i.e., the 2w/M wedge around the transmitted phase, which would then be the
probability of a correct decision in agreement with 1 minus the symbol error
probability of (8.16).]
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In the same manner that (8.17) was derived from (8.16), the probabilities in
(8.27) can be expressed in terms of the Gaussian Q-function. In particular,’

2

Py = \}E/Oooexp - <u— ]I\Z;;) [Q (ﬁutan {(Zk - 1)%})
-0 («/Eu tan [(2k + 1)%})} du (8.28)

The desired form of the Gaussian Q-function can be applied to (8.28). However,
even though the resulting expression will be in the form of a single integral
with finite (0, 7r/2) limits, the integrand itself will still involve Gaussian Q-
functions. Fortunately, the probabilities in (8.27) can be expressed as single
integrals which are already in the desired form and do not involve Gaussian
Q-functions. Analogous to (8.22), these probabilities can be obtained as [5,
Eq. (4.198b)]

P = —
k No sin® 0

| pr=@k=1)/M) E, sin*[(2k — Dr]/M
: expl de
7 Jo

Ny sin” 0

1 r-Qkth/M) E, sin*[(2k + D)]/M
T A expy ——

} o (8.29)

Having the set of probabilities Py, k =0, 1,2, ..., M — 1, in the desired form,
we can now express the exact BEP of M-PSK in a similar desired form using the
results of Lee [13]. In particular, the following results are obtained for M = 4,
8, and 16:

1
§(P1+2P2+P3), M =4

1
Py(E) = g(Pl+2P2+P3+2P4+3P5+2P6+P7), M =3 (8.30)

8 5

1

5(2Pk+ZPk+Ps+2P6+P7>, M =16
k=1 k=2

For M = 4 it is straightfoward to show that the result in (8.30) agrees with that
in (8.18).

Although the approach of Lee [13] gives exact BEP results, it suffers from the
fact that an explicit expression in terms of the P;’s of (8.29) must be obtained
for each value of M. A simple solution around this difficulty is to again use the

3 These probabilities were denoted by Sy, k =0,1,...,M — 1, and given in this form by Lee [13],
who also observed them to have the symmetry property S,, = Syy—m,m= M/2)+ 1, ..., M —1.
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approximate (valid for large symbol SNR) relation between bit and symbol error
probability of (8.7) together now with (8.22) for the latter. However, as discussed
for QAM, such an approximation is not useful for evaluating average BEP in
the presence of fading since in this situation the instantaneous SNR can vary
between zero and infinity. Thus, once again we turn to the results of Lu et al.
[8], which give an approximate expression for the BEP of M-PSK in AWGN
that is quite accurate at both low and high SNR and furthermore is valid for all
M. In particular, for M-PSK, it is shown in Ref. 8 that

2 D 2E,log, M . (2i—1
PE)~——— 3 @ plogpM o CI=Dr) g3y
max(log, M, 2) P Ny M

Here again for large E;,/No and M > 4, the first term in the summation of (8.31)
is dominant, in which case this equation simplifies to

2 2Eplog,M | =
Py(E) ~ 0 sin — (8.32)
log, M Ny M

which is precisely what would be obtained by applying the relation between
the bit and symbol error probability as given in (8.7), using (8.25) for the
latter. Thus, once again we conclude that the remaining terms of the summation
in (8.31) account for what is needed to make the expression accurate at low
Ep/No.

8.1.1.4 Differentially Encoded M-ary Phase-Shift-Keying and =/4-
QPSK. When differential phase encoding is applied to the transmitted M-PSK
modulation but coherent detection is still used at the receiver, the evaluation
of average SEP is a bit more complex than that considered in the preceding
section. Since for differential phase encoding a correct decision on the information
phase for the nth symbol interval will occur if both the nth and the (n — 1)st
received signal vectors fall k£ decision regions away from the correct one,
k=0,1,...,M — 1, then since these two adjacent receptions are independent,
the probability of this occurring is

M—1
P(C)=) P (8.33)
k=0

independent of the particular value of the nth information phase. Thus, the
average symbol error probability for coherently detected, differentially encoded
M-PSK is
M—1
P(E)=1-P(C)=1-)_P; (8.34)
k=0
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which can be expressed in terms of the average SEP for M-PSK without
differential encoding [i.e., Py(E)|y—psk of (8.16)] as [5, Eq. (4.200)]

M—1
P(E) =1 [1 = P(B)y pe] — D P}
= , M-l
= 2PS(E)|M7PSK - {PS(E)|M7PSK} - Z Pl% (8.35)

k=1

Using (8.22) and (8.29) in (8.35), all terms involve only single integrals with
finite integration limits that are independent of E /Ny and integrands that are
exponential in E;/N,. However, the fact that the second and third terms of
(8.35) require that these integrals be squared still poses difficulties in terms of a
simple extension of these results to the fading channel.

Two special cases of (8.35) are of interest. For coherent detection of
differentially encoded BPSK, (8.35) together with (8.18) reduces to

Py(E) = 2Py(E) | gpsg — 2 [Po(E)|ypsic)

oo 2B\ _age (220
_2Q< No> 2Q< N()) (8.36)

Since a desired form of the square of the Gaussian Q-function exists in (4.9),
then (8.36) has the desired form

Py(E) 2/”/2 ( Ey 1 >d9+2/ﬂ/4 ( Ey 1 )de
= — exp| ———— — exp | —————
b 7 Jo P No sin® 6 T Jo P Ny sin? 6

(8.37)

For differentially encoded QPSK, (8.35) simplifies to

_ Es) g2 . |Es s JEs Y 4ot (L Es
rer=io([52) w0 (|52) 10 (1) -1 (1)
(8.38)

Unfortunately, this special case cannot be put in the desired form due to the
lack of such forms for the third and fourth powers of the Gaussian Q-function.
Nevertheless, as we shall see shortly, it will still be possible obtain finite-
limit single-integral expressions for the average error probability performance
of differentially encoded QPSK in Rayleigh and Nakagami-m fading by making
use of the alternative form of the Gaussian Q-function and the integrals developed
in Section 5.4.3.

Finally, since as pointed out in Section 3.1.4.2, 7/4-QPSK is a particular form
of differentially encoded QPSK wherein the information phases are chosen to
range over the set AB; = n/4,3m/4,5n/4, Tn/4 instead of the conventional
AB; =0, 7m/2, m, 3m/2, then since the receiver performance is independent of the
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choice of the information symbol set, coherently detected 7/4-QPSK transmitted
over a linear AWGN channel is also characterized by (8.38).

8.1.1.5 Offset QPSK or Staggered QPSK. Referring to the signal model in
Section 3.1.5 and the accompanying optimum receiver in Fig. 3.7, then noting
the similarity of this receiver to the conventional QPSK receiver in Fig. 3.6, the
classical form for the BEP of OQPSK is also given by (8.16). Stated another
way, since in accordance with Fig. 3.7 independent decisions are made on the
I and Q data bits, the time offset of these two channels has no effect on these
decisions and hence on a linear AWGN channel with ideal coherent detection at
the receiver, OQPSK has the same BEP performance as QPSK and also BPSK.
The differences in performance between these three modulations comes about
when the carrier demodulation is nonideal, as will be discussed shortly.

8.1.1.6 M-ary Frequency-Shift-Keying. Consider first the case of orthog-
onal signaling using the M-FSK modulation described by the signal model
in Section 3.1.6 and the receiver of Fig. 3.8. Assuming that the transmitted
frequency in the nth symbol interval, f,, is equal to § = (2l — 1 - M)A f/2,
the real parts of the integrate-and-dump (I&D) outputs, V,x, k =1,2,..., M, as
given by (3.25) are independent, identically distributed (i.i.d.) Gaussian random
variables with means as in (3.25) and variance 03 = NoT,/2. The probability of
a correct symbol decision is the probability that all Re{y,s}, k # [, are less than
Re{y,;}. Thus, letting A, = /E;/T, and denoting Re{y,x} by z,i, the probability
of symbol error is given by [5, Eq. (4.92)]

M—1
PE) - 1 /°° // 1 Tk 4
s =1 €X - Zn
o | e /202 TP\ 202 )
% 1 exp |:_ (Zn1 — v EsTs)2:| dz
\/2no? 202 !

or in terms of the Gaussian Q-function,

o0 2F,
PX(E)=1—/ lQ(-q— N())

The corresponding bit error probability is given by [5, Eq. (4.96)]

(8.39)

M—1

1 q*

k—1
PyE) = P(E).  k=logp M (8.41)

Unfortunately, for arbitrary M, (8.40) cannot be put in the desired form by
using the form of the Gaussian Q-function in (4.2). The special case of binary
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orthogonal FSK (M = 2), however, does have a simple form, namely,

[Ep
P,(E)=0Q ( No) (8.42)

which can be put in the desired form,

P,,(E)zl/”/zexp _E N (8.43)
T Jo 2N sin’ 6

Another M-FSK case whose error probability performance can be put into the
desired form corresponds to binary nonorthogonal FSK with cross-correlation
given by (3.27). In particular, the BEP for such a modulation is given by*

Py(E)=Q <\/ Ep( — sin Zﬂh/an)

Ny

1 Ey (1 — sin27h/2h
- 7/ exp <_b( sin 2mh/ 2 )>d9 (8.44)
7 Jo 2Ny sin“ @

where, as before, h = A fT}, is the frequency-modulation index. The minimum
BEP is achieved when /& = 0.715 (the value of % that maximizes the argument
of the Gaussian Q-function), resulting in

E,(1217) 1/”/2 E, 1217
v(E) Q( No ) 7)o TP\ 2N, sin2e (8:43)

which is often approximated by

Ey(1+2/37) 1/”/2 ( E, 1+2/3n)
P E = _ = — ex - - 7 d@
»(E) Q( No ) 7)o SP\T2N, sinZe

(8.46)

8.1.1.7 Minimum-Shift-Keying. In Section 3.1.7 it was demonstrated that
MSK was equivalent to pulse-shaped OQPSK, where the pulse shape was
sinusoidal [see (3.33) and (3.34)]. Ignoring the implicit differential encoding at
the transmitter (i.e., assuming that we are dealing with precoded MSK), the BEP
of the receiver implemented as the one that’s optimum for pulse-shaped OQPSK
(e.g., Fig. 3.12) is independent of the shape of the pulse and is thus given by
(8.18). In summary, the receivers for binary AM, BPSK, QPSK, OQPSK, and
MSK all have identical BEP performance.

4This is a special case of the BEP for coherent detection of binary signals with arbitrary cross-
correlation —1 < p < 1, which is given by P,(E) = Q(VEp(1 — p)/No).
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8.1.2 Nonideal Coherent Detection

We saw in the preceding section that many of the ideal coherent detection systems
had identical error probability performances. In a practical system where the
demodulation reference is nonideal (see Section 3.2), the performances of these
systems whose receivers are designed on the basis of ideal coherent detection
will differ from one another. In this section we present the results that enable
one to assess these differences.

We begin with the simplest case of a BPSK system whose receiver has
an imperfect carrier demodulation reference obtained from a Costas loop. The
average BEP performance of such a BPSK system is given by [14]°

/2
Py(E) = / | PHES BP0 do. (8.47)

—T,

2E,
Py(E:¢c) = Q (\/ N, ¢c> (8.48)

is the conditional (on the loop phase error ¢.) BEP and for a Costas loop that
tracks the doubled phase error process

where

exp(Peq COS 2¢.) T
plpe) = ————, 0=<l¢l = = (8.49)
7l (Peq) 2
is the phase error PDF in Tikhonov form [15]. Also, in (8.49),
PeS
Peg =" (8.50)

is the equivalent loop SNR with p. = (E;/T,)/NoBy (B is the single-sided loop
noise bandwidth) the loop SNR of a phase-locked loop (PLL) and

1

- (8.51)
1+ 1/QE,/Ny)

St

is called the squaring loss assuming ideal 1&D arm filters for the Costas loop.
Substituting (8.48) and (8.49) in (8.47) gives the classical result

/2
—n/2 No 7l o(0eq)

which ordinarily is evaluated by numerical integration.

3 This result assumes that the 180° phase ambiguity associated with the Costas loop is perfectly
resolved. Methods for accomplishing this are beyond the scope of this discussion.
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The evaluation of (8.52) can be simplified a bit by using the desired form

of the Gaussian Q-function. In particular, using (4.2) in (8.52), we obtain the
following development:

/2
b 2
Py(E) = / ( cos d%»)
’ n%(peq) S Nosin® ¢
X exp(,oeq cos2¢.)d¢. db

/2 E
- (1 + cos 2¢, )>
™ Io<peq> 2 / ( 2Ngsi ‘
X exp(peq cos2¢.)dodeo,

=g, o (ama)
o Io(peq) 2N sin® 6
E,
X ex — >t cos2¢, ¢ do.dO
/—n/z p{( 2N sin® 0 /Oeq> ? } ?
1 /2 Eb

= exp| ——————

2n2lo(peq>/o p( 2N sinze)

T Eb
X e ————————— 4 Peq | COS D, p dD.dO 8.53
[n Xp{< 2Ny sin’ 6 pq) } (8:33)

Finally, recognizing that the integral on ®. is in the form of a modified Bessel
function of the first kind, we get the final desired result:

1 (72 E To(—(Ep/2Ng sin® 6) + pe
pb<E)=—/ exp (‘ = > (CEREREED T g5 3.4
7 Jo 2N sin“ 0 IO(peq)

The form of (8.54) is interesting in that the Gaussian Q-function needed in the
integrand of (8.52) has been replaced by a modified Bessel function with an
argument related to both the equivalent loop SNR (p.q) and the detection SNR
(Ep/No).

For QPSK and an imperfect carrier demodulation reference obtained from
a four-phase Costas loop with I&D arm filters, the appropriate expressions
analogous to (8.47) through (8.52) are [14]

/4
Py(E) = / Py(E; ¢pc) p(9c) doc (8.55)

_7-[/

where

1 [2E}, . 1 [2E), .
Pb(E;¢c) - EQ ( N—O(COS¢C - Sln¢c)> + EQ ( N—()(COS¢C + Sln¢c))

(8.56)
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and
2 exXp(pPeq cOS 4¢.) b4
plpe) = —0 P . 0<igl=T (8.57)
7l (Peq) 4
with
/OCSL
Peq = 16 (8.58)
and
1
St (8.59)

T+ (9/4)/(Ep/No) + (3/2)/(Ep/No)* + (3/16)/(E»/No)?

Unfortunately, substitution of (8.56) and (8.57) in (8.55) and using the desired
form of the Gaussian Q-function does not provide for any further simplification,
as before.

Consider now the additive Gaussian noise reference signal model of (3.39) as
suggested by Fitz [16] to be characteristic of a large class of phase estimation
techniques used to evaluate average error probability performance at moderate
to high SNR. When used to demodulate the received signal in (3.38), the
decision statistic for the nth symbol becomes equal to Re{y,,c}}, which is in
the form of the real part of the product of two nonzero mean complex Gaussian
random variables. The probability of error associated with such a generic decision
statistic is discussed in Appendix 8A. When applied to BPSK modulation with
A, =A.(S1, = S2,) and assuming that the signal and reference noises N, and
N, have equal power and are uncorrelated, then from (8A.5) together with (8A.7)
and, in addition, 6, = 6,,, the error probability becomes

Py(E) = 11 — 01(Vb, Va) + 01 (Va, V/b)] (8.60)
where p P
_Ev = _ £ 2
a= ZNO(JE 12, b= ZNO(\/E-l-l) (8.61)

To tie the additive Gaussian noise reference and the Tikhonov-distributed
phase error models together, we assume a phase reference generated by a PLL
whose input has a signal power equal to that of the data-modulated (BPSK)
signal. In this case, the SNR gain G of the former model is related to the loop
bandwidth—bit time product B; T of the PLL by G = 1/B; T, [16].° Using this
equivalence, Fitz [16] shows that the error probability computed from (8.52) or
any of its subsequent equivalent forms is virtually identical to that computed
from the combination of (8.60) and (8.61).

6Equivalent1y, the loop SNR p., is related to the SNR gain G by pCéP/NOBL = (1/BLTp)
x (PTp/No) = GEp/No.
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For QPSK modulation, the reference signal has twice the power of the signal in
either the I or Q components [i.e., A, = V2A.(S, » = 255,)]. Thus, detecting each
of these components independently according to the decision variables Re{y, ¢}
and Im{y,,c;}, the two bit error probabilities will be equal, and hence the average
bit error probability can again be obtained from (8A.5) together with (8A.7) using
the same assumptions as above for the signal and reference noises. The result is
given by (8.60), now with

Ep oy _ Es 2
ZNO(\/% 12, b_zNo(\/ﬁH) (8.62)

Similar comparisons of average error probability computed from (8.55) through
(8.57) and (8.60) together with (8.62) show excellent agreement [16].

Using a similar approach, the average BEP for offset QPSK and MSK can
be computed as an arithmetic average of two terms in the form of (8.60). The
reason for the two terms is that one them corresponds to decisions made on
one (say, I) of the channels when during (in the middle of) the same detection
interval there is a symbol transition on the other (say, Q) channel, while the
other term corresponds to decisions made on one of the channels when during
the same detection interval there is no symbol transition on the other channel. In
particular,

Py(E) = 3[1 — 01(V/b1, Va1 + Q1(Var, \/b1)]
+ 11— 01(Vba, V@) + 01 (Jaz, /)] (8.63)

where the appropriate values of the parameters a and b are as follows:

Ep )
2G -1 b =—W2G+1
a 2N0(V 2, b 2No( +D

(8.64)
E
=N—b(G+1—~/2G), bzzN—b(G+1+¢2G) (OQPSK)
0 0
and
E, )
_ LB 6o = 2P (26 +1
a 2No( G—1? b 2No( G+1)
(8.65)
Ej w4+ 4 n*+4
6+22_2G), » G +v2G MSK
“= No<+2n2 ) 2N0<+22 ) (MSK)

8.1.3 Noncoherent Detection

In Section 3.3 the decision variables and the accompanying optimum receiver
for noncoherent detection of an equal energy M-ary signaling set were presented
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[see (3.40) and Fig. 3.13]. It was concluded there that the most logical choice
of modulation for this type of detection is M-FSK. Based on the matched
filter outputs described by (3.41) and the assumption of orthogonal signals
(corresponding to a minimum frequency spacing A fmin = 1/7;, which is twice
that for coherent detection), the SEP is given by

M—1
_ _1yn+l M-1 ; _L ES
ﬂ(E)-%( 1 ( - )mﬂexp[ m—l—l( )} (8.66)

and the corresponding BEP is obtained from (8.66) by the relation

1 M
Py(E) = 3 (ﬁ) Py(E) (8.67)

For noncoherent detection of binary FSK, (8.66) reduces to

Py(E) = —exp (—ﬂ> (8.68)

The performance of nonorthogonal M-FSK is considerably more complicated
to evaluate (see Simon et al. [5, Sec. 5.2.2]). For the binary nonorthogonal
case, however, the result can be expressed in terms of the first-order Marcum
Q-function as [17]

Py(E) = 01(/a, f)—f xp( )mﬂ (8.69)

which is equivalent to (8.60) and where

—(1—\/1— 2), b:zETb(1+\/1—p2) (8.70)
0

2Ny

and p is the correlation coefficient of the two signals. For p = 0 (orthogonal
signaling), the parameters a and b become @ = 0 and b = E, /N, and using the
property of the Marcum Q-function in (4.22), we immediately obtain (8.68).

8.1.4 Partially Coherent Detection

8.1.4.1 Conventional Detection: One-Symbol Observation. In Sec-
tion 3.4.1 the decision variables and the accompanying optimum receiver for
partially coherent detection of an equal-energy M -ary signaling set were presented
[see (3.43) and Fig. 3.14]. We observed there that for M-PSK modulation
(including BPSK), the noncoherent term in the decision variables was indepen-
dent of the information, and thus the decision is based entirely on the coherent
term. Hence, the performance of Fig. 3.14 for partially coherent detection of
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M-PSK would be equal to that of nonideal coherent detection of this same modu-

lation, assuming a demodulation reference that produces a Tikhonov PDF for the
phase error. For example, for BPSK, the performance would be given by

Py(E) = /_ "0 (,/ZN—?comC) 7‘“"“;;";0‘2‘:;1’ ) 4, (8.71)

For orthogonal M-FSK modulation, both the noncoherent and coherent terms
of the decision variables contribute to the decision. The resulting SEP is given by

T o0 CZ+ 2
PS(E>=1—/ /0 yexp<_12y Io(c1y)

1 XD c05 60)

x [1 = Q1(c2, ¥) dydg. (8.72)
‘ 27l (pc)
where )
2FE P
2 s c
= 2 c c
] No + 2E./No + 2p. cos @,
(8.73)
2
C2 — P
27 2E,/Ny
For the binary case, (8.72) can be expressed as
i exp(pc €os @)
Po) = | PEg) DT g, (8.74)
—r 27710(/)0)
where P(E; ¢.) is in the form of (8.69), now with
2 4(Ep/No)? + p? + 4(E,/N
o= _Pe b (Ep/No)” + p; +4(Ep/No)pc cos P, 8.75)
4Eb/N() 2Eb/N0

Finally, for nonorthogonal BFSK, the BEP is once again given by (8.74) with
P(E; ¢.) in the form of (8.69) and

a= %(a(z) + B3 + 200 cos ), b= %(a% + B7 + 201 B1cosp,)  (8.76)
with
Pe 1—p
1 —p2\ 2E,/Ny

fo = /(1 + /1= P(E,/No)
Br = /(L = T PEL/No)

o) =01 =

(8.77)




212 PERFORMANCE OF SINGLE CHANNEL RECEIVERS

8.1.4.2 Multiple-Symbol Detection. Because of the memory introduced into
the modulation by virtue of the fact that the carrier phase error ¢, is constant
over many symbol intervals, the performance of conventional partially coherent
detection schemes can be improved by increasing the observation interval beyond
the duration of one symbol. This was pointed out in Section 3.4.2, and the optimum
receiver for multiple-symbol partially coherent detection over the AWGN was
shown in Fig. 3.15. It is of interest to specify the performance of that receiver in
terms of the number of symbols, N, associated with the observation. Unlike the
conventional case, the BEP for multiple-symbol detection cannot be obtained in
closed form. However, based on block-by-block detection of N-symbol sequences,
an upper union bound on the average BEP can be determined as follows.
For M-PSK, we first rewrite the decision variables of (3.46) in the form

Ny—1
1

- P
Z Noyn—t,k,- + )

i=0

Ink = , ki=1,2,....M (8.78)

where the addition of the constant (p./2)? to z,x in (3.46) has no bearing on
the decision. Also since choosing the largest magnitude squared is equivalent to
choosing the largest magnitude, we can consider instead the decision variables

N;—1 1

~ Pec
Z o Yn—ik +
iz No 2

Znk = kk=12,....M (8.79)

For any particular transmitted phase sequence, say p = (B, Br,» - - - » Bry, 1)
Znk 18 a Rician random variable. Thus, the probablhty of choosing as the decmon
another phase sequence, say ﬁ (,Bko, ,Bkl,.. ,BkN _,), which is equal to the
probability that the corresponding decision variable, say Z,x, is greater than z,,
is statistically characterized by the probability of one Rican random variable
exceeding another. Since the decision is made strictly between two sequences,
the resulting probability is referred to as the pairwise error probability. Based
on the characterization above, the pairwise error probability can be determined
using the results pertinent to the noncoherent detection problem in Appendix 8A.
In particular, it can be shown [5, Sec. 6.4.1] that this pairwise error probability
(conditioned on the carrier phase error ¢.) is given by the generic form of (8A.5)
with A = 0, namely,

PriZk > zukloe} = 11 — Q1(Vb, Va) + 01(Va, Vb)) (8.80)

with

{b}_ E [yl ! ( pe >COS¢+ N; — 8] cos v ( pe >2
al 2Ny | ° Ny \E,/N ¢ 2NG(N2—[82) \ E;/No

NSCOS¢C B |8|COS(¢0+V) Pc
2 —18)? 8.81
VN2 =182 + T (ES/M)] (8.81)

E;
:t -
Ny
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and
Ny—1

523 explj(B, — F)l.  v=args (8.82)
i=0

To determine the upper bound on average BEP from the pairwise error probability
we first determine the number of bit errors that result from the erroneous sequence
decision corresponding to a given pair of phase sequences and then average over
all possible sequence pairs. Mathematically speaking, let u be the sequence of
b = Nglog, M information bits that produces the transmitted phase sequence ,
and let @ be the sequence of b bits that results from the erroneously detected phase
sequence ﬁ Furthermore, let w(u, {t) be the Hamming distance between u and @
(i.e., the number of bit errors that result from the erroneous phase sequence deci-
sion). Then, the upper bound (conditioned on ¢,) on the average BEP is given by

1 o
Py(Elge) < 4 ) wiw, @), PriZu > Zukloe)
pp

1
- ) Pr{3, k| B 8.83
NslogzMﬁz#:ﬁw(u ) PriZ. > zuklée) (8.83)

Finally, the upper bound on average BEP is obtained by averaging (8.83) over
the Tikhonov PDF of (3.37).

8.1.5 Differentially Coherent Detection

8.1.5.1 M-ary Differential Phase-Shift-Keying. As discussed in Sec-
tion 3.5 differentially coherent detection of M-ary PSK (M-DPSK) makes its
phase decisions using a demodulation reference signal derived from the received
signal in previous intervals. In the conventional case corresponding to a two-
symbol observation, the previous matched filter output is used directly as the
demodulation reference for the current matched filter output. Since, however, the
assumption of a received carrier phase that is constant over a number of symbol
intervals introduces memory into the modulation, then, as was true for the case
of partially coherent detection, the performance can be improved by extending
the observation beyond two symbol intervals.

Since a Tikhonov PDF with p. = 0 corresponds to a uniform PDF, then in
principle the results for differentially coherent detection should be obtainable
from those for partially coherent detection with multiple (at least two)-symbol
observation simply by setting p. = 0. However, because of the presence of a
coherent component in addition to the noncoherent component of the decision
statistic for partially coherent detection, there was no formal requirement for
assuming differential encoding at the transmitter. However, setting p. = 0 in
the decision statistic leaves only the noncoherent component, which without
differential encoding is ambiguous insofar as making phase decisions (see the
discussion in Section 3.5.1.1). Thus, for M-DPSK, it is a formal requirement
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that differential encoding be employed at the transmitter. In what follows we
present the performance of classical (two-symbol observation) and multiple-
symbol differential detection of M-PSK, keeping in mind that the results will be
somewhat different than those obtained by simply setting p. = 0 in the results
of Section 8.1.4.2.

Conventional Detection: Two-Symbol Observation. The SEP of the optimum
receiver (see Fig. 3.16) for conventional (two-symbol observation) differential
detection of M-PSK over the AWGN in the desired form (a single integral with
finite limits and an integrand that is Gaussian in the square root of SNR) was
first determined by Pawula et al. [9]:

sin(m/M) [™?* exp{—(E;/No)[1 — cos(r/M) cos 6]}

Py(E) = ‘ do
2w - 1 — cos(w/M)cos 6
«/gPSK /2 exp[— (E /No)(1 — /1 — gpsk cos 0)]
49 (3.84)
- — +/1 — gpsk cos 6

where, as in (8.21), gPSKésinz(rr/M ). For binary DPSK wherein gpsx = 1,
(8.84) simplifies to

P,(E) = lexp (—5—2) (8.85)

Assuming a Gray code bit-to-symbol mapping, the exact BEP of M-DPSK can
be obtained using the method of Lee [13] combined with the results of Pawula
et al. [9] (see also Simon et al. [5, App. 7B]). A summary of the results for
M =4, 8, 16, and 32 is given below:

PﬂE):F(%)—F(%), M=4

2 137 T
Py =3 |7 () -F(5)] m=s
17 137 O 3 T
Py(E) = 5 F(F) —F(E) —F(E) —F(R)], M =16
20 297 237 197 177
PEY = |F(ZE Yo F (2 () - F (-
(%) r(5) (%) -r (%)
137 O 3 T
+F(3—> —F(§> —F(§> —F<§)} M =16
(8.86)
where
Fp) = _siny /2 exp{—[(Ey»/No)log, M](1 — cos yr cost)} 4 (8.87)

L Y 1 —cosyrcost
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The bit error probability for the special case of M = 4 can also be written in the
form of (8.60), where

_ Ep _ Ep
a=2— «/5)170, b=+ ﬁ)NO (8.88)

Instead, using the alternative representation of the Marcum Q-function, the bit
error probability becomes [see (8A.11)]

b L[ 122 L) E
bl )_E/_ﬂ[uzzsinwﬁ]exp{_( +E>N_o

x[1+2§sin0—|—§2]}d9, g:“iiﬁ (8.89)

Finally, as was true for coherent detection of MPSK, for large symbol SNR, the
BEP can be related to the SEP of (8.84) by the simple approximation of (8.7).

An alternative (simpler) form for the average SEP of M-DPSK has recently
been found by Pawula [18] and is given by

PE) = / e Es EPSK ) do (8.90)
g T n 0 *Xp No 1+ /1 — gpskcosf '

which, using simple trigonometric identities and the relation for gpsk given
previously, can be written as

1 M—-1)/M
Py(E) = E/o exp

(8.91)

E, sin’ (/M) "
Ny sin® 0 + sin®>(0 + /M)

For large M, the sin2(9 + /M) term can be replaced by sin’ 6, which, further
ignoring the factor of % in front of the integral, results in the approximate
relation [19]

2Ny sin?6

1 M—-1)m/M E
_ _/ exp (— r SPSK ) d6 (8.92)
7T Jo 2Ny sin“ 6

Comparing (8.92) with (8.22), we immediately observe the well-known fact that
for large M, M-PSK is 3 dB better than M-DPSK.

Another advantage of the form in (8.90), in contrast with that of (8.76), is
that it lends itself nicely to obtaining a simple upper bound as was done for
coherent M-PSK. In particular, the function f(8) = 1/(1 + /T — gpsk cos0) is
monotonically increasing over the entire interval of the integration and thus can

| pM-Dm/M E, sin?(r/M
Py~ / oxp <_ SW)) "
T Jo




216 PERFORMANCE OF SINGLE CHANNEL RECEIVERS

be lower bounded by its value at & = O resulting in 1/(1 4+ /1 — gpsk) < f(6).
Using this result in the integrand of (8.90) results in the simple (no integration)
upper bound on average SEP:

E; £PSK
P(E) < — )
T No 1+ /T—gpsk

{ E, sin?(r/M)

M No
M -1 2FE, .
= exp | ——— sin’ i (8.93)
M No 2M

Note the similarity of (8.93) with (8.24). Based on these bounds, one would
conclude that for coherent M-PSK and M-DPSK to achieve the “same” SEP, the
symbol SNRs should be related by

E sin?(r/M) [ E,
) (), o
No/ m-ppsk ~ 2sin“(w/2M) \No / p-psk

For M = 2, (8.93) gives the exact BEP performance of DPSK in agreement with
(8.85). For M > 2, Pawula [20, Eq. (3)] had previously found an upper bound
on this performance given by

1 + cos(z/M) 2E, T
Py(E) < 2.06,/ Seosiuiin) <\/ N (1 — cos M)> (8.95)

which applying the Chernoff bound to the Gaussian Q-function results in

[1 4 cos(m/M) E; T
Py(E) <1.03 Wexp |:—N—O (1 — COoS M):|
=1.03 M exp <— 2E, in’ n) (8.96)
\/ 2 cos(m/M) No M

Figure 8.2 illustrates a comparison of the exact evaluation of P;(E) from (8.84)
or (8.91) with upper bounds obtained from (8.93), (8.95), and (8.96). As can
be observed, the two exponential bounds [i.e., (8.93) and (8.96)] are reasonably
tight at high SNR, whereas the Q-function bound of (8.95) is virtually a perfect
match to the exact result over the entire range of SNR’s illustrated.
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Figure 8.2. Comparison of exact evaluation and upper bounds on the symbol error probability
of coherent 16-DPSK.

Multiple-Symbol Detection. In Section 3.5.1.2 we discussed the notion of
multiple-symbol differential detection of M-PSK and developed the associated
decision variables and optimum receiver (see Fig. 3.18 for a three-symbol
observation, i.e., Ny = 3). The error probability performance of this receiver
was first reported by Divsalar and Simon [21] and later included by Simon et al.
[5, Sec. 7.2]. Since for differential detection a block of Ny symbols (phases) is
observed in making a decision on Ny — 1 information symbols, then following the
procedure developed for partially coherent detection, an upper bound on average
BEP can be obtained analogous to (8.74), namely,

Py E)< —M8M i) Pr{z, " 8.97
»(E) < (Ns_l)logzM%‘éwm,u) T2 > Zak) (8.97)

where now (N, — 1)log, M represents the number of bits corresponding to the
information symbol sequence,  and é now refer to the correct and incorrect
sequences associated with the information (prior to differential encoding) phases,
and Pr{Z,x > 7.k} is determined from the decision variables in (3.53) in the form
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of (8.80), now with

{z} - E”;)ngM (NS + /N2 — |5|2) (8.98)

and § now defined analogous (because of the differential encoding) to (8.82) by

R Ny—i—2 )
8 = Z exp [j Z (ﬁki—m - IBkifm )‘| (8.99)
i=0 m=0

8.1.5.2 ~n/4-Differential QPSK. As discussed in Section 3.5.2, the only
conceptual difference between 7/4-DQPSK and conventional DQPSK is that the
set of phases {Af;} used to represent the information phases {A8,} is A =
2k — rm/4,k =1, 2, 3, 4, for the former and ABy = kn/4,k =0, 1, 2, 3, for the
latter. Since the performance of the M-DPSK receiver of Fig. 3.16 is independent
of the choice of the information symbol set, we can conclude immediately that
7/4-DQPSK has an identical behavior to DQPSK on the ideal linear AWGN
channel and hence is characterized by (8.84) and (8.86) with M = 4.

8.1.6 Generic Results for Binary Signaling

Although specific results for the BEP of binary signals transmitted over the
AWGN have been given in previous sections, an interesting unification of some
of these results into a single BEP expression is possible as discussed in Ref. 22.
In particular, Wojnar [22] cites a result privately communicated to him by Lindner
(see footnote 2 of Ref. 22), which states that the BEP of coherent, differentially
coherent, and noncoherent detection of binary signals transmitted over the AWGN
is given by the generic expression [see also (4.44)]

(b, a(Ey/N 1 E
Py(E) = % =50 (0, M) (8.100)

where I'(e,o) is the complementary incomplete gamma function [23, Eq.
(8.350.2)], which for convenience is provided here as

o0
I(a, x)é/ e dr (8.101)

The parameters a and b depend on the particular form of modulation and detection
and are presented in Table 8.1. We have also indicated in this table the specific
equations to which (8.100) reduces in each instance. Although the result in (8.100)
does not provide any new results relative to those indicated in Table 8.1, it does
offer a nice unification of five different BEP expressions into a single one that
can easily be programmed using standard mathematical software packages such
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TABLE 8.1 Parameters a and b for Various Modulation/Detection Combinations

B b 1 1
% Orthogonal coherent BFSK Orthogonal noncoherent BFSK
[Eq. (8.42)] [Eq. (8.68)]
1 Antipodal coherent BPSK [Eq. (8.18)] Antipodal differentially coherent
BPSK (DPSK) [Eq. (8.85)]
O0<g=<i Correlated coherent binary signaling —

[Chapter 8, footnote 4]

as Mathematica. Furthermore, when evaluating the average BEP performance
of these very same binary communication systems over the generalized fading
channel, the form in (8.100) will also be helpful in unifying these results. This is
discussed in Section 8.2 making use of the special integrals given in Section 5.3.

8.2 PERFORMANCE OVER FADING CHANNELS

In this section, we apply the special integrals evaluated in Chapter 5 to the
AWGN error probability results presented in Section 8.1 to determine the
performance of these same communication systems over generalized fading
channels. Wherever possible, we shall again make use of the desired forms rather
than the classical representations of the mathematical functions introduced in
Chapter 4. By comparison with the level of detail presented in Section 8.1, the
treatment here will be quite brief since indeed the entire machinery that allows
determining the desired results has by this time been developed completely.
Thus, for the most part we shall merely present the final results except for the
few situations where further development is warranted.

When fading is present, the received carrier amplitude, A, is attenuated by
the fading amplitude, o, which is a random variable (RV) with mean-square
value o2 = © and probability density function (PDF) dependent on the nature
of the fading channel. Equivalently, the received instantaneous signal power is
attenuated by o, and thus it is appropriate to define the instantaneous SNR per
bit by y = &?E,/Ny and the average SNR per bit by 7 = a2E; /Ny = QEj/No. As
such, conditioned on the fading, the BEP of any of the modulations considered
in Section 8.1 is obtained by replacing E,/N by y in the expression for AWGN
performance. Denoting this conditional BEP by P, (E; y), the average BEP in the
presence of fading is obtained from

Py(E) = /O Py(E; y)py(V)dy (8.102)

where p, (y) is the PDF of the instantaneous SNR. On the other hand, if one is
interested in the average SEP, the same relation as (8.102) applies using, instead,
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the conditional SEP in the integrand, which is obtained from the AWGN result
with E/Ny replaced by ylog, M. Our goal in the remainder of this chapter
is to evaluate (8.102) for the various modulation/detection schemes considered
in Section 8.1 and the various fading channel models characterized in previous
chapters. Because of the multitude of different signal—channel combinations,
however, we shall only give explicit results for one or two of the fading channel
models and then indicate how to obtain the rest of the results.

8.2.1 Ideal Coherent Detection

In this section we evaluate the average BEP of the various modulations considered
in Section 8.1.1 when transmitted over the generalized fading channel and
detected with an ideal phase coherent reference signal. The results will be
obtained by applying the integrals presented in Section 5.1.1 to the appropriate
expressions for BEP over the AWGN with the above-mentioned replacement of

E,/Ny by y.

8.2.1.1 Multiple Amplitude-Shift-Keying or Multiple Amplitude Modu-
lation . For M-AM the SEP over the AWGN channel is given by (8.3). To obtain the
average SEP of M-AM over a Rayleigh fading channel, one first obtains the condi-
tional SEP by replacing E;/N¢ with y log, M in (8.3) and then evaluates (8.102) for
the Rayleigh PDF of (5.4). This type of evaluation was carried out in Chapter 5, in
particular, comparing (8.102) with (5.1) and making use of (5.6), we obtain

P(E) = 20 (- . - (8.103)
M M? — 1+ 3y,

where y, é7log2M denotes the average SNR per symbol. For the binary case,

(8.103) becomes
_ l — /_7
P,(E) = > (1 1 +7> (8.104)

To obtain the remainder of the results for average SEP, one finds the particular
integral in Section 5.1 corresponding to (5.1) for the fading channel of interest,
multiplies it by 2(M — 1)/M and substitutes (6log, M)/(M?* — 1) for a*>. For
example, for Nakagami-m fading, the appropriate integrals to use are (5.18a) and
(5.18b). Thus, the average SEP of M-AM over a Nakagami-m fading channel is

given by
b (M V] LS (2K (L=
o= (o) e () (57)

P
Vs —, m integer (8.105a)
m(M? — 1) + 37,

k

’

1>

u
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which clearly reduces to (8.103) for m = 1 and

M- 1) ] V37 mM? — 1) (m+3)

Py(E) = (T JrlmM2 = 1) + 3y,)/mM? — 1)) +1/2 T(m + 1)

1 M?—1
X o F <l,m+—;m—|—1; m§ )_), m noninteger
2 mM? — 1)+ 3y, (5.1055)

It is tempting to try evaluating the average BEP over the fading channel by
using the asymptotic (large SNR) relation between the AWGN BEP and SEP as
given in (8.7) to determine the conditional BEP needed in (8.102). Unfortunately,
this procedure is inappropriate since, as mentioned earlier in the chapter, on the
fading channel the symbol SNR of the AWGN SEP gets replaced by log, M
times the instantaneous SNR per bit, y, which is a RV varying between zero and
infinity. Rather, one needs to compute the exact relation between AWGN BEP
and SEP, substitute y log, M for E;/Ny, and then average over the PDF of y. As
mentioned in Section 8.1.1.1, this relation (i.e., the conditional BEP on y) can
be computed for any given M and a Gray code bit-to-symbol mapping.

8.2.1.2 Quadrature Amplitude-Shift-Keying or Quadrature Amplitude
Modulation. For QAM, the SEP over the AWGN channel is given by (8.10). To
obtain the average SEP of M-AM over a Rayleigh fading channel, one proceeds
as for the M-AM case by first obtaining the conditional SEP [i.e., replacing
E /No with ylog, M in (8.10)] and then evaluating an integral such as (8.102)
for the Rayleigh PDF of (5.4). This type of evaluation involves two integrals
that were developed in Chapter 5. In particular, comparing the two terms (8.102)
with (5.1) and (5.28) and making use of (5.6) and (5.29), we obtain

(VM -1 | 1.5y,
Ps(E)_2< VM )(1_ M—1+1.57S>
M -1\ | 157, 4 o M1+ 1Sy,
“\Tm VM —ixisy, \xo" 1.5y,

(8.106)
which for 4-QAM reduces to
Y 1 Y 4 14+7y
PE) = [1— V)Ll (L LY (8.107)
1+7y 4 I1+y\=m y

To obtain the remainder of the results for average SEP, one finds the
particular integrals in Section 5.1 corresponding to (5.1) and (5.28) for the
fading channel of interest, multiplies the first by 4(W - 1)/ /M, the second by
4[(VM — 1)/ /M2, and substitutes (3 log, M)/(M — 1) for a’. For example, for
Nakagami-m fading with m integer, the appropriate integrals to use are (5.18a)
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and (5.30). Thus, the average SEP of QAM over a Nakagami-m fading channel
N )

is given by
VM -1 “Z<2k>< )
_<%> <1_gu{(__tan )( ) o

m—1 k

— sin(tan~ ,u)zz (1 + o [cos(tan~! p)]**~ ’Hl}) (8.108)

k=1 i=1

P(E) = 2(

where
1.5y, A c

“Tam—1  HT V1t

(8.109)

and Ty is defined in (5.32). Figure 8.3 is an illustration of the average SEP of
16-QAM as computed from (8.108) with m as a parameter.

To compute the average BEP performance, again one should not use the
approximate asymptotic form of (8.7) but rather, determine either the exact
relation between the AWGN BEP and SEP or the exact AWGN BEP directly (see

100 =
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Figure 8.3. Average SEP of 16-QAM over a Nakagami-m channel versus the average SNR per
symbol.



PERFORMANCE OVER FADING CHANNELS 223

footnote 1 of this chapter), substituting y log, M for E;/Ny, and then average over
the PDF of y. Instead, one can use the approximate BEP expression obtained by
Lu et al. [8] for the AWGN as in (8.14), which is accurate for a wide range of
SNR'’s, again making the substitution y log, M for E;/N, followed by averaging
over the PDF of y. Using the alternative form of the Gaussian Q-function of
(4.2), it is straightforward to show that the result of this evaluation is given by

gy a (VM1 “zﬁle/ﬂ/zM (_(2i—1)23EblogzM>d9
PRI VM ) log,M = 7 )y Y 2sin?6 No(M —1)

(8.110)
where M, (s) is again the MGF of the instantaneous fading power y. For example,
for a Rayleigh fading channel, we obtain, analogous to (8.106),

\/M—1> 1 JEM:” 1_\/ 1.5Qi — 127 log, M

VM log, M M —1+1.5Q2i—1)*)log, M
2 2
(8.111)

Py(E) ~2 (

i=1

8.2.1.3 M-ary Phase-Shift-Keying. For M-PSK, the classical form of the
SEP over the AWGN channel is given by (8.17), and the desired form is given by
(8.22). To obtain the average SEP of M-PSK over a Rayleigh fading channel, one
first obtains the conditional SEP by replacing E;/N, with ylog, M in (8.22) and
then evaluates (8.102) for the Rayleigh PDF of (5.4). In particular, comparing
(8.102) with (5.66) and making use of (5.68), we obtain

M—1 Y M
P(E) = [ —— 1— gPSKVx_
M 1+ gpsky, M — Dr
i + tan~! gPSiKVS_cotl (8.112)
2 I +gpsky, M

where gPSKésinz(n/M). For M =2, (8.112) reduces to (8.104) since binary
PSK and binary AM are identical.

For Rician fading, the average SEP is obtained from (5.67) together with
(5.11), or equivalently, (5.13) [with the upper limit changed from 7/2 to
(M — 1)/M] with a®> = 2gpsk and Y, substituted for y, resulting in

X

1 (M=Dm/M (1 4 K)sin® 6
PY(E) = - ) —
0 (1 +K)sin” 6 4 gpskV;

T

[

exp (— SPKYs ) d6 (8.113)
(I + K)sin” 6 + gpsk¥,

An equivalent result was reported by Sun and Reed [24, Eq. (11)].7

71t should be noted that an error occurs in Egs. (10), (11), and (12) Ref. 24 in that the upper limit
of their integrals should be 7/2 — /M rather than 7/2.
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For Nakagami-m fading with m integer, the average SEP is obtained from
(5.69) with the same substitutions for a> and ¥, resulting in the closed-form
solution

P(E) = M—-1 1 | (gpsk¥s)/m
' M \ 1+ (gpsk¥,)/m

1

m 1
x{( +tan “)Z< >[4(1+(gps1<ys>/m>]k

—1

3

[cos(tan™ ! )2+

+ sin(tan' )

k
Z [1+ (gPSKV )/m]*

1 i=1

=~
Il

(8.114)
where, from (5.70),

A | Gescy)im T (8.115)

1+ (gpsk¥,)/m M

o

and again Tj; is defined in (5.32). Figure 8.4 is an illustration of the average SEP
as computed from (8.114) with m as a parameter.

Exact results for average BEP of 4-PSK, 8-PSK, and 16-PSK over Rayleigh
fading channels can be obtained by averaging (8.30) over the fading PDF in
(5.4). In particular, using a generalization of (5A.15) when the upper limit of the
integral is 7[1 — (2k £ 1)/M], we obtain

o0
Fké/ Pip,()dy =K, —K_,  k=01,2,....M—1 (8.116)
0

K. — 1 (2k+1 8PSK Y M
T2\ M 1+ gpsky, (2k + D)
1 Y 2k £ 1
x tan”! + gPS_Kys tan ( i (8.117)
8PSK Vs M

Using P, of (8.116) for P, in (8.30) gives the desired results for M = 4,8,
and 16. B
Similarly for Nakagami-m fading, P; can be computed from (5A.22) as

where

51 <(2k+ Dr k- D

= ) 3Vs | s k=0,1,2,...,.M -1 (8.118
Iy y y.;) (8.118)
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Figure 8.4. Average SEP of 8-PSK over a Nakagami-m channel versus the average SNR per
symbol.

which again should be used in place of P; in (8.30) to obtain average
BEP.

For other values of M, one can again use the approximate AWGN result
of Lu et al. [8] as given in (8.31), substituting ylog, M for E;/Ny, followed
by averaging over the PDF of y. Using the alternative form of the Gaussian
QO-function of (4.2), the end result of this evaluation is

2 max(M/4,1) 1

Py(E)y~ ————— -
v(E) max(log, M, 2) ; T

/2 I Eplog,M _ , (2i—1
x/ M, (— L Brlon M o )”> o (8.119)
0 sin“@  Nog M

Specific results for the variety of fading channels being considered are easily
worked out using the results of Chapter 5 and are left as exercises for the
reader.
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8.2.1.4 Differentially Encoded M-ary Phase-Shift-Keying and =/4-
QPSK. Consider first the case of differentially encoded QPSK for which the
classical form of the SEP over the AWGN channel is given by (8.38). As pointed
out in Section 8.1.1.4, the first two terms of (8.38) can be put in the desired form,
but such a form is not available for the third and fourth terms. Nevertheless, using
the results from Section 5.4.3, for Rayleigh and Nakagami fading, we are able
to evaluate these terms in the form of a single integral with finite limits and an
integrand composed of elementary functions; thus, we can obtain a solution for
the average SEP in a similar form for these channels.

For the simpler Rayleigh case, making use of (5.6), (5.80), (5.82), and (5.84)
with a = 1 and y replaced by y,, we obtain

P(E) =4I, — 81, + 815 — 41, (8.120)

where

I

1[ 7./2 (4 . 1+Zﬂﬂ

Ih=—|1—4/——— | —tan E—— >

4 1+7,/2 \ 7 V,/2
1o c($)

[, = — 1—4/ ————|d

: aﬁpé “@< 1+d@>¢

/4
I = L_ - c(é) 4 tan-"! 1+ c() ié.
2y Jo l+c(p) \ 7 c(p)

— )
A Vs sin” ¢
c(p)= 7 <7sin2¢+7s/2> (8.121)

I
N =
/N
L
|
—_
+ =
=S
= [\
(&)
~_—

For Nakagami-m fading with m integer, the average SEP can similarly be
obtained from (8.120) using (5.18a), (5.86), (5.88), and (5.91), again with a = 1
and y replaced by y,. Specifically, the I;’s needed in (8.120) are now given by

R 7o\ = (26 (1= 2@ /2mN\*
neg e (GDE () (52 |
(22 5
\om m+7,/2
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LR B EI | PN i TE "1‘1<2k>1
12_4 b 1+7s/2{<2 @n 1+7s/2>,§ k ) 141 +v,/2)
) 4 VA/2 m—1 k
— sin (tan 1/ 1 +y5/2> ;; a +VA/2)k
— 2(k—i)+1
x |cos | tan™! )/57/2
14+7v,/2
1 /4 1— m
. / (_C(¢)) ( M(C(d))))
T Jo

'"zjl(m—l—i-k) (1 w(c(®)) "d¢
k=

2 N ) ) e
’4—;/0 (ﬂc(‘”) {1‘;\/1“@{(5““ 1+c<¢)>

X

m—1 m—1 k
2% c(9)
sz( )[4(1+c(¢>)>]k ( 1+c<¢>)> 22 T @ [1+c(¢>]k
(¢) 2(k i)+l
C
X lcos (tan T+ C(¢) }] (8.122)

and c(¢) is still as defined in (8.121).
For the more general case of differentially encoded M-PSK, we need to

evaluate the average of (8.35) over the fading PDF. Here we can only obtain
the result in the simple desired form for Rayleigh fading. The average of the first
term of (8.35) is given by (8.112) multiplied by 2, that is,

* M—1 8PSK Y M
2P,(E) |- dy=2(2—\)!{1- _
| 2P esi iy ( — ){ T
2 1+gpsky, M

(8.123)

X
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The corresponding average of the second term is obtained from (5.99) with
a® = 2gpsk = 2sin’ /M and ¥ replaced by ¥, that is,

o0 1\N?/ 1
/ (Py(E) Im-psk > py(y)dy = <—> ( — )
0 4 8PSK Vs

M—D)m/M _
X/o @) [(M hr )

M \N1+co
stan~! (| Py M= DTV 0 8124
c(é) M
where now
A _ sin? 1)
= - 8.125
c(¢) =gpskY <sin2 p +gPSKV) ( )

For the average of the third term, we must first square P of (8.29) and then make
use of (5.100) through (5.102) with ai é2sin2(2k 4+ 1)n/M and 6. é71[1 —
2k £ 1)/M] for k=0,1,2,...,M — 1. The result is
oo
/ Pip,(y)dy =Ly +L_—2L,_, k=0,1,2,....,M—1 (8.126)
0

where

1\’ 1 7(1—(2k+1)/M)
be= <£) <(sin2(2k + ])”/MWS) /0 c+(9)
(1 2“:1) _cx(@)
UV M ) T e
x tan~! 149 tan [n (1 — ﬂ)} dp  (8.127)
cx() M
1)? 1 (1—(2k+1)/M)
b= <Z) <(sin2(2k + ])”/MWS) /0 c+—(¢)
x (7 (1 _ e 1) | e@)
M L+ci (9)
x tan”! LJF—(@ tan [ﬂ (1 _ b)] dé (8.128)
ci—(p) M

and
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with

(9) =(sin® 2k & Dyr/M)7 o
cs 2 s Vs sin2 o+ (sin2(2k + Dr/M)y,

cr(¢) 2(sin®(2k + Dy/M)y sin’ ¢ (8.129)
- Vs | Sin? ¢ + (i 2k — DMy, '

Finally, since as pointed out in Section 8.1.1.4, the performance of coherently
detected 7/4-QPSK transmitted over a linear AWGN channel is identical to that
of differentially encoded QPSK, the same conclusion can be made for the fading
channel. Hence, the SEP performance of coherently detected 7/4-QPSK over the
Rayleigh and Nakagami-m fading channels is also given by (8.120), together with
(8.121) or (8.122), respectively.

8.2.1.5 Offset QPSK or Staggered QPSK. In Section 8.1.1.5 it was
concluded that because of the similarity between conventional and offset QPSK
receivers and the fact that time offset of the I and Q channels has no effect
on the decisions made on the I and Q data bits, the BEP performances of
these two modulation techniques on a linear AWGN channel with ideal coherent
detection are identical. Thus, without further ado, we conclude that the same is
true on the fading channel, and hence the error probability performance results
of Sections 8.1.2.3 and 8.1.2.4 apply.

8.2.1.6 M-ary Frequency-Shift-Keying. In Section 8.1.1.6 we observed
that the expression [see (8.40)] for the average SEP of orthogonal M-FSK
involves the (M — 1)st power of the Gaussian Q-function. Since for M arbitrary
an alternative form [analogous to (4.2)] is not available for QM~!(x), (8.40)
cannot be put in the desired form to allow simple evaluation of the average
SEP on the generalized fading channel.® Despite this consequence, however, it
is nevertheless possible to obtain simple-to-evaluate, asymptotically tight upper
bounds on the average error probability performance of 4-ary FSK on the
Rayleigh and Nakagami-m fading channels, as we shall show shortly. For the
special case of binary FSK (M = 2), we can use the desired form in (8.43) (for
orthogonal signals) or (8.44) (for nonorthogonal signals) to allow simple exact
evaluation of average BEP on the generalized fading channel. Before moving on
to the more difficult 4-ary FSK case, we first quickly dispense with the results
for binary FSK since these follow immediately from the integrals developed in
Chapter 5 or equivalently from the results obtained previously for binary AM and

8 At the time this book was about to go to press, the authors learned of new, as yet unpublished
work by Dong and Beaulieu [25] that using an M-dimensional extension of Craig’s approach [10]
obtains exact closed-form results for BEP and SEP of 3- and 4-ary orthogonal signaling in slow
Rayleigh fading. Also shown in Ref. 25 is the fact that the results obtained for M = 4 can be used
as close approximations to the exact results for values of M > 4. Finally, the MGF-based approach
described in this chapter can also be used to extend this work to the generalized fading channel.
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BPSK, replacing ¥ by /2 for orthogonal BFSK and by (3/2)[1 — (sin 27h)/2mh]

for nonorthogonal BFSK. For example, for Rayleigh fading the average BEP of
orthogonal BFSK is given by

PE—1 1 v/2 8.130
B =3 (117557 (8.130)

whereas for Nakagami-m fading the analogous results are

m—1 2\ Kk —
_ 2k (1—n A /2 .
Py,(E)=2 l—ukz;(k>< ) )], u= m, m integer
(8.131a)
and
Py(E) = 1 Vy2Zm T (m+3)
P T /7 U+ 7/2mym 2 T(m+ 1)
1 1

X 2F (l,m—l— E;m—l—l;m) , m noninteger (8.1315)

For M-ary orthogonal FSK, the average SEP on the AWGN can be obtained
from (8.40) as

pe=1- [ [Q(—q— %)
o 2E; 1 q*
=/_oo 1—[1—Q<q+ N())] meXp(—E)dq
| - ES M—1
Lol )
(8.132)

and the corresponding BEP is obtained from (8.132) using (8.41). The most
straightforward way of numerically evaluating (8.132) (and therefore the BEP
derived from it) is to apply Gauss—Hermite quadrature [26, Eq. (25.4.46)],
resulting in

N,
P(E) ~ %Zw 1— ll —Q(ﬁ (x,,—i— %))

M-1

exp(—uz)du

(8.133)
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where {x,;n = 1,2, ..., N,} are the zeros of the Hermite polynomial of order N,
and w, are the associated weight factors [26, Table 25.10]. A value of N, = 20
is typically sufficient for excellent accuracy.

When slow fading is present, the average symbol error probability is obtained
from (8.132) or (8.133) by first replacing E;/N, with y = «>E;/N, and then
averaging over the PDF of y, that is,

1 o
2 - 1—=11— M—1
Py(E) \/E/—oo{ [(I—0WmI" '}

oo ) 2
X/O exp (—@) p, (W dydy (8.134)

or approximately

N,

.1 Y M1
P.(E) ~ ﬁ;wn{l /0 [1— O(V2(x, + V¥))] py(wdy} (8.135)

Numerical evaluation of (8.134) and the associated bit error probability using
(8.33) for Rayleigh and Nakagami-m fading channels is computationally inten-
sive. Equation (8.135) does yield numerical values; however, its evaluation is
very time consuming, especially for large values of m. Thus, tight upper bounds
on the result in (8.134) which are simple to use and evaluate numerically are
highly desirable.

Using Jensen’s inequality [27], Hughes [28] derived a simple bound on the
AWGN performance in (8.132). In particular, it was shown that

P(E) <1 [1 Q( E)
K = - - N_O

which is tighter than the more common union upper bound [5, Eq. (4.97)],

M—1
(8.136)

P(E) < (M — 1)Q ( 15—()) (8.137)

Evaluation of an upper bound on average error probability for the fading channel
by averaging the right-hand side of (8.136) (with E;/N, replaced by y;) over
the PDF of y, and using the conventional form for the Gaussian probability
integral as in (4.1) is still computationally intensive. Using the alternative forms
of the Gaussian Q-function and its square as in (4.2) and (4.9), respectively, it
is possible to simplify the evaluation of this upper bound on performance. The
details are as follows.
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We begin by applying a binomial expansion to the Hughes bound of (8.136),
which when averaged over the fading PDF results in

M—1 M 1
PS(E)SZ(—I)"“< n )Ik (8.138)
k=1
where
A [ 4
1k=/0 O (VVs) Py, (vs) dys, k=1,2,....,M—1 (8.139)

[Note that the result based on the union upper bound would simply be the first
term (k = 1) of (8.138)]. Using (4.2) and (4.9) and assuming a Nakagami-m
channel with instantaneous SNR PDF given by (5.14), the integral in (8.139)
can be evaluated for M =4 (k=1,2,3) either in closed form or in the
form of a single integral with finite limits and an integrand composed of
elementary functions (i.e., exponentials and trigonometrics). The results appear
in Section 5.4.3.2 and are summarized here as follows:

m—1

I = [P(c)]mz (m _kl +k> [1— P,

k=0

. _
P(c)é5<1— ¢ ) cAYs (8.140a)

1 —l l ¢ <£ tan~! ¢ )m_l<2k> 71

T4 aVi+e )2 I+c) =\ k) A0 +oF

- m—1 k T - 2(k—i)+1
— sin <tan_1 > Z ! T {cos (tan_1 )] ,
Vi4ec Pl (1+0) 1+c¢

c=— (8.14006)

Te= =i ’ 2
( 5{__;))4"[2(k—i)+1] "

|>
7N
)
= =
N———

and

1 [0 m
=2 / <_—c(¢>) [Pc(@)]”
T Jo Vs

m—1

> (’” o7 ") [1 =PI do,

k=0

(1>

v, [ sin’g
c(®) 2 <7Sin2¢+7s/2> (8.140¢)
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Figure 8.5. Average BEP of 4-ary orthogonal signals over a Nakagami-m channel versus the
average SNR per bit: (@) union bound; (b) Hughes bound; (c) exact result.

Mlustrated in Fig. 8.5 are curves for average bit error probability versus average
bit SNR for 4-ary orthogonal signaling over the Nakagami-m fading channel, the
special case of m = 1 corresponding to the Rayleigh channel. For each value
of m, three curves are calculated. The first is the exact result obtained (with
much computational power and time) by averaging (8.135) over the PDF in
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(5.14). The second is the Hughes upper bound obtained from (8.138) together
with (8.140a), (8.140b), and (8.140c). Finally, the third is the union upper
bound obtained from the first term of (8.135) together with (8.140a). The curves
labeled m = oo correspond to the nonfading (AWGN only) results. We observe,
not surprisingly, that as m increases (the amount of fading decreases) the three
results are asymptotically equal to each other. For Rayleigh fading (the smallest
integer value of m) we see the most disparity between the three, with the Hughes
bound falling approximately midway between the exact result and the union
upper bound. More specifically, the “averaged” Hughes bound is 1 dB tighter
than the union bound for high-average bit SNR values. As m increases, the
difference between the Hughes bound and the exact results is at worst less than
a few tenths of 1 dB over a wide range of average bit SNR’s. Hence, for high
values of m, we can conclude that it is accurate to use the former as a prediction
of true system performance, with the advantage that the numerical results can
be obtained instantaneously. Note also that for high values of m a slightly less
accurate result can be obtained by using the union bound.

8.2.1.7 Minimum-Shift-Keying. Following the same line of reasoning as
discussed in Section 8.1.1.7 for the AWGN channel, we conclude here for
the fading channel that the average BEP performance of the MSK receiver
implemented as that which is optimum for half-sinusoidal pulse-shaped OQPSK
is identical to that of AM, BPSK, QPSK, and conventional (rectangular pulse-
shaped) OQPSK. As a result of this observation, no further discussion is
necessary.

8.2.2 Nonideal Coherent Detection

To compute the average error probability performance of nonideal coherent
receivers of BPSK, QPSK, OQPSK, and MSK modulations transmitted over
a fading channel, we again follow the approach taken by Fitz [16] wherein
the randomness of the demodulation reference signal is modeled as an additive
Gaussian noise independent of the AWGN associated with the received signal.
In the absence of fading, this model was introduced in Section 3.2, and the
performance of the receiver based on this model was given in Section 8.1.2.
When Rician fading is present, Fitz [16] proposes a suitable modification of the
Gaussian noise reference signal model as follows.

Let n, = 1y, + jng, denote a complex Gaussian RV which represents the
fading associated with the received signal in the nth symbol interval. In the most
general case, when 5y, and ng, are nonzero mean, o, = |n,| is a Rician RV,
which is the case considered by Fitz. With reference to (3.38), the kth matched
filter output in this symbol interval y,, k = 1,2, ..., M, now becomes

specular component random component

Ynk = Sxnne’® + Nop = 5@, + jﬁQn)e'ie‘ + 5% (Ern + jEon)e!™ +Nyi (8.141)
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The reference signal is also assumed to be degraded by the channel fading. As
such, the additive Gaussian noise model for this signal given in (3.39) is now
modified to

specular component random component

& = A/ Gy (g + jlign)e’™ + A/ G + jEgn)e’™ +N, (8.142)

where G and G, denote the SNR gains associated with its specular and random

components, respectively® and &;, 2 Nin — Nin» | = 1, Q. In view of the complex
Gaussian fading models above for the received signal and reference signal, the
decision statistic for the nth symbol, namely, Re{y,.c}}, is, as was the case
for the fading-free channel, in the form of the real part of the product of two
nonzero mean complex Gaussian random variables; hence, the error probability
analysis discussed in Appendix 8A is once again applicable. To apply Stein’s
analysis [29], we need to specify the first and second moments of y,; and c,.
These are computed as follows.

Assume that the real and imaginary components of the complex fading RVp,
have first and second moments

mo=m,  Mp=mg,  var(n) = var(ng) = o (8.143)
Then the Rician factor K is given by

_ specular power  (7))* + (Wp)?  mf+my

= = 8.144
random power var(ny) + var(ng) 202 ( )

and the total power of 7, is given by
E{mY2Q = E(n} + 13} =20% +m} +mh =20>(1 +K)  (8.145)

For BPSK signaling, 5, = A.Tpa, (a, = £1 represents the binary data) and
A, = A. = A. Thus, from (8.141) and (8.142),

= — _ K
Fuil = ATo[ @) + (igy P = ATp i} + iy = | T QAT

. = - 1
|Fuk — Yl> = (AT)*20° + var(N i) = H—KQAZTIE + NoT, (8.146a)

9 Later we shall specifically consider (as does Fitz [16]) the slow-fading case, which implies that the
fading changes slowly in comparison to the memory length of the phase estimator. This implies that
G5 = G, = G. For the moment, however, we shall allow the specular and random gains to maintain
their individual identity.
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and

18] = V/GAT [ (01,2 + (ign)*

_\ﬁATb\/m ,/

T? +NoT,  (8.146b)

& — &> = GH(AT)*20” + var(N) =

Letting z1, = ¢, 22p = Yk, and A>T, = E,, then relating these moments to the
parameters defined in (8A.3) and (8A.4), we get

1 1 G,K
Sip= 3Rl =56 P =57
r_ ., 1 1 K
Szp = §|Z2p| |ynk| = El—i——KQEbTb
— ~ =~ N()Tb Gr QEb
N = — — 2 = —|Cr — r2 = 1
1p = ke =2l = Fle =&l 2 (1+K No
1 _ - = NoT, 1 QE,
Nop = —|22p — 220> = = |90k — - 1
2p 2|Z2p Z2p| 2|Yk ynkl ) <1+K NO )

1
Pp = Pep+ jpsp = ——=(21p — 21p)" (22p — 22p)
P P P o NNy, e T e G2 2

1
= ———=( = &) Gk — Yut)
2, /Ni,N2, £ Tk
JG, QE,
1+K No

= s 9]p=92pa ¢=0
G, QE, 1 QE,
) (——
1+K No 1+K No
(8.147)

Using these parameters in (8A.6a) gives the arguments of the Marcum Q-function
in (8A.5) as [16, Eqgs. (8a) and (8b)]

2
{ﬂzl&+ﬁ¢2%% _L( B (S
b 2 Nlp sz Nlezp 2 Nlp sz
2

K
Gy 3
_ 1157 1+x7 _a QE,

Yl 1+k7

—_

(8.148)
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where once again we have elected to express the result in terms of the average
fading SNR per bit . Also since from (8.147) p, is real, then from (8A.6a),

VG _

%
~ P Ly 41 741
\/<1+KVJr ><1+Ky+

Finally, the average BEP for nonideal coherent detection of BPSK in a Rician
fading environment is given by (8A.5), namely,

1 A b
Py(E) = 51 = 01(Wb, Ja) + Q1 (va, Vb)] — 5 exp (—%) Io(~ab)

(8.150)
where a, b, and A are defined as above.
As mentioned earlier in footnote 9, we will be interested in the case of slow
fading, which implies that G; = G, = G. Making this substitution in (8.148) and
(8.149) gives the simplified results

——Gy —Y
1
{Z}zi 1+11< - 1+’1< (8.151)
1+ — Gy 1+—3
T Tirk”
and
G
—y
A= 1+ K (8.152)

which agrees with an unnumbered equation [between (8c) and (9)] in Ref. 16.
Figure 8.6 is an illustration of average BEP as computed from (8.150) together
with (8.151) and (8.152) for K = 0 and K = 10 and three nonideal coherence
parameter values: G = 3, 10, and 20 dB. We observe from these numerical results
that over a wide range of average SNR, the BEP is rather insensitive to the value
of G, particularly for the higher value of K.

As a check on previous results, the no-fading case, which corresponds to
K — 00,y — E;/Ny, would result in

( E” E”) 12, A=0 (8.153)
\V N T N 2N0
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Figure 8.6. Average BEP for nonideal coherent detection of BPSK over a Rician channel versus
the average SNR per bit: (a) G =3 dB; (b) G = 10 dB; (c) G = 20 dB.

which agrees with (8.61). For Rayleigh fading (K = 0), the corresponding
results are

{“}z{o}, A= _‘/5”_ (8.154)
b 0 JGy+DHF+1)
Since Q1(0,0) = 1, from (8.150) we obtain
1 Gy
Poy =L 1= Y07 (8.155)
2 JGy+Diy+1)
For a perfect phase reference (i.e., G — 00), (8.155) simplifies to
P,(E) = ! 1 Y (8.156)
T 1+7 '

which is consistent with the result given in (8.104) for ideal coherent detection.
To extend the results above to other quadrature modulation schemes with I and
Q carrier components that are independently modulated (e.g., QPSK, OQPSK,
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MSK, and QAM), one merely recognizes that for such schemes the average BEP
in the presence of fading can be expressed as

1 1
Py(E) = —sz(E)+ PbQ(E) (8.157)

where Py;(E) and Pyo(E) are, respectively, the average BEPs for the I and Q
data streams. Thus, Stein’s analysis technique [29] of Appendix 8A can again
be applied to evaluate Pp;(E) and Ppo(E) separately and thereby arrive at a
generalization to the fading channel case of the AWGN BEP results given by
(8.62) through (8.65). For example, for QPSK results analogous to (8.151) and
(8.152) are obtained by replacing G by 2G, whereupon the former reduces
to (8.62) when K — oo. The specific details for the remaining quadrature
modulation schemes are left to the reader.

8.2.3 Noncoherent Detection

As alluded to previously, in a multipath environment it is often difficult in practice
to achieve good carrier synchronization; in such instances it is necessary to employ
a modulation for which noncoherent detection is possible. The most popular choice
of such a modulation in fading channel applications is orthogonal M-FSK, whose
error probability performance in AWGN was considered in Section 8.1.3. It is a
simple matter now to extend these results to the fading channel. In particular,
since each term of (8.66) is purely an exponential of the SNR, then applying the
MGF-approach to this equation, we obtain the average SEP:

M—1 (M1 | m
RY(E):;(_U ( m )m——i-lMys <_m—+1> (8.158)

where the moment generating function M, (—s) is obtained from any of the
results in Section 5.1 with ¥ replaced by the average symbol SNR . Thus, for
Rayleigh fading, using (5.5), we have

M—1
_ _1ym+l1 M—1 1
HE= 2D G e

which for the special case of binary FSK simplifies to P,(E) = 1/(2 4+ ¥), in
agreement with Proakis [6, Eq. (14-3-12)]. For Rician fading, using (5.11) gives

- -1 1+K
P(E) = Z( o (M) e E T

Kmy,
x exp [ — s (8.160)
1+ K+m(1+K+7Yy,)
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which agrees with Sun and Reed [24, Eq. (8)], and reduces to (8.159) when
K = 0. Finally for Nakagami-m fading, using (5.15), we obtain

M—-1 _ l+ l)m_l
Py(E) = —1)i*! <M 1> ( 8.161
) ,2_;( ) l [1+1(1 +y/m)]" ( )

where we have changed the summation index to avoid confusion with the
Nakagami-m fading parameter. As expected, (8.161) reduces to (8.159) when
m = 1. Before concluding this section, we note that the results for average BEP
over a fading channel can be obtained, as was the case for the AWGN channel,
by applying the relation between bit and symbol error probability given in (8.67)
to the results above. We note furthermore that although we have specifically
addressed M-FSK, the results above apply equally well to any M-ary orthogonal
signaling scheme transmitted over a slow, flat fading channel and detected
noncoherently at the receiver.

For nonorthogonal M-FSK, we observed in Section 8.1.3 that a simple
analytical result for average BEP over the AWGN was possible for the binary
case, namely, (8.69). To extend this result to the fading channel, we first rewrite
it in the alternative form [see (9A.14) of Appendix 9A]

Py(E) = 11 — 01(Vb, Va) + 01 (Va, V/b)] (8.162)

and then make use of the alternative representation of the Marcum Q-function in
(4.16) and (4.19) to allow application of the MGF-based approach [see (8A.12)].
Using the definitions of a and b in (8.70), the result of this application produces

Py(E) = /ﬂ l's
P T 4n | 1+ 2¢sin0 + &2

<M, (—%u VT (1 + 2 sinf + 4“2)) e,

1>

(8.163)

where p is the correlation coefficient of the two signals. To obtain specific results
for the various fading channels, one merely substitutes the appropriate MGF from
Section 5.1 in (8.163), analogous to what was done previously for the orthogonal
signaling case. The specific analytical results are left as an exercise for the reader.
As an illustration of the numerical results that can be obtained from (8.163)
after making the aforementioned substitutions, Figs. 8.7, 8.8, and 8.9 illustrate
the average BEP performance for Nakagami-g (Hoyt), Nakagami-n (Rice), and
Nakagami-m channels.
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Figure 8.7. Average BEP of correlated BFSK over a Nakagami-g (Hoyt) channel: (@) p = 0;
(b) p=0.2;(c) p=0.4;(d) p=0.6.
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Figure 8.8. Average BEP of correlated BFSK over a Nakagami-n (Rice) channel: (a) p = 0;
(b) p=0.2;(c) p=0.4;(d) p=0.6.
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Figure 8.9. Average BEP of correlated BFSK over a Nakagami-m channel: (@) p = 0; (b) p = 0.2;
) p=04;() p=0.6.

8.2.4 Partially Coherent Detection

In this section we apply the MGF-based approach to the AWGN results of
Section 8.1.4 to predict the performance of partially coherent detection systems
in the presence of fading. The steps to be followed parallel those of the previous
sections and thus the presentation will be brief.

For BPSK with conventional (one-symbol observation) detection, the condi-
tional (on a fixed phase error ¢.) BEP is in the form of a Gaussian Q-function as
described by (8.71). Thus, first performing the averaging over the fading takes
the form of (5.1), which is expressed in terms of the MGF of the fading as in
(5.3). Finally, performing the averaging over the Tikhonov phase error PDF gives
the desired result, namely,

1 T2 cos? e\ _exp(p. cos P.)
P,(E) = — M, | — do do. 8.164
»(E) /_7, n/g v ( sin” 6 ) 27l (pc) ¢ ( )

For orthogonal and nonorthogonal BFSK, the results [see (8.74) together with
(8.69)] are expressed in terms of the first-order Marcum Q-function. However,
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in these cases the ratio of the two arguments of this function [see (8.75)
and (8.76)] are not independent of SNR, and thus the MGF-based approach
is not useful here in allowing an easy evaluation of average BEP. Instead,
one must resort to the brute force approach of replacing E,/Ny by y in the
a and b parameters and then performing the average over the PDF of y
as appropriate for the type of fading channel under consideration. A similar
statement is made for the multiple-symbol detection case since again the ratio of
the two arguments of the Marcum Q-function [see (8.81)] are not independent
of SNR.

8.2.5 Differentially Coherent Detection

In this the final section of this chapter, we consider the characterization of the
error probability performance of differentially detected M-ary phase-shift-keying
when transmitted over a fading channel. This modulation/detection combination
has received a lot of attention in the literature, particularly the M = 4 case
(DQPSK), which has been adopted in the most recent North American and
Japanese digital cellular system standards. For instance, Tjhung et al. [30] and
Tanda [31] analyzed the average BEP of DQPSK over slow Rician and Nakagami-
m fading channels, respectively. Later, Tellambura and Bhargava [32] presented
an alternative unified BEP analysis of DQPSK over Rician and Nakagami-m
fading channels. In keeping with the unifying theme of this book, our purpose
in this section is to once again unify and add to the previous contributions
by obtaining results for arbitrary values of M as well as for a broad class of
fading channels. As in Section 8.1.5, we first focus on conventional (two-symbol
observation) detection of M-PSK, for which, as noted there, the SEP is already
in the desired form, namely, one that lends itself to immediate application of the
MGF-based approach.

8.2.5.1 M-ary Differential Phase-Shift-Keying: Slow Fading

Conventional Detection: Two-Symbol Observation. With reference to (8.84),
which gives the SEP of M-DPSK for the AWGN channel, we observe that the
integrand is already an exponential function of the symbol SNR. Thus, unlike
the cases where the integrand’s dependence on SNR is through Gaussian and
Marcum Q-functions, no alternative form is necessary here to allow averaging
over the fading statistics of the channel. All that needs to be done is to replace
E /Ny by y; in the argument of the exponential and then average over the PDF
of y, resulting in the MGF-based expression

«/gPSK ™2 M, (—(1 — /T — gpsk cos 0))
Py(E) =
—n/2 1 — /1 — gpsgcosf

gpsk = sin’ (/M) (8.165)

de,
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or the simpler form derived from (8.90),

1 M—1)n/M 8PSK
P(E)= L M, (- a6 8.166
) 77/0 %< 1+v1—gPSK0059) ( )

The special case of binary DPSK wherein gpsg = 1 simplifies to the closed-form
result

Py(E) = 1M, (~1) (8.167)

Comparing (8.167) with the special case of (8.158) corresponding to M = 2,
namely, Py(E) = %M J,(—%), then since, independent of the type of fading, the
MGF of the fading SNR M, (—s) is only a function of the product sy [see,
e.g., (5.5), (5.8), (5.11), and (5.15)], we conclude that the BEP of noncoherent
orthogonal FSK is 3 dB worse in average fading SNR than that of DPSK. We
remind the reader that this is the same conclusion reached when comparing these
two modulation/detection schemes over the AWGN.

To obtain the average BEP corresponding to values of M > 2, we make use
of the AWGN results in (8.86), which correspond to a Gray code bit-to-symbol
mapping. Since each of the BEP results in (8.86) is expressed in terms of the
function F(y) defined in (8.87), which, analogous to (8.84), has an integrand
with exponential dependence on symbol SNR, then clearly the average BEP over
the fading channel can be obtained from (8.86) by replacing F () with

sinyy (™% M, (—(log, M)(1 — cos ¥ cost)) i

Fiy)=— 8.168
¥) A J_ap 1 —cosyrcost ( )
or the simpler form [see Eq. (4.68)]
= [, (—tomm—"Y Nar s.169)
=—— —(lo _ .
D BT cos yreost

The average BEP for the special case of DQPSK can, of course, be obtained from
the first relation in (8.86) together with (8.168) or (8.169) with M = 4. In view
of (8.89) for the AWGN channel, it can also be obtained in a form analogous to
(8.163), namely,

AT I N
A 2—\/5
V2+v2

Using instead the alternative forms of the first-order Marcum Q-functions given
in (4.20) and (4.21) corresponding to only positive values of the integration

¢ (8.170)
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variable, an equivalent form to (8.170) can be obtained from Tellambura and
Bhargava [32, Eq. (3)], namely,

Py(E) = M, (—(2 — ~/2cos6))do (8.171)

1 /” 1
21 Jo /2 —cosf
Without further ado, we now give the specific results of the above, corresponding

to Rayleigh, Rician, and Nakagami-m channels. These results, as well as those
for the fading channels discussed previously, are taken from Ref. 33.

RAYLEIGH FADING. From (8.165) and (5.5), the average SEP of M-DPSK is
given by

sin(w/M) [7/? 1 20
2 —x2[1 = cos(w/M) cos O1{1 + y,[1 — cos(r/M) cos 6]}
(8.172)
which is in agreement with Sun and Reed [24, Eq. (6)]. The corresponding binary
DPSK result is

Py(E)=

1
Py(E)= —— 8.173
b»(E) 20+7) ( )
which agrees with Proakis [6, Eq. (14-3-10)]. For DQPSK, the average BEP is
evaluated from (8.170) in closed form as

1 1
Py (E)=—|1— 8.174
() 2[ ¢<1+27>2/(272>—1] ®179

which agrees with an equivalent result obtained by Tjhung et al. [30, Eq. (18)]
and Tanda [31, Eq. (13)], namely,

PoE) 1 V27 4+ (V2= D +27 — V1 +47 +277)
h p—
2V1+47 +27° [ V27 = (V2= DL+ 2y = V1 + 47 +27)
(8.175)
or the one reported by Tellambura and Bhargava [32, Eq. (8)], namely,
1 2y
PyE)==[1- Y (8.176)
2 V14 4y + 297

For other values of M, the average BEP is computed from (8.86) using

Fapy = —Snv [ : dt
W)=- 4 J_zp (1 —cosycost)[1 + y(og, M)(1 — cosyrcost)]
(8.177)

in place of F(¥).
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RICIAN FADING. From (8.165) and (5.11), the average SEP of M-DPSK is given by
sin(w/M) [7/? 1+K
2 —z/2 (1 —cos(w/M)cos 0){1 + K + y[1 — cos(r/M) cos 0]}

Ky, [1 — cos(r/M) cos 0] }
exp {_ 14+ K+ 7yl —-cos (/M) cosb]

Ps(E) =

(8.178)

which is in agreement with Sun and Reed [24, Eq. (5)]. The corresponding binary
DPSK result is

Py(E) = & (i) ex (—L> (8.179)
= vk +y) P Uik +y '

For DQPSK, the average BEP is most easily evaluated from (8.171), which
produces

P(E)_d/” 1+K
T Sy (V2= cosO)l + K + 7,2 — 2 cos6)]
K(1+K)
_ 8.180
P 1+K+ys(2—\/§c059)] (6150

in agreement with Tellambura and Bhargava [32, Eq. (6)].
For other values of M, the average BEP is computed from (8.86) using
siny [7/? 1+K
r —x2 (1 —cosyrcost)[1 + K + y(log, M)(1 — cos ¥ cost)]
Ky(log, M)(1 — cosyrcost)
14+ K +y(logy, M)(1 — cos {cost)

F(y) =

X exp [— (8.181)

in place of F(v).

NAKAGAMI-m FADING. From (8.165) and (5.15), the average SEP of M-DPSK is
given by

sin(wr/M) [7/? 1 »
2 —xs2[1—=cos(zwr/M) cos 01{1+ (v, /m)[1—cos(x /M) cos O]}
(8.182)
and is illustrated in Fig. 8.10 as a function of average symbol SNR and
parameterized by m. The corresponding binary DPSK result is

1 m
Py(E) = (ﬂy) (8.183)
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Figure 8.10. Average SEP of 8-DPSK over a Nakagami-m channel versus the average SNR
per symbol.

which agrees with the expression attributed to Barrow [34] and later reported by
Wojnar [22, Eq. (11)] and Crepeau [35, Eq. (B1)]. For DQPSK, the average BEP
is evaluated from (8.171) as

1 m "o 1
Py(E) = - < _) / a6
b 21 \m+27) Jo (V2 —cosO)(1 — [V27/(m + 27)] cos )™
(8.184)
which agrees with Tellambura and Bhargava [32, Eq. (7)].
Finally, the function necessary to compute average BEP for other values of
M is given by

— sinyr [7/2 1 m "
F) =—-= [ —
77 J_zpp (1 —cosrcost) [m~+y(log, M)(1 — cosycost)
(8.185)

Multiple Symbol Detection. The upper bound on the BEP for the AWGN
channel as given in (8.97) is easily extended to the fading channel case by
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recognizing that the form of the probability Pr{Z,x > z,k} as described by (8.80)
is identical to (8.162), which characterizes noncoherent detection of orthogonal
FSK. One can thus make use of the results in Section 8.2.3 to express each term
in the sum of (8.97) in an MGF-based form analogous to (8.163), namely,

. 1 /7 1 —¢? log, M
Pr{Z.k > zak} = /My(_ £ (Ny+ V' Ns —18]%)

4 ) 1+2Csinf + &2 4

/ 2
x (14 2§sin9+é’2)) g, g2 [N VN PR
Ns + \/Ns - |8|2
(8.186)
with § defined in (8.99). Substituting (8.186) into (8.97) gives the desired upper
bound on BEP. It is left as an exercise for the reader to evaluate (8.186) for the
various fading channels based on the same procedure as that stated at the end of
Section 8.2.3.

8.2.5.2 M-ary Differential Phase-Shift-Keying: Fast Fading

Conventional Detection: Two-Symbol Observation. Until now in this chapter
we have focused entirely on the performance of digital communication systems
operating over slow-fading channels. For conventional differentially coherent
detection of M-PSK, the assumption of slow fading is tantamount to assuming
that the fading amplitude is constant over a duration of at least two symbol
intervals. A suitable modification of this model for the case of fast fading is
to assume that the fading amplitude is constant within the duration of a single
symbol but varies from symbol to symbol. That is, the symbol intervals are
each characterized by their own fading amplitude, which relative to one another
satisfy a given discrete correlation function that is related to the nature of the
fading channel (more about this later). Such a discrete fast-fading model is an
approximation to the true channel behavior wherein the fading varies continuously
with time. To understand fully the method used to evaluate the average error
probability for this scenario, we must first review the system model discussed in
Section 3.5, making the necessary modifications in notation to account for the
presence of fast fading on the signal. We focus all our attention on the Rician
channel (with results for the Rayleigh channel obtained as a special case) and
develop only the binary DPSK case.

Consider a binary DPSK system transmitting information bits over an AWGN
channel that is also perturbed by fast Rician fading. The normalized kth
information bit at the input to the system is given by

xp = e/ A% (8.187)

where for binary transmission A6 takes on values of 0 and m corresponding,
respectively, to values of 1 and —1 for x;. The input information bits are
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differentially encoded, resulting in the transmitted bit

v = V2Epel% = \/2E e/ G118 — o %, (8.188)

After passing through the fast-fading channel, the received information bit in the
kth transmission interval is

wr = Gror + Ny (8.189)

where Gy is the complex Gaussian fading amplitude associated with the kth
received bit and Ny is a zero-mean complex Gaussian noise RV with correlation
function E{N}N,} = 2N¢8(k — m). Denoting the mean and variance of G; by
n = E{G} and 6 = JE{|Gy — n|*} (both assumed to be independent of k), then

for the assumed Rician channel, the magnitude of G, namely, o 2 |G|, has PDF

201+ K 2(1+K
(1+ )eXp _K_“k( +K)

plag) = ay )

Z(Xk
Ipn| ——=vK(1+K 8.190
o(m\/ 1+ )) ( )

where Q = E{a}} = 20%(1 + K). Furthermore, the adjacent complex fading
amplitudes have correlation

SE{(Gi1 — )" (G — )} = po?, 0<p=1 (8.191)

where p is the fading correlation coefficient whose value depends on the fast-
fading channel model that is assumed.

At the receiver the received signal wy for the current bit interval is complex
conjugate multiplied by the same signal, corresponding to the previous bit
interval, and the real part of the resulting product forms the decision variable
(which is multiplied by 2 for mathematical convenience)

2 2 2Re{wiwi i} = wiwi_1 + wiw!_, (8.192)

Comparison of z; with a zero threshold results in the final decision on the
transmitted bit x;, namely, &, = e/% = sgn z;, which is consistent in form with
the decision rule given in (3.52).

We note that conditioned on the information bit x;, the components w;_; and
wy, are complex Gaussian RVs (since both the fading amplitude and additive noise
RVs are complex Gaussian). Thus, (8.192) represents a Hermitian quadratic form
of complex variables. Although it is possible to use an MGF-based approach
based on the conditional MGF of such a quadratic form first considered by Turin
[36] and later reported by Schwartz et al. [37, App. B], in this particular case
there is an easier way to proceed. Specifically, letting D = zi|,,—; denote the
decision variable corresponding to transmission of a +1 information bit, then
based on the decision rule above, the average BEP is given by
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P,(E) =Pr{D < 0} (8.193)

The solution to (8.193) is a special case of the problem considered in [6, App. B]
which has also been reconsidered in alternative forms in Appendix 9A of this
book. Specifically, letting A =B =0, C = 1, X; = wy_;, Y = wy in (9A.2), the
decision variable (8.192) is identical to that in (9A.1) when L = 1. Evaluating
the various coefficients required in (9A.10) produces after much simplification
the following results:

14+K+7v(1 2Ky
g2 oIkt o 2K (g0
v, 1+K+7(—p) 1+K+7

where y = QE;, /Ny is, as before, the average fading SNR. Finally, substituting
(8.194) in (9A.10) and recalling that Q;(0, b) = e*"/2, we obtain the desired
average BEP

I [1+K+y(1 - Ky
Py(E) = - [ +K+yd- p)} ex <—7y> (8.195)
2 1+K+7y 1+K+7y
The corresponding result for the Rayleigh (K = 0) channel is
11491 -
PyE) = 5 | L) (8.196)
2 1+y

As a check, the results presented earlier for slow fading can be obtained by letting
p = 11in (8.195) and (8.196), which results, respectively, in (8.179) and (8.173),
as expected.

What is different about the fast-fading case in comparison with the slow-fading
case is the limiting behavior of P,(E) as the average fading SNR approaches
infinity. Letting ¥ — oo in (8.195) and (8.196) gives

lim Py(E) = — L exp(—K) (8.197)
y—00
and
. I—p
lim Py(E)= " (8.198)
y—00 2

(i.e., an irreducible bit error probability exists for any p # 1). The amount of
this irreducible error probability can be related (through the parameter p) to
the ratio of the Doppler spread (fading bandwidth) of the channel to the data
rate. The specific functional relationship between these parameters depends on
the choice of the fading channel correlation model. Mason [39] has tabulated
such relationships for various types of fast-fading processes of interest. These
results are summarized in Table 2.1, where f;7; = f;T, denotes the Doppler
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Figure 8.11. Average BEP of binary DPSK over a fast fading Rician channel versus the average
SNR per bit: land mobile channel.

spread/data rate ratio, and in addition the variance of the fading process has, for
convenience, been normalized to unity. For example, for the land mobile channel
where p = Jo(2w f4T), Fig. 8.11 illustrates the average BEP as computed from
(8.195) as a function of average bit SNR for Rician K = 0 (Rayleigh channel)
and K = 10 with f;T} as a parameter. As one would expect, as f;7; diminishes,
the irreducible error becomes smaller. Nevertheless, depending on the value of
Rician factor, a Doppler spread of only 1% of the data rate can still cause a
significant error floor.

8.2.5.3 n/4-Differential QPSK. From the conclusion drawn in Section 8.1.5.2
relative to the equivalence in behavior between DQPSK and 7/4-DQPSK on the
ideal linear AWGN channel, it is clear that the same statement can be made for
the fading channel. Thus, without any additional detail, we conclude immediately
that the error probability performance of 7/4-DQPSK on the fading channel is
characterized by the results of Section 8.2.5.1, namely, the generic BEP of (8.170)
[or (8.171)] or the more specific results that followed these equations.
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APPENDIX 8A: STEIN’S UNIFIED ANALYSIS OF THE ERROR
PROBABILITY PERFORMANCE OF CERTAIN COMMUNICATION
SYSTEMS

The analysis of the error probability performance of differential and noncoherent

de

tection as well as certain nonideal coherent detection systems on an AWGN
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channel is characterized by a decision statistic that is either in the form of the
product of two complex Gaussian random variables or the difference of the
squares of such variables. In what has now become a classic paper in the annals of
communication theory literature, Stein [9] showed how, using a simple algebraic
relation between the product and difference of square forms of the decision
variable, the error probability of certain such binary systems could be analyzed
by a unified approach. Our intent in this appendix is to summarize (without
proof) the results found in Stein’s original paper in a generic form that can easily
be referenced in the main text, where it is applied to specific communication
scenarios. This generic form will also be useful when extending Stein’s results
to M-ary communication systems [21] and fading channels [6] as well as certain
nonideal coherent detection systems [16].

We start by considering two complex Gaussian variables, zj, = |z1,]e/®"
and 25, = |z2,|e/®?, that are in general correlated and whose sum and differ-
ence, 71y = (21p + 22p)/2 and 25 = (21, — 22p)/2, are also correlated complex
Gaussian random variables.! A simple algebraic manipulation shows that

! ! 2 2 2 2

2 <Z1pZ§p + ZTPZZP

4 ) = Re{z} 22} (8A.1)

Hence, a test of |z;7|*> — |z27|* or Re{z} »Z2p} against a zero threshold, which are
typical of noncoherent FSK and differentially coherent PSK systems, respectively,
would produce equivalent error probability performance expressions, that is,

P = Pr{Re{sz@p} < 0} (8A.2a)
or

P =Pr{lzif|* — |z2¢]* < 0}
= Pr{lzi/|* < lz2sI*}

= Pr{|zir| < |22y} (8A.2b)

To evaluate the error probability P, Stein used a succession of linear
transformations to transform both the FSK and PSK models to a canonical
problem that had a convenient solution. In particular, he showed that the
solution to (8A.2a) or (8A.2b) could be expressed in terms of an equivalent
noncoherent FSK problem based on two nonzero mean but uncorrelated complex
Gaussian variables, #; and #, wherein the desired error probability could be stated

!'The subscripts f and p refer, respectively, to FSK and PSK modulations, as will become clear
shortly.
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as P = Pr{|t||> < |2]*} = Pr{|t:| < |£2]}. By relating #; and #, to z,,2, and
217, 22, Stein arrived at the following generic results.

Define the first- and second-order moments of zi,,z2, by (using Stein’s
notation)

_ A . _ e ;
Zip=mip + Jlip = |Zip|eelpa i=12
g Alz 2 12 2 N 2Ll _z 2 =12
ip = 2|th| = 2(m,',, +Mip)7 ip= 2|Zzp Zzpl s 1=1,
A - = .
Iop\/Nle2P = %(le — Z1p)"(22p — 22p)s Pp = Pcp + JPsp
Y@y —2p)@2p —22p) =0 (8A.3)

and similarly for z;; and z>;. Finally, define the phase angle ¢ by

¢ = arg(N]p - NZp - jzpsp V NleZp) (8A.4a)

or

¢ = arg(pcf + jpsf) (8A.4b)

for the problems characterized by (8A.2a) and (8A.2b), respectively. Then,

1 A b
P=l- 01(Vb, Va) + 01(va, Vb)] — 2 eXp <—%> Io(~/ab)

(8A.5)
where for the definition of P as in (8A.2a) we have

{a } 1| Sip+ 82+ (S1p —S2p)cosp+2,/S1,5,sin0, — 6,,)sin¢
2 Nip+Nop+ /(N1 = Noyp + 402, N1,z

+ Sip+Sap = (S1p = S2p) c08 § — 21/S1,52p sin(01p — 62p) sin ¢
Nip+ Nop — \/(Nlp — N2p)® +4p3,N1pN2p

2+/81,82,cos(6y, — 6
- 1pR2p ( 1p Zp) (8A6a)
V(L= P2 NN,
Pecp

A=

/ 2
1—,0”,
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and for the definition of P as in (8A.2b) we have

{a} _ 1 Siy + 82y +24/817825 cosOry — O + @)
b 2 Nif+Nap+2y/NisNoslpys|?
" S]f + Szf - 2\/S]szf COS(@]f — 492f + ¢)
Nif +Nay —24/NiygNoslpyl?
2(81y — Say)

T 2 2

VWNif+Nayp)? — 4N sNaslpsl

Nij —Noy

VN1s 4+ Nop)? —4N1Nayslpsl?

(8A.6b)

Several special cases of (8A.6a) and (8A.6b) are of interest. First, if z1, and 25,
are uncorrelated (i.e., |p,| = 0), ¢ = 0 or 7 (depending, respectively, on whether
Ni, > Ny, or N1, < N3p. In either event, (8A.6a) simplifies to

a LS, Sy Sip S2p
= |2y 22 [P0 220 o, —0)| . A=0
{b} 2[N1p+N2,,:F Ny Ny SOt = 0
(8A.7)

A further special case of (8A.8) corresponds to S;, = S, 2 Sy Nip=N2p éN,,,
01p = 61p, in which case we obtain

{Z}: 285, 5,  A=0 (8A.8)

If for (8A.6b), z1; and zp5 have equal noise power (i.e., N1y = Ny éNf),
then (8A.6b) simplifies to

al 1
bJ 2Ny

S1 + 825 = 2|ppl/S15S25 cos(O1f — Oy + P)

1—|psl?
Si;—8
200 N A=0 (8A.9)
2
V1—=lprl

If, in addition, z; and zo; are uncorrelated, i.e., |os| = 0, then (8A.9) further
simplifies to

Say

a Nf
— L A= 8A.10
{b} Siy ( .

Ny
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The generic result in (8A.5) can be simplified by using some of the
alternative representations of classical functions given in Chapter 4. In particular,
substituting (4.16), (4.19), and (4.65) in (8A.5) and combining terms, we arrive
at the result

P

1 [T [1—A42Asin0 —2(1+A)
o 4An ), 1 +2¢sinf + &2

b . 2 A Ja
xexp[—§(1+2§3m9+§)}d9, 0=<¢= E<1 (8A.11)

which for A = 0 simplifies to

p=1 [ I et S b(1+2§' 6+¢%)|do
— exp | —= sin ,
ar ) T+ 2zsmo+22) P72
A a
ogzﬁa (8A.12)

It should be noted that the specific form of the result in (§A.12) can be obtained
from the work of Pawula [38], who cited certain relations between the Marcum
Q-function and the Rice /e-function, which is defined by

Te(k, x) = / ' exp(—t)Io(kt) dt (8A.13)
0

In particular, combining Eqs. (2a) and (2d) of Ref. 38 and making the substitu-
tions U = (b+a)/2, W = (b —a)/2, and V> = U?> — W? = ab in these same
equations, one arrives at the result

p=t n{l_gz} {bl 2¢cosf +¢%)| do
= /0 1= 2zcosf 1 g2 | XP | — 2 cost 47| db,

ofgé\/id (8A.14)

which in view of the symmetry properties of the trigonometric functions over the
intervals (—, 0) and (0, ) can be shown to be identically equivalent to (8A.12).

Another (simpler) form of P can be obtained from the newer alternative form
of the Marcum Q-function due to Pawula [19] and presented in (4.26) through
(4.29). Using these relations in (8A.5) with A = 0, we obtain

b4 _ 232
P=i/ exp{—é [L}}d@ (8A.15)
4 J_, 2 [1+2¢sinf + &2
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or equivalently,

b4 _ 2\2
p= L exp{—b {M}}de (8A.16)
27 Jo 2 [1+£2Lcosf + &2

The advantage of (8A.15) [or (8A.16)] is that simple upper and lower bounds on
P are now readily obtainable by upper and lower bounding the exponential in
the integrand by its maximum and minimum values, corresponding, respectively,
to 6 = —m/2 and 6 = /2, which immediately gives

lexp [—9(1 +;)2] <P< lexp [—9(1 —;)2] (8A.17)
2 2 =" =2 2 ‘

A still tighter lower bound can be obtained from (8A.16) by the following
sequence of steps:?

2 oo i [ e )
P=— eXpy = |l
2 Jo 2 |14 2¢cos + &2
1 b4 b (1 _4-2)2
= — exXpq —= do
27 Jo { 2 _(l—C)2+4§COSZ(9/2)H
L {_b‘ (1—8%)? Hde
oo TPV 2 LU +0)2c082 0/2) + (1 — 2)2sin (6/2)
b4 r _=\2
> 1 exp{—é (170}}(19
27 Jo 2 | cos? (6/2)
7/2 2
=l/ exp{—é [792 Q) ]}d@
T Jo 2 [sin” (6/2)
= QWb - ) = 0(Wb — Va) (8A.18)

where the last equality comes from the alternative form of the Gaussian Q-
function in (4.2). What is particularly interesting about (8A.18) is that many
authors have used this result as an asymptotic approximation to P (e.g., Turin [36,
Eq. (A-3-4)]), where the additional constraints b > 1,a > 1,b —a > 0 were
imposed. The result as presented in (8A.18) is stronger, in that it is a strict lower
bound and as such does not require any asymptotic conditions on the parameters.
Furthermore, since the upper bound of (8A.17) is, in fact, the Chernoff bound
on the lower bound in (8A.18), we conclude that the probability of error P is
bounded between the Gaussian Q-function of the difference of the arguments and
the Chernoff bound on this function.

2 This bound was derived and supplied to the authors by W. F. McGee of Ottawa, Canada.
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PERFORMANCE OF
MULTICHANNEL RECEIVERS

Many of the current and emerging wireless communication systems make use
in one form or another of diversity: a classic and well-known concept [1-4]
that has been used for the past half century to combat the effects of multipath
fading. Indeed, diversity combining, in which two or more copies of the
same information-bearing signal are combined skillfully to increase the overall
signal-to-noise ratio (SNR), still offers one of the greatest potential for radio
link performance improvement to many of the current and future wireless
technologies. For example, to meet stringent quality of service requirements,
spectrally efficient multilevel constellations need antenna (or space) diversity
to reduce the fading-induced penalty on the SNR [5]. In addition, one of the
most promising features of wideband CDMA systems is their ability to resolve
additional multipaths [compared to “narrowband” (i.e., IS-95) CDMA systems],
resulting in an increased diversity which can be exploited by RAKE reception.
This particular application of diversity techniques is discussed in detail in
Chapter 11. In this chapter we extend the MGF-based approach developed for
the performance of single-channel receivers in Chapter 8§ to the performance of
diversity (i.e., multichannel) receivers. The coverage is broad in the sense that
several combining techniques are presented and analyzed in terms of average
combined SNR, outage probability, and average probability of error. A particular
focus is put on how the performance of these techniques is affected by various
channel fading characteristics, such as fading severity, power delay profile,
and fading correlation. But first, to understand the concepts and terminology
used, we summarize briefly the basic principles of diversity, then review the
various types of combining techniques in the remainder of this introductory
section.
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9.1 DIVERSITY COMBINING

9.1.1 Diversity Concept

As mentioned above, diversity combining consists of receiving redundantly
the same information-bearing signal over two or more fading channels, then
combining these multiple replicas at the receiver to increase the overall received
SNR. The intuition behind this concept is to exploit the low probability of
concurrence of deep fades in all the diversity channels to lower the probability
of error and of outage.

These multiple replicas can be obtained by extracting the signals via different
radio paths:

« In space by using multiple receiver antennas (antenna or site diversity)

« In frequency by using multiple frequency channels which are separated
by at least the coherence bandwidth of the channel (frequency hopping or
multicarrier systems)

« In time by using multiple time slots which are separated by at least the
coherence time of the channel (coded systems)

« Via multipath by resolving multipath components at different delays (direct-
sequence spread-spectrum systems with RAKE reception)

9.1.2 Mathematical Modeling

The mathematical model considered in this chapter consists of a multilink channel
where the transmitted signal is received over L independent slowly varying flat
fading channels, as shown in Fig. 9.1. In the figure, / is the channel index,
and {oy}l,, {0/}f_,, and {r;}}_, are the random channel amplitudes, phases,
and delays, respectively. We assume that the sets {oy}r_,, {6/}, and {r;}},
are mutually independent. The first channel is assumed to be the reference
channel with delay t; =0 and, without loss of generality, we assume that
T <Ty<--- <7 We assume that the {o}/—,, {0/}, and {7}, are all
constant over at least a symbol interval.

When we talk about independent combined paths, we mean that the fading
amplitudes {oy}f_, are assumed to be statistically independent random variables

(RV’s) where o; has mean-square value oc,z denoted by €2; and a probability
density function (PDF) described by any of the family of distributions [Rayleigh,
Nakagami-n (Rice), or Nakagami-m] presented in Chapter 2. As we will see
throughout the chapter, the multilink channel model used in our analyses is
often sufficiently general to include the case where the different channels are
not necessarily identically distributed or even distributed according to the same
family of distributions. We call this type of multilink channel a generalized
multilink fading channel.

After passing through the fading channel, each replica of the signal is perturbed
by complex additive white Gaussian noise (AWGN) with a one-sided power
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Figure 9.1. Multilink channel model.

spectral density denoted by 2N; (W/Hz). The AWGN is assumed to be statistically
independent from channel to channel and independent of the fading amplitudes
{oy}5_,. Hence, the instantaneous SNR per symbol of the /th channel is given by
vi = &?E;/N;, where E; (J) is the energy per symbol and the SNR per symbol
of the /th channel is given by y;, = Q,E/N;.

9.1.3 Brief Survey of Diversity Combining Techniques

Diversity techniques can first be classified according to the nature of the
fading they are intended to mitigate. For instance, microdiversity schemes
are designed to combat short-term multipath fading, whereas macrodiversity
techniques mitigate the effect of long-term shadowing caused by obstructions
such as buildings, trees, and hills. Diversity schemes can also be classified
according to the type of combining employed at the receiver. At this point
we should distinguish the classical pure combining schemes [1] from the more
recently proposed hybrid techniques.

9.1.3.1 Pure Combining Techniques. There are four principal types of
combining techniques, which depend essentially on the (1) complexity restric-
tions put on the communication system, and (2) amount of channel state infor-
mation (CSI) available at the receiver.
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Maximal Ratio Combining (MRC). As shown in Chapter 7, in the absence
of interference, MRC is the optimal combining scheme (regardless of fading
statistics) but comes at the expense of complexity since MRC requires knowledge
of all channel fading parameters. Since knowledge of channel fading amplitudes
is needed for MRC, this scheme can be used in conjunction with unequal-
energy signals (e.g., M-QAM or any other amplitude or phase modulations).
Furthermore, since knowledge of channel phases is also needed for MRC, this
scheme is not practical for differentially coherent and noncoherent detection.
Indeed, if channel phase estimates are obtained, the designer might as well go
for coherent detection, thus achieving better performance.

Equal-Gain Combining (EGC). Although suboptimal, EGC with coherent
detection is often an attractive solution since it does not require estimation of
the fading amplitudes and hence results in reduced complexity relative to the
optimum MRC scheme. However, EGC is often limited in practice to coherent
modulations with equal-energy symbols (M-ary PSK signals). Indeed, for signals
with unequal energy symbols such as M-QAM, estimation of the path amplitudes
is needed anyway for automatic gain control (AGC) purposes, and thus for these
modulations, MRC should be used to achieve better performance [3].

In many applications the phase of the received signal cannot be tracked
accurately, and it is therefore not possible to perform coherent detection. In
such scenarios, communication systems must rely on noncoherent detection
techniques such as envelope or square-law detection of frequency-shift-keying
(FSK) signals [6, Chap. 5] or on differentially coherent detection techniques such
as differential phase-shift-keying (DPSK) [6, Chap. 7]. As explained above, MRC
is not practical for such detection schemes, which are used, rather, in conjunction
with postdetection EGC [3, Sec. 5.5.6; 7, Sec. 12.1].

Selection Combining (SC). The two former combining techniques (MRC and
EGC) require all or some of the CSI (fading amplitude, phase, and delay) from
all the received signals. In addition, a separate receiver chain is needed for each
diversity branch, which adds to the overall receiver complexity. On the other
hand, SC-type systems process only one of the diversity branches. Specifically, in
its conventional form, the SC combiner chooses the branch with the highest SNR.
In addition, since the output of the SC combiner is equal to the signal on only one
of the branches, the coherent sum of the individual branch signals is not required.
Therefore, the SC scheme can be used in conjunction with differentially coherent
and noncoherent modulation techniques since it does not require knowledge of
the signal phases on each branch as would be needed to implement MRC or EGC
in a coherent system.

Switch and Stay Combining (SSC). For systems that use uninterrupted
transmission, such as frequency-division multiple-access systems, SC in its
conventional form may still be impractical since it requires simultaneous and
continuous monitoring of all the diversity branches [3, p. 240]. Hence SC is
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often implemented in the form of switched or scanning diversity, in which rather
than continually picking the best branch, the receiver selects a particular branch
until its SNR drops below a predetermined threshold. When this happens the
receiver switches to another branch. There are different variants of switched
diversity [8], but in its simplest form the SSC receiver switches to, and stays
with, the other branch, regardless of whether the SNR of that branch is above or
below the predetermined threshold [9,10]. SSC diversity is obviously the least
complex diversity scheme to implement and can be used in conjunction with
coherent modulations as well as noncoherent and differentially coherent ones.

9.1.3.2 Hybrid Combining Techniques. Because of additional complexity
constraints or because of the potential of a higher diversity gain with more
sophisticated diversity schemes, newly proposed hybrid techniques have been
receiving a great deal of attention in view of their promising offer to meet the
specifications of emerging wideband communication systems. These schemes
can be categorized into two groups: (1) generalized diversity schemes and
(2) multidimensional diversity techniques.

Generalized Diversity Techniques. The complexity of MRC and EGC receivers
depends on the number of diversity paths available, which can be quite high,
especially for multipath diversity of wideband CDMA signals. In addition, MRC
is sensitive to channel estimation errors, and these errors tend to be more
important when the instantaneous SNR is low. On the other hand, SC uses only
one path out of the L available multipaths and hence does not fully exploit the
amount of diversity offered by the channel. Recently, a wave of papers have
been published bridging the gap between these two extremes (MRC/EGC and
SC) by proposing GSC, which adaptively combines (following the rules of MRC
or EGC) the L, strongest (highest SNR) paths among the L available ones. We
denote such hybrid schemes as SC/MRC or SC/EGC-L./L. In the context of
coherent wideband CDMA systems, these schemes offer less complex receivers
than the conventional MRC RAKE receivers since they have a fixed number
of fingers independent of the number of multipaths. More important, SC/MRC
was shown to approach the performance of MRC, while SC/EGC was shown
to outperform in certain cases conventional postdetection EGC since it is less
sensitive to the “combining loss” of the very noisy (low-SNR) paths [11].

Multidimensional Diversity Techniques. Multidimensional diversity schemes
involving the combination of two or more conventional means of realizing
diversity (e.g., space and multipath) to provide better performance have recently
received a great deal of attention. For example, in the context of wideband CDMA
they are implemented in the form of two-dimensional RAKE receivers, consisting
of an array of antennas, each followed by a conventional RAKE receiver.
Furthermore, these schemes can take advantage of diversity from frequency and
multipath, as is the case in multicarrier-RAKE CDMA systems [12] or from
Doppler and multipath as proposed in Ref. 13. Composite microscopic plus
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macroscopic diversity can also be viewed as a two-dimensional diversity scheme.
This type of diversity is used is systems originally proposed about a decade ago
by Cox et al. [14] in conjunction with universal digital portable communications.
These systems consist of several access ports (base stations) which continually
track a mobile terminal. Each access port contains a multielement antenna
array that employs microdiversity to reduce the effects of multipath fading.
Macrodiversity is then performed at the output of the different access ports to
mitigate the effects of shadowing. Two-dimensional diversity can be generalized
to multidimensional diversity by simultaneous exploitation of, for example, space,
frequency, and multipath diversity.

9.1.4 Complexity—Performance Trade-offs

Wireless system designers are in charge of developing sufficiently high perfor-
mance systems that achieve a certain specified quality of service while
meeting predetermined complexity constraints. The search for the appropriate
system design typically involves trade-off studies among various modula-
tion—coding—diversity scheme combinations. An informed decision/choice relies
on a precise quantitative performance evaluation of these various combinations.

The objective of this chapter is to develop analytical methods and tools to
assess accurately the performance of communication systems operating over
wireless fading channels when various diversity techniques are employed to
combat the effects of fading. An emphasis is put on the development of “generic”
tools to address various performance measures (average combined or output SNR,
outage probability, and average error rate), several modulation—diversity scheme
combinations, and a variety of fading environments. In particular, analytical
methods that are not limited to specific channel conditions are very important
since the performance of diversity systems operating over such conditions is
affected by various channel characteristics and parameters, such as:

o Fading distribution on the various diversity branches and paths. For
example, for multipath diversity the statistics of the different paths may
be characterized by different families of distributions.

o Average fading power. For example, in multipath diversity the average
fading power is typically assumed to follow an exponentially decaying
power delay profile with equispaced delays: ¥, =7y,e %"V (I =
1,2,..., L), where , is the average SNR of the first (reference) propagation
path and § is the average fading power decay factor.

« Severity of fading. For example, fading in a macrocellular environment tends
to follow a Rayleigh type of fading, whereas fading tends to be Rician or
Nakagami-m in a microcellular type of environment.

o Fading correlation. For example, because of insufficient antenna spacing in
small mobile units equipped with space antennas, diversity and, in this case,
the maximum theoretical diversity gain cannot be achieved.
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9.2 MAXIMAL-RATIO COMBINING

The performance of MRC over fading channels has long been of interest, as
shown by the large number of papers published on this topic. With some
special exceptions, most of the models for these systems typically assume
either Rayleigh paths or independent identically distributed (i.i.d.) Nakagami
or Rician paths. These idealizations are not always realistic since the average
fading power [15,16] and the severity of fading [17-19] may vary from one
path to another when, for example, multipath diversity is employed. In this
section we consider a generalized multilink fading channel and derive expressions
for the exact symbol error rate (SER) of linearly modulated signals over such
channels [20,21]. The results of this section are applicable to systems that employ
coherent demodulation and operate over independent paths.! As in Chapter 8
the approach to solving the problem takes advantage of the alternative integral
representations [22,23] (see Chapter 4) of the probability of error of these signals
over additive white Gaussian noise (AWGN) channels (i.e., the conditional SER),
along with the Laplace transforms and/or Gauss—Hermite quadrature integrals of
Chapter 5, to derive the SER expressions. Again these expressions involve a
single finite-range integral whose integrand contains only elementary functions
and which can therefore be easily evaluated. It should be noted that Tellambura
et al. [24,25] and Dong et al. [26] also used these alternative representations to
analyze the performance of several M-ary signals with MRC diversity reception.
These works, which were done independently, have some of the same features
as the MGF-based approach described in this section.

9.2.1 Receiver Structure

We consider the L-branch (finger) MRC receiver shown in Fig. 9.2. As mentioned
earlier, this receiver is the optimal multichannel receiver regardless of the fading
statistics on the various diversity branches since it results in a maximum-
likelihood receiver (see Chapter 7). For equally likely transmitted symbols, the
total conditional SNR per symbol, y;, at the output of the MRC combiner is given
by [3, Eq. (5.98)]

L
vie=>_w ©.1)
=1
For coherent binary signals the conditional BER, P,(E |{yl}lL=1), is given by

Py(El{nili=) = Q(V28%) 9:2)
where ¢ = 1 for coherent BPSK [6, Eq. (4.55)], ¢ = % for coherent orthogonal
BFSK [6, Eq. (4.59)], g =0.715 for coherent BFSK with minimum correla-
tion [6, Eq. (4.63)], and Q(-) is the Gaussian Q-function. Our goal is to evaluate

! The independent assumption is relaxed for Nakagami-m fading channels in Section 9.6.
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the performance of the system in terms of users’ average BER, and for this
purpose the conditional BER (9.2) has to be statistically averaged over the
random parameters {y;}/_,;. We now present two approaches to solving this
problem: the classical PDF-based approach, then the MGF-based approach.

9.2.2 PDF-Based Approach

The classical approach relies on finding the PDF of y;, p,,(y;), then replacing
the L-fold average by a single average over y;:

Py(E) = /0 0(v/287) pyy (v) dy, 9.3)

This requires finding the distribution of y; in a simple form. If this is possible,
it can lead to a closed-form expression for the average probability of error, as
shown in the following example.

Example. Let us consider the MRC combining of L independent identically
distributed (i.i.d.) Rayleigh fading paths. In this case the SNR per bit per path y;
has an exponential PDF with average SNR per bit y:

1__
pw(n)==§e nly 9.4)

and the SNR per bit of the combined SNR y; has a chi-square PDF [7, Eq. (14-
4-13)]

L—=1,=n/y 9.5)

Py,(v1) = LDt 17

Finally, the average probability of error can be found in closed form by successive
integration by parts [7, Eq. (14-4-15)]:

A A=V S Y A AN
ro=(SE S () () oo

v
1

where

= 9.7)

+
<I

The PDF-based approach has some limitations. Indeed, finding the PDF of the
combined SNR per bit y, in a simple form is typically feasible if the paths are
i.i.d. However, finding the PDF of the combined SNR per bit y; is more difficult
if the combined paths come from the same family of fading distribution (e.g.,
Rice) but have different parameters (e.g., different average fading powers (i.e., a
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nonuniform power delay profile) and/or different severity of fading parameters).
In addition, finding the PDF of the combined SNR per bit y; is intractable in a
simple form if the paths have fading distributions coming from different families
of distributions. We now show how the alternative representation of the Gaussian
Q-function provides a simple and elegant MGF-based solution to many of these
limitations.

9.2.3 MGF-Based Approach

9.2.3.1 Average Bit Error Rate of Binary Signals

Product Form Representation of the Conditional BER. Using the alternative
representation of the Gaussian Q-function (4.2) in (9.2), the conditional BER
(9.2), may be rewritten in a more desirable product form given by

Py (E|{n}i. )=l/ﬂ/2exp< g)/, ) ¢_l/ﬂ/2ﬁexp<— gy >d¢
=1 7 Jo sin” ¢ T Jo sin ¢

=1
9.8)
This form of the conditional BER is more desirable since we can first
independently average over the individual statistical distributions of the y;’s,
and then perform the integral over ¢, as described in more detail below.

Average BER with Multichannel Reception. To obtain the unconditional
BER, P,(E), when multichannel reception is used, we must average the multi-
channel conditional BER, P,(E |{y,} 1), over the joint PDF of the instanta-
neous SNR sequence {yl}lzl, namely, p, 1, V1, Y2, ..., ¥r). Since the RVs
{yl}f‘zl are assumed to be statistically independent, py, 1, (V1, Y2, ..., VL) =
H,L:1 Py, (v1), and the averaging procedure results in

L
Py(E) = / / / (i) [ potroan s odn.— 99)

L— fold

Note that if the traditional integral representation of the Gaussian Q-function
(4.1) were to be used in the P, (E |{y1} < ;) term, (9.9) would result in an (L 4 1)-
fold integral with infinite limits [one of these integrals comes from the classical
definition of the Gaussian Q-function (4.1) in P,(E |{y1}lL=1)], and a closed-form
solution or an adequately efficient numerical integration method would not be
available. Using the alternative product form representation of the conditional

2 Note that a solution for this problem exists for Rayleigh [7, Eq. (14-5-26)] and Nakagami-m [27].
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BER (9.8) in (9.9) yields

o0 o0 001
Pb<E)=/O /0 /0 .
—_—

L—fold
/ Hep( gyl¢>Py,(Vz)d¢dV1de dy,  (9.10)

The integrand in (9.10) is absolutely integrable, and hence the order of integration
can be interchanged. Thus, grouping terms of index /, we obtain

1 72 L
Pb(E)=;/O HMV,< m)dqs 9.11)

where M., (s)= [ p,,(y)edy; is the MGF of the SNR per symbol y,
associated with path / and is summarized in Table 9.1 (or equivalently, Table 2.2)
for various channel models of interest. If the fading is identically distributed with
the same fading parameter and the same average SNR per bit y for all L channels,

(911) reduces to
1 /2 g L |
I b(E) = _/() <1Wy <_—Si 5 )) d¢ (9 2)

Hence, in all cases this approach reduces the (L + 1)-fold integral with
infinite limits of (9.9) (accounting for the infinite range integral coming from
the traditional representation of the Gaussian Q-function) to a single finite-
range integral (9.11) whose integrand contains only elementary functions
such as exponentials and trigonometrics, and which can therefore easily be
evaluated numerically. As a numerical example, Fig. 9.3 shows the average BER

TABLE 9.1 Moment Generating Function of the SNR per Symbol y; for Some Common
Multipath Fading Channels

Type of Fading Fading Parameter M, (s)
Rayleigh (1 —syp~!
—1/2
. _ | @sypPqt
Nakagami-q (Hoyt 0<g <1 1—-2sy,+
gami-q (Hoyt) a ( Vi A+
1 2 2a5
Nakagami-n (Rice) 0o<n ( J;n’ ) — exp n,zs;/, —
(A +n7) —sy, A +n7)—sy,

sy,
Nakagami-m % <m <1 - ﬁ)
my
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Figure 9.3. Average BER of BPSK with L-fold MRC diversity versus the SNR per bit of the
first path for an L-path frequency-selective Nakagami-m (m = 0.5) fading channel with an
exponentially decaying power delay profile. § is the power decay factor.

performance of BPSK over a frequency-selective Nakagami-m (m = 0.5) fading
channel with an exponentially decaying power delay profile when MRC RAKE
reception is used.

It is interesting to mention at this point that the same final result (9.11)
can be obtained without using the alternative representation of the Gaussian
Q-function, but by starting with Eq. (17) of Ref. 28. Indeed, it has been pointed
out to the authors by Mazo [29] that Eq. (17), which is expressed in terms of the
characteristic function of y; (using our notations) can be rewritten in terms of
the MGF of y; by changing the integration contour. The details of the procedure
are described in an internal AT&T Bell Laboratories memorandum which was
never submitted for publication [30]. Following that procedure and using the fact
that the MGF of the sum of independent RV’s is the product of the MGF’s of
the individual RVs [31, Sec. 7.4], [28, Eq. (17)] can be rewritten as (using our
notations)

Py(E) =

/ Hl IMV/( gy) (913)

which can be changed to the same single finite-range integral (9.11) by adopting
the change of variables y = 1/ sin? ¢ [29].
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9.2.3.2 Average Symbol Error Rate of M-PSK Signals

Product Form Representation of the Conditional SER. Similar to the
binary case, using (8.22), the conditional SER for M-PSK, Py(E|{y;}_,) can
be expressed as an integral of the desired product form,

L 8PSKY
Py (E|{)/1}1L=1)=—/0 exp (‘ t>d¢

b4 sin” ¢
1 p=bom L 8PSKVI

= — exp | — d 9.14
b4 /0 H P < sin® ¢ > ¢ ©19

I=1
where gpsg = sinz(n/M ).
Average SER of M-PSK. Following the same steps as in (9.9) through (9.11),

it can easily be shown that the average SER of M-PSK, P,(E), over generalized
fading channels is given by

1 pM=hmM L 8PSK
P(E) = — /0 [1Mm, ( ) d¢ 9.15)

-
=1 sin” ¢

The result (9.15) generalizes the M-PSK average SER results of Proakis [32,
Eq. (22)] and Chennakeshu and Anderson [33, Eq. (21)] for L independent
identically distributed Rayleigh paths. It also gives an alternative approach for
the performance evaluation of coherent M-PSK over frequency-selective channels
characterized by a Rician dominant path with Rayleigh secondary paths [34,35].

Furthermore, by setting L to 1, the result (9.15) can be used to evaluate the
average SER performance of M-PSK with single-channel reception, as shown in
Chapter 8. This leads, for example, to the following results:

o Rayleigh. Substituting the MGF corresponding to Rayleigh fading in (9.15)
(with L = 1), then using Eq. (2.562.1) of Ref. 36 yields the closed-form
expression given by (8.112), which can also be found in Pauw and
Schilling [37, Eq. (9)] and Ekanayake [38, Eq. (7)] and which agrees with
the results obtained using various other methods [32, Eq. (22); 39, Eq. (36)].

o Nakagami-n (Rice). Substituting the MGF corresponding to Nakagami-n
(Rice) fading in (9.15) leads to an expression for the SER of M-PSK which
is easily shown to agree with Eq. (35) of Ref. 39.

o Nakagami-m. Substituting the MGF corresponding to Nakagami-m fading in
(9.15) (with L = 1) gives the SER of M-PSK over a Nakagami-m channel as

1 (M—l)ﬂ/M = inl M
P(E) =L - y sin .(71/ )
2
7 Jo msin” ¢

) do (9.16)



272 PERFORMANCE OF MULTICHANNEL RECEIVERS

Note that (9.16) yields the same numerical values as Eq. (17) of Ref. 40
and Eq. (9) of Ref. 41 and it is much easier to compute for any arbitrary
value of m.

9.2.3.3 Average Symbol Error Rate of M-AM Signals

Product-Form Representation of the Conditional SER. Recall that the condi-
tional SER for M-AM, Py(E|{y}}—,), with signal points located symmetrically
about the origin, is given by (8.3) as

2M —1)
M

O QVETINVED) O.17)

P (Eltvi) =

where gam = 3/(M? — 1). Using the alternative representation of the Gaussian
Q-function (4.2) in (9.17), we obtain the conditional SER in the desired product
form as

2(M — 1) /”/2 ( gAMy,>
P, (E|{y}t)) = ——— exp | — d
: ( ‘{y[}l—l) M 0 P Sin2¢

oM 1) gAMYI
_W/o Eexp <_sin2¢)d¢ (9.18)

Average SER of M-AM. Following the same steps as in (9.9) through (9.11),
it is straightforward to show that the average SER of M-AM over generalized
fading channels is given by

S VA gAM
P,(E) = Tn/o ll;[lMy, (——) d¢ 9.19)

sin’ ¢
9.2.3.4 Average Symbol Error Rate of Square M-QAM Signals

Product Form Representation of the Conditional SER. Consider square M-
QAM signals whose constellation size is given by M = 2% with k even. The
conditional SER for square M-QAM is given by (8.10) as

P (Eltn)i,) =4 (1 - J]M> 0(v/2g0am¥:)
—4 <1 - \/lﬁ) 0*(v/28qam¥) (9.20)

where goam = 3/2(M — 1). Using the alternative representation of the Gaussian
QO-function (4.2) as well as of its square (4.9), the conditional SER (9.20) may



MAXIMAL-RATIO COMBINING 273

be rewritten in the more desirable product form given by

L 40 1 /”/2 <_gQAMVz>
Px (E|{Vl}l=1) - (1 m) 0 exp Si1’12¢ d¢
4 1 2 8QAMVr
_77(1_\/1\_/1> /0 exp(— sin2¢)d¢
4 1 w2 L 8QAmY
(- g) [ Tew (5535 ao

4 12 [ 8QAMY
N .
) Up< 51n2¢>"¢

Average SER of M-QAM. Following the same steps as in (9.9) through (9.11)
yields the average SER of M-QAM over generalized fading channels as

”/2 L 8QAM
rer= (1= ) [ 1D (- 5225 ) ao
4 ”/4 = gQAM
_;( __> / ( ¢> dp  (9.21)

Of particular interest is the average SER performance of M-QAM with single-
channel reception, which can be obtained by setting L to 1 in (9.21). For
example, substituting the MGF corresponding to Rayleigh fading in (9.21) (with
L = 1), then using again Eq. (2.562.1) of Ref. 36 yields a closed-form expression
for the average SER of M-QAM over Rayleigh channels as given by (8.106),
namely,

1 goAMY
PEY=2(1—- — 1 — -
B ( VM> < \ 1+gQAM7)
1 \*|4 v 1 v
+ <1 _ _) ° LMy_tan—l M —1| 9.22)
VM 7\ 1+ goam¥ 8QamY

Note that (9.22) matches the result obtained by Shayesteh and Aghamoham-
madi [39, Eq. (44)] for the particular case where M = 16. Furthermore, note
that (9.22) can be alternatively obtained by averaging (9.20) over the Rayleigh
PDF and by using a standard known integral involving the function erfc?(-) [36,
Eq. (8.258.2)]. In addition using (5A.4b) and (5A.21) in (9.21) we obtain the
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performance of M-QAM over L i.i.d. Rayleigh fading channels as
1 1—u\'E L - 1+ pe\*
P.(E) = 4 1__) Iz Z(L 1+l) + 1
VM 2 pars l 2

_4<1_L>2 1 ke (%_tan—lm)g <2ll>

4 = 40+ goam?)!

1

— sin(tan™! 1) Z Z

[cos(tan™! )] (9.23)
=D (1+gQAMV)l

where
e = 8Qamy _ (9.24)
1 + goam¥
and

()
l
="

(P20 ) wiza =+ 1)

Note that (9.23) is equivalent to Eq. (15) of Ref. 42 and to Eq (12) of Ref. 43,
which involves a sum of Gauss hypergeometric functions.> Furthermore, using
a partial fraction expansion on the integrand of (9.21), we obtain with the help
of Eq. (2.562.1) of Ref. 36 the average SER of M-QAM over L Rayleigh fading
channels with distinct average fading powers and with MRC reception as

1 L 8QAMY 1’
P(E)=2<1——> pr|1—y—= +(1——>
' VM ; 1+ goamy; VM
4 & [ goamY, 1+ goamY. -
! - i
X | = Py T—————tan sa— R Pi
[n ; 1 + goam?; ( 8QAMY > ; 1

-1

L _
o= 11 (1 - ﬁ) 9.26)

(9.25)

where

which is equivalent to Eq. (10) of Ref. 42 and to Eq. (21) of Ref. 43.

3 Equation (12) of Ref. 43 gives the same numerical result as the one given by (9.23) if a minor typo
is corrected in Eq. (18) of Ref. 43 [the denominator should be (2k + 1)4/7 rather than (2k — 1)/7].
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Before concluding our discussion on the exact average SER evaluation of
M-ary signals with MRC over independent fading paths, we should mention
that the approach presented for M-PSK, M-AM, and M-QAM signals can be
applied to any two-dimensional amplitude or phase linear modulation as shown in
Ref. 26, since, based on Craig’s approach [23], the conditional SER expressions
of any of these constellations can be expressed as a summation of integrals in
the desired exponential form (see Section 5.4.2).

9.2.4 Bounds and Asymptotic SER Expressions

In this section we are interested in determining simple closed-form bounds and
asymptotic expressions (limit as the average SNR/symbol/channel approaches
infinity) for the SER of M-ary signals with MRC reception.

9.2.4.1 Bounds. As discussed in Section 8.1.1.3, the integrand of the condi-
tional SER of M-PSK as given by (9.14) has a single maximum that occurs at
¢ = m/2. Thus, replacing the integrand by its maximum yields an upper bound
for (9.15) given by

P(E) <

M—1
o 1My (=gesi0) (9.27)
=1

Similarly, the average SER of M-AM is upper-bounded by

M —1

P(E) = —

L
11 (—gam) (9.28)
=1

9.2.4.2 Asymptotic Results. Consider an M-ary communication system
operating over an L-path slowly varying fading channel and assume that
the L channels have independent Rician statistics that do not have to
be identically distributed in that they can have different average symbol
SNR’s, y;, 1 =1,2,..., L, and different Rician factors K;,/ =1,2,...,L. Let
P(Ely1, 2, ..., yL) denote the conditional (on the fading SNR’s) SER of the
system, and let p,,(y;),l = 1,2, ..., L, denote the PDF’s of these SNR’s, which
for a Rician channel are given by

1+ K; 1+ K;
Py (V1) = — exp(_Kl_ — Vl)
14 Yi

x I (21 /M) (9.29)
1
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Then, substituting (9.29) in (9.9), the exact average SER is given by

0o oo ~ [ L
Ps(E)=/ / / v | PEW. v2 - v dridys - -dye
o Jo 0 \j

e ()

N NETAN

X Pi(E|y1, va, ..., vL)dyidys - - dyr

(9.30)
Introducing the shorthand notation
AT Y A
W(L)= L. A=) K 9.31
()l:]1+1<; ()lgljz (9.31)
(9.30) can be rewritten as
—A(L
P,(E) = M
(L)
o0 o o L
1+ K K,(1+K
x/ / / H exp(— —t ly;)l() 2 N2 TR0 l(_+ 2
0o Jo 0 7 Vi Vi
X Py(Ely1, vay sy dyidy, -+ -dyL 9.32)

Abdel-Ghaffar and Pasupathy [44] have shown that for large y,,l =
1,2,..., L, the average SER of (9.32) behaves as

exp[—ALIC(L, M) [FLL:] 1+ Kz)] exp (— POy Kz) C(L, M)

P(E) ~

(L) a H1L=171
(9.33)
or
[H,Lzl(l +1<,)} exp (— N K,) Co(L, M)
PE) = 1 ,
szl(l/b)l
—_ AV A C(L,M)

e T A rerid 9.34)

where C(L,M) [or Cp(L,M)] is a term that depends on the modula-
tion/detection/diversity scheme but is independent of y,,/ = 1,2, ..., L. Thus,
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the entire dependence on the average SNR per channel is embedded in the product
form of W(L) defined in (9.31) and for equal average SNRs would vary as 7~
[or (7,)7L]. For Rayleigh channels, (9.34) simplifies to

C(L.M) _ C(LM)

P(E) = = (-35)
V) o e
or
Cp(L, M)
P(E) ~ -2 (9.36)
[Tz @

The evaluation of C(L, M) for some special cases is of interest and is described
by Theorems 2 and 3 in Abdel-Ghaffar and Pasupathy [44]. In particular, when
the conditional SER P(E|yy, y», ..., yr) depends only on the sum of the y;’s as
is the case for coherent MRC, it is shown that C(L, M) is computed from

1 o0
C(L,M)|yrc = ——— / vE PU(E ) dy: (9.37)
(L—1!Jo

Thus, the asymptotic average SER for Rayleigh channels with MRC is

Py(E) =~ / YE PU(Ely) dy: (9.38)

(L—D'TI., 7 Jo

which for equal average SNRs becomes

1 .
PE) = oo [ Ry (9.39)

This is to be compared with the exact result obtained from (9.39) which can
be written as

P(E) = /0 P, (OPElv) dy: (9.40)

where for Rayleigh i.i.d. channels, p,,(y;) is given by (9.5) Substituting (9.5)
into (9.40) gives

P.(E) = ;/m Y exp <—”>P(E|y)dy (9.41)
T a-nt ) y) '

Notice the similarity between (9.41) and (9.39), i.e., the exact result has an
additional exp(—y;/¥) in its integrand.

C(L, M) can be evaluated in closed form for a variety of different modula-
tion/detection/diversity techniques of interest. In particular for M-PSK with MRC
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Abdel-Ghaffar and Pasupathy [44] showed that

B 1 ANM -1 E 7 ooL ,sin(7l /M)
D= e l(L) o () e ]

=1

9.42)

with the special case of L = 1 (i.e., no diversity) given by

1 M—1 sinQn/M)

C(ILLM)=—= + (9.43)

2sin” (/M) M 2

Substituting (9.43) in (9.36) and letting y;, =y =y, log, M, we get
1 M—1 sinQn/M)
Py(E) ~ — — 9.44)
2y,(log, M) sin“ (/M) M 2w

which resembles Eq. (14-4-39) of Ref. 7 with the addition of the term
(sin27/M)/2m. For M-QAM with MRC, using the conditional SER expres-
sion (9.20) as well as the alternative representations of the Gaussian Q-function
(4.2) and its square (4.9) in (9.41), we arrive at the following result for C(L, M):

C(L’M)=%<%I>Z(Z(M3—l))L (ZLL> <%_1>

4 L _1)U+D/2
- Z <L2fl> % (9.45)

lodd

For M = 4 (QPSK), this can be shown to check with the result in (9.42).

9.3 COHERENT EQUAL GAIN COMBINING

As mentioned in Section 9.2, MRC provides the maximum performance improve-
ment relative to all other diversity combining techniques by maximizing the
signal-to-noise ratio (SNR) at the combiner output. However, MRC has the
highest complexity of all combining techniques since it requires knowledge of
the fading amplitude in each signal branch. Alternative combining techniques
such as EGC are often used in practice because of their reduced complexity
relative to the optimum MRC scheme [3, Sec. 5.5]. Indeed, EGC weights each
branch equally before combining, and therefore does not require estimation of
the channel (path) fading amplitudes.

Our focus in this section is on evaluating the average SER for ideal coherent
detection of M-PSK signals with EGC reception over Nakagami-m fading chan-
nels. Work related to this topic can be found in Refs. 25, 26, and 45 through 47.
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More specifically, in Refs. 45 and 46 Abu-Dayya and Beaulieu employ an infi-
nite series representation for the PDF of the sum of Nakagami-m and Rice
random variables [48] to analyze the performance of binary modulations when
used in conjunction with EGC. The same approach was adopted by Dong
et al. [26] to extend the results to several two-dimensional constellations of
interest. Another approach based on the Gil-Pelaez lemma [49] was recently
proposed by Zhang [47] and lead to closed-form solutions for binary modula-
tions with two or three branch EGC receivers over Rayleigh fading channels. This
approach was extended to Nakagami-m fading channels in Ref. 50. In Ref. 25
Annamalai et al. use a frequency domain—based approach and Parseval’s theorem
to compute the average symbol error rate with EGC over Nakagami-m fading
channels. In this section we use the alternative representation of the condi-
tional SER to analyze the average SER of M-PSK signals with EGC reception
over Nakagami-m fading channels. The approach leads to a final expression for
the average SER in the form of a single finite-range integral and an integrand
composed of tabulated functions [20,51].

9.3.1 Receiver Structure

The EGC receiver processes the L received replicas, weights them equally, then
sums them to produce the decision statistic, as shown in Fig. 9.2. Note that
estimation of the channel carrier phase is still required in this case since the
weights applied to each branch in the combiner are complex quantities whose
amplitudes are all set to 1 and whose phases are indeed equal to the negatives of
these carrier-phase estimates. For equally likely transmitted symbols, it can be
easily shown that the total conditional SNR per symbol, yggc, at the output of
the EGC combiner is given by [3, Eq. (5.108)]

(ZIL—I O‘l)zES
— Ae=t %) s 9.46
YEGC ST N, (9.46)

where E; (J) is the energy per symbol and N; is the AWGN power spectral
density on the /th path.

9.3.2 Average Output SNR

We consider the average combined SNR at the output of a coherent EGC
receiver operating over a frequency-selective Nakagami-m fading channel with
an exponentially decaying power delay profile (Q; = e*/=1, 1 =1,2,...,1).
Assuming independent paths and the same AWGN power spectral density Ny,
the average combined SNR can be written from (9.46) as

VEae = W Z Q + Z ZE(%)E(a, (9.47)

i=1 Jj=!1
J#
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For § = 0 [i.e., uniform power delay profile suchas y, =y (I =1,2,...,L)] it
can easily be shown that (9.47) can be written as

— [C(m+3)]°
YEGC =V (1 + (L — I)W (9.48)

which reduces for the Rayleigh case to

Froe =7 (1+ € - DT) (9.49)

in agreement with Eq. (5.112) of Ref. 3. These two expressions should be
contrasted with the average combined SNR at the output of an optimal MRC
receiver, which for 6 = 0 is given, in view of (9.1), by [4, Eq. (6.70)]

Ymrc = Ly (9.50)

regardless of the type of fading.
For § > 0 using geometric summations it can be shown that (9.47) reduces to

_wnfime?  2rmt )]
VRGC =T = e T mTmP(1 — e972)
1 — e~ @-1)4 1 — e~ @132
—38/2 —L5/2

which simplifies for the Rayleigh case (m = 1) to

_ 7 [1- e Lo N T
VEGC = T [T = e " 2(1 — 92

1 — g~ @—1)% 1 — ¢~ @132
-8/2 _ L2
X (e T e o2 )] (9.52)

Again these two last expressions should be contrasted with the average combined
SNR at the output of an MRC receiver which can easily be shown, in view of
(9.1), to be given by
1 — e—LB
YMRC = V17T 55 (9.53)

regardless of the type of fading. These expressions are illustrated in Fig. 9.4,
where the normalized output SNR Yggc/v; of EGC is plotted as a function of
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Figure 9.4. Normalized average output SNR yggc/7¢ of coherent EGC over Nakagami-m
channels with an exponentially decaying power delay profile: @ m =4; (b)m=2; (c)m =1;
(dm=0.5.

the number of paths for various values of the Nakagami-m parameter and the
power decay factor 5. Note the combining loss when § > 0, which gets more
accentuated as § increases.

9.3.3 Exact Error Rate Analysis

9.3.3.1 Binary Signals. We begin our discussion by considering the perfor-
mance of an EGC receiver when coherent binary BPSK or binary BFSK modu-
lation is transmitted over a multilink channel with L paths. Conditioned on the
fading amplitudes {oy}i_,, the BER Py(E|{a;}},), of an EGC receiver is given by

Py (E|{u}~;) = (v/28¥ecc)

2
26E L
~o\ 2 (Za,) ©9.54)
1=11V1

=1

where as for the MRC case g is a modulation-dependent parameter such that
g =1 for BPSK, g = % for orthogonal BFSK, and g = 0.715 for BFSK with
minimum correlation [6].
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The average BER P,(E) is obtained by averaging (9.54) over the joint PDF

of the channel fading amplitudes py, 4, .o, (001, 02, ..., ar), that is,
00 00 20E L 2
8Lp
PE) = [ ol S (S
0 0 EJL=1NZ ;
X Payas,a (@1, Q2, ..., ap)doy day - - - day, 9.55)

The L-fold integral in (9.55) can be collapsed to a single integral, namely,

Py(E) = / N Q( ﬁa?) P ) et 9.56)
0 Zz=1Nl

where o; = Zszl «; denotes the sum of the fading amplitudes after combining.

In general, there are two difficulties associated with analytically evaluating
the average BER as expressed in (9.56). The first relates to the requirement of
obtaining the PDF of the total fading RV «,. When the fading amplitudes can be
assumed independent (the case to be considered in this section), finding this PDF
requires a convolution of the PDFs of the «;’s and can often be quite difficult to
evaluate. The second difficulty has to do with the fact that the argument of the
classical definition of the Gaussian Q-function in (4.1) appears in the lower limit
of the integral, which is undesirable when trying to perform the average over «;.

To circumvent these difficulties, we now propose a new method of solution
based on the alternative representation of the Gaussian Q-function as given by
(4.2), namely,

1 /2 x2
Ox) = p / exp ( ) do; x>0 (9.57)
0

 2sin? ¢

First, using (9.57) in (9.55) gives

2
o0 1 /2 gEb (Zlel Oll)
Ph(E)=/ 