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1
The principles of coding in digital
communications

1.1 ERROR CONTROL SCHEMES

Error control coding is concerned with methods of delivering information from a
source to a destination with a minimum of errors. As such it can be seen as a branch
of information theory and traces its origins to Shannon's work in the late 1940s.
The early theoretical work indicates what is possible and provides some insights
into the general principles of error control. On the other hand, the problems
involved in finding and implementing codes have meant that the practical effects
of employing coding are often somewhat different from what was originally
expected.

Shannon's work showed that any communication channel could be characterized
by a capacity at which information could be reliably transmitted. At any rate of
information transmission up to the channel capacity, it should be possible to transfer
information at error rates that can be reduced to any desired level. Error control can
be provided by introducing redundancy into transmissions. This means that more
symbols are included in the message than are strictly needed just to convey the
information, with the result that only certain patterns at the receiver correspond to
valid transmissions. Once an adequate degree of error control has been introduced,
the error rates can be made as low as required by extending the length of the code,
thus averaging the effects of noise over a longer period.

Experience has shown that to find good long codes with feasible decoding schemes
is more easily said than done. As a result, practical implementations may concentrate
on the improvements that can be obtained, compared with uncoded communica-
tions. Thus the use of coding may increase the operational range of a communication
system, reduce the error rates, reduce the transmitted power requirements or obtain a
blend of all these benefits.

Apart from the many codes that are available, there are several general techniques
for the control of errors, and the choice will depend on the nature of the data
and the user's requirements for error-free reception. The most complex techniques
fall into the category of forward error correction, where it is assumed that a code
capable of correcting any errors will be used. Alternatives are to detect errors and
request retransmission, which is known as retransmission error control, or to use
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inherent redundancy to process the erroneous data in a way that will make the errors
subjectively important, a method known as error concealment.

This chapter first looks at the components of a digital communication system.
Sections 1.3 to 1.8 then look in more detail at each of the components. Section 1.8
gives a simple example of a code that is used to show how error detection and
correction may in principle be achieved. Section 1.9 discusses the performance of
error correcting codes and Section 1.10 looks at the theoretical performance avail-
able. A number of more advanced topics are considered in Sections 1.11 to 1.14,
namely coding for bandwidth-limited conditions, coding for burst errors, multistage
coding (known as concatenation) and the alternatives to forward error correction.
Finally, Section 1.15 summarizes the various considerations in choosing a coding
scheme.

1.2 ELEMENTS OF DIGITAL COMMUNICATION
SYSTEMS

A typical communication system incorporating coding is shown in Figure 1.1. Error
control coding is applied after the source information is converted into digital format
by the source encoder. The separation between coding and modulation is conven-
tional, although it will be found later that there are instances where the two must be
designed together. At the receiver, the operations are carried out in reverse order
relative to the transmitter.

The functions are described in more detail in the following sections.

Modul Error control Source
encoder encoder „ -„ j

1 information

C
h
a
n
n
e
1

T
Demodu

received

Error control Source
IaU" decoder decoder

Figure 1.1 Coded communication system

1.3 SOURCE ENCODING

Information is given a digital representation, possibly in conjunction with techniques
for removal of any inherent redundancy within the data. The amount of information
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contained in any message is defined in terms of the probability p that the message is
selected for transmission. The information content H, measured in bits, is given by

H = l o g 2 ( l / p )

For example, a message with a 1 % chance of being selected would contain
approximately 6.64 bits of information.

If there are M messages available for selection and the probability of message m is
denoted pm, the average amount of information transferred in a message is

subject to the constraint that Y^m=Q Pm = I-
If the messages are equiprobable, i.e. pm = 1/M, then the average information

transferred is just Iog2 (M). This is the same as the number of bits needed to represent
each of the messages in a fixed-length coding scheme. For example, with 256
messages an 8-bit code can be used to represent any messages and, if they are equally
likely to be transmitted, the information content of any message is also 8 bits.

If the messages are not equally likely to be transmitted, then the average infor-
mation content of a message will be less than Iog2 (M) bits. It is then desirable to find
a digital representation that uses fewer bits, preferably as close as possible to the
average information content. This may be done by using variable length codes such
as Huffman codes or arithmetic codes, where the length of the transmitted sequence
matches as closely as possible the information content of the message. Alternatively,
for subjective applications such as speech, images or video, lossy compression tech-
niques can be used to produce either fixed-length formats or variable-length formats.
The intention is to allow the receiver to reconstitute the transmitted information into
something that will not exactly match the source information, but will differ from it
in a way that is subjectively unimportant.

1.4 ERROR CONTROL CODING

Error control coding is in principle a collection of digital signal processing techniques
aiming to average the effects of channel noise over several transmitted signals. The
amount of noise suffered by a single transmitted symbol is much less predictable than
that experienced over a longer interval of time, so the noise margins built into the
code are proportionally smaller than those needed for uncoded symbols.

An important part of error control coding is the incorporation of redundancy into
the transmitted sequences. The number of bits transmitted as a result of the error
correcting code is therefore greater than that needed to represent the information.
Without this, the code would not even allow us to detect the presence of errors and
therefore would not have any error controlling properties. This means that, in theory,
any incomplete compression carried out by a source encoder could be regarded as
having error control capabilities. In practice, however, it will be better to compress the
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source information as completely as possible and then to re-introduce redundancy in a
way that can be used to best effect by the error correcting decoder.

The encoder is represented in Figure 1.2. The information is formed into frames to
be presented to the encoder, each frame consisting of a fixed number of symbols. In
most cases the symbols at the input of the encoder are bits; in a very few cases
symbols consisting of several bits are required by the encoder. The term symbol will
be used to maintain generality.

To produce its output, the encoder uses the symbols in the input frame and
possibly those in a number of previous frames. The output generally contains more
symbols than the input, i.e. redundancy has been added. A commonly used descrip-
tor of a code is the code rate (R) which is the ratio of input to output symbols in one
frame. A low code rate indicates a high degree of redundancy, which is likely to
provide more effective error control than a higher rate, at the expense of reducing the
information throughput.

If the encoder uses only the current frame to produce its output, then the code is
called a (n, k) block code, with the number of input symbols per frame designated k
and the corresponding number of output symbols n. If the encoder remembers a
number of previous frames and uses them in its algorithm, then the code is called a
tree code and is usually a member of a subset known as convolutional codes. In this
case the number of symbols in the input frame will be designated k0 with n0 symbols
in the output frame. The encoder effectively performs a sliding window across the
data moving in small increments that leave many of the same symbols still within the
encoder window, as shown in Figure 1.3. The total length of the window, known as

Output
buffer

f
s

0
1
2

n-\
k-\

Figure 1.2 Encoder

v-bit encoder memory
input
frame

AT-bit encoder constraint length

Figure 1.3 Sliding window for tree encoder
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the input constraint length (K), consists of the input frame of k0 symbols plus the
number of symbols in the memory. This latter parameter is known as memory
constraint length (v).

In more complex systems the encoding may consist of more than one stage and
may incorporate both block and convolutional codes and, possibly, a technique
known as interleaving. Such systems will be considered in later sections.

One property that will be shared by all the codes in this book is linearity. If we
consider a linear system we normally think in terms of output being proportional to
input (scaling property). For a linear system we can also identify on the output the
sum of the separate components deriving from the sum of two different signals at the
input (superposition property). More formally, if the system performs a function/on

an input to produce its output, then f(cx) = c x f(x) (scaling)

f(x + y) =f(x) +f(y) (superposition)

where c is a scalar quantity, x and y are vectors.
Now the definition of a linear code is less restrictive than this, in that it does not

consider the mapping from input to output, but merely the possible outputs from the
encoder. In practice, however, a linear system will be used to generate the code and so
the previous definition will apply in all real-life cases.

The standard definition of a linear code is as follows:

• Multiplying a code sequence by a valid scalar quantity produces a code sequence.

• Adding two code sequences produces a code sequence.

The general rules to be followed for multiplication and addition are covered in
Chapter 5 but for binary codes, where the only valid scalars are 0 and 1, multipli-
cation of a value by zero always produces zero and multiplication by 1 leaves the
value unchanged. Addition is carried out as a modulo-2 operation, i.e. by an exclu-
sive-OR function on the values.

A simple example of a linear code will be given in Section 1.8. Although the
definition of a linear code is less restrictive than that of a linear system, in practice
linear codes will always be produced by linear systems. Linear codes must contain the
all-zero sequence, because multiplying any code sequence by zero will produce an all-
zero result.

1.5 MODULATION

The modulator can be thought of as a kind of digital to analogue converter, preparing
the digital code-stream for the real, analogue world. Initially the digital stream is put
into a baseband representation, i.e. one in which the signal changes at a rate compar-
able with the rate of the digital symbols being represented. A convenient representa-
tion is the Non Return to Zero (NRZ) format, which represents bits by signal levels of
+ V or — V depending on the bit value. This is represented in Figure 1.4.
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+ K ,
time

1 2 3 4 5 6 7 8 9 1 0

Figure 1.4 Binary NRZ stream

Although it would be possible to transmit this signal, it is usual to translate it into a
higher frequency range. The reasons for this include the possibility of using different
parts of the spectrum for different transmissions and the fact that higher frequencies
have smaller wavelengths and need smaller antennas. For most of this text, it will be
assumed that the modulation is produced by multiplying the NRZ baseband signal by
a sinusoidal carrier whose frequency is chosen to be some multiple of the transmitted
bit rate (so that a whole number of carrier cycles are contained in a single-bit interval).
As a result, the signal transmitted over a single-bit interval is either the sinusoidal
carrier or its inverse. This scheme is known as Binary Phase Shift Keying (BPSK).

It is possible to use a second carrier at 90° to the original one, modulate it and add
the resulting signal to the first. In other words, if the BPSK signal is ± cos (2nfct),
where fc is the carrier frequency and t represents time, the second signal is
± sin (2nfci) and the resultant is

s(t) = V2cos(2nfct + in/4) / = -3, - 1, + 1, + 3

This is known as Quadriphase Shift Keying (QPSK) and has the advantage over
BPSK that twice as many bits can be transmitted in the same time and the same
bandwidth, with no loss of resistance to noise. The actual bandwidth occupied by the
modulation depends on implementation details, but is commonly taken to be 1 Hz
for one bit per second transmission rate using BPSK or 0.5 Hz using QPSK.

A phase diagram of QPSK is shown in Figure 1.5. The mapping of the bit values
onto the phases assumes that each of the carriers is independently modulated using
alternate bits from the coded data stream. It can be seen that adjacent points in the
diagram differ by only one bit because the phase of only one of the two carriers has
changed. A mapping that ensures that adjacent points differ by only one bit is known
as Gray Coding.

sin(2nfct)
01 11

cos(2nfct)

00 10

Figure 1.5 Gray-coded QPSK phase diagram
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Other possible modulations include Frequency Shift Keying (FSK), in which the
data determines the frequency of the transmitted signal. The advantage of FSK is
simplicity of implementation, although the resistance to noise is less than BPSK or
QPSK. There are also various modulations of a type known as Continuous Phase
Modulation, which minimize phase discontinuities between transmitted waveforms to
improve the spectral characteristics produced by nonlinear power devices.

In bandwidth-limited conditions, multilevel modulations may be used to achieve
higher bit rates within the same bandwidth as BPSK or QPSK. In M-ary Phase Shift
Keying (MPSK) a larger number of transmitted phases is possible. In Quadrature
Amplitude Modulation (QAM) a pair of carriers in phase quadrature are each given
different possible amplitudes before being added to produce a transmitted signal with
different amplitudes as well as phases. QAM has more noise resistance than equiva-
lent MPSK, but the variations in amplitude may cause problems for systems involv-
ing nonlinear power devices. Both QAM and MPSK require special approaches to
coding which consider the code and the modulation together.

1.6 THE CHANNEL

The transmission medium introduces a number of effects such as attenuation, distor-
tion, interference and noise, making it uncertain whether the information will be
received correctly. Although it is easiest to think in terms of the channel as introdu-
cing errors, it should be realized that it is the effects of the channel on the demodu-
lator that produce the errors.

The way in which the transmitted symbols are corrupted may be described using
the following terms:

• Memoryless channel - the probability of error is independent from one symbol to
the next.

• Symmetric channel - the probability of a transmitted symbol value i being received
as a value j is the same as that of a transmitted symbol value j being received as
i, for all values of i and j. A commonly encountered example is the binary
symmetric channel (BSC) with a probability p of bit error, as illustrated in
Figure 1.6.

1-p

Figure 1.6 Binary symmetric channel
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• Additive White Gaussian Noise (AWGN) channel - a memoryless channel in
which the transmitted signal suffers the addition of wide-band noise whose ampli-
tude is a normally (Gaussian) distributed random variable.

• Bursty channel - the errors are characterized by periods of relatively high symbol
error rate separated by periods of relatively low, or zero, error rate.

• Compound (or diffuse) channel - the errors consist of a mixture of bursts and
random errors. In reality all channels exhibit some form of compound behaviour.

Many codes work best if errors are random and so the transmitter and receiver
may include additional elements, an interleaver before the modulator and a deinter-
leaver after the demodulator to randomize the effects of channel errors. This will be
discussed in Section 1.12.

1.7 DEMODULATION

1.7.1 Coherent demodulation

The demodulator attempts to decide on the values of the symbols that were trans-
mitted and pass those decisions on to the next stage. This is usually carried out by
some sort of correlation with replicas of possible transmitted signals. Consider, for
example, the case of BPSK. The correlation is with a single fixed phase of the carrier,
producing either a positive or a negative output from the detector. In the absence of
noise, the detected signal level can be taken as ±\/E~r where Er is the energy in each
received bit. The effect of an AWGN channel will be to add a noise level n sampled
from a Gaussian distribution of zero mean and standard deviation a. The probability
density is given by

Gaussian noise has a flat spectrum and the noise level is often described by its
Single-sided Noise Power Spectral Density, which is written N0. The variance, <r2, of
the Gaussian noise, integrated over a single-bit interval, will be No/2. In fact it can be
considered that there is a total noise variance of N0 with half of this acting either in
phase or in antiphase to the replica and the other half in phase quadrature, therefore
not affecting the detector. The performance of Gray-coded QPSK is therefore exactly
the same as BPSK because the two carriers can be demodulated as independent
BPSK signals, each affected by independent Gaussian noise values with the same
standard deviation.

The demodulator will make its decision based on the sign of the detected signal.
If the received level is positive, it will assume that the value corresponding to the
replica was transmitted. If the correlation was negative, it will assume that the other
value was transmitted. An error will occur, therefore, if the noise-free level is -\fEr
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and a noise value greater than +\fEr is added, or if the noise-free level is +\fE~r and a
noise value less than —-/fir is added. Considering only the former case, we see that
the probability of error is just the probability that the Gaussian noise has a value
greater than +^/Er•.

cc

p = -4= f e-"2^° dn

Substituting t — n/^JN® gives

,where

oc

— fv7^ J

The function erfc(x) is known as the complementary error function and its values
are widely available in tabulated form. Note that the maximum value of erfc(x) is 1 .0,
so that the maximum bit error probability is 0.5. This makes sense because we could
guess bit values with 50% probability without attempting to receive them at all.

1.7.2 Differential demodulation

One further complication is commonly encountered with BPSK or QPSK transmis-
sions. In the absence of other information, it is impossible for the receiver to
determine absolute phase so as to know which of the two phases represents the
value 0 and which represents 1. This is because delay in the transmission path, which
is equivalent to phase shift, will not be known. The representation of bit values is
therefore often based on the difference between phases. Depending on the precise
demodulation method, this is known either as Differentially Encoded Phase Shift
Keying (DEPSK) or as Differential Phase Shift Keying (DPSK). The two are identical
from the modulation point of view, with the bit value 0 normally resulting in a
change of phase and the bit value 1 resulting in the phase remaining the same. The
receiver may not know absolute phase values, but should be able to tell whether the
phase has changed or remained the same. The differences in the demodulator
implementation may be summarized as follows:

• DEPSK – The demodulator maintains a replica of one of the two carrier phases
and correlates the received signal with this replica as for normal PSK. It then
compares the sign of the correlation with the previous correlation value; a change
of sign indicates data bit 0 and the same sign indicates data bit 1. Compared with
PSK, there will now be a bit error either when the phase is received wrongly and the
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previous phase was correct or when the phase is received correctly and the previous
phase was wrong. Thus noise that would cause a single-bit error in a BPSK
demodulator will cause two consecutive bit errors in the DEPSK demodulator
and the bit error probability is approximately twice the above BPSK expression.

• DPSK - The demodulator uses the previously received phase as the replica for the
next bit. Positive correlation indicates data value 1, negative correlation indicates
data value 0. The bit errors again tend to correlate in pairs, but the overall
performance is worse. In fact the bit error probability of DPSK follows a different
shape of curve:

1.7.3 Soft-decision demodulation

In some cases the demodulator's decision will be easy; in other cases it will be
difficult. In principle if errors are to be corrected it is better for the demodulator to
pass on the information about the certainty of its decisions because this might assist
the decoder in pinpointing the positions of the likely errors; this is called soft-decision
demodulation. We could think of it as passing on the actual detected level as a real
number, although in practice it is likely to have some sort of quantization. Eight-level
quantization is found to represent a good compromise between complexity and
performance.

Since the purpose of soft decisions is to assist decoding, it is useful to relate the
demodulator output to probabilistic measures of performance. One commonly
adopted measure is known as the log-likelihood ratio, defined as log[/Kl|r/)//?(0|r,)].
This metric is required in an important decoding method to be described in Chapter
10 and can be used for other decoding methods too. The computation of the value
may appear difficult, however we note that

Assuming that values 0 and 1 are equiprobable, log[p(l)/p(Q)] = 0 and so the
assigned bit value for received level r, is equal to log[/?(ri|l)//Kr/|0)]- This value can
be calculated given knowledge of the signal level and the noise statistics. Note that it
ranges from — oo (certain 0) to +00 (certain 1).

Assuming that we have Gaussian noise, the probability density function at a
received value ri from a noise-free received value x is

The appropriate values of x for bit values 1 and 0 are +\TEr and —\fEr- Thus the
log-likelihood ratio i s proportional t o 2 2
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Now

^.,-(n-\
log

Hence we find that
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In other words, the log-likelihood ratio is linear with the detected signal level and is
equal to the channel E r /N 0 , multiplied by four times the detected signal (normalized
to make the noise-free levels equal to -f/ — 1).

Note that the mapping adopted here from code bit values to detected demodulator
levels is opposite to that conventionally used in other texts. The conventional
mapping is that bit value 0 maps onto +1 and bit value 1 onto — 1 . The advantage
is that the exclusive-OR operation in the digital domain maps onto multiplication in
the analog domain. The disadvantage is the potential confusion between bit value
1 and analog value +1.

Because of the linearity of the log-likelihood ratio, the quantization boundaries of
the demodulator can be set in roughly linear steps. The question remains, however, as
to what size those steps should be. It can be shown that, for Q-level quantization, the
optimum solution is one that minimizes the value of

where p(jlc) represents the probability of a received value j given that symbol c was
transmitted. Massey [1] described an iterative method of finding the optimum solution
with nonuniform arrangement of boundaries, but the above value can easily be
calculated for different linear spacings to find an approximate optimum. For example,
with E r /N 0 around 2 dB, it is found that uniformly spaced quantization boundaries are
close to optimum if the spacing is 1/3, i.e. the boundaries are placed at —1, — 2/3
-1/3,0, +1/3, + 2/3, + 1. The use of such a scheme will be described in Section 1.8.2.

1.8 DECODING

The job of the decoder is to decide what the transmitted information was. It has the
possibility of doing this because only certain transmitted sequences, known as code-
words, are possible and any errors are likely to result in reception of a non-code
sequence. On a memoryless channel, the best strategy for the decoder is to compare
the received sequence with all the codewords, taking into account the confidence in
the received symbols, and select the codeword which is closest to the received
sequence as discussed above. This is known as maximum likelihood decoding.
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1.8.1 Encoding and decoding example

Consider, for example, the block code shown in Table 1.1. This code is said to be
systematic, meaning that the codeword contains the information bits and some other
bits known as parity checks because they have been calculated in some way from the
information. It can be seen that any codeword differs in at least three places from any
other codeword. This value is called the minimum Hamming distance or, more briefly,
minimum distance of the code. Consequently, if a single bit is wrong, the received
sequence is still closer to the transmitted codeword, but if two or more bits are
wrong, then the received sequence may be closer to one of the other codewords.

This code is linear and for any linear code it is found that the distance structure is
the same from any codeword. For this example, starting from any codeword there are
two sequences at a distance of 3 and one at a distance of 4. Thus the code properties
and the error-correction properties are independent of the sequence transmitted. As a
consequence, the minimum distance of the code can be found by comparing each
nonzero sequence with the all-zero sequence, finding the nonzero codeword with the
smallest number nonzero symbols. The count of nonzero symbols is known as the
weight of the sequence and the minimum weight of the code is equal to the minimum
distance.

Let us now assume that information 10 has been selected and that the sequence
10101 is therefore transmitted. Let us also assume that the received bits are hard-
decision quantized. If the sequence is received without error, it is easy to identify it in
the table and to decode. If there are errors, however, things will be more difficult and
we need to measure the number of differences between the received sequence and
each codeword. The measure of difference between sequences is known as Hamming
distance, or simply as distance between the sequences. Consider first the received
sequence 00101. The distance to each codeword is shown in Table 1.2.

In this case we can see that we have a clear winner. The transmitted sequence has
been selected as the most likely and the decoding is correct.

Table 1.1 Example block code

Information Codeword

00 00000
01 01011
10 10101
11 11110

Table 1.2 Distances for sequence 00101

Codeword Distance

00000 2
01011 3
10101 1
11110 4
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The previous example had an error in an information bit, but the result will be the
same if a parity check bit is wrong. Consider the received sequence 10111. The
distances are shown in Table 1.3. Again the sequence 10101 is chosen. Further
examples are left to the reader, but it will be found that any single-bit error can be
recovered, regardless of the position or the codeword transmitted.

Now let us consider what happens if there are two errors. It will be found that there
are two possibilities.

Firstly, consider the received sequence 11111. The distances are shown in Table 1.4.
In this case, the codeword 11110 is chosen, which is wrong. Moreover, the decoder has
decided that the final bit was wrong when in fact it was correct. Because there are at
least three differences between any pair of codewords, the decoder has made an extra
error on top of the two made by the channel, in effect making things worse.

Finally, consider the received sequence 11001, whose distances to the codewords
are shown in Table 1.5. In this case, there are two problems in reaching a decision.
The first, and obvious, problem is that there is no clear winner and, in the absence of
other information, it would be necessary to choose randomly between the two most
likely codewords. Secondly, we predicted at the outset that only single errors would
be correctable and the decoder may have been designed in such a way that it refuses
to decode if there is no codeword within a distance 1 of the received sequence. The
likely outcome for this example, therefore, is that the decoder will be unable to

Table 1.3 Distances for sequence 10111

Codeword Distance

00000 4
01011 3
10101 1
11110 2

Table 1.4 Distances for sequence 11111

Codeword Distance

00000 5
01011 2
10101 2
11110 1

Table 1.5 Distances for sequence 11001

Codeword Distance

00000 3
01011 2
10101 2
11110 3
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choose the most likely transmitted codeword and will indicate to the user the
presence of detected uncorrectable errors. This is an important outcome that may
occur frequently with block codes.

1.8.2 Soft-decision decoding

The probability that a sequence c of length n was transmitted, given the received
sequence r, is OJ'rJXc/lr,-). We wish to maximize this value over all possible code
sequences. Alternatively, and more conveniently, we take logarithms and find the
maximum of J]/=o l°§[/Kc/lr/)]- This can be carried out by a correlation process,
which is a symbol-by-symbol multiplication and accumulation, regarding the code
bits as having values +1 or — 1. Therefore we would be multiplying the assigned
probability by 1 for a code bit of 1 and by -1 for a code bit of 0. For hard decisions, a
codeword of length n at a distance d from the received sequence would agree in n — d
places and disagree in d places with the received sequence, giving a correlation metric
of 2n— d. Obviously choosing the codeword to maximize this metric would yield the
same decoding result as the minimum distance approach.

Even with soft decisions, we can adopt a minimum distance view of decoding and
minimize 53/=o {1 ~ 1°8 [/>(c/lr»)] }• The correlation and minimum distance approaches
are again identical provided we have an appropriate measure of distance. If the
received bits are given values vi equal to log[/?(l|r/)], then the distance to a bit value
1 is 1 — v/, the distance to a bit value 0 is v, and we maximize probability by minimizing
this measure of distance over all codewords.

The maximization of probability can also be achieved by maximizing some other
function that increases monotonically with it. This is the case for the log-likelihood
ratio log [p(\ |r/)/XO|r,-)]. To decode, we can maximize £], c, log[p(r,11 )//?(r,| 1)] where
Ci is taken as having values ± 1. This again corresponds to carrying out a correlation
of received log-likelihood ratios with code sequences.

As discussed in Section 1.7.3, it is likely that the received levels will be quantized.
For 8-level quantization, it might be convenient to use some uniform set of metric
values depending on the range within which the detected bit falls. Such a scheme is
shown in Figure 1.7.

Bearing in mind the fact that the log-likelihood ratio is linear with the analog
detected level from the demodulator, then the only deviation from an ideal 8-level

quantized
metric value

-3.5 -2,,-,, -0.5 +0.5 + 1.5 +2.5 +3.5

-1 0
normalized

"* detected value

Figure 1.7 Quantization boundaries for soft-decision demodulation
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quantization is that the end categories (000 and 111) extend to — oo and +00 and
therefore should have larger metrics associated with them. The effect on perform-
ance, however, is negligible. For E r /N 0 = 2 dB, the optimum soft-decision metric
values associated with this quantization arrangement are —3.85, —2.5, —1.5, —0.5,
+0.5, +1.5, +2.5, +3.85. Therefore the proposed metrics of —3.5 to +3.5 are very
close to optimum.

The assigned values can be scaled and offset in any convenient manner, so the
scheme in Figure 1.7 is equivalent to having bit values of (—7, —5, —3, —1, +1, +3,
+5, +7) or (0, 1, 2, 3, 4, 5, 6, 7). This last form is convenient for implementation of a
3-bit interface to the decoder.

Applying the correlation approach to a soft-decision case, the example in Table 1.4
might become a received sequence +2.5 +0.5 +1.5 +0.5 +3.5 with correlation values
as shown in Table 1.6.

The maximum correlation value indicates the decoder decision. In this case, the
decoder selects the correct codeword, illustrating the value of soft decisions from the
demodulator.

Table 1.6 Correlations for soft-decision sequence
+2.5+0.5+1.5+0.5+3.5

Codeword Correlation

-1 -1 -1 -1 -1 -8.5
-1+1-1+1+1 +0.5
+ 1-1+1-1+1 +6.5
+ 1 +1 +1 +1 -1 +1.5

1.8.3 Alternative decoding approaches

Although conceptually very simple, the method described above is very complex to
implement for many realistic codes where there may be very many codewords. As a
result, other decoding methods will need to be studied. For example, the parity
checks for the above code were produced according to very simple rules. Numbering
the bits from left to right as bits 4 down to 0, bits 4 and 3 constitute the information
and the parity bits are

bit 2 == bit 4
bit 1 = bit 3
bit 0 = bit 4 0 bit 3

The symbol © denotes modulo-2 addition or exclusive-OR operation. Considering
only hard decisions, when a sequence is received, we can simply check whether the
parity rules are satisfied and we can easily work out the implications of different error
patterns. If there are no errors, all the parity checks will be correct. If there is a single-
bit error affecting one of the parity bits, only that parity check will fail. If bit 4 is in
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error, parity bits 2 and 0 will be wrong. If bit 3 is in error, parity bits 1 and 0 will be
wrong. If both parity bits 2 and 1 fail, the error is uncorrectable, regardless of
whether parity bit 0 passes or fails.

We can now construct some digital logic to check the parity bits and apply the
above rules to correct any correctable errors. It will be seen that applying the rules
will lead to the same decodings as before for the examples shown. In the final
example case, where the sequence 11001 was received, all three parity checks fail.

This type of decoding procedure resembles the methods applied for error correc-
tion to many block codes. Note, however, that it is not obvious how such methods
can incorporate soft decisions from the demodulator. Convolutional codes, however,
are decoded in a way that is essentially the same as the maximum likelihood method
and soft decisions can be used.

1.9 CODE PERFORMANCE AND CODING GAIN

We saw earlier that we can obtain a theoretical expression for the bit error probabil-
ity of BPSK or QPSK on the AWGN channel in terms of the ratio of energy per
received bit to single-sided noise power spectral density, E r/N0 . It is convenient to do
the same for systems that employ coding, however we first have to solve a problem of
comparability. Coding introduces extra bits and therefore we have to increase either
the time to send a given message or else the bandwidth (by transmitting faster). Either
case will increase the total noise in the message; in the first case because we get noise
from the channel for a longer time, in the second case because more noise falls within
the bandwidth.

The answer to this problem is to assess the error performance of the link in terms of
Eb/No, the ratio of energy per bit of information to noise power spectral density. Thus
when coding is added, the number of bits of information is less than the number of
transmitted bits, resulting in an increase in E b /N 0 relative to E r/N0 . For example, if
100 bits of information are to be sent using a rate 1/2 code, 200 bits must be
transmitted. Assuming that we maintain the transmitted bit rate and power, the energy
in the message is doubled, but the amount of information remains the same. Energy
per bit of information is therefore doubled, an increase of 3 dB. This increase acts as a
penalty that the code must overcome if it is to provide real gains. The performance
curve is built up in three stages as explained below.

As the first stage, the curve of bit error rate (BER) against E b /N 0 (the same as
Er/N0 in this case) is plotted for the modulation used. The value of Eb/No is usually
measured in dB and the bit error rate is plotted as a logarithmic scale, normally
covering several decades, e.g. from 10-' to 10-6. The second stage is the addition of
coding without consideration of the changes to bit error rates. For a fixed number
of transmitted bits, the number of information bits is reduced, thus increasing the
value of E b /N 0 relative to Er/N0 by a factor 1 / R, or by 10 log,0(l//?)dB. The third
stage is to consider the effect of coding on bit error rates; this may be obtained either
by simulation or by calculation. For every point on the uncoded performance
curve, there will therefore be a corresponding point a fixed distance to the right of
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it on the coded performance curve showing a different, in many cases lower, bit error
rate.

An example is shown in Figure 1.8 which shows the theoretical performance of
a BPSK (or QPSK) channel, uncoded and with a popular rate 1/2 convolutional
code. The code performance is plotted both with hard-decision demodulation and
with unquantized soft decisions, i.e. real number output of detected level from the
demodulator.

It can be seen that without coding, the value of E b /N 0 needed to achieve a bit error
rate of 10-5 is around 9.6 dB. This error rate can be achieved with coding at
E b /N 0 around 7.1dB using hard-decision demodulation or around 4.2 dB using
unquantized soft-decision demodulation. This is expressed by saying that the coding
gain at a BER of 10-5 is 2.5dB (hard-decision) or 5.4 dB (soft-decision). Real life
decoding gains would not be quite so large. The use of 8-level, or 3-bit, quantization
of the soft decisions reduces the gain by around 0.25 dB. There may also be other
implementation issues that affect performance. Nevertheless, gains of 4.5 to 5dB can
be expected with this code.

The quoted coding gain must be attached to a desired bit error rate, which in turn
will depend on the application. Note that good coding gains are available only for
relatively low required bit error rates and that at higher error rates the gain may be
negative (i.e. a loss). Note also that the quoted bit error rate is the error rate coming
out of the decoder, not the error rate coming out of the demodulator. In the soft-
decision example, the demodulator is working at E r /N 0 around 1.2dB, producing a
BER of around 5 x !0-2 out of the demodulator.

If we know the minimum distance of a block code, or the value of an equivalent
parameter called free distance for a convolutional code, we can find the asymptotic

l.0E+00

l.0E-01

2 3 4 5 6 7 8 9 1 0

Uncoded |
- Hard-decision!

Soft-decision !

Eb/N0 (dB)

Figure 1.8 Performance of rate 1/2 convolutional code
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coding gain, i.e. the gain that would be delivered if vanishingly small decoded error
rates were required. For unquantized soft-decision decoding of a rate R code with
distance d between the closest code sequences, the asymptotic gain is

(1.2)

If we have only hard decisions from the demodulator and can correct up to / errors
then

Gasymptotic = 10 log,0 [R(t + 1)] (1.3)

From the earlier simple block code example, we can see that the expected value of t
would be the largest value that is less than half the value of d. Thus the value of d in
Equation (1.2) is just less than twice the value of / + 1 in Equation (1.3). Asymptotic
coding gains are therefore almost 3 dB higher when unquantized soft-decision decod-
ing is used. As stated above, the use of 8-level quantization reduces the gain by about
0.25 dB.

Although we have solved one issue of comparability by the use of Eb/N0, there is
another that is regularly ignored. If we look at an uncoded channel and a coded
channel with the same BER, the characteristics will be completely different. On the
AWGN channel, the errors will occur at random intervals. On the coded channel
there will be extended error-free intervals interspersed with relatively dense bursts
of errors when the decoder fails. Thus if we are interested in error rates on larger
units of transmission, frames, packets or messages, the coded channel at the same
BER will give fewer failures but more bit errors in corrupted sections of transmission.
Assessing coding gain by comparing coded and uncoded channels with the same
BER may therefore be unfair to the coded channel. For example, out of 100 messages
sent, an uncoded channel might result in 10 message errors with one bit wrong in
each. A coded channel might produce only one message error but 10 bit errors within
that message. The bit error rates are the same, but the message error rate is better
on the coded channel. Add to this the fact that the detection of uncorrectable
errors is rarely taken into account in a satisfactory way (a significant issue for
many block codes), coding regularly delivers benefits that exceed the theoretical
figures.

1.10 INFORMATION THEORY LIMITS TO CODE
PERFORMANCE

We have now seen the sort of benefits that coding provides in present day practice
and the ways to find asymptotic coding gain based on knowledge of simple code
parameters. As yet we have not seen how to do detailed error rate calculations as
these require a more detailed knowledge of code structure. Nevertheless, it is worth
making a comparison with the results obtained from Shannon's work on information
theory to show that, in some respects, coded systems have still some way to go.
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Shannon showed that, using an average of all possible codes of length n, the error
rate over the channel is characterized by a probability of message error

Pe<e-'lE(Rl} (1.4)

where E, which is a function of the information rate, is called the random coding
error exponent. Any specific code will have its own error exponent and the greater
the error exponent the better the code, but there are calculable upper and lower
bounds to the achievable value of E. In particular, a positive error exponent is
achievable provided RI is less than some calculable value called the channel capacity.
Provided a positive error exponent can be obtained, the way to achieve lower error
probabilities is to increase the length of the code.

As was seen in Section 1.9, codes have a calculable asymptotic coding gain and
thus at high signal-to-noise values the error rates reduce exponentially with Eb /N0 , as
in the uncoded case. The error exponent is therefore proportional to Eb/N0.. The
difficulty with known codes is maintaining the error exponent while the length is
increased. All known codes produced by a single stage of encoding can hold
their value of error exponent only by reducing the rate to zero as the code length
increases towards infinity. For example, an orthogonal signal set, which can be
achieved by Frequency Shift Keying or by means of a block code, is sometimes
quoted as approaching the theoretical capacity on an AWGN channel as the signal
set is expanded to infinity. Unfortunately the bandwidth efficiency or the code rate
reduces exponentially at the same time. This limitation can be overcome by the use of
multistage encoding, known as concatenation, although even then the error expo-
nents are less than the theoretically attainable value. Nevertheless, concatenation
represents the closest practicable approach to the predictions of information theory,
and as such is a technique of increasing importance. It is treated in more detail in
Chapters 9 and 10.

As the most widely available performance figures for error correcting codes are for
the additive white Gaussian noise (AWGN) channel, it is interesting to look at the
theoretical capacity of such a channel. The channel rate is given by the Shannon-
Hartley theorem:

(1.5)

where B is bandwidth, S is signal power and N is noise power within the bandwidth.
This result behaves roughly as one might expect, the channel capacity increasing with
increased bandwidth and signal-to-noise ratio. It is interesting to note, however, that
in the absence of noise the channel capacity is not bandwidth-limited. Any two
signals of finite duration are bound to show differences falling within the system
bandwidth, and in the absence of noise those differences will be detectable.

Let N = B-No and S = R}Eh (NQ is the single-sided noise power spectral density,
RI is rate of information transmission (< C) and Eh is energy per bit of information),
then
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In the limit of infinite bandwidth, using the fact that Iog2 (jc) = loge (jc)/ log,, 2
gives

As bandwidth approaches infinity, the channel capacity is given by

For transmission at the channel capacity, (R1 = C):

(1.6)

This means that we should be able to achieve reliable communications at the
channel capacity with values of Eb /N0 as low as -1.6dB. The channel capacity is
however proportional to the information rate; increasing the rate for a fixed value of
Eb/N0 increases the signal power and therefore the channel capacity. Thus at - 1 .6 dB
we should be able to achieve reliable communications at any rate over an AWGN
channel, provided we are willing to accept infinite bandwidth.

If instead we constrain the bandwidth and set R1 = r\B, where r\ is bandwidth
efficiency of the modulation/coding scheme, then

For transmission at the channel capacity (R\ — C), therefore

«V-1) (1.7)
Wo 1

This value can be thought of as imposing an upper limit to the coding gain
achievable by a particular coding and modulation scheme. The value of Eb/N0 to
deliver the desired error rate on the uncoded channel can be determined from the
modulation performance, and the corresponding coded value must be at least that
given by equation (1.7). In practice, these coding gains are difficult to achieve.

If we were to use a rate 1/2 code on a QPSK channel, a fairly common arrange-
ment, the value of rj is around 1.0, giving Eb /N0 = 1 ( = OdB). As has been seen
earlier, a rate 1/2 convolutional code may need over 4.5 dB to deliver a BER of 10-5.
It therefore falls well short of the theoretical maximum gain.

It must be stressed that Shannon merely proved that it was possible by coding to
obtain reliable communications at this rate. There is no benefit, however, in having a
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good code if one does not know how to decode it. Practical codes are designed with a
feasible decoding method in mind and the problem of constructing long codes that
can be decoded is particularly severe. This seems to be the main reason why
approaching the Shannon performance has proved to be so difficult.

1.11 CODING FOR MULTILEVEL MODULATIONS

The standard modulation for satellite communications is QPSK, but 8-PSK or 16-
PSK could be used to obtain 3 or 4 transmitted bits (respectively) per transmitted
symbol. Unfortunately, this results in reduced noise immunity. With m bits per
transmitted symbol, assuming that the energy per transmitted bit is maintained, the
energy per transmitted symbol can increase by a factor of m relative to binary PSK.
The distance between closest points in the constellation will, however, be propor-
tional to sin(7i/M), where M — 2m, as shown in Figure 1.9, and the noise energy
required to cause an error will depend on the square of this. The uncoded perform-
ance relative to binary PSK is therefore

Gw(dB)=101og lo[msin2(7r/2"')]

The values are shown in Table 1.7.
As can be seen, there are severe losses associated with higher level constellations,

making coding all the more important. The codes, however, need to be designed
specifically for the constellation to maximize the distance in signal space, the Euclid-
ean Distance, between code sequences.

Figure 1.9 Distance between MPSK constellation points

Table 1.7 Performance of uncoded MPSK

m M Gm (dB)

1
2
3
4
5
6
7
8

2
4
8

16
32
64

128
256

0.0
0.0

-3.6
-8.2

-13.2
-18.4
-23.8
-29.2
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The principal approach to designing codes for this type of system is to take a
constellation with m bits per symbol and to use a rate (m - 1)/m code so that the
information throughput will be the same as the uncoded constellation with m - 1 bits
per symbol and the performances can be compared directly. Convolutional codes of
this type are known as Ungerboeck codes and will be described in Chapter 2.

1.12 CODING FOR BURST-ERROR CHANNELS

Coding performance curves are regularly shown for the AWGN channel. There are
two reasons why this is so. Firstly, burst-error mechanisms are often badly under-
stood and there may be no generally accepted models that fit the real behaviour. The
increasing importance of mobile communications where the channel does not re-
motely fit the AWGN model has, however, led to considerable advances in the
modelling of non-Gaussian channels. The other reason is that most codes in use
are primarily designed for random error channels. The only important codes where
this is not the case are Reed Solomon codes which are constructed with multibit
symbols and correct a certain number of symbol errors in each codeword. A burst of
errors affecting several bits close together may affect only a few symbols of the code
and be correctable, as shown in Figure 1.10. The symbols each consist of 4 bits and a
burst spanning 8 bits containing 5 errors has affected only 3 symbols.

For the most part, we shall be faced with trying to make a random bit-error-
correcting code work on a burst-error channel, and the technique that is used is
interleaving. Essentially, this consists of reordering the bits before transmission
(interleaving) and putting them back into the original order on reception (deinter-
leaving). As the error locations are affected only by the deinterleaving, they become
scattered through the code-stream so that they appear as random errors to the
decoder.

There are two main types of interleaving to consider, block interleaving and
convolutional interleaving. Both will be explained as if they are being used with a
block code, although both can be used with convolutional codes too.

Block interleaving is illustrated in Figure 1.11. Codewords are written into the
columns of an array and the total number of columns, A, is termed the interleaving
degree. If a burst of errors spans no more than A symbols, then there will be at most
one error in each codeword. A code that can correct up to / errors could correct, for
example, up to t bursts of length A, one burst of length (At or a mixture of shorter
bursts and random errors.

Convolutional interleaving is shown in Figure 1.12. The codewords in the columns
of the array are shifted through delays which differ for each symbol. Usually these
are increasing by one for each row of the array. The order of symbols on the channel

| HI |ii IK I 'tv Error location

Figure 1.10 Binary burst error on multibit symbols
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codewords

Code order
symbols

Transmission
order

Figure 1.11 Block interleaving

Jim ymm

Figure 1.12 Convolutional interleaving

follows the diagonal sequence shown. Any burst of errors will affect symbols in the
transmission stream as shown and it can be seen that the burst must exceed n + 1
symbols in length before it affects two symbols of the same codeword. If the delays
are increasing by D for each symbol, then the separation of two symbols from the
same codeword is Dn + 1. In effect this is the interleaving degree.

The main differences between the two types of interleaving are that the convolu-
tional interleaver will extend the symbol stream through the presence of null values in
the delay registers, but block interleaving will have more delay because of the need to
fill the array before transmission can commence.

One might think that the block interleaver would introduce a delay of In symbols,
however it is possible to start transmission a little before the array is filled. The
encoder must have (A — 1)« + 1 symbols prepared by the time that A symbols are
transmitted; otherwise, the rightmost symbol of the top row will not be ready in time
for transmission (assuming that symbol is transmitted the instant it is prepared). The
delay is therefore (A - 1)« + 1 - A = (A - \)(n - 1) symbols. The same delay will
occur in the deinterleaver which writes the symbols into rows and decodes by
column, giving an overall delay of 2(A — !)(« — 1) symbols.

The convolutional interleaver introduces D + 2D + h (n - !)D = n(n -1)D/2
dummy symbols into the stream. The deinterleaver applies a delay of (n – l)D to the
top row, (n - 2)D to the second row, etc., introducing the same number of dummy
symbols. The overall delay is therefore n(n — l)D. As the interleaving degree is
nD + 1, the overall delay is (A - \)(n - 1), half the value of the block interleaving.
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1.13 MULTISTAGE CODING

The aim of making an effective long code is sometimes approached by multistage
coding in which the overall code is constructed from simple components, thus provid-
ing a feasible approach to decoding. Examples of this type of approach include serial
concatenation, in which information is first encoded by one code, the outer code, and
then the encoded sequence is further encoded by a second code, the inner code. Reed
Solomon codes are often used as outer codes because of their ability to correct the
burst errors from the inner decoder. Another approach is the product code in which
information is written into an array and the rows and columns are separately encoded.

In recent years other types of concatenation have become of interest in conjunction
with iterative decoding techniques, where decoding of the second code is followed by
one or more further decodings of both codes. In particular, iterative decoding is
applied to parallel concatenated codes, namely the application of two systematic
codes to a single-information stream to derive two independent sets of parity checks.
This is the principle of the so-called turbo codes and other similar constructions,
which are treated in Chapter 10.

1.14 ERROR DETECTION BASED METHODS

So far we have assumed that the intention is to correct all errors if possible; this is
known as Forward Error Correction (FEC). We have, however, seen that detected
uncorrectable errors are possible. In fact there may be good reasons not to attempt
error correction provided we have some other way of dealing with erroneous data.
Not attempting error correction will not make the maximum use of the received
sequence, but it makes it less likely that there will be undetected errors and reduces
the complexity at the receiver.

There are two main possibilities if errors are not to be corrected. The first
approach is to use a reverse channel (where available) to call for retransmission.
This is known as Retransmission Error Control (REC) or Automatic Retransmission
reQuest (ARQ). The second approach is to process the data in such a way that the
effect of errors is minimized. This is called Error Concealment.

1.14.1 ARQ strategies

The transmitter breaks the data into frames, each of which contains a block code
used for error detection. The receiver sends back acknowledgements of correct
frames and whenever it detects that a frame is in error it calls for retransmission.
Often the transmitter will have carried on sending subsequent frames, so by the time
it receives the call for retransmission (or fails to obtain an acknowledgement within a
predefined interval) it will already have transmitted several more frames. It can then
either repeat just the erroneous frame (Selective Repeat ARQ) or else go back to the
point in the sequence where the frame error occurred and repeat all frames from that
point regardless (Go Back N ARQ).
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If Selective Repeat (SR-ARQ) is employed, the receiver must take responsibility
for the correct ordering of the frames. It must therefore have sufficient buffering to
reinsert the repeated frame into the stream at the correct point. Unfortunately, it is
not possible to be sure how many repeats will be needed before the frame will be
received. The protocols therefore need to be designed in such a way that the trans-
mitter recognizes when the receiver's buffer is full and repeats not only erroneous
frames but also those which will have been lost through buffer overflow.

Neglecting effects of finite buffers, assuming independence of errors from frame to
frame and a frame error rate of pf, the efficiency of SR-ARQ is

where n is the total frame length and k is the amount of information in the frame. The
difference between n and k in this case will not be purely the parity checks of the code.
It will include headers, frame numbers and other fields required by the protocol.

For Go Back N (GBN-ARQ), there is no need for receiver buffering, but the
efficiency is lower. Every time x frames are received correctly, followed by one in
error, the transmitter goes on to frame x + N before picking up the sequence from
frame x + 1 . We can therefore say that

Now the probability of x frames being successful followed by one that fails is
pf(1 — p f ) x ; therefore

x =£>/(! -Pfi=pf(\ -/>/)[! + 2(1 -Pf) + 3(1 -pf)2 + •••}
i=0

The sum to infinity of the series in the square brackets is l/pj-, so we find that

Pf

Hence

It may appear from this that an efficient GBN scheme would have a small value of
N, however the value of N depends on the round trip delays and the frame length.
Small values of N will mean long frames which in turn will have a higher error rate.
In fact it is the frame error rate that is the most important term in the efficiency
expression, with the factor k/n also playing its part to ensure that frames cannot be
made too small.
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The main difficulties with ARQ are that efficiency may be very low if the frame
error rate is not kept low and that the delays are variable because they depend on the
number of frame errors occurring. The delay problem may rule out ARQ for real
time applications, particularly interactive ones. The solution to the efficiency prob-
lem may be to create some sort of hybrid between FEC and ARQ with FEC
correcting most of the errors and reducing the frame error rate and additional
error detection resulting in occasional use of the ARQ protocols.

1.14.2 Error concealment

Some applications carry data for subjective appreciation where there may still be
some inherent redundancy. Examples include speech, music, images and video. In
this case, the loss of a part of the data may not be subjectively important, provided
that the right action is taken. Designing a concealment system is a signal processing
task requiring knowledge of the application, the source coding and the subjective
effects of errors. Possibilities include interpolation or extrapolation from previous
values. Hybrids with FEC are also possible.

Error concealment is often appropriate for exactly the applications where ARQ is
difficult or impossible. One example is digital speech where the vocoders represent
filters to be applied to an input signal. The filter parameters change relatively slowly
with time and so may be extrapolated when a frame contains errors. Another
example occurs with music on compact disc where the system is designed in a way
that errors in consecutive samples are unlikely to occur. The FEC codes have a
certain amount of extra error detection and samples known to contain errors are
given values interpolated from the previous and the following sample.

1.14.3 Error detection and correction capability of block codes

Error detection schemes or hybrids with FEC are usually based on block codes. In
general, we can use block codes either for error detection alone, for error correction or
for some combination of the two. Taking into account that we cannot correct an error
that cannot be detected, we reach the following formula to determine the guaranteed
error detection and correction properties, given the minimum distance of the code:

d m i n > S + t (1.10)

where s is the number of errors to be detected and t ( < s) is the number of errors to
be corrected. Assuming that the sum of s and t will be the maximum possible then

dmin = S + t + 1

Thus if dmin = 5, the possibilities are

s = 4 t = 0
5=3 t=1

5=2 t=2
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If we decided, for example, to go for single-error correction with triple-error
detection, then the occurrence of four errors would be detected, but the likelihood
is that the decoder would assume it was the result of a single error on a different
codeword from the one transmitted.

If the code is to be used for correction of the maximum amount of errors, and if the
value of minimum distance is odd, then setting t = s gives

d m i n =2t+1 ( 1 . 1 1 )

1.15 SELECTION OF CODING SCHEME

The factors which affect the choice of a coding scheme are the data, the channel and
specific user constraints. That includes virtually everything. The data can have an
effect through its structure, the nature of the information and the resulting error-rate
requirements, the data rate and any real-time processing requirements. The channel
affects the solution through its power and bandwidth constraints and the nature of
the noise mechanisms. Specific user constraints often take the form of cost limita-
tions, which may affect not only the codec cost but also the possibility of providing
soft-decision demodulation.

1.15.1 General considerations

The major purpose of incorporating coding into the design of any system is to reduce
the costs of the other components. Reliable communications can usually be obtained
by simple, yet costly, methods such as increasing power. A well-designed coding
scheme should result in a lower overall system cost for an equivalent or better
performance. If this objective is to be met, however, the designer needs to make a
careful choice and be aware of the whole range of available techniques.

Convolutional codes are highly suitable for AWGN channels, where soft decisions
are relatively straightforward. The coding gains approach the asymptotic value at
relatively high bit error rates, so that at bit error rates of 10–5 to 10–7 in Gaussian
conditions, convolutional codes are often the best choice. Many types of conditions,
however, can give rise to non-Gaussian characteristics where the soft-decision thresh-
olds may need to adapt to the channel conditions and where the channel coherence
may mean that Viterbi decoding is no longer the maximum likelihood solution. The
complexity of the decoder also increases as the code rate increases above 1/2, so that
high code rates are the exception. Even at rate 1/2, the channel speed which can be
accommodated is lower than for Reed Solomon codes, although it is still possible to
work at over l00 Mbits / second, which is more than enough for many applications!

Reed Solomon codes have almost exactly complementary characteristics. They do
not generally use soft decisions, but their performance is best in those conditions where
soft decisions are difficult, i.e. non-Gaussian conditions. In Gaussian conditions the
performance curves exhibit something of a 'brick wall' characteristic, with the codes
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working poorly at high bit error rates but showing a sudden transition to extremely
effective operation as the bit error rate reduces. Thus they may show very high
asymptotic coding gains but need low bit error rates to achieve such gains. Conse-
quently they are often advantageous when bit error rates below 10–10 are required.
Error rates as low as this are often desirable for machine-oriented data, especially if
there is no possibility of calling for a retransmission of corrupted data. The decoding
complexity reduces as code rate increases, and in many cases decoding can be
achieved at higher transmitted data rates. They can also, of course, be combined
with other codes (including convolutional codes or other RS codes) for concatenated
coding.

For the future, the so-called turbo codes are going to be of increasing importance.
These are tree codes of infinite constraint length, used in combination and decoded by
an iterative method. Usually two codes are used with one operating on an interleaved
data set. The decoding algorithms not only use soft decisions, they also provide soft
decisions on the outputs, and the output of each decoder is fed to the input of the other
so that successive iterations converge on a solution. The performance is extremely
good, giving acceptable error rates at values of Eb/ No little above the Shannon levels.
There are, however, several problems to be resolved including the existence of an error
floor making it difficult to achieve output BERs below 10–5 or 10–6.

The above considerations certainly do not mean that other types of codes have no
place in error control. Many considerations will lead to the adoption of other
solutions, as will be seen from the discussions below. Nevertheless, mainstream
interests in future systems are likely to concentrate on Viterbi-decoded convolutional
codes, Reed Solomon codes and turbo codes, and the designer wishing to adopt a
standard, 'off-the-shelf solution is most likely to concentrate on these alternatives.

1.15.2 Data structure

If information is segmented into blocks, then it will fit naturally with a block coding
scheme. If it can be regarded as a continuous flow, then convolutional codes will be
most appropriate. For example, protecting the contents of computer memories is
usually done by block coding because the system needs to be able to access limited
sections of data and decode them independently of other sections. The concept of
data ordering applies only over a limited span in such applications. On the other
hand, a channel carrying digitized speech or television pictures might choose a
convolutional scheme. The information here is considered to be a continuous stream
with a definite time order. The effects of errors will be localized, but not in a way
which is easy to define.

It is important to separate the structure of the data from the characteristics of the
channel. The fact that a channel carries continuous data does not necessarily mean
that the data is not segmented into block form. Less obvious, but equally important,
a segmented transmission does not necessarily imply segmented data. A TDMA
channel, for example, may concentrate several continuous streams of information
into short bursts of time, but a convolutional code may still be most appropriate.
With adequate buffering, the convolutional code on any stream may be continued
across the time-slots imposed by the TDMA transmission.
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1.15.3 Information type

It is conventional to assess the performance of coding schemes in terms that involve
bit error rates. This is not really appropriate for many types of information, and the
most appropriate measure will often affect the choice of a coding scheme. Indeed it is
difficult to think of any application in which the bit error rate is directly important. If
discrete messages are being sent, with every bit combination representing a totally
different message, then the message error rate is of crucial importance; the number of
bit errors in each wrong message is not important at all. Even with information that
is subjected to some kind of sensory evaluation (i.e. it is intended for humans, not for
machines), not all bits are equal. In most cases there are more and less significant bits
or some bits whose subjective importance is different from that of others. Digitized
speech without any data compression carries a number of samples, each of which has
a most and a least significant bit. Only if bit errors in all positions have equal effect
will bit error rate provide a measure of subjective quality. If the speech is at all
compressed, the bits will represent different types of information, such as filter poles
or excitation signals, and the subjective effects will vary. Data intended for subjective
evaluation may be suitable for error concealment techniques.

Errors on a coded channel can be placed into four categories. There are those
which are corrected by the code and allow the information to be passed on to the
destination as if those errors had never occurred. There are errors which are detected
but not corrected. There are also errors which are not detected at all and errors which
are detected but the attempted correction gives the wrong result. Errors are passed on
to the destination in the last two cases. For many applications it is important to
minimize the probability of unsuspected errors in the decoder output. This will bias
the user towards block codes, which often detect errors beyond the planned decoding
weight, and away from forward error correction which accepts that undetected
decoding errors will occur. The strength of the bias depends on the consequence of
errors. If an error could start the next world war, it is obviously of more importance
than one that causes a momentary crackle on a telephone line.

Acceptable error rates will depend not only on the type of data but also on whether
it will be processed on- or off-line. If data is to be processed immediately, it may be
possible to detect errors and invoke some other strategy such as calling for retrans-
mission. Off-line processing means that errors cannot be detected until it is too late to
do anything about it. As a result the error rate specification will commonly be lower.

Note that there must always be some level of errors which is considered to be
acceptable. It is easy to set out with a goal of eliminating all errors. Achieving this
goal would require infinite time and an infinite budget.

1.15.4 Data rate

It is difficult to put figures on the data rates achievable using different codes. This is
partly because any figures given can quickly become out of date as technology
advances and partly because greater speeds can usually be achieved by adopting a
more complex, and therefore more expensive, solution. Nevertheless, for a fixed
complexity, there are some codes which can be processed more rapidly than others.
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The codes which can be processed at the highest data rates are essentially simple,
not very powerful, codes. Examples are codes used purely for error detection.
Concatenated codes using short block inner codes are not far behind because the
computations on the Reed Solomon codes are done at symbol rate, not bit rate, and
the block codes used are extremely simple. It follows that Reed Solomon codes alone
are in the highest data rate category. Viterbi-decoded convolutional codes are fast
provided the input constraint length is not too long, say no more than 9. BCH codes
can also be used at similar rates provided hard-decision decoding only is required.
Soft-decision decoding of block codes and the more complex concatenated schemes,
e.g. turbo codes, are capable of only moderate data rates.

Of course, the required data rate affects the choice of technology too; the more that
can be done in hardware the faster the decoding. Parallelism can increase decoding
speeds, but with higher hardware complexity and therefore cost. A data rate of a few
thousand bits per second could allow a general-purpose microprocessor to be used
for a wide range of codecs, but obviously that would be uneconomic for volume
production. Many of the influences of data rate on system design will be closely
bound up with economics.

1.15.5 Real time data processing

If real time data processing is required, the decoder must be able to cope with the link
data rates. This may be achieved at the expense of delays by, for example, decoding
one sequence while the next is being buffered. The decoding delay may in some cases
become significant, especially if it is variable.

Forward error correction requires a decoding delay that, in most cases, depends on
the exact errors which occur. Nevertheless, there is usually a certain maximum delay
that will not be exceeded. Buffering the decoded information until the maximum
delay has expired can therefore produce a smooth flow of information to the
destination. Two major factors determining the delay will be the data rate and the
length of the code. Information theory tells us that long codes are desirable, but for
many applications long delays are not. Thus the maximum acceptable delay may
limit the length of the codes that can be used.

If no maximum decoding delay can be determined, then the decoded information
will come through with variable delays, which can cause havoc with real time infor-
mation. The main error control strategy that exhibits variable delays is ARQ because
one cannot guarantee that any retransmission will be successful. These problems may
be minimized by the use of a suitable ARQ / FEC hybrid.

1.15.6 Power and bandwidth constraints

These constraints drive the solution in opposite directions. In the absence of band-
width constraints one would use a low rate concatenated code to achieve high coding
gains or very low error rates. Very tight bandwidth constraints, making binary
modulation incompatible with the required data rate and error rates, require the use
of specially designed codes in conjunction with multilevel modulations. Traditionally
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these have been convolutional codes, but block codes may be possible and turbo-coded
solutions are being developed.

Assuming that the major aim of coding is to reduce the power requirement for
a given error rate, high coding gains would appear to be desirable. There can be
no doubt that the highest gains are achievable using turbo codes or concatenated
codes. If the gain requirement is less stringent, convolutional codes with hard-
decision sequential decoding or soft-decision Viterbi decoding (to be described in
Chapter 2) provide the highest gains on a Gaussian channel.

1.15.7 Channel error mechanisms

Ideally one would design a coding scheme for the precise conditions encountered on
the channel. In practice, the channel may not be well characterized and the coding
scheme may have to show flexibility to cope with the range of possible conditions.
For slowly varying channel conditions which exhibit approximate Gaussian condi-
tions over appreciable periods of time, adaptive coding schemes are a natural choice.
These often use variable rate convolutional codes, or they may be based around
ARQ / FEC hybrids. For channels which may fluctuate rapidly between states,
producing mixtures of bursty and random errors, a wide variety of diffuse-error
correcting schemes, including interleaving, are available. Reed Solomon codes may
also be considered to fall into this category; although optimized neither for random
errors or general bursts, their low redundancy overhead makes them a good choice
for a variety of channel conditions.

1.15.8 Cost

Any error control scheme is merely a part of a larger system and its costs must be in
proportion to its importance within the system. Bearing in mind that error rates may
be reduced by the use of higher transmitted power, the aim of coding is to be more
cost-effective than other solutions. That, however, is often not the main way in which
cost constraints are experienced in a coding system; the major part of the costs of
error control are incurred at the decoder, placing the burden of the economics onto
the receiving equipment. Since the owners of transmitting and receiving equipment
may be different, the economic considerations may not be combined to optimize
overall system costs. Decoder costs must be assessed in terms of what the receiver will
be prepared to pay.

A number of fairly straightforward rules may be stated. Firstly as previously
indicated, the decoder costs dominate in a forward error correction scheme. Error
detection is therefore much cheaper than error correction. High data rates will cost
more than low data rates. Complex codes with multiple-error correction will
cost more than simpler codes. For many applications, however, the main factor
affecting cost will be whether there is a codec available commercially or whether it
will need to be developed specially. Development costs must be spread across the
number of receivers, and if the market is small or particularly cost-sensitive it may be
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impossible to develop a special codec for the particular needs of the application. In
that case, the choice will be severely limited.

Any very specific advice about commercially available codecs would ensure that
this book would quickly be out of date. As with all modern technologies, the product
range is expanding and getting cheaper. Rate 1 /2 Viterbi decoders are available and
popular, and may incorporate puncturing for higher rates or for adaptable coding
schemes (although the latter involve many other system complexities and costs).
Certain Reed Solomon codes are being adopted as standard and codecs are becoming
available. Often this will be a spin-off from a particular mass market, such as
compact disc players.

Although it seems a shame to sound a negative note, I believe that many interesting
ideas in error control will never be implemented simply because their potential market
will not make the development costs worthwhile. Similarly many engineers working on
error control techniques will never be allowed to design the best system technically;
they will be forced to choose the best of what is available. Those who wish to have a
relatively free hand should work on applications where the potential market is large or
not very cost-sensitive. The same constraints apply, of course, in many other areas.
Some would say that is what engineering is all about and error control is, after all, an
engineering topic rather than a mathematical one. The mathematics is the servant of
the engineer, and the engineering is the really difficult part.

1.16 CONCLUSION

In this chapter we have been concerned mainly with general concepts and back-
ground. There are several good modern books on digital communications that
include a treatment of error control codes [2–4]. These can be consulted for more
information about digital modulations implementation issues and applications. They
can also be used to provide an alternative view of error control coding issues that will
be treated later in this book. Another large subject given very brief treatment here is
the general topic of information theory, and other sources [5, 6] are recommended for
further reading.

The next chapter of this book deals with convolutional codes, which are the most
commonly adopted codes in digital communications. Chapter 3 will cover linear
block codes and a subset of these codes, cyclic codes, will be treated in Chapter 4.
The construction of cyclic codes and the decoding methods for multiple-error correc-
tion require a knowledge of finite field arithmetic, and this is covered in Chapter 5.
Chapter 6 then deals with BCH codes, a large family of binary and nonbinary codes,
but concentrating on the binary examples. The most important nonbinary BCH
codes are Reed Solomon codes and these are treated in Chapter 7. Chapter 8 then
deals with performance issues relevant to all block codes. Multistage coding is
introduced in chapter 9. Codes using soft-in-soft-out algorithms for iterative decod-
ing are covered in Chapter 10.

It should not be assumed that the length of the treatment of different codes
indicates their relative importance. Block codes have a very strong theoretical
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basis, but for many applications the chapters on convolutional codes and on iterative
decoding will be the most relevant. Iterative decoding can, however, be applied to
block codes and familiarity with Chapters 4 and 9 will certainly help in obtaining the
most from Chapter 10.

1.17 EXERCISES

1 A transmitter sends one of four possible messages. The most likely occurs with a
probability of 0.5 and is represented by the value 0. The second most likely occurs
with a probability of 0.25 and is given the representation 10. The other two
messages each occur with a probability of 0.125 and are given the representations
110 and 111. Find the mean information content of the messages and the mean
number of bits transmitted. Compare with the case where a fixed length repre-
sentation is used.

2 Find the value of Er /N0 needed by BPSK or QPSK modulation to achieve a bit
error rate of 10–3 over an AWGN channel.

3 Find approximate optimum uniform spacing for 16–level quantization from a
BPSK or QPSK receiver, assuming an AWGN channel with Er / N0 = 2dB.

4 Use Table 1 . 1 to carry out minimum distance decoding of hard-decision sequences
0 1 0 1 1 , 0 1 1 1 0, 1 0 1 00, 1 1 000. Use the method of Section 1 . 8 . 3 to check the results .

5 Prove that, for a linear code, the distance structure is the same viewed from any
codeword.

6 An uncoded channel needs Eb/ N0 of 2 dB to achieve a BER of 10–2 and 10 dB to
achieve a BER of 10–5. A rate 1/ 2 code subject to random bit errors with probabil-
ity of 0.01 produces an output BER of 10–5. What is the coding gain at 10–5 BER? If
the coded channel operates at Eb/ N0 = 5 dB, what is the uncoded BER?

7 Find the maximum coding gain that could be achieved for BER = 10–6 using
QPSK modulation over an AWGN channel and a rate 1/3 code.

8 A block code has dmin = 8. Find the maximum guaranteed error detection if
maximum error correction is to be carried out. How would this change if only
single-error patterns were to be corrected? Find the amount of error correction
achievable if an extra three bits in error should be detectable.

9 A source transmits a sequence of numbered frames, inserting repeats of previous
frames as required for ARQ. The second, sixth and ninth frames transmitted are
corrupted on reception. Show the flow of frames between the transmitter and
receiver to support a GB3 protocol.
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10 Assuming the same propagation delays and the same corrupted frames as
question 9, find how many frame intervals would be needed to transfer 7 frames
if SR-ARQ were used, assuming

(a) an infinite receiver window
(b) a minimum receiver window to operate SR-ARQ.

Quantify the receiver window size needed for part (b).
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2
C onvolutional codes

2.1 INTRODUCTION

In Chapter 1 it was explained that codes for error control generally fell into two
categories, namely block codes and convolutional codes. Many telecommunications
applications have used convolutional codes because of their ability to deliver good
coding gains on the AWGN channel for target bit error rates around 10–5.

As background to this chapter most of the first chapter is relevant, even though the
examples in Chapter 1 were based on a block code. The main decoding method,
Viterbi decoding, is indeed an implementation of the maximum likelihood decoding
that was explained there. This means that the discussion on soft-decision decoding
will be relevant as it will almost always be implemented in conjunction with Viterbi
decoding. Convolutional codes are also linear, as previously defined.

2.2 GENERAL PROPERTIES OF CONVOLUTIONAL
CODES

An example of the schematic diagram of a convolutional encoder is shown in Figure
2.1. Note that the information bits do not flow through directly into the code-stream,
i.e. the code is not systematic. Nonsystematic codes give better performance than
systematic codes when Viterbi decoding is used.

The way in which the encoder works is that the input bit is modulo-2 added to
stored values of previous input bits, as shown in the diagram, to form the outputs

input

Figure 2.1 Convolutional encoder
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which are buffered ready for transmission. The input bit is then moved into the shift
registers and all the other bits shift to the left (the leftmost, i.e. oldest, stored bit being
lost).

We can construct a truth table for the encoder as follows. If the state of the encoder
is taken as the content of the registers, with the oldest bit to the left and the most
recent to the right, then the possible cases are shown in Table 2.1.

The output bits are listed with the output from the upper encoder branch to the left
of the bit from the lower branch. Note that the value of the rightmost bit of the end
state is the same as the input bit because the input bit will be stored in the rightmost
register.

Consider as an example the encoding of the sequence 1 0 1 1 0 1 0 . The encoder will
start with the registers clear, i.e. from state 00 and the encoding operation will
proceed as shown in Table 2.2.

The start state for any operation can easily be found from the previous two inputs.
Note that at the end of the sequence the encoder has been cleared by applying two
more zeros to the input. This is because the decoding will be more robust if the
encoder finishes in, as well as starts from, a known state.

Table 2.1 Truth table for convolutional encoder

Start state Input End state Output

00
00
01
01
10
10
11
11

0
1
0
1
0
1
0
1

00
01
10
01
00
01
10
11

00
11
10
01
11
00
01
10

Table 2.2 Encoding example

Input
Output

1
11

0
10

1
00

1
01

0
01

1
00

0
10

(0)
11

(0)
00

2.3 GENERATOR POLYNOMIALS

The encoding operation can be described by two polynomials, one to represent the
generation of each output bit from the input bit. For the above code they are

g(0)(D) = D2 + 1

The operator D represents a single frame delay.
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The interpretation of these polynomials is that the first output bit is given by the
modulo-2 sum of the bit that has been remembered for two frames (the D2 term), the
bit remembered for one frame (D) and the input bit (1). The second output is the bit
remembered for two frames (D2) modulo-2 added to the input (1). This can be seen to
correspond to Figure 2.1. Generator polynomials for good convolutional codes are
often tabulated in the literature, represented in octal or in hexadecimal form. The
first polynomial above has coefficients 1 1 1 , represented as 7, and the second
polynomial has coefficients 101 , represented as 5.

The concept of generator polynomials can be applied also to cases where several
bits are input at once. There would then be a generator to describe the way that each
of the input bits and its previous values affected each of the outputs. For example a
code which had two bits in and three out would need six generators designated go(1)(D) and

2.4 TERMINOLOGY

The terms to be used here to describe a convolutional code are as follows:

• Input frame - the number of bits, k0 taken into the encoder at once.

• Output frame - the number of bits, n0, output from the encoder at once.

• Memory order - the maximum number, m, of shift register stages in the path to any
output bit.

• Memory constraint length - the total number, v, of shift register stages in the
encoder, excluding any buffering of input and output frames.

• Input constraint length - the total number, K, of bits involved in the encoding
operation, equal to v + k0.

A term which may cause particular problems in the literature is constraint length.
Used without qualification, it most often means what I have called input constraint
length, but it could also be the memory constraint length. A convolutional code may
be termed a (n0, k0, m) code; however, the value of ko is almost always equal to 1 and
so the codes are most commonly designated by their rate, k0/ n0, and their constraint
length (however defined).

For our example, k0 = 1, n0 = 2, m = 2, v = 2, and K = 3. The code is a (2, 1, 2)
convolutional code, or a rate 1 /2 code with input constraint length 3.

Convolutional codes are part of a larger family of codes called tree codes, which
may be nonlinear and have infinite constraint length. If a tree code has finite
constraint length then it is a trellis code. A linear trellis code is a convolutional
code.
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2.5 ENCODER STATE DIAGRAM

If an encoder has v shift register stages, then the contents of those shift registers can
take 2V states. The way in which the encoder transits between states will depend on
the inputs presented in each frame. The number of possible input permutations to the
encoder in a single frame is 2k0. Hence if v > k0 not all states can be reached in the
course of a single frame, with only certain states being connected by allowed transi-
tions. This can be seen in the example case from Table 2.1.

The encoder states can be represented in diagrammatic form with arcs to show
allowed transitions and the associated input and output frames, as in Figure 2.2
which shows the transitions for the encoder of Figure 2.1. As in the truth table, the
states are labelled according to the contents of the encoder memory and the bits in
the output frames are listed with the bit out of the upper branch shown to the left of
the bit from the lower branch. Since the input frame value is represented in the end
state number, it is not always necessary to include input values in the state diagram.

The memory constraint length is easily determined from the number of states. The
number of branches from each state (and the labelling if inputs are shown) allows the
size of the input frame to be determined. The shortest path from the zero state
(memory clear) to the state where the memory is filled with ones gives the memory
order.

It is also fairly easy to work in reverse order and to derive the encoder circuit or the
generator polynomials from the state diagram. To find the generator polynomials
describing the output contribution of a single bit of the input frame, we start with the
encoder clear and apply a 1 to the input. The corresponding outputs show whether
the input is connected to that output branch, i.e. they give the unity terms in the
generator polynomials. Next we apply a zero to the input so that the outputs show
whether the stored value from the previous frame is connected to the corresponding
output branch, i.e. they give the coefficients of D in the generator polynomials.
Similarly, applying further zeros to the input will give the coefficients of the higher
powers of D.

For our example, the first output frame would be 11, indicating that the unity term
is present in both polynomials. The second output frame of 10 indicates that the D
term is present in g(l)(D) but not in g(0)(D). The third output frame of 11 indicates
that both polynomials contain the D2 term.

Figure 2.2 Encoder state diagram
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2.6 DISTANCE STRUCTURE OF CONVOLUTIONAL
CODES

As with block codes, there are concepts of distance which determine the error-
correcting properties of the code. Because of linearity, one can assess the distance
properties of the code relative to the all-zero sequence but, since the code sequence
may be infinite in length, it is not at all clear how long the sequences to be compared
should be. In particular, one might think that there will be an infinite number of
differences between two different sequences of infinite length. However, this is not
the case because two infinite sequences can differ over a finite length of time.

We want to compare two paths which start from the same point and then diverge
but later converge. Linearity means that we can use any path as the baseline for our
comparison, and as in the block code case, the all-zero sequence is convenient. We
will therefore look for a code path which leaves the zero state, returning to it some
time later and in the process producing a minimum number of Is on the output. In
other words, we want the lowest weight path that leaves state zero and returns to that
state. Such paths are known as free paths. Looking at the state diagram, there are
really only two sensible paths to consider. The path connecting states 00–01–10–00
results in output frames 11 10 11, Hamming weight 5. The path connecting states
00–01–11–10–00 results in output frames 11 01 01 11, Hamming weight 6. The min-
imum weight is therefore 5 and we term this the free distance (dfree or d) of the code.

2.7 EVALUATING DISTANCE AND WEIGHT
STRUCTURES

The performance of convolutional codes depends not only on the free distance of the
code but also on the number of paths of different output weights and the weight of
the input sequences giving rise to those paths. It is therefore important to evaluate
accurately the important paths through the state diagram. The method is explained
in the context of the previous example, based on the state diagram of Figure 2.2. The
start point is to rearrange the state diagram so that the state 00 appears at each end of
a network of paths, thus representing both the start and end points of the paths of
interest. This is shown in Figure 2.3.

As the encoder moves from state to state, three things of possible interest happen.
The length of the code sequence increases and the weights of both the input and
output sequences either increase or remain the same. We define operators W,
corresponding to an increase of 1 in the output weight, L, corresponding to an
increase of one frame in the code sequence length and /, representing an increase of
1 in the input sequence weight. We can now label each arc of the modified state
diagram with the appropriate operators, as has been done in Figure 2.3.

We let Xi represent the accumulated weights and lengths associated with state i and
multiply the initial values by the values against the arcs to represent final state values.
Of course each state can be entered from more than one start state, but if we show the
sums of the contributions from each of the possible start states, all the possible paths
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Figure 2.3 Modified encoder state diagram

through the encoder will appear as separate terms in the final expression. We can
thus set up a number of simultaneous equations representing the different states as
follows:

X01 = W2LI X 00i+LI X 10 (2.1)

X10 = WL X01 + WL X 11 (2.2)

X11 = WLI X01 + WLI X11 (2.3)

(2.4)

We want to know what happens when moving from state 00i to 00f, so we divide
Xoof by X00i to yield the input and output weights and the lengths of all the possible
paths. This is achieved as follows. From (2.3) we obtain

X11 = X01 1 - WLI

Substituting into (2.2) gives

WL
U1 1 – WLI

Now eliminate X01 from (2.1)

~ **X/ - LI = X001 W2LI

X10 (1— WLI — WL2I) = X00i W
3L2I

Finally, substituting into (2.4) gives
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X00I 1 — WLI(\ + L)

A binomial expansion on this expression gives

- W5L3I[1 + WLI(1+L)+ W2L2N2(1 + L)2 + • • •}

= W5L3I + W6L4I2 + W6L5I2 + W1L513 + 2W7L6I3 + W7 L713 • • •

This tells us that between states 00 and 00 there is one path of length 3, output
weight 5 and input weight 1; a path of length 4, output weight 6 and input weight 2; a
path of length 5, output weight 6 and input weight 2; a path of length 5, output
weight 7 and input weight 3; two paths of length 6, output weight 7 and input weight
3; a path of length 7, output weight 7 and input weight 3, etc.

The expression for X00f / X00i is called the generating function or the transfer
function of the encoder. It will be used to find the performance of convolutional
codes with maximum likelihood decoding in Section 2.12.

2.8 MAXIMUM LIKELIHOOD DECODING

In principle the best way of decoding against random errors is to compare the
received sequence with every possible code sequence. This process is best envisaged
using a code trellis which contains the information of the state diagram, but also uses
time as a horizontal axis to show the possible paths through the states. Code trellises
get very complex for large constraint lengths and so we shall take just one example,
shown in Figure 2.4, for the encoder of Figure 2.1. The encoder states are shown on
the left and the lines, moving right to left, show the allowed state transitions. The
labels against each transition are the encoder outputs associated with each transition.
As for the state diagram, the inputs to the encoder have not been shown as they can
be deduced from the end state.

oo oo oo 00

10

Figure 2.4 Code trellis
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The apparent problem with maximum likelihood decoding is that over L code
frames there are 2lk0 paths through the trellis, and comparing what is received with
every possible path seems unmanageable. Fortunately, Viterbi realized that not all of
these paths need be considered, and that at any stage only 2V paths need to be
retained, provided the errors show no correlation between frames (memoryless
channel). He devised a technique which simplifies the problem of decoding without
sacrificing any of the code's properties.

2.9 VITERBI ALGORITHM

2.9.1 General principles

If we look at all the paths going through a single node in the trellis and consider only
the part from the start of transmission up to the selected node, we can compute the
distance between the received sequence and each of these trellis paths. When we
consider these distance metrics we will probably find that one of the paths is better
than all the others. Viterbi realized that if the channel errors are random then the
paths which are nonoptimal at this stage can never become optimal in the future.
In other words, we need keep only one of the paths reaching each node. The Viterbi
method therefore keeps only 2V paths through the trellis and at each frame it
decides which paths to keep and which to discard. The procedure at each received
frame is:

(a) For each of the 2V stored paths at the start of the frame, compute distance
between the received frame and the 2k0 branches extending that path. This is
called a branch metric.

(b) For each of the 2V nodes which represent the end states of the frame, construct
the 2k0 paths which terminate at that node. For each of those paths, evaluate the
sum of branch metrics from the start of the sequence to reach an overall path
metric. Note that the path metric can be computed as the sum of the branch
metric and the previous path metric. Select and store the best path.

2.9.2 Example of Viterbi decoding

Consider an example based on Figure 2.4. Let us assume that we receive the sequence
11 10 10 01 11. In the first frame, the computation of branch and path metrics is as
shown in Figure 2.5. In this frame, only the paths originating from state 00 have been
considered. The received sequence has a Hamming distance of 2 to the sequence
(00) that would be transmitted if the encoder stays in state 00 and a Hamming
distance of 0 to the sequence (11) that would be transmitted if the encoder transits
from state 00 to state 01. As this is the start of the example, the branch metrics,
shown in parentheses, and the path metrics, shown against each possible end state,
are the same.
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In the second frame, the Hamming distance from the received sequence 10 is
computed for each of the four possible branches as shown in Figure 2.6. The path
metric to each end state is computed as the branch metric plus the previous path metric.

The decoding of the third frame, for which the sequence 10 is received, is shown in
Figure 2.7. Firstly the eight possible branch metrics have been computed and are
shown in parentheses. Next the path metrics are computed as the sum of the branch
metric plus the previous path metric. From this point, however, it is seen that there
are two possible ways to reach each end node and so both path metrics are computed,
with the lower value and the corresponding path being retained. The retained paths
have been shown in bold in the figure.

00

00%

Figure 2.5 Metrics for received 11 on the first frame

(1) 3

Figure 2.6 Metrics for received 10 on the second frame

10

1 1 –2 (0) 2

Figure 2.7 Metrics for received 10 on the third frame
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In the fourth frame, the received sequence is 01. The branch metrics are different
from those of the previous frame, but otherwise the processing of this frame is similar
to that of the previous frame. This is shown in Figure 2.8.

In the final frame of our example, the received sequence is 11 and the result of the
branch and path metric computation is shown in Figure 2.9.

Our example is now completed, but it is by no means clear what the solution is as
there are four retained paths. Remember, however, that it was stated earlier that we
would clear the encoder at the end of the data. Assuming that has happened, the
encoder must end in state 00. Therefore, provided we know that the end of the
transmitted sequence has been reached, we choose the path that finishes in state 00.
This is true, regardless of the path metrics at the end.

The path ending in state 00 is seen to have gone through the state transitions
00–01–11–11–10–00. The first transition (00–01) must have been caused by a 1 on the
encoder input since the final state ends in 1. Similarly the second (01–11) and third
(11–11) transitions must also have resulted from a 1 at the encoder input. The fourth
(11–10) and fifth (10–00) transitions result from a 0 at the encoder input. The
complete decoded sequence is therefore 1 1 1 0 0 . The two final zeros, however,
will have been the flushing or clearing bits, not real data. The decoded data is
therefore 1 1 1 .

10

11

(1) 2

2 (2) 1

Figure 2.8 Metrics for received 01 on the fourth frame

00

1 (1)

Figure 2.9 Metrics for received 11 on the fifth frame
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2.9.3 Issues arising

There are some issues that will arise in practical implementations of Viterbi decoding
that were not addressed in the above example, but can be dealt with quickly.

One obvious problem is that two paths might merge with the same metric. In that
case, it will be necessary to make an arbitrary choice between them. Nothing in the
future will make that choice easier, so there is no point in deferring the decision.
Looking at Figure 2.9, it can be seen that many of the paths through the trellis die out
eventually, so there is at least a chance that the arbitrary choice may not figure in the
final solution.

We have already stated that, at the end of the example, we choose the path ending
in state 00, because we know that the encoder will be returned to that state at the end
of the sequence. In practice, however, the transmitted sequence may be very long and
waiting until the end may not be acceptable. Looking again at Figure 2.9, we can see
that all of the paths following the transition 00-00 in the first frame have died out by
the end of the fourth frame. The path 00–00-00 is not retained at the end of the third
frame. The path 00-00–01 is extended further to state 10 in the third frame, but
neither of its extensions survives the fourth frame. Therefore all the paths being
retained from frame 4 onwards start with the transition 00–01. As a result, we know
after the fourth frame that the first data bit will be decoded as 1. There is therefore a
possibility that we can commence decoding before the end of the sequence when all
retained paths agree in the early frames. This point will be further examined in the
next section, along with matters such as soft-decision decoding and organization of
the path and metric storage.

2.10 PRACTICAL IMPLEMENTATION OF VITERBI
DECODING

In this section we shall see an example that will extend on the previous one to
incorporate several other practical features. Firstly, we shall organize the path
storage in a reasonably efficient way. Secondly, soft-decision decoding will be imple-
mented. In addition, certain other practical features will also be discussed.

We need to consider the organization of the path and metric storage. We would
like to be able to identify the path finishing at each end state without the need to
inspect the stored values; in other words, we would like a particular storage location
to be associated with a particular end state. However, when we extend a path it may
then finish in a different state, but we do not want to have to swap paths between
locations. Obviously an extended path could overwrite the path in the appropriate
location, but not until the overwritten path itself has been extended. We also want to
minimize the amount of storage needed.

One possible solution is to record at each node the identity of the previous node in
the survivor path, as shown in the above example. There will need to be a separate
circuit or routine to trace back the desired path to complete the decoding and, if this
is to be done concurrently with processing of received frames, the stored paths will
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continue to grow during the trace back operations. However there will be no need to
manipulate the contents of registers.

Another possible solution is to have two sets of registers, a set A associated with
the start states at the beginning of the frame and a set B associated with the end states
after the path extensions. For each location in the B registers, we create the two paths
that merge at the corresponding location and store the one with the better path
metric. When all path extensions are finished, we swap the pointers associated with
the set A and the set B so that the end states for one frame become the start states for
the next and the start states for the previous frame become irrelevant and can be
overwritten. For this approach there is no need to trace back any path because the
entire path is held in a single register. There is a need, however, to copy the contents
of several registers with each new frame.

The solution to be adopted here will be similar to this second approach. There will
again be two registers associated with each end state, but these will be used to hold
all the path extensions. The values will then be compared in pairs and the good path
will overwrite the less good one. For our example, denote the registers A00, A01,
A10, Al 1, B00, B01, B10, Bl 1. Only the A registers are used at the start of the frame.
The extensions of the path in register A00 will be written in BOO and B01. The
extensions from register A01 will be stored in registers B10 and B11. The path in
register A10 will extend to locations A00 and A01. The path in Al1 will extend to
A10 and All . Finally both the A and B registers for a given end state will be
compared, the better metric chosen and the good path written into the A register
for subsequent extension.

As stated in Chapter 1, received bits could possibly be given soft-decision values
from 0 to 7 and distance computed on the basis that transmitted bits have a
numerical value of 0 or 7. For this example, however, we shall use a correlation metric
which effectively measures similarity between the received sequence and the code
sequence and can take positive or negative values. This is the metric that was adopted
for the block code soft-decision decoding example in Table 1.16.

Maintaining the 8-level or 3-bit quantization of the received bits, the levels will be
interpreted as having values 3.5, 2.5, 1.5,0.5, –0.5, –1.5, –2.5, –3.5. The path metric
associated with a received level r, will be +ri for a transmitted 1 and -r, for a
transmitted 0 and therefore for a received frame the branch metrics will be in the
range -7 to +7 in steps of 1. As an example, we shall consider the received sequence
+3.5 +1.5, +2.5 –3.5, +2.5 – 3.5, –3.5 + 3.5, +2.5 +3.5.

As we extend the paths, the metrics will grow. However the difference between
the maximum and minimum metric is bounded and we can always obtain a unique
value for any metric difference provided the worst case range of the metrics is
less than one half the range allowed by the storage registers. In this example, an
8-bit storage register is assumed, representing values from +127 to –128 in steps
of 1. Also, to keep the operations the same for every frame, we load the path metrics
for all nonzero states with a large negative value (taken as —64) at the start of
the decoding to ensure that only the path starting from state zero survives the first
few frames.

At the start of the example, the register contents are as shown in Table 2.3. The B
registers are not used as the start point for path extensions, so their content is not
relevant.
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In the first frame, the received sequence is +3.5 + 1.5. The path metrics are now as
shown in Table 2.4, with the metrics in locations BOO and B01 representing the
extensions from state 00, and all the others being produced as a result of the initial
loading on nonzero states.

Now comparing in pairs and writing the higher metric path into the A register give
the result shown in Table 2.5. The B register content is not shown as it is not used in
subsequent stages.

Table 2.3 Initialization of stored paths and metrics

Location Path Metric

A00 0
A01 -64
A10 -64
All -64
BOO
B01
B10
Bll

Table 2.4 Stored paths and metrics after first frame extensions

Location Path Metric

A00
A01
A10
Al l
BOO
B01
B10
Bll

0
1
0
1
0
1
0
1

-69
-59
-66
-62
_5

+5
-62
-66

Table 2.5 Stored paths and metrics after first frame path merging

Location Path Metric

A00 0 -5
A01 1 +5
A10 0 -62
All 1 -62
BOO
B01
B10
B l l
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In the second frame, the received sequence is +2.5, -3.5, producing path metrics
shown in Table 2.6.

Writing the good path of each pair into the A register gives the values shown in
Table 2.7.

In the third frame, the received sequence is +2.5 - 3.5. The path metrics are shown
in Table 2.8.

Writing the good path of each pair into the A register gives the results shown in
Table 2.9.

Table 2.6 Stored paths and metrics after second frame extensions

Location Path Metric

A00 00 -63
A01 01 -61
A10 10 -68
All 11 -56
BOO 00 -4
B01 01 -6
B10 10 +11
Bll 11 -1

Table 2.7 Stored paths and metrics after second frame path merging

Location Path Metric

A00 00 -4
A01 01 -6
A10 10 +11
All 11 -1
BOO
B01
B10
Bll

Table 2.8 Stored paths and metrics after third frame extensions

Location Path Metric

A00 100 +10
A01 101 +12
A10 110 -7
All 111 +5
BOO 000 -3
B01 001 -5
B10 010 0
Bll 011 -12
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In the fourth frame, the received sequence is –3.5 +3.5. The path metrics are
shown in Table 2.10.

Writing the good path of each pair into the A register gives the result shown in
Table 2.11.

In the fifth frame of the example, the received sequence is +2.5 +3.5. The path
metrics are shown in Table 2.12.

Table 2.9 Stored paths and metrics after third frame path merging

Location Path Metric

A00 100 +10
A01 101 +12
A10 010 0
All 111 +5
BOO
B01
B01
Bll

Table 2.10 Stored paths and metrics after fourth frame extensions

Location Path Metric

A00 0100 0
A01 0101 0
A10 1110 +12
All 1111 -2
BOO 1000 +10
B01 1001 +10
B10 1010 +5
Bll 1011 +19

Table 2.11 Stored paths and metrics after fourth frame path merging

Location Path Metric

A00 1000 +10
A01 1001 +10
A10 1110 +12
All 1011 +19
BOO
B01
B10
Bll
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Table 2.12 Stored paths and metrics after fifth frame extensions

Location Path Metric

A00 11100 +18
A01 11101 +6
A10 10110 +20
All 10111 +18
BOO 10000 +4
B01 10001 +16
B10 10010 +9
Bll 10011 +11

Table 2.13 Stored paths and metrics after fifth frame path merging

Location Path Metric

A00 11100 +18
A01 10001 +16
A10 10110 +20
All 10111 +18
BOO
B01
B10
Bll

Writing the good path of each pair into the A register gives the result shown in
Table 2.13.

The example concludes by selecting the path that finishes in state 00, i.e. the path in
register A00, even though it is not the path with the best metric. As in the hard-
decision example, the decoded sequence is 11100, of which the last two zeros are the
clearing bits.

Note that from the end of frame four all the registers contained paths starting with
the data bit value 1. This bit could have been decoded at that point and there would
be no possibility of subsequent change. In practice deciding by inspection when to
decode a particular input frame would be time-consuming, so either decoding is
carried out at the end of the sequence or else a fixed delay is imposed, usually of
the order of four or five memory orders. This is the typical upper limit to the length
of a decoding error event, after which two trellis paths that have diverged will have
merged together again. By maintaining a path length of this order, there is a high
likelihood that the stored paths will all agree at the beginning so that the probability
of error resulting from a lack of path agreement is small compared with the usual
values of probability of decoding error.

For this example code, it might be decided to allocate one byte (eight bits) to each
path storage location so that after eight frames the locations are full. The first bit is
taken from one of the registers as the data bit for the first frame and all the registers
are then shifted left to leave a free location for the next frame. Decoding for each
subsequent frame proceeds in the same way until the end of the sequence is reached,
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when the entire decoding can be completed from register A00. Before the end, it does
not matter which register is used for each decoded data bit since all registers are
assumed to agree at the beginning, but in practice it is easiest to stick with register
A00. Alternatively, it might be decided to use the start of the path with the best
metric for the decoded data.

The decoding delay to be implemented can have a measureable effect on decoded
error rates. For any finite register size, there is always a finite possibility that the
stored paths will not agree when the registers are filled. As register size is increased,
the measured error rates for a given channel condition will reduce, but a law of
diminishing returns will apply. The point where this happens depends on the inherent
error rates of the channel—code combination, but convolutional coding schemes are
often designed to deliver bit error rates of 10-5 or perhaps 10-6. At these levels, a
register length of four to five memory orders is found to cause negligible degradation
to the performance, compared with decoding at the end of the sequence.

2.1 1 PERFORMANCE OF CONVOLUTIONAL CODES

The calculation of performance of a convolutional code will draw on the transfer
function of the code as described in Section 2.7. It will use a technique known as a
Union Bound calculation. The terminology derives from the fact that the size of the
union of two sets is at most the sum of the sizes of the individual sets. The principle
can be understood as follows.

Suppose we roll an unbiased dice and are interested in the possibility of obtaining a
6. The probability of this is just 1/6. Now suppose we are allowed two throws to
obtain a 6; the probability of success is now 2/6, right? Wrong! By that logic, with six
throws there would be a probability 1 of success, but it is obvious that is not the case.
We are allowed to add probabilities only when the events described are mutually
exclusive, i.e. there is no chance that both will occur. In our example, we could get a 6
both times and the probability of that happening is exactly the overestimate of
probability of success.

More generally, for two independent events 1 and 2 which occur with probabilities
p\ and p2, respectively, the probability that either event will occur can be calculated
as 1 minus the probability that neither event will occur:

p(1 and 2)= 1 -(1 - p 1 ) - ( 1 - p2) = p1 + P2 - p1 . P2

We could also phrase this as

p(1 and 2) <p1+ pi

where the equality would apply if the events are mutually exclusive. This is exactly
the form of the Union Bound computations in which we shall express the probability
of at least one of a number of events occurring as being upper bounded by the sum of
the individual probabilities.
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Now let us consider the issue of decoding errors. We assume that the transmitted
sequence was the all-zero sequence, but that the noise on the channel causes the
decoder to choose a different sequence which leaves state zero and later returns to it.
This sequence will be of weight w and will correspond to a data sequence of weight i.
The incorrect choice of this sequence will therefore result in i bit errors at the output
of the decoder.

When considering the probability of incorrectly choosing a particular weight w
path, it can be seen that it does not depend on the location of the ones in the code
sequence or on how widely they are separated. In choosing between two paths, we need
consider only the positions in which they differ and we could, without loss of general-
ity, compare a path of w zeros with a path of w ones. The probability of that particular
error therefore depends only on the weight. We shall denote this probability p(w).

Suppose there are Tw.i paths of weight w and input weight i in the code. The
probability that a particular input frame will correspond to the start (or the end) of a
decoding error is, using the Union Bound calculation,

(2.5)

Each of the events being considered will be associated with / bit errors and
calculation of the output bit error rate must be normalized to k0, the number of
input bits in the frame:

BER ^ - lT". < PW (2.6)

The procedure for calculating output bit error rates is therefore as follows:

From the transfer function, eliminate L (by setting L = 1) to find T ( W , I ) =
E V T • WWJ'„• 2-»j l »•• ' ** l •
For each w, calculate Aw = ̂ , /T,,.,.

For each w, evaluate p(w) (as shown below).

Find

BER<^-^Awp(w} (2.7)

For our example code, we had

T(W, L, /) = W5L3/ + W6 L4 12 + IV6 L5 12 + JT7L5/3 + 21V1 L6 13 + W7 'L7 73 • • •

Eliminating L gives T(W, I) = W5I + 2W6I2 + 4 W 3 I 3 + . . . . from which we find
that AS = 1, A6 = 4 and A7 = 12. Although these coefficients are growing with
higher values of w, the value of p(w) usually declines rapidly with increasing w so
that only the first few terms are generally needed.
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To fmd p(w) for imquantized soft-decision demodulation of binary PSK (or QPSK)
on the AWGN channel, recall that the uncoded BER is p = 1/2 erfc^Er/No, where Er

is the energy per received bit and N0 is the single-sided noise power spectral density.
When using a code of rate R, the value of Er is equal to REb, where Eb is the energy per
bit of information. However, the decoder will be able to consider w bits in discrimin-
ating between sequences, so that the signal energy involved in the comparisons will
effectively be increased by a factor of w. As a result, we obtain

(2.8)
N0

This is substituted in Equation (2.7).
Using 8-level (3-bit) quantization of the soft decisions degrades the performance

by around 0.25 dB.
For hard-decision demodulation, the value of p(w) is found to be

p(w) = 2V>0 -/>) (2-9)

where p is the bit error rate from the demodulator.

2.12 GOOD CONVOLUTIONAL CODES

Assuming Viterbi decoding, the memory order of convolutional codes is likely to be
in single figures. At every frame received, the decoder has to update 2v states and for
each of these states there are 2k0 paths to be evaluated. Thus the amount of compu-
tation in the decoder is roughly proportional to 2v+k0 = 2K. This sets an upper limit
to constraint lengths of the codes which can be decoded in this way. The limit
depends on technology and required bit rate, but figures of K — 1 to 9 are commonly
quoted as typical present day maxima. Larger constraint lengths, which mean more
powerful codes, can only be decoded at reasonable rates by other techniques such as
sequential decoding to be described in Section 2.16.

The generators, in octal form, of some known good rate 1 /2 convolutional codes
are shown in Table 2.14.

Table 2.14 Rate 1/2 convolutional codes

2
3
4
5
6
7
8

7, 5
17, 15
35, 23
75, 53
171, 133
371,247
753, 561

5
6
7
8
10
10
12
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The most commonly encountered convolutional code is rate 1/2 and has input
constraint length K = 7 and generators

g(l)(D) = D6 + D5 + D4 + D3 + 1

The coefficients used to calculate output bit error rate for this code are A10 = 36,
A12 = 211, A14 = 1404, ,4160 = 11 633.

Finding the above good convolutional codes was done by computer search based
on methods that we have now encountered. For a particular rate and constraint
length, all possible generator polynomials can be constructed and the transfer func-
tion of the resulting code can be generated by computerized methods. Then the
Union Bound performance can be plotted. Obviously one does not wish to go through
the entire process for codes that are definitely not optimum, and to enable some
screening, the free distance will give a first indication of a code's likely performance.
Nonsystematic convolutional codes allow greater values of dfree to be obtained than
for systematic codes. Reversing the order of a set of connections from the storage
registers will not affect the code's properties, so certain possibilities can be grouped
together. In addition, some codes will be eliminated on the basis that they exhibit
catastrophic error propagation, as explained below.

Considering the state diagram of a code, suppose that another state, apart from
state zero, had a zero-weight loop returning to it. It would now be possible to devise a
code sequence which starts from the zero state and ends with a sequence of zeros, but
in which the encoder has not returned to the zero state. Moreover, since the encoder
state is the result of recent inputs, it cannot be a sequence of input zeros that is
maintaining the encoder in that nonzero state. Thus comparing this sequence with
the all-zero sequence, we could have two information sequences which differ in an
infinite number of places, but which when encoded differ in a finite number of places.
This has serious implications for the decoding process because it means that a finite
number of channel errors could be translated into an infinite number of decoding
errors. This phenomenon is called catastrophic error propagation. Fortunately it is
possible to spot catastrophic properties of codes from the existence of common
factors in the generator polynomials for the code or in the inability to solve for the
code-generating function.

Example of catastrophic error propagation

A convolutional code has generator polynomials

= D2 + 1

which have a common factor D + 1. An input sequence 1 1 1 1 ...results in an output
sequence 11 01 00 00. . ., from which we can see that a simple error sequence of finite
length could cause reception of 00 00 00 00 ... which decodes to an all-zero sequence. Thus
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a finite reception error results in an infinite number of decoding errors, i.e. there is cata-
strophic error propagation.

2.13 PUNCTURED CONVOLUTIONAL CODES

Although it is possible to define good generator sets for conventional codes of any
rate and to use Viterbi decoding, the computation may become rather complex at
high rates. Take, for example a rate 3/4 code for which v = 3 and K = 6. There are 64
path computations in the decoding of every 4-bit output frame, each involving a 4-bit
comparison. Now suppose instead we use a rate 1/2 code and delete two output bits
every three frames. For this code, we keep v = 3 for comparability, but K = 4 giving
16 path computations per frame with three frames required to give the equivalent of
the 4-bit output frame of the original. Thus we have 48 comparisons, each of only 1 or
2 bits. Similar considerations show that the computational gains are even greater at
higher rates, and are even worthwhile for rate 2/3.

Of course, computational considerations would be worthless if the codes produced
by the above process, known as puncturing, did not produce codes of comparable
performance. Fortunately, however, there are many punctured codes with a perform-
ance which, in terms of coding gain, comes within 0.1 or 0.2 dB of the optimum code.
There is therefore little point in using codes other than punctured codes for higher
rates. Table 2.15, based on data from [1], shows rate 1/2 codes that can be punctured
to produce good rate 2/3 or 3/4 codes. For the rate 2/3 codes, the first two
generators (octal) are used to produce the first 2-bit output frame and in the next
frame only the third generator (which is the same as one of the other two) is used. For
rate 3/4 codes there is then a third frame in which the fourth generator is used.

Apart from the computational consideration, punctured convolutional codes are
important because of the possibility of providing several codes of different rates with
only one decoder. It would be possible, for example, to operate with a rate 3/4 code
in reasonably good reception conditions but allow the transmitter and receiver to
agree criteria for a switch to rate 2/3 or 1/2 if noise levels increased and higher values
of doo are required. Such a scheme would be known as adaptive coding.

Table 2.15 Rate 1/2 codes punctured to rates 2/3 and 3/4

Generators d^, Generators d^, Generators

V

2
3
4
4
5
6
6
7

R = 1/2
7, 5
15, 17
31, 33
37, 25
57, 65
133, 171
135, 147
237, 345

5
6
7
6
8
10
10
10

R = 2/3
7, 5, 7
15, 17, 15
31, 33, 31
37, 25, 37
57, 65, 57
133, 171, 133
135, 147, 147
237, 345, 237

3
4
5
4
6
6
6
7

R = 3/4
7, 5, 5, 7
15, 17, 15, 17
31, 33, 31, 31
37, 25, 37, 37
65, 57, 57, 65
133, 171, 133, 171
135, 147, 147, 147
237, 345, 237, 345

3
4
3
4
4
5
6
6
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2.14 APPLICATIONS OF CONVOLUTIONAL CODES

Convolutional codes have been widely applied to satellite communications. Provided
the earth station is well within the antenna footprint, the noise characteristic of
communications to geostationary satellites is reasonably represented by the AWGN
model, although there are variations with time depending on atmospheric conditions.
The main application is digital speech and the required BER is 10-5. All this makes it
suitable for convolutional codes and the rate 1/2 K = 7 code described in Section 2.12
has been regularly adopted. The performance of this code was plotted in Chapter
1 (Section 1 .9). More recent challenges for satellite communications, however, include
the need for nongeostationary orbits to support mobile networks. The codes used for
cellular mobile communications will therefore be of interest for satellite communi-
cations too.

In cellular mobile communications, the channel characteristic is less favourable
with burst errors arising from multipath (reflections), shadowing of the signal and
cochannel interference (reuse of the same frequency in other cells), but the need to
achieve coding gain at moderate target bit error rates again dictates that convolu-
tional codes should be used. Because of the hostile channel environment, the voice
coders (vocoders) are designed to work well with bit error rates of 10-3 and accept-
ably with error rates well above this.

The GSM standard for digital mobile communications is a time division multiple
access (TDMA) system providing a bit rate on each channel of 22 800 bits per second.
This is achieved in time-slots which hold 114 bits of data (in fact the term burst is used
for the time-slots, but as mobile channels suffer bursty errors this would result in two
possible meanings of the word). The principal application is digital voice with
vocoders that can produce acceptable quality even in the presence of bit errors at a
rate of 1 % or more. To deliver coding gain at this level, convolutional codes are
needed with interleaving to protect against the channel error bursts. The code used is
rate 1/2k = 5 with generators

= D4 + D3 + 1

g(0)(£>) = D4 + Z3 + D + 1

The original full rate (FR) voice coding standard for GSM used a 13000 bit per
second vocoder operating with 20 mS frames, i.e. 260 bits per frame. Vocoded speech
consists partly of filter parameters and partly of excitation parameters to generate the
speech at the receiver. The subjective effects of errors depend on the parameters
affected and the bits were accordingly classified into 182 class 1 bits (sensitive) and 78
class 2 bits (not sensitive). Of the class 1 bits, 50 (known as class la) were considered
to be the most important and able to be predicted from past values. They were
protected by a 3-bit CRC to allow for some error detection and error concealment
after decoding. The class la bits, the 3-bit CRC and the remaining class 1 bits (class
1 b) were then fed into the convolutional encoder, followed by four zeros acting as
flushing bits to clear the encoder memory. The encoder produces 378 bits
[2 x (178 + 3 + 4)] and the class 2 bits, uncoded, make this up to 456 bits.
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To protect against burst errors a scheme known as block diagonal interleaving is
used. It incorporates an element of convolutional interleaving in which the odd bits
are delayed by four blocks before an interleave pattern which maintains the separ-
ation into even- and odd-numbered bits. The even-numbered bits of the eight blocks
are interleaved into the even-numbered bits of eight time-slots and odd-numbered
bits into odd-numbered bits of eight time-slots, but starting four time-slots later.

The FR standard vocoder is replaced in newer terminals by the EFR standard
which produces higher quality at a slightly lower bit rate of 12200 bits per second.
There are therefore 244 bits in each frame and an extra 16 bits are created by a
preliminary channel coding stage to give extra error protection. The preliminary
coding creates an 8-bit CRC on the 65 most important bits (the 50 class la bits and
15 of the class 1b bits) and also puts a (3, 1) binary repetition code on each of four
class 2 bits judged to be the most important.

The UMTS, IS-95 and CDMA2000 standards for mobile communications use a
K = 9 convolutional code. For rate 1/2 the generator polynomials are

g(0)(D) = D8 + D4 + D3 + D2 + 1

g(1)(D)) = D8 + D7 + D5 + D3 + D2 + D + 1

and for rate 1/3 they are

g(0)(D) = D8 + D7 + D6 + D5 + D3 + D2 + 1

g(1)(D) = D8 + D7 + D4 + D3 + D + 1

g(2)(D) = D 8+D 5 + D2 + D+1

These codes are likely to find their way into future satellites too.

2.15 CODES FOR MULTILEVEL MODULATIONS

For multilevel modulations, the choice of a good convolutional code has to be
judged, not by its free distance, but by the minimum value of squared Euclidean
distance between code sequences when the code is used in conjunction with the
modulation. The initial design of codes of this type was undertaken by Ungerboeck
[2] who adopted a set-partitioning approach to the mapping of symbol values on the
constellation. Consider, for example, an 8-PSK constellation as shown in Figure
2.10. The leftmost bit corresponds to the principal set partition, with adjacent points
separated into different sets. The next bit then partitions closest points in each set
into different subsets. The rightmost bit denotes the point within the subset.

Ungerboeck's approach was to use a specially designed convolutional code to
protect the set partition and leave the remaining bit(s) uncoded. In the 8-PSK
example, a rate 1/2 code would be used for the set partition with one bit left uncoded,
so that the overall code rate is 2/3 and the throughput equivalent to uncoded QPSK.
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The square of the distance between the points corresponding to a change in the
uncoded bit, however, is twice that of the distance between points in the QPSK
constellation, so that, at best, a 3 dB coding gain is achievable if the code protecting
the set partition is sufficiently strong. In practice it is easy to find a code that will give
this level of performance.

This approach can be generalized to higher order constellations and more stages of
partitioning. For example, with 4 or more bits per symbol, it would be possible to
partition three times and to use a rate 2/3 code to protect the partition. The limits to
what can be achieved are shown in Table 2.16, again expressed relative to the
performance of uncoded BPSK/QPSK. It should be noted that high gains from
high rate codes may be difficult to achieve in practice.

ooo

111 ^ "\ 100

101

Figure 2.10 Set-partitioned 8-PSK constellation

Table 2.16 Upper Bounds on performance of Ungerboeck-coded MPSK

m 2 partitions rate 1/2 3 partitions rate 2/3 4 partitions rate 3/4
(dB) (dB) (dB)

1
2
3
4
5
6
7
8

3.01
1.76

-2.32
-7.21

-12.39
-17.73

4.77
3.01

-1.35
-6.41

-11.72

6.02
3.98

-0.56
-5.74

Ungerboeck-coded 8-PSK

Consider the 8-PSK constellation with set partitioning shown in Figure 2.11. The
squared Euclidean distances between points are shown with the distance between the
closest points of a QPSK constellation set to 1, so that the performance of rate 2/3
coded 8-PSK can easily be compared with uncoded QPSK.
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A simple convolutional encoder, with effective rate 2/3, often used in conjunction
with this constellation is shown in Figure 2.12. The rightmost bit is uncoded and a
rate 1 /2 code used to determine the other two bit values.

The state diagram for this code is shown in Figure 2.13. Note that there are two
paths between each pair of states, depending on the value of the uncoded bit. The
squared Euclidean distance to each corresponding transmitted point is shown in
parentheses.

111

110
101

001

Figure 2.11 Squared Euclidean distances in 8-PSK constellation

Figure 2.12 Encoder for 8-PSK

110(1.71)
111(0.29)4 \

110(1.71)

111(0.29)

100

(0.29)

101

J1.71)

100(0.29)

101(1.71)

000(0)

001(2)

Figure 2.13 State diagram (with squared Euclidean distances)
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The minimum weight loop leaving and returning to state 00, with weight inter-
preted as squared Euclidean distance, is the loop 00–01–10–00 with minimum
squared Euclidean distances of 1, 0.29 and 1, respectively, for the three transitions.
The squared Euclidean distance to the closest code path is therefore 2.29, corres-
ponding to a coding gain of 3.6 dB, if the uncoded bit is ignored. However the loop
on state 00 resulting from a nonzero uncoded bit is at a squared Euclidean distance of
2 from the all-zero loop, so that the uncoded bits are less well protected than the
encoded ones and the overall coding gain is 3.0 dB. This indicates the possibility that
better codes could be found which give some protection to all the bits.

Although the approach of leaving some bits uncoded is widely adopted, codes are
now known which allow all the bits in the constellation to be encoded and yielding
improved gains. For example the rate 2/3 encoder with the polynomials

g1
(2)(D) = D, g1

(1)(D) = D2, g1
(0)(D) = 1

g0
(2)(D) = 0, g0

(1) (D) = 1, g0
(0)(D) = D

has a free squared Euclidean distance of 2.29 corresponding to a coding gain of
3.6 dB. The asymptotic coding gains available for various rate 2/3 codes on 8-PSK,
relative to uncoded QPSK are shown in Table 2.17.

Table 2.17 Coded 8-PSK asymptotic performance

No. of states No. of bits encoded Gain (dB)

4
8

16
32
64

128
256

1
2
2
2
2
2
2

3.01
3.6
4.13
4.59
5.01
5.17
5.75

QAM constellations

Another way to expand the signal constellation without bandwidth penalties is to
adopt Quadrature Amplitude Modulation (QAM). Two signals in phase quadrature
are combined such that the resultant can take a large number of discrete amplitude
and phase combinations, as shown in Figure 2.14 for a 16-level constellation. The
number of points in the constellation may be doubled with approximately the same
mean symbol energy by insertion of a number of intermediate points. The distance
between the points is now reduced by a factor of \/2, so that symbol energy must be
doubled for the same symbol error rate. In fact to maintain E b /N 0 the symbol energy
will be increased by a factor of [1 + Iog2 (M)] / Iog2 (M). In the limit of large M, this
increase becomes negligible and the reduction of distance between the closest points
associated with each doubling of M produces a 3 dB loss.



CONVOLUTIONAL CODES 61

Quadrature component

In-phase component

Figure 2.14 16-QAM constellation points
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Figure 2.15 Partitioning of 16-QAM

The partitioning of QAM constellations follows a similar approach except that
care needs to be taken in identifying the closest points within the constellation. For
example, a 16-point constellation might be mapped as in Figure 2.15. In the first
partition the closest points are separated horizontally and vertically, but for the next
partition the closest points within a single set are separated diagonally.

Higher order QAM constellations often have the distribution of points slightly
rearranged from the square layout shown. The purpose of the adjustment is to reduce
the average signal energy, or the variance of the signal energy, for a given spacing of
points. Other multilevel constellations, such as pairs of PSK rings one inside the
other, are also found.

The classic application of Ungerboeck codes is for modems communicating over
telephone lines. The bandwidth is limited to less than 4 kHz, making the use of trellis-
coded modulation necessary to achieve the data rates that are theoretically possible.
Because linearity is not a problem with low power transmissions, QAM constella-
tions are used. Data rates up to 33.6kb/s are achievable in this way using the V.34
standard. The higher data rates (up to 56 kb/s) from digital modems are achieved by
treating the data as if it was 7-bit PCM samples from speech sampled at 8 kHz. This is
used in the asymmetric V.90 modem where a V.34 analogue standard is used for the
uplink and a digital modem for the downlink.
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2.16 SEQUENTIAL DECODING

The Viterbi algorithm is satisfactory only for codes of relatively short constraint
lengths because of the number of paths that must be updated and stored. If we
examined the actions of a Viterbi decoder, we would usually find that a small number
of paths are established as being the most likely with the other stored paths being
much less likely. Sequential decoding aims to simplify the decoding task by concen-
trating the search on the most likely paths. In this way it can use codes with much
longer constraint lengths. There are several slightly different implementations of
sequential decoding, but two of them - the Fano algorithm and the stack algorithm
- are illustrative of the basic approaches that are possible.

The Fano algorithm works frame-by-frame, examining the received sequence,
deciding the most likely code frame and advancing to the appropriate point in the
trellis. The metric adopted for each received bit is

The branch metric is

and the path metric is

where j represents the frame number, i the bit within the frame, rij the received bit, Cij

the appropriate bit of the code path being followed and R the code rate. This
quantity is called the Fano metric.

Note that the Fano metric depends on the noise level of the channel. Assuming
hard decisions with a channel bit error rate of 10-2, the value of the Fano metric
associated with a bit correctly received would be 0.471 and for an incorrect bit
–5.144; these may be scaled and approximated to +1 and —11. Thus when correct
values are being received, the metric is increasing slowly; however, when an error
occurs it decreases sharply. Following the wrong path in the trellis results in poor
correlation between received bits and possible trellis paths, so that the metric will
decrease.

At each stage in decoding, the path metric is compared with a running threshold to
decide whether the decoder should move forwards or backwards. On the first visit to
any node in the trellis, the threshold is set as tightly as possible. Generally the metric
should be no greater than the threshold and if the threshold is exceeded, the decoder
has to decide whether to backtrack or to loosen the threshold. The latter action is
taken when backtracking does not bring the metric down below the current thresh-
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old. Changes to the threshold are made in multiples of some fixed value A which is a
design parameter. Too small a value of A will increase the amount of backtracking, too
large and the decoder will follow incorrect paths for a considerable distance before
backtracking begins. A flowchart of the Fano algorithm is shown in Figure 2.16.

The stack algorithm eliminates the tendency of the Fano algorithm to visit certain
nodes several times, thus reducing computation, but at the expense of increased
storage. A number of previously examined paths and their accumulated metrics are
held on a stack, the path with the lowest metric at the top. The decoder takes the path
at the top, creates 2k0 successor paths, computes their metrics and places them in the
appropriate positions on the stacks. The stack may overflow, but the paths lost will
have high metrics and are unlikely to figure in the maximum likelihood solution. The
reordering of paths is also a problem, but Jelinek [3] proposed an approach which has
been widely adopted.

Both the Fano and the stack methods operate within a fixed decoding window, as
do Viterbi decoders, and output the first frame from a full decoding window. There
are other distinct characteristics of sequential decoding which may affect its suitabil-
ity for particular applications. The speed of the decoding will depend on the method
used, but there is variability too in decoding speed which can cause problems for real
time operation. This variability may be smoothed out by provision of a buffer for
the incoming frames, but in certain circumstances it may be necessary to force the
decoder along a particular path or to abandon the decoding of a section of the code.
This is not necessarily a bad thing; correct design can ensure that problems of this
type occur mainly when the error rates are so high that decoding errors are in any
case highly likely, and at least it is known that a decoding problem has occurred.
Nevertheless, sequential decoding is more at home with non-real time and off-line
applications.

Figure 2.16 Fano algorithm
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The principal advantage of sequential decoding is that the reduced computation
allows for the use of greater constraint lengths, values around 40 being commonly
quoted. This means that more powerful codes with higher values of free distance and
higher coding gains can be employed. Soft-decision decoding is simple to incorporate
in principle and has advantages in terms of reduced backtracking. On the other hand,
it does require the increased cost of a soft-decision demodulator and the increased
coding gain may be more easily obtained by increasing the constraint length. As a
result it is less common to find soft decisions with sequential decoding than is the case
with Viterbi decoding.

2.17 CONCLUSION

Convolutional codes are extensively treated in most standard books on error control
coding [4–8]. A detailed text on convolutional codes is also available [9]. Further
developments in the coding of multilevel modulations include the use of punctured
codes to achieve the appropriate rate and the Euclidean distance properties for the
modulation [10] and the design of codes to work with Gray-coded modulations. For
Rayleigh fading channels it is Hamming distance, not Euclidean distance that is
important and so ordinary convolutional codes can be mapped onto the Gray-coded
modulation through an interleaver to combat error bursts [11].

Recursive systematic convolutional codes, used with iterative decoding and com-
monly known as turbo codes, are treated in Chapter 10.

2.18 EXERCISES

1 An encoder has the following generator polynomials:

g1
(2)(D) = D, g1

(1)(D) = D2, g1
(0)(D) = 1

g0
(2)(D) = 0, g0

(1)(D) = 1, g0
(0)(D) = D

Draw the encoder schematic diagram. Encode the information sequence 10 01 00
01.

2 For the code of question 1, quantify the following terms:

(a) input frame
(b) output frame
(c) input constraint length
(d) output constraint length
(e) memory order
(f) memory constraint length
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3 An encoder has generator polynomials

g(l)(D) = D3 + D2 + 1

g(0)(D) = D3 + D2 + D+1

Draw the encoder schematic and the state diagram. Find the value of dx.

4 For the code of question 3, find the lengths and input weights of all paths with
the three lowest values of output weight. Hence find the corresponding terms of
the generating function for the code.

5 A code has generators

g(1)(D) = D2+1

g(0)(D) = D2 + D

From the state diagram, or by considering the encoding of the sequence 1111... ,
deduce that the code exhibits catastrophic error propagation.

6 From the encoder state diagram below, find the generator polynomials of the
code.

0/000

7 For the convolutional encoder of Figure 2.1, decode the hard-decision sequence
11 01 11 00 100001 11 11.

8 Find the hard-decision coding gains at bit error rates of 10-3 and 10-5 for the
rate 1/2 K = 3 code whose weight structure is analysed in Section 2.7. How
much does the gain change if unquantized soft-decision decoding is used?

9 Repeat question 6 for the rate 1/2 K = 7 code described in Section 2.12.

10 Prove that for a rate R convolutional code operating on a binary PSK channel
(bit error rate given in Equation (1.1)), the coding gain at low bit error rates is of
the order of Rdoo/2 for hard-decision decoding and Rd^ for soft-decision
decoding.
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1 1 Devise a partitioning scheme for 16-ary PSK.

12 An uncoded communication channel uses 8-ary modulation. It is decided to go
over to an Ungerboeck-coded 16-ary channel with two-stage partitioning. Com-
pare the expected coding gains at constant symbol error rate if the constellation
is MPSK against those for QAM. What would be the effects of three-stage
partitioning?

13 Verify the value of free squared Euclidean distance for the rate 2/3 code with
polynomials

g1(2)(D) = D, g1
(1)(D) = D2, g(0)(D) = 1

used on set partitioned 8-PSK.
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Linear block codes

3.1 INTRODUCTION

This chapter presents the most important aspects of linear block codes. Block codes
were defined in Section 1.4 and an example of a block code was used extensively in
the first chapter. Almost all useful block codes possess the property of linearity,
which was defined in Section 1.4.2. The topics to be covered in this chapter include
the ways in which codes can be defined, the uses of linearity in the encoding and
(hard-decision) decoding operations, minimum distance and the bounds on distance
that apply to block codes. It is largely assumed that forward error correction is
required because the detection of errors is achieved as the first step of error correc-
tion and thus is included in the techniques described.

It is assumed that the reader is familiar with the material of Sections 1.4 and 1.8.
The relationship between minimum distance and error detection and correction
properties of block codes was covered in Section 1.14.3. Only binary codes are
treated in this chapter, enabling the mathematics of nonbinary codes to be left
until Chapter 5. The special techniques associated with the subset of linear block
codes known as cyclic codes will be covered in Chapter 4.

3.2 MATHEMATICS OF BINARY CODES

The mathematics of coding can be rather complicated if all classes of codes are to be
studied. By restricting ourselves, for the moment, to simple codes we can employ
simple mathematics to gain familiarity with the subject before attempting the more
difficult codes. As a result this chapter will require nothing more difficult than an
understanding of matrix representation of equations and the application of simple
logical functions.

The main reason that the mathematics of coding can appear complicated is that we
need to be able to carry out arithmetic in what is called & finite field. Any code consists
of a number of symbols which can take only certain values, the simplest example of a
symbol being a bit which can take only two values although other symbols with more
levels can be devised. It is necessary to define our arithmetic operations in a way that
only valid symbol values can be produced. A finite field is a defined set of values plus
two defined operations and their inverses which can yield only values within the set.
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The operations to be carried out to produce linear codes defined over a finite set
of values are called addition and multiplication, and their inverses may be thought
of as subtraction and division. The operations themselves will not, however, cor-
respond to our normal understanding of those terms. For all codes, the definition of
the appropriate arithmetic is necessary before the encoding and decoding can be
explained. For nonbinary codes these definitions are not straightforward.

Fortunately there is only one important family of nonbinary codes, namely the
Reed Solomon codes, although for a proper understanding of some other codes a
finite field approach is valuable. Nevertheless, we can go a long way dealing only
with binary fields, for which the appropriate arithmetic is simply modulo-2:

0 + 0 = 0
0+1 = 1
1 + 1=0

0x0 = 0
Ox 1 =0
1x1 = 1

The inverse of addition (subtraction) is equivalent to addition, division by zero
is not allowed and division by 1 is equivalent to multiplication by 1. Our finite
field arithmetic will therefore be rather easy, with the only matter of note being
the modulo-2 addition corresponding to the exclusive-OR function of Boolean
logic.

3.3 PARITY CHECKS

To obtain an insight into how a linear code might be produced, let us take a simple
example in which a codeword is produced from the information by letting the infor-
mation flow directly through into the codeword and then following it with a single bit
calculated from all the information bits. We shall consider two methods of calculat-
ing this final bit:

(i) The final bit is set such that the modulo-2 sum of all the bits in the codeword is 1.

(ii) The final bit is set such that the modulo-2 sum of all the bits in the codeword is 0.

In the first case the codeword is said to have odd parity, i.e. there is an odd number
of ones in the codeword. In the second case there is an even number of ones in the
codeword which therefore has even parity. The extra bit is called a parity check bit
and may be called an odd parity or even parity check as appropriate.

The odd and even parity codes are shown in Tables 3.1 and 3.2, respectively, for
the case in which there are three information bits.
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Table 3.1 Odd parity code

Information Code

000 0001
001 0010
010 0100
0 1 1 0 1 1 1
100 1 000
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1 0

Table 3.2 Even parity code

Information Code

000 0000
001 0011
010 0101
011 0110
100 1001
101 1010
110 1 100
1 1 1 1 1 1 1

We note that the code of Table 3.1 does not contain the all-zero sequence which
must be part of a linear code. Thus the odd parity check produces a nonlinear code.
On the other hand, the code of Table 3.2 is linear; systems which produce even
parity checks on some or all of the bits result in a linear code. Note that in this
case the parity check bit is the modulo-2 sum of the bits from which it is calculated.
Thus the parity for the information sequence 101 is the modulo-2 sum of 1, 0 and
1, i.e. 0.

3.4 SYSTEMATIC CODES

The above examples have had the property that the information bits appear in the
codeword unchanged with some parity bits added. A particularly common arrange-
ment is that the information appears at the start of the codeword and is followed by
the parity check bits. In this case the code is said to be systematic. Any linear block
code can be put into systematic form and at worst is only trivially different from a
systematic arrangement in that a fixed change to the order of the symbols can
produce the systematic form. A linear block code can therefore always be considered
as equivalent to a systematic code.
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3.5 MINIMUM HAMMING DISTANCE OF A LINEAR
BLOCK CODE

It was stated in Chapter 1 that a consequence of linearity is that the distance struc-
ture of the code appears the same regardless of which codeword it is viewed from.
If u, v and w are codewords and d(u, v) signifies the distance between u and v,
then

d(u, v) = d(u + w, v + w) (3.1)

The sequences u + w and v + w are codewords and so the relationship between u
and v is repeated at other points in the code. In particular we can set w = v to give

d(u, v) = d(u + v, 0) (3.2)

Thus we can say that the distance between any pair of codewords is the same as the
distance between some codeword and the all-zero sequence. We can therefore reach
the following conclusion:

The minimum distance of a linear block code is equal to the minimum number of
nonzero symbols occurring in any codeword (excluding the all-zero codeword).

The number of nonzero symbols in a sequence is called the weight of the sequence,
and so the minimum distance of a linear block code is equal to the weight of the
minimum weight codeword.

3.6 HOW TO ENCODE - GENERATOR MATRIX

In the previous examples of codes, we have used a table to hold all the codewords and
looked up the appropriate codeword for the required information sequence. We can,
however, create codewords by addition of other codewords, which means that there
is no need to hold every codeword in a table. If there are k bits of information, all we
need is to hold k linearly independent codewords, i.e. a set of k codewords none of
which can be produced by linear combinations of two or more codewords in the set.
The easiest way to find k linearly independent codewords is to choose those which
have 1 in just one of the first k positions and 0 in the other k — 1 of the first k
positions. Using, for instance, the example (7, 4) code of chapter 1, we need just the
four codewords below:

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

If we wish, for example, to obtain the codeword for 1011, we add together the first,
third and fourth codewords in the list to give 1011010.
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The process of encoding by addition can be represented in matrix form by

v = u G (3.3)

where u is the information block, v the codeword and G the generator matrix.
Taking the above example, we can represent the code by the generator matrix

below:

1 0 0 0 1 1 0
0 1 00 1 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

If, as before, we wish to encode the sequence 1 0 1 1 we obtain

[ 1 0 1 1

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1

v = [ 1 0 1 1 0 1 0 ]

1 1 1

Note that the generator is a k x n matrix where k is the dimension of the code
(number of information bits) and n is the length of any codeword. In this case the
generator has a special form corresponding to a systematic code. It consists of a k x k
unit matrix followed by a k x (n — k) matrix of parity check bits.

If we were going to use the generator matrix approach to encoding of a systematic
code, there would be no point in storing that part of the codewords that corresponds
to the information. We therefore need only to store k x (n — k) bits in some form
of read-only memory (ROM), and let the information bits determine which of
the (n — k)-bit sequences are to be modulo-2 added to form the parity checks of the
codeword.

3.7 ENCODING WITH THE PARITY CHECK MATRIX

In Section 3.3 we introduced the idea of a parity check and deduced that even parity
checks corresponded to a linear encoding operation. It should therefore be possible
to define a code in terms of groups of bits which must be of even parity, i.e. their
modulo-2 sum must be zero. For example, we may choose to calculate three parity
check bits from four information bits as shown below. The leftmost bit is considered
to be bit 6 and the rightmost bit 0, so that the information corresponds to bits 6 to 3
and the parity checks are bits 2 to 0:

bit 2 = bit 6 0 bit 5 0 bit 3
bit 1 = bit 6 0 bit 4 0 bit 3

bit0 = bit5 0 bit4 0 bit3
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In other words, bits 6, 5, 3 and 2 form an even parity group, as do bits 6, 4, 3 and
1 and bits 5, 4, 3 and 0. If the information is 1011 then

b i t 6 = l bit5 = 0 b i t 4 = l b i t 3 = l

from which we can calculate

bit2 = 0 bitl = l bit0 = 0

The codeword is therefore 1011010, as was the case for the example in Section 3.6.
A check of the codewords forming the rows of the generator matrix in that section
will confirm that this system of parity checks in fact generates the same code. The
way in which a code specified by a generator matrix can be transformed to an
equivalent system of parity checks will shortly become apparent.

The system of parity checks can be put into the matrix representation below:

H
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

The matrix H is called the parity check matrix and each row represents an even
parity group with ones in the positions of the bits that comprise the group.

Because the rows of the parity check matrix correspond to even parity groups, the
scalar product of any codeword with any row will be zero. The generator matrix has
rows which are themselves codewords. Thus if we form the scalar product of any row
of the generator matrix with any row of the parity check matrix the result will be
zero. Matrix multiplication is carried out, however, by forming scalar products of the
rows of the first matrix with columns of the second. We can therefore write

GHT = (3.4)

We can now see how to form the parity check matrix and thus how to formulate a
code in terms of parity checks. It is a (n — k) x n matrix constructed in such a
way that Equation (3.4) is satisfied. Starting from the generator matrix, separate
the k x (n — k) section corresponding to the parity checks:

1 1 0
1 0 1
0 1 1
1 1 1

transpose it

1 1 0 1
1 0 1 1
0 1 1 1

and follow it with a (n - k) x (n - k) unit matrix
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H
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

This form again assumes a systematic code.
This particular parity check matrix has one further feature of note. Looking at the

columns of the matrix we see that all possible 3-bit patterns of ls and zeros are to be
found, with the exception of the all-zero pattern. This feature is characteristic of the
family of codes to which this code belongs, namely the Hamming codes. We can
construct Hamming codes with any number of parity check bits by making a matrix
with n — k rows and with the columns consisting of all the 2n—k — 1 possible patterns
of n — k bits which exclude the all-zero pattern. For example the parity check matrix

H

defines a (15, 11) Hamming code. The order of the columns is immaterial as far as the
definition of a Hamming code is concerned, although we may wish to preserve the
unit matrix on the right corresponding to the systematic form.

The form of the parity check matrix gives the Hamming code some special decod-
ing properties that will be seen in the next section.

3.8 DECODING WITH THE PARITY CHECK MATRIX

Decoding generally consists of two stages. The first is to check whether the sequence
corresponds to a codeword. If only error detection is required, then this completes
the decoding process. If error correction is required, then there must be an attempt to
identify the error pattern. This second stage is likely to be much more complex than
the first and its implementation will normally be the major factor in the overall
complexity, speed and cost of the encoder/decoder (codec).

Error detection involves deciding whether all the even parity checks are satisfied in
the received sequence. If we perform modulo-2 addition on all the even parity groups,
the result will be zero for those that are satisfied and one for those that are not. The
resulting (n - k)-bit result is called the syndrome. An alternative, but equivalent
definition of syndrome is that it is the sequence formed by modulo-2 adding the
received parity bits to the parity bits recalculated from the received information. If
the received sequence is v' then the syndrome can also be regarded as a vector s where

s = v'H' (3.5)

An all-zero syndrome indicates that the sequence is correct. Any other syndrome
indicates the presence of errors. Because of the linear properties of the code, any
received sequence can be considered to be the sum of a codeword and an error
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pattern and the syndrome is likewise the sum of that for the codeword (i.e. zero) and
that for the error pattern. This leads to the result that the syndrome value depends only
on the errors, not on the transmitted codeword.

The equivalence of the above three definitions of syndrome can be verified by
taking an example. Suppose we receive a sequence 1000101, calculating the syndrome
by each of the three methods gives:

(i)

(ii)

bit 6 © bit 5 0 bit 3 © bit 2 = 0
bit6 © bit4 © bit 3 © bit 1 = 1
bit 5 © bit4 © bit 3 © bit0 = 1

received information = 1000
recalculated parity =110
received parity =101
syndrome = 011

(iii)

s = [ l 000 1 0 1]

1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1

= [ 0 1 1

We need also to be able to relate the syndrome to the errors that have occurred. In
the above example, we need to find a bit that is not involved in the first parity check
but is involved in the second and third parity checks. If we can find such a bit, we will
have identified the position of the error because it will explain the syndrome we have
obtained. Looking at the columns of the parity check matrix, we see that bit 4
satisfies the required properties. The columns of the parity check matrix therefore
have an important interpretation: the first column is the syndrome of an error in the
first bit; likewise any column m contains the syndrome of an error in position m.
Because for a Hamming code the columns contain all the nonzero syndromes, we can
relate any syndrome to a single-bit error. Thus if the syndrome is 0 1 1, as in this case,
we know that the error is in bit four and we can correct the received sequence
1000101 to 1010101, which is indeed a codeword.

To design a decoder, we could use combinational logic to look for the syndromes
corresponding to each position to tell us which bit was in error. Alternatively we
could store a number of error patterns ordered according to their syndrome, and
merely select the appropriate pattern once the syndrome has been formed.

What happens if two bits are in error? Assuming that bits 3 and 2 were wrong, the
syndrome would bel 1 1 + 100 = 01 1. This would be interpreted in the decoder
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as an error in bit 4. Because all the syndromes are contained in the parity check
matrix, the decoder will always think that it knows what has occurred, even when it is
wrong. The Hamming code is good for detecting and correcting single errors per
block (minimum distance = 3), but any more errors will always cause a decoding
error. Of course we do not expect a decoder to be able to cope with errors beyond
half the minimum distance, but the fact that it always fails is a special property of
Hamming codes.

3.9 DECODING BY STANDARD ARRAY

Another way to look at the decoding process is to list all the received sequences in
sets, each set containing just one codeword that should be the decoder output for any
of the sequences in the set. For a binary code there are 2k codewords and 2" possible
received sequences. The received sequences are therefore partitioned into sets of 2n—k,
each set containing one codeword and each sequence in the set having a different
syndrome. If the sets are arranged in columns with the codeword at the top, and with
all the sequences at a given position in every set having the same syndrome, then the
result is an array known as the standard array.

Let us consider the example of the (5, 2) code from Chapter 1 (Section 1.8.1). The
standard array could be

00000
10000
01000
00100
00010
00001
11000
10010

01011
11011
00011
01111
01001
01010
10011
11001

10101
00101
11101
10001
10111
10100
01101
00111

11110
01110
10110
11010
11100
11111
00110
01100

The way in which this was constructed is as follows. The top row consists of all the
codewords. The code has minimum distance of 3, so we expect to detect and correct
all single-bit errors, a total of five error patterns. The second row consists, therefore
of all the patterns with an error in the first bit, the third row has an error in the
second bit, etc. At the end of the sixth row, we have used all the single-bit error
patterns, but we still have eight sequences which have not been written into the array.
An arbitrary choice of one is made to head row 7 and is used as an error pattern to
generate the rest of that row. Then one of the remaining four patterns is chosen to
head the last row, and using it as an error pattern the final row is completed.

The error patterns which make up the last two rows of the standard array in our
example would not normally be considered to be correctable errors. The decoder may
therefore be designed merely to detect such errors and not attempt correction.
Decoding is then said to be incomplete because not all received sequences are
decoded. In this respect codes in general will differ from Hamming codes which do
not have any sequences falling more than one bit different from a code sequence, and
for which error correction will always involve complete decoding.
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Note that because the first sequence in each row is treated as an error pattern and
applied to every column, the same syndrome will be obtained for every sequence in
the row. When we receive a sequence we only need to know the row in which it
falls and the error pattern which heads that row. The elements of a row are called a
coset, and the error pattern is called the coset leader. To carry out decoding the
syndrome acts as an indicator of the coset in which the received sequence falls.

For the code in question

1 0 1 0 1
0 1 0 1 1

H
1 0 1 0 0
0 1 0 1 0
1 1 0 0 1

We can therefore construct the syndromes for the coset leaders, treating each in
turn as a received sequence. For example the syndrome of 10000 is the leftmost
column of the parity check matrix, i.e. 101; the syndrome of 11000 is the sum of the
two leftmost columns, i.e. 110. We find that the syndromes of the coset leaders are
000, 101, 011, 100, 010, 001, 110 and 111, respectively.

For any code, the number of syndromes cannot be less than the number of
correctable error patterns. This gives us an expression for a binary code which can
detect and correct t errors:

•\n-k

This is called the Hamming bound, and any code which meets it with equality is
called a perfect code because decoding up to the limits imposed by minimum distance
produces a complete decoder. The only nontrivial binary perfect codes are the
Hamming codes and the Golay code which has n = 23, k — 12, dmin = 7.

3.10 CODEC DESIGN FOR LINEAR BLOCK CODES

We have now seen all the principles which can be used to design practical encoders
and decoders for short block codes. By analogy to the terminology which decrees that
a modulator/demodulator is a modem, an encoder/decoder is generally called a
codec. Our codec design will focus on fairly short and simple block codes to keep
the complexity to a minimum. It will become clear that technological limitations on
complexity will limit the usefulness of the approach.

Although minimizing complexity is obviously desirable, defining it is more diffi-
cult. The amount of hardware needed is one measure, the length of time to complete
the calculations is another. In general there will be trade-offs between these two
components and a common measure of decoder complexity (usually far more com-
plex than the encoder) is the product of hardware complexity and decoding delay. The
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decoder designs considered here are aimed primarily at minimizing decoding delay.
Later chapters will discuss codes whose structures are different, allowing different
decoding methods and, reduced hardware complexity at the expense of increased
delay.

The encoder requires storage for k sequences of n - k parity bits, an addressing
mechanism to select the appropriate sequences, a register n — k bits wide and associ-
ated logic to compute the parity checks and possibly some buffering for the infor-
mation bits prior to encoding. In the case of a systematic code it may be possible to
dispense with the buffering by transmitting each bit at the same time as it triggers the
encoding logic and then sending the parity bits immediately following the infor-
mation. There is, however, a need to balance the rate of arrival of information with
the transmitted bit rate, which is higher because of the extra redundant bits. This will
usually entail some sort of buffering in the system.

A possible encoder arrangement is illustrated in Figure 3.1. The k parity sequences
are held in the first k locations of a read-only memory, and it is assumed that the
ROM can allow access to n — k bits at once. The addressing is done by means of a
counter which counts from 0 to k — 1, the increment being triggered by the arrival of
a bit of information. The read enable of the ROM is considered to be positive. The
register in which the final parity check sequence is computed must allow an incoming
sequence to be bit-by-bit EXORed with the contents of the register and it must be
possible to clear the register at the start of each new word.

The decoder will contain some elements which are virtually identical to the en-
coder. The formation of the syndrome will be by a slight modification of the encoder
in which the final stage is to EXOR the recalculated parity bits with the received
parity bits. Buffering of the received sequence will certainly be required while the
decoding is carried out. The final stage will be to use the syndrome to access a stored
error pattern. At worst we shall need 2n-k locations for error patterns, each of n
bits, although things may be simplified if conditions such as error-free reception

Read
enable

Code -« Data buffer

Information

Figure 3.1 Encoder structure



78 ERROR CONTROL CODING

Decoded
sequence

Received
sequence

Figure 3.2 Error correction for linear block code

or uncorrectable errors are detected and handled separately. A schematic diagram for
the error correction stage is shown in Figure 3.2.

These implementations are not of course the only possible ones. It would be
possible for example, to construct the parity check matrix in a way that allows the
error pattern to be defined relatively easily from the syndrome. It is also possible to
do encoding and syndrome formation by means of buffering and a large number of
hard-wired EXOR gates. Note, however, that the complexity of the decoder is going
to increase as codes get longer (increasing number and size of correctable error
patterns for a given value of t), and as the error-correcting capability (t) of the
code increases (increasing number of correctable error patterns). Because read-only
memory is relatively cheap, the more complex codes are likely to be implemented
with a minimum of logic and a maximum of memory.

3.11 MODIFICATIONS TO BLOCK CODES

To confine our attention to Hamming codes would rather limit our coding capabil-
ities. For one thing they are only single-error-correcting. Secondly, they have only a
limited range of values of length n and dimension k, and the available values may not
suit the system. These problems may be overcome by looking to other types of codes,
but the ones worth considering will best be left to the next chapter. There are also
simple modifications that may be carried out to Hamming codes (and to other block
codes). In particular, reduced values of k may be used in the codes, and it is possible
to create codes with dmin = 4, i.e. single-error-correcting, double-error-detecting
(SECDED) codes. SECDED codes are commonly used in computer memory protec-
tion schemes.

Expanded codes

Expanding a code means adding extra parity checks to it, i.e. increasing n while
keeping k the same. In particular if we add one overall parity check to a code of odd
minimum distance, then the minimum distance is increased by 1.
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Considering the (7, 4) Hamming code, there is one codeword of weight zero (as
always in linear codes), seven of weight 3, seven of weight 4 and one of weight 7. If we
add an overall parity check to create a (8, 4) code then all codewords must become
even-weight sequences. The sixteen codewords will thus become one of weight zero,
fourteen of weight 4 and one of weight 8. The minimum distance of the expanded
code is therefore 4. Some thought about this process will show that this increase in
minimum distance will always occur when dmin has an odd value.

Shortened codes

Shortening a code means reducing the number of information bits, keeping the
number of parity checks the same. The length n and the dimension k are thus reduced
by the same amount. The way in which this is done is to set one of the information
bits permanently to zero and then remove that bit from the code.

Suppose we take as our example the (7, 4) Hamming code for which

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

and

H
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

The effect of setting to zero, say, the third bit of information would be to remove
the third row from consideration in the generator matrix

1

and then to delete that bit, delete the third column

G
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 1 1 1

The parity checks at the end of the deleted row of the generator matrix appear as
the third column of the parity check matrix, and so in the parity check matrix the
third column should be deleted

H

1 1 1 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
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We have now created a (6, 3) code; the important question is whether we have
altered the minimum distance. A simple argument suffices to show that the minimum
distance is not reduced; by forcing one of the information bits to zero we have reduced
the number of codewords, but all the remaining codewords are still part of the original
code. The minimum distance, therefore, cannot have been reduced and may have been
increased by the removal of certain codewords. Neither can the deletion of one bit have
had any effect on distance, because it was a zero that was deleted.

Increasing minimum distance by shortening

Assuming that we took the (7, 4) Hamming code and shortened it by deleting all the
odd-weight codewords, we would then have created a code with even dmin; in fact,
dmin would be 4 because we would be left with the weight 4 codewords. This could be
achieved fairly easily by removing all the information bits that generate an even
number of parity checks. This is equivalent to removing all the even weight columns
of the parity check matrix. Thus we change

H =
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

to

1 1 0 0
1 0 1 0
1 0 0 1

This is now a (4, 1) code; the information bit is repeated three times to make up the
four bits of the code. Although this is a trivial example, the technique can be applied
to other Hamming codes, or to other families of codes with an odd value of dmin, to
create new codes of genuine interest.

As a second example, consider the (15, 11) Hamming code created in Section 3.8,
for which the parity check matrix was

1 1 0 1 0 0 1 1 1 0 1 1 0 0 0
1 0 1 0 1 0 1 1 0 1 1 0 1 0 0
0 1 1 0 0 1 1 0 1 1 1 0 0 1 0
0 0 0 1 1 1 0 1 1 1 1 0 0 0 1

Removing all the even-weight columns gives

H

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

leaving us with a (8, 4) code with dmin = 4.
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3.12 DORSCH ALGORITHM DECODING

An interesting application of matrix methods for block codes is a soft-decision
decoding method invented originally by Dorsch [1], although other researchers
have independently formulated very similar approaches [2–5].

The algorithm uses soft-decision information to rank the reliability of the rece-
ived symbols and attempts to rework either the generator or the parity check matrix in
such a way that the low-reliability symbols are treated as parity checks whose correct
values are defined by the high-reliability symbols. The high-reliability symbols are
called the information set and the low-reliability symbols are called the parity set.

If we erase the low-reliability parity set and re-encode from the information set, it
is highly likely that most of the erroneous symbols will be corrected because they will
be part of the parity set. Indeed it is possible that the codeword generated will be the
maximum likelihood solution. However there is still a reasonable chance that the
information set may contain some errors. If we make changes to the information set
and re-encode after each change, we will generate further codewords that may also
represent the maximum likelihood decoding. After a certain number of these re-
encoding operations, we can compare the generated code words with the received
sequence and choose the closest one, using a soft-decision measure of distance for the
choice.

One complication is that in the general case not all possible choices of symbols may
be used as an information set. This can be checked and the information set adjusted
during the recomputation of the generator or parity check matrix.

Example of Dorsch algorithm decoding

Consider the (7, 4) Hamming code whose parity check matrix is as follows:

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Let us assume that the received sequence is 3 4 7 1 0 5 7. The least reliable bits are
in positions 6 and 5 with received levels of 3 and 4, respectively (levels 3 and 4 are
adjacent to the hard-decision threshold). We therefore start by swapping bits 6 and 0
to bring bit 6 into the parity set. The parity check matrix is now

H
0 1 1 0 1 0 1
0 1 1 1 0 1 0
1 1 0 1 0 0 1

For the systematic form of the generator matrix, we need the right hand column to
be [0 0 1]T and we can achieve this by adding rows of the matrix. This will not affect
the code because satisfying the parity checks implies that all linear combinations of
the parity checks will also be satisfied. In this case we can add the bottom row (row 0)
into the top row (row 2) to obtain
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H
1 0 1 1 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

Now swap bits 5
becomes

and 1 to bring bit 5 into the parity set. The parity check matrix

1 0 1 1 1 0 0
0 1 1 1 0 1 0
1 0 0 1 0 1 1

Adding the middle row (row 1) into the bottom (row 0) gives

1 0 1 1 1 0 0
0 1 1 1 0 1 0
1 1 1 0 0 0 1

Finally we attempt to bring the next least reliable bit, the original bit 1 (now in
position 5) with received level 5, into the parity checks by swapping with bit 2. The
parity check matrix becomes

H
1 1 1 1 0 0 0
0 0 1 1 1 1 0
1 0 1 0 1 0 1

Unfortunately this cannot be brought to systematic form because there are no
parities on the top row. We therefore restore the parity check matrix to its previous
value and instead swap bit 3 with bit 2 to obtain

H
1 0 1 1 1 0 0
0 1 1 0 1 1 0
1 1 1 0 0 0 1

To restore the systematic form we add row 2 into row 1 to obtain

H =
1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

The decoding part can now begin. The bit ordering for the above parity check
matrix is 0 1 4 2 3 5 6, so the received sequence is reordered to 7 5 7 0 1 4 3. The hard-
decision version of the information set is 1 1 1 0. Re-encode to 1 1 1 0 0 0 1 and make
a soft-decision comparison with the received sequence. A suitable soft-decision
distance for a received 3-bit quantized level r is 7 - r to a code bit value 1 and r to
a code bit value 0. The soft-decision distances of each received bit from the re-
encoded value are therefore 0 2 0 0 1 4 4, a total of 11.
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Table 3.3 Example decoding attempts using Dorsch algorithm

Received Information set Error pattern Re-encoding SD distance

7 5 7 0 1 4 3 1 1 1 0 0000
1 000
0100
00 1 0
0001

1 1 1 0 0 0 1
0 1 1 0 1 1 0
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 1 1 1

1 1
19
12
20
20

We can now continue by inverting the hard-decision values of some of the infor-
mation bits. Let us assume that we try inverting each of the information bits in turn.
The results are shown in Table 3.3.

Thus in this case the best solution of those attempted is the codeword 1 1 1 0 0 0 1.
Putting this back into the original order we obtain 1 0 1 0 0 1 1 as the transmitted
codeword. Note that the received sequence 3 4 7 1 0 5 7 would be hard-decision
quantized to 0 1 1 0 0 1 1 which differs by two bits from the final codeword. A hard-
decision decoder would therefore not have obtained this solution.

3.13 CONCLUSION

This chapter has covered the basics of block codes and many more aspects will be
described in the later chapters. The most common structural feature used to assist
algebraic decoding is the cyclic property and that will be explained in Chapter 4. To
understand the design and decoding of the main family of cyclic codes, BCH codes, it
will be necessary to study finite field arithmetic and that subject is addressed in
Chapter 5. Chapter 6 then deals with BCH codes and Chapter 7 with Reed Solomon
codes, which are nonbinary codes of the BCH family. Issues of what is possible with
block codes and the performance they give are discussed in Chapter 8. Multistage
constructions of block codes are in Chapter 9 and this includes the concept of a trellis
as encountered with convolutional codes; a trellis-based sequential decoding ap-
proach is used in the view of Dorsch algorithm decoding presented in [2]. Iterative
decoding for block codes is in chapter 10.

Other references will be deferred until the appropriate later chapters. However,
block codes are treated in almost all of the available text books, including [6–10].

3.14 EXERCISES

1 An 8-bit byte is constructed by taking 7 information bits and adding a parity
check to produce an odd number of 1s in the byte (odd parity). Is this a linear
code? What are the values of n, k and minimum distance?

2 Below is given a generator matrix in systematic form. What are the values of n
and k for the code? What is the parity check matrix?
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G =

1 0 0 0 0 0 1 0 1 1
0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 1 1 1 0
0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 1 1

For the parity check matrix below, explain how to encode and form the syndrome
of the received sequence. Obtain the generator matrix. What are the values of n
and k for this code? What is the syndrome of the error patterns 1 1 0 0 0 1 1 0 0 and
001010010?

H

0 1 1 0 1 1 0 0 0
1 0 1 1 0 0 1 0 0
1 1 1 0 1 0 0 1 0
0 0 0 1 1 0 0 0 1

4 A (6, 3) linear code is constructed as follows:

bit 2 is a parity check on bits 5 and 4
bit 1 is a parity check on bits 4 and 3
bit 0 is a parity check on bits 5 and 3

Find the generator and parity check matrices and the minimum distance for the
code.

Construct a standard array for the code. Determine the syndromes of the coset
leaders. For each bit of any 6-bit sequence, determine a logical function of the
syndrome that will indicate whether that bit is in error. Assume complete decod-
ing by your standard array.

5 A (16, 9) linear code is constructed as follows. The information is held in bits 15,
14, 13, 11, 10, 9, 7, 6 and 5. Bit 12 is a parity check on bits 15–13, bit 8 checks bits
11–9 and bit 4 checks bits 7-5. Bit 3 is a parity check on bits 15, 11 and 7, bit 2
checks bits 14, 10 and 6, bit 1 checks bits 13, 9 and 5, bit 0 checks bits 12, 8 and 4.
Obtain the parity check matrix and show that the code would be unchanged if
bit 0 were calculated as a parity check on bits 3–1.

Show that the code can be represented as a 4 x 4 array with information in a
3 × 3 array and parity checks on each row and column. Hence deduce an
approach to decoding single errors. Find the minimum distance of the code.

6 You are given 15 coins which should be of equal weight, but you are told that
there may be one which is different from the others. You also have a balance on
which to compare the weights of different coins or sets of coins. Devise a scheme
using four balance checks to determine which coin, if any, has the wrong
weight.

7 What is the longest SECDED code that can be created by shortening a (31, 26)
Hamming code? What is its parity check matrix?
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Write down a parity check matrix for a (7, 4) Hamming code. Construct the
parity check matrix of the expanded code by appending a zero to each row and
creating an extra row representing the action of the overall parity check. Now
construct the generator matrix for the original code, append an overall parity
check to each row and hence obtain the parity check matrix for the expanded
code. Reconcile the two forms of the parity check matrix.

Could the (8, 4) code created by expanding a (7, 4) Hamming code also be created
by shortening a longer Hamming code?

3.15 REFERENCES

1 B.G. Dorsch, A decoding algorithm for binary block codes and J-ary output channel, IEEE
Trans Inf Theory, Vol. IT-20 (3), pp. 391-394, 1974.

2 G. Battail, Decodage pondere optimal des codes lineaires en blocs - 1 Emploi simplifie du
diagramme du treillis, Annales des Telecommunications, Vol. 38, Nos. 11–12, Nov–Dec
1983.

3 G. Battail, Decodage pondere optimal des codes lineaires en blocs - 2 Analyse et resultants
de simulation, Annales des Telecommunications, Vol. 41, Nos. 11–12, Nov–Dec 1986.

4 M.P.C. Fossorier and S. Lin, Soft decision decoding of linear block codes based on ordered
statistics, IEEE Trans Inf Theory, Vol. IT-41 (5), pp. 1379-1396, 1995.

5 M.P.C. Fossorier and S. Lin, Computationally efficient soft decision decoding of linear
block codes based on ordered statistics, IEEE Trans Inf Theory, Vol. IT-42 (3), pp.
738-750, 1996.

6 S. Lin and D.J. Costello, Error Control Coding: fundamentals and applications, Prentice
Hall, 1983.

7 G.C. Clark and J.B. Cain, Error-Correction Coding for Digital Communications, Plenum
Press, 1981.

8 A.M. Michelson and A.H. Levesque, Error-Control Techniques for Digital Communica-
tion, John Wiley & Sons, 1985.

9 S.B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice Hall,
1994.

10 M. Bossert, Channel Coding for Telecommunications, John Wiley & Sons, 1999.



This page intentionally left blank



Cyclic codes

4.1 INTRODUCTION

Chapter 3 showed that the properties of linearity could be used to simplify the tasks
of encoding and decoding linear block codes. There are many other ways in which the
structure of a code can be used to assist its implementation, and for block codes the
most common structure to be encountered belongs to the subclass known as cyclic
codes. Their popularity is partly because their structural properties provide protec-
tion against bursty errors in addition to simplifying the logic required for encoding
and decoding, although the simplified decoding may be achieved at the expense of
delay.

To obtain the best understanding of this chapter, the reader should first be familiar
with the material of Sections 3.1-3.5. In addition, the concept of a syndrome defined
in Section 3.8 and the ability to modify block codes as in Section 3.11 will also
reappear and, although they will be explained fully in this chapter, familiarity with
the appropriate material from Chapter 3 will no doubt help.

This chapter draws attention to the parallel between the polynomials which are
commonly used to represent cyclic code sequences and the z-transform used in
digital signal processing for the representation of sampled signals and digital filters.
It would be of considerable advantage to the reader to be familiar with the idea of the
z-transform and, in particular, the representation of convolution; almost any book
on digital signal processing will have the necessary material.

4.2 DEFINITION OF A CYCLIC CODE

Cyclic codes are a subset of linear block codes, that is to say that we are dealing still
with block codes and that all the properties of linearity and the associated techniques
apply equally to cyclic codes. The cyclic property is an additional property which
may be of use in many circumstances.

The structure of a cyclic code is such that if any codeword is shifted cyclically, the
result is also a codeword. This does not mean that all codewords can be produced by
shifting a single codeword; it does however mean that all codewords can be generated
from a single sequence by the processes of shifting (from the cyclic property) and
addition (from the property of linearity).
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4.3 EXAMPLE OF A CYCLIC CODE

The properties of the sequences which can be used to generate cyclic codes will be
stated in the next section, but for the purposes of an example we shall use a particular
result, namely that it is possible to generate a cyclic code of length 7 from a generator
sequence of 0001011. Bearing in mind that the all-zero sequence is always a codeword
of a linear code, we may construct all the codewords as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

all-zero
generator sequence
shift generator left
2nd shift
3rd shift
4th shift
5th shift
6th shift
sequences 2 + 3
shift sequence 9
2nd shift
3rd shift
4th shift
5th shift
6th shift
sequences 2+11

0000000
0001011
0010110
0101100
1011000
0110001
1100010
1000101
0011101
0111010
1110100
1101001
1010011
0100111
1001110
1111111

What we have done here is to start from the generator sequence and shift it
cyclically left until all seven positions have been registered. We then find two of
those sequences which add together to give a new sequence, and then shift cyclically
left again until a further seven sequences have been generated. It is then found
that there are two sequences which add to form 1111111, which remains the same
if shifts are applied. Further shifts and additions will not create any more code
sequences.

As there are 16 codewords in the above code we have four bits of information, and
thus a (7, 4) code. The minimum distance can be seen to be 3 because the minimum
weight nonzero codeword has weight 3. The code has the same properties as the
example code from Chapter 2 and is indeed another example of a Hamming code,
this time in cyclic form (there are both cyclic and noncyclic versions of Hamming
codes, depending on the ordering of the columns in the parity check matrix).

4.4 POLYNOMIAL REPRESENTATION

The special methods of encoding and decoding that apply to cyclic codes are best
understood through the use of an algebra in which a polynomial is used to represent
sequences. In the polynomial representation, a multiplication by X represents a shift
to the left, i.e. to one position earlier in the sequence. For those familiar with
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z-transforms of digital signals, there is a direct parallel with the way in which the z
operator represents a unit advance in time.

The terms in a polynomial represent the positions of the ones in the sequence, the
rightmost position being the X0 position, the next left the X1 position, the next the
X2 position, etc. The generator sequence for the above code is therefore

We could have taken any of the shifted positions of this basic sequence as the
generator for our code, but conventionally we always take the case where the
generator is shifted as far to the low powers of X as possible.

4.5 ENCODING BY CONVOLUTION

If we take the generator sequence and its first k — 1 left shifts, we find that we have k
linearly independent sequences, that is to say that none of them can be produced by
addition of two or more of the others. For our example code, we could therefore use
the properties of linearity to produce any codeword by additions of sequences
selected from 1011000, 0101100, 0010110 and 0001011. This would mean the code
having a generator matrix (see Section 3.6) of

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

The sequences used to generate the code, when put into polynomial form, are all
multiples of the generator polynomial. Any codeword can therefore be considered to
be the product of the generator and some polynomial, this polynomial representing
the information content of the codeword:

c(X) = g(X)i(X)

The information is a k-bit quantity which means that i(X) has as its highest possible
power of X a term in X k – 1 . The polynomial is thus said to be of degree k — 1. As c(X)
is of degree n — 1, the degree of g(X) must be n — k.

Another equivalent view of the code generation may be obtained from the analogy
between the polynomial representation and the z-transform. It is found that multi-
plying two z-transforms is equivalent to convolution of the equivalent sequences.
We can therefore view the encoding as a convolution of the information with
the generator sequence. Discrete convolution is written c(j) — a(j)®b(j) and defined
by

(4.1)
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where j represents the position in the sequence. Both a(j) and b(j) are of the same
length, being padded with leading zeros to the total length of the convolution. We
shall see from the following example what length that should be.

Example

Consider the case where b(j) is the generator sequence 1011 (with the zero order term on
the right) and a(j) is the information sequence 1010. The convolution is carried out as
follows:

j = 0 a(0)b(0) = 0
j = 1 a(0)b(1) + a(1)b(0) = 0x1 + 1 × 1 = 1
j = 2 a(0)b(2) + a(1)b(1) + a(2)b(0) = 0 × 0 + 1 ×1 + 0 × 1 = 1
j = 3 a(0)b(3) + a(1)b(2) + a(2)b(1) + a(3)b(0) = 0 × 1 + 1 × 0 + 0 × 1 + 1 × 1 = 1
j = 4 a(1)b(3) + a(2)b(2) + a(3)b(1) = 1 × 1 + 0 × 0 + 1 × 1 = 0
j = 5 a(2)b(3) + a(3)b(2) = 0 × 1 + 1 × 0 = 0
j = 6 a(3)b(3) = 1 × 1 = 1

For j = 7 or more it is seen that the sequences cannot overlap in the convolution and so the
result must be 0. The length of the convolution is therefore 7 and the codeword is 1001110,
which is the same as adding the first and third rows of the generator matrix above.

It is found that convolution is commutative, i.e. a(j)®b(j) = b(j)®a(j), and that if
one sequence is of length / and the other of length m, then the length of the
convolution is l + m — 1. Thus an information sequence of length k can be convolved
with a generator sequence of length n – k + 1 to give a code sequence of length n.

4.6 ESTABLISHING THE CYCLIC PROPERTY

If we take the generator and shift it k times, the cyclic property means that the
leftmost bit now wraps around into the right position. To achieve the wrap around,
every time we get a term in Xn we must add Xn + 1 to move the leftmost 1 into the
right-hand position. We find that this can only produce a codeword if Xn + 1 is a
multiple of the generator.

We can formulate the problem mathematically and obtain the same result as
follows:

where g(k)(X) is the polynomial obtained by cyclically shifting the generator by k
places. As this is a codeword we have

where a(X) is some polynomial.
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Thus the generator polynomial of a (n, k) cyclic code must be a factor of Xn + 1.

4.7 DEDUCING THE PROPERTIES OF A CYCLIC CODE

We have seen from the above two sections that to generate a (n, k) cyclic code, the
generator must satisfy two properties:

1 Generator polynomial is a factor of Xn + 1.

2 Degree of generator polynomial is n — k.

We may also, given a generator polynomial, wish to know the properties of the
code generated. It is easy to obtain the number of parity check bits from the degree of
the generator, but obtaining the length is more difficult. To be able to tackle
this problem, we shall need to master the art of long division in modulo-2 arithmetic.

Example

Consider the generator sequence 1011 from our previous examples. We shall carry out a
long division of the sequence 10000001 (representing X7 + 1) by the generator, recording
only the remainders:

1011)10000001
1011

1100
1011

1111

1011

1010
1011

0

The modulo-2 arithmetic means that addition and subtraction are the same. It is
therefore perfectly valid to subtract 1011 from sequences such as 1000; all that
matters is having a 1 on the left of the subtrahend so that the degree of the remainder
is reduced.

From the above example we see that the sequence 10000001 will divide exactly by
1011, i.e. X7 + 1 divides by X3 + X + 1. Thus the length of the code generated is 7,
confirming our original assumption in Section 4.2

If we did not know in advance the length of the code generated, we could instead
divide the sequence 1000... 0 by the generator polynomial until the remainder is 1;
we then know that if the final 0 were changed to a 1 the remainder would have been 0
and the length of the code is found.

There is one valid objection to the procedure above for finding the length of a
cyclic code, namely that it finds the smallest value of n although others may be
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possible. For example, X3 + X + 1 is also a factor of X14 + 1 and so could generate a
code of length 14. Such a code, although possible, would not be very practical; the
sequence X7 + 1, which has weight 2, would be a codeword and thus the code would
have a minimum distance of only 2. In practice, therefore, one would wish to impose
another condition on any generator polynomial, namely that it is not a factor Xj + 1
for any lower value of j than the desired value of n. As a result the objection raised is of
no practical significance.

4.8 PRIMITIVE POLYNOMIALS

If g(X) is irreducible (i.e. it has no binary factors), n is the lowest possible value such
that Xn + 1 is a multiple of some polynomial g(X) and n = 2n-k — 1 where n - k is
the degree of g(X), then the polynomial g(X) is a generator for a Hamming code in
cyclic form. The Hamming code polynomials are of wider importance in the theory
of block codes and are called primitive polynomials.

Table 4.1 lists primitive polynomials of degree 8 or less. For every polynomial listed
here, the polynomial representing the same bit pattern in reverse is also primitive. For

Table 4.1 Primitive polynomials

Degree Polynomial

2 X2 + X + 1
3 X3 + X + 1
4 X4 + X + 1
5 X5 + X2 + 1

X5 + X4 + X3 + X2 + 1
X5 + X4 + X2 + X + 1

6 X6 + X + 1
X6 + X5 + X2 + X + 1
X6 + X5 + X3 + X2 + 1

7 X7 + X3 + 1
X7 + X3 + X2 + X + 1
X7 + X4 + X3 + X2 + 1
X7 + X6 + X5 + X4 + X2 + X + 1
X7 + X5 + X4 + X3 + X2 + X + 1
X7 + X6 + X4 + X2 + 1
X7 + X + 1
X7 + X6 + X3 + X + 1
X7 + X6 + X5 + X2 + 1

8 X8 + X4 + X3 + X2 + 1
X8 + X6 + X5 + X3 + 1
X8 + X7 + X6 + X5 + X2 + X + 1
X8 + X5 + X3 + X + 1
X8 + X6 + X5 + X2 + 1
X8 + X6 + X5 + X + 1
X8 + X6 + X4 + X3 + X2 + X + 1
X8 + X7 + X6 + X + 1
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example X4 + X + 1 represents the pattern 10011, which means that 11001 or
X4 + X3 + 1 is also primitive. The patterns with the lowest weights are the easiest
to implement and thus are usually chosen for error control applications.

4.9 SYSTEMATIC ENCODING OF CYCLIC CODES

Although we have seen that encoding may be carried out by a process of convolution
of the information with the generator sequence, this may not be the most convenient
method because the code produced is not in systematic form, making it difficult to
extract the information when decoding. We therefore wish to know whether there is a
convenient method of generating cyclic codes in systematic form. It is found that
there is such a method, that it is based on modulo-2 long division of sequences as
encountered in Section 4.7 and that it can be conveniently implemented using shift
registers with feedback.

A code in systematic form consists of the information followed by parity check
bits. Applying the polynomial notation, we can shift the information into the left-
most bits by multiplying by X n - k , leaving a codeword of the form

c(X) = i(x)Xn-k + p(X)

or (remembering that addition and subtraction are the same)

c(X) + p(X) = i(X)X n - k

where i(X) represents the information and p(X) is a sequence of parity check bits.
If we take each side modulo g(X), i.e. divide by g(X) and find the remainder, then,

as c(X) is a multiple of g(X) and p(X) is of lower degree than g(X), we obtain

p(x) = i(X)Xn-kmod g(x) (4.2)

To encode in systematic form we therefore take i(X) shifted left by n — k places,
divide by g(X) and use the remainder as the parity checks.

Example

Consider the encoding of the sequence 0110 using 1011 as the generator sequence. We
must carry out long division of the sequence 1010000 by 1011 as follows:

1011)0110000
1011

1110
1011

1010
1011

001
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The remainder is 001, which means that the codeword is 0110001. This is indeed one of the
codewords generated in Section 4.3.

4.10 SYNDROME OF A CYCLIC CODE

It is fairly easy to show that if we divide a sequence by the generator and take the
remainder, the result is the syndrome. To do this, consider the received sequence r(X)
as consisting of the sum of the code sequence c(X) and an error pattern e(X):

Splitting both the code and the error polynomials into the information and parity
positions gives

r(x) = i(X)Xn - k + p(x) + e i(X)Xn-k + ep(X)

where e i (X )X n - k represents the error pattern in the information bits and ep(X) the
errors in the parity bits.

Taking the received sequence modulo g(X):

r(X) mod g(X) = [i(X) + ei(X)]Xn-k mod g(X) + p(X) + ep(X)

In other words the remainder is the same as the parity bits recalculated from the
received information plus the received parity bits. It therefore corresponds to our
definition of syndrome in Section 3.8.

Example

Suppose the received sequence is 1010110. The parity sequence corresponding to infor-
mation 1010 was calculated in the previous section as 011. Comparing with the received
parity of 110 we see that the syndrome is 101. This can be checked by long division as
below:

1011)1010110
1011

1110
1011

101

The syndrome obtained is therefore 101 as expected.

4.11 IMPLEMENTATION OF ENCODING

The fundamental operation of encoding and forming a syndrome is that of division
by the generator polynomial and taking the remainder. A circuit to achieve this uses



95

i (X )X r

Figure 4.1 Parity calculation in encoder for cyclic (7, 4) Hamming code

an arrangement of shift register stages with feedback as shown in Figure 4.1 for the
Hamming code example mentioned previously. The way that this works is to look for
bits of value 1 shifted out of the left side of the registers and then to add the pattern
011 in the next three positions. This is exactly what will happen if the encoding is
carried out by long division.

To see the way the circuit works, let us consider the encoding of the information
0110. The information is shifted into the registers and an extra n - k shifts applied.
With every incoming bit the contents of the registers are shifted left and the value
shifted from the leftmost stage is modulo-2 added to the bits flowing between stages at
the positions shown. At the end of this process the contents of the registers form the
parity bits. The stages in the encoding are shown in Table 4.2, and the codeword is
therefore 0110001 as expected. Note the fact that the register contents in the last three
stages exactly correspond to the remainders produced in the example in Section 4.9.

Another way of viewing this process is to consider that the information is shifted
into the registers subject to the repeated msetting of g(X) = 0. This means that only
the remainder will be left at the end of the operation. For the example given:

X3 + X + 1 = 0

X3 = X + 1

Every time an X2 term is shifted left out of the registers it becomes X3 and is set
equal to X + 1.

A possible criticism of the circuit of Figure 4.1 is that after the information has
been entered a further n - k shifts are required before the syndrome is formed. The

Table 4.2 Shift register cal-
culation of parity checks

Input Register contents

0
1
1
0
0
0
0

000
000
001
on
110
111
101
001
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extra shifts can be dispensed with if the sequence is shifted into the left of the
registers as shown in Figure 4.2. In this case the encoding of the information 0110
will proceed as shown in Table 4.3. The codeword is therefore 0110001 as before.

A general form of this type of circuit is shown in Figure 4.3. To determine the exact
form for any given polynomial the circuit should have the same number of stages as the
degree of the polynomial and the appropriate feedback connections should be made. If
the shift register stages are considered as representing, from the left, the terms Xkn-k-1

down to X0 then the positions of the connections are to the right of the stages
corresponding to the terms in the polynomial. Note that it is the flow out of the
leftmost xn-k-1 stage which corresponds to the highest power term in the polynomial.

Figure 4.2 Improved method of parity calculation in encoder for cyclic (7, 4) Hamming code

Table 4.3 Improved shift register
calculation of parity checks

Input Register contents

000
000
000
101
001

Figure 4.3 General circuit for parity calculation in encoder for cyclic codes

4.12 DECODING

The syndrome of any received sequence can be formed by shifting it into the encoder
circuit of the type shown in Figure 4.1. Combinational logic or a lookup table could
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then be used to find the error pattern as for ordinary linear block codes. The logic can
however be simplified by using the cyclic nature of the code, albeit at the expense of
speed.

Suppose we form the syndrome s(X) of a received sequence r(X) and then apply
one further shift to the registers to produce X-s(X) mod g(X). It is found that this is
the same as if we had cyclically shifted the received sequence by one place and then
formed the syndrome.

The syndrome depends only on the error pattern not on the transmitted codeword,
and so can be found by taking the error pattern modulo g(X). Hence the error
pattern is the sum of the syndrome and some multiple of the generator. Thus

where e(X) is the error polynomial and a(X) is some arbitrary polynomial. If the
coefficient of Xn-1 in e(X) is en-1 then the shifted error pattern is

e(l)(X) = Xa(X)g(X) + e n - 1 ( X n + 1) + Xs(X)

Taking the above expression modulo g(X) gives the syndrome of the shifted error
pattern and, as Xn + 1 is a multiple of g(X), the remainder is just Xs(X) mod g(X).
This is the same as applying a single shift to the s(X) in the syndrome registers as
explained above. The result is therefore proved.

The practical significance of this result is that if we are just looking for a single
error we can keep on shifting until the error reaches a chosen position (say bit n — 1),
detect the appropriate syndrome and use the number of shifts to determine the
original location of the error. Any decoder using this principle is called a Meggitt
decoder.

If we take our example code and create a table of the syndromes corresponding to
the possible error positions, the result is as shown in Table 4.4.

If we start from 001 and shift the registers with feedback, the result is as
shown in Table 4.5. The expected relationship is apparent; if the error is for
example in bit 2, then a further 4 shifts will change the syndrome into the value
associated with an error in bit 6. If the error is in bit 5 then only one extra shift
is needed.

Table 4.4 Syndromes for example code

Error position Syndrome

6
5
4
3
2
1
0

101
111
110
on
100
010
001
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Table 4.5 Effects of shifting syndromes

Shifts Register contents

0
1
2
3
4
5
6

001
010
100
011
110
111
101

One does not with this method get the virtually instantaneous decoding that could
be obtained using a method based purely on combinational logic or a lookup table
because a number of shifts have to be applied. There is however a maximum to the
number of shifts before the patterns start to repeat (at most n — 1 shifts are needed
after formation of the syndrome).

Let us look at some examples of this principle in operation. Suppose the transmit-
ted codeword is 1010011 but that bit 6 is received incorrectly, making the received
sequence 0010011. The codeword corresponding to the received information 0010 is
0010110 (from Section 4.3) making a syndrome of 101. This can be checked either by
long division or by considering the operation of the circuit of Figure 4.1. The latter is
shown in Table 4.6; the former is left to the reader.

If instead bit 5 is in error, the received sequence is 1110011, the codeword with
information 1110 is 1110100 and the syndrome is 111. Alternatively, looking at the
operation of the circuit, we obtain the result shown in Table 4.7.

If we apply a further shift with zero at the input, the result will be 101, which is
the same as the syndrome when bit 6 was in error. Thus the fact that one extra shift
was required to reach the desired syndrome tells us that the error is in bit 6 - 1, i.e.
bit 5.

There is one interesting effect if we use the circuit of Figure 4.2 or Figure 4.3 for
forming the syndrome. We have seen from the encoding example that using this type
of circuit is equivalent to applying an extra n — k shifts compared with the circuit of
Figure 4.1. If bit n — 1 of the received sequence is in error, the effect is to form the
syndrome of an error shifted left by n — k positions, i.e. to position n — k — 1. If this

Table 4.6 Syndrome formation example

Input Register contents

— 000
0 000
0 000
1 001
0 010
0 100
1 010
1 101



CYCLIC CODES 99

is the only error, the syndrome thus formed will be 1 followed by n — k — 1 zeros. The
combinational logic required to detect a single-bit error in the first position thus
becomes particularly simple. For our example of the received sequence 0010011
which has an error in bit 6, the syndrome formation using Figure 4.2 proceeds as
shown in Table 4.8 which is the expected result. If the received sequence is 1110011
(error in bit 5) then the process is as shown in Table 4.9 and one further shift will give
100 as expected.

Table 4.7 Syndrome formation example

Input Register contents

— 000
1 001
1 011
1 111
0 101
0 001
1 011
1 111

Table 4.8 Syndrome formation
with improved encoder

Input Register contents

0
0
1
0
0
1
1

000
000
000
on
110
111
110
100

Table 4.9 Syndrome formation
with improved encoder

Input Register contents

— 000
1 011
1 101
1 010
0 100
0 011
1 101
1 010
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Note that although the syndrome calculated in this way is not the same as the
previous definitions of syndrome, it carries the same information and therefore the
term syndrome is still applied. This form of the syndrome is so common, because of
its convenience, that a special term referring to it would be useful. Unfortunately
there is no established term to describe it, and I shall use the symbol sn-k or s n - k (X )
to distinguish it, depending on whether it is treated as a vector or a polynomial.

4.13 DECODER OPERATION

The operation of a Meggitt decoder is based around the syndrome circuit of Figure 4.3.
A pseudocode representation of the way in which the error detection and correction
may be achieved is given below. The syntax of the pseudocode is based on the Pascal
programming language. The code is appropriate to single-error correction, but can be
extended to other cases. It includes detection of uncorrectable errors which is not
required for perfect codes such as Hamming codes, but is required in all other cases.

begin
shift received sequence into syndrome circuit;
if syndrome zero then no errors
else

begin
i: = n - 1;
while syndrome <> 10... 0 and i > 0 do

begin
i: = i – 1;
shift syndrome register;
end;

if syndrome = 10 ...0 then error in bit i
else uncorrectable error;
end;

end.

In a practical implementation, buffering of the received sequence is required while
the syndrome is formed, and at that stage it will be known whether bit n - 1 is in
error. Bit n — 1 can therefore be shifted out of the buffer, corrected if necessary, and
at the same time a further shift is applied to the syndrome circuit to decide whether
the next bit (n — 2) requires correction. In this way the data can then be shifted out of
the buffer at the same time as further shifts are applied to syndrome circuit and no
buffering of the error pattern is required.

4.14 MULTIPLE-ERROR CORRECTION

There are many cyclic codes which are capable of correcting multiple errors. One
example is the Golay code which is a perfect (23, 12) code with dmin = 7. The
generator polynomial is either
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g(X} = X11 + X10 + X6 + X5 + X4 + X2 + 1

g(X) = X11 + X9 + X7 + X6 + X5 + X + 1

There are several methods of decoding such a code, but all are based on the
Meggitt decoder and a straightforward implementation would be to use the circuit
of Figure 4.3 and an extension of the decoding logic as follows:

1 Form the syndrome of the received sequence.

2 Look for syndromes corresponding to any correctable error patterns which
include an error in bit n — 1.

3 If we detect such a pattern after i additional shifts, this tells us that bit n — (i + 1)
was in error, and so that bit can be corrected.

4 The contribution to the syndrome of any bit which has just been corrected will be
a 1 in the leftmost place. The first bit in the syndrome registers is therefore
inverted when any bit is corrected so that the remaining value in the syndrome
registers represents the errors in the uncorrected bits.

5 Continue until the remaining value in the syndrome registers is zero or all n bits of
the received sequence have been assessed.

Strictly speaking, step 4 is not necessary, but it helps in deciding when all errors
have been found and in detecting conditions where uncorrectable errors have oc-
curred.

4.15 EXAMPLE OF MULTIPLE-ERROR CORRECTION

The polynomial

g(X) = X* + X4 + X2 + X + 1

generates a (15, 7) double-error correcting code. If an encoder of the type shown
in Figure 4.3 is used to form a syndrome, an error in position 14 will have a syndrome
10000000 and the syndromes of all the other single-bit errors can be found by
shifting through the syndrome registers. The complete sequence is shown in
Table 4.10.

The syndromes to look for are those resulting from an error in bit 14, either on
its own or in combination with one other bit. This gives rise to the list shown in
Table 4.11.
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Table 4.10 Syndromes of single errors
in double-error correcting code

Error position Syndrome

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

00010111
00101110
01011100
10111000
01100111
11001110
10001011
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Table 4.11 Syndromes for double-error
correction

Error positions Syndrome

14, 0
14, 1
14, 2
14, 3
14, 4
14, 5
14, 6
14, 7
14, 8
14, 9
14, 10
14, 11
14, 12
14, 13
14

10010111
10101110
11011100
00111000
11100111
01001110
00001011
10000001
10000010
10000100
10001000
10010000
10100000
11000000
10000000

Now suppose that the errors are in positions 12 and 5. By adding the syndromes of
those single errors we get a syndrome value 11101110 as being computed by the
encoder. This does not appear on our list of syndromes that the encoder will try to
detect, so shift once to give 11001011 and once again to give 10000001. This is on the
list, the two shifts needed to reach this state indicating that bit 12 was in error. We
therefore correct bit 12 and invert the leftmost bit of the syndrome to leave 00000001.
A further seven shifts, making nine in all, will produce the pattern 10000000 indicat-
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ing another correctable error in bit 5. Correcting this error and inverting the leftmost
bit of the syndrome leaves zero, showing that the error correction is finished.

Suppose the errors are in bits 12 and 10. The syndrome calculated by using the
encoder will be 00101000. Two shifts will bring this to 10100000. We correct bit 12
and invert the first bit of the syndrome, leaving 00100000. Two further shifts
produce the syndrome 10000000 indicating an error in bit 10. If instead we did not
bother to amend the syndrome after correcting the first error, those two further shifts
would produce syndromes 01010111 and 10101110. This second value is also on our
list of corrections, so we would correct the error in bit 10. The only drawbacks are
that with a more powerful code to correct three or more errors, it would be difficult
to know when the process had come to an end, and that after checking for errors in
every bit we would not know whether all errors had been found or an uncorrectable
pattern had occurred.

4.16 SHORTENED CYCLIC CODES

In common with all linear block codes, cyclic codes may be adapted to system
parameters by shortening, which is the removal of a number of bits of information.
In the case of cyclic codes, the most convenient method to shorten a code is to set the
first few bits to zero and then not transmit those bits. The resulting codes are not,
strictly speaking, cyclic, but they can be encoded and decoded using the same
methods as cyclic codes because the leading zeros which have been omitted would
have no effect on the formation of parity bits or of syndromes. Care must be taken
however with the bit count when decoding because the Meggitt decoder will start off
looking for errors in bits which have been omitted from the code. Clearly if it thinks
it has found errors in any of those bits then an uncorrectable error pattern has
occurred. Alternatively the arrangement of shift registers with feedback may be
modified in such a way that the syndrome is effectively preshifted by the appropriate
number of places so that searching for correctable errors can begin immediately.

Suppose we have a (n, k) cyclic code shortened to (n — i,k — i). We receive a
sequence r(X] and wish to compute the syndrome of Xjr(X), where j is the sum of
i (number of bits removed) and n — k (the usual amount by which the syndrome is
preshifted). If s 1 ( X ) is the syndrome of r(X) and S2(X) is the syndrome of Xj, then the
required syndrome is s\(X)s2(X)modg(X). We therefore multiply the received se-
quence by S2(X)mod g(X) by feeding it into the appropriate points of the shift
registers.

Consider, for example, the (15, 11) code generated by X4 + X + 1, shortened to
(12, 8). First we compute X7modg(X), which is found to be X3 + X + 1. Now
we arrange the feeding of the received sequence into the shift registers as shown in
Figure 4.4, such that there is a feed into the X3, X and 1 registers. If a sequence
100000000000 is fed into this arrangement, the sequence of register contents is as
shown in Table 4.12. Thus the expected result is obtained, with the registers contain-
ing the syndrome 1000. If the first transmitted bit is in error, that fact will therefore
be indicated immediately. Any other syndrome will indicate a need to shift until 1000
is obtained or the error is found to be uncorrectable.
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Received
sequence

Figure 4.4 Syndrome formation for shortened code

Table 4.12 Syndrome formation for
shortened code

Input Register contents

1
0
0
0
0
0
0
0
0
0
0
0

0000
1011
0101
1010
0111
1110
1111
1101
1001
0001
0010
0100
1000

As is the case with other linear block codes, the process of shortening cannot
reduce the minimum distance and may indeed increase it. The strategies of Section
3.11 for increasing minimum distance by shortening are not, however, appropriate
for implementation using the circuits designed for cyclic codes.

4. 1 7 EXPURGATED CYCLIC CODES

Expurgation is the conversion of information bits to parity bits, i.e. keeping the
length n the same, the dimension k is reduced and the number of parity symbols n - k
increased.

If a cyclic code has an odd value of minimum distance, multiplying the generator by
X + 1 has the effect of expurgating the code and increasing dmin by 1 . For example:

g(X)(X + 1) = X4 + X3 + X2 + 1
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The degree of the new generator is increased by 1, increasing the number of parity
bits; however, X + 1 is a factor of Xn + 1 for any value of n, so that the new
generator is still a factor of Xn + 1 for the original value of n, and hence the code
length is unchanged.

Any codeword of the new code consists of a codeword of the original code
multiplied by X + 1, i.e. shifted left and added to itself. The result is bound to be
of even weight because the two sequences being added are of the same weight and
modulo-2 addition cannot convert even overall parity into odd. For example, taking
the code sequence 1000101 from Section 4.3, shifting left and adding to itself
gives

1 0 0 0 1 0 1 + 0 0 0 1 0 1 1 – 1 0 0 1 1 1 0 .

Each of the sequences being added was of weight 3, but addition has caused
cancellation of two of the ones leaving a codeword of weight 4.

Assuming that the original code had an odd value of minimum distance, and
therefore contained odd-weight codewords, the codewords of the expurgated code
are just the even-weight codewords of the original code. The term expurgation arises
from the removal of all the odd-weight codewords. The result is to increase the
minimum distance to some even value.

In the example case where the generator X3 + X + 1 was expurgated to
X4 + X3 + X2 + 1, the new generator is of weight 4, so it is obvious that the new
dmin cannot be greater than 4. Because the minimum distance must have increased to
an even value from its original value of 3, it must now be exactly 4. In other cases of
expurgated Hamming codes, the generator may be of higher weight, but it can still be
shown that the code contains codewords of weight 4, so that after expurgation
dmin — 4.

Proof

Let a code be generated by a polynomial g(X) which is primitive of degree c. We choose
three distinct integers p, q and r all less than 2C - 1 such that Xp + Xq + Xr is not a
codeword. If we divide this sequence by g(X) we obtain a remainder s(X) which, because
g(X) generates a perfect single-error correcting code, must be able to be interpreted as the
syndrome of a single-bit error Xs. Thus there is a sequence Xp + Xq + Xr + Xs which is a
codeword. Moreover the integer s cannot be equal to p, q or r because that would imply the
existence of a codeword of weight 2 and a minimum distance of 2. Therefore any cyclic code
generated by a primitive polynomial has codewords of weight 4.

The expurgated code could be decoded in the usual way based on the
new generator, but because the codewords are also codewords of the original Ham-
ming code, we can form two syndromes based on division by the original Hamming
code generator and a separate division by X + 1, as shown for our example case in
Figure 4.5. If both syndromes are zero there are no errors. If both are nonzero we
assume a single-bit error and attempt to correct it using the Hamming syndrome
circuit in the usual way. If one syndrome is zero and the other nonzero we have an
uncorrectable error. This method is advantageous in the detection of uncorrectable
errors.
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Figure 4.5 Syndrome formation for expurgated code

Example

The sequence 0111010 is a codeword of the (7, 3) expurgated code generated by
g(X) = X4 + X3 + X2 + 1. The following events give rise to the syndromes shown if the
circuit of Figure 4.5 is used:

• Received sequence 0110010 (single error), syndromes are 101 and 1 (correctable error).

• Received sequence 0110011 (double error), syndromes are 110 and 0 (uncorrectable
error).

• Received sequence 1011000 (triple error), syndromes are 000 and 1 (uncorrectable
error).

In the first case, shifting the first syndrome gives 001,010,100, showing that the error is in
bit3.

4.18 BCH CODES

Many of the most important block codes for random-error correction fall into the
family of BCH codes, named after their discoverers Bose, Chaudhuri and Hocquen-
ghem. BCH codes include Hamming codes as a special case. There are binary and
multilevel BCH codes, although only binary codes will be considered at the moment.
For a full understanding of BCH codes, including the construction of the generator
polynomial, it is necessary to have an understanding of the construction of finite
fields, which will be treated in Chapter 5. Nevertheless the generator polynomials are
to be found in most text books and it is easy to look them up.

The construction of a t-error correcting binary BCH code starts with an appropri-
ate choice of length:

n = 2m - 1 (m is integer > 3)

The values of k and dmin cannot be known for sure until the code is constructed,
but one can say that
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n - k < mt (equality holds for small t)

and

dmin >2t+ 1

where t is the design value of the number of errors to be detected and corrected. The
actual code may exceed this expected value of minimum distance.

4.19 CYCLIC CODES FOR BURST-ERROR
CORRECTION

There are a number of block codes which will correct single bursts within a block.
Cyclic codes are generally used because of the particular properties of burst-error
detection which they all possess. Not all cyclic codes, however, will possess good
burst-error correction properties.

As we saw previously, a (n, k:) cyclic code can be formulated in a systematic
way with the n — k parity check symbols in the low-order positions. The cyclic
property means, however, that any consecutive n — k symbols can be shifted into
the parity positions and we will still have a codeword. Any error which affects
only the parity symbols cannot produce a codeword result because the parity symbols
are firmly fixed by the information. It therefore follows that any error that spans n — k
symbols or less of a cyclic codeword cannot produce a codeword result, and is
therefore detectable. The cyclic nature of the code means that errors affecting the
first few and last few symbols can be considered as a single end-around burst. Figure
4.6 shows an error pattern which by normal considerations would be a burst of length
14, but viewed as an end-around burst its length is only 6.

If the code is suitable for burst correction, then the maximum length of a correct-
able single burst within one codeword is (n - k)/2. This result, known as the Reiger
Bound, may be seen by analogy with the random error case in which the error
correction capability is half that of error detection, or by considering the principle
of decoding when the maximum likelihood error pattern is considered to be the
shortest possible burst.

The usual decoding method for burst-error correction is called error trapping, and
is very similar to Meggitt decoding. Remembering that the syndrome of an error in
the parity symbols is equal to the error pattern itself, we see that if the syndrome is
shifted around a Meggitt decoder we will eventually reach a point where it shows
directly in the syndrome. If the error pattern occupies at most (n — k)/2 consecutive

Figure 4.6 End-around burst of length 6
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symbols, then we can detect this condition by the existence of (n - k)/2 consecutive
zeros in the syndrome. The number of shifts to achieve this condition will show where
the burst is located.

Example

A (15, 9) cyclic code generated by

can correct bursts of length up to 3. An error pattern

e(X) = X9 + X8 + X7

has the syndrome (as formed by a circuit of the type shown in Figure 4.3)

s6(X) = X5 + X + 1

This pattern of 100011 when shifted gives 111111, 000111, 001110, 011100 and 111000.
We now have three zeros in the low-order bits of the syndrome and the error pattern trapped
in the high-order bits. The fact that it took five extra shifts to achieve this shows that the error
pattern starts from bit 9, i.e. it affects bits 9, 8 and 7. We have thus correctly identified the
pattern and location of the error.

Fire codes

Fire codes are cyclic codes that correct single-burst errors, with a syndrome that can
be split into two components for faster decoding. The form of the generator polyno-
mial for a Fire code correcting single bursts of length up to / is

where h(X} is an irreducible binary polynomial of degree m > l which is not a factor
of X2 l – l + 1, i.e. the period p of h( X) is not a factor of 21 – 1. The length of the code
is the lowest common multiple of p and 21—1.

As an example, let h(X) = X4 + X + 1 . This is a primitive polynomial of degree 4
which is therefore not a factor of X7 + 1 . The polynomial

g(X) = (X7 + 1 ) (X 4 + X + 1 )

therefore generates a (105, 94) Fire code which can correct single bursts of length 4.
We could construct a decoder in which the received sequence passes through the

shift registers before feedback is applied, i.e. of the type shown in Figure 4.1 but
based on g(X) for the Fire code. In that case if a burst error occurred which affected
bits n + l — i— 1 to n — i (both values taken modulo n), then after a further i shifts in
the registers the errors would appear in bits / - 1 to 0 of the syndrome. At most n – 1
shifts would be required to achieve this condition in which the error would be
trapped and could be located.



CYCLIC CODES 109

Received
sequence

Figure 4.7 Split syndrome formation for (105, 94) Fire code

There is an alternative, faster, decoder structure in which the generator polynomial
is broken down into its factors X 2 l – l + 1 and h(X), Such an arrangement is shown for
our example code in Figure 4.7. Any error pattern which is not a codeword will leave a
nonzero remainder in one or both of the syndrome registers. Clearly any error pattern
of length 21 – 1 or less cannot leave a zero remainder when divided by X21–1 + 1 and
no error pattern of length 4 or less could leave a zero remainder when divided by h(X).
Thus the correctable error patterns will leave a nonzero remainder in both registers.

If, with a correctable error pattern, we cycle the registers which divide by X2 l – l + 1,
after + 1, shifts the error pattern will appear in the / low order bits of the register leaving
the / - 1 high-order bits zero. Because the period of these registers is 21 — 1, the same
pattern would reappear every 21 – 1 further shifts and one of these occasions would
correspond with the number of shifts (i) required to trap the error in a standard error
trapping decoder as discussed above. Hence

where A\ is an unknown integer.
The next stage is to cycle the registers which divide by h(X). After A2 shifts the

error pattern appears in the registers and can be recognized because it is the same as
that in the other registers. The period of h(X) is p and by the same logic as before

(4.4)

(4.5)

(4.6)

where A2 is an unknown integer.
Eliminating i from Equations (4.3) and (4.4) gives

and they can also be combined to give

i(l2 - h) = A1(21 -

We can certainly find a pair of integers A\ and A2 which satisfy Equation (4.5) and
then substitute into (4.6). A better way, however, is to find the pair of integers I\ and
I2 which satisfy
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l ) - / 2 p = l (4.7)

and then take (A2 - k1)I1 and (A2 - A1)I2 as the solutions of Equation (4.5) to give the
following expression for Equation (4.6):

(4.8)

The value for i is taken modulo n. The advantage of this approach is that I\ and I2

can be calculated in advance and their values stored to use in Equation (4.8) once A1

and A2 are known. For example, in our case where 21 – 1 is 7 and p is 1 5 the values of
/1 and I2 are 13 and 6, respectively.

If we wish to be able to correct bursts up to length / and simultaneously to detect
bursts up to length d (d > l), we can construct a Fire code generator

where c = I + d — 1 and h(X) is not a factor of Xc + 1 .

4.20 CONCLUSION

As mentioned earlier, the understanding of cyclic codes is enhanced by the know-
ledge of finite field arithmetic, the topic of Chapter 5. BCH codes have specific
properties that can be defined with the use of finite field arithmetic and they are
generally decoded by algebraic means in which the syndrome is used to form a
polynomial whose roots give the positions of the errors; this will be explained in
Chapter 6. The use of cyclic codes as cyclic redundancy checks for error detection will
be covered in Chapter 8.

In addition to the burst-error correcting codes mentioned above, there are codes
known as Burton codes that correct phased errors, i.e. errors that fall within certain
internal boundaries of the code. These are described in [1], but they can be regarded
as superseded by Reed Solomon codes. The same reference also describes another
variant of error trapping, Kasami decoding, for use with the Golay code; interest-
ingly, however, there are improvements that can be made to Kasami's method [2].

4.21 EXERCISES

1 The primitive polynomial X4 + X + 1 is used to generate a cyclic code. Encode
the sequences 10011101001 and 01010000111.

2 Using the code of question 1, form the syndromes of the sequences
000111001110011 and 100111111110011.

3 Find the length and minimum distance of the code generated by the polynomial
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4 Use the division method to confirm the length of the binary Golay code produced
by the generator polynomial g(X) = X11' + X9 + X1 + X6 + X5 + X + 1 .

5 Show that the polynomial X4 + X2 + 1 can be used to generate a code of length
12. Find the minimum distance and comment on the result.

6 Prove that an error in bit n — 1 of a received sequence results in a syndrome
s(X) =

7 If the circuit of Figure 4.3 is used to form a syndrome sn-k for the sequences in
question 2, what will be the results? Hence determine the errors.

8 The binary polynomial X5 + X2 + 1 generates a Hamming code. What are the
values of n and k? Find the syndrome value that a Meggitt decoder will attempt to
find and generate an example of operation of the decoder with an error in bit 0.

9 Show that the polynomial g(X) = Xs + X1 + X6 -f 1 generates a double-error
correcting code of length 15. Find the syndromes s 8 ( X ) corresponding to correct-
able errors including an error in bit 14. Decode the sequence 1000101 10010001 .

10 A ( 1 5, 1 1 ) cyclic Hamming code is shortened by removal of five information bits.
What are the values of length, dimension and minimum distance for the shortened
code? If the generator polynomial is g(X ) = X4 + X + 1 , encode the sequence
110001 and, using the encoder circuit to calculate syndrome, show how the
decoding works if the second received bit is in error. Modify the syndrome
former to premultiply by the appropriate amount and repeat the decoding pro-
cess.

1 1 Determine the result of using the circuit of Figure 4.5 to form syndromes when
there are errors

(a) in bit 0
(b) in bits 6 and 0

12 The binary polynomial X7 + X3 + 1 is primitive. Show that the polynomial
X8 + X7 + X4 + X3 + X + 1 generates a (127, 1 19) code with dmin = 4. Design
a Split syndrome decoder for the code and explain its operation.

1 3 Starting from the polynomial X3 + X + 1 , construct the generator of a Fire code
of length 35 which can detect and correct all bursts of length 3 or less. Find the
constants I\ and I2. Decode the sequence corresponding to the polynomial

X* + X32 + X31 + X30 + X29 + X25 + X23 + X22 + Xls + X16 + X15 + X3

+ X+1

1 4 Amend the generator of the Fire code in Section 4. 1 9 so that it can also detect and
correct all random 2-bit errors. Find the length and dimension of the code created.
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15 Which of the following codes appear to be consistent with the rules for BCH
codes?

(31, 21) dmin = 5
(63, 45) 4™ - 7
(63, 36)dmin = ll
(127, 103) dmin = 7
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5
Finite field arithmetic

5.1 INTRODUCTION

So far we have confined our attention to binary arithmetic when operating on block
codes. It was pointed out in Chapter 3 that binary arithmetic is a special example of the
arithmetic of a finite field, and this chapter sets out to explain the general approach to
finite field arithmetic. The reasons why we need to study finite field arithmetic are as
follows. Firstly, we would like to understand more about the properties of cyclic codes
and the design of multiple-error correcting codes. Secondly, we need to be able to
implement the standard decoding methods for multiple-error correcting binary cyclic
codes. Finally, we need to be able to encode and decode certain codes, principally Reed
Solomon codes, that have symbols defined over a larger finite field.

There is an interesting analogy between finite field arithmetic and the more
familiar topic of complex numbers that may also be of help to the reader. It will be
seen that there is an interesting and useful relationship between the binary field and
the larger fields derived from it, similar to that between real and complex numbers.
Any irreducible binary polynomial will factorize in the appropriate larger field, just
as complex numbers allow one to factorize any polynomial with real coefficients.
Moreover the analogy with complex numbers will allow us to define a Fourier
Transform over a finite field which is useful to envisage the encoding and decoding
of certain cyclic codes.

5.2 DEFINITION OF A FINITE FIELD

What we wish to do is to have a finite set of values and some defined arithmetic
operations, such that the arithmetic observes certain rules of consistency. In particu-
lar, the result of carrying out any arithmetic operation on values in the field must
itself always be a member of the field. It might be thought that this would mean
finding sets of real values that can be used with the usual definitions of the arithmetic
operations, such that the rules are satisfied. In fact the values of the elements in the
set are defined in rather an abstract way and the problem of finite field arithmetic
boils down to defining the allowed operations. A finite field is also often known as a
Galois field, after the French mathematician Pierre Galois. A Galois field in which
the elements can take q different values is referred to as GF(q).
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The formal properties of a finite field are:

(a) There are two defined operations, namely addition and multiplication.

(b) The result of adding or multiplying two elements from the field is always an
element in the field.

(c) One element of the field is the element zero, such that a + 0 = a for any element
a in the field.

(d) One element of the field is unity, such that a • 1 = a for any element a in the
field.

(e) For every element a in the field, there is an additive inverse element -a, such
that a + ( - a) = 0. This allows the operation of subtraction to be defined as
addition of the inverse.

(f) For every non-zero element b in the field there is a multiplicative inverse element
b- l , such that bb-1 = 1. This allows the operation of division to be defined as
multiplication by the inverse.

(g) The associative [a + (b + c) = (a + b) + c, a • (b • c) = (a • b) • c], commutative
[a + b = b + a, a • b = b • a], and distributive [a • (b + c) = a • b + a • c] laws
apply.

These properties cannot be satisfied for all possible field sizes. They can, however,
be satisfied if the field size is any prime number or any integer power of a prime. Our
main interest will be in finite fields whose size is an integer power of 2, although to
help our understanding we need first to see what happens when the field size is a
prime number.

5.3 PRIME SIZE FINITE FIELD GF(p)

The rules for a finite field with a prime number (p) of elements can be satisfied by
carrying out the arithmetic modulo-p. We have already seen binary arithmetic carried
out modulo-2, and this satisfies all the rules for GF(2). Similarly, if we take any two
elements in the range 0 to p — 1, and either add or multiply them, we should take the
result modulo-/?. The results for GF(3) are shown in Tables 5.1 and 5.2.

Table 5.1 Addition in GF(3)

+
0
1
2

0

0
1
2

1

1
2
0

2

2
0
1
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Table 5.2 Multiplication in GF(3)

X

0
1
2

0

0
0
0

1
0
1
2

2

0
2
1

The additive inverse of any element is easy to identify as it is just the result of
subtracting the element from p. Thus in GF(3), the additive inverse of 0 is 0, and the
additive inverse of 1 is 2 and vice versa. The multiplicative inverse can in principle be
found by identifying from the table pairs of elements whose product is 1 . In the case of
GF(3), we see that the multiplicative inverse of 1 is 1 and the multiplicative inverse of 2
is 2.

Another approach can be adopted to finding the multiplicative inverse that will be
more generally useful and will lead towards the method for constructing other field
sizes. In any prime size field, it can be proved that there is always at least one element
whose powers constitute all the nonzero elements of the field. This element is said to
be primitive. For example, in the field GF(7), the number 3 is primitive as

3° = 1

31= 3
32 = 2

34 = 4

Higher powers of 3 just repeat the pattern as 36 = 1 . Note that we can carry out
multiplication by adding the powers of 3, thus 6 x 2 = 33 x 32 = 35 = 5. Hence we
can find the multiplicative inverse of any element as 3' as 3-i = 36-i. Thus in GF(7)
the multiplicative inverse of 6 (33) is 6 (33), the multiplicative inverse of 4 (34) is 2 (32)
and the multiplicative inverse of 5 (35) is 3 (31).

5.4 EXTENSIONS TO THE BINARY FIELD - FINITE
FIELD GF(2m)

Finite fields can also be created where the number of elements is an integer power of
any prime number p. In this case it can be proved that, as was the case for G F ( p ) ,
there will be a primitive element in the field and the arithmetic will be done modulo
some polynomial over G F ( p ) . In the main case of interest where p = 2, the polyno-
mial to be used will be one of the primitive binary polynomials, encountered in the
previous chapter as generators for Hamming codes. The use of binary polynomials
means that the larger finite field inherits the property of modulo-2 addition that
addition and subtraction are the same. I shall therefore ignore the formal need for
minus signs in much of the mathematics in this (and the following) chapter.
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Let us suppose that we wish to create a finite field GF(q) and that we are going to
take a primitive element of the field and assign the symbol a to it. We cannot at
present assign a numerical value to a and have to be content with the knowledge that
it exists. The powers of a, a° to aq-2, q — 1 terms in all, form all the nonzero elements
of the field. The element a9-1 will be equal to a°, and higher powers of a will merely
repeat the lower powers found in the finite field. The method of multiplication
follows straightforwardly by modulo-(<7 - 1) addition of the powers of alpha. All
we need now is to know how to add the powers of alpha, and this is best approached
by example, through the case where q = 2m (m is an integer).

For the field GF(2W) we know that

a2m-1- = 1

or

a2m-1 c+ 1=0

This will be satisfied if any of the factors of this polynomial are equal to zero. The
factor that we choose should be irreducible, and should not be a factor of an + 1 for
any value of n less than 2m - 1; otherwise, the powers of alpha will repeat before all
the nonzero field elements have been generated, i.e. alpha will not be primitive. Any
polynomial that satisfies these properties is called a primitive polynomial, and it can
be shown that there will always be a primitive polynomial and thus there will always
be a primitive element. Moreover the degree of the primitive polynomials for GF(2m)
is always m. Tables of primitive polynomials are widely available in the literature and
a selection was shown in Table 4. 1 .

Take as an example the field GF(23). The factors of a7 + 1 are

a7 + 1 = (a + l)(a
3 + a + l)(a

3 + a2 + 1)

Both the polynomials of degree 3 are primitive and so we choose, arbitrarily, the
first, constructing the powers of a subject to the condition

a3 + a + l = 0

Using the fact that each power of alpha must be a times the previous power of
alpha, the nonzero elements of the field are now found to be

a1 = a

a3 = a + 1

a4 = a x a3 = a2 + a

a5 = a x a4 = a3 + a2 = a2 + a + 1

a6 = a x a5 = a3 + a2 + a = a2 + 1
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As previously stated, the nonzero powers of a can be multiplied by adding the
powers of a modulo-7. To add two elements together, we must first express each
element as a binary polynomial in powers of a of degree 2 or less. Addition is then by
modulo-2 addition of the terms of the polynomial, for example:

3.4 i i i 2 i ^ i i 6y. -\- y. :==- (x. ~T~ i ~t~ y. -\~ a =- y. ~\~ l = oc

Note that each element is its own additive inverse because of the modulo-2 addition,
so that the operations of addition and subtraction are equivalent as they were in
GF(2).

It may be felt that the job is not yet finished because we still do not know what a
represents numerically. This is not, however, a valid objection because the numeric
values are unimportant and we can assign them in any way we like. If, for example,
we decide to assign the value 2 to a and 3 to a2 then we have decided that in our
arithmetic 2x2 = 3. This differs from our normal concept of arithmetic and so we
might as well regard the assignment of numeric values as purely arbitrary. The
process of carrying out finite field operations will therefore conceptually be as
shown in Figure 5.1.

Of course there are certain mappings of values to finite field elements that may
simplify the arithmetic, enabling the conversions to be integrated into the operations
themselves. Later in this chapter we shall meet some mappings that are commonly
adopted. However it remains true that the mapping is arbitrary and that to be able to
manipulate finite fields it is sufficient to have defined the rules for multiplication and
addition.

value 1

result -

- value 2

Figure 5.1 Concept of arithmetic implementation

5.5 POLYNOMIAL REPRESENTATION OF FINITE
FIELD ELEMENTS

In the previous section we saw that to add two values together we need to map onto
finite field elements and represent those elements as a binary polynomial in powers of
a. We could incorporate this representation into the mapping to simplify the addition
operation. The elements of GF(8) could then be mapped as shown in Table 5.3. The
usual binary representation of any number in the range 0-7 directly represents the
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Table 5.3 Polynomial mapping for GF(8)

Element Coefficients Value

0
a°
a1

a2

a3

a4

a5

a6

a2

0
0
0
1
0
1
1
1

a1

0
0
1
0
1
1
1
0

a°
0
1
0
0
1
0
1
1

0
1
2
4
3
6
7
5

coefficients of a2, a1 and <x° and addition of two numbers can be done by modulo-2
addition of the bits.

If, for example, we wished to add 3 to 6, the binary values 011 and 110 would go
bit-by-bit into exclusive-OR gates to produce the result 101, i.e. 5. This corresponds
exactly to the result

a3 + a
6 = a

5

given in the previous section.
With this mapping, addition is easy but multiplication is more difficult. If we wish,

for example, to multiply 4 by 3, we need to look up the corresponding powers of
alpha, add the powers modulo-7 and then convert the result back to a numeric value
as follows:

4 x 3 = a2 x a3 = a5 = 7

Other examples are

6 x 3 = a4 x a3 = a7 = a° = 1

2 x 7 = a1 x a5 = a6 = 5

5x0 = 0

In the last example, the rule is that any number multiplied by zero must give a zero
result. In all other cases, it is seen that the process of conversion between numeric
values and finite field elements has been followed, as envisaged in Figure 5.1.

We can now see that with this mapping, the process of addition is simple but
the process of multiplication is difficult. There is, however, a representation of the
multiplication process similar to one understood by all and very familiar before
the advent of electronic calculators. If we wish to multiply two real numbers together,
we can do so by taking the logarithms of the two numbers, adding the logarithms and
then converting back to a real number result. In multiplying two integers under the
rules of finite field arithmetic we have done a very similar thing, namely:
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1 Use a table to look up the logarithm to base a of each operand.

2 Add the logarithms modulo-q - 1.

3 Use an antilog table to convert to the numeric value of the product.

As before we would need to trap out the case where one of the operands is zero.
We now have the situation where, with the polynomial representation, both the

addition and multiplication operations can be readily understood. Addition uses
bit-by-bit modulo-2 addition of the values. Multiplication uses the modulo-q — 1
addition of logarithms to base a. Indeed we could note that in the polynomial
representation the number 2 will always be mapped onto the element a, so we
could think of the log table as logarithms to base 2 - a further conceptual simplifica-
tion.

Hardware implementations commonly use the polynomial representation but
adopt other ideas to simplify the multiplication. Software implementations may use
a mapping that makes multiplication straightforward together with an approach to
reduce the complexity of addition. These matters will be discussed later in this
chapter.

5.6 PROPERTIES OF POLYNOMIALS AND FINITE
FIELD ELEMENTS

There are several interesting and useful relations between a field GF(p) and
its extension fields GF(pm). We will be mainly interested in the binary field and its
extensions, but it may be worth bearing in mind that the principles can be extended.
Many of the results will be stated and demonstrated rather than proved.

5.6.1 Roots of a polynomial

Polynomials with real coefficients do not always have real factors but always factor-
ize if complex numbers are allowed. For example in the field of complex numbers,
X2 + 6X + 10 factorizes into (X + 3 +j) (X + 3 -j) and the two roots are 3 +j and
3 —j. These roots are said to be complex conjugates and the existence of one implies
the existence of the other given that the original polynomial was real.

Similarly, an irreducible polynomial over a finite field can always be factorized in
some extension field, for example the binary polynomial X3 + X + 1 is found to
factorize in GF(8) as (X + a) (X + a2) (X + a4). The values a, a2, and a4 are said to be
the roots of X3 + X -f 1 because they represent the values of X for which the
polynomial is zero.

It is easy to verify that for any binary polynomial f(X), [f(X)f =f(X2). In the
expansion of the left-hand side, all the odd powers of X will be created an even
number of times leaving a zero coefficient. Thus if ft is a root of a polynomial, ft2 will
also be a root, as will /J4, /?8, etc. Therefore the concept of conjugacy applies also to
the roots of a binary polynomial when the roots are over a larger finite field.
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The same applies to factorization of polynomials over larger finite fields. I f f ( X ) is
an irreducible q-ary polynomial then it will have roots in some extension field
GP((f), i.e. the polynomial can be expressed as the product of several terms
(X + a') where the terms a1 are elements of GF((f). However in this case it is
found that

(5.1)

Therefore, if we find one of the roots, ft, then the conjugates are ftp, fr , /r , etc.

5.6.2 Minimum polynomial

If an irreducible polynomial^X) has ft as a root, it is called the minimum polynomial
of ft (or of any of its other conjugate roots). If ft is a primitive element then f(X) is a
primitive polynomial. We have already seen that the generation of a finite field is done
in terms of a primitive element which is treated as a root of a primitive polynomial.

As an example, consider the finite field GF(8) generated by the primitive polyno-
mial X3 + X + 1. Substituting X = a, X = a2 or X = a4 into the polynomial gives a
zero result, and the polynomial is therefore the minimum polynomial of a, a2 and a4.
Similarly substituting a3, a6 or a12 ( = a5) into X3 + X2 + 1 verifies that they are
roots. The minimum polynomial of a° is X + 1.

5.6.3 Order of an element

If m is the smallest integer value for which ff" = 1, the element ft is said to be of order
m and it must be a root of Xm + 1. If it is also a root of some irreducible polynomial
J(X), then/(JO is a factor of Xm + 1. In our GF(8) example, the lowest value of m for
which (a3)m = 1 is 7. The element a3 is therefore of order 7, it is a factor of X7 + I
and its minimum polynomial X3 + X2 + 1 is therefore a factor of X1 + 1.

5.6.4 Finite field elements as roots of a polynomial

The roots of X 2 C - ] + 1 are the non-zero elements of GF(2C). Consider as an example
the finite field GF(8). We have already seen that the factors of X1 + 1 are
X3 + X + 1, X3 + X2 + 1 and X+l. We have also seen that a is a root of
X3 + X + 1; hence, a2 and a4 are also roots, and a3 is a root of X3 + X2 + 1;
hence, a6 and a5 are also roots. The root of X + 1 is 1. Each of the nonzero elements
is therefore a root of one of the factors of X1 + 1 and therefore of X1 + 1 itself.

5.6.5 Roots of an irreducible polynomial

If we consider an irreducible binary polynomial of degree c, it will have c roots ft, ft2,
fP, ..., ft2' . Now ft2' — ft; hence,



121

02'-' = |

Thus ft is a root of X2'"' + 1. As the roots of X2'"1 -f 1 are the nonzero elements of
GF(2C), it can be seen that an irreducible binary polynomial of degree c always has roots
in GF(2C). Conversely, the factors of X2'~] + 1 include all the irreducible polynomials
of degree c. Thus X3 + X2 + 1 and X3 + X + 1 are the only irreducible polynomials of
degree 3.

Note that Xm + 1 divides into X" + 1 if and only if m divides into n. This, in
conjunction with the previous results, means that all irreducible polynomials of
degree c are primitive if 2c~~l is prime. Thus because 7 is prime, all irreducible
polynomials of degree 3 are primitive. On the other hand the irreducible polynomials
of degree 4 are not all primitive because 15 is not a prime number.

5.6.6 Factorization of a polynomial

If we wish to factorize a binary polynomial f(X), we need to establish the finite field
in which the factors may be found. To do this, we first find the binary factors of the
polynomial (if any) and the order of the binary polynomial representing those
factors. Now find the LCM, c1 ', of the orders; the factors of the polynomial will be
found in GF (2'').

Proof

2ab - 1 = (2a)b - 1

2ab - 1 = (2a

Thus 2a - 1 is a factor of 2^ - 1 , and so 2C/ - 1 is a multiple of 2C - 1 if d is a multiple
of c. By choosing d to be a multiple of the order c of some binary factor, the roots of that
binary factor in GF(2C) can also be found in GF(2C'). If c' is a multiple of the orders of all
the binary factors then all the roots can be represented in GF(2C').

As an example, the polynomial Xs + X4 + I factorizes into (X 3 -f X + 1 )
(X2 + X + 1). It therefore has factors in GF(26).

5.7 FOURIER TRANSFORM OVER A FINITE FIELD

The analogy between elements of a finite field and complex numbers can be carried to a
stage further by showing that in certain circumstances we can define a discrete Fourier
transform (DFT) over a finite field. Moreover it is found that the transform so defined
has considerable practical value, providing us with efficient encoding and decoding
techniques and an alternative view of cyclic codes which is of particular interest to
those working in the field of digital signal processing. We shall start from the familiar
form of the DFT, and then develop the finite field version.
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The definition of the DFT of an w-point sequence in the field of complex numbers
is usually expressed in terms of the relation between the frequency domain samples
Vk and the time domain samples vi:

n-1

Vk = Yvie-J'2**'* (5.2)

The term e &**/" can be taken as a set of powers of e i2*/". However in complex
representation, e'i2* is equal to 1; therefore, e'J2*/" is the nth root of 1.

In the finite field GF(2m) there will be a transform of v(X) into V(z), equivalent to
the Fourier transform, only if there is an wth root of 1 within the field, i.e. a term ft
such that ft" = 1. This will be satisfied if

where c is some integer. It is not necessary for the polynomial being transformed to
be defined over the same field as the transform; a polynomial with coefficients from
GF(27) can be transformed over a field GF(2m) provided m is a multiple of /. Thus,
for example, a binary polynomial of length 7 could be transformed over GF(23) or
over GF(26), or a polynomial of length 7 over GF(23) could be transformed over
GF(26).

In the general case the coefficient Vk of the Fourier transform of a polynomial
v(X) can be defined as

n-l

/=o

where the term v/(ac) indicates that a coefficient ft in GF(21) is replaced by ftc in
GF(2m). Note, however, that the value of e is defined by the ratio of 2m - 1 to the
length of the transformed sequence.

The inverse DFT is defined as

1 n-1

(5.4)

The component v, of the inverse transform is

Yk*-c* (5.5)

where the symbols are defined over GF(pm). Depending on the values produced by
the inverse transform, it may then be possible to reduce the coefficients to values in a
smaller field.
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There will be two particular cases of interest to us. One will be the case where
a binary vector of length 2m - 1 is transformed over GF(2m); the other is where a
vector over GF(2m) of length 2m - 1 is transformed over its own field. In both cases
c = 1 and

Vk = 2^v'-(°0a (5.6)
;=0

with the inverse transform being

v,- = Y" Vkarik (5.7)

5.8 ALTERNATIVE VISUALIZATION OF FINITE FIELD
FOURIER TRANSFORM

The easiest way to visualize the Fourier transform from the definition above is as
follows. Regard the sequence to be transformed as a polynomial f(X). Now to
calculate the transform coefficient in position k, substitute X = ak.

Example

The sequence 0101100 is equivalent to X5 + X3 + X2. The Fourier transform over GF(8) is

Vo = 1 + 1 + 1 = 1

Vi = a5 + a3 + a2 = 0

V2 - a3 + a6 + a4 = 0

1/3 = a1 + a2 + a6 = a3

V4 = a6 + a5 + a1 = 0

V5 = a4 + a1 + a3 = a5

V6 = a2 + a4 + a5 = a6

Thus the transformed sequence is a6 a5 0 a3 0 0 1.

Note that when we double the position (modulo-«) we square the value of the
transform. Thus V2 — V1, V4— V2, F6 = V6 and F5 = V6. This is a consequence of
Equation (5.1).

The inverse Fourier transform can be presented in a similar way. Regard the
sequence as a polynomial V(z) and substitute z = ai to obtain the value of the inverse
transform in position i.
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Example

The sequence 0101100 is equivalent to z5 + z3 + z2. The inverse Fourier transform over
GF(8) is

V0 = 1 + 1 + 1 = 1

V1 = a2 + a4 + a5 = a6

V2 = a4 + a1 + a3 = a5

V3 = a6 + a5 + a1 = 0

V4 = a1 + a2 + a6 = a3

V5 = a3 + a6 + a4 = 0

Thus the transformed sequence is 0 0 a3 0 a5 a6 1 . Note the relationship to the forward
transform. The value of both transforms in position 0 is the same because the same
substitution is being performed. However, for the other positions, the inverse transform in
position i makes the same substitution as for the forward transform in position n - k.
Therefore the only difference between the forward and inverse transforms is a reversing
of the order of the samples, other than the one in position zero.

The same approach can be adopted for transforms of sequences over their own
finite field. Consider the sequence 1 a2 a2 0 a6 0. This is equivalent to the polynomial
X6 + a2X5 + <xX4 + a2 A'3 + a6X. The Fourier transform is

VQ = a° + a2 + a + a2 + a6 = a4

V\ = a6 + a° + a5 + a5 + a° = a6

F2 = a5 + a5 + a2 + a1 + a1 = a2

F = a4 + a3 + a6 + a4 + a2 = a1

F4 = a3 + a1 + a3 + a° + a3 = 0

K5 = a2 + a6 + a° + a3 + a4 = a6

K6 = a1 + a4 + a4 + a6 + a5 = 0

The forward transform is therefore 0 a6 0 a1 a2 a6 a4. The inverse transform of
this sequence is a6 a2 a1 0 a6 0 a4. It has the same relationship to the forward
transform as for the binary case.

Note that conjugacy constraints do not apply because the sequence to be trans-
formed is over GF(8), not GF(2).

5.9 ROOTS AND SPECTRAL COMPONENTS

A consequence of the definition of the Fourier transform from Section 5.7 is that
roots of a polynomial in the time domain are related to zero components in the
transform over GF(2m). A polynomial v(X) has a root ak if and only if the compon-
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ent Vk of the transform is zero. Conversely, the polynomial v(X) has a zero compon-
ent vi if and only if a' is a root of the transform polynomial V(z).

As an example, the binary sequence 0001011 is equivalent to X3 + X + 1. As this
is the primitive polynomial used to generate the finite field GF(8), it is the min-
imum polynomial of a and therefore has roots a, a2 and a4. Thus we would expect
the frequency components V1, V2 and ¥4 to be zero, and this is found to be the
case.

5.10 FAST FOURIER TRANSFORMS

Because of the repetition of values of aik in the definition of the Fourier transform, a
straightforward evaluation of the Fourier Transform components may multiply the
same sample value by the same (x.ik term several times in carrying out the calculations.
For a long transform this may lead to considerable inefficiency.

This problem is well-known in the realm of complex DFTs and the usual solution
is the Cooley-Tukey fast Fourier transform. The FFT is a consequence of the
linearity and time shift properties of the DFT. Usually the number of samples is an
integer power of 2 and the procedure, properly called a radix-2 Cooley-Tukey FFT,
is as follows:

Split the series of n samples into an even series (samples 0, 2, 4, ...,n — 1) and an
odd series (samples 1, 3, 5, ... , n}.

Take the DFT of each of the two series.

The DFT of the odd series will assume a time origin of sample 1, although the true
time origin for the whole series is at the time of sample 0. Therefore multiply the
values of the odd series by appropriate complex exponential values to align the
time origins of the odd and even series.

Fourier-transform the n/2 two-point series formed by a single point of the even
and odd transforms.

Each of the shorter DFTs can be evaluated by the same procedure, so that a long
DFT can be decomposed into a number of 2-point DFTs.

The same considerations apply to finite field Fourier transforms, except that the
lengths of the transforms are one less than an integer power of 2. Nevertheless, there
is no reason why transforms should not be decomposed into other basic lengths, or
even mixtures of lengths, provided the length of the transform factorizes.

The procedure for an FFT over a finite field is illustrated by an example of a length
15 sequence over GF(16). First we construct the finite field usingp(X) = X4 + X + 1,
a primitive binary polynomial of degree 4. The polynomial representation of the
elements is shown in Table 5.4.

The sequence to be transformed is v = a5 a a3 a4 a12 1 a7 a9 a11 a6 a13 0 a3 0 1.
The first step is to write the samples into a 3 x 5 array, so that three series of five
points have been formed. This is shown in Table 5.5.
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Table 5.4 Polynomial representation of GF(16)

Element

0
a°
a1

a2

a3

a4

a5

a6

Representation

0000
0001
0010
0100
1000
0011
0110
1100

Element

a7

a8

a9

a10

a"
a12

a13

a14

Representation

1011
0101
1010
0111
1110
1111
1101
1001

Table 5.5 15-point series written into columns

a5

a.
a3

a4

a12

1

a7

a9

a11

a6

a13

0

a3

0
1

Now each row is Fourier transformed. Remember that from Equation (5.3)

n-l

i = 0

where in this case c = 3. For example, for the top row

V0 = a5 + a4 + a7 + a6 + a3 = a9

V1 = a5a12 + a4a9 + a7a6 + a6a3 + a3 = a2 + a13 + a13 + a9 + a3 = a5

V2 = a5a24 + a4a18 + a7 + a6a6 + a3 = a14 + a7 + a4 + a12 + a3 = a5

V
3 = a5a36 + a4a27 + a7a18 + aV + a3 = a11 + a1 + a10 + a0 + a3 = a1

V4 = o^a48 + aV6 + a7 a24 + a6a12 + a3 = a8 + a10 + a1 + a3 + a3 = 0

The result of the row transforms is given in Table 5.6.
Next the points are multiplied by the values shown in Table 5.7, corresponding to

compensation for the different time offsets. The result is shown in Table 5.8.
Finally the columns are transformed using the DFT expression above with c - 5.

The result is shown in Table 5.9.

Table 5.6 Row transforms of 15-point sequence

0
a2

a10

a1

a8

a13

a5

a14

a4

a5

a1

a"

a9

a9

a5
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Table 5.7 Time offset factors for 15-point transform

127

Table 5.8 Row transforms compensated for time offsets

0
a6

a10

a7

a11

a13

a9

a1

a4

a7

a2

a11

a9

a9

a5

Table 5.9 Fourier transform

a8

a14

oc7

a11

a7

a3

a2

a6

a7

a"
a0

a°

a6

a6

a5

This completes the transform, but the values must be read out by row. The result is
therefore

V =

5.11 HARDWARE MULTIPLIERS USING POLYNOMIAL
BASIS

In Section 5.5 we saw that multiplication in the polynomial basis was equivalent to
using logarithmic tables to base a. This requires three table lookups, an inconveni-
ence for hardware implementation. If, however, one of the factors is known in
advance, efficient multiplier circuits are easy to design.

Consider the case of multiplication in GF(8). Suppose we have an element ß whose
bit values are ß2, ß1, ß0- Multiplying by a would be equivalent to shifting the bits once
in the registers shown in Figure 5.2.

This multiplication could be expressed in matrix terms by

x a =
0 1 1
1 0 0
0 1 0

Note that the top row of the matrix is just low-order coefficients of the primitive
polynomial. The lower rows of the matrix contain an identity matrix followed by a
zero column. This format applies to all extension fields of GF(2).
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ß2 ß1 —©*- 00 ß0—'

Figure 5.2 Multiplication by a in GF(8)

If we wish to multiply by a', we need to raise the above matrix to the power /. The
results of doing this are

1 1 0
0 1 1
1 0 0

1 1 1
1 1 0
0 1 1

1 0 1
1 1 1
1 1 0

0 0 1
1 0 1
1 1 1
0 1 0
0 0 1
1 0 1

In fact, looking at any one of these we can see that the format is

a' =

so that each row of the matrix consists of the polynomial representation of the
appropriate power of a.

Each column of the multiplication matrix denotes the bits that are added together
to form a single bit of the product. For example, the a3 multiplier could be imple-
mented as in Figure 5.3.

Figure 5.3 Multiplication by a3
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5.12 HARDWARE MULTIPLICATION USING DUAL
BASIS

When neither of the factors in a multiplication is known in advance, the polynomial
basis on its own does not provide for efficient multipliers. However if one of the
factors is put into another basis, known as the dual basis, an arrangement known as a
Berlekamp multiplier can be used.

The simplest definition of the dual basis is that for any element ß in GF(2m)
it consists of the least significant bits from the polynomial basis representation of
ß, ßa, . . . ,ßam - 2 , ßa.m-l. For the elements of GF(8), the polynomial and dual basis
representations are shown in Table 5.10.

A Berlekamp multiplier over GF(8) is shown in Figure 5.4. This is a bit-serial
multiplier, i.e. it produces the bits of the product (in dual basis representation)
in series. The feedback connections in reverse order are based on the primitive
polynomial used to generate GF(8), i.e. X3 + X+ 1. Shifting the dual basis rep-
resentation of an element ft produces the dual basis representation of the element ßa.

As an example, if we wish to multiply a4 by a2, we can put a2 into dual basis to
become 010. At the subsequent stages shifting the dual basis register gives 101 and
011 (the dual basis representations of a3 and a4). The results of the multiplications as
shown in Table 5.11.

Table 5.10 Dual basis for GF(8)

Element Polynomial basis Dual basis

a°
a1

a2

a3

a4

a5

a6

001
010
100
on
110
111
101

100
001
010
101
011
111
no

factor in
dual basis

factor in bit
reversed
polynomial
basis

product in
dual basis

Figure 5.4 Berlekamp multiplier over GF(8)
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Table 5.11 Berlekamp multiplication

Stage Bit reversed polynomial Dual Product

1
2
3

011
011
011

010
101
011

1
1
0

Note that 110 is the dual basis representation of a6.

Basis conversion

Of course the suitability of the Berlekamp multiplier for hardware implementation
depends on how easy it is to convert between the polynomial basis and the dual
basis. In the example above, the conversion is easy because if the polynomial
representation of an element ß is ß2 ,ß1 , ß0 the dual basis is ß0, ß2,ß1. In other
words it is produced by a simple reordering of the bits. Indeed it can be shown
that for any finite field GF(2m) where the primitive polynomial is a trinomial (i.e.
it contains 3 terms Xm, Xc and 1), the dual basis is ßc-1 ßc_2, ..., ß0, ßm-1, ßm_2,

..,ßc
The main field of interest for multipliers is GF(256) for which there is no primitive

polynomial that is a trinomial. The usual primitive polynomial to use is a pentano-
mial, X8 + X4 + X3 + X2 + 1. The circuit for shifting the dual basis element is
therefore as shown in Figure 5.5.

Note also that the mapping from the polynomial representation of element ß does
not need to correspond exactly to the definition of dual basis given above. In
particular it could be mapped to the dual basis of an element ßai. The result of any
multiplication would similarly be increased by the a', but the inverse mapping to
polynomial basis would take care of that.

It is found that if the polynomial basis of ß is mapped to the dual basis of ßa-2, a
convenient conversion exists. In this case the dual basis is

ß2 + ß0, ß1, ß0' ß7' ß6' ß5' ß4' ß3 + ß7

and the conversion of a dual basis element y to polynomial basis is

72' 7l' 70 + 72' 73 + 77' 76' 75' 74' 73

Figure 5.5 Dual basis element shifting in GF(256) multiplier
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Multiplicative inverses

For any nonzero element ft in GF(2m), ß-1 = ß2m-2. However 2m-2 = 2 + 22

+23 + --- + 22m-1. Therefore

ß-1 = ß2 x ß4 x ß8 x - - - x ß2m-1 (5.8)

calculation of the multiplicative inverse (for division operations) therefore involves
m - 1 squarings and m-2 multiplications. Alternatively, a lookup table of inverse
values can be held in ROM.

5.13 HARDWARE MULTIPLICATION USING NORMAL
BASIS

Another basis in which hardware multipliers are sometimes implemented is the
normal basis. The normal basis of GF(2m) is a polynomial in ß2m-1 , ß2m-2, ..., ß4,
ß2, ft where ft is an element of order m such that the elements ß2m-1, ß2 m - 2 , . . . , ß4, ß2, ß
are linearly independent. For example, in GF(8) we cannot use a4, a2, a1 because they
are not linearly independent. However we can use a5, a6, a3 as our basis, the resulting
representation being shown in Table 5.12.

The implementation of addition can be carried out by modulo-2 addition of the bits
of the symbol, as for the polynomial basis. The particular attraction of the normal
basis is that there is a certain regularity to the circuits for multiplication. For
example, the result of multiplying a3 by a6 is a5 + a3; if we cyclically shift the
multiplicands and the result to a6 x a5 = a3 + a6, we also get a correct expression.
We may therefore implement the arithmetic as shown in Figure 5.6.

The multiplicands are loaded into the registers and the accumulator is
cleared. The results of multiplying the first multiplicand by the a3 polynomial of the
second are evaluated and summed into the accumulator. Now the registers and the
accumulator are cyclically shifted and the process is repeated. After the third cycle, a
final shift of the accumulator gives the result. The process of multiplying a4 by a1

is shown in Table 5.13. The final result, 100, is the normal basis representation of a5.

Table 5.12 Normal basis for GF(8)

Element

0
a°
a1

a2

a3

a4

a5

a6

0
1
1
1
0
0
1
0

0
1
1
0
0
1
0
1

0
1
0
1
1
1
0
0
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accumulator

multiplicand 1

multiplicand 2

Figure 5.6 Normal basis multiplier for GF(8)

Table 5.13 Normal basis multiplication example

Start accumulator Multiplicand 1 Multiplicand 2 Partial result End accumulator

000
000
010
100

on
101
110

110
on
101

000
100
on

000
100
001

If all arithmetic is implemented in the normal basis, no basis conversions are
required as all bit patterns are simply regarded as a polynomial in that basis. Note
also that inversion process shown in Equation (5.8) is easier to implement in the
normal basis because the squaring operation is simple.

5.14 SOFTWARE IMPLEMENTATION OF FINITE FIELD
ARITHMETIC

One alternative to using a polynomial representation would be to let the element
value directly represent the power of a. This would solve the multiplication problem,
but would create a problem with addition. We would need to look up the polynomial
representation of each element, modulo-2 add the coefficients and then translate the
resulting polynomial back to a power of a. This would have no overall benefit
compared with polynomial representation; however, there is an alternative approach
for addition using Zech logarithms.

Let

(n) = an + 1

then

am+ an=

(5-9)

(5.10)

Thus with a table of Z(n) we can easily perform addition. For GF(8) the Zech
logarithm table is as shown in Table 5.14.
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Table 5.14 Zech logarithms
for GF(8)

Z(n)

1
2
3
4
5
6

3
6
1
5
4
2

Note that the value of Z(0) is never needed as it only occurs if we try to add two
terms which are the same, producing a zero result.

As examples using Zech logarithms:

It is not necessary to decide which is the larger power of alpha before carrying out
the subtraction, provided the result is taken modulo-(q-1):

There is, however, a complication in direct representation of powers of a. Namely
deciding whether the value 0 should represent the zero element or the element a°. We
could resolve this problem by letting the value q — 1 represent the zero element,
leading to the following representation for GF(8).

0= 111
1 =000
a =001

a2 = 010

a3 =011

a4 = 100

a5 = 101

a6- 110

Addition is done using Zech logarithms. To multiply two nonzero numbers, take
the modulo-(q-1) sum of the representations.

An alternative, which avoids the possible confusion between the value zero and the
zero element, is to let the powers of a be represented by the one's complement of the
direct representation above. For GF(8), the representation is now
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0 = 000 ( = 0)

1 = 111( = 7)

a= 110 ( = 6)

a2 = 101 ( = 5)

a3 = 100 ( = 4)

a4 = 011 ( = 3)

a5 =010 ( = 2)

a6 = 001 (= 1)

With this representation, the multiplication algorithm becomes a straightforward
addition of the representations, with q - 1 being subtracted if the result exceeds
q - 1. Alternatively, increment by 1 if there is a carryout from the most significant
bit. Addition is also straightforward provided the Zech logarithm table is held in
one's complement form. For example, the table for GF(8) would be as shown in
Table 5.15.

Examples of multiplication in this field representation are

a4 x a5 = 3 + 2 = 5 = a2

a2 x a3 = 5 + 4 = 9 = 2 = a5

To add a4 and a5 we evaluate 3 + Z(2 — 3) = 3 + Z(6) = 7, which is a°. To add a6

and a, evaluate 1 + Z(5) = 2, which is a5.

Table 5.15 One's complement form
of Zech logarithm table

n Z(n)

6 4
5 1
4 6
3 2
2 3
1 5

5.15 CONCLUSION

In this chapter we have covered both the basic theory of finite fields and implemen-
tation issues. In the basic theory, a Fourier transform over a finite field has been
presented and this will allow a view of cyclic codes that will be helpful in understand-
ing BCH codes and the multiple-error correcting algebraic decoding method pre-
sented in Chapter 6. The transform view is promoted in [1], where more information
about fast algorithms can also be found. Most books have a treatment of the theory
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of finite fields and [2] provides a good, comprehensible coverage, despite its avoid-
ance of the transform approach.

Implementation issues must be considered in the context of the system being
designed as there is no perfect approach for all codes and all platforms. The main
emphasis of research is on hardware implementations to provide the high speeds for
modern communication systems [3-6].

5.16 EXERCISES

1 Use the primitive polynomial X3 + X2 + 1 to create a polynomial representation
of the field elements of GF(8). Evaluate the products (111>(100), (101X010),
(011)-(110) and the divisions (100)/(101), (111)/(110) and (010)/(011).

2 Find the minimum polynomials for each of the nonzero elements of GF(8) as
defined in question 1.

3 For the field GF(8) created in question 1, perform the sums a + a2, a5 + 1,
a6 + a3, a4 + a5.

4 Use the primitive polynomial X4 + X3 + 1 to construct the finite field GF(16) in
polynomial form.

5 Find the forward and inverse Fourier transforms of each of the following over
GF(8) as created in question 1:

1001110
1010011
1111111
0011010
1101001

6 Find the forward and inverse Fourier transforms of each of the following over
GF(8) as created in question 1:

a3 a5 a a6 0 1 a
a3 a5 a 0 0 0 0
a2 a4 0 a6 a6 a5 a6

7 Find the forward and inverse transforms of the binary sequence
101100100000000 over GF(16) as created in question 4.

8 Find the normal and dual basis of GF(16) as created in question 4.

9 If Z(n) represents the Zech logarithm, prove that

Z(Z(n)) = n and Z(q -1-n) = Z(n) - n
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BCH codes

6.1 INTRODUCTION

BCH codes are a class of cyclic codes discovered in 1959 by Hocquenghem [1] and
independently in 1960 by Bose and Ray-Chaudhuri [2]. They include both binary and
multilevel codes and the codes discovered in 1960 by Reed and Solomon [3] were soon
recognized to be a special case of multilevel BCH codes [4]. In this chapter we shall
confine our attention to binary BCH codes, leaving Reed Solomon codes to Chapter 7.

From the discussions of Chapter 4, we could, given a generator polynomial, con-
struct an encoder for binary BCH codes. Moreover, using the discussions of finite field
arithmetic in Chapter 5, it requires only a straightforward extension of the principles of
Chapter 4 to construct an encoder for a Reed Solomon code, given the generator
polynomial. The purpose of this chapter is to show the structure of BCH codes and the
decoding methods. We will therefore be able to work out the generator polynomials
for any code of interest and to implement low complexity decoders.

6.2 SPECIFYING CYCLIC CODES BY ROOTS

It is possible to specify a cyclic binary code by saying that the codewords are binary
polynomials with specific roots in GF(2W). These roots, being common to every
codeword, are inherited from the generator polynomial. Note that the concepts of
conjugacy will apply and that the existence of a particular root will imply the
existence of the conjugates. Thus the generator polynomial will be constructed
from the minimum polynomials of the roots. For example if the specified root is a
from GF(8), we know that the minimum polynomial is X3 + X + 1, and all code-
words must be multiples of this minimum polynomial. In this case the minimum
polynomial acts as the generator for the code.

In general the generator polynomial will be the least common multiple of the
minimum polynomials for the specified roots. The degree of the polynomial, which
is equal to the number of parity check symbols for the code, is the same as the
number of separate roots, so that the total number of code roots gives the number of
parity check symbols.

From the discussions of Chapter 5, we recall that the values of roots of a time
domain polynomial are equivalent to the positions of zeros in the frequency domain.
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We shall therefore be able to say equivalently that all codewords of a cyclic code have
zeros at specific locations in the frequency domain.

6.3 DEFINITION OF A BCH CODE

A f-error correcting q-ary BCH code of length qm - 1 is a cyclic code whose roots
include 2t consecutive powers of a, the primitive element of GF(qm). There will be
two main cases of interest:

• Binary BCH codes will consist of binary sequences of length 2m — 1 with roots
including It consecutive powers of the primitive element of GF(2m). Alternatively,
the Fourier transform over GF(2m) will contain 2t consecutive zeros. Note that the
generator polynomial will have conjugate roots (or conjugate frequency domain
zeros) in addition to the specified 2t values.

• Reed Solomon codes are the special case where m = 1. They therefore consist of
sequences of length q — 1 whose roots include 2t consecutive powers of the primi-
tive element of GF(q). Alternatively, the Fourier transform over GF(q) will contain
2t consecutive zeros. Note that because both the roots and the symbols are
specified in GF(q), the generator polynomial will have only the specified roots;
there will be no conjugates. Similarly the Fourier transform of the generator
sequence will be zero in only the specified 2t consecutive positions.

The individual codewords, being multiples of the generator, may have roots in
addition to the ones specified, depending on the multiplying polynomial. However
the generator itself will have only the roots (or frequency domain zeros) implied by
the above, and only those roots (or frequency domain zeros) will be common to every
codeword.

6.4 CONSTRUCTION OF BINARY BCH CODES

To create some realistic multiple-error correcting examples, we shall need to work
with codes of length 15 or more, implying a need to construct corresponding finite
fields. We therefore construct GF(16) so that we can define codes of length 15. The
primitive polynomial to be used is p(X) = X4 + X + 1. The polynomial basis repre-
sentation of the elements is shown in Table 6.1.

Single-error correcting code

Suppose we choose a1 and a2 as the consecutive roots for this code. We know that
there will be conjugate roots, the full set of conjugates being

a1 a2 a4 a8
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Table 6.1 GF(16)

Element

0
a°
a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

Value

0000
0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001

This set of conjugates contains the two roots we want, therefore no others are
required. The generator polynomial is

g(X) = (X + a.{)(X + a2)(X + a 4 ) ( X + a8)

g(X) = X4 + X3(al + a2 + a4 + a8) + X2(a3 + a5 + a9 + a6 + a10 + a12)

Alternatively we find that the generator polynomial is the LCM of the minimum
polynomials of a1 and a2. Both these elements have X4 + X + 1 as their minimum
polynomial, therefore this is the generator of the code. The code has 4 parity checks
(from the degree of the generator) and so is a (15, 11) code.

Note that the generator polynomial is primitive and that therefore the code created
is a Hamming code. We can therefore see that cyclic Hamming codes are just single-
error correcting binary BCH codes.

Double-error correcting code

Following on from the above example, we choose a1 a2 a3 and a4 as our desired
roots. Starting from a and including the conjugates we find as for the Hamming code
that we have roots

a1 a2 a4 a8



140 ERROR CONTROL CODING

However we still need another root, namely a3. Including the conjugates we create
roots

a3 a6 a12 a9

The generator polynomial is

g(X) = (X4 + X + 1) (X4 + X3 + X2 + X + 1)

g(X) = X8 + X7 + X6 + X4 + 1

Alternatively we can see that X4 + X + 1 is the minimum polynomial of a1 a2 and
a4, the minimum polynomial of a3 is found to be X4 + X3 + X2 + X + 1 leading to
the result above. The degree of the generator is 8, so the code is (15, 7).

Triple-error correcting code

To make a triple-error correcting code we want to have roots a1 a2 a3 a4 a5 and a6.
Note that the double-error correcting example had all these except a5, so we take
another set of conjugate roots, namely

a5 a10

The minimum polynomial of a5 is found to be X2 + X + 1 , leading to

g(X) = (X8 + X7 + X6 + X4 + 1 ) ( X 2 + X + 1)

g(X) = X10 + X8 + X5 + X4 + X2 + X + 1

With a degree 10 generator, and therefore 10 parity checks, this is a (15, 5) code.

6.5 ROOTS AND PARITY CHECK MATRICES

Cyclic codes can of course also be represented in terms of their parity check or
generator matrices. The parity check matrix H can be derived in a straightforward
way from the roots of the generator. If a code polynomial v(X) has a root ft then

If vn is the coefficient of Xn then

Vn -1 ß
n-1 + • • • + v2 ß

2 + v1ß + v0 = o

or in vector form
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(6.1)

Similarly if there are j roots ß1 to ft then

ßn-1Pi

ft

ftl
1

.

ft
i

' ft-!
i

r1"

fti
= 0 (6.2)

but

=0

which means that the large matrix in Equation (6.2), when transposed, will give the
parity check matrix of the code.

The roots are polynomials in a and so may be regarded as vectors which themselves
need to be transposed. Therefore

H =

1t

ßj-1
2r2 ßj-1 1:

ßj2r ßjr 1:

(6.3)

Only one of the roots ß, ß2, ß4, ß8, etc. needs to be included in the parity check
matrix as the inclusion of any one implies all the others.

Hamming codes

Hamming codes have generator polynomials which are primitive. Hence any primi-
tive element can be a root of the code. If we take the element a as the root then

H = (6.4)

The powers of a are just all the nonzero elements of the field which leads to the
conclusion that the columns of the parity check matrix contain all the possible
combinations of 1 and 0. For example taking the code based on GF(8), for which
a3 + a + 1 = 0, gives
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H
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

This is in fact the parity check matrix for the cyclic Hamming code in Chapter 4.

Binary BCH codes

A double-error correcting binary BCH code might have roots of a, a2, a3 and a4. Of
these, only a and a3 are independent, the others being implied by a, and so the parity
check matrix is

H =
 a3

(n-1)r

For the length 15 code, we obtain

H — I a'4— I 12r

a

or a
a3x2 a

3x2

(6.5)

or

H =

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
1 0 1 0 0 1 0 1 0 0 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

Note that this does not correspond to the usual definition of the parity check
matrix for a systematic code. It will, however, be seen to be useful for decoding.

A triple-error correcting code would introduce an additional root a5. The parity
check matrix becomes

H =
1T

1T

1T

(6.6)

Corresponding to this, the parity check matrix for the length 15 code is

H
,10r

1T

1T

which in binary terms is
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H =

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
1 0 1 0 0 1 0 1 0 0 1 0 1 1 0
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

Note, however, that there is one all-zero row and one that duplicates the previous
one. Both can therefore be removed from the parity check matrix to give

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0
0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
1 1 1 0 1 0 1 1 0 0 1 0 0 0 1
1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
1 0 1 0 0 1 0 1 0 0 1 0 1 0 0
1 1 0 0 0 1 1 0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

H =

Again this is not the usual systematic form.

6.6 ALGEBRAIC DECODING

BCH codes allow an algebraic method of decoding. Consider the case of a double-
error correcting code where there are errors at positions / and/ The syndrome is

The syndrome has two components s1 and s3:

s3 = a3j-a3j + a3j

Substituting the first into the second gives

=0

(6.7)

(6.8)

Any value of ai which is a root of this equation will locate an error and, as the
assignment of the parameters i and j is arbitrary, both error locations can be found
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from the same equation. Roots can be found by trying all possible values, which is
better than having to try all possible combinations of positions, or by other tech-
niques. This method is known as a Chien search.

Example

For the double-error correcting BCH code of length 15, if the received sequence is
101010110010101, the syndrome is 10010110. Thus

s1=a14

s3 = a5

Substituting in Equation (6.8) gives

a13+i+a14+2i+a12+a5 =

The value i = 2 gives

The value i= 1 3 gives

The errors are therefore at positions 2 and 13 giving a transmitted sequence
111010110010001. The syndrome of this sequence is zero, showing that it is a codeword.

Of course it is possible that a single error may occur in a double-error correcting
code. In that case Equation (6.7) becomes

s1 = ai

s3 = a3i

This condition can be recognized from the fact that s3 = (s1 )
3 and the position of

the error found directly from s1 .

6.7 BCH DECODING AND THE BCH BOUND

We have previously seen that binary BCH codes can be decoded by a polynomial
with roots that indicate the positions of the errors. The method as described is
suitable for single or double errors and can be extended to more errors, but with
increasing complexity. To find a more general method, we note that the syndromes
computed above are in fact the Fourier transform components in the positions of the
frequency domain zeros, and we look for a frequency domain description of algebraic
decoding.
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We shall see in the next section that frequency domain decoding uses a polynomial
whose zero coefficients indicate the locations of errors in the time domain and whose
roots in the frequency domain can therefore be used to locate the errors. For the
moment we will use such a polynomial to prove a property of BCH codes, namely
that 2t consecutive zero-valued spectral components are sufficient to guarantee t-
error correction.

Suppose we have a code vector c(X) with fewer than d nonzero components, and
its spectrum C(z) has d - 1 consecutive zeros. We define a polynomial A(X) such that
it is zero where c(X} is nonzero and let the positions of the zeros be denoted ij. The
polynomial k(X) is usually called the error locator polynomial because, as we shall see,
there is no codeword apart from the all-zero sequence which satisfies the defined
conditions.

The zero components in 1(X) mean that each or'' will be a root of the transform
A(z) of MX), or

Note from the above definition of A(z) that AO is equal to 1 . The polynomial A(z) is
known as the connection polynomial.

Now in the time domain, A/c/ = 0 for all /, therefore in the frequency domain,
replacing multiplication with a convolution:

The degree v of A(z) is at most d — 1 and AO = 1 , which leaves us with

Ay (6.9)

This is the equation for the output of a linear feedback shift register with feedback
polynomial A(z), as shown in Figure 6.1.

If we know any d — 1 consecutive values of Cy we can use the shift registers with
feedback to generate all the rest. We know, however that there are d — I consecutive

Figure 6.1 Shift register representation of connection polynomial
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zeros and using them to initialize the feedback shift register will generate a string of
zeros. Thus Cj must be zero for ally and all terms in c(X) are zero. This proves that if
there are 2t consecutive zeros in the spectrum, the nonzero codewords must have
weight at least 2t + 1 and the code can therefore correct at least t errors.

Although we are left with the possibility that the code may be able to correct more
than t errors, the BCH decoding method will use the 2t consecutive zeros in a way
that will correct up to t errors, and any extra capabilities of the code will go into error
detection.

6.8 DECODING IN THE FREQUENCY DOMAIN

Assume that we transmit a code sequence c(X) and that it is received with the addition
of an error sequence e(X). We take the transform of the received sequence, giving

R(z) = C(z) + E(z)

where R(z), C(z) and E(z) are the transforms of the received sequence, the codeword
and the error sequence respectively. We know that C(z) is zero in 2t consecutive spectral
locations, so we can use these locations to give us a window on E(z), i.e. 2t components
of E(z) can easily be obtained and can be considered to form a syndrome S(z).

We assume that there are v < t errors and define an error locator polynomial A(X)
such that it is zero in the positions where e(X) is nonzero. The product of the received
sequence and the error locator sequence in the time domain will therefore be zero,
which means that in the frequency domain the convolution will be zero

AyEk-i = 0 (6.10)

Here we have used the fact that A.(X) has at most t zeros; hence, A(z) has at most /
roots and is therefore a polynomial of degree no greater than t. If we know the error
spectrum from positions m to m + 2t - 1, we can form t equations by letting k take
values from m + Mo m + 2t — 1. Assuming the spectral zeros of the code are from
positions 1 to 2t, the equations are as follows:

(6.11)
A0E2t-1 + A1E2t,_2 +- A,Et-1 = 0

Ai£2,_i H h A,£, = 0

This set of t equations in / + 1 unknowns is called the key equation, which we can
solve for the different values of A, provided we impose an arbitrary value on one of
the roots, corresponding to the fact that the value of the error locator polynomial is
arbitrary in the nonzero positions in the time domain. In practice the condition we
impose is A0= 1. The procedure for solving the key equation may be straightforward
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if t is small, but in the general case special methods have to be devised which are
computationally efficient and which take into account the fact that the number of
errors may be less than t. One such method, Euclid's algorithm, will be explained in a
later section. For the moment it is sufficient to believe that the task can be accom-
plished.

6.9 DECODING EXAMPLES FOR BINARY BCH CODES

Take the example of the (15, 7) binary BCH code from Section 6.6 where we received a
sequence 1010101 100 10101 which was found to have two errors, in positions 2 and 13.
To find the syndrome, we calculate the Fourier transform of the received sequence in
the positions of the zeros, i.e. positions 1, 2, 3 and 4. In fact the value in position 2 is,
through conjugacy, the square of the value in position 1 and the value in position 4 the
square of that in position 2. We therefore need calculate only the values in positions
1 and 3 (found previously to be (a14 and a5) before filling in the values for positions 2
and 4. The syndrome polynomial is therefore

The key equation becomes

a5 + a13A1 + a14A2 = 0

a11 +a5A1 + a13A2 =0

To solve, we can multiply each term in the second equation by a and add to the
first equation to eliminate A2n. This gives

A 1 =a 1 4

Hence

A2 = 1

Decoding can now be carried out by finding the roots of z2 + al4z + 1, which are a2

and a13. Hence the errors are at positions -2 and -13, or 13 and 2, respectively.
Suppose now that only one error occurred, say the error in position 13. The

syndromes are found to be S1 = a13, S3 = a9, giving a full syndrome polynomial of

The key equation becomes

a11A1+a !3A2

na 1 1 =0
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It can be seen that these two equations are not linearly independent, the first being
merely a2 times the second. Only one unknown can therefore be found and the
connection polynomial must be of degree 1, i.e. A2 = 0. Inserting this condition
gives A1 = or2 = a13. The connection polynomial is therefore a13z+ 1, which has
root or-13, indicating an error at position 13. Any solution method therefore needs to
take account of the possibility that there may be fewer errors than the maximum
corrected by the code. Of course, in this case the occurrence of a single error can be
recognized through the condition 53 = (s1)3 from Section 6.6 and its location deter-
mined from the value of s1 .

Another possibility is that too many errors may occur and in that case the decoder
may give the wrong result or may detect the errors but be unable to correct them. We
need to know, however, how the decoding failure will arise.

Suppose we insert a third error at position 10 into our received sequence. The
syndromes are found to be s1=a1 1 ,53 = a10. The full syndrome polynomial is

The key equation is

a10 + a 7 A 1 + a l l A 2 = 0

a14 + a10A1 +- a7A2 = 0

Eliminating A2 gives

a1 2+a1A1 =0

The connection polynomial is therefore a1z2 + a11z + 1. We now try to find the
roots as shown in Table 6.2. It is seen that no roots are found. The general condition
for detected uncorrectable errors is that the number of roots found is less than the
degree of the connection polynomial.

Table 6.2 Chien search for triple-error example

Root Evaluation Root Evaluation

a0 a1a0 + a"a^ + oP = a13 a8 a'a' + a"a -+• a^ = a
a' a'a2 + a" a' -+• ot® = a^ a9 a'a3 -I- a"a9 + of = a2

a2 a1a4 + a"a2 + a° = a9 a10 a'a5 + a"a10 -I- a° = a°
a3 a1a6 + a"a3 + a° = a4 a11 a'a7 + a11*11 + a° = a12

a aa +a a +a =a a a a
a5 a la l° + a l la5 + a° = a13 a13 a'a11

a6 a la l 2 + a l la6 + a° = a3 a14 a'a13
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6.10 POLYNOMIAL FORM OF THE KEY EQUATION

In the previous section we have been involved in solving simultaneous equations in
order to carry out error correction. This we can do manually by substitution or other
means. For automatic implementation we need to find an approach which can be
efficiently and routinely implemented. To do this we first of all convert the key
equation from its expression as a summation into a polynomial format.

We wish to find a solution to the key equation, which can be expressed as

]T A/ Ek-j= 0 t < k < 2 t - 1
7 = 0

This expression represents a convolution that can, alternatively, be given a poly-
nomial form. We have seen on a number of occasions previously that the convolution
of two sequences corresponds to the product of the sequence polynomials. In this
case it is equivalent to all the terms of degree between t and 2t — 1 in A(z)E(z). Hence
we can say

A(z)E(z) = f(z)z2t + n(z) (6.12)

The terms in the left-hand side of degree t to 2t — 1 are zero. The terms of degree 2t
or more are represented by f(z)z2t. Here, fi(z) represents the terms of degree less than
t. It is known as the error evaluator polynomial because it is used for such a purpose
in the decoding of multilevel BCH codes such as Reed Solomon codes.

There are two commonly used methods for solving the key equation in this form.
They are Euclid's algorithm and the Berlekamp-Massey algorithm. The latter is
more efficient, but is more difficult to understand than Euclid's method and is related
to it. We shall study the Euclid algorithm in detail and merely outline the steps
involved in the other.

6.11 EUCLID'S METHOD

The Euclid algorithm is most commonly encountered in finding the lowest common
multiples of numbers. In the process of so doing it identifies common factors so that
these can be taken into account in computing the lowest common multiple. Many
authors preface a discussion of Euclid's method with an illustration of its use for such
a purpose. Unfortunately, the connection between using it in this way and solving the
key equation is not easy to spot and the numeric application may not be of much help
in understanding the application to polynomials. For that reason, I prefer to confine
the discussion to the solution of equations involving polynomials. Euclid's method
enables us to find minimum degree solutions for polynomials f(z) and g(z) such that
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where r(z) is known to have degree less than some fixed value. In our case, r(z) will
have degree < t, a(z) = z2t and b(z) is the syndrome polynomial S(z). The polynomial
g(z) will give us A(z), which is what we need to know. The method involves repeated
division of polynomials until a remainder of degree < Ms found.

The first step is to divide a(z) by b(z) to find the quotient q1(z) and remainder r\(z):

a(z) = q1(z)b(z) + rl(z) (6.13)

If the degree of r1(z) is less than t then we have reached our solution with f(z) = 1,
g(z) = q1(z) and r(z) = r1(z). Otherwise set g1(z) = q1 ( z ) and proceed to the next stage.

The second step is to divide b(z) by r 1 (z) giving

b(z) = q2(z)r1(z) + r2(z) (6.14)

Note that the degree of r2(z) must be less than that of r 1 (z ) so that this process is
reducing the degree of the remainder. If we eliminate r\(z) from Equations (6.13) and
(6.14) we obtain

q2(z)a(z) = [q2(z)g1(z) + l]b(z) + r2(z) (6.15)

Set g2(z) = q2(z)g1(z) + 1. If the degree of r2(z) is less than t then g(z) = g2(z);
otherwise, continue to the next step.

The third step continues in similar vein, dividing r1 (z) by r2(z):

r1(z) = q2(z)r2(r) + r3(r) (6-16)

Again the degree of the remainder is decreasing. Using Equations (6.14) and (6.15)
to eliminate r 1 (z) and r2(z) gives

[1 + q2(z)q3(z)]a(z) = [g1=(z} + q3(z)g2(z)]b(z) + r3(z) (6.17)

If the degree of r3(z) is less than t then g3(z) = g3(z) = q3(z)g2(z) + g1(z).
The method continues in this way until a remainder of degree less than t is found,

at each stage setting

gn(z) = qn(2)gn-1(z) + gn-2(z) [g0(z) = 1, g-1,(z) = 0] (6.18)

Summary of Euclid's algorithm

Set n = 1. Divide z2t by S(z) to find quotient q 1 (z) and remainder r1(z). Calculate
g1(z) from Equation (6.18).

While degree of remainder is greater than or equal to t, continue by incrementing
n, divide previous divisor by previous remainder and calculate gn(z) by Equation
(6.18).

When desired degree of remainder is obtained, set A(z) = gw(z).
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Example

We shall now solve the key equation for the double-error example from Section 6.9, using
the Euclid algorithm. We treat the syndrome with 4 terms as a degree-3 polynomial

Divide z4 by S(z) to give

z4 - (a4Z + a13)(a11z3 + a5z2 + a13z + a14) + a6z2 + a5z

Divide S(z) by a6z2 + asz + a12 to give

a11z3 + a13 + a13z + a14 = (a5z + a9)(a6z2 + a5z + a12) + a8

Set g2(z) = (a5z + a9)(a4z + a13) + 1 = a9Z2 + a8Z + a9.
As the remainder is of degree < 2, this is the end of Euclid's algorithm. The result for g2(z)

is the connection polynomial A(z). It can be seen to be a factor of a9 times the result
obtained in Section 6.9 and hence will have the same roots.

Applying Euclid's algorithm to a single-error example would terminate with a
polynomial of degree 1 . This is left as an exercise for the reader.

6.12 BERLEKAMP-MASSEY ALGORITHM

Another way to find the connection polynomial is to use the Berlekamp-Massey
algorithm. This algorithm is difficult to understand, although it synthesizes directly
the shift registers with feedback shown in Figure 6.1. It is also simple to implement;
consequently it will be described here but an explanation of why it works will not be
attempted. In the following description, the parameter / represents the degree of the
error locator polynomial and n represents the degree of the syndrome polynomial
being examined.

Table 6.3 shows a Pascal description of the algorithm in the left column and, in the
other columns, the steps in the calculations for our double-error BCH example. As
before, the syndrome will be treated as a polynomial of degree 3.

The algorithm terminates with A(z) holding the correct coefficients of the feedback
polynomial. Applied to a single-error example it will also terminate correctly with a
polynomial of degree 1. Note that on every second iteration of the main loop the
value of 6 is zero. This is because every second syndrome component in a binary code
is predictable from previous values. The algorithm could therefore be simplified for
the binary case to multiply D(z) by z2 at each iteration and to increment « by 2.

This version of the Berlekamp-Massey algorithm involves a division and, as men-
tioned in Chapter 5, finding the multiplicative inverse of an element is not straight-
forward. Given that only the roots of the connection polynomial are important,



152 ERROR CONTROL CODING

Table 6.3 Berkekamp-Massey algorithm for binary BCH example

begin
l:=0:
n :— 0;

k : = ! ;
A(z) := 1;
D(z):=zA(z);
while (n < 2t) do

begin

<5 := Z! A,Sn_i;
i=0

if (5 =0) then
begin
A* (z) = A(z) + 5 x D(z);
if (l<n - k)

begin
l :=n-k-
k:=n~l;
D(z) := A(z)/5;
/ := /*
end;

A(z):=A*(z)
end;

Z)(z):=zZ)(z);
« : = / 7 + l
end;

end.

0
0

-1
1
z

0 < 4

a14

a14 =0

a 1 4z+l
0< 1

1
0

a1

1

a l 4 z+ l

a1z
1

1 <4 2<4

0 a14

0 = 0 a 1 4 =0

z2 + a1 4z+l
1 <2

2
1

z + a
2

z2 + a14z + 1

a'z2 z2 + az
2 3

3 < 4

0

0 = 0

z3+az2

4

we could multiply it by any constant. Thus we could eliminate the division in the line
D(z) := A(z)/<5 provided that on the line A* (z) = A(z) + 6 x D(z) we first multiply
the value of A(z) by the previously applied version of 6. We therefore introduce a
variable <5* and amend the algorithm to that shown in Table 6.4.

The working shown in Table 6.4 is again the stages in calculating the connection
polynomial for the double-error example of Section 6.9. The connection polynomial
is «14z2 + a13z + a14 which is just a14 times the previous result and therefore has the
same roots.

6.13 CONCLUSION

As indicated at the beginning of this chapter, BCH codes have a long history and are
therefore well represented in standard text books [5-9]. The inversionless Berlekamp-
Massey algorithm given here is similar to that published in [10] and another imple-
mentation is embodied in [11]. The performance and applicability of binary BCH
codes are discussed in Chapter 8.
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Table 6.4 Inversionless version of Berlekamp-Massey algorithm

begin
/ := 0;
n :=0;
k : = -1;
A(z) : = 1;
D(z) := zA(z);
(5* :=1;
while (n < It) do

begin

f> :=J2A.iSn- i
/=0

if (=^0) then
begin
A*(z) = 5* xA(z) + <5 x
if ( l < n - k )

begin
l* : = n - k ;
k:=n-l;

D(z) := A(z);
/ : = / *
end;

A(z):=A*(r)
end;

D ( z ) : = z D ( z ) ;
n : — n + 1
end;

end.

0
0

— 1
1
z
1

0<4 1 <4

a14 0

a14 ^ 0 0 = 0

D(z); a 1 4 z+l a14:
0< 1

1
0

...14(X

a°
1

a 1 4 z+l a14;

a0z a0z2

1 2

2 < 4 3 < 4

a14 0

a ' 4 ^ 0 0 = 0

z2 + a13 + a14

1 <2

2
1

14

a ' 4z+l
2

j2 + a'3z + a14

«14z2 + z «14z3 + z2

3 4

6.14 EXERCISES

1 Given that

X+ l)(X4 + X3 + l)(X4 + X3 + X2 + X

find the generator polynomial of a triple-error correcting BCH code of length 15,
assuming that GF(16) is created using the primitive polynomial X4 + X 3 + 1.

2 For the double-error correcting BCH code defined in Section 6.5, decode the
sequence 100010110010001.

3 Describe the frequency domain representation (i.e. positions of the zeros) of a
triple-error correcting BCH code of length 31. Why would you not put a zero in
position zero of the frequency domain?
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4 Find the generator polynomial of a triple-error correcting BCH code of length 15,
assuming that GF(16) is created using the primitive polynomial X4 + X3 + 1.

5 For the BCH code of length 15 with roots , a, a2, a3, and a4 in GF(16) (created
using the primitive polynomial X4 + X3 + 1), find the generator polynomial and
decode the following sequences

100010110010001
101110100101001
100110000011111
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7
Reed Solomon codes

7.1 INTRODUCTION

It was pointed out in Chapter 6 that Reed Solomon codes are a special example
of multilevel BCH codes. Because the symbols are nonbinary, an understanding of
finite field arithmetic is essential even for encoding. Moreover the decoding methods
will be similar to those encountered for binary BCH codes, so some familiarity with
Chapter 6 will also be advisable for the understanding of this chapter.

There are two distinctly different approaches to the encoding of Reed Solomon
codes. One works in the time domain through calculation of parity check symbols.
The other works in the frequency domain through an inverse Fourier transform. We
shall meet the time domain technique first as it is more likely to be encountered in
practice. It was pointed out in Chapter 6 that the standard decoding method is
essentially a frequency domain technique, but we will see that a modification is needed
for RS codes which can be achieved in two different ways. There is also a purely time
domain decoding method for RS codes - the Welch-Berlekamp algorithm - which will
be presented towards the end of the chapter.

7.2 GENERATOR POLYNOMIAL FOR A
REED SOLOMON CODE

A Reed Solomon code is a special case of a BCH code in which the length of the code
is one less than the size of the field over which the symbols are defined. It consists of
sequences of length q — 1 whose roots include 2t consecutive powers of the primitive
element of GF(q). Alternatively, the Fourier transform over GF(q) will contain 2t
consecutive zeros. Note that because both the roots and the symbols are specified in
GF(q), the generator polynomial will have only the specified roots; there will be no
conjugates. Similarly the Fourier transform of the generator sequence will be zero in
only the specified 2t consecutive positions.

A consequence of there being only 2t roots of the generator polynomial is
that there are only 2t parity checks. This is the lowest possible value for any
t-error correcting code and is known as the Singleton bound (see Chapter 8, Section
8.5).
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To construct the generator for a Reed Solomon code, we need only to construct the
appropriate finite field and choose the roots. Suppose we decide that the roots will be
from ai to ai+2/-1, the generator polynomial will be

In contrast to the case with binary BCH codes, the choice of value of i will not
affect the dimension or the minimum distance of the code because there are no
conjugates to consider.

Example

Suppose we wish to construct a double-error correcting, length 7 RS code; we first construct
GF(8) using the primitive polynomial X3 + X + 1 as shown in Table 7.1. We decide to choose
i = 0, placing the roots from a° to a3. The generator polynomial is

g(X) = (X + a°)(X + a1 )(X + c 2 ) (X + a3)
g(X) = X4+ (a0 + a1 + a2 +«3)X3 + (a1 + a* + a3 +a4 + a5)X2

g(X) = X4 + a2X3 + a5X2 + a5X + a6

Table 7.1 GF(8)

Element Polynomial

0
a°
a1

a2

a3

a4

a5

a6

000
001
010
100
011
110
111
101

7.3 TIME DOMAIN ENCODING FOR REED SOLOMON
CODES

The encoding of a Reed Solomon code can be done by a long division method similar
to that of Chapter 4 (Section 4.9) or, equivalently, by shift registers with feedback.

The long division method is slightly more complicated than in Chapter 4 because
we need to subtract multiples of the divisor from the dividend so that the degree of
the remainder is reduced. In the binary case the multiple is always 0 or 1, but here we
need to choose an appropriate value from the finite field. Also the binary data will
first need to be mapped onto finite field symbols and the result mapped back to
binary values. An example will illustrate this.
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Example

For the Reed Solomon code above, encode the data sequence 111001111. Assuming the
polynomial mapping in Table 7.1, the data maps to symbols a5 a° a5. Four zeros are
appended, corresponding to the four parity checks to be generated, and the divisor is the
generator sequence.

a5 0 a2

a5 a5 «6)«5 «° a* 0

«5 a° a3 a3

a2 a3

a2 a4

0

a4

«4

a°

0

0

a°

0

0

a1

As shown, the multipliers used were a5 0 and a2. The remainder is a6 a5 a° a1 so that
the codeword is a5 a° a5 a6 a5 a° a1. Expressed as a binary sequence this is
111001111101111001010.

The encoder circuit for a Reed Solomon code is shown in Figure 7.1. This is almost
identical to Figure 4.3 except that the value of go is not necessarily 1 and there are
multipliers in every feedback connection rather than just connection or no connec-
tion as there was for the binary case. In fact all the feedback terms will be nonzero for
a Reed Solomon code.

The encoder for the above example is shown in Figure 7.2 and the stages in the
encoding in Table 7.2. The example terminates with the registers containing the
values a6 a5 a° a1, the parity checks for this codeword.

Figure 7.1 Schematic of Reed Solomon encoder

Figure 7.2 (7, 3) Reed Solomon encoder



158 ERROR CONTROL CODING

Table 7.2 Parity generation for (7, 3) Reed Solmon example

Input

a5

a°
a5

Feedback

a5

0
a2

Register
multiplier

jr3

a2

0
a°
a3

a6

X2

a5

0
a3

a3

a5

X1

a5

0
a3

a4

a°

X°
a6

0
a4

0
a1

7.4 DECODING REED SOLOMON CODES

The frequency domain algebraic decoding method explained in Chapter 6 (Section
6.8) is used to decode Reed Solomon codes. There are, however, two differences. The
first is that all the syndromes must be calculated from the received sequence; we
cannot use conjugacy to find some of the values. Secondly, once we have located the
errors we need to find their value to carry out the correction; this will require an extra
stage in the decoding.

Error value calculation can be done using the Forney algorithm. Recall that in
Chapter 6 (Equation (6.12)) we found that

where A(z) is the connection polynomial, E(z) can be taken as the frequency domain
syndrome terms expressed as a polynomial and O(z) is a polynomial of degree / — 1
known as the error evaluator polynomial. We calculate the error evaluator polyno-
mial and also A'(z), the formal derivative of the connection polynomial. This is found
to be

(even t) A,_, z''2 + At_3 z*'4 + • • • + AI

(oddr) A , z / -

In other words, get rid of the zero coefficient of A and then set all the odd terms in
the resulting series to zero.

The error value in position m is now

A'(z) (7.2)

evaluated at z = a~m. The parameter i is the starting location of the roots of the
generator polynomial.
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7.5 REED SOLOMON DECODING EXAMPLE

Consider the codeword a5 a° a5 a6 a5 a° a! previously generated for the double-error
correcting (7, 3) RS code. We create errors in positions 5 and 3, assuming that we
receive a5 a4 a5 a3 a5 a° a1. The frequency domain syndrome of this sequence is

S0 = a5 + a4 + a5 + a3 + a5 + a° + a1 = a0

S1 =a 5 -a 6 + a 4 - a 5 +a 5 - a 4 + a3-a3 + a? • a2 + a0 • a.1 +a! = a1

S2 = a5- a5 + a4- a3 + a5- a1 + a3- a6 + a5- a4 + a°- a2 + a1 = a°

S3 = a5-a4 + a 4 -a 1 +a5- a5 + a3- a2 + a5- a6 + a°- a3 +a1 = 0

Now we form the key equation for which the solution is

a6A1 = a1,
2A1 = a A

The roots of the connection polynomial are a4 (as a1 a8 + a2 a4 + 1 = 0) and a2 (as
a1 a4 + a2 a2 + 1 = 0). Having found two roots for a connection polynomial of degree
2 indicates successful error correction with errors located at positions -4 and -2, i.e.
positions 3 and 5. We now calculate the error evaluator polynomial, taking the
powers from 0 to t — 1 of S(z)A(z).

H(z) = (S0 A1 + S1 A0)z + S0A0

H(z) - (a1 + a3 + a0)z2 + (a2 + a1)z + a°

H(z) = a4z + a0

For the assumed g(X) in which i = 0, we want zA'(z) as the denominator which is
just A(z) with all the even coefficients set to zero. Therefore

em —
zA'(z) ,=g_-m a2;

Evaluating at m = 3 and m = 5 gives

a4a -3 + a° a3
..4

° 2
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The received symbol a3 at position 3 is therefore corrected to a6. The received
symbol a4 at position 5 is corrected to a°. This successfully completes the decoding.

7.6 FREQUENCY DOMAIN ENCODED REED
SOLOMON CODES

As the Fourier transform of a Reed Solomon code word contains n — k consecutive
zeros, it is possible to encode by considering the information to be a frequency domain
vector, appending the appropriate zeros and inverse transforming. The encoding and
decoding processes are illustrated in Figure 7.3. In this case the final step of decoding
will differ from that in the previous section because we need to obtain the errors in the
frequency domain.

We will choose again a (7, 3) double-error correcting RS code over GF(23). Let the
information be a2, a5, a° (representing binary information sequence 100111001) and
let the zeros in the frequency domain occupy the positions 0 to 3. We therefore put
the information into positions 4, 5 and 6 in the frequency domain with zeros in the
other positions, producing the transform of the codeword as a2 a5 a° 0 0 0 0.

An inverse Fourier transform generates the codeword as follows:

c0 = a2 + a5 + a° = a1

c1 = a2 + a5 a2 + a0 = a°

c2 = a2 + a5 a4 + a0a6 = a5

c3 = a2 + aV + aV = a6

k information symbols 2t zeros

Inverse Fourier transform

codeword

codeword

Error correction

syndrome

k information symbols 2t zeros

Figure 7.3 Frequency domain encoding and decoding of Reed Solomon codes
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c4 = oc2a4 + aV + a°a5 = a5

c5 = «2a5 + a5a3 + aV = a°

c6 - a2a6 + aV + a°a4 = a5

Hence the code sequence is a5 a° a5 a6 a5 a° a1. This is in fact the same codeword
that we created from different information in Section 7.3. The previous encoding
method was systematic whereas this method is not. There is no straightforward way
to recover the information from the codeword.

We now create a two-symbol error, say a5 in position 5 and a4 in position 3, as in
our previous example. The received sequence is a5 a4 a5 a3 a5 a° a1.

The decoding proceeds by finding the Fourier transform of the received sequence:

RO = a5 + a4 + a5 + a3 + a5 + a° + a1 = a°

R1 = aV + aV + a5a4 + aV + aV + aV + a'a° = a1

R2 = aV + aV + aV + oc3a6 + aV + aV + a'a° = a°

R3 - a5 a4 + aV + aV + aV + aV + a°a3 + a'a0 = 0

R4 = a5a3 + aV + «5a2 + a3a5 + aV + a°a4 + a'a0 = a3

R5 = a
5a2 + a4 a4 + a5a6 + aV + asa3 + a°a5 + a'a° = a2

R6 = a5«' + a4 a2 + a5a3 + a3a4 + aV + a°a6 + a'a0 = a5

Hence the transformed received sequence is a5 a2 a3 0 a° a1 a° with the syndrome
being 0 a° a1 a°.

We now form the key equation with t = 2 and A0 = 1 :

a1A2 + a0A1 +0 = 0

As before the solution is

a6A = a1

A] = a2 A2 = a

Instead of carrying out a Chien search, however, we use the connection polynomial
to synthesize shift registers with feedback, as in Figure 6.1, to generate the entire
frequency domain error sequence. If we initialize the registers with E2 and E3 (which
are just the syndrome components in those positions), subsequent shifts will generate
E4, E5 and E6. This process is known as recursive extension of the frequency domain
error sequence. The general arrangement is shown in Figure 7.4 where it is considered
that we may have used a method such as the inversionless Berlekamp-Massey algo-
rithm or the Euclidean algorithm to obtain a connection polynomial where A0= 1 .

In our case we have obtained a solution with A0 = 1 ; therefore, the circuit becomes
as shown in Figure 7.5.

We load the value a° into the leftmost stage of the shift register, and zero into the
other stage. Cycling the shift register will generate values a1, a3, a3, which are the
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Figure 7.4 General shift register for double-error recursive extension

Figure 7.5 Example shift register for recursive extension

frequency domain errors in positions 4, 5 and 6, respectively. The next two values
generated are a°, a1, corresponding to syndrome components Sb and S\. Thus the
cycle will repeat; it can be shown that a failure to repeat is the condition for detection
of uncorrectable errors.

The complete error sequence in the frequency domain is a3 a3 a1 0 a° a1 a°.
Adding this to a5 a2 a3 0 a0 a1 a°, the Fourier transform of the received signal,
gives a decoded sequence of a2 a5 a° 0 0 0 0. Thus we have shown that double-
error-correction has been achieved.

7.7 FURTHER EXAMPLES OF REED SOLOMON
DECODING

The previous section worked through an example in which the number of errors was
exactly equal to the error correcting ability of the code. There are two other types
of cases where the outcome is not obvious and which we need to study. They are the
cases where the number of errors is less than the error correcting capability and
where there are more errors than the code can correct.

Let us first suppose that three errors are introduced into the transmitted codeword
and that the received sequence is a6 a4 a5 a3 a5 a0 a1, an extra error of magnitude a
having been created in position 6. The Fourier transform is

R(z) = a3 + aV + a6z4 + aV + aV + a3z + a3

from which the key equations are found to be



REED SOLOMON CODES 163

a2 +

a3 +

+ a3A2 = 0

+ a3A2 = 0

Eliminating A2 gives

a5 + a5A1 = 0

A1 - a°

A? = or

The registers for recursive extension are shown in Figure 7.6. After initializing with
values a3 a2, the error sequence generated is a2 a6 a5 followed by a5. The sequence is
therefore incorrect because the syndrome S0 has not been generated at this point. The
general condition for detection of uncorrectable errors is that the sequence generated
by recursive extension is not cyclic with the correct length. This can be shown to be
identical to the condition that the Chien search does not return the correct number of
roots.

Looking next at the case where we have fewer than the maximum number of
correctable errors, it is obvious that if there are no errors then the transform of the
codeword will exhibit zeros in the expected places and no decoding is required. If
there are some errors, but less than t, the transform of the error locator polynomial
will have fewer than t unknown roots and the t simultaneous equations will not be
linearly independent. This will be illustrated by returning to the example of the
previous section but this time introducing only one error.

Let us assume that we receive a sequence a5 a4 a5 a6 a5 a° a1. This is the same as
the previous example except that position 3 does not contain an error, the sole error
being in position 5. The transform is

R(z) = a6z6 + aV + aV + aV + a)z2 + a3z + a5

from which the key equations are found to be

a1 +a3A1 +a5A2 =0

a6 + a'A1 +a3A2 = 0

This is similar to what happened in the single-error example of Section 6.9. The
second equation is the same as the first, multiplied by a2, which tells us that there is

Figure 7.6 Attempted recursive extension after triple error
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Figure 7.7 Recursive extension with single error

only one error and we must set A2 equal to zero. The solution to the key equation is
thus

A1 =a5

and loading the value a6 into the shift register of Figure 7.7 gives the sequence
a4 a2 a° as the corrections to the frequency domain data positions 4, 5 and 6, then
the next value is a5 which reproduces the value of s0, showing that the error correc-
tion is successful. We therefore correct the received Fourier transform values in
positions 6, 5 and 4, a6 a3 a5 to a2 a5 a°, the information encoded in Section 7.7.

The fact that in the above example each term in the syndrome is a constant factor
times the previous term is characteristic of single symbol errors, and the position of
the error in the time domain can be readily determined from the factor. In this case
because Sj = a5Sj-i, the error is in position 5 and the value of so is the error value in
that location. It is often worth including a check for single errors in a decoder and a
special decoding routine, because in many practical examples single errors will make
up a significant proportion of the sequence errors. Moreover all decoders will have to
cope with the case where there are fewer than / errors.

7.8 ERASURE DECODING

One feature that is sometimes incorporated into decoders for Reed Solomon codes is
the ability to recover events known as erasures. These are instances when there is
knowledge that a symbol is likely to be in error, perhaps through the detection of
interference. Erasure decoding could be regarded as a first step in soft-decision
decoding because, in comparison with what was transmitted, an extra level has
been introduced into the received sequence.

When an erasure occurs, the maximum likelihood decoding method is to compare
the received sequence with all codewords, but ignoring the symbol values in the
erased positions. The erasures are then filled using the values from the selected
codeword. With e erasures there will still be a minimum distance of dmin - e between
codewords, counting only the unerased places. Thus we will obtain decoding pro-
vided 2t is less than this reduced minimum distance:

2t + e < dn (7.3)
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At this point, one might well ask whether there is any point in declaring erasures
on a binary symmetric channel. A f-error correcting code will be able to fill up to 21
erasures, but if a guess was made for the values of all the erased symbols then on
average half would be correct and the error correction would cope with the rest. It
will be seen shortly that erasures do give some advantage, in that erasure filling is
equivalent to carrying out error correction on two possible sets of reconstituted bit
values, and then choosing the better of the two. On the other hand, the demodulator
need only have a slight inclination towards one or other value to make choosing the
more likely bit value a better strategy than erasure.

For any binary code there is a straightforward, nonalgebraic erasure filling
method. Replace all the erased bits by zero and decode. If no more than half of the
erasures should have been ones and Equation (7.3) was satisfied, then the number of
errors will still be less than half of dmin and the decoding will be correct. If on the
other hand more than half the erasures should have been ones then we may get a
decoding that will introduce extra errors into the sequence.

In this case, replacing all the erased bits by 1 will be successful. The procedure is
therefore to decode twice, replacing all the erased bits firstly with zeros and then with
ones. If the decoded sequences differ, choose the one that is closer to the received
sequence.

In contrast, if several bits of a Reed Solomon symbol are erased, it is unlikely that they
can be guessed correctly and erasure filling is a good strategy. They may be decoded
in the presence of erasures by an algebraic technique to be explained below. The
minimum distance of these codes is n — k + 1, which means that in the absence of errors,
Equation (7.3) shows that n-k erasures can be filled. We thus have the interesting
result that a Reed Solomon codeword can be recovered from any k correct symbols.

To decode algebraically, we replace the erased symbols by some arbitrary value,
usually zero. We adopt the polynomial approach in the frequency domain and
multiply the product of the syndrome polynomial S(z) and the connection polyno-
mial A(z) by an erasure polynomial F(z) which is known because the positions of the
erasures are known. For every two erasures, the degree of the error locator polyno-
mial is reduced by one so that the degree of the product of erasure and error locator
polynomials is increased by one. The number of simultaneous equations that can be
formed will thus be reduced by one, thus matching the reduction in the number of
unknowns. This all sounds rather horrific, but is fairly straightforward if considered
in the context of an example.

7.9 EXAMPLE OF ERASURE DECODING OF
REED SOLOMON CODES

We choose as our example the first case from Section 7.7 in which there was one error
at position 5 in the received sequence, but we introduce also two erasures in positions
6 and 1. The received sequence will be taken as 0 a4 a5 a6 a5 0 a1. The Fourier
transform is

R(z) = a6z6 + aV + aV + a'z3 + a6z2 + a5 + a°
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The low order terms of R(z) form a syndrome of the received sequence.
The erasure polynomial is

F(z) = (a 6 z+l ) (a ' z+ l ) = z2 + a 5 z+l

The error locator polynomial is

A(z) = A 1 z+ l

and the product is

F(z)A(z) = A,z3 + [a° + a^Jz2 + [a5 + A,]z + 1

As this polynomial is of degree 3, we can only carry out a single place convolution
with a known section of the error spectrum to produce a key equation. We are
therefore only interested in the terms of degree 3 when we multiply by the syndrome

giving as our key equation

a°A1 + a5 + a3A1 + a4 + a6A, + a1 = 0

a5A1 = a3; A1 = a5

We can now substitute this value back into the expression for F(z)A(z), which will
be the polynomial used to generate the errors in the frequency domain by recursive
extension:

This gives rise to the circuit shown in Figure 7.8 to be used for recursive extension.
Loading with values a5 a6 a1 and shifting gives the sequence a1 a1 a° and then,
regenerating the syndrome, oc° a5, a6. The error correction is therefore successful
and the values a° a1 a1 are added to the components a6 a6 a3 from the Fourier
transform of the received sequence to give recovered information a2 a5 a°.

Figure 7.8 Recursive extension with one error and two erasures
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If instead we choose to use the Forney algorithm to correct errors in the time
domain, the error evaluator polynomial is found to be

O(z) = [S(z)F(z)A(z)]mod z4 = ocV + a5z + oe°

Note that the degree of this polynomial is now 2 because there are effectively three
errors to correct. To calculate error values, we also need the formal derivative of
F(z)A(z), i.e. of oc5z3 4- oc'z2 + a°. The value of this derivative is z5z2. Therefore at
position i, the error value is

The polynomial F(z)A(z) has known roots a- 6 and a ] (because erasures were
detected there) and a further root a-5 that can be located by Chien search. Calculat-
ing the error values at positions 1, 5 and 6 gives e\ = oe°, e5 = a5, e6 — a5. The
received sequence is therefore corrected to a5 a° a5 a6 a5 a° a1, corresponding to
the original codeword.

Euclid's algorithm may be used to solve for the feedback polynomial in the
presence of erasures by initializing g1(z) as F(z) and terminating when the degree of
the remainder is less than t + e/2 (e is the degree of the erasure locator polynomial,
assumed to be even). To operate the Berlekamp-Massey algorithm, set l and n to e
and initialize A(z) to F(z).

7.10 GENERALIZED MINIMUM DISTANCE
DECODING

Having the ability to fill in erasures allows us to deal effectively with certain types of
interference and also to implement some approaches to soft-decision decoding. One
well-known approach is Forney's Generalized Minimum Distance (GMD) decoding
[1].

The principle of GMD decoding is very simple. We use a f-error correcting code
and, from the soft-decision information on the received sequence, we rank the
received symbols according to reliability. The decoding procedure is then:

1 Decode for f-error correction.

2 Erase the two least reliable symbols and decode for t — 1 errors and 2 erasures.

3 If the number of erasures is 2t, stop decoding and go to step 5.

4 From the symbols input to the previous decoding, erase the two least reliable (i.e.
increase the number of erasures by 2), decode and return to step 3.

5 From the decoded sequences produced, choose the closest to the received sequence.
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There will be at most / + 1 decoded sequences to compare; in practice when the
number of errors exceeds t there may be fewer because the errors are likely to be
uncorrectable. It is not clear, however, whether the performance gains will be worth
the effort of carrying out t + 1 decoding attempts.

The GMD algorithm is designed to work in conjunction with a particular metric of
goodness of decoded solutions. For each received symbol i with reliability r/, we count
+ri if the codeword matches and -r, if it does not. There can be at most one codeword
for which the sum over all symbols will exceed n - dmin and, if there is such a codeword,
GMD decoding will find it. For a binary code this is a good metric, although GMD is
still a bounded distance decoding rather than true maximum likelihood. For multilevel
codes transmitted over a binary channel, however, the metric may not be good. Over a
memoryless channel, we would consider that two symbol values differing in a single bit
are closer than two symbol values differing in several bits. The GMD metric, however,
treats those two cases as the same because symbols are treated as being either the same
or different. Only in burst-error conditions, or where an orthogonal modulation such
as MFSK is used, will the GMD metric be reasonable for a Reed Solomon code.

If we do, however, have conditions in which GMD seems to offer performance
benefits, the complexity needs to be considered. Using the Berlekamp-Massey or the
Euclidean algorithm, every decoding is a separate exercise with no way of reusing
results from previous decodings. However GMD can be implemented in conjunction
with another algorithm, the Welch-Berlekamp algorithm, in a way that builds on
previous results.

7.11 WELCH-BERLEKAMP ALGORITHM

The Welch-Berlekamp algorithm is another algebraic method for decoding Reed
Solomon codes. It is a time domain algorithm using values that are easily computed
from the received sequence, rather than the frequency domain syndromes used by
other algebraic methods. As a result, although the Welch-Berlekamp algorithm itself
is slightly more complex than the Berlekamp-Massey algorithm, the overall com-
plexity may well be lower if the actual number of errors to be corrected is not too
large. Moreover, it fits conveniently with GMD decoding.

The Welch-Berlekamp algorithm can be thought of as a kind of curve fitting
process. The points each have a value and a position, and a curve can be constructed
to fit any k points. When two more points are added, the curve must fit at least k + 1,
but the curve is allowed to miss one of the points. After adding another two points,
the curve must fit at least k + 2 of them. When eventually all n points have been
considered, the curve must fit at least (n + K)/2 of them.

Suppose, as in our previous double-error correction examples we transmit a code-
word from a (7, 3) RS code with roots a3, a2, a1, a° in GF(8). The first step is to
precompute some values needed for input to the algorithm and for error value
calculations. For the input to the algorithm we evaluate
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Therefore g3 = «°, g2 — a5, g1 = a6, go = a3-
For error value calculations we compute C = aV • • • an-k--2(a° + a1)(0 + a2) • •

(a° + an-k-1). For our example code the answer is a6. We now need for each of the
data locations the value of hi = C/g(ai) where g(a') indicates the evaluation of g(X) at
each of the data locations. The values are found to be

h5 = a6/a1 = «5

h4 = a 6 / ° = a6

Assume we receive a sequence a5 a4 a5 a3 a5 a0 a1 . The first step is to compute the
syndrome obtained by division by the generator. This is found to be S3 = a°, s2 = a2,
s\ = a°, S0 = a6.

The input to the Welch-Berlekamp algorithm is the set of points (Sj, aj) where
Sj = Sj/gj. The input points are therefore (a°,a3), (a4, a2), (a1, a1), (a3,a°).

We need to find two polynomials Q(x) and N(x) for which

Q ( a j ) Sj = N(ajj) for 0 < j < n - k - 1

and the length L[Q(x), N(x)], defined as the maximum of deg[Q(x)] and
deg[N(x)] + 1, has the minimum possible value.

The steps in the algorithm are now:

1 Set g°(x) = 1, N°(x) = 0, W 0(x) = x, V°(x) = 1 and d = 0.

2 Evaluate D1 = Q d ( S d ) + Nd(y.d).

3 If DI = 0, set Wd+l = Wd(x + ad), Vd+l = Vd(x + a.d) and go to step 6; other-
wise, set D2 = Wd(y.d)Sd + Vd(a.d).

4 Set (Qd+1 = Qd(x + ad) Nd+l = Nd(x + ad), Wd+l = Wd

= Vd +NdD2/Di.

5 Check whether L[Wd, Vd] was less than or equal to L[(Qd, Nd]; if it was then swap
Qd+1, Nd+l with Wd+l, Vd+].

6 Increment d.

< n-k, return to step 1; otherwise, Q(x) = Qd(x), N(x) = Nd(x).

The steps in evaluation for this example are shown in Table 7.3.
The error locator polynomial is x2 + %2x + a1 which has roots a3 and a5. Finding

two roots for a degree 2 polynomial indicates that errors are correctable.
The error values in the data positions are

N(a k )
ek = hk (7.4)



170 ERROR CONTROL CODING

Table 7.3

Input Z), D2 L1 < L2 Q(x) N(x) W(x) V(x)

0
1
2
3

X3

X1

X4

x4

X3 X1

x4 0
0
x4 a2

N
Y

N

1 0 x
x + a° 0 x + x5

x +x5 1 .x2 + x
3
.x + x1

x3 + x5.x2 + x6.x + x3

x+x2x+x1 x + x3 x3+x5.x2+ x1x V

i
i
0
0
x5

where Q''(x:) is the formal derivative of Q(x) (see Section 7.4). In this case Q'(x) = a2.
Therefore the error value at location 5 is e5 — a5(a5 + a3)/a2 = a5. The received
information is therefore corrected to a5 a° a5.

The application of the Welch-Berlekamp algorithm to GMD is that, for a Reed
Solomon code, any n - k symbols can be treated as parity checks. The least reliable
n — k symbols are therefore treated as parity checks with the syndromes derived by
recomputing the codeword from the most reliable symbols. As we enter the syn-
dromes into the algorithm, each time a new pair of values of Q and N is produced we
carry out the correction and produce a new codeword for consideration.

7.12 SINGLY EXTENDED REED SOLOMON CODES

It is possible to create a q-ary Reed Solomon code of length q, and such a code is known
as an extended code. The code will still correct t = (n - k)/2 symbols and can be
thought of either as adding a parity symbol to a code which corrects / - 1 errors and
detects t (expansion), or as adding an extra information symbol to a t-error correcting
code. The extended code is not cyclic, but can be encoded and decoded using frequency
domain techniques. The properties of such a code are relatively easy to understand and
the logic of the decoding approach is effectively the proof of the properties.

To create a /-error correcting RS code of length q, we first create the code of length
q — 1 with 2t — 1 parity checks. The frequency domain syndrome components S0 to
S2t-2 will, by definition, be zero. We now choose an adjacent position in the frequency
domain, known as the edge frequency, work out the value of Fourier transform in
that position and append it to the sequence. This is shown in Figure 7.9 on the
assumption that the edge frequency corresponds to S2t-1 • The extra symbol is known
as the edge symbol.

In the frequency domain, a codeword can be created as shown in Figure 7.10. Here
one of the information symbols acts as the edge symbol.

To decode, we calculate 2t components of the frequency domain syndrome of the
length q - 1 sequence. We use 2t — 2 syndrome components to create a connection
polynomial of degree up to t - 1. If there are no more than t - 1 errors in the length
q — 1 sequence then the final syndrome component s2t-2 will show that there are no

information symbols 2t-\ parity symbols

Figure 7.9 Singly extended Reed Solomon code



REED SOLOMON CODES 171

i to /, | i0 | 2t-1

Inverse

zeros

Fourier transform

length q-\ code

Figure 7.10 Frequency domain view of singly extended Reed Solomon code

more errors detected and correction can proceed. If there are t errors in the length
q — 1 sequence then they will be detected by s2t-2; however, in this case we can
assume that the received value of S2t-t is correct (otherwise there would be more
than t errors in the whole codeword). We therefore add the received value of S2t-1 to
the calculated value to produce a usable value for t-error correction.

The choice of edge frequency from the two available is unimportant for the
properties of the code. However, assuming that the Berlekamp-Massey algorithm
is used for decoding, the choice of st-2 will be convenient as the connection polyno-
mial can, if necessary, be calculated as an extension of the results up to S2l-2. The
location of the edge symbol in the final codeword is entirely arbitrary.

Examples of singly extended code

To create a single-error correcting double-error detecting RS code of length 7 over
GF(8), we can use

g(X) = (X + a0)(JT + a1)(X + a2) = X3 + a5X2 + a6X + a3

The information a5 a° a5 a2 encodes systematically to a5 a° a5 a2 0 a2 a°. The
Fourier transform in position 3 is

.53 = a5 a4 + aV + ocV + ora2 4- ocV + a° = a6

The codeword is therefore a6 a5 a° a5 a2 0 a2 a°.
Now create errors in positions 7 and 5, the received sequence being a2 a5 a4

a5 a2 0 a2 a°. The syndrome polynomial of the sequence a5 a4 a5 a2 0 a2 a° is

and the syndrome in position 4 is zero. Attempting single-error correction yields a
connection polynomial of oc5z + 1 and the syndrome component in position 2 is
correctly predicted. The symbol in position 7 is therefore not needed and can be
discarded. The error value is the value of S0, i.e. a5, so the received word of the (7, 4)
code can be corrected to a5 a0 a5 a2 0 a2 a0, with the first four symbols being the
information.

Alternatively, create errors in positions 5 and 3, the received sequence being
a1 a5 a4 a5 a1 0 a2 a°. The syndrome of a5 a4 a5
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with the value in position 3 being a6. The single-error correcting connection polyno-
mial is O1Z + 1, but this does not correctly predict the next component. We therefore
assume that the edge frequency a6 was correct and add it to the calculated 53 value to
give a syndrome for a double-error correcting code

The key equation for double error correction is

a°A1 + a 1 A 2 = 0

Eliminating A2 gives a1 + a6A1 = 0, AI = a2, A2 = a1 . As in Section 7.5, the roots are
a2 and a4 indicating errors in positions 5 and 3. The error values may be found using
the Forney algorithm.

7. 1 3 DOUBLY EXTENDED REED SOLOMON CODES

The single extension of RS codes can be taken one stage further to create a code of
length q + 1. A t — 1 -error correcting code is created, two edge frequencies selected
and the Fourier transform calculated for those two frequencies to create the two edge
symbols. The decoding process is slightly more complicated than for the singly
extended code. The logic, assuming that no more than t errors have occurred is as
follows:

If both the edge symbols are incorrect then no more than t — 2 errors need be
corrected in the length q — 1 codeword. This can be achieved from the normal parity
symbols with two more parities available to check the correctness of the process.
Therefore if correction of up to t — 2 errors appears to be successful (as verified by
the remaining parity checks), accept the result.

If one edge symbol is incorrect then no more than t — 1 errors need be corrected in
the length q — 1 codeword. This can be achieved from the normal parity symbols.
Therefore if correction of up to t — 1 errors appears to be successful, verify this by
calculating the two edge symbols and checking that at least one of them corresponds
to what was received. If this condition is satisfied then accept the result.

For r-error correction to be needed in the length q — 1 codeword, both edge
symbols must be correct. Therefore if decoding has so far been unsuccessful, assume
that both edge symbols are correct and add them to the received sequence Fourier
transform values at the corresponding edge frequencies. Use the results as two more
syndrome components to achieve t-error correction.

Again the edge frequencies could be chosen at either end of the syndrome frequen-
cies, or even one at each end. However, if the syndromes are S0 to s2i-3, choosing J2/-2
and S2t-1 as the edge symbols will again fit conveniently with the operation of the
Berlekamp-Massey algorithm.

To make the point that extended codes can be viewed as adding information
symbols to a t-error correcting code and that other positions can be chosen for the
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edge frequencies, consider a doubly extended RS code whose frequency domain
view is shown in Figure 7.11. The process of encoding is as follows. Put k — 2
( — q - 1 - 2t} information symbols and 2t consecutive zeros into a vector of length
q - 1. Put the two remaining information symbols into the two outside zero pos-
itions, one at the low-order end and one at the high-order end. We now have the
spectrum of a t - 1 error-correcting Reed Solomon code. The vector of length q - 1
is given an inverse Fourier transform over GF(q) to produce a Reed Solomon code-
word which can correct t - 1 errors. The high-order edge frequency is appended at
the beginning (high-order end) of the codeword and the low-order edge frequency at
the (low-order) end of the codeword. The codeword is now of length q + 1.

To decode a received sequence using the extended code, strip the symbols from the
beginning and end and forward transform the remaining sequence of length q - 1.
The syndrome consists of the high-order edge frequency plus the stripped symbol
received in the high-order position, the subsequent 2t - 2 symbol values and the sum
of the low-order edge frequency plus the stripped symbol received in the low-order
position. This is shown in Figure 7.12. Decoding, however, starts off with an attempt
at t - 1 error correction, using only the central 2t — 2 symbols of the syndrome
following the logic outlined previously.

k-2 information symbols 2?-2 zeros)

high-order
edge symbol

q~\ point inverse
Fourier transform

low-order
edge symbol

q + ! symbol codeword

Figure 7.11 Encoding of doubly extended Reed Solomon code

q+1 symbols
high-order
edge symbol 1

^\^
1

<y-l point

t^

1 1

low-order
edge symbol

Fourier transform

It symbols syndrome

Figure 7.12 Syndrome formation for doubly extended Reed Solomon code
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Example of doubly extended code

We consider the case of a (9, 5) Reed Solomon code over GF(8). In this case we have
a 5 symbol information sequence 1 a3 a a6 a2. We treat the first and last of these as
edge symbols, placing them in positions 3 and 0, respectively, in the frequency
domain. Thus we start from the spectrum of a single-error correcting Reed Solomon
code

C(z) = a3z6 + az5 + a6z4 + z3 -I- a2

The inverse transform gives the codeword of a (7, 5) RS code:

c(X) = a6 A-6 + a2 A-5 + a3*4 + a6*3 + X2 + a3* + 1

The two extra information symbols are now added to the ends of the codeword to
produce the (9, 5) RS codeword

c'(X) = Xs + a6 A-7 + a2 A* + a3*5 + a6*4 + X3 + a?X2 + X + a2

Now assume that errors occur at positions 8 and 5 producing a received sequence

i*(X) = a3 A'8 + a6 A'7 + a2 A* + a5 A'5 + a6 A'4 + A'3 + a3 A'2 + X + a2

The additional symbols are stripped from the sequence to give

c(X) = a6 A* + a2 A'5 + a5 A'4 + a6 A'3 + A'2 + a3* + 1

which transforms to

R(z) = tx2z6 + a3z4 + aV + a6z

The terms of order 3 downwards are extracted as the syndrome, with the add-
itional symbols added at the appropriate points, giving

R(z) = z3 + aV + a6z + a2

The terms in the syndrome are incrementing by multiples of a4 as the order
increases, indicating the equivalence of a single error with the key equation solving
as A1 = a4. The spectrum of the error sequence is therefore

E(z) = a5z6 + az5 + a4z4 + z3 + aV + a6z + a2

which, when added to R(z) gives

C(z) = a3z6 + az5 + a6z4 + z3 + a2
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Decoding has been correctly achieved and all the information is directly available
from C(z).

7.14 CONCLUSION

Reed Solomon codes are arguably the most elegant and most useful product of
algebraic coding theory. The origin and the discovery of their relation to BCH
codes were mentioned in Chapter 6. The implementations of algorithms mentioned
in that chapter, and of finite field arithmetic from Chapter 5 are also highly relevant.
The Welch-Berlekamp algorithm was originally embodied in a US patent [2]. The
anticipated expiry of that patent gave rise to considerable interest and the publication
of several papers describing it and its uses, of which [3] describes its application to
GMD decoding. A similar method described in [4] includes a method to keep track of
the results of the Chien search to assist the multiple decoding attempts. Some
applications of Reed Solomon codes will be discussed in Chapters 9 and 10.

7.15 EXERCISES

1 Find the generator polynomial of the double-error-correcting RS code of length 7
whose Fourier transform has zeros in positions 0, 1, 2 and 3, assuming that GF(8)
is generated by X3 + X2 + 1. Find the syndrome of the sequence a2 a4 0 a6

a6 a5 a6 by long division and by computation of the appropriate Fourier trans-
form components.

2 Using the (7, 3) RS code example of question 1, carry out the decoding if the
errors are

e(X} = a5^4 + a2+X2

using Euclid's algorithm for solution of the key equation.

3 Using the RS code of the above question, show the decoding with a single error
affecting all bits in position 4.

4 In the example (7, 3) Reed Solomon code of Section 4.16, erase the transmitted
symbols at positions 6, 5, 3 and 0. Carry out the decoding.

5 Encode the 8-ary information sequence a2 0 a6 1 a into a (9, 5) extended Reed
Solomon code. Carry out the decoding if errors are introduced as follows:

1 in position 8 and a in position 0
a2 in position 7 and a3 in position 2
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8
Performance calculations for
block codes

8.1 INTRODUCTION

The consideration of block codes has largely concentrated on the implementation.
The purpose of this chapter is to look at the performance of the codes, both for error
detection and for error correction.

Common sense tells us that for given values of n and k there must be a limit to the
minimum distance that can be obtained, however it is interesting to know what the
limitations are. It is found that there is no fixed relationship between the code
parameters, but there are several upper bounds applying to minimum distance or
error correction (Hamming bound, Plotkin bound, Griesmer bound and Singleton
bound) and one lower bound (Gilbert-Varsharmov bound) which tells us a value of
minimum distance that we should be able to achieve.

In this chapter we start by studying the above-mentioned bounds and then go on to
consider how to carry out performance calculations for particular codes.

8.2 HAMMING BOUND

We have already met in Chapter 3 the Hamming bound, which states that the number
of syndromes is at least equal to the number of correctable error patterns. For a g-ary
symbol, any error can have q - 1 possible values, and the formula becomes:

I ) 2
 + - 3 - i ) 3 + . . .

-iy (8.1)

The Hamming bound may be used to obtain a useful approximation for the
probability of incorrect output when the weight of the errors exceeds the capability
of a bounded distance decoder. The decoder will produce incorrect output if and only
if the syndrome produced is one that corresponds to a correctable error. If the



178 ERROR CONTROL CODING

syndromes of uncorrectable errors are considered to be uniformly distributed over all
possible values, the probability of miscorrection is

E [>-<•>•
i = 0 il J

Of course the syndromes of uncorrectable errors are not uniformly distributed
because usually the weights of the errors are not uniformly distributed and there will
be more chance of a weight / + 1 error than of a higher weight error. An exact
evaluation is possible, but extremely complex, provided the weight distribution of the
code is known. However, for the codes of interest in this book, Equation (8.2) can be
considered to give an upper bound to the probability of incorrect output, given that
an uncorrectable error has occurred.

8.3 PLOTKIN BOUND

The Plotkin bound is similar to the Hamming bound, in that it sets an upper limit to
dmm for fixed values of n and k. It tends however to set a tighter bound for low rate
codes, the Hamming bound being tighter for higher rates.

The Plotkin bound applies to linear codes and states that the minimum distance is
at most equal to the average weight of all nonzero codewords. For a q-ary code with
n symbols, the chance over the whole set of codewords of any symbol being nonzero
is (q — l)/q (provided the code is linear) and there are qk-codewords in the whole set.
The number of nonzero codewords is qk — 1 and so the average weight of a codeword
is

qk - \

The minimum distance cannot be greater than this, so

J *(<7-l)<7*-'
k , (8-3)

qk - 1

For a binary code this becomes

_ .

It is not easy to find the maximum value of A: for a given n and dm[n, but it can be
shown from the above result that

i ^ q(*mm ' , < , i j /o c\k < n - — + 1 + log dmin (8.5)
q- 1 *
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or for a binary code

k<n- 2dmm + 2 + Iog2 4™ (8.6)

8.4 GRIESMER BOUND

The Griesmer bound is often tighter than the Plotkin bound, and its derivation leads
to methods of constructing good codes. Let N(k, d) represent the lowest possible
value of length n for a linear code C of dimension k and minimum distance d.
Without loss of generality, the generator matrix can be taken to have a first row
consisting of d ones followed by N(k, d) - d zeros:

111... 1 000... 0
„ r
<J1 *-»2

The matrix GI generates a (N(k, d) - d, k - 1) code of minimum distance d\,
called the residual code. If u is a codeword of the residual code which, when
concatenated with a sequence v of length d, produces a codeword of C, then we
can say

d\ + weight (v) > d

However u concatenated with the complement of v is also a codeword:

d\ + d — weight (v) > d

Therefore 2d\ > d or d\ > \d/Z\ (the symbol \d/2] represents the integer which is
not less than d/2). Since the code generated by GI is of length N(k, d) - d, we can say

N(k,d) = N(k- l , \ d / 2 ] )

Applying this result iteratively gives

N(k, d) =
i = o 2/

This is the lowest possible value of length, so the general statement of the Griesmer
bound for binary codes is

„ •> \ J L fQ T\n^ 2_s ji (*•')

For ^r-ary codes, the argument generalizes to give
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8.5 SINGLETON BOUND

If we change one of the information symbols in a block code, the best we can hope for
in terms of distance between codewords is that all the parity symbols will also change.
In this case the distance between the two codewords will be n — k + 1. This sets an
upper bound to minimum distance of:

4nin < n-k + 1 (8.9)

The only binary codes that achieve this bound with equality are simple (n, 1)
repetition codes; other upper bounds are usually tighter for binary codes. On the
other hand Reed Solomon codes, which are multilevel codes, do have a minimum
distance which is the maximum permitted by this bound. Reed Solomon codes were
treated in Chapter 7.

8.6 GILBERT-VARSHARMOV BOUND

The Gilbert-Varsharmov bound shows that for a given value of n and k a certain
value of minimum distance should be achievable by a linear block code. It does not
necessarily mean that the code or codes which achieve this distance are known or
have practicable implementations, merely that they exist.

Consider a code which has minimum distance d. The syndrome of an error pattern
containing d — 1 errors may be the same as that of a single error, but no syndrome of
an error pattern of weight d — 2 or less may be the same as a single-error syndrome.
From this observation, we look at how we can make up the columns of the parity
check matrix, which are just the syndromes of single-symbol errors, such that no
column can be made from linear combinations of d — 2 or fewer other columns.

Each column of the parity check matrix contains n — k symbols and for a q-ary
code there are qn~k possible columns. As we make up the columns, certain values are
not allowed if we are to ensure that the column we are creating cannot be made from
linear combinations of up to d — 2 previous columns. The problem of finding
suitable columns becomes more acute as we fill the matrix and the last column
(the nth) will be the most difficult. At this stage the prohibited combinations will
be:

• All-zeros (1 possibility).

• Any of the q — 1 nonzero multiples of any of the n — \ previous columns
[(n - 1)(q - 1) possibilities].

• A linear combination of nonzero multiples of i of the previous n - 1 columns, i.e.
[(n — 1)/i](q — 1)i possibilities for each value of i from 2 to d - 2.

Hence we obtain
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(8-10)

We are, however, allowed to choose values which are linear combinations of the
possibilities up to d — 1 of the previous n — 1 columns, which gives us the full form of
the Gilbert-Varsharmov bound:

d-2

£
i = 0

In this form, one can use the bound either to determine the maximum value of
minimum distance that is sure to be available with a given set of q, n and k, or to set
an upper limit to the value of n — k that is needed to provide a desired minimum
distance with a q-ary code of length n.

8.7 ERROR DETECTION

It has so far been assumed that the purpose of coding was to allow the receiver to
recover the information from the received sequence with a higher certainty than
would be obtainable without coding. Many error control schemes do not, however,
attempt to recover the information when errors have occurred, instead they detect
errors and invoke some alternative strategy to deal with them. If a return channel is
available, the receiver may call for a retransmission of the message. Alternatively for
data with considerable inherent redundancy it may be possible to reconstitute the
corrupted message in a way that minimizes the effects of the loss of information.

There are many reasons why a system designer might opt for an error detection
strategy rather than forward error correction. Some of these reasons are bound up
with characteristics of an error detection scheme which will emerge in the course of
this chapter. One major reason is, however, that error detection can be made many
orders of magnitude more reliable than forward error correction and is thus appro-
priate when a low undetected error rate is essential. It is also often relatively simple to
implement an error control strategy based on error detection. Thus if the character-
istics are acceptable, error detection strategies, or some hybrid of error detection and
forward error correction, are likely to be the most cost-effective solution.

8.8 RANDOM-ERROR DETECTION PERFORMANCE
OF BLOCK CODES

In comparison with error correction, error detection is a relatively straightforward
operation, but it is rather more difficult to obtain approximate formulas for the
performance because the structure of the code has a much more noticeable effect. It is
almost always block codes that are used and, although convolutional codes are
possible, we shall look only at the performance of block codes.
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If the number of errors in a block is less than the minimum distance then they will
always be detected. If the number is equal to or greater than dmin then we might
choose to be pessimistic and assume that error detection will fail. This, however, is far
too removed from real performance; only a small proportion of error patterns of
weight dmin or more will produce another codeword and hence escape detection.
Taking the example (7, 4) code from Chapter 3, we see that there are seven codewords
of weight 3, seven of weight 4 and one of weight 7. If therefore the all-zero codeword
is transmitted, only seven of the 35 possible 3-bit error patterns produce an un-
detected error, so that 80% of 3-bit errors will be detected. The distance properties of
the code are the same regardless of which codeword is transmitted, so this result
applies to any transmission. Similarly 80% of weight 4 error patterns are detected,
100% of weight 5 and 100% of weight 6. Only the weight 7 error pattern is sure to
evade detection.

Ideally we would wish to know the number Ai of codewords of weight i for the
code in use. If we assume that the events causing code failure are essentially inde-
pendent we can then say

, - r

' -° l/J
where Pud is the probability of undetected error and P(i) is the probability of exactly i
symbols in a block being wrong. With a symbol error rate of ps, we can see
that

/>ud = £>//>/(! -/^r1 (8.13)
/=o

Unfortunately the weight structures are not known for all codes. Nevertheless the
weight distributions are known for Hamming codes, Reed Solomon codes and some
binary BCH codes. In addition the weight distribution can be obtained for any code
where the weight distribution of its dual code is known.

8.9 WEIGHT DISTRIBUTIONS

Hamming codes

Hamming codes have a weight enumerator

(8,4)
7=0 n ~~

that is, the coefficient of xf in A(x) is the number At of codewords of weight i. An
alternative form is
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?\(«-l)/2

from which we can obtain expressions for Af

i even
(8.15)

/ odd

For the (7, 4) Hamming code, AQ = 1, v43 = 7, A4 = 7, A7 = 1 and all the other
terms are zero. This corresponds with the results quoted in the above section.

Reed Solomon codes

The weight distribution of a t-error correcting Reed Solomon code over GF(q) is
given by A0 = 1 and

q~ '"" (8-i6>
for 2t + 1 < i < n. An alternative (equivalent) form is

For example a double-error correcting Reed Solomon code over GF(8) has 1 code-
word of weight zero, 147 of weight 5, 147 of weight 6 and 217 of weight 7.

Dual of code of known weight distribution

For any (n, k) code it is possible to construct the (n, n-k) dual code whose generator
matrix is the parity check matrix of the original code. If the original code is a cyclic
code with a generator g(X), the dual code has generator [Xn + l ] / g ( X ) . The weight
enumerator A(x) of a (n, k) linear code over GF (q) is related to the weight enumer-
ator B(x) of its dual by the Mac Williams Identity;

q k B(x) = [1+(q- 1)x]"A - (8.18)
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For binary codes this becomes

(8.19)

For a Hamming code with weight distribution given by Equation (8.14), the
MacWilliams identity gives the following expression for B(x), the weight distribution
of the dual code:

B(x) = 1 + nx(n+1)/2

The dual of a Hamming code is in fact a maximal length code or simplex code.
That this is indeed the weight distribution of such a code will be seen in Chapter 9
(Section 9.3).

If we know only the numerical values of the coefficients Ai instead of an analytic
expression, we can still obtain the weight distribution of the dual code. For example
if we take the values of Ai for the (7, 4) Hamming code we find from Equation (8.18)

\6B(x) = (1 + x)1 + 7(1 - x)3(l + x)4 + 7(1 - x)4(l + x)3 + (1 - x)7

Expanding this gives

B(x) = l+7x4

The importance of the MacWilliams identity is that for a high rate code it is often
much easier to find the weight distribution of the dual code, which will have far
fewer codewords. In practice, therefore, the weight distribution of a Hamming
code would be obtained from that of a simplex code, rather than vice versa as done here.

8.10 WORST CASE UNDETECTED ERROR RATE

Another possibility of interest is to consider as a worst case that the bit error rate
approaches 0.5 when using a binary code. The probability of undetected error becomes

Pud = 2^Ai 0.5''(1-0.5)"
/=o

but £ Af = 2k, so
/=o

pud = 1/2"-*



PERFORMANCE CALCULATIONS FOR BLOCK CODES 185

What this means is that if the bits are generated randomly then there is a chance of
1 in 2n~k of the n - k parity bits being correct. This is true only if the checks can be
regarded as independent, and there are some codes where this is not so. Nevertheless
the worst case probability of undetected error for well designed codes can be
calculated in this way.

8.11 BURST-ERROR DETECTION

Cyclic codes have good burst-error detection properties. Any consecutive n - k bits
can act as the parity checks on the rest of the codeword and it therefore follows that
an error pattern must span more than this number of bits if it is to pass undetected.
The only bursts of length n — k + 1 which will pass undetected are those which are
identical to the generator sequence cyclically shifted to the appropriate position.
Thus over any fixed span of n — k bits, there are 2n~k~l error patterns starting and
ending in 1, of which only one will pass undetected. Thus the probability of a burst of
length n - k -f 1 being undetected is 2~(n~k~l\

This analysis extends fairly easily to longer bursts. For any burst of length
/ > n — k 4- 1 to pass undetected, it must resemble g(X) multiplied by some polyno-
mial of degree l—(n—k\ There are 2l~(n~k)~2 such polynomials and 2l~2 burst patterns
of length /. Thus the probability of such a burst being undetected is 2~^"~k\

8.12 EXAMPLES OF ERROR DETECTION CODES

There are three cyclic block codes which have been used frequently in error detection
applications, for example in network protocols. One is a 12-bit cyclic redundancy
check and the other two are 16-bit checks.

The generator polynomial for the 12-bit CRC is

or

The polynomial Xn + X2 + I is primitive; hence, the code is an expurgated
Hamming code. The length of the code is 2047 (211 - 1) of which 2035 are devoted
to information and the minimum distance is 4. The code may be shortened to include
less information without impairment to the error detection properties.

There are clearly too many codewords to enumerate fully the weight structure.
Taking the codewords of weight equal to 4nin we find that there are 44434005
codewords of weight 4 compared with 4.53 x 10!0 possible weight 4 sequences. The
probability of a weight 4 error sequence being undetected is therefore less than 10~3.
The code will detect all errors of weight less than 4, all errors of odd weight, all bursts
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of length less than 12, 99.9% of all bursts of length 12 and 99.5% of all bursts of
length greater than 12.

The two 16-bit CRCs have generator polynomials

and

The factor X + 1 can be taken out to give

and

g(X) = (A-15 + X14 + Xn + Xn + X4 + X3 + X2 + X + \)(X + 1)

In both cases the generator is a primitive polynomial multiplied by X + 1 to
expurgate the code. As a result the codes have dmin = 4, length up to 65 535 of
which all but 16 bits are devoted to information. There are 1.17 x 1013 words of
weight 4, giving a probability of undetected error for weight 4 patterns of around
1.53 x 10-5. The codes will detect all errors of weight 3 or less, all odd-weight errors,
all bursts of length 16 or less, 99.997% of bursts of length 17 and 99.9985% of bursts
of length 18 or more.

The data blocks on CD-ROM include a 32-bit CRC. In this case the polynomial
consists of the product of two polynomials

g(X) = (x16 + x15 + x2 + 1)(x16 + x2 + x + 1)

The first of these factors is the first of the standard CRC- 1 6 polynomials above.
The second decomposes as

(X + l)(X15 + X14 + X13 + Xn + Xu + X10 + X9 + X* + X1 + X6

8.13 OUTPUT ERROR RATES USING BLOCK CODES

Suppose we are using a t-error correcting code and subjecting the decoder to a
random bit error rate p. If we wish to work out the rate at which decoding errors
occur, we usually assume that if more than t errors occur there will be a decoding
error. This is an oversimplification because in general there will be some possibility of
decoding beyond the guaranteed correction capability of the code or of detecting
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errors in such cases; it is therefore a pessimistic assumption. The use of the Hamming
bound to estimate probability of detecting uncorrectable errors was discussed in
Section 8.2.

If we use a binary code then the code symbol error rate ps will be the same as the
channel bit error rate p. On the other hand, suppose our code uses symbols which
consist of / bits. The symbol error rate over a memory less binary channel will be
given by

In other words, the probability of a symbol being correct is equal to the probability
of all the bits being correct. Rearranging this gives

/>,= ! -(!-/>)' (8-20)

The probability P(i ) of i symbol errors out of n symbols is

where

n
i\(n - I)!

The probability Pde of a block decoding error is just the sum of P(i) for all values of
i greater than t

/ = /+ !

If a decoding error occurs then we must decide whether we are interested in
message or bit error rates. Message error rates Pme are the easier to calculate; if
the message consists of m blocks then it will be correct only if all m blocks are
correct:

P™ = \-(\-PteT (8.23)

If we want the output bit error rate then we need to make a further assumption
about the number ne(i) of additional errors output in an n-bit block when there is a
decoding failure. At best the decoder will output dmin symbol errors, i.e. dmin '
additional errors. At worst it will attempt to correct t errors and in so doing will add
an extra t errors to those at the input

dmm <ne(i)<i+t (8.24)
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In practice the statistics will be dominated by the case when i = / + 1 and the upper
and lower bounds on ne(i) are identical. Only at fairly high input bit error rates will
there be an appreciable difference between using the upper and lower bounds.

Having chosen a suitable expression for ne(i), the output symbol error rate Px will
be

Px = - £ ne(i)P(i) (8.25)
ni=t+\

and in the simplest case where we assume that ne = dmin the expression becomes

Px ~ — ]T P(i) (8.26)
" ;=/+!

If the code is binary then this is the same as the output bit error rate PQ.
If the code uses /-bit symbols (e.g. a Reed Solomon code), then obtaining the

outpit bit error rate is not straightforward. Assuming time domain encoding, we can
look at all possible symbol values to see that on average 50 % of the bits would be
wrong, a total of 2'~l bit errors. One symbol value, however, does not represent an
error, leaving 2' — 1 possible symbol error patterns over which to average. This,
however, would give the bit error rate only for the additional symbol errors created
by the decoder. For the symbol errors created on the channel the bit error rate isp/ps.
The overall output bit error rate is therefore

(8.27)

As seen in Chapter 7, RS codes can be encoded from the frequency domain. In that
case, decoding errors in the time domain can be considered to have a random effect
on the frequency domain information, resulting in an output BER of 50 % in the
incorrectly decoded sequences:

\ = °-5 X, p(/) (8-28)
i=t+\

8.14 DETECTED UNCORRECTABLE ERRORS

The expressions in the previous section rest on the assumption that the occurrence of
detected uncorrectable errors is relatively uncommon. This assumption is not vah'd
for long codes with large values of minimum distance. To see the problem and
the possible ways of tackling it, we consider a particular example of a triple-error
correcting (31, 16) binary BCH code. We can plot the probability of not obtaining
correct output against Eb/N0 and compare it with the probability of error in a 16-bit
uncoded block as in Figure 8.1.
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Figure 8.1 Block error rates for (31, 15) binary BCH code

The number of syndromes for this code (including the all-zero syndrome) is 215, i.e.
32768. The total number of errors of weight < 3 is

, „, 31x30 3 1 x 3 0 x 2 9 Ann^I+31+-—— + .— = 4992
2 3x2

Therefore the number of syndromes corresponding to correctable errors is only just
over 15% of the total. This figure (or one derived from a more accurate calculation)
could be used to partition the decoded block error rates into incorrectly decoded
blocks and detected uncorrectable errors.

As seen above, when errors of weight 4 or more occur we would, at worst, expect a
15 % chance that incorrect decoding will result. More often than not, the syndrome
will correspond to an uncorrectable error. In such a case, the usual assumption for
BER calculations is that the decoder will strip off the parity checks and output the
information bits as received. Most blocks that cannot be decoded correctly will have
four bit errors and the proportion of bit errors in the output will be 4/31 if the errors
are detected as uncorrectable, compared with 7/31 if the block is miscorrected. Based
on the usual assumption, the detection of errors will therefore reduce the output bit
error rate by less than a factor of 2. This will have only a small effect on coding gain
as shown in Figure 8.2, which assumes that all uncorrectable errors are detected.

As we can see, even if we assume that all the uncorrectable errors are detected, it
makes little difference to the coding gain. This seems to conflict with common sense
because the knowledge that a block is in error can be used to invoke some other
strategy. In a selective repeat ARQ scheme, for example, the efficiency is considered
to be the product of the code rate and the proportion of frames received correctly. It
might therefore be better to consider that blocks with detected uncorrectable errors
effectively reduce the code rate and increase the value of Eb/Ng. The result of that
basis of assessment is shown in Figure 8.3. Comparison with Figure 8.2 shows that
coding gain is increased by around 0.5 dB at a BER of 10~5. The difference between
this and the conventional basis of assessment will be even more significant for many
more complex codes.
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Figure 8.2 Bit error rates of (31, 16) code with and without error detection adjustment
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8.15 APPLICATION EXAMPLE - OPTICAL
COMMUNICATIONS

Simple block codes are rarely favoured for communications applications, however
there is one area - optical networks - in which they are universally used. Three
factors conspire to make this so. Firstly the target BER is 10-l5, much lower than
is encountered in radio or satellite communications. Secondly the bit rates are so
high, up to 10G bits per second currently and evolving towards 40G, that imple-
menting soft-decision demodulation is almost impossible and decoder complexity
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is also a significant issue. Finally, higher bit rates bring dispersion losses as well as
increased noise through the increase in bandwidth. As a result high rate codes are
needed.

The code that has been commonly adopted as a standard is a (255, 239) Reed
Solomon code. The (conventionally defined) performance of this code is shown in
Figure 8.4. It can be seen that the gain of this code at the target BER is a little over 6 dB.
It is worth noting, however, that an equivalent length binary BCH code would give
better performance. A (255, 239) binary BCH code would correct only two errors and
the performance would be poor; however, the length of the RS code in bits is 2020, so a
length 2047 binary BCH code would be comparable. A (2047, 1926) code is of slightly
higher rate and corrects up to 11 bit errors. The performance is shown in Figure 8.5
and the gain can be seen to be improved by more than 0.5 dB relative to the RS code.

Eh/N0 (dB)

9 10 11 12 13 14 15

Figure 8.4 Performance of (255, 239) RS code

Eb/N0 (dB)

9 10 11 12 13 14 15

Figure 8.5 Performance of (2047, 1926) binary BCH code
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Although ascertaining the reason for adoption of the Reed Solomon code is not
easy, it is clearly not related to AWGN performance. Neither is it likely to be based
on burst-error correction capability because the AWGN model is a good representa-
tion of the noise in the detectors, although it may be that there is a comfort factor in
using RS codes in case burst errors happen to occur. The principal benefit of the RS
codes is one of complexity; some important parts of the decoding algorithms have
complexity that is proportional to length in symbols, and the binary BCH code
would have been more difficult to implement. Even so, the need for higher gains
for long haul and higher bit rate applications is expected to produce solutions that do
not rely exclusively on Reed Solomon codes.

8.16 CONCLUSION

This chapter has looked at aspects of performance of linear block codes of all types,
including what is theoretically possible, the performance of real examples and the
applicability based on performance. The most commonly applied block codes are
Reed Solomon codes, often in a multistage configuration. This will be the topic of the
next chapter and several applications will be discussed there.

8.17 EXERCISES

1 How many codewords of weight 3 and weight 4 are there in a (15, 11) Hamming
code? If the code were

(a) expurgated to (15, 10) by removal of all odd weight codewords
(b) expanded to (16, 11) by inclusion of an overall parity check

how would these values change?

2 For a (15, 11) Hamming code, find the probability of undetected error for the
following cases

(a) random errors weight 3
(b) random errors weight 4
(c) burst errors length 4
(d) burst errors length 5
(e) burst errors length 6

3 Find the number of codewords of weight 5 and 6 in a (15, 11) Reed Solomon
code. Hence find the probabilities that random errors affecting 5 or 6 symbols will
be undetected.
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4 An error detection scheme requires the worst-case probability of undetected
errors to be 10~6. How many parity bits are required?

5 Estimate the output bit error probabilities for Hamming codes of length 7,15 and
32 in the presence of channel bit errors with probability 10~2. Find the asymptotic
coding gain of these codes and comment on the comparison between the different
codes.

6 Estimate the probability of undetected decoding errors for a (31, 15) Reed
Solomon code over GF(32).
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9
Multistage coding

9.1 INTRODUCTION

There are many good ways in which coding may be applied in multiple stages. The
intention is to create codes that are effectively long but whose decoding can be achieved
by relatively simple component decoders. In principle multistage decoding is not
optimum, however we shall see that in some cases the codes can be used in conjunction
with feasible multistage decoding to give excellent performance. In Chapter 10 we shall
see some cases where we can achieve performance approaching the Shannon limits.

9.2 SERIAL CONCATENATION

A common use for Reed Solomon codes is in serially concatenated coding systems
where two codes are applied in sequence as shown in Figure 9.1. The first code to be
applied is called the outer code and will in this case be a RS code. The second code is
the inner code and is designed to work well for the channel conditions.

When the inner decoder fails, it produces a burst of errors. Since the Reed
Solomon code is good at correcting bursty errors, these should be corrected by the
RS decoder. The combination of inner code and channel produces a superchannel

Modul Inner Outer RS
encoder encoder _,- ., ,

1 information
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h
a
n
n
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Democh

received

, , Inner Outer RS
decoder decoder

Figure 9.1 Concatenated code
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that has, it is to be hoped, a lower error rate than the uncoded channel, and the
superchannel errors are confined to bursts of known duration. The symbol size of the
outer code is chosen such that inner decoding errors affect relatively few symbols,
perhaps only one.

Serial concatenation can be thought of as a way of converting channel errors into
bursts so that they can be tackled by a burst-error correcting code. It should be
remembered that, for the same bit error rate, bursty errors are in principle easier to
combat than random errors. It will also be seen that in some cases the burst errors
can be constrained to be phased bursts corresponding with the natural boundaries of
the Reed Solomon outer code. In this way the concatenation can make the most
efficient use of Reed Solomon codes.

Producing reasonable concatenated schemes is actually a difficult problem, espe-
cially because of the need to balance the relative error-correcting power of the two
codes. For a fixed overall code rate, it might be possible to reduce the rate and
increase the power of one code, compensating with an increased rate and reduced
error-correcting power of the other. Somewhere will be an optimum balance that is
not easy to find. The inner code must be able to achieve reasonable error control on
the channel and may need to be burst correcting or interleaved if the channel
characteristics are predominantly bursty. If the inner code is not powerful enough,
or not well suited to the channel, it is wasted and serves only to increase the error
rates that the outer code has to handle. In such circumstances the outer code might
do better on its own. Similarly the outer code must be able to cope with the symbol
error rates on the superchannel.

9.3 SERIAL CONCATENATION USING INNER
BLOCK CODE

In principle, any short block code could be used as the inner code. Choosing the
dimension of the inner code to be equal to the symbol size of the outer code ensures
that the superchannel errors are in phase with the symbol boundaries of the outer
code for maximum efficiency. It does however restrict the values of fc we would wish
to use because of the rising complexity of Reed Solomon decoding for large symbols.
On the other hand, short codes often give the realistic possibility of soft-decision
decoding to provide a worthwhile extra gain.

There are certain specific families of block codes that have commonly been
proposed and evaluated for use as inner codes. These are principally the maximal
length (simplex) codes, orthogonal codes and biorthogonal (Reed Muller) codes
which can be soft-decision decoded by correlative methods, giving optimum or
near-optimum performance. The drawback to all these codes, however, is that they
are very low rate, so some higher rate possibilities should be considered too.

9.3.1 Maximal length codes

Maximal length codes are codes which have length n = 2k - 1 for dimension k. They
are the dual codes of Hamming codes, which means that the generator matrix of a
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Hamming code can be used as the parity check matrix of a maximal length code, and
vice versa. They can be generated as cyclic codes by taking

where p(X) is a primitive polynomial of degree k.
The codewords consist of the all-zero sequence and the n cyclically shifted pos-

itions of the generator sequence. Thus there are n + 1 codewords, giving the relation
between n and k shown above.

The minimum distance of a maximal length code is 2k — 1 and all the nonzero
codewords are at this distance from the all-zero codeword. Linearity, however,
means that the distance structure of the code looks the same from any codeword,
so we reach the conclusion that every codeword is at the same distance from every
other.

For a fixed outer code with symbol size k, the appropriate maximal length code as
an inner code will allow operation at the lowest possible value

9.3.2 Orthogonal codes

Orthogonal signals form a commonly used technique which may be regarded either
as a modulation or as a low rate code. Viewed as a code, it is closely related to the
maximal length code. An orthogonal signal set may be used as the inner code of a
concatenated scheme.

Two signals Sn(t) and Sm(t) are orthogonal over some period T if

T
f o o j . C O m ^ n

o

e e , .SnSm at
I K m = n

where AT is some positive constant. Orthogonal signal sets are commonly provided, at
the expense of bandwidth, by the use of M-ary frequency-shift keying (MFSK).
Another way is to use an orthogonal code.

An orthogonal code results from adding an overall parity check to a maximal length
code to produce a (2k, k) code. The code is less efficient than the maximal length code
because the additional parity check is always zero and contributes nothing to the
minimum distance of the code.

The code provides an orthogonal set of 2k signals, one for each of the possible
input values. A correlator looking for one codeword will, in the absence of noise, give
a zero output if a different codeword is received. Provided there are not too many
codewords, soft-decision decoding can therefore be achieved by a bank of correla-
tors, each looking for one codeword, with the decoded value decided on the basis
of the highest output. Note also that orthogonal symbols fit the GMD metric
discussed in Chapter 7 (Section 7.10) and that the strength of the correlation could
be used to determine inner decoder reliability. We might therefore expect useful
performance gains from GMD decoding of the outer RS code used with an inner
orthogonal code.
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9.3.3 Reed Muller codes

Adding in the all-ones codeword to the generator matrix of an orthogonal code
doubles the number of possible codewords and produces a biorthogonal code. The
number of information bits has increased by one compared with the same length
orthogonal code, but minimum distance is unchanged. Hence n = 2A~1 and
dmin = 2k~2. Biorthogonal codes are also known as first-order Reed Muller codes.

The generator matrix of the first-order Reed Muller code has k rows and 2k-1

columns. Bearing in mind its derivation from maximal length codes, we can derive
it in three stages. Firstly produce a (k - 1) x (n - 1) matrix whose columns consist of
all the combinations of k - 1 bits except all-zeros. This is using the parity check
matrix of a Hamming code as the generator of a maximal length code. Now add an
all-zero column to represent the overall parity check of the orthogonal codes,
producing a (k — l)x n matrix. Finally add another row which is all ones leaving a
k x n matrix.

Rows of the generator matrices of higher-order Reed Muller codes can be pro-
duced by taking products of all pairs of the first k - 1 rows for second order, then all
triplets for third order, etc. Higher rate codes are thus produced but the minimum
distance is reduced by a factor of two for every increment in order.

All Reed Muller codes can be decoded by majority logic, although several steps are
needed for the higher-order codes. Our interest here, however, is in the biorthogonal
codes because, being so closely related to maximal length codes, they give very similar
performance, and there are some implementation advantages. For small k, soft-
decision decoding can be carried out using correlative techniques in which there are
a number of matched filters looking for single codewords. Because half the code-
words of the Reed Muller codes are the complements of the other half, we can use
half the number of matched filters and take the sign of the correlation to decide
which of the two codewords has been received.

9.3.4 High rate codes with soft-decision decoding

The codes of the above three sections have all been low rate codes, and their use in
concatenated coding schemes reduces the rate still further. Other block codes are
therefore often used to produce overall code rates of around 0.5 or greater. Soft-
decision decoding is preferred for best overall gain, provided it is practicable.

There are several methods for soft-decision decoding of block codes that become
practicable when the codes are short and which give a performance close to
true maximum likelihood decoding. The Chase algorithm is probably the most
widely used of these and is certainly applicable to concatenated schemes. We shall
therefore study the method first before considering the codes to which it might be
applied.

The intention of the Chase algorithm is to generate a list of codewords that will
almost always contain the maximum likelihood codeword. The basic procedure
consists of three steps. Firstly hard decisions are made on the bits of the received
sequence. Secondly, a number of error sequences are generated and added to the
hard-decision received sequence. Finally each of the sequences produced in step 2 is
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decoded and compared with the (soft-decision) received sequence, and the one which
is closest is selected.

The important part of the algorithm is the method of generating the test patterns.
If the hard-decision decoded result is not the best answer then one of its nearest
neighbours usually will be, and the aim is that the error sequences should, after
decoding, produce a good set of these near neighbours. Chase proposed three
different methods which generate different numbers of error sequences, the largest
number giving the best performance. However the 'second best' of his methods gives
virtually identical performance to the best with greatly reduced complexity and is
therefore the most widely encountered. The / least reliable bits are identified, where i
is the largest integer which does not exceed dmin /2. The error patterns consist of all
the 2i possible values in these positions and zero in the rest.

Typical short block codes used in concatenated schemes have dmin equal to 4. The
Chase algorithm therefore requires only four decoding operations to achieve a
performance that is, in typical operating conditions, within a few tenths of a dB of
that obtained by maximum likelihood decoding.

Another alternative that is sometimes encountered is the use of a simple parity
check code (dmin = 2). To achieve maximum likelihood decoding, accept the hard-
decision received sequence if the parity is satisfied, otherwise complement the least
reliable bit.

9.4 SERIAL CONCATENATION USING INNER
CONVOLUTIONAL CODE

When the inner code is a convolutional code, the choice of symbol size for the outer
code is less straightforward than with an inner block code. We choose some multiple
of k0, usually at least (m + l)k0, because a decoding error will normally affect at least
k0 bits and the number of symbol errors will be reduced by having a large symbol.
Standard schemes have used the rate 1/2 K = 7 convolutional code and, because
implementation of GF(128) RS codes is inconvenient, a code over GF(256) has been
chosen. Unfortunately the errors may not correspond exactly with the symbol
boundaries and we need to cater for one more symbol error than would be the case
for phased errors. For example, phased burst errors of up to 32 bits long would affect
only four RS symbols; however, non-phased bursts of length 26 to 33 could affect
five symbols.

Whatever the choice of symbol size, it will usually be necessary to interleave several
outer codewords together, symbol-by-symbol, in order to spread the inner decoding
errors over several codewords. Decoding errors from a convolutional code typically
last for a few constraint lengths and will therefore affect several symbols of the outer
code. Interleaving will result in fewer occasions when the outer code is defeated
because of the greater length over which inner decoding errors are averaged. Obvi-
ously the need is greater the smaller the symbol size of the outer code, but in any case
spreading the errors widely will reduce the severity of fluctuations in symbol error
rates and reduce the incidence of outer decoding errors. In the above example, we
would certainly want to interleave to degree at least 5.
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9.5 PRODUCT CODES

If we were to take a (n1, k1) inner block code, symbol interleave it to some degree
&2 and then apply a (n2, k2) outer block code with the same symbol size, we would
produce an arrangement known as a product code, illustrated in Figure 9.2.
Assuming linear codes are used, the segment of the array bearing the label 'checks
on checks' will be the same regardless of whether the row code or column code is
applied first.

Product codes are a way of producing complex codes from simple components.
For example if both the row and column codes are simple parity checks (single-error
detecting), the overall code can correct single errors. Any single error will fail one row
and one column parity check, and these failures can then be used to locate the error.
In general, if the minimum distance of the row code is d1, correcting t\ errors, and of
the column code is d2, correcting t2 errors then for the product code the minimum
distance is d1-d2, correcting 2-t1-t2 + t1 + t2 errors. Achieving this performance,
however, is not necessarily straightforward as the strategy for row and column
decoding may not be easy to define.

Take, for example, the product of two single-error correcting codes, which should
correct four random errors. If those errors are arranged so that there are two errors
in each of two rows and two columns then a simple strategy of alternately correcting
rows and columns will only make things worse. The row correction will add an
extra error into each of the affected rows and the column correction will then do the
same into each of the affected columns. The product code will thus be wrongly
decoded.

There is, in fact, an approach to decoding which will always find a codeword if one
exists within (d1 d2 — l)/2 of the received sequence. Assuming that the order of
transmission is along the rows, the decoding method relies on having an error-
correcting decoder for the rows and an error and erasure correcting decoder for the
columns:
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1 Decode the rows. For any row which cannot be decoded, erase it. For any row / in
which corrections are made, record a;,, the number of corrections.

2 If an odd number of row erasures has taken place, erase one more row choosing
the one for which a;/ is largest.

3 Calculate the error correction capability of the product code as [d 1 (d 2 - e) - l]/2
where e is the number of rows erased.

4 Decode one column.

5 If decoding succeeds count d1 - ujf for every position in which the value is
corrected and u>/ for every (unerased) position in which no correction occurs. If
this count is less than or equal to the error correction capability of the code, then
the column is correctly decoded. Otherwise, or if the original decoding failed,
erase two more rows (with largest a;/), recalculate the error correction capability,
and repeat.

6 After each successful column decoding, move on to the next column. Rows
previously erased remain erased.

There will often be a tie for which columns should be selected for erasure. Such ties
may be broken arbitrarily.

Consider what happens when we have a product of single-error correcting codes
and a 4-bit error pattern affecting two rows and two columns as above. Let the row
and column codes be the (7, 4) cyclic Hamming code described in Chapter 4 and let
rows 5 and 2 contain errors in bits 5 and 3, as shown in Figure 9.3. The row decoder
now introduces errors into bit 2 of each of those rows and records that the rows have
had single-error correction (Figure 9.4).

The column decoder first decodes column 6 with no error correction being needed. It
counts the two row corrections that have taken place, compares with the error correc-
tion capability of the code (4), and accepts the column decoding. When column 5 is
decoded, however, it introduces another error into bit 3 of the column.Since row 3 has
had no errors corrected, accepting the column decoding implies that there were

Figure 9.3 Quadruple error correcting product code with four errors
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Figure 9.4 Product code after row decoding

Figure 9.5 Product code after decoding of two columns

Figure 9.6 Product code after row erasure

three errors in that row in addition to the errors corrected in rows 5 and 2, making a
total of 5 which exceeds the error correcting capability of the code (Figure 9.5). The
column decoding is thus not accepted, rows 5 and 2 are erased (Figure 9.6), the error
correction power of the code is now recalculated as [3(3 — 2) — l]/2 = 1, and the
column decoder will now successfully fill the erasures.

Because of the interleaving, a product code will correct burst as well as random
errors. Bursts of up to «2-/i in length may be corrected if the order of transmission is
along the rows. Moreover the code can correct bursts of this length or random errors
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at the same time. That does not mean that one array can contain a full complement of
both burst and random errors, but that there can never be confusion between a burst
error and a different random error pattern if both fall within the error correcting
power of the code. The two patterns must have different syndromes and so can in
principle be corrected by a single decoder. If the above decoding method were used
with transmission down the columns then it is apparent that the effect of interleaving
will be to ensure that burst errors are corrected as well as random errors. In fact this
will also be the case if transmission is along the rows; miscorrected rows containing
the burst will eventually be erased as the column decodings fail.

If n1 and n2 are relatively prime and the row and column codes are both cyclic, then
the whole product code can be turned into a cyclic code provided an appropriate
transmission order is chosen. The appropriate order is such that bit j in the transmit-
ted stream is found in column j mod n1 and in row j mod n2, as shown in Figure 9.7.
The generator polynomial of the cyclic product code is the highest common factor
of Xn1n2 + 1 and g1(Xbn2)g2(Xan

1) where g 1 ( X ) and g2(X) are the generators of the
row and column codes, respectively, and the integers a and b are chosen such that
an\ + bni — 1 mod«i«2-

The random and burst error correcting properties of the code are not diminished
by ordering the transmission in this way, so an appropriate decoder for the cyclic
product code should provide maximum decoding capability. However the purpose of
product codes is to decode in relatively simple stages whilst still approaching opti-
mum performance. The above properties are therefore of more theoretical than
practical significance.

Figure 9.7 Cyclic ordering for product code

9.6 GENERALIZED ARRAY CODES

Product codes are only one way of producing a two-dimensional array coding
scheme. Suitable modifications usually result in a code that is better in terms of the
minimum distance achieved for a given code rate. Generalized array codes (GACs)
allow us to create a variety of code parameters from simple components. The
procedure for design is to create a product code, increase dimension by superim-
posing other codes on the parity checks in a way that does not affect the code
properties, then finally remove symbols (if necessary) to reach the desired code
length. It is found that many standard block codes can be created in this way.
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Moreover, GACs possess interesting trellis structures that may allow low complexity
soft-decision decoding.

Consider the example of creating a (7, 4) code with dmin = 3. We proceed as
follows. We create a 2 x 4 array as shown in Figure 9.8, where three information
bits /2, i\ and i0 are given an overall parity check as a row code and the column code is
a repetition code.

This is a (8, 3, 4) code. We now demonstrate that rate of the code can be increased. If
we add another information bit into every location in the bottom row, either the extra
bit is zero leaving the minimum weight unchanged, or else the bottom row is the one's
complement of the top row resulting in codewords of weight 4. Therefore the code as
shown in Figure 9.9 has minimum distance 4.

Finally, we remove the last parity check from the code to create the (7, 4, 3) code in
Figure 9.10.

A trellis representation of the single-parity check code used as the basis of the
construction is shown in Figure 9.11. The state denotes the running value of the parity
bit as the information bits are generated. The labels on the trellis transitions indicate
the code bits, the first three being the data and the last one being the generated
parity check.
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Figure 9.8 Initial product code
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Figure 9.10 GAC representation of (7, 4, 3) code
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Figure 9.11 Trellis of single-parity check code
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Taking into account the fact that the code is repeated on the bottom row gives a
trellis as in Figure 9.12.

The (4, 1) repetition code used to augment the bottom row has a trellis shown in
Figure 9.13.

The overall code trellis for the (8, 4, 4) code is shown in Figure 9.14. This is known
as the Shannon product of the two trellises above and is constructed as follows.

First, obtain the state profile of the trellises, i.e. the number of states at each stage.
From Figures 9.11 and 9.12 we have [2, 2, 2, 1] as the state profile for each trellis.

Second, obtain the branch profile, i.e. the number of branches at each stage. From
Figures 9.11 and 9.12 we have [2, 4, 4, 2] and [2, 2, 2, 2], respectively.

Third, obtain the input label profile, i.e. the number of input symbols on the
branches at each stage. From Figures 9.12 and 9.13 we have [1, 1, 1,0] and [1, 0, 0, 0],
respectively.

o/oo o/oo o/oo /oostate

0

0/00 0/00

Figure 9.12 Trellis of repeated single-parity check code
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Figure 9.13 Trellis of repetition code
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Figure 9.14 Trellis of (8, 4, 4) code
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The Shannon product has at each stage a number of nodes which is the product of
the number of nodes for each of the component trellises. The state number is the
concatenation of the two states. If component trellis T\ has a branch at depth / from
state S1, i to state S1,i+1 and component trellis 7*2 has a branch at depth i from state
S2.i to state S2.i+1, the product trellis will have a branch from state S1, iS2.i to
state S1,i+1 S2, i+1. The input label profile will be the sum of the corresponding figures
for the two trellises.

We see that the state profile of the product is [4, 4, 4, 1], the branch profile is
[4, 8, 8, 4] and the input label profile is [2, 1, 1, 0]. The lower trellis in the central
section is just a duplication of the upper one with the second bit of each output pair
(corresponding to the output bit from the repetition code) the inverted value of the
first. To obtain the trellis for the (7, 4, 3) code, simply delete the second output label
on the last frame, as shown in Figure 9.15.

state
00/00 0/00 0/00 /O

00

11
0/01 0/01

Figure 9.15 Trellis of (7, 4, 3) code

9.7 APPLICATIONS OF MULTISTAGE CODING

The first mass market application of error control coding was for the digital compact
disc (CD). The information is recorded onto the disc using a run length limited (RLL)
eight to fourteen (EFM) modulation code. Eight bits of information are mapped into a
14-bit sequence in a way that ensures the number of consecutive recorded bits having
the same value is at least 3 and at most 10. The lower limit increases the recording
density that can be used on the disc, whilst the upper limit reduces the possibility of
synchronization problems. Three extra bits are added at the end of each 14-bit sequence
to preserve the run length properties at the point where each sequence joins the next
one and to improve the low-frequency suppression (for the benefit of the servo sys-
tems). Codes of this type [1] are regularly used to increase capacity of mass storage
systems and are of considerable interest from the information theory point of
view. However the main interest here is in the error control system which uses a
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Figure 9.16 CD encoding

concatenation of two Reed Solomon codes in a scheme known as a cross-interleaved
RS code (CIRC) [2].

The error control encoding scheme applied before the data is recorded to the disc is
illustrated in Figure 9.16. The samples are 16-bit quantities and are separated into
upper and lower bytes. The RS codes are over GF(28), shortened to the lengths
shown.

The D-interleave is a single delay to alternate bytes to ensure that errors affecting
adjacent bytes on the channel end up in different codewords. The D* interleave is a
convolutional interleave to spread the errors from the (32, 28) decoder. The delays
increase in steps of 4 to take account of the groupings of four bytes corresponding to
left and right channels, high and low bytes of the sample. Each of these byte streams
from the decoder ends up in a different codeword when the (28, 24) code is decoded.
The A interleave is a novel feature intended for error concealment. It consists of a
fixed reordering plus delays of 2 applied to half the bytes, again in groups of four. If
there are detected uncorrectable errors from the (28, 24) decoder, the samples before
and after those affected will fall in different codewords and are therefore likely to be
correctly decoded. The erroneous sample values can thus be interpolated from the
adjacent samples to reduce the likelihood of audible disturbance.

A major use of the CD format is for CD-ROM [3]. In data applications there is no
inherent redundancy and the error concealment capability cannot be used. The
protection afforded by the CIRC is not considered to be sufficient, and an additional
product code is used prior to the CIRC. The convolutional interleaving is also a
problem for CD-ROM as it effectively converts the code into a convolutional code,
suitable for data in a continuous stream. There therefore needs to be a clearing
process at the end of any data section.

The data on CD-ROM has a block structure in which 12 bytes of synchronization,
a 4-byte header and 2048 bytes of user data forms the input to a product code using
two parallel arrays, each of 43 columns and 24 rows. Each location holds a single
byte, with one array holding all the MSBs and the other all the LSBs. The data is
written into the array in row order and a (26, 24) RS code, known as the P code,
is applied to the columns. The second code (the Q code) is a (45, 43) code applied to
the diagonals of the array. If the diagonal reaches the bottom of the array (including
the column parity checks), it continues from the top of the next column. A 4-byte
parity check, 8 zero bytes, the 172 parity bytes from the P code (2 arrays x 43
columns x 2 parity checks) and 104 parity bytes from the Q code (2 arrays x 26
diagonals x 2 parity checks) form 288 bytes of auxiliary data to complete the block.

The digital versatile disc (DVD) [4] employs a more conventional Reed Solomon
product code. The data is placed into an array of 172 bytes per row and 192 bytes per
column. The row code is (182, 172) and the column code is (208, 192).

Concatenation of a Reed Solomon code with an inner convolutional code is a
common configuration. The decoder for the rate 1 /2 K — 1 code, for example, will
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produce occasional errors that could easily affect 4 or 5 consecutive bytes and so
some interleaving is used to spread these errors across several RS codewords. The
interleaving, applied between the outer and inner codes, would be of symbols of the
RS code; it would be disadvantageous to break up the bits of the individual symbols
as this would increase the number of erroneous symbols.

Satellite communications applications have often used concatenations of Reed
Solomon and convolutional codes. DVB(S) (Digital Video Broadcast by Satellite)
is based around the MPEG-2 standard [5]. It uses a (204, 188) Reed Solomon code
and a rate 1/2 K = 1 convolutional code that can be punctured to rate 2/3, 3/4, 5/6
or 7/8. The rate used depends on the application and the bandwidth available. The
interleaving between the outer and inner codes is convolutional of degree 12.

For deep space communications, NASA has a standard concatenation scheme
employing a (255, 223) RS outer code, a rate 1 /2 inner convolutional code and block
interleaving of degree of 4 between the inner and outer codes. This code can achieve a
BER of 10~6 at Eb/No just over 2.5 dB [6]. It was first used for the Voyager mission to
send pictures from Uranus in January 1986. The European Space agency adopts a
CCSDS standard that uses this code, but with interleaving degree up to 5.

9.8 CONCLUSION

The performance of conventional multistage coding, in particular serially concaten-
ated codes, represented the closest approach to the Shannon limit until the advent of
iterative decoding (Chapter 10) opened up other possibilities. Serial concatenation is
a good way to create long codes with a feasible decoding algorithm because of the
relatively simple components. Array codes also build long codes from simple com-
ponents. There have therefore been many applications using these approaches.
Generalized array codes and trellis approaches to block codes have been comprehen-
sively described in [7].

9.9 EXERCISES

1 Messages of length 1100 bits are to be sent over a bursty channel. The bursts last
for up to 10 bits. Suggest a concatenated scheme using a triple-error correcting
outer code and a (15, 11) BCH inner code.

2 The scheme devised in question 1 is to be used on a Gaussian channel with bit
error rate of 10~2. Estimate the output bit error rate and the coding gain at this
BER, assuming BPSK modulation.

3 Find the codewords of the cyclic code whose generator polynomial is
g(X) = X4 + X3 + X2 + 1. By inspection, verify that the code has the properties
described for a maximal length code, i.e. all nonzero codewords being cyclic shifts
of a single sequence.



MULTISTAGE CODING 209

The demodulator gives soft decisions with 3-bit quantization. The sequence 017
7 5 5 2 is received, where value 0 represents high confidence in received zero and
value 7 represents high confidence in received 1. Values 0-3 represent hard-
decision zero and values 4 -1 represent hard-decision one. Find the closest code-
word to the received sequence. Verify that the Chase algorithm, as described in
Section 9.3.4, would generate the maximum likelihood codeword.

If the probability of decoding error from this code is 1 %, suggest an outer code
which will give a block decoding error rate below 10~4. Find the overall code rate.
Would interleaving the outer code produce a lower overall decoding error rate?

4 A rate 1/2 K = 7, convolutional code produces decoding errors which last for up
to 30 frames. Suggest an outer code with minimum distance 11 and an appropri-
ate interleaving degree.

5 A product code uses a (7, 4) Hamming code for the rows and a (15, 11) code for
the columns. Find the minimum distance of the code and one codeword which
has a weight equal to this minimum distance. Compare the burst-error correction
capabilities if the code is transmitted across the rows or down the columns.

6 In the example of product code decoding, illustrated in Figures 9.3-9.6, it is found
during the final column decodings that the product code is still capable of
correcting one more error. Does this mean that a 5-error pattern could have
been reliably decoded? What other significance could attach to the remaining
error correction capability?

7 Construct a (24, 12) extended Golay code as a generalized array code.
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10
Iterative decoding

10.1 INTRODUCTION

In Chapter 9 we saw that product codes can be decoded by successive decoding of
rows and columns, even though special measures may be needed to avoid getting
stuck in suboptimum solutions. There are now many code constructions being
proposed for telecommunication systems in which iterative soft-decision processing
is used to obtain high coding gains. However, to carry out iterative soft-decision
decoding, we need to have a decoding algorithm that can give soft outputs, because
the output of one decoder becomes the input to another (soft-decision) decoder. This
chapter will look at the algorithms available and the code configurations used for
iterative soft-decision decoding.

10.2 THE BCJR ALGORITHM

The BCJR algorithm is a soft-in-soft-out algorithm named after its inventors, Bahl,
Cocke, Jelinek and Raviv [1] who, in the same paper, were also the first to point out
that a linear block code could be given a trellis representation. The principle of BCJR
decoding is that the metric associated with a particular branch in the trellis is given by
the product of probabilities associated with getting to the appropriate start node,
following the branch and getting from the end node to the end of the trellis. We will
use logarithmic metrics in the implementation, so that we will be adding the metrics
rather than taking a product. To compute the SD output for each bit, we will
compute the logarithmic metric for branches corresponding to a data 1 and subtract
that for transitions corresponding to a data 0.

The metric used for BCJR decoding is defined as

where r is the received value of the bit. This metric will be in the range -co to -t-oo,
positive for bit values tending to 1 and negative for bit values tending to 0. The term
ln[p(l)/XO)l represents a priori information that we may have about bit values. If there
is none then this term becomes zero and the metric is effectively the log-likelihood ratio,
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as was used for Viterbi decoding. When decoding on a trellis, the branch metrics are
computed from +bit metric for a transmitted 1 and —bit metric for a transmitted 0.

The first stage of decoding is similar to Viterbi decoding except that where two
paths merge, instead of eliminating the less likely path, we compute a joint metric for
arriving at that state by either route. The method of computing this joint probability
will be given later. There is no need for path storage as no unique path is determined.

The second stage is like the first, except that the process is computed backwards
from the end of the trellis.

To find data bit value for a given stage in the trellis:

(a) For each branch corresponding to a data 1, add the forward path metric to the
start of the branch, the branch metric and the reverse path metric to the end of
the branch.

(b) Compute a joint metric for the branches corresponding to a 1.

(c) Subtract the joint metric for the branches corresponding to a 0.

10.3 BCJR PRODUCT CODE EXAMPLE

Suppose we have a 3 x 3 product code in which each row and each column is a (2, 1)
single parity check code. Suppose also that we receive the following values as in
Figure 10.1.

We carry out a decoding of the rows using the BCJR algorithm, followed by a
decoding of the columns. In the parlance of iterative decoding, row decoding
followed by column decoding is called one iteration and a single set of decoding
operations (row or column) is called a half iteration.

From the discussion in the previous chapter, Section 9.6, the single parity check
code has the trellis as shown in Figure 10.2.

Figure 10.1 Received values in product code

0/0 0/0 /O

1/1

Figure 10.2 Trellis for (3, 2) code
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To carry out the BCJR calculation for the top row of the code, first derive the
branch metrics. These are shown in Figure 10.3.

To compute the path metrics, at stage 1 they are just the branch metrics but at
stage 2 it is necessary to combine the metrics from two merging paths. If the two
merging paths have metrics a and b, because these are logarithmic measures the way
to combine them is to compute

In our case, because of the symmetry of the trellis, we will always be combin-
ing metrics -fa and —a, in which case we compute In [ exp (a) + exp ( — a)]
— a -f ln[l -f exp( - 2a)]. The path metrics to stage 2 are the combination of +1.5
and -1.5 ( = 1.55) and of +0.1 and -0.1 ( = 0.70).

At stage 3 we would need to combine two nonsymmetric metrics; however, the
result is not used in the final computation and so will not be calculated. The forward
path metrics are therefore as shown in Figure 10.4.

The reverse path metrics are calculated in the same way, with the result shown in
Figure 10.5.

As the final stage, we combine for all branches corresponding to a data bit 1, the
sum of the forward path metric to the start of the branch, the branch metric and the

-0.8 -0.7 -0.1

-0.7

Figure 10.3 Example branch metrics

0 -0.8 1.55

0.8 0.70

Figure 10.4 Forward path metrics

0.98 -0.1

0.86 0.1

Figure 10.5 Reverse path metrics



214 ERROR CONTROL CODING

reverse path metric to the end of the branch. We do the same for branches corres-
ponding to data zero and subtract.

At stage 1 there is a single branch corresponding to data 1, the metric for which is
0.8 + 0.86 = 1.66. The single branch corresponding to data 0 is -0.8 + 0.98 = 0.18.
The metric for this bit is therefore 1.48.

At stage 2 there are two branches corresponding to data 1, with metrics
-0.8 + 0.7 + 0.1 ( = 0.0) and 0.8 + 0.7-0.1 (= 1.4). The combination metric is
1.62. The two branches corresponding to data 0 have metrics -0.8-0.7-0.1
( = -1.6) and 0.8 - 0.7 + 0.1 ( = 0.2), for which the combination is 0.35. The final
metric for this bit is therefore 1.27.

In the final frame there is no data, so we leave the received parity value unchanged
at 0.1.

Carrying out the same process for the second row results in decoded values 1.27,
-0.65 and 0.8. Carrying out the same process for the third row results in decoded
values -2.83, 2.83 and 0.8.

We now have the array shown in Figure 10.6.
We now carry out the same decoding process for the columns and finish with the

result shown in Figure 10.7. If we conclude the decoding at this point, the decoded
information is 1 for a positive result and 0 for a negative result. We can see that the
hard-decision-decoded values do satisfy the parity checks and so we expect no
changes with further decoding.

1.48

1.27

-2.83

1.27

-0.65

2.83

0.1

0.8

0.8

Figure 10.6 Product code after row decoding

5.46

5.44

-2.83

3.83

-3.80

2.83

-0.75

1.47

0.8

Figure 10.7 Product code after row and column decoding

10.4 USE OF EXTRINSIC INFORMATION

When we carried out the column decoding, clearly we had some a priori information
about the bit values as well as the received values. Given that the BCJR metric is the
sum of received and a priori metrics, the a priori information going into the column
decoder is the difference between the output and the input of the row decoder. A single
component decoder therefore effectively behaves as shown in Figure 10.8. The infor-
mation passed to the next component decoder is called the extrinsic information and is
used as a priori information by the next decoder in conjunction with the received values.
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Although this view of decoding did not affect the way the column decoding was
implemented, in any situation where there is nonzero a priori information it clearly
does affect the implementation. As the a priori information has already been used to
derive the decoder output, failure to remove it before the next stage of decoding
would effectively mean that it was doubly counted. Therefore, if we were to carry out
further iterations of the above product code example, we would first need to derive
the extrinsic information from the column decoder by subtracting the values in
Figure 10.6 from those in Figure 10.7. The result is shown in Figure 10.9. Finally
we would add the received values to create the sequence for the next iteration of the
decoding, as shown in Figure 10.10.

Extrinsic information

a priori information

received values

Figure 10.8 Component decoder schematic

3.98
4.17

0

2.56

-3.15

0

-0.85
0.67

0

Figure 10.9 Extrinsic information from column decoder

4.78
4.87

-0.9

3.26

-3.05
0.9

-0.75
1.47

0.8

Figure 10.10 Input to second iteration

10.5 RECURSIVE SYSTEMATIC CONVOLUTIONAL
CODES

For many applications, the component code to be used with iterative decoding is a
recursive systematic convolutional code (RSC code). These are used in a modified
product code (different interleaving, no checks on checks), known as a parallel
concatenation, to produce what is commonly called a turbo code. Codes of this type
were first proposed by Berrou et al. [2, 3] and have led to a radical reappraisal of
available performance from codes and an interest in iterative decoding applied to
many types of combined processes in communications.

Strictly speaking, the word turbo applies to the iterative decoding process and so
the term turbo code is something of a misnomer. More properly they should be
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referred to as turbo-decoded parallel concatenated RSC codes or iteratively decoded
parallel concatenated RSC codes.

An example RSC encoder is illustrated in Figure 10.11.
The generator of the code is designated (1, 5/7). The 1 indicates that the data

bit passes through into the code, the 5 indicates that the feedforward polynomial is
D2 + 1 (101 being the binary representation of 5) and the 7 indicates that the feedback
polynomial is D2 4- D + 1 (111 being the binary representation of 7). Note however
that some authors may show the polynomial coefficients in reverse order which will
affect the representation of nonsymmetric polynomials.

If we create the state diagram of this code, the result is in Figure 10.12.
Comparison with the state diagram of the example code in Chapter 2 (Figure 2.2),

which had generators (7, 5), shows that the actual code sequences of our RSC code
are identical but that the mapping from information to code is different. The (7, 5)
code without recursion has therefore become a (1, 5/7) code with recursion. This
means of conversion from standard convolutional code with generators (g1, g2) to
RSC code with generators (1, g 1 /g 2 ) is general.

To create a scheme for iterative decoding, the configuration is as in Figure 10.13.
The information is generated for transmission and is also fed into an RSC encoder to
generate a stream of parity check bits. At the same time the information is interleaved
(denoted by II) and fed into a second RSC encoder to generate a second stream of
parity bits. The two encoders may be (indeed usually are) the same, but if the
interleaving is good the two parity streams will be sufficiently independent to provide
good performance with iterative decoding.

The code as illustrated is of overall rate 1/3, having one parity bit from each
stream for each bit of information. It is possible, however, to puncture the parity

Figure 10.11 RSC encoder

1/10 0/00

Figure 10.12 State diagram of (1, 5/7) RSC code
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streams to increase the effective rate. For example, alternate bits could be taken from
each of the two streams to produce a rate 1/2 code.

The decoder configuration is shown in Figure 10.14. Initially the a priori infor-
mation is zero. From the first decoder the extrinsic information is derived and the
received information added back in, then interleaving creates the correct ordering of
information symbols for decoder 2. At the output of the second decoder, the extrinsic
information is derived and deinterleaved before forming the a priori information for
the first decoder on the next iteration.

parity stream 1

parity stream 2 •+— RSC encoder

information

Figure 10.13 RSC encoding for iterative decoding

I parity stream 2 parity stream 1 I

n

a priori
information

information

Figure 10.14 Iterative decoding for RSC codes

10.6 MAP DECODING OF RSC CODES

The BCJR algorithm is also known as maximum a posteriori (MAP) decoding, and is
applied to the component RSC codes. We shall consider an example applied to the
trellis for the (1, 5/7) code seen earlier. A transmission lasting 6 frames is considered
and the encoder is assumed to be returned to state zero and the end of the example.
The trellis is shown in Figure 10.15. The diagram takes the transmitted values as +1
(corresponding to bit value 1) or —1 (corresponding to bit value 0). The correspond-
ing information values have not been shown.

Figure 10.16 shows the branch metrics for a received sequence 1.2, 0.8, 0.3, -0.9,
-0.5, -0.8, -1.4, 1.1, -0.5, 1.3, 0.7, -0.2. Each bit metric is the product of the bit
value on the trellis and the received value. Received values are assumed to be log
likelihood ratios.
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Figure 10.17 shows the forward path metrics for the example. In the early stages
this is done by summing the branch metric and the path metric as usual. However,
when two paths merge we need to compute the joint path metric. As before, if the two
merging paths have metrics a and b, we compute ln[exp(a) + exp(ft)]. For example,

Figure 10.15 Trellis of RSC code

01

(-2) _ (0.6)

10

received 1.2,0.8

(1.3) (0.3) ^ (-0.8) _ (-0.5)

0.3.-0.9
(0.3)

-0.5-0.8
(-2.5)

-1.4,1.1 -0.5,1.3

(0.5)

0.7.-0.2

Figure 10.16 Example branch metrics

-1.4,1.1 -0.5.1.3 0.7.-0.2

10

received 1.2,0.8

Figure 10.17 Example forward path metrics



ITERATIVE DECODING 219

at stage 3 the two paths into node 00 have metrics -0.1 and +1.9. The joint metric is
+2.03 (slightly more than the larger value). The forward path metric for the last node
has been shown but will not be needed.

Figure 10.18 shows the reverse path metrics. This repeats the previous process, but
working backwards through the trellis. The reverse path metric to the start of the
trellis is shown here but will not be needed.

Figure 10.19 shows the forward and reverse path metrics to every node and every
branch metric (reverse path metrics underlined). We can now calculate the decoder
output. Taking stage 2 as an example. There are two branches (00-01 and 01-10)
corresponding to input 1. These have total metrics of -2.0 - 0.6 + 2.61 = 0.01 and
2.0 + 1.2 + 6.1 = 9.3 respectively. The joint metric for these two branches is 9.3.
There are two branches (00-00 and 01-11) corresponding to input 0. These have
total metrics of -2.0 + 0.6 + 3.56 = 2.16 and 2.0 - 1.2 + 3.17 = 3.97 respectively.
The joint metric for these two branches is 4.12. The decoded output value is therefore
5.18. This corresponds to a data value 1.

(0.5)

received 1.2,0.8 0.3-0.9 -0.5-0.8 -1.4,1.1 -0.5,1.3 0.7,-0.2

Figure 10.18 Example reverse path metrics

-2
4.27

(0.6)

-1.4 2.03 2.45 4.65
3.56 -0.56 -1.3 -0.5

(1.3) ^ (0.3) ^ (-0.8) ^ (-0.5)

(0.5)

10

output 7.03

0.8
3.17

(0.3) 1.12 (-2.5) 7.0
2.85 2.3

5.18 -5.14 -6.64 -5.17 5.15

Figure 10.19 Decoder output calculation
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The decoded (hard-decision) sequence is 1 1 0 0 0 1 . From Figure 10.12 it can be
seen that this does indeed correspond to a path terminating at state zero.

The version of the MAP algorithm shown here is technically known as log-MAP
because it uses the addition of a logarithmic metric rather than multiplication of a
probability ratio. However this creates difficulties in the combination of metrics for
merging paths. Approximations can be used to simplify this. Note that if a is the
larger metric, the combined metric can be approximated by a + exp (b — a). Another
approximation is merely to take the larger value; this is known as max-log-MAP [4].

10.7 INTERLEAVING AND TRELLIS TERMINATION

The function of the interleaver is to decorrelate the inputs to the constituent en-
coders, so that the parity checks are independent. This improves the likelihood that
an error pattern will eventually be correctable by one or other of the decoders. The
interleaving usually employed is pseudorandom over a fixed-length block. In other
words, the bits are written into a fixed-length buffer and then read out in some
pseudorandom order that is known to both transmitter and receiver. Many other
types of interleavers have also been designed, the intention being to produce the best
performance within certain constraints of storage or of delay. Both block and
convolutional interleaver designs are possible.

If the code is to be punctured to half rate, then it is desirable for the interleaver to
have an odd-even property, i.e. that the odd- and even-position data bits are separ-
ately interleaved with the odd-position bits remaining in odd positions and the even-
position bits remaining in even positions. Denoting the parity bits taken from the
noninterleaved encoder as odd-position bits, these have been derived as odd-position
information bits entered the encoder. If we want the parity checks from even-position
information bits to be selected from the interleaved stream, then the odd-even
property will ensure that this happens.

It is possible to avoid any need for termination of the trellis by using a tail-biting
code. The encoding operation is started from the same trellis state in which it finishes at
the end of the data sequence (or interleaved data sequence). This converts the trellis into
a cylindrical structure (with the end wrapped round to the beginning) and the decoded
path must be a continuous path around the cylinder. This approach has advantages of
economy and avoidance of end effects, but difficulties in complexity of implementa-
tion. As a result, a trellis termination approach is more usually adopted, i.e. the trellis
is brought to state 0 at the end of the data sequence. Termination is not as easy as
for a nonrecursive code where all that is needed is a sufficient number of zeros at the
end of the data. In the case of the RSC code, the flushing data depends on the state.
For example, from Figure 10.12 we see that for the (1, 5/7) code the flushing sequence
from state 11 is 0 1.

A single RSC encoder can easily be cleared by applying, to the input, a bit identical
to the feedback bit for v cycles of the encoder (v is the memory constraint length). In
this way the bits fed into the encoder memory will be zero and the shift registers will
clear. However the two encoders will be in different states because of the pseudoran-
dom interleaving of the data and therefore the effective clearing sequence will be
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different for the two encoders. This will not matter as long as, at the end of the
encoded data, the flushing bits and generated parities for both encoders are trans-
mitted. For our example code, each encoder would need two flushing bits and would
generate two parities. Transmitting all of those would result in eight tail bits.

One interleaver design that allows simultaneous flushing of both encoders is the
simile interleaver. It is based on an observation that the content of each register in the
encoder is computed as the modulo-2 sum of specific series of bits, where each series
consists of the bits whose position mod-(v + 1) is the same. Thus for v = 2, bits 0, 3,
6, 9, etc. form a series as do bits 1, 4, 7, 10, etc. and bits 2, 5, 8, 11, etc. The order of
the bits within each series is not important. Therefore if we can ensure that these
series are separately interleaved, as shown in Figure 10.20, the end state of both
encoders will be the same.

Simile interleaving can easily be achieved by a helical interleaver. This is a block
interleaver with a diagonal readout order. If the data is written into columns, then the
number of rows must be a multiple of v + 1. The number of columns and the number
of rows must be relatively prime. For example, a 6 x 7 matrix could be used as shown
in Figure 10.21.

The readout order is i41 fa 121 '20 '13 k k '40 '33 '26 '19 '"12 '11 U '39 '"32 ''25 'is hi '10
'3 '38 '31 fa '23 '16 '9 '2 hi '30 '29 '22 '15 '8 'l '36 '35 '28 '21 '14 '7 '0-

Given that odd-even interleaving is just a form of simile interleaving, it is seen that
if the helical interleaver has an even number of rows, as shown in this example, it has
the odd-even property.

O»—I interleaver v [•«—O

Figure 10.20 Simile interleaving

Figure 10.21 Information in 6 x 7 block
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10.8 THE SOFT-OUTPUT VITERBI ALGORITHM

A lower complexity, but lower performance, alternative to MAP decoding is to use a
soft-output version of the Viterbi algorithm [5]. Given that the Viterbi algorithm
gives maximum likelihood decoding on a trellis, it may seem strange that the soft-
output version leads to a lower performance. The reason is that, apart from the
approximations used in deriving the soft decisions, the Viterbi algorithm minimizes
the sequence error probability, whereas MAP minimizes output bit error probability.
In other words, if we used both algorithms to decode the same sequences, VA would
go wrong less often, but MAP would produce fewer bit errors. As a result, a MAP
decoder passes fewer bit errors to the next decoder, producing more gain in each half
iteration.

The SOVA decoder can be considered to start from the result of conventional
hard-output Viterbi decoding and then to calculate the reliability metrics for each
decoded bit. However, to implement it in that way would require retention of
complete information about the paths considered during the decoding, losing some
of the value of the Viterbi algorithm. Therefore it may be better to calculate the
reliability metrics for each survivor path as the decoding proceeds, even though many
of the calculations will be wasted as paths are subsequently eliminated.

We start with all reliabilities set to a high value. For any survivor path, we consider
also the path that it superseded (called the concurrent path). We find the difference in
their path metric and trace back the concurrent and survivor paths to the point where
they diverged. Now we determine for which frames the two paths differ in the
associated information bit and use the metric difference as the reliability of those
bits unless we have already stored a lower reliability value for that bit.

Consider the example of Viterbi decoding shown in Figure 10.22. This is in fact the
same as the soft-decision example given in Chapter 2 (Section 2.10), except that the
mapping to information has been modified to be correct for the (1, 5/7) RSC code.
Initially the reliability values are set to oo for each bit.

18

-, (6) 5 (-?) 19 <- '>

Decoded 1 1

Figure 10.22 Viterbi decoding example
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We construct a table as before to hold data for the Viterbi decoder, but we need an
extra location for reliabilities. Because the end state cannot simply be read from the
data path history, it has been shown in the tables below although it does not need to
be stored in reality. After two frames, where the sequence +3.5 +1.5, +2.5 -3.5 is
received, the paths and metrics are as shown in Table 10.1. There have been no
merging paths; therefore, no reliability information can be calculated.

In the third frame we receive +2.5 —3.5. We now extend the paths as shown in
Table 10.2.

Now we need to do the path merging and calculate the reliabilities. For the two
paths merging at state 00 the difference in path metrics is 13. We choose the survivor
as for the normal Viterbi algorithm but use the value 13 as the reliability for every bit
where the two merged paths differ, provided that value is less than the currently
stored reliability value. In this case the data differences are in frames 1, 2 and 3,
giving reliability 13 for each of those bits.

Looking at the paths merging in state 01, the metric difference is 17 and the data
differences are again in frames 1, 2 and 3. For the paths merging in state 10, the
metric difference is 7 and the data differences are also in frames 1, 2 and 3. For the
paths merging in state 11, the metric difference is 17 and the data differences are
again in frames 1, 2 and 3. These leaves the SOVA table with the contents shown in
Table 10.3.

Table 10.1 SOVA table after two frames

End state Data Path metric Reliabilities

00
01
10
11
00
01
10
11

00
01
11
10
00
01
11
10

—4
-6
11
_ 1
_4

-6
11
_ j

oo oo
OO CO

oo oo
oo oo
oo oo
oo oo
oo oo
oc oo

Table 10.2 SOVA table after third frame extensions

End state Data Path metric Reliabilities

00
01
10
11
00
01
10
11

111
110
100
101
000
001
011
010

10
12
-7
5

-3
—5
0

-12

oo oo oo
oo oo oo
oo oo oo
oo oo oo
oo oo oc
oo oo oo
oo oo oo
oo oo oo
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In the fourth frame, we receive -3.5 +3.5. We now extend the paths as shown in
Table 10.4.

The metric differences to states 00 and 01 are 10 and 10, respectively, and they
apply in each case to frames 1 and 4, except where the currently stored value is lower.
The metric differences to states 10 and 11 are 7 and 21, respectively, and they apply in
each case to frames 2, 3 and 4, except where the currently stored values are lower.
Therefore after merging, the decoder table is as shown in Table 10.5.

Finally, we receive in the fifth frame, the values +2.5 +3.5 and create the path
extensions shown in Table 10.6.

Table 10.3 SOVA table after frame 3 merging

End state Data Path metric Reliabilities

00
01
10
11
00
01
10
11

111
110
on
101
111
110
on
101

10
12
0
5

10
12
0
5

13 13 13
171717

111

171717

13 13 13
17 1717

111

17 17 17

Table 10.4 SOVA table after frame 4 extensions

End state Data Path metric Reliabilities

00
01
10
11
00
01
10
11

0111
0110
1010
1011
1110
1111
1101
1100

0
0
12
-2
10
10
5
19

7 7 7oo
7 7 7oo
17 17 17 oo
171717oo
13 13 13 oo
13 13 13 oo
17 1717oc
17 17 17 oo

Table 10.5 SOVA table after frame 4 merging

End state Data Path metric Reliabilities

00
01
10
11
00
01
10
11

1110
1111
1010
1100
1110
mi
1010
1100

10
10
12
19
10
10
12
19

1013 13 10
10 13 13 10
M i l l
17 17 1721
1013 13 10
10 13 13 10
17 7 7 7
17 17 1721
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Table 10.6 SOVA table after frame 5 extensions

End state Data Path metric Reliabilities

00
01
10
11
00
01
10
11

10101
10100
11000
11001
11100
11101
11111
11110

18
6
20
18
4
16
9

11

17 7 7 7 oo
17 7 7 7 oo
17 17 1721 oc
17 17 1721 oc
10 13 13 10 oo
1013 13 10 oo
1013 13 10 oo
10 13 13 10 oo

Table 10.7 SOVA table after frame 5 merging

End state Data Path metric Reliabilities

00 10101 18 17 7 7 7 14
01 11101 16 1010131010
10 11000 20 1 7 1 7 1 1 1 1 1 1
11 11001 18 1717 7 7 7
00 10101 18 17 7 7 714
01 11101 16 1010131010
10 11000 20 171711 11 11
11 11001 18 1717 7 7 7

The metric differences to states 00 and 01 are 14 and 10, respectively, and apply to
frames 2 and 5 unless the stored reliability is lower. The metric differences to states 10
and 11 are 11 and 7, respectively, and apply to frames 3, 4 and 5 unless the stored
reliability is lower. After merging the decoder table is as shown in Table 10.7.

At the end of this example the path terminating at state 00 is selected and the
output bit values are +17 —7 +7 —7 +14.

The performance of SOVA in iterative decoding is improved by normalization of
the received bit values and of the extrinsic information passed to the next stage of
decoding. This is achieved by scaling all the values so that the maximum magnitude is
at some predefined level. The extrinsic information is, however, given some weighting
(> 1) relative to the received bits to assist with the convergence. The relative
weighting is known as the fudge factor (because it has only an empirical validity)
and the process can be thought of as normalizing the received bits to 1 and the
extrinsic information to the value of the fudge factor.

10.9 GALLAGER CODES

Gallager codes [6, 7] consist of an arrangement of low density parity check (LDPC)
codes suitable for iterative decoding. The LDPC codes are block codes whose parity
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check matrix H is sparse, i.e. it consists of a number of low-weight rows. The codes
are usually subject to a regularity constraint, namely that each row is of fixed weight
HV and each column is of fixed weight wc. In other words, each bit is involved in wc

parity checks and each of those checks operates over wr bits. The proportion of bits
with value 1 is p (a small value). Given that each column of the parity check matrix
has n — k bits, we can see that

wc = p(n-k) (10.2)

Similarly, given that each row of the parity check matrix has n bits, we can see that

wr = pn (10.3)

Note that, as n — k < n, wc < wr. From Equations (10.2) and (10.3) we find that
wc/wr = 1 - R, where R is the rate of the code; hence

R — \ - wc/wr (10.4)

The codes are commonly denoted as (n, wc, wr) codes. As implied by Equation
(10.4), once these three parameters are known, the number of parity checks can also
be deduced. Relaxing the regularity constraint has, however, been found to lead to
better codes [8].

The generation of the parity check matrix can be random but subject to a con-
straint that ensures a generator matrix for the code can be derived. There needs to be
some matrix H', consisting of n — k columns of H, that is nonsingular, i.e. H' can be
inverted. Note that the requirement for H' to be nonsingular implies that wc is odd.
An even value would mean that the modulo-2 sum of every column would be zero,
implying that each row would be the modulo-2 sum of the other rows. Hence the
rows would not be linearly independent.

Assume that after some rearrangement of rows, the parity check matrix is in a form

HP = [P\H']

where Hp is a permuted form of H, and P is a (n - k) x n array of elements. Then

H'~1 HP =

From this a systematic generator matrix can be derived. After encoding the bit
permutation originally applied must be reversed.

Let us take as an example a case with wc = 3 and wr = 6 to produce a rate 1/2
code. The 6 x 6 matrix

H' =

0 0 1 1 0 1
0 1 0 0 0 0
0 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 1 1
1 1 1 1 0 1
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is nonsingular and has columns of weight 3. Its inverse is

H1'

1 1 0 0 0 1
0 1 0 0 0 0
0 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 0
0 1 1 1 0 1

We now create a 6 x 12 matrix ensuring that the additional columns are also of
weight 3 and that the rows have total weight 6:

1 1 0 1 0 0 0 0 1 1 0 1
1 1 1 1 1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 0 0 1 1 0
0 0 0 1 1 1 1 0 1 0 1 0
0 1 1 0 0 0 1 1 0 0 1 1

H

0 0 0 0 0 1 1 1 1 1 0 1

In systematic form the parity check matrix is

0 0 1 0 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0
1 1 1 1 1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 1

*sys

and the generator matrix is

G =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 1

1 0 1 0
1 1 1 1
0 0 1 0
0 1 1 0
1 0 1 1

0 0 0 0 0 1 1 0 0 1 0 1

The structure of the code may be represented by a bipartite graph of the code,
known as a Tanner graph [9, 10]. For our example, the graph contains twelve
variable nodes on one side, six check nodes on the other side with each variable
node connected to three check nodes and each check node connected to six variable
nodes, as shown in Figure 10.23.

The graph shows the way in which belief about symbol values propagates through
the code. Ideally the cycles (i.e. going between variable and check nodes without
retracing a path and returning to the start point) in the Tanner graph should be
long. The minimum cycle length is 4 (implying that two variable nodes are connected
to the same two parity check nodes) and constructions aim for a higher minimum
value.
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Figure 10.23 Example Tanner graph

The decoding algorithm operates alternately over rows and columns to find the
most likely code vector c that satisfies the condition cHT = 0. Let V(i) denote the set
of wr bits that participate in check i. Let C(j) denote the set of wc checks that check
bity. The probabilities that bity' is 0 or 1, given the parity checks other than check i,
are written P?. and P\j. The values are initialized to the a priori probabilities />? and/;?
of bit values 0 and 1 for each bity (i.e. the initial values are the same for all values of
/). The probabilities that check / is satisfied by a value 0 or 1 in bit j given the current
values of the other bits in V(i), are denoted Q^ and Q]J.

The horizontal (row) step is:

Define APij = P0
ij - P1

ij.

For each i compute A(?,y as the product of APij for all j' = j.

Set Q0
ij = 1/2(1 + A0;,), Q}j = 1/2(1 - A<£,).

The vertical (column) step is:

For each j, compute P0
ij as p0

j- times the product of Q0
ij, for all i' / i and P1

ij as P1
j

times the product of Q1
ij for all i' = i. Scale the values of P0

ij and P1
ij such that

For each j, compute P0
j as P0

j times the product of Q0
ij for all i and P1

j as P1
j times the

product of Q1
ij for all i. Scale the values of P0

j and P1
j such that P0

j + P] = 1 .

The values of Pj and Pj are hard-decision quantized and used to check the
condition cHr = 0. If this fails then the values of P° and /*» are fed back to another
iteration of the horizontal step. This continues for as many iterations as desired.
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Decoding example

Suppose our received sequence has values of/?1 equal to 0.7 0.1 0.4 0.1 0.1 0.6 0.9 0.2
0.8 0.1 0.1 0.1. The hard-decision quantized form of this is 100001101000 and it fails
the syndrome test. We therefore undertake decoding. The values of P\. and P^ are
shown in Tables 10.8 and 10.9.

We now define the values of A/*/, as shown in Table 10.10.
The row decoding calculations of Ag,y give the values shown in Table 10.11 from

which the values of g» and Q\j are as shown in Tables 10.12 and 10.13, respectively.

Table 10.8 Values of P},

0.7
0.7
0.7

0.1
0.1

0.1

0.4
0.4

0.4

0.1
0.1

0.1

0.1
0.1
0.1

0.6
0.6

0.6

Table 10.9

0.3
0.3
0.3

0.9
0.9

0.9

0.6
0.6

0.6

0.9
0.9

0.9

0.9
0.9
0.9

0.4
0.4

0.4

0.9
0.9
0.9

0.2

0.2
0.2

0.8

0.8

0.8

0.1

0.1

0.1

0.1
0.1
0.1

0.1

0.1
0.1

Values of P°

0.1
0.1
0.1

0.8

0.8
0.8

0.2

0.2

0.2

0.9

0.9

0.9

0.9
0.9
0.9

0.9

0.9
0.9

Table 10.10 Values of AP,7

-0.4
-0.4
-0.4

0.8
0.8

0.8

0.2
0.2

0.2

0.8
0.8

0.8

0.8
0.8
0.8

-0.2
-0.2

-0.2

-0.8
-0.8
-0.8

0.6

0
0.6
0.6

-0.6

0
-0.6

-0.6

0.8

0.8

0.8

0.8
0.8
0.8

0.8

0.8
0.8

Table 10.11 Values of Ag,y

-0.25 0.12
0.06 -0.03 -0.12

-0.02 0.04

-0.06 -0.25

-0.16 0.12 0.00 0.12
-0.04

0.12
-0.03 -0.03

0.01 -0.04 0.01 0.01
-0.06 -0.06 0.25 0.06 0.08 -0.06

0.06 -0.08 -0.06 -0.06
0.18 0.05 -0.06 0.06 -0.05 -0.05
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We now carry out column decoding. The calculations of P? and P}J (before scaling)
give the values as shown in Tables 10.14 and 10.15, respectively.

To check whether we need to carry out another iteration, we calculate Pj and Pj
and, after scaling, obtain the values as shown in Tables 10.16 and 10.17, respectively.

The hard-decision quantized sequence is 1 0 1 0 0 0 1 0 1 0 0 0 . This satisfies the
syndrome test, indicating that decoding is complete.

Table 10.12 Values of Qj.

0.38 0.56 0.56 0.42 0.56 0.56
0.53 0.48 0.44 0.48 0.48 0.48
0.49 0.52 0.51 0.48 0.51 0.51

0.47 0.47 0.62 0.53 0.54 0.47
0.47 0.38 0.53 0.46 0.47 0.47

0.59 0.52 0.47 0.53 0.48 0.48

Table 10.13 Values of Q\

0.62 0.44 0.44 0.58 0.44 0.44
0.47 0.52 0.56 0.52 0.52 0.52
0.51 0.48 0.49 0.52 0.49 0.49

0.53 0.53 0.38 0.47 0.46 0.53
0.53 0.62 0.47 0.54 0.53 0.53

0.41 0.48 0.53 0.47 0.52 0.52

Table 10.14 Values of P® from column decoding

0.08 0.20 0.20 0.06 0.22 0.20
0.06 0.24 0.12 0.24 0.21 0.17
0.06 0.10 0.20 0.15 0.24 0.20

0.24 0.22 0.11 0.03 0.04 0.21
0.24 0.14 0.03 0.18 0.21 0.24

0.12 0.03 0.18 0.05 0.26 0.24

Table 10.15 Values of P}J from column decoding

0.17 0.03 0.03 0.17 0.03 0.03
0.22 0.02 0.12 0.02 0.03 0.06
0.20 0.14 0.03 0.09 0.02 0.03

0.02 0.03 0.13 0.20 0.22 0.03
0.02 0.11 0.20 0.06 0.03 0.02

0.12 0.20 0.06 0.21 0.02 0.02

Table 10.16 Values of Pf from column decoding

0.22 0.91 0.44 0.91 0.88 0.60 0.13 0.73 0.19 0.91 0.88 0.90
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Table 10.17 Values of PJ from column decoding

231

0.78 0.09 0.56 0.09 0.12 0.40 0.87 0.27 0.81 0.09 0.12 0.10

10.10 SERIAL CONCATENATION WITH ITERATIVE
DECODING

Serially concatenated codes are suitable for iterative decoding [11, 12]. For example,
RSC codes can be serially concatenated as shown in Figure 10.24. The transmitted
stream contains:

1 The information plus tail bits to clear encoder 1.

2 The interleaved parity bits from encoder 1 plus the tail bits to clear encoder.

3 The parity bits from encoder 2.

At the decoder, the procedure is to decode the second code and deinterleave to
provide parity bits for decoder 1. Decoder 1 produces not only the decoded infor-
mation but also a new estimate of the parity bits from encoder 1. These are then
interleaved to feed back to decoder 2 for the next iteration. This is shown in Figure
10.25. For simplicity, the derivation of extrinsic information from each half iteration
has not been shown.

interleaved
parity 1

parity 2

information

Figure 10.24 Serial concatenation of RSC codes

information

parity 1

information

n 1n ' Decoder
2

parity 2

interleaved
parity 1

Figure 10.25 Iterative decoding of serially concatenated RSC codes
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10.11 PERFORMANCE AND COMPLEXITY ISSUES

Iterative decoding requires the component codes to be simple because of the repetitions
of the decoding operations. In reality the algorithms, particularly BCJR, are complex,
although the number of states in the RSC trellis is usually small (no more than 16). The
performance gains are substantial, however, and performance within 0.5 dB of the
Shannon limit is possible. This means that with rate 1 /2 encoded QPSK, we can get low
post-decoding bit error rates (around 10"5) for Eb/N0 < 0.5 dB.

There are several qualifiers that need to be entered to the above statement. The
first is that the block length affects performance because the best interleaving can be
achieved with long blocks. The second is that the number of iterations may be large,
although there are decreasing returns beyond about 10 iterations. Of course each half
iteration introduces delay approximately equal to one block interval, so constraints
on latency will limit the block length and number of iterations. It is easy to lose 1 dB
or more of performance through such limitations. Gallager codes are simpler on each
iteration, but the number of iterations used is higher (100 or more) and the perform-
ance is not quite as good.

The actual performance curves follow a general form shown in Figure 10.26.
Above a certain value of Eb/No the output bit error rates fall very rapidly - the so-
called waterfall or convergence region. However the codes contain a small number of
low-weight sequences that limit the asymptotic performance (performance at high
signal-to-noise ratios). The result is a flattening of the BER curve creating an error
floor often at around 10~6. This is largely an interleaver problem and several
methods have been proposed to overcome this limitation, some of which are men-
tioned in the final section of this chapter.

To understand how interleaver design affects the existence of low-weight code-
words, consider the example code of Section 10.5 with the state diagram given in
Figure 10.12. A sequence which is all-zero except for a section 1001 at the input of the
encoder will produce a nonzero portion of the code sequence 11 01 01 11, which is
weight 6 and returns the encoder to state 00. If this data is put into a regular block
interleaver, as described in Chapter 1 (Section 1.12), the interleaved encoder will see a
long interval between the Is during which time it will output a long nonzero
sequence. Thus this low weight input will result in a high-weight code sequence.
However with the same interleaver it is easy to arrange a weight 4 input sequence so
that two rows and two columns of the interleaver each contain the sequence 1001.

waterfall
region

BER

- error floor

J

Figure 10.26 General form of iterative decoding performance curves
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As a result each encoder will produce two nonzero portions of weight 6, giving a
weight 24 code sequence. To eliminate this weight 24 sequence will require some
irregularity in the interleaver pattern.

For the best performance from the BCJR algorithm, the signal strength and noise
levels need to be known for accurate setting of the log-likelihood ratios. Channel
estimation methods are therefore needed and the estimates themselves will inevitably
contain inaccuracies. Fortunately it is found that the effect of overestimating signal-
to-noise ratio is much less serious than underestimating, so estimators can be biased
to overcome the effects of inaccuracy.

10.12 APPLICATION TO MOBILE COMMUNICATIONS

The third generation mobile communication system UMTS (Universal Mobile Tele-
phone System) specifies for its radio network UTRAN (UMTS Radio Access
Network) a parallel concatenated 8-state RSC code [13], shown in Figure 10.27.
Pseudorandom interleaving is used within the blocks of data; their length can vary
from 40 to 5114 bits if frequency division duplexing of uplink and downlink is used. No
puncturing is used, resulting in a rate 1/3 code. At the end of the data both encoders
are cleared and the clearing sequences are transmitted along with the parity bits
generated. This means that there is a 12-bit tail sequence on each transmission.

Simulated performance of these codes for 1600 bits of data and four iterations is
shown in Figure 10.28 [14]. The curves show the results of both log-MAP and SOVA
decoding for AWGN and uncorrelated Rayleigh fading channels.

information

parity checks
4

Figure 10.27 UMTS RSC encoder

10.13 TURBO TRELLIS-CODED MODULATION

There are several ways in which turbo codes can be applied to MPSK or QAM
modulations to produce schemes that are both bandwidth efficient and have large
coding gains. Possible approaches are to use standard binary turbo codes mapped
onto the multilevel modulation [15], to use a number of parallel codes (in this case
turbo codes) mapped onto the modulation [16] or to use parallel concatenation of
Ungerboeck codes converted to RSC form [17–19].

The first approach is known as the pragmatic approach. For example, a rate 1/3
turbo code could be punctured to rate 2/3 and applied, using Gray code mapping, to an
8-PSK constellation. Another example for 16-QAM would be to puncture to rate 1/2
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UMTS TC, FA=No, #ltr=4, #=1600 bits

<1>LMAPAWGN
<2> SOVA AWGN
<1>LMAPRayU

SOVA RayU

10-5

Figure 10.28 Performance of UMTS turbo codes

and then map one information bit and one parity bit to each of the I and Q channels
(also Gray coded). An interleaver could be used prior to the mapping onto the
modulation to combat burst errors on the channel. There are some nonoptimum
approximations used in the assumption of independence when the log-likelihood
ratios of the different bits are calculated at the receiver; nevertheless such schemes
can be made to work well and the same turbo codes can be applied, with different
mappings, to different modulations.

For the second approach, we provide one turbo encoder for each bit of the
multilevel modulation, e.g. 3 for 8-PSK or 4 for 16-QAM. The data is demultiplexed
into the encoders and the encoded outputs fed into a signal mapper. Decoding uses a
multistage approach in which one code is decoded and the decisions used to assist the
decisions of all subsequent decoders. With the right choice of component codes and
code rates, this approach also works well [20].

For the third approach, we take an Ungerboeck convolutional code and convert
it into RSC form. For example, the encoder of Figure 10.29 is equivalent to the rate
2/3 8-state code for 8-PSK described in Chapter 2, Section 2.15. The information is

Figure 10.29 RSC equivalent of rate 2/3 Ungerboeck code for 8-PSK
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encoded directly and, after interleaving, by a second RSC encoder (using the same
code). The overall code rate is now half that of the Ungerboeck code, a problem we
solve by puncturing. The output of the second encoder could be deinterleaved so that
the information bits are the same as for the first encoder and then the choice of parity
bits is alternated between the two encoders. Alternatively if the interleaver has an odd-
even property we could choose alternately between the entire output frames of the two
encoders knowing that all information bits will appear in the transmitted stream.

10.14 CONCLUSION

Iteratively decoded codes are the most recent and most exciting development in
coding. At the time of writing the subject has found its way into three good texts
on digital communications [21-23], one general purpose coding text [24] and two
specialist texts on turbo codes [25–26].

In such a rapidly developing field, new ideas are being advanced all the time to
improve performance, particularly to investigate and lower the error floor. Ap-
proaches to this include special design of interleavers for specific codes, irregular
interleavers [27] and woven convolutional codes designed to have good distance
properties [28]. Nonbinary RSC codes [29] appear to be attractive to produce good
high rate coding schemes. Iteratively decoded product codes, known as turbo prod-
uct codes (TPC), are also of considerable interest [30–32].

10.15 EXERCISES

1 Find the MAP decoding of the sequence 1.2, 0.3, 0.8, -1.1, 0.7, -1.2, -1.0, 1.1,
0.9, 1.1 for the example RSC code of Section 10.5.

2 Find the SOVA decoding of the sequence +3.5, +2.5, +0.5, -2.5, -0.5, -2.5,
-3.5, +3.5, -1.5, +3.5, +2.5, -0.5 for the example RSC code of Section 10.5.

3 A rate 1/3 turbo code has lowest weight nonzero code sequences of weight 24. It
is applied to a QPSK modulation. Estimate the BER at which the error floor will
become apparent.

4 Considering a block interleaved turbo code as in Section 10.11, find the weight of
the sequence produced by data 111 input to the example RSC encoder of Section
10.5. Hence find the weight of the code sequences resulting from a weight 9 data
pattern with 111 on each of three rows and three columns. Hence deduce whether
input or output weight at a single RSC encoder is more important in identifying
low-weight turbo code sequences.

5 Find the lowest weight sequences in a turbo code using regular block interleaving
and component (1, 7/5) RSC codes. Comment on the comparison with the (1, 5/7)
RSC code and on the desirable characteristics of the feedback polynomial.
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additive inverse 114–115, 117
additive white Gaussian noise 8, 16, 18-19,

22,27,31,35,53,56,233
algebraic decoding 143-153, 158
ARQ - see automatic retransmission request
arithmetic code 3
automatic retransmission request 24-26
associative law 114
asymptotic coding gain 17-18, 27
AWGN - see additive white Gaussian noise

bandwidth 19-20, 30
baseband 5
BCH bound 144-146
BCHcode 30, 106-107, 110, 137-153, 175,

182
BCJR algorithm 211-214, 217-220, 232-235
BER - see bit error rate
Berlekamp-Massey algorithm 149, 151-153,

161, 171
Berlekamp multiplier 129-130
bi-orthogonal code 198
binary phase shift keying 6-10,16,17,21, 53,

58
binary symmetric channel 7
bipartite graph 227-228
bit error rate 16-18, 52, 188-191, 232
BSC - see binary symmetric channel
block code 4,35,67-112
block interleaving 22
BPSK - see binary phase shift keying
branch metric 42–44, 46–51, 213–214,

218-219
burst-error 8, 22, 23, 57, 107-110
Burton code 110

capacity 19-20
catastrophic error propagation 54
CD - see compact disc
CDMA2000 57

cellular mobile communications 56, 233
Chase algorithm 198-199
Chien search 144, 148, 161, 163, 175
CIRC - see cross-interleaved Reed Solomon

code
clearing bit 44
code rate 4, 18
coding gain 17, 20
commutative law 114
compact disc 32, 206
complementary error function 9, 53
complexity 76
compound channel 8
compression 3
concatenation 2, 19, 24, 30, 195-199, 231
conjugacy 119-120, 124
connection polynomial 145, 148, 151,

158-159, 165-167
constraint length 5, 37
continuous phase modulation 7
convergence 232
convolution 89-90, 145, 166
convolutional code 4, 17, 20, 22, 27, 35-66,

199, 207-208
convolutional interleaving 22, 207
Cooley-Tukey algorithm 125-127
coset 76
CRC - see cyclic redundancy check
cross-interleaved Reed Solomon code 207
cyclic code 87-112, 137-138
cyclic redundancy check 56, 185-186

deep space communications 208
degree (of polynomial) 91
delay 23, 30, 76, 87
demodulator 7
DEPSK - see differentially encoded phase

shift keying
detected uncorrectable errors 14, 148, 162,

178, 188-190
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differentially encoded phase shift keying 9
differential phase shift keying 9, 10
diffuse channel 8
digital versatile disc 207
dimension (of block code) 71
distance 12, 39
distributive law 114
Dorsch algorithm 81-83
DPSK - see differential phase shift keying
dual basis 129-131
dual code 182-184
DVD - see digital versatile disc

edge frequency 170, 172-174
edge symbol 170, 172-174
energy per bit 16-17, 19, 28, 53, 188-191,

232, 234
equivalence of codes 69
erasure 164-168
erasure polynomial 165-167
error concealment 2, 24, 26, 207
error detection 26, 185-188
error evaluator polynomial 149, 158-159
error exponent 19
error floor 232, 235
error locator polynomial 145-146
error trapping 107-108
Euclid's algorithm 147, 149-151, 167
Euclidean distance 21, 57-61
even parity 68
expanded code 78-9
expurgated code 104-106,185-186
extended Reed Solomon code 170-175
extension field 119
extrinsic information 214-215,225

factorization (of polynomial) 119-121
Fano

algorithm 62-63
metric 62

FEC - see forward error correction
finite field 67, 120-135
Fire code 108-110
flushing bit 44
Forney algorithm 158,167
forward error correction 1, 24, 26
Fourier transform 121-127, 155, 160-162,

165, 171-174
free distance 17, 39
free path 39
frequency shift keying 7
FSK - see frequency shift keying
fudge factor 225

GAC - see generalized array code
Gallagercode 225-232

Galois field 120-135
Gaussian noise 9, 10, 19, 27
generalized array code 203-206, 208
generalized minimum distance

decoding 167-168, 170, 175, 197
generating function 41
generator matrix 70-71, 76, 79
generator polynomial 36, 37, 54, 88-94,

96-97, 137-140, 155-156, 203
Gilbert-Varsharmov bound 177, 180-181
GMD - see generalized minimum distance

decoding
Golaycode 76, 110
Gray coding 6, 233-234
Griesmer bound 177
GSM 56

Hamming bound 76, 177-178
Hamming code 73-6,88, 139, 182-186
Hamming distance 12, 70
helical interleaver 221
hybrid

FEC/ARQ 26, 30, 31, 181
FEC/error concealment 26

Huffman code 3

information 3
inner code 24, 30, 195-199, 207
input constraint length 5, 37
input frame 4, 37
interleaving 22, 23, 57, 207-208, 216-217,

220-221, 231-232, 235
interleaving degree 22, 23, 208
irreducible polynomial 92, 116, 121
irregular interleaver 233, 235
IS-95 57
iterative decoding 24, 200-203, 211-235

Kasami decoder 110
key equation 146-149, 159, 161, 163, 166,

171-172

LDPC code - see low density parity check
code

length
block code 71
cyclic code 90-92

linear code 5, 12, 87
linear independence 148
log-likelihood ratio 10, 11, 14, 211
low density parity check code 225-231

M-ary frequency shift keying 168
M-ary phase shift keying 7, 21, 57-60,

233-235
MacWilliams identity 183-184
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MAP decoder 217-220, 222
maximal length code 196-197
maximum likelihood decoding 11, 16, 35,

41
Meggitt decoder 97-104, 108
memory constraint length 5, 37
memory order 37
memoryless channel 7, 11, 42
MFSK - see M-ary frequency shift keying
minimum distance 12, 14, 27, 70, 156, 164,

168, 178-181, 187-188, 199-201
minimum polynomial 120
minimum weight 12
modulation 2, 5
MPSK - see M-ary phase shift keying
multistage coding 24
multiplicative inverse 114-115, 117, 131, 151

non return to zero 5
non-systematic code 35
normal basis 131-132
NRZ - see non return to zero

odd parity 68
optical communications 190-192
order 120
orthogonal code 19,196-198
orthogonal signal set 19, 168
outer code 24, 195-197, 207
output frame 4, 37

parallel concatenated code 24, 215-217
parity check 12, 15, 16,24, 68-69,204-205
parity check matrix 71-76, 79-82, 140-143,

226-227
path metric 42-44, 46-51, 213-214, 218-219,

223-225
perfect code 76
Plotkin bound 177-179
polynomial basis 117-119, 127-130, 138
power 30, 31
primitive element 115-116,120
primitive polynomial 92, 116, 120
product code 24, 200-203, 207, 212-214
PSK - see phase shift keying
pseudorandom interleaver 220
punctured code 32, 208

QAM - see quadrature amplitude
modulation

quadrature amplitude modulation 7, 60-61,
233-234

quadriphase shift keying 6, 8, 9, 16, 17, 20,
21,53,57-58

quantization 11, 15
QPSK - see quadriphase shift keying

random coding 19
recursive extension 161, 164
recursive systematic convolutional code

215-220,233-235
redundancy 1,2, 4
Reed Muller code 198
Reed Solomon code 22, 27, 28, 30, 31, 32,

110, 137-138, 149, 155-175, 182-183,
195-197, 199, 207-208

Reiger bound 107
retransmission error control 1, 24
root (of polynomial) 119-121, 124-125, 137,

140-143, 155-6
RSC code - see recursive systematic

convolutional code

satellite communications 56, 190, 208
SECDED codes 78
sequential decoding 62-64
set partitioning 57-58, 60-61
Shannon 1, 18, 19, 20, 21, 28, 195, 208
Shannon-Hartley theorem 19
Shannon product 205-206
shortened code 79-80, 103-104
simile interleaver 221
simplex code 196-197
single-sided noise power spectral density 8,

28,53, 188-191,232,234
Singleton bound 155, 177, 180
SOVA - see soft output Viterbi algorithm
soft decisions 10, 15, 16, 27, 45-51, 64,

81-83, 198-199,211
soft-in-soft-out decoder 211
soft-output Viterbi algorithm 222-225
stack algorithm 63
standard array 75-76
state diagram 38-39
superchannel 195-196
symmetric channel 7
syndrome 73-76, 78, 94, 96-104, 143-144,

146-148, 150-151, 159 ,161, 165-167,
171-172, 177-178

systematic code 12, 69, 142-143

tail biting 220
TDMA - see time division multiple access
telephone modem 61
time division multiple access 28, 56
TPC - see turbo product code
traceback 51
transfer function 41, 52
tree code 4, 37
trellis 41-44, 204-206, 208, 212-214,

218-219
trellis code 37, 57-61, 233-235
trellis termination 220-221
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turbo code 24, 28, 215-221, 232-235 Viterbi algorithm 27,28, 30, 31,32, 35,42-51
turbo product code 235

WBA - see Welch-Berlekamp algorithm
UMTS 57, 233 weight 12, 52, 182-184
Ungerboeck code 22, 57, 233-235 Welch-Berlekamp algorithm 155, 168-170,
union bound 51-52 175

VA - see Viterbi algorithm Zech logarithm 132-134




