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Chapter 1

INTRODUCTION

Research activity in the area of radio-frequency (RF) circuit design has surged
in the last decade in direct response to the enormous market demand for inex-
pensive, portable, high data rate wireless transceivers. Our expectations for
such transceivers, such as cellular phones, rise as they become seemingly ubiq-
uitous. Once, the simple fact of a fairly reliable wireless voice connection
was sufficient and even exciting. Now, crystal-clear voice with no lapses in
coverage is actively sought, together with the capability to act as a web portal
and even a digital assistant. All of this must be accomplished by a device that
is cheap enough to be virtually given away, small enough to justify the claim
of portability, and frugal enough with power demands to last a long time on a
single battery charge.

Cellular phones are just one example of a market that has spurred recent
research activity. Wireless local-areanetworks (WLAN’s) are another relatively
new application of RF circuit techniques, as is the popular Global Positioning
System (GPS). Meeting this demand for a kind of general connectivity involves
a host of fascinating technical challenges. Among these, many are associated
with the power amplifier, the system block that drives the antenna in any radio
transmitter.

1.1 Motivation

If the objective is an inexpensive, portable, high-performance transceiver,
the desirability of certain circuit characteristics is clear. A low-cost solution is
likely to be one in which as many circuit blocks as possible are implemented on
the same chip: the cost savings result from the simplified PC (printed circuit)
board. Aninexpensive IC (integrated circuit) process, such as CMOS, translates
directly into a cost savings. Portability implies at least two things from a
circuit standpoint: small size, which is another advantage of a highly integrated
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solution, and a long battery lifetime. Long battery lifetimes motivate low-power
circuit techniques, so we add low power dissipation to the growing list of design
constraints. What is meant by “high-performance” depends on the context. For
purposes of this book, high-performance implies the ability to communicate at
the highest data rate possible for a given channel bandwidth. Achieving this
goal directs the system designer to linear modulation techniques, and the circuit
designer to a means of achieving high linearity in the transmitter.

A transceiver’s performance according to the metrics of degree of integra-
tion, power consumption, and transmitter linearity is usually dominated by the
performance of the power amplifier. At even modest output powers (a few
hundred milliwatts) it is far and away the most power-hungry system block in a
transceiver, and the large voltage swings at its output push it deep into nonlin-
ear regions of operation. The devices in most IC processes impose a maximum
usable DC power supply voltage. Further, high-Q impedance transformations,
which cannot always be realized on-chip, are sometimes necessary to achieve
high output power levels.

It follows that improvements in transmitter performance depend on the progress
made with the power amplifier. That observation motivates the investigation
described in this book.

1.2  Organization

The arc of this text generally proceeds from the abstract to the applied,
culminating with a description of a fabricated chip designed to tie together many
of the concepts treated here. Chapter 2 deals with the theoretical problem of
realizing amplification with a cascade of stages. One design option is to employ
local feedback around each of the individual stages. This chapter details the
surprising result that a wide range of specifications, including linearity, can be
optimized through intelligent choice of the feedback gains. That an optimum
exists is perhaps not a surprise, but that this optimum can be found quickly
and unambiguously is new and of considerable interest. The key is a technique
called geometric programming.

The importance of linearity in radio transmitters is treated briefly in Chap-
ter 3, together with a description of the tradeoff between linearity and power
efficiency in power amplifiers. This chapter is also an exploration of the various
common methods of softening this tradeoff, which can be grouped under the
general heading of “linearization techniques.”

Chapter 4 describes a new approach for achieving and maintaining phase
alignment in Cartesian feedback power amplifiers. The focus here is on the
theoretical principles of the new method, which during the investigation were
validated by simulation and by a discrete-component prototype. A new tech-
nique for realizing accurate analog multiplication is developed as a means of
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improving the performance of the first prototype. A full analysis of this multi-
plication technique is presented here.

This book concludes with Chapter 5, a description of the culminating IC
prototype, and Chapter 6, final thoughts. Readers interested in further details
of the hardware prototypes are directed to the appendices.
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Chapter 2

OPTIMAL ALLOCATION OF LOCAL FEEDBACK
IN MULTISTAGE AMPLIFIERS

The use of linear feedback around an amplifier stage was pioneered by
Black [1], Bode [2], and others. The relations among the choice of feedback
gain and the (closed-loop) gain, bandwidth, rise-time, sensitivity, noise, and
distortion properties, are well understood (see, e.g., [3]). For a single stage
amplifier, the choice of the (single) feedback gain is a simple problem.

In this chapter we consider the multistage amplifier shown in figure 2.1,
consisting of n open-loop amplifier stages denoted Ai,... ,Ay,, with local
feedback gains fi,... , fn employed around the stages.'

Figure 2.1. Block diagram of multistage amplifier.

We assume that the amplifier stages are fixed, and consider the problem of
choosing the feedback gains fi,... , fn. The choice of these feedback gains af-
fects a wide variety of performance measures for the overall amplifier, including
gain, bandwidth, rise-time, delay, noise, distortion and sensitivity properties,
maximum output swing, and dynamic range. These performance measures de-
pend on the feedback gains in a complicated and nonlinear manner. It is thus

"Much of the material presented in this chapter originally appeared in the journal article [4], written by the
author and coauthored by S. Boyd, M. Hershenson, and T. H. Lee.
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far from clear, given a set of specifications, how to find an optimal choice of
feedback gains. We refer to the problem of determining optimal values of the
feedback gains, for a given set of specifications on overall amplifier perfor-
mance, as the local feedback allocation problem.

We will show that the local feedback allocation problem can be cast as a
geometric program (GP), which is a special type of optimization problem. Even
complicated geometric programs can be solved very efficiently, and globally, by
recently developed interior-point methods (see [5, 6,7]). Therefore we are able
to give a complete, global, and efficient solution to the local feedback allocation
problem.

In section 2.1, we give a detailed description of the models of an amplifier
stage used to analyze the performance of the amplifier. Though simple, the
models capture the basic qualitative behavior of a source-degenerated differ-
ential pair. In section 2.2, we derive expressions for the various performance
measures for the overall amplifier, in terms of the local feedback gains. In
section 2.3, we give a brief description of geometric programming, and in sec-
tion 2.4, we put it all together to show how the optimal local feedback allocation
problem can be cast as a geometric program, and design examples are given
in section 2.5. A summary of the method follows in section 2.6, along with a
treatment of a specific circuit example in section 2.7. This chapter closes with
section 2.8, a discussion of the relevance of local feedback allocation to power
amplifier linearization.

2.1 Amplifier stage models

In this section we describe several different models of an amplifier stage,
used for various types of analysis.

2.1.1 Linearized static model

The simplest model we use is the linear static model shown in figure 2.2.
The stage is characterized by y; = a;e;, where «; is the gain of the ith stage,
which we assume to be positive. We will use this simple model for determining
the overall gain of the amplifier, determining the maximum signal swing, and
the sensitivity of the amplifier gain to each stage gain.

2.1.2 Static nonlinear model

To quantify nonlinear distortion effects, we use a static nonlinear model of
the amplifier stage as shown in figure 2.3. We assume that the nonlinearity or
transfer characteristic has the form

yi = ai(e) = aze — Bie® + o(e?), 2.1
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u; + . :
i t-r = o O;e; Yi g

fi

Figure 2.2. Linearized static model of amplifier stage.

S

Ui + €; Yi

[ /i ]

Figure 2.3. Nonlinear static model of amplifier stage.

where 0(63), which indicates terms of order higher than three, is assumed to
be negligible. This form is inspired by the transfer characteristic of a source-
coupled pair [8], and is a general model for third-order nonlinearity in a stage
with an odd transfer characteristic. The function a;(-) is the transfer charac-
teristic of the ith stage, and B; is the third-order coefficient of the amplifier
stage. Note that the gain and third-order coefficient are related to the transfer
characteristic by

a; = aj(0), Bi=-——. (2.2)

We assume that 8; > 0, which means the third-order term is compressive: as
the signal level increases from zero, the nonlinear term tends to decrease the
output amplitude when compared to the linear model.



8 FEEDBACK LINEARIZATION OF RF POWER AMPLIFIERS

2.1.3 Linearized dynamic model

To characterize the bandwidth, delay, and rise-time of the overall amplifier,
we use the linearized dynamic model shown in figure 2.4. Here the stage is
represented by a simple one-pole transfer function with time constant 7; (which
we assume to be positive).

U; + e; a; Yi
Tis+

7

Figure 2.4. Linear dynamic model of amplifier stage.

214 Static noise model

Last, we have the static noise model shown in figure 2.5, which includes a
simple output-referred noise v;. As will become clear later, more complicated
noise models including input noise, or noise injected in the feedback loop, are
also readily handled by this method. Our noise model is characterized by the
rms value of the noise source, which we denote 7;. We assume that noise
sources associated with different stages are uncorrelated.

2.2  Amplifier analysis

In this section we derive expressions for various performance indices for the
overall amplifier. For analytical convenience, we express these indices in terms
of the return differences:

I =1+ fiay. 2.3)

In the analysis that follows, it is assumed that the dynamic interaction between
amplifier stages can be formulated as shown in section 2.7.3.
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v

—~-—
“+

1

Yi

fi

Figure 2.5.  Static noise model of amplifier stage.

221 Gain and output swing

We consider the linear static model of section 2.1.1. The gain of the amplifier,
frominput %1 to the output of the kth stage yx, is given by

k

k
& H [0 7]
H — =12, (2.4)
i=1 1+ aifi i=1 li
and the overall gain, from u; to ¥y, is given by
n

Here, of course, «;/!; is the familiar expression for the closed-loop gain of
the sth stage. It will be convenient later to use the notation

(2.5)

- Q;
a; = —

5 (2.6)

to denote the closed-loop gain of the ith stage. (In general, we will use the tilde
to denote a closed-loop quantity.)

Now suppose the input signal level is U = |u; |, and that the ith stage has a
maximum allowed output signal level of Y;, i.e., werequire |y;] < ¥;. Thisin
turn means that for k = 1,... ,n, wehave

U H 2 <Y, 2.7
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so the maximum allowed input signal level is

k
l;

The maximum allowed output signal level is found by multiplying by the overall
gain:
n o
Ymax = max Y il 2.9
k=1,...,n . i
i=k-+1

(where the empty product, when ¢ = n, is interpreted as one).

222 Sensitivity

The (logarithmic) sensitivity of the overall amplifier gain to the open-loop
gain of the #th stage is given by
_ Ologa 1

= Sloga: = I (2.10)

3

223 Nonlinearity

We begin by deriving the closed-loop third-order coefficient of a single feed-
back amplifier stage, using the static nonlinear model of section 2.1.2. The
output y is related to the input u through the relation

y = alu - fy). (2.11)

Differentiating both sides with respect to u leads to the familiar result from
elementary feedback theory:

'(0) a
=29 __a_g 2.12
vO =i =72 (2.12)
Differentiating again yields
"
0
y"(0) = “lﬁ ) =0, (2.13)
and, once more,
J"(0) — 3fa"(0)2 68
ylll(o) = 15 ( ) = —1_4’ (214)
using a"(0) = —6 and a”(0) = 0 from the previous equation. This equation

shows that the third-order coefficient of the closed-loop transfer characteristic
is given by

- ylll(o) _ _6_
p="—F"=n (2.15)
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This is the well-known result showing the linearizing effect of (linear) feedback
on an amplifier stage.

Next, consider a cascade of two amplifier stages. Let the transfer character-
istics of two stages be y1(+) and y2(+). We write

$2(u) = ya(y1(u)) (2.16)
and differentiate:
$5(0) = y2(0)y1(0),
$3(0) = w5(0)y{(0) + (¥1(0))*y5(0), 2.17)
and so
5'(0) = y2(0)y1"(0) + 1 (0)%y5'(0)
+3y3 (0)1/1(0)%1(0). (2.18)

Since ¥1 and yg are both odd functions, the last term vanishes. Therefore the
third-order coefficient of the cascade of the two stages is given by

Préo + Badd. (2.19)

More generally, the third-order coefficient of a cascade of n stages can be
expressed as

Z:(H ) fi@ . (2.20)

=1 i=i+1

This very complicated formula gives the relation between the local return dif-
ferences and the third-order coefficient of the overall amplifier.

224 Bandwidth

We next examine the linearized dynamic performance of the amplifier chain,
using the stage model given in section 2.1.3. The transfer function of an indi-
vidual stage is given by

Yi(s) _ a;/(ris +1) _

Ui(s) 1+ fiog/(mis+1) Fis+1’
where 7; = 7;/l; is the closed-loop time constant of the ith stage. The transfer
function of the entire cascade amplifier immediately follows:

(2.21)

Q4

H@)=11ﬁ3+1. (2.22)

The —3dB bandwidth of the amplifier is defined as the smallest frequency w
for which |H (jw)| = |H(0)|/V2.
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225 Delay and rise-time

The rise-time and delay of the overall amplifier can be characterized in terms
of the moments of the impulse response, as described in [9]. The delay is the
normalized first moment of the impulse response of the system:

J25, th(t)dt

Using basic properties of the Laplace transform and results from section 2.2.4,
we have

_ aH() L noo
tq = =0 —— = o= -—Z 224
d H(©) ds Hﬁ-s—l-l ZT’ Z I
i=1 $=0 i=1 =1

This formula shows the exact relation between the overall amplifier delay (as
characterized by the first moment of the impulse response) and the local return
differences I;.

We use the second moment of the impulse response,

£y [fj’; £2h(t)dt 2] |

T £ (2.25)

as ameasure of the square of the rise-time of the overall amplifier in response to a
step input. Again making use of Laplace transform identities, we express (2.25)
in terms of the transfer function H(s):

4 d?
) [@H(S)

tr

- tﬁ] . (2.26)
s=0

Substituting the transfer function of the amplifier, given in equation (2.22), we
find that the rise-time of the overall amplifier is

n
r
tf=4zl
=1

(using the fact that the closed-loop rise-time of the ith stage is 27;).

2

|S

(2.27)

[

«

2.2.6 Noise and dynamic range

We now consider the static noise model of section 2.1.4. The mean-squared
noise amplitude at the output of the overall amplifier can be written

2

n (3|~
V4 o
vout? =Y "117 11 7;”— . (2.28)

i=1 i) =il
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The input-referred mean-squared noise is then
2

2 n 3 izl

Vout v l

vin® =~ =) —3 ||ai : (2.29)
i=1 i j=1 "

The dynamic range of the amplifier is the ratio of maximum output voltage
to output-referred RMS noise level, expressed in decibels:

Yout

DR = 20log; 22 (2.30)

2.2.7 SFDR and IIP linearity measures

We conclude this analysis by obtaining expressions for the spurious-free
dynamic range (SFDR) and the input-referred third-order intercept point (IIP3).
They are both readily derived from the results in 2.2.3 through 2.2.6, and so
contain no new information or analysis, but they are widely used performance
indices for the amplifier.

SFDR and IIP3 give information about the linearity of an amplifier. They con-
cern the results of the following experiment: inject a signal v cos w1t+v cos wat
at the input, and examine the output for the presence of intermodulation (IM)
products. We concern ourselves here with third-order IM products, which owe
their existence to non-zero B;. The third order intermodulation products are:

3.
[Z,Bv?’] [cos(wr + 2w2)t + cos(wy — 2we)t
+ c08(2wy + w2)t + cos(2wy — wa)t]. (2.31)

The SFDR is defined as the signal-to-noise ratio when the power in each
third order intermodulation product equals the noise power at the output [10].
To derive the SFDR, we simply refer a third order IM product back to the input
and equate its amplitude to the input-referred RMS noise amplitude:

13-
= [*51}3] = Tig. (2.32)
a |4
The SFDR in decibels is then given by
2 3141
SFDR = =(10) log,, | == | . (2.33)
3 Vin?

The IIP3 is the input power at which the amplitude of the third-order IM
products equals the input. Mathematically, we require
473
3P

|| = . (2.34)
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Normalizing the input resistance to unity for convenience, we have for I1P3

2| &
IIP3 = - |= (2.35)
31
2.3 Geometric programming
Let f be a real-valued function of n real, positive variables xp,Zs2,... ,Zn.
It is called a posynomial function if it has the form
F@1y . 2n) = chm‘“k C2k . gonk (2.36)

where ¢; > 0 and oz € R. When ¢ = 1, fis called a monomial function.
Thus, for example, 0.7 + 2z1/x2 + £33 is posynomial and 2.3(z1/z4)®
a monomial. Posynomials are closed under sums, products, and nonnegative
scaling.

A geometric program (GP) has the form

minimize fo(z)

subject to  f;(x) (2.37)

where f; are posynomial functions and g; are monomial functions. Geometric
programs were introduced by Duffin, Peterson, and Zener in the 1960s [11].

The most important property of geometric programs for us is that they can
be solved, with great efficiency, and globally, using recently developed interior-
point methods [7, 5]. Geometric programming has recently been used to opti-
mally design electronic circuits including CMOS op-amps [12, 13] and planar
spiral inductors [14].

Several simple extensions are readily handled by geometric programming.
If f is a posynomial and ¢ is a monomial, then the constraint f(z) < g(z)
can be expressed as f(z)/g(x) < 1 (since f/g is posynomial). In particular,
constraints of the form f(z) < a, where a > 0 is a constant, can also be used.
Similarly, if g1 and g2 are both monomial functions, the constraint gl(:L‘) =
g2(x) can be expressed as g1(z)/g2(x) = 1 (since g1/g2 is monomial). If g is
a monomial, we can maximize it by minimizing the posynomial function 1/g.

231 Geometric programming in convex form

A geometric program can be reformulated as a convex optimization problem,
i.e., the problem of minimizing a convex function subject to convex inequalities
constraints and linear equality constraints. This is the key to our ability to
globally and efficiently solve geometric programs. We define new variables
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yi = log z;, and take the logarithm of a posynomial f to get

t
h(y) = log (f (e¥*,... ,e¥")) = log (Z ea{y“"‘) (2.38)
k

where a;"; = [0k -+ o) and by, = log cx. It can be shown that h is a convex
function of the new variable y: forall y,z € R®" and 0 < A < 1 we have

h(Ow + (1 = N)z) < Ah(y) + (1 — NA(2). (2.39)

Note that if the posynomial f is a monomial, then the transformed function h
is affine, i.e., a linear function plus a constant.

We can convert the standard geometric program (2.37) into a convex program
by expressing it as

minimize log fo(e¥!,... ,e¥n)
subject to log fi(e¥,... ,e¥) <0, i=1,...,m (2.40)
log gi(e¥t,...,e¥) =0, i=1,...,p.

This is the so-called convex form of the geometric program (2.37). Convex
programs have several important characteristics. Chief among these is that
convex programs are solvable using efficient interior-point methods. Addition-
ally, there is a complete and useful duality, or sensitivity, theory for convex
programs [5].

232 Solving geometric programs

Since Ecker’s survey paper [6] there have been several important develop-
ments related to solving geometric programs in the exponential form. A huge
improvement in computational efficiency was achieved in 1994, when Nes-
terov and Nemirovsky developed efficient interior-point algorithms to solve a
variety of nonlinear optimization problems, including geometric programs [7].
Recently, Kortanek et al. have shown how the most sophisticated primal-dual
interior-point methods used in linear programming can be extended to geometric
programming, resulting in an algorithm approaching the efficiency of current
interior-point linear programming solvers [15]. The algorithm they describe
has the desirable feature of exploiting sparsity in the problem, i.e., efficiently
handling problems in which each variable appears in only a few constraints.

For our purposes, the most important feature of geometric programs is that
they can be globally solved with great efficiency. Problems with hundreds of
variables and thousands of constraints are readily handled, on a small worksta-
tion, in minutes. The problems we encounter in this chapter, which have a few
tens of variables and fewer than 100 constraints, are easily solved in under one
second.
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Perhaps even more important than the great efficiency is the fact that al-
gorithms for geometric programming always obtain the global minimum. In-
feasibility is unambiguously detected: if the problem is infeasible, then the
algorithm will determine this fact, and not just fail to find a feasible point. An-
other benefit of the global solution is that the initial starting point is irrelevant.
We emphasize that the same global solution is found no matter what the initial
starting point is.

These properties should be compared to general methods for nonlinear op-
timization, such as sequential quadratic programming, which only find locally
optimal solutions, and cannot unambiguously determine infeasibility. As a re-
sult, the starting point for the optimization algorithm does have an affect on
the final point found. Indeed, the simplest way to lower the risk of finding a
local, instead of global, optimal solution, is to run the algorithm several times
from different starting points. This heuristic only reduces the risk of finding a
nonglobal solution. For geometric programming, in contrast, the risk is always
exactly zero, since the global solution is always found regardless of the starting
point.

24  Optimal local feedback allocation

We now make the following observation, based on the results of section 2.2: a
wide variety of specifications for the performance indices of the overall amplifier
can be expressed in a form compatible with geometric programming using the
variables [;. The startling implication is that optimal feedback allocation can
be determined using geometric programming.

The true optimization variables are the feedback gains f;, but we will use
instead the return differences {;, with the constraints {; > 1 imposed to ensure
that f; > 0. Once we determine the optimal values for [;, we can find the
optimal feedback gains via

fi= (li — 1)/0(,'. 241

24.1 Closed-loop gain

The closed-loop gain & is given by the monomial expression (2.5). Therefore
we can impose any type of constraint on the closed-loop gain. We can require
itto equal a given value, for example, or specify a minimum or maximum value
for the closed-loop gain. Each of these constraints can be handled by geometric
programming.

24.2 Maximum signal swing

The maximum output signal swing is given by the expression (2.9). The
constraint that the output swing exceed a minimum required value, i.e., Yiyax =



Local Feedback in Multistage Amplifiers 17

7, can be expressed as

n
% [I %27, k=1,...,n. (2.42)
i=k+1 t

Each of these inequalities is a monomial inequality, and hence can be handled
by geometric programming. Note that we also allow the bound on signal swing,
i.e., 7y,as a variable here.

243 Sensitivity

The sensitivity of the amplifier to the sth stage gain is given by the monomial
expression (2.10). It follows that we can place an upper bound on the sensitivity
(or, if we choose, a lower bound or equality constraint).

244 Bandwidth

Consider the constraint that the closed-loop -3dB bandwidth should exceed
Q. Since the magnitude of the transfer function of the amplifier is monotoni-
cally decreasing as a function of frequency, this is equivalent to imposing the
constraint

, 1
|H(j)| 2 —Z-H(O), (2.43)
which we can rewrite as

1 2

- < . (2.44)
|H(jQ)? ~ H(0)?
Now using the expression for the transfer function,
n o
Hjw) =[] ——, 2.45
(jw) ,-1;119”1'“’”1' (2.45)
we can write the bandwidth constraint as
1 P & Q)2+ no2
: =[] —=—% <2]] = (2.46)
2 = 2
‘ H(JQ) 1 a; i=1 o
This, in turn, we can express as
n
Q)% 412
I1 (—T’—)l;“—’ <2 2.47)
=1 i

This is a complicated, but posynomial, inequality in the variables {;, hence it
can be handled by geometric programming. Note that we can even make the
minimum -3dB bandwidth § a variable, and maximize it.
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24.5 Noise and dynamic range

The expression (2.29) for the input-referred noise power, is a posynomial
functions of the variables Iy, ... ,l,. Therefore we can impose a maximum on
the input-referred noise level, using geometric programming.

The requirement that the dynamic range exceed some minimum allowed
value DRypip, i.e., DR > DRyin, can be expressed as

2
% < 107DR/10, (2.48)

wherey is the bound on signal swing defined in (2.42). Therefore, this constraint
can be handled by geometric programming.

24.6 Delay and rise-time

As can be seen in equations (2.24) and (2.27), the expressions for delay and
rise-time are posynomial functions of the return differences {;. Amaximumon
each can thus be imposed.

2.4.7 Third-order distortion

The expression for third-order coefficient, given in (2.20), is a posynomial,
so we can impose a maximum on the third-order coefficient.

248  SFDR and IIP3

Consider the constraint that the SFDR should exceed some minimum value
. Using the expression (2.33), we can write this as

41a
2 315l
5(10) logyo <v~ ﬂz > 2 (2.49)
mn
This can be written as
da 1 o gsy0, (2.50)
3 IB 'Uin2 B

This can be handled by geometric programming by writing it as

o
(=]

Zom? < 21073/, (2.51)
a 4
2.5 Design Examples

The foregoing analysis shows that complicated problems of feedback allo-
cation can be expressed as globally solved geometric programs. We can take as
an objective any of the posynomial performance measures described above, and



Local Feedback in Multistage Amplifiers 19

apply any combination of the constraints described above. We can also com-
pute optimal trade-off curves by varying one of the specifications or constraints
over a range, computing the optimal value of the objective for each value of the
specification.

We provide in this section a few system-level examples. In the section 2.7,
we demonstrate a circuit-level application using the common source-coupled
pair.

251 Trade-offs among bandwidth, gain, and noise

In our first example we consider a three-stage amplifier, with all stages iden-
tical, with parameters

a; = 10, 7, =10"%ec,  Tp; = 4.07uV. (2.52)

The required closed-loop gain is 23.5dB. We maximize the bandwidth, subject
to the equality constraint on closed-loop gain, and a maximum allowed value
of input-referred noise.

Figure 2.6 shows the optimal bandwidth achieved, as a function of the maxi-
mum allowed input-referred noise. As it must, the optimal bandwidth increases
as we relax (increase) the input-referred noise limit. Figure 2.7 shows the op-
timal values of the feedback gains as the input-referred noise limit varies.

These curves roughly identify two regions in the design space. In one, the
noise constraint is so relaxed as to not be an issue. The program identifies
the optimum bandwidth solution for the given gain, which is to place all of the
closed loop poles in the same place. In the other, the tradeoff between bandwidth
and noise is strong. Equation (2.29) shows that the noise contribution of ¥y 1
is independent of I3, but the noise contributions of the following stages can
be diminished by making I3 (and therefore f1) small. It follows that f3 is the
greatest of the feedback gains, followed by f2 and f;.

We can also examine the optimal trade-off between bandwidth and required
DC gain. Here we impose the fixed limit on input-referred noise at 4.15 x 10~
V rms, and maximize the bandwidth subject to a required closed-loop gain.

Figures 2.8 and 2.9 show the maximum attainable bandwidth and the optimal
feedback gain allocation as a function of the required closed-loop gain. Again
we see two regions in design space caused by the noise constraint.
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Figure 2.6. Maximum bandwidth versus limit on input-referred noise.
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Figure 2.7. Optimal feedback allocation pattern, for maximum bandwidth with limit on input-
referred noise. Gain = 23.5dB.
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Figure 2.8. Maximum bandwidth versus required closed-loop gain. Maximum input-referred
noise = 4.15e-7 V rms.
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Figure 2.9. Optimal feedback allocation pattern for maximum bandwidth versus required
closed-loop gain. Maximum input-referred noise = 4.15e-7 V rms.
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252 SFDR versus gain

In this example, we again consider a three-stage amplifier, now with identical
stages having parameters

o; =10, B =0667V72 77 =4.07uV. (2.53)

We maximize the spurious-free dynamic range subject to an equality constraint
on the overall gain. Figure 2.10 shows the achieved SFDR as a function of
the required gain, and figure 2.11 shows the associated optimal gain allocation
patterns.

9% - -1

SFDR (dB)

1 1 1 1

3s
Gain (dB)

Figure 2.10. Maximum spurious-free dynamic range versus required gain.

In addition to obtaining optimal designs from the figures 2.10 and 2.11, we
observe a qualitative trend: feedback gain is allocated preferentially to stages
furthest down the signal chain. This is in agreement with sound engineering
judgment, and with the results of section 2.5.1.

We can also argue from the standpoint of optimum linearity that figure 2.11
makes sense. Nonlinearity in the later stages, where the signal amplitude is the
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Figure 2.11. Optimal feedback allocation pattern for maximum spurious-free dynamic range
versus required gain.

largest, will cause the most severe harmonic distortion. It follows that feedback
should be applied more aggressively in later stages.

253 Stage selection

The method described in chapter computes the globally optimal values of
the local feedback gains, with the amplifier models fixed. We can use the
method indirectly to optimally choose each stage, from a set of possible choices,
in addition to optimally allocating feedback around the stages. Suppose we
have a set of m possible choices for each of n stages. By computing the
optimal performance for each m™ possible combinations of stages, we can then
determine the optimal combination as well as the optimal feedback gains. Of
course the effort required to exhaustively search over the combinations grows
rapidly with the number of stages, but s certainly feasible for moderate numbers
of stages, e.g., fewer than six or so.
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We demonstrate this method for optimal stage selection with an example.
Table 2.1 shows a listing of three candidate stages for use in a multistage am-
plifier design. Amplifier A can be seen to have the best linearity and the worst

[ Amplifier Designation [ ai | Bi | @ |
A 10 | 0.67 41V
B 10| 67 | 414V
C 10 67 041V

Table 2.1. Candidate stages.

noise, amplifier C has the worst linearity and the best noise, and amplifier B is
in between.

Our goal is to maximize SFDR, subject to a required gain of 46dB, for a
three-stage design. By solving all 27 combinations, we find that the optimal
combination of stages and feedback is

Stage 1 amplifier C, with f = 0.00023,
Stage 2 amplifier B, with f = 0.06589,
Stage 3 amplifier A, with f= 0.20072,

which achieves the optimal SFDR of 85dB.

This solution makes sense. The low-noise stage is used for the first stage
(which is more critical for noise, since its noise is amplified by subsequent
stages), and the high-linearity stage is used for the last stage (which handles
larger signals, and so is more critical for distortion). Note that in this particular
case, the optimal solution is to operate the first two stages essentially open-loop.

2.6 Geometric programming summary

In this chapter we show how to globally and efficiently solve the problem of
optimally allocating local feedback gains in a multistage amplifier by posing
the problem in the form of a geometric program. This formulation can handle
a wide variety of practical objectives and constraints, and allows us to rapidly
compute globally optimal trade-off curves among competing specifications.

We mention several extensions that are readily handled. While perhaps
involved, it is not hard to work out the corresponding (posynomial) formulas
for distortion characteristics that have fourth, fifth, or even higher order terms.
It is also easy to handle a more sophisticated noise model, in which the noise is
injected at several locations in the feedback around each stage, and notjust at the
output as in the current model. In each case, the resulting noise power expression
is still posynomial, and therefore can be handled by geometric programming.
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Another extension is to couple the design of the feedback together with the
actual component-level design of the amplifier (for example, transistor widths
and lengths), as in [16].

We envision several situations where the methods described in this chapter
would be very useful to a circuit designer. Whenever the number of stages is at
least three, and the number of important specifications is at least three (say), the
problem of optimally allocating local feedback gains becomes quite complex,
and a tool that completely automates this process is quite useful. When the
number of stages reaches five or six, and the absolute optimal performance is
sought, our method will far outperform even a good designer adjusting gains in
an ad hoc manner.

2.7 An example application

The foregoing analysis establishes feedback allocation as a solvable problem.
The extension of our technique to real world applications, however, begs clar-
ification: we (seemingly) ignore loading between stages, choose suspiciously
simple single-pole dynamics, etc.. We thus include the following example, in
which we consider the ubiquitous source-coupled pair as our basic open-loop
stage. Local feedback is allocated in the form of source degeneration, and all
other characteristics (bias currents, load resistances, transistor sizes, etc.) are
fixed.”

Figure 2.12 shows the basic stage that we consider. The differential half-

RS 1 - Vout + RS vy revw
e s Cs = ORI\
Rp Rp 74
R
Iss .

Figure 2.12, CMOS source-coupled pair and differential half-circuit.

circuiton theright should notbe taken to represent the traditional “small-signal”
model, as the dependent current source models a MOSFET operating in the sat-
uration regime. The capacitors Cgg and C’gd are linear capacitors [10], and the

These, too, can be optimized via geometric programming. See, for example, [13], [12].
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PMOS devices provide the resistances Ry,. We show in the following para-
graphs how this common structure maps to the theoretical framework outlined
in section 2.1.

271 Linearized static model

For this model the capacitors shown in figure 2.12 become open circuits, and
the mapping from figure 2.2 to figure 2.13 is straightforward. A few short lines

V. X Ve
g i : Vgs < i d Ry out

Vs

Rp e

Figure 2.13. Source degeneration as a form of feedback.

of algebra lead to the familiar gain expression:

9m
A, = | ——— ) Ry. 2.54
(1 + ngD> - ( )

Already, it can be seen that I; from the foregoing analysis finds its place here
as (1 + gmRp)i, with Rp taking the place of feedback gain. We emphasize
that this is not merely a mathematical accident, but points to the physically
meaningful interpretation of degeneration as a feedback mechanism.

2.7.2 Static nonlinear model

Here, we modify figure 2.13 by replacing gm with G(-), the nonlinear
expression for drain current as a function of Vgg. The expression for differential
output current Iq as a function of differential gate voltage V; for a general
source-coupled pair is given in Gray and Meyer [8]. We reproduce it here:

_ C'ova 2ISS _ 2

All constants in this formula are MOSFET parameters, and Isg is the value of
the current source in figure 2.12. For our purposes, a Taylor expansion of the
square root allows us to write Gy (+) as

Gr(Vis) = Vs — BV + V5 — -+ (2.56)
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Vg i x VE.S Gm() I4 ol Ry Vout

Figure 2.14. Modification for nonlinear static model.

This is consistent with figure 2.3.

273 Linearized dynamic model

We use the Miller approximation described in Gray and Meyer [8], modified
here to account for source degeneration. The Miller approximation (see fig-

Rs Ry,
+
:|: Im
Crt Ves
Rp

Figure 2.15. Modeling dynamics using the Miller approximation.

ure 2.15) is the recognition that the dynamics of a single stage are dominated by
a single pole, which arises from the interaction between source resistance Rg
and the input capacitance. With no source degeneration, this input capacitance
would be the sum of Cgs and the Miller multiplied Cgq:

Cr = Cgs + (1 + ngL)ng = Cgs + (ngL)ng, (2.57)

where have made the approximation that the gain, Ay = g RL, is significantly
greater than unity. This capacitance, together with the source resistance, creates
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a pole with time constant 7:
T = RS(Cgs + (ngL)ng)- (2.58)

Source degeneration causes the real part of the impedance looking into the gate
to increase. At frequencies below the transistor’s fr, however, the capacitive
part still dominates and we replace Cyg in the Miller formulation with

——— 2.59
1+ gmPp ( )
Source degeneration reduces the gain of the stage from gy, Ry, to
i gm RL
Ay = ———. 2.60
Our C't capacitance is accordingly modified to
< C gm Ry,
Cr~ g+ = Cea- 2.61
T T 14 gmRp  \1+gmRp/ & (26

(We continue to assume that A, is much greater than unity.) Finally, it can
be seen that the effect of feedback has been to reduce the time constant of the
pole by a factor of the return difference 1 + gy, Rp, exactly as was shown in
section 2.2.4:

-

If we define 7 as in equation 2.58, it can be seen that the source-coupled pair
maps perfectly to figure 2.4.

Finally, note that the dynamics here, which are the poles formed by the output
impedance of stage ¢ with the input capacitance of stage ¢+ 1, are the interstage
loading effects.

7= RsCp = (2.62)

2.7.3.1 An alternative formulation: open-circuit time constants

For bandwidth optimization in pure circuit systems, it is often useful to use
the method of open-circuit time constants. The method may be summarized
as computing the resistance R; seen across the terminals of capacitors C; with
all other capacitors considered open circuits. The frequency w = m has
been shown to be a good estimate of the -3dB bandwidth for many common
circuits. Moreover this estimate, when applicable, is usually conservative. We
direct the interested reader to the excellent discussions in [8] and [10].

We present this method as an alternative. For a given stage, the open-circuit
resistance for Cgq can be shown to be

Ry = Rs+ Ry + —2™ __RgRy, (2.63)
D

1+ guR
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a simple posynomial in the design variable [ = 1 + g, Rp. For Cgs, the result
is

Rs + Rp
= —, 2.64
© = T4 g Fip (2.64)
which we write as the posynomial in /
Rgg=—+|Rs—— | I7". (2.65)
Im 9m

2.74 Static noise model

Two sources of noise in MOSFETs, drain noise and gate noise, share a
common physical origin [10]. Figure 2.16 shows their places in the MOSFET
model. Their corresponding places in our theoretical framework are clear, and

a2
v ng ”
Rs + = g Ry,

CEST w@ Pz

Rp

Figure 2.16. MOSFET noise model.

shown in figure 2.17. We only show the noise sources associated with the

Ry |——

[Rple

Figure 2.17. MOSFET gate and drain noise.
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active device itself. Resistors are known to introduce noise as well, and their
contribution is straightforward to include. The noise of R, for example, is
naturally incorporated as part of the gate noise of the following stage. Similar
manipulations can be done for Bp and, of course, Rs.

2.8 Local feedback allocation for power amplifier
linearization

This chapter gives the kind of news that is exciting to a design engineer. For
the work of manipulating a problem into the appropriate form, one is rewarded
with a design process that can have only one of two outcomes: a provably
optimum solution, or proof that the problem is infeasible. Such a design process
is extremely rare in any type of engineering, and is to be sought out wherever
possible. It was hoped that the local feedback allocation process could be of
use in linearizing RF power amplifiers.

Sadly, local feedback, at least in terms of degeneration, is not a useful tech-
nique in RF power amplifiers. The use of feedback presupposes the ready
availability of excess gain, and is therefore a resource to be traded for desensi-
tivity to gain variations in the forward path.” At frequencies in the low gigahertz
range, it is not usually true that excess gain is available. This state of affairs
spoils attempts to apply the feedback techniques that are so useful at lower
frequencies.

More flaws with degeneration emerge as one examines specific strategies.
Resistive degeneration fails because it introduces dissipative power loss, and
because it lowers the already low voltage headroom available in modern analog
technologies. Inductive degeneration, either alone or as part of a parallel LC
tank, doesn’t have these problems, but still only linearizes by throwing away
precious RF gain. Most of all, though, with degeneration there is no real way to
exploit the narrowband nature of RF signals by applying feedback exclusively in
the band of interest. The closest one can come is an LC tank as the degeneration
element, and the difficulty is that truly narrowband operation (using a high-Q
tank) results in more of a notch filter than an amplifier.

Local feedback still has a place in general RF amplifier design. For power
amplifiers, however, there are more suitable techniques for achieving linearity
and power efficiency. These techniques are the subject of chapter 3.

The way to understand how broadband amplifiers are possible with dominant-pole compensated op-amps,
and how nonlinear output stages can be used to effect a linear amplifier, is to take this view of feedback.
For op-amps the gain in the forward path is frequency-dependent. Feedback suppresses the variation, and
a broadband amplifier is the result. Similarly, nonlinear output stages represent gain variations that are
amplitude-dependent, and suppressing these variationsisequivalentto “linearizing” theamplifier.



Chapter 3

THE PROBLEM OF LINEARIZATION

The extreme desirability of achieving linearity and power efficiency in a
power amplifier has motivated a great deal of research into linearization tech-
niques. The basic idea is to run the power amplifier as close to saturation as
possible to maximize its power efficiency, and then employ some linearization
technique to suppress the distortion introduced in this near—saturated region.
This chapter gives a brief overview of the linearization problem, as well as of
some of the linearization techniques that are in the current literature.

3.1 The tradeoff between linearity and power efficiency

The impact of the power amplifier on transceiver performance is twofold.
First, because it consumes the lion’s share of the power budget, the power effi-
ciency of the entire system is improved almost exactly to the extent that such
improvement is made with the power amplifier. In a cellular phone, efficiency
leads to longer battery lifetimes. In a basestation, efficiency can mean reduced
thermal management problems. Second, the power amplifier in large part de-
termines the transceiver’s ability to use the spectrum efficiently. If the goal, for
instance, is to transmit as many bits per second given a fixed RF channel width,
the system designer will want to use a sophisticated modulation technique. The
best of these modulation techniques require a highly linear PA.

The pressing question is: do linearity and power efficiency trade off for
fundamental reasons? It may be impossible to answer that question defini-
tively. Itis always possible, for instance, that there exists a power transmission
technique unlike any that we have seen, which achieves linearity and power ef-
ficiency with little effort from the designer. Narrowing the question to “circuit
realizations based on nonlinear, three-terminal devices,” we can at least say that
no one has yet found a way to achieve this elusive goal. For reasons that may as
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well be fundamental, then, linearity and power efficiency are competing design
objectives.

Understanding of this state of affairs begins with the observation that a perfect
switch dissipates no power. When a switch is open, the current between the
terminals is zero regardless of the voltage across them, and when a switch is
closed, the voltage across the terminals is zero regardless of the current between
them. The result in either case is a zero IV product, and therefore zero power
dissipation in the switch.

Figure 3.1 shows a simplified, high-efficiency power amplifier driven to act
as a switch. The inductor acts is an RF choke, blocking RF signals while
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Figure 3.1. A high-efficiency power amplifier.

carrying a DC bias current, and Cp is a large capacitor solely for the purpose of
AC coupling. In order to get the transistor to imitate the perfect switch on the
right, its gate must be driven very hard. Signals at the gate that slam between
the supply rails are not uncommon, and sometimes an even more aggressive
drive is needed. If the result is perfect switching action, though, no power
is dissipated in the transistor. The inductor and capacitor are purely lossless
elements, and we conclude from conservation of energy than any power drawn
from the supply must be dissipated in the load. This is the very definition of
100% efficiency. It must be remembered that the key to achieving this high
efficiency is driving the transistor hard, with a high voltage signal at the gate.
By contrast, linearity in power amplifiers is most easily accomplished by
driving the transistor gently, with as small a signal as possible driving the gate.
The mathematical reason for this is discussed in section 3.3.1. What one dis-
covers is that the harder the transistor is driven, the greater its nonlinear transfer
characteristic asserts itself. The power efficiency of the circuit approaches zero
as the input drive goes to zero, and approaches 50% as the sinusoidal input
drives the output into saturation.' Since we cannot at once drive a power am-

"The efficiencies greater than 50% characteristic of switching power amplifiers derive from, in addition to
high amplitude input drive, forcing the output to approximate a square wave.
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plifier gently and brutally, we are forced to accept efficiency and linearity as
competing design objectives. It is the severity of this tradeoff that we try to
soften using linearization techniques.

3.2 Can nonlinear system theory help?

There have been some efforts to apply nonlinear system theory, particularly
the theory of Volterra series [17], to power amplifier linearization [18]. Inves-
tigations in this vein often crush themselves under the weight of cumbersome,
unwieldy analysis and calculation, leading to little or nothing in the way of
insight. This is in wild contrast to linear system theory, in which analysis and
insight are often tightly coupled. We are fortunate not only that linear system
theory exists, but also that nature allows us to approximate so many systems as
linear (and time invariant).

A casual study of nonlinear system theory has some relevance to the power
amplifier problem, however. From it we find that it is the odd-order terms in the
nonlinear transfer polynomial that cause distortion products that lie in-band.
For time-invariant nonlinear systems, subharmonic generation is not possible.
Most of all, though, we gain an appreciation for the nightmare that is power
amplifier modeling. A linearization technique that does not require a detailed
model of the power amplifier, then, should be regarded as having a fundamental
advantage.

3.3 An overview of linearization techniques

While there are many different linearization systems described in the open
literature, for the most part they fall into one of eight categories: power backoff,
predistortion, adaptive predistortion, feedforward, dynamic biasing, envelope
elimination and restoration (EER), linear amplification with nonlinear compo-
nents (LINC), and Cartesian feedback. There is also polar feedback. However,
EER serves as a sufficiently illustrative and common example of this technique
that it will not be described separately. In this section, each of these categories
is briefly reviewed.

3.3.1 Power backoff

Power backoff exploits the observation that any amplifier appears linear for
sufficiently small departures from its bias condition. This is the starting point
for analyzing transistor amplifiers in any undergraduate course on the subject,
where it bears the name “small-signal analysis.” The principle is best illustrated
mathematically. Consider that the nonlinear transfer characteristic of any device
can be expanded as the Taylor series

It = Ip 4 a1vig + agvl + - -, (3.1)



36 FEEDBACK LINEARIZATION OF RF POWER AMPLIFIERS

where I, is the total output current, I is the bias output current, and viy, is
the signal input voltage. It is seen that by shrinking vj,, the linear term can be
made to dominate all but the DC term . For RF power amplifiers, of course,
this DC term is easily blocked, and it remains that if we drive the amplifier
gently enough, the system will not suffer the spectral regrowth that accompanies
nonlinear amplification. The decision to shrink viy is called “backing off,” and
an engineer might speak, for instance, of “backing off from the 1dB compression
point until we meet our linearity spec.”

Power backoff is not really true to the spirit of linearization techniques, be-
cause no attempt is made to beat the linearity-vs.-efficiency tradeoff. The input
drive is simply reduced until linearity requirements are met, and the resulting
efficiency is accepted.” It is mentioned here because it is so commonly used,
and because it is, in fact, the best solution in some cases.

3.3.2 Predistortion

Given a precisely specified nonlinear characteristic for a power amplifier,
p(z), one approach is to pose the linearization problem as follows:

Choose a predistorter, ppre(%), and/or a postdistorter, ppost(Z), such that the cascade,
Ppost (P(Ppre())), is a linear function.

While this is the most general, most rigorous way to pose the problem in theory,
in practice it is rare for a postdistortion solution even to be considered. Adding
a postdistorter in the path between the power amplifier and the antenna would
almost certainly introduce a disastrous amount of loss.

The corrective distortion concept most often finds expression as the pre-
distorters of figure 3.2. The first implementation (the top half of the figure)
shows predistortion applied to the RF signal itself. This predistortion block
is typically an analog, clever realization of the nonlinear inverse of the power
amplifier transfer characteristic (for examples, see [19] and [20]). The second
type of predistortion is applied to the baseband symbols before upconversion,
and is illustrated in the lower half of figure 3.2 [21]. In this implementation,
the predistorting function is typically maintained as a digital look-up table.

Predistortion’s chief attribute is its conceptual simplicity. It also does not
suffer a bandwidth limitation that is as stringent as some feedback techniques.
Its chiefliability thatitis helpless in the face of variations in the power amplifier.
The exact nonlinear characteristic of the power amplifier varies with temper-
ature and process variations, not to mention aging. As conditions change, a
fixed predistorter will tend to become misaligned with the nonlinearity of the
power amplifier, resulting in suboptimal performance. Another drawback to
predistortion is its dependence on a good model of the power amplifier. Power

2The efficiencies can be extremely low. It is not uncommon to hear figures on the order of 5%.
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Figure 3.2.  Using predistortion to linearize a power amplifier.

amplifiers are notoriously difficult to model, and predistortion immerses the
designer directly into this thorny issue.

333 Adaptive predistortion

Figure 3.3 is an example of adaptive predistortion, a logical evolutionary
step forward from ordinary predistortion. The idea is to solve predistortion’s
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Figure 3.3.  An example of adaptive predistortion.

greatest weakness, which is its inability to cope with variations in the power
amplifier. The system shown in figure 3.3[22] maintains a dynamically updated
model of the power amplifier. Based on the parameters of this model, and on
comparisons between the transmitted data and the PA output, a predistortion
table is computed. By periodically updating the predistortion table, the system
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is able to react to changes due to process variations, temperature, and the like.
A substantial improvement comes without incurring a bandwidth limitation.

Complexity is adaptive predistortion’s main drawback. This strategy is usu-
ally implemented with considerable computing power, often in the form of a
digital signal processor. The power required for the DSP can effectively rule
out adaptive predistortion as an option for portable transceivers.

Adaptive predistortion shares with predistortion the difficulty of needing to
carefully model the power amplifier. In the case of the former, the difficulty is
compounded by the discrete-time stability problem associated with convergence
of the model parameters according to the adaptive algorithm.

3.34 Feedforward
Figure 3.4 illustrates feedforward linearization [23]. Conceptually, the delay

Gain = Ap

M
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Figure 3.4. Feedforward linearization.

blocks “delay 1” and “delay 2” can be ignored at first. It is seen that the
input to the perfectly linear amplifier of gain Ag is intended to represent the
additive distortion products present at the output of the PA. These products, after
being scaled back up to their original magnitudes, are then subtracted from the
PA output. The theoretical result is a linear power amplifier, and there is no
bandwidth limitation that is directly attributable to the linearization effort.

As always, things are not so neat in practice. The same lack of feedback
that gives it superior bandwidth performance gives it the potential to be a very
high-maintenance system. Because of phase shifts introduced in the carrier by
the PA and other amplifiers, for instance, delays 1 and 2 must be very tightly
tuned in order to realize good performance. The gains of the linear amplifiers
also must be very well matched to the gain of the PA. Both the phase and scaling
adjustments are bound to be disrupted by any sort of drift or process variations,
unless they can somehow be made to track each other. Finally, the analog delay
and subtractor in the output path of the power amplifier must be extremely
low-loss in order for the whole linearization effort to be worthwhile.
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335 Dynamic biasing

It sometimes happens that an amplifier exhibits good linearity over a wide
range of input signals. When this is true, the focus of the linearization effort
shifts away from making great gains in linearity. Instead, one thinks of trading
the excess linearity for a boost in power efficiency. A strategy for doing this is
called dynamic biasing [24].

In a dynamic biasing scheme, the gate (or base) bias voltage of the amplifying
device is varied according to the known statistics of the transmitted signal. The
goal, at all times, is for the amplifier to use the minimum bias current needed
for a given level of linearity. While itis difficult to achieve this ideal in practice,
substantial gains in efficiency are nevertheless possible.

3.3.6 Envelope elimination and restoration

The unmatched efficiency of switching power amplifiers has motivated ef-
forts to use them for linear amplification. Envelope elimination and restoration
(EER) is one such effort, and is illustrated in figure 3.5[25]. The basic idea is to
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Figure 3.5. Envelope elimination and restoration.

impose the varying envelope on the power supply of the switching PA, typically
using a switching, DC-DC feedback power converter. The reader will notice in
this example that no feedback is employed to ensure the fidelity of the phase part
of the carrier. This is not always the case. Sometimes the phase is regulated by
a phase-locked loop, and when the envelope and phase are feedback-regulated
the system is said to employ polar feedback[18].

The DC-DC converter represents a design issue that can make EER and polar
feedback systems difficult to implement. An excellent efficiency figure for a
DC-DC converter is 80%. If the power amplifier achieves a drain efficiency
of 60% (also impressive), the overall energy efficiency drops to 48%. High
efficiency in the power converter is difficult to maintain for high bandwidth
signals, a problem exacerbated by the fact that the polar representation has a
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higher bandwidth than the Cartesian component representation[26]. The net
result is that the efficiency burden of the power amplifier has been shifted back
to the power converter, and it requires careful design to produce an overall
benefit.

A general concern unique to strategies that deal in polar symbols is synchro-
nization between the amplitude and phase signals as they are imposed on the
RF carrier. At the time of this writing, there is no way to enforce this synchro-
nization in a closed-loop fashion. The current state of the art is to minimize the
worst-case relative delays between the envelope and phase signal paths.

3.3.7 LINC

Another approach to harnessing the efficiency benefits of switching PA’s
is illustrated in figure 3.6[27, 28, 29]. Referred to as “linear amplification
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Figure 3.6. The LINC concept.

with nonlinear components,” or LINC, the idea is that if properly chosen,
two constant-envelope signals driving the separate power amplifiers can, when
summed, result in the general bandpass signal vi, () = a(t)cos[wct + ¢(t)].
The proper choices for these constant-envelope signals turn out to be vy (t) =
0.5Vp sinfwct + ¢(t) + 6(t)] and v2(t) = —0.5Vp sin[wct + @(t) — O(¢)], where
8(t) = sin[42].

Conceptually, LINC is such a compelling idea that the pressing question
arises: why isn’t it the only solution in use today? The most obvious objection
might be the complexity involved in generating vy (t) and wva(t), but this can
be accomplished with sufficient computing power. A very real difficulty is
managing the phase and gain mismatch between the two signal paths, and
the drift thereof. The most prohibitive barrier, though, is implementing the
summation in a way that is low loss and maintains high isolation between the
two PA’s. At the time of this writing, this last problem remains unsolved.
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3.3.8 Cartesian feedback

Much of the work described in this book focuses on this last technique,
Cartesian feedback[23, 18, 30, 32, 33, 34, 31, 35, 36, 37, 38]. It is called
Cartesian feedback because the feedback is based on the Cartesian coordinates
of the baseband symbol, / and Q, as opposed to the polar coordinates. The
concept is illustrated in figure 3.7.
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Figure 3.7. Cartesian feedback.

Fundamentally, the concept behind this system is negative feedback. A
couple of factors complicate its expression in the context of an RF transmitter,
however. The first is the extremely high frequency of many RF carriers, with
modern standards calling for frequencies on the order of a few gigahertz. At this
time, it is virtually impossible to build a high-gain, stable analog feedback loop
with a crossover frequency in that range. The second factor is the recognition
that in modulating an RF carrier, we are not shaping a voltage waveform in its
entirety. Instead, we are shaping two independent characteristics of that carrier.

Cartesian feedback’s way of dealing with the first factor is the inclusion of
a frequency translation step in the feedback path, shown as a downconversion
mixer in figure 3.7. The loop is then closed at baseband, rather than at the carrier
frequency. The system consequence is to linearize only in a narrow band of the
spectrum centered about the carrier, rather than from DC to the carrier. This is
an ingenious way to exploit the narrowband nature of most RF signals.

The second factor manifests as the “double loop” structure of the system.
There are two degrees of freedom in shaping, or modulating, an otherwise free-
running RF carrier, and at least two choices of coordinate systems that fully
describe the modulation. For polar feedback and EER, the choice made is to
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consider an RF carrier as having an amplitude and a phase. The structure of
a polar feedback system reflects this choice, having one control loop for the
amplitude, and another for the phase. An equivalent choice of coordinates is
the Cartesian components, in which we consider the modulated carrier as the
sum

A(t) sin(wot + ¢(t)) = I(t) sinwgt + Q(t) cos wyt,
where
I(t) = A(t) cos ¢(t)
and

Q(¢) = A(t) sin ¢(2).

Itis seen that Cartesian feedback treats the two degrees of freedom in a symmet-
rical way, allowing the structure of the system to take the form of two identical
loops. This is in direct contrast to polar feedback, where the two degrees of
freedom must be treated very differently.

A full discussion of the strengths and drawbacks of Cartesian feedback is
left for section 5.1.



Chapter 4

PHASE ALIGNMENT IN CARTESIAN FEEDBACK
SYSTEMS

The importance of phase alignment in Cartesian feedback systems is empha-
sized in nearly all of the writing on the subject. No compact solution to the
problem of maintaining phase alignment has emerged in the literature, however,
and this absence of a solution has prevented the use of Cartesian feedback. And
while it is generally known that stability and phase alignment are related, a
clear mathematical analysis of that relationship is also conspicuously absent
from the literature.

The purpose of this chapter is to begin to fill these two gaps in the literature.
A new mathematical treatment of the consequences of phase misalignment is
given first, followed by a nonlinear control method for maintaining phase align-
ment. A discrete-component prototype based on these ideas, described in detail
in appendix A, demonstrates the soundness of the theory while identifying the
circuit nonidealities to which it is sensitive. Finally, as a way of overcoming the
shortcomings of that first prototype, a new technique for doing analog multipli-
cation is proposed, which is employed in the improved phase alignment system
of chapter 5.

4.1 Consequences of phase misalignment in Cartesian
feedback systems

Figure 4.1 shows a typical Cartesian feedback system [23]. The system block
H (s) represents the loop driver amplifiers, which provide the loop gain as well
as the dynamics introduced by the compensation strategy. The loop drivers
feed the baseband inputs of the upconversion mixer, which in turn drives the
power amplifier. Some means of coupling the output of the power amplifier to
the downconversion mixer is employed, and the output of this mixer is used to
close the feedback system.
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cos(wt + ¢)

Figure 4.1. Typical Cartesian feedback system.

4.1.1 Terminology Convention

We first identify the terminology conventions that are used in the analysis
that follows. Figure 4.2 shows an example feedback system. The signal e(s)

O— S e - Y)

F(s)

Figure 4.2. Simple feedback system.

is the error, or difference between the command input, X (s}, and the feedback
signal. The output of this system, Y (), is related to the command input through
the well-known relation

Y(s) _ H(s)
X(s) 1+ H(s)F(s)

We refer to the quantity H(s)F'(s) as the loop gain, or loop transmission, of
the system, and give it the symbol L(s).

4.1.2 Impact of phase misalignment on stability

Ideally, a Cartesian feedback system functions as two identical, decoupled
feedback loops: one for the / component, and one for the Q component. This
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corresponds to the case of ¢ = 0 in figure 4.1. In practice, however, this
state of affairs must be actively enforced. Delay through the power amplifier,
phase shifts of the RF carrier due to the reactive load of the antenna, and
mismatched interconnect lengths between the local oscillator (LO) source and
the two mixers all manifest as an effective nonzero ¢. Worse, the exact value
of ¢ varies with temperature, process variations, output power, and carrier
frequency. A Cartesian feedback system in which ¢ is nonzero is said to have
phase misalignment. In this state the two feedback loops are coupled, and the
stability of the system is compromised.

The impact of phase misalignment on system stability can be seen mathe-
matically. We start by observing that the demodulated symbol S’ is rotated
relative to S by an amount equal to the phase misalignment ¢. To see this, we
write Cartesian components of the demodulated symbol

I' = (Isinwt+ Qcoswt)sin(wt + @)
Q' = (Isinwt+ Qcoswt)cos(wt + ¢),

where w is the carrier frequency. Using trigonometric identities and assuming
frequency components at 2w are filtered out, we arrive at S’

I' = %(Icos¢+Qsin¢) @4.1)
Q = %(—Isin¢+Qcos¢). 4.2)

We see that for ¢ # 0, an excitation on the I input of the modulator results in
a signal on the Q' downconverter output (and similarly for Q and I'). Accord-
ingly, we say that the two loops are coupled.'

One method of stability analysis is to consider the error signals ey(s) and
eq(s) shown in Figure 4.1. Recall that for a single feedback loop, the error
signal is written

e( S) = 1_)(ﬁ’
+ L(s)
where X (s) is the command input. In the present case, let the phase misalign-
ment be ¢. Furthermore, we set Qq = 0 without loss of generality.” The error
expressions, as a function of the single input I4(s), are written

I4(s) — L(s)er(s) cos ¢ — L(s)eq(s)sin¢
L(s)er(s)sing — eg(s)L(s) cos ¢,

er(s)
eq(s)

'Technically, ¢ = 7 is also an uncoupled case. However, there is now an inversion in both loops, resulting
in positive feedback instead of the desired negative feedback.
*We do not lose generality as long as we stay with linear analysis.
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where L(s) includes the dynamics of the loop compensation scheme H(s) and
the (linearized) dynamics introduced by the modulator, power amplifier, and
demodulator. From here, it is straightforward to show that

X(s)

er(s) = . .
1+ L(s)cos¢ + u—%-)—]—liz j‘";‘f;f,,

This reduction of the system to a single-input problem now yields considerable
insight. We identify an effective loop transmission, Leg (s, ¢), as follows:

[L(s) sin ¢)?

Legt(s, ¢) = L(s)cos ¢ + 1+ L(s)cosg’

4.3)

For perfect alignment, ¢ = 0 and Leg is simply L(s). The worst alignment is
¢ = %, for which Leg = [L(s)]? and so the loop dynamics are a cascade of the
dynamics in the uncoupled case. Unless designed with this possibility in mind,
most choices of H (s) yield unstable behavior in this second case. Equation 4.3
shows that traditional measures of stability degrade continuously as ¢ sweeps
from 0 to %, a fact demonstrated experimentally by Briffa and Faulkner [34].

413 Compensating the system for robustness to phase
misalignment
Equation 4.3 offers a great deal of insight into what happens in a phase-
misaligned Cartesian feedback system. Physically, the fully coupled (¢ = %)
case behaves as depicted in figure 4.3, where P(s) represents the dynamics that
the upconversion mixer, power amplifier, and downconversion mixer contribute
to the loop transmission. In the literature, all efforts with regards to the phase

B)— H(s) P(s) H(s) P(s) —‘

Figure 4.3. Cartesian feedback under 90-degree misalignment.

alignment problem have focused, naturally, on ensuring phase alignment. But
there is at least one other approach that deserves consideration: is it possible to
choose H(s) such that it is stable for large phase misalignments?

The answer depends in part on what one means by “large.” Considering
a misalignment of ¢ = m, for instance, is discouraging. In this case Leg =
—L(s), and there is simply no compensation strategy that is indifferent to the
sign of the loop transmission. Cartesian feedback in fact does become a positive
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feedback system for misalignments in the open interval (%, 37"), where the exact
point of transition from negative to positive feedback depends on the details of
L(s). To avoid considering positive feedback cases, then, itis sensible to restrict
the range of misalignments to the closed interval -7, Z].

That stability margins degrade continuously with ¢ suggests that finding a
compensation strategy that works in the limiting cases of ¢ = 0 and ¢ = F will
solve the problem for the whole interval. Assuming the dynamics of the loop
are dominated by H(s8), a compensation strategy that emerges is

k

5@’

H(s) =

where 0 < z < 1. Such “slow-rolloff” functions, while not truly realizable
with a lumped-element network, can be approximated by alternating poles and
zeros such that the average slope of H(s) is the appropriate dB-per-decade[3].
In the case of x = 0.5, for instance, stability as measured by phase margin
would be excellent: 135 degrees in the aligned case, and 90 degrees in the
misaligned case.

Root locus analysis confirms that slow-rolloff compensation is a viable ap-
proach to designing for large misalignments. Figure 4.4 shows the root loci for
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Figure 4.4. Root locus plots for dominant-pole and slow-rolloff (-\’7%) compensation.

the dominant-pole and % compensation strategies. It can be seen that even
in the case of the dominant-pole, 90-degree misalignment doesn’t necessarily
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lead to right-half-plane poles. At best, however, the result is a lightly damped,
complex pair of poles. At worst, high-frequency poles not shown here (or not
modeled) push this complex pair into the right-halfplane. By contrast, the slow-
rolloff compensation is seen to lead to heavily-damped complex pole pairs, and
one expects a corresponding reduction in overshoot and ringing in response to
an input step. One also expects the low-frequency, zero-pole doublets of the
root loci to manifest themselves as slow-settling “tails” in the step response [3].

Experiments carried out on the final IC in accordance with this compen-
sation discussion validate these expectations. As seen in section 5.5.2.2, the
slow-rolloff technique stabilizes the system for all misalignments up to 90 de-
grees. In addition to shedding light on compensation strategies for Cartesian
feedback systems, the importance of these experiments is that they confirm the
understanding developed in section 4.1.2.

4.2 A nonlinear regulator for maintaining phase alignment

Occasionally continuous regulation of the phase alignment is not needed, and
it suffices to introduce a manually adjustable delay between the LO source, and,
say, the demodulator [18]. This approach is only feasible, however, ifthe system
is not subject to variations in temperature, carrier frequency, process parameters,
or, in some cases, output power. For cases in which the alignment must be
regulated, various methods have been proposed in the literature [30, 32, 36, 37].

We present our control concept as a compact, truly continuous solution to the
problem of LO phase alignment. It is truly continuous because it does not, for
example, rely on the appearance of a specific symbol or pattern in the outgoing
data stream. Itis compact because it is easily implemented without digital signal
processing, as presented here. This is a particularly compelling advantage, as
the signals in a Cartesian feedback system are necessarily in analog form. And
we emphasize that, because the concept is based on the processing of baseband
symbols, its realization is independent of carrier frequency.

4.2.1 Nonlinear dynamical system

Figure 4.5 represents a baseband symbol at the inputs of the modulator and at
the outputs of the demodulator of a Cartesian feedback system. Mathematically
the vectors are described in both Cartesian and polar coordinates, with primed
coordinates denoting the demodulated power amplifier output and unprimed
coordinates denoting the modulatorinput. In addition to undergoing a distortion
in magnitude, the demodulated symbol is rotated by an amount exactly equal
to the phase misalignment (see equations 4.1 and 4.2).

A start to the design of a phase alignment regulator is to observe that the
signals I, Q, I, and @', taken together, represent enough information to de-
termine the phase misalignment. Further, they are easily accessible within the
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Figure 4.5. Rotation of the baseband symbol due to phase misalignment.

system. We seek to combine these variables such that, over a suitable range,
the derived signal is monotonic in the phase misalignment.

One such combining of the variables is the sum of products IQ’ — QI’. Rec-
ognizing that I = rsin@ and @ = r cos @, and using trigonometric identities,
we write the key relation

IQ' — QI' = rr'sin(6 — ¢'). 4.4)

We see that using two multipliers and a subtractor, operations easily realizable
in circuit form, one can derive a control signal that is indeed monotonic in the
phase misalignment over the range —§ < 8 — 6’ < 7.

Figure 4.6 details a nonlinear dynamical controller built around equation 4.4.
Using the notation Af = 6 — #’, an implementation can be understood as
mechanizing the equation

do

= —&[r(t)]*G sin(A), (4.5)

where « is a constant of proportionality and gain G is associated with the
integrator.

Equation 4.5 presupposes the ability to correct the phase shift by changing 6.
The original prototype described in appendix A realizes the required rotation by
directly phase shifting the modulator LO. However, substantial power savings
result from doing symbol rotation at baseband as shown in figure 4.6. Regard-
less, rotation should be performed in the forward path of the Cartesian feedback
system, where the unavoidable artifacts of imperfect rotation are suppressed.
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Figure 4.6. Phase alignment concept.

422 Stability concerns

Our control solution for the phase alignment problem is the simplest of non-
linear dynamical systems. It is seen from equation 4.5 to have two equilibrium
points. The first, for which the symbols are aligned, is stable. The second,
for which the symbols are misaligned by 7 radians, is unstable. For the ideal
system represented by equation 4.5, this is the extent of a rigorous stability
analysis.

The real-world situation can be complicated by dynamics associated with
the phase shifter (and, possibly, the subtractor). If we provisionally consider
a modulation scheme in which the magnitude of transmitted symbols is held
constant,’ 7(t) in equation 4.5 loses its time dependence. Linearizing for small
phase misalignments, and including the dynamics of the phase shifter as P(s),
we can represent the system as shown in figure 4.7. Drawing the system this
way requires some manipulation. The output of the phase shifter is not really
0, but rather an additive part of 8 that gets combined with the polar angle of
the symbol being transmitted. However, in the absence of phase distortion
and drift, the symbol-by-symbol changes of the polar angle 8 are tracked by
identical changes in #'. These symbol-rate changes are thus invisible to an
alignment system, and it is appropriate to label the output of P(s) as §. We

3Unlikely when using Cartesian feedback, of course. Temporarily making this assumption, however, yields
insight that is broadly relevant to the stability analysis.
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Figure 4.7. Linearized phase regulation system. 'M’ is the desired misalignment, which is
nominally zero.

can then include the effects of phase distortion and phase alignment drift as the
additive disturbances of figure 4.7.

One can ensure stability by choosing G such that, for the largest symbol
magnitude, loop crossover occurs before non-dominant poles become an issue.
Fortunately, the drift disturbance will normally occur on time scales associated
with temperature drift and aging [23]. Suppression of the phase distortion is
the domain of the Cartesian feedback itself. It follows that for many systems,
little of the design effort need be focused on fast phase alignment.

4.2.3 Quadrature error in the mixers

The analysis of the phase alignment control problem becomes complicated
when one considers quadrature error in the mixers. Mathematically, the change
is that the Cartesian basis vectors ¢ and § are no longer orthogonal for the mixer
with the quadrature error. It can be shown that with this nonideality, no single
setting of the phase shifter keeps the quantity 7' — QI' zero for all possible
symbols. This analytical result is independent of the phase alignment method
used.

Fortunately, mixers with small quadrature errors (+ 5 degrees) are easily
realized. Such mixers cause no serious problems in the experiments for this
work, or in the Cartesian feedback systems that have been described in the
literature.

4.24 Impact of multiplier offsets

The ability to accurately regulate the phase alignment depends on the ability
to accurately calculate IQ' — QI'. In this regard, DC offsets associated with the
output buffers of the multipliers and the input of the integrator are particularly
troublesome. Consider an input-referred offset of § for the controller integrator,
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and its effect on the final alignment. We write

do '
pri G[~k[r(t))* sin(A8) + 8] = 0.

For the prototype of appendix A, & is approximately 1.3V~!. For a symbol
magnitude of 50mV, we can solve for the offset that results in a 5-degree final
misalignment:

6 = (1.3V~1)(50mV)? sin <M> = 283uV.
360
This example illustrates one of the major challenges that the analog multipliers
introduce, which is that offsets become increasingly intrusive as symbol mag-
nitudes decrease. A 5-degree misalignment for a symbol magnitude of a volt
leads to a 0 of 113mV, for example, while for a symbol magnitude of ImV, §
shrinks to 0.113uV.

Mitigating this effect is the fact the controller slows for smaller signals: until
offsets dominate, |%[ scales linearly with [r(t)]2. These numbers nevertheless
suggest that offsets deserve careful consideration in any circuit realization of
this control concept.

4.3 A new technique for offset-free analog multiplication

Section 4.2.4 demonstrates the problems that offsets associated with analog
multipliers introduce. We now describe a new technique for analog multipli-
cation , invented specifically for the phase alignment problem, but generally
applicable to the problem of analog multiplication. It is first applied in the IC
prototype of chapter 5.

An example of a basic, CMOS multiplier cell can be seen in figure 5.9 [39]. A
mathematically complete description of a multiplier’s offset behavior requires at
least three quantities: dr and dq, the offsets attributable to the inputs, and do, the
offset introduced in the current-to-voltage conversion performed at the output
of the multiplier. Minimizing these offsets is difficult. One might imagine, for
example, some combination of careful, symmetrical layout and a calibration
step. We introduce instead the technique shown in figure 4.8. The underlying
idea is to employ chopper stabilization to eliminate (or at least greatly suppress)
these multiplier offsets which produce the dominant phase alignment errors in
conventional realizations. Long successfully used in precision DC amplifiers
[3, 40, 41], two critical modifications are required to apply chopper stabilization
to analog multiplication. The first modification is to chop the two inputs in
quadrature, and the second is to chop down at twice the original chopping
frequency. To the extent that this chopping strategy is perfectly implemented,
offsets dy, dq, and dp are completely circumvented.
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Figure 4.8. New technique for offset-free analog multiplication.

The chopping operation is equivalent to mixing a signal with a square wave
of unit amplitude.” In the following treatment, one chopping waveform will be
denoted co(t), and the other, quadrature waveform will be denoted cgo(t). We
write these two waveforms as their Fourier series decompositions

o0

4
=3 —— i 1
co(t) 2 Gt sin(2n + 1)wot

cgo(t) = Z:: (2_m£—lrl)—7r(_l)m cos(2m + 1)wpt,

m=0

*That is to say, a square wave that alternates between +1 and -1. We clarify because sometimes, particularly
in single-ended systems, it is convenient to chop with a square wave that alternates between +1 and 0. This
latter case requires a mathematical treatment that differs slightly from what we present here.
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where wy is the angular chopping frequency 27 fo.
Figure 4.8 shows the signals applied to the inputs of the analog multiplier as

Ico(t) + 6
and
@ coo(t) + 0Q-

Assuming linear multiplication, the output of the multiplier (before the down
chopping operation) is written

IQ’Co(t)CQO(t) + 51Q'Cgo(t) + 5QICo(t) + é1dq + do. 4.6)

The second and third terms of this expression can only have spectral content
centered at wg and/or its odd harmonics, while the fourth and fifth terms are
centered at DC. The key, then, is to demonstrate that the product cg(t)cgo(t)
has spectral content only at even harmonics of the fundamental. A graphical
analysis, as shown in figure 4.9, is by far the easiest way to accomplish this.
The product co(t)ego(t) is seen to be

o]

co(t)egn(t) = cauw(t) = Z

n=0

Gntin sin (2n + 1)(2wp)t,

which has spectral components only at the even harmonics 2wy, 6w, 10wp, - - - .
Equation 4.6 now becomes

IQ'ngo (t) + 51Q’Cgo(t) -+ 5QICo(t) + 5[§Q + do, @.7

and we achieve the goal of separating, in the frequency domain, the desired
product from the artifacts of DC offsets.

The last steps are to do a down-chopping operation, and then to filter. For
the down-chopping waveform, cg,,(t) is the proper choice. To analyze the
effect of multiplying expression 4.7 by caqy, (t), it is helpful to make use of the
equalities

Co (t)Csz (t) = Cgo (t)
coo(t)cawp(t) = colt)
Cowo () Cowo (1) = 1,

which are readily verifiable by the kind of graphical analysis depicted in fig-
ure 4.9. Multiplying expression 4.7 by cg,,,, We obtain

IQ + 51Q'Co(t) + 5Q1690(t) + (619q + d0) 2w, (t). (4.8)

Passing through a low pass filter at last yields the desired product, 1Q'.
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Figure 4.9. Graphically computing co(t)ceo(t).

43.1 Limits on performance

Practical multipliers built using the chopping strategy of this section will
enjoy substantially improved DC performance. The exact amount of improve-
ment, however, is limited by the extent to which the mathematical abstractions
of the foregoing analysis can be realized in practice. Chief among these ab-
stractions are the ideal square waves as chopping waveforms, and the exact
quadrature relationship between the two up-chopping clocks.

We are fortunate here that the gap between what is achievable in practice and
what is demanded in theory is not prohibitively wide. CMOS technology, with
its naturally available voltage switches, makes the chopping operation straight-
forward: simply commutating the two sides of a differential signal achieves
the desired aim. Also, by using edge-triggered D-flip-flops, chopping clocks
can be derived whose transitions occur only on the leading edge of a reference
clock (see, for example, figure 5.17). To the extent that the reference clock is
periodic, and regardless of its duty cycle, the chopping clocks will have a duty
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cycle of 50% and the quadrature relationship between the up-chopping clocks
will be perfect.

44  Summary

This chapter essentially chronicles the evolution of a new phase alignment
concept through two generations of development. The work begins by clearly
setting down the mathematical consequences of phase misalignment, something
that had not fully emerged in the literature. The first generation of development
is represented by the original IQ' — QI' controller, described in [42] and in
appendix A. This discrete-component prototype not only serves well as a proof
of concept, it also demonstrates the sensitivity of the controller to the DC
offsets of the analog multipliers. In response, a new technique for realizing
analog offset-free analog multiplication is proposed [43]. Inspired by chopper
stabilization, it finds its first physical realization in the integrated circuit of
chapter 5.



Chapter 5

A FULLY INTEGRATED CARTESIAN FEEDBACK
SYSTEM

Among linearization techniques, Cartesian feedback has languished for many
years behind predistortion and feedforward techniques in terms of widespread
use. Even adaptive predistortion, carrying its overhead in power dissipation
and complexity, has enjoyed more popularity in the literature. This chapter
begins, then, with a brief examination of this state of affairs, and an explanation
of the ideas that we explore with the CFB IC project. The rest of the chapter is
devoted to describing the design of the prototype, and to the evaluation of its
performance.

5.1 Motivation for pursuing Cartesian feedback

One naturally suspects that if Cartesian feedback has languished, it has done
so for very good reasons. For a long time, there were two primary reasons. The
first was that, being an analog feedback technique, it is necessarily bandwidth
limited. The second was that there seemed no easy way to guarantee the phase
alignment critical to system stability. After some initial investigation, however,
the CFB IC project was started with the idea that these reasons were practical,
not fundamental, and that the fundamental strengths of the technique justified
a strenuous effort to overcome the practical problems.

Chief among the strengths is that compared to most other linearization tech-
niques, the level of detail required in the power amplifier model is greatly
reduced. The weight of this advantage cannot be overemphasized. At the time
of this writing, power amplifier modeling remains a formidable task whose
complexity shows no signs of diminishing. Even a casual browsing of the lit-
erature reveals an entire research community devoted to this very active field
[44, 45, 46, 47, 48, 49, 50, 51, 52]. Linearization techniques that rely on the
quality of the power amplifier model are therefore limited by that quality as well,
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as the path to better performance lies through the painstaking characterization
of poorly understood phenomena.

The effectiveness of Cartesian feedback, on the other hand, is defined by the
quality of the downconversion, the amount of loop gain, and the stability of the
system. The limit imposed by the quality ofthe downconversion is fundamental
to linearization strategies, as itis always necessary to look at the output baseband
spectrum to evaluate performance. Andif we allow for sufficiently conservative
loop dynamics, stability and loop gain can be assured knowing only a worst-
case group delay estimate of the power amplifier and bounds on its small-signal
gain. For the trouble, a designer is rewarded with a system that is inherently
low-power and resistant to drift.

In summary, there is strong theoretical motivation to pursue CFB. So it must
be asked: can the practical drawbacks of the technique be overcome? As
described in chapter 4, phase alignment seems suddenly to be manageable. But
what about bandwidth, which is surely a fundamental limitation?

For that, we turn to figure 5.1 and observe that the signals at the baseband
inputs of the upconversion mixers are correctively distorted versions of the
desired baseband symbols. One can therefore view a Cartesian feedback system

-*— Predistortion node

= S
PA —=
Qals) eq(s) Q |
«(T) H(s)

-‘\'/ sin wit

coswi i
I

LD{CZ?‘ Q

coswt

Figure 5.1. 'The predistorting action of Cartesian feedback.
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as an analog computer, calculating at every instant the mixer input required to
realize the desired baseband symbol. Suppose now that the transmitted data
is drawn from a finite set of possible symbols, as is the case with any digital
modulation system, and that the power amplifier, while nonlinear, is time-
invariant. It follows that such a computer would need perform its calculation
only once on a given symbol. If the result is then stored, it could be recalled
upon the reappearance of the corresponding symbol.

The reader may recognize here the driving principle behind the traditional
predistortion strategy. What predistortion famously lacks, however, is a way
to deal with the fact that power amplifiers are not time-invariant. They age,
for instance, and are subject to temperature and process variations. Adaptive
predistortion is designed to take advantage of the relatively slow time scales of
this time-variant behavior. Rather than have a continuously closed feedback
loop, an adaptive predistorter updates its model as often as is deemed necessary.
The result is that such a system does not suffer the bandwidth limitation that a
Cartesian feedback system does.

In this dissertation a new use for Cartesian feedback is proposed, which is
illustrated in figure 5.2. The heart of the idea is to use a Cartesian feedback

:] Look-up table
sin wt

A/D

I4[n] D/A ) H(s) —

Qaln] D/A ), H(s) p—

coswt

Figure 5.2. Cartesian feedback used to train a predistorter.

loop to train a predistorter. When the switches “A” in figure 5.2 are closed,
the switches “B” are open and the system functions as an ordinary, closed-
loop system. All of the symbols to be transmitted are stepped through in a
suitable calibration sequence, with each symbol being held until the system
settles completely, whereupon the output of the A/D converter is stored in a
look-up table. Once this look-up table is complete, the switches “A” are opened,
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switches “B” are closed, and the system is ran as an open-loop predistorter.
When deemed necessary, the calibration sequence is done again.

In effect this is a lower power, lower complexity version of adaptive predis-
tortion. It is lower power because there is no digital signal processor. Instead, a
simpler finite-state machine for overseeing the calibration process suffices. It is
lower complexity because no effort is made to maintain a detailed model of the
power amplifier itself. One strategy in an adaptive predistorter, for example, is
to model the power amplifier transfer characteristic with a polynomial of many
terms, and then update the coefficients of those terms to minimize distortion
products [22]. In part, the complexity lies in trying to update the model in a way
that successfully and quickly converges. One has traded the analog stability
problem (of Cartesian feedback) for a nonlinear, multivariate one.

The main advantage of the idea is that calibration can be done at low symbol
rates, where loop gain is plentiful, and then actual transmission can be done
at high symbol rates while not constrained by the speed of the closed-loop
system. Thus the bandwidth limitation, long a liability of Cartesian feedback,
is effectively circumvented.

A concern at the beginning of this project, however, was the possibility
that data gathered at low symbol rates is no longer valid at high symbol rates.
Researching the literature quickly quieted these fears. Open-loop predistorters
are regularly tuned using one or two unmodulated carrier tones[20, 19]. The
case of one tone, in particular, corresponds to a static characterization from
the standpoint of baseband input. The open-loop predistortion literature thus
represents a body of empirical evidence that the nonlinear characteristics of
power amplifiers do notchange significantly over typical baseband bandwidths.

At this point, having found ways to deal with the bandwidth limitation and
the phase alignment problem, it was decided to implement a prototype Carte-
sian feedback system as a platform for exploring these ideas. The next major
decision was whether to design an IC, or to build a discrete-component system.

5.2  Motivation for a monolithic implementation

For this project a monolithic implementation and a discrete-component im-
plementation are conceptually equivalent. The decision to build an IC was
based primarily on industry interest. Had a discrete version been successfully
built, questions concerning the feasibility of a fully integrated version were
anticipated. The hope was that by demonstrating, on a single die, a power am-
plifier, a phase alignment system, and a complete Cartesian feedback loop, this
project might gain a new relevance for Cartesian feedback in this era of highly
integrated solutions.

There are some aspects of the design that are genuinely easier for a monolithic
design. Above all, a same-chip implementation allows for minimum power
consumption in the linearization circuitry. To see why, consider the proliferation
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of analog multipliers in this system. Discrete multipliers, of the type used in the
phase alignment prototype, are often designed to achieve high bandwidth, 1-volt
output swings while driving resistive loads as low as 25 ohms. While the speed
is certainly useful, the ability to drive resistive, off-chip loads translates into
large power dissipation requirements. The on-chip environment, where output
loads for circuit blocks are no larger than the gates of a few MOSFETS, can be
exploited to achieve the lowest possible power dissipation for the linearization
and phase alignment circuitry.

The prototype Cartesian feedback IC is implemented in National’s 0.25/um
process, and operates with a 2.5V supply.

5.3 CFB IC at the system level

Before the individual circuit blocks can be designed, a few general consid-
erations must be addressed. Chief among these is isolation of the linearization
circuitry from the large-signal, high-frequency signal swings of the power am-
plifier. A known liability of circuits implemented in a CMOS process, this
possibility of substrate coupling is dealt with by making all signal paths, to the
extent possible, fully differential. Additional confidence derives from the dis-
parate frequency bands in which the different subsystems operate. The power
amplifier operates at 2 GHz, while the linearization circuitry, based as it is on
op-amp-type topologies, is largely insensible to signal frequencies greater than
10 MHz or so.

Otherwise, the following list details five of the most important overall con-
siderations for the design:

s Downconversion mixers: the system should have the highest-quality down-
conversion mixer possible. While mixers have many performance measures,
linearity is paramount for this system.

s Predistort I/O: access to the “predistortion nodes” of figure 5.1 must be
provided to the user. A way must be provided for switching between driving
the upconversion mixer directly and ordinary, closed-loop operation.

s Adjustable loop dynamics: the user must be able to alter the transfer
function, H(s), of figure 5.1. This will allow the chip to be a vehicle for
exploring different loop compensation strategies in a Cartesian feedback
system.

s Managing DC offsets: within various subsystems, it happens that succes-
sive stages, either performing amplification or some other analog signal
processing function, are DC coupled. It is important to ensure that DC
offsets alone never cause saturation.
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m Testing for phase alignment: for characterizing the tracking behavior of
the phase alignment system, there must be a means of manually introducing
phase misalignment.

Figure 5.3 is a conceptual diagram of the complete integrated circuit that
serves to demonstrate many of the ideas developed in this dissertation. Discussion
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Figure 5.3. Conceptual diagram of CFB IC.

of the circuit details proceeds in two main parts. Section 5.4 is a detailed de-
scription of implementation of the phase alignment system, while section 5.5
covers the remainder of the IC.

5.4  The phase alignment system

As seen in chapter 4, the mathematical description % =GUQ - QI') =
—~Grr'sin(@ — ') of the phase alignment concept provides, for the most part,
a straightforward mapping onto a circuit realization. The time derivative im-
plies the presence of an integrator, the sum of products points to two analog
multipliers and subtraction, and the factor G implies amplification. What is not
obvious from the mathematics is how to actually realize the necessary phase
shift. While in principle the corrective phase shift can be done at either the
upconversion or downconversion stage, in practice it should be done at the
upconversion system block. The reason for this recommendation is that it is
impossible not to introduce some noise or distortion by the very act of rotation.
The upconversion block is in the forward path of the Cartesian feedback loop,
and so here the added signal corruption is suppressed.
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Otherwise, the designer has considerable freedom in realizing the physi-
cal implementation. Figures 5.4 and 5.5 show two mathematically equivalent
methods of phase shifting for the Cartesian feedback IC. Actually phase shifting
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Figure 5.4. Phase alignment by phase shifting the local oscillator.

the local oscillator, as shown in figure 5.4, is conceptually the most obvious
choice, and is the method used in the original discrete-component prototype.
The phase shifters themselves are simply quadrature modulators with appro-
priate control signals fed into the IF ports, an implementation amenable to
integration. Phase shifting the local oscillator has the practical shortcoming of
amplifiers A, necessary because the LO port of a quadrature modulator often
requires a very high amplitude signal. It follows that at multi-gigahertz carrier
frequencies, the power overhead incurred by generating successive LO signals
can be considerable.

Rotation of the baseband symbol is thus a lower power solution, and is used
for the prototype IC. Shown in figure 5.5 are two analog matrix multiplication
blocks. Four analog multipliers form the core of each.

Not shown in either figure 5.4 or figure 5.5 are the details of the blocks that
take ¢ as an input and produce sin ¢ and cos ¢, or signals proportional thereto,
as outputs. No such blocks to produce this literal transformation are used for
this work. Rather, a simplifying compromise is used that still accomplishes the
desired end. Mathematically, a first step is to feed the voltageinput, vy, directly
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Figure 5.5. Phase alignment by rotating the baseband symbol.

through to one of the outputs
vsin¢ = Ud).

Keeping in mind the relation sin® ¢ + cos? ¢ = 1, the goal is achieved if it is
arranged that

VUcosp = K — vs2in(b>

where K is a constant. Figure 5.6 is a conceptual diagram of the analog circuit
used in the original prototype. Generating vgin ¢ and veeg ¢ this way, as opposed
to a literal deriving from an input vy, has minor mathematical consequences, a
brief discussion of which can be found in section A.1.

The concept of figure 5.6 has the advantage of realizing a pure rotation
without an angle-dependent warping of the symbol magnitude. It suffers the
circuit liability of requiring analog squarers, which in practice are difficult to
build without introducing substantial DC offsets. Before forging ahead with
the IC prototype, then, another simplification is needed.

Consider the solution shown in figure 5.7. Here the control loop acts to
preserve the 1-norm of the (Using¢,Vcos¢) PAIr: |vsing| + |Using] = K. For
lvg] < K, rotations over a range of +90 degrees can be achieved. The ana-
log squarers are gone, and in their place we have the potential complication
of a folding amplifier to realize the absolute value function. Fortunately the
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Figure 5.7. Analog rotation using the 1-norm.

offset-free voltage switches, or pass gates, available in CMOS enable a sim-
ple implementation strategy for this block if the signal paths are differential.
One idea is illustrated in figure 5.8, which shows a bridge of four switches
between the input and the output. A comparator senses the sign of the input,
and configures the switches such that the output is always of the same sign.
This simplicity of implementation comes at a price, which is that now the
symbol magnitude is warped as a function of the rotation angle. Specifically,
figure 5.7 shows that over the course of any continuous 90-degree rotation,

the minimum magnitude is factor of —é—i =~ 0.707 smaller than the maximum
magnitude. By performing the rotation on the upconverted signal, however, this
distortion is introduced in the forward path of the Cartesian feedback system,
where it is maximally suppressed.
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Figure 5.8. Using CMOS voltage switches and a comparator to realize a folding amplifier.
Switches are closed when their respective control signal is high.

54.1 Circuit details

The list of necessary circuit blocks follows quickly and naturally from the
conceptual framework established in chapter 4 and thus far in section 5.4: a
basic multiplier cell, a phase error computation block, an analog integrator,
a circuit realization of figure 5.7, and an analog matrix rotation block. The
following paragraphs detail the design of the circuit blocks used in the phase
alignment portion of the CFB IC.

54.1.1 Basic multiplier cell

The topology for the multiplier cell, shown in figure 5.9, is chosen from
among the many possibilities that have been documented for CMOS technology
[39]. Conceptually, the circuit can be understood by looking at the output
current contributed by the first numbered, stacked transistor pair. The bias
voltages X and Y are chosen such that the bottom transistor operates in the
triode region. The top transistor functions as a source follower, or voltage
buffer, and sets Vgg of the bottom transistor. The underlying principle then
becomes clear from the drain current expression for a transistor operating in
triode,

w Vas
Is = pnCox (f) ((Vgs - Vr) - _;_> Vas (5.1)

w V2
= HnCox <—L—> (VgsVds - VrVys — ”2(151) .
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Figure 5.9. Basic topology for multiplier cell. All transistors connected to a y input are sized
M:op, and all transistors connected to a  input are sized Mpot.

The term VgsVys is what we want, since Vg is set by y through the source
follower and Vg is setby x directly. In the following we show that the other three
stacked pairs serve primarily to cancel the undesirable terms in equation 5.1.

For the detailed derivation, we start by writing for I, the current output of
transistor pair 1:

|24 Y — Vas—ton +
I = pnCox (f) (X +z— V- Gz o y) (Y — Vas—top + ¥),
bot

(5.2)

where the Vi is the threshold voltage (body effect is ignored), and Vgs—_top is
the bias value gate-to-source voltage of the top transistors. It is convenient to
expand equation 5.2 slightly:

w
I, = ,UnCox (f) ((X - VT) (Y +y - VGS——top) +axy+zx (Y - VGS—top) -
bot

(Y - VGS-top + y)z)
5 .

Now, do the same for the other stacked pairs:

W
I, = ,unCox (f) ((X — VT) (Y —Yy- VGS—-top) tzry—2 (Y - VGS—top) -
bot

(Y - VGS—top - y)2)
2 !
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W
Is = paCox (f) ((X V)Y -y - VGS—top) —zy+z(Y - VGS—mp) -
bot

(Y - VGS—top - y)2>

2

and

w
i = nCoc () (X = V)V 4= Vosap) = oy = 2 (Y = Vos-p) -
bot

(Y - VGS—top + y)2)
5 .

The last step is to combine terms according to
Iout = Lout+ — lout— = (Il + 12) - (I3 + 14)-

Doing so results in the output current

W
Ious = pnCox (f) (437:1/) .
bot

It is important to emphasize that the foregoing derivation hinges on approx-
imating Myop as a source follower, allowing us to treat Vgs—_top as a constant
offset independent of y. To assure that this approximation is valid in practice,
we turn to the expression for the voltage output of an ordinary source follower,

Im P
14 gmBRy

where Ry in equation 5.3 is the resistance in the source. The goal of a voltage
buffer is achieved to the extent that we ensure gy, Rs > 1. For the multiplier,
then, we require g;“s—::)‘;% > 1. The drain-source conductance of the bottom
transistor varies greatly with Vpg_pot, but we can establish the upper bound

Vout = Vim (5‘3)

%%
Gds—bot | Vps_oe=0 = #nCox | (Vas—bot — V1) -
L bot

Recalling that
w
gm—top = #nCox (‘E) (VGS—top - VT) )
top

we require for the multiplier

Im—top __ ( )top (VGS-—top - VT)

w
L
Gds—bot (%)bot (VGS-—bot - VT)

> 1 (5.4)
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This condition is satisfied in practice by appropriate transistor sizing.
Figure 5.10 shows the actual multiplier cell, which differs from figure 5.9
only by the presence of transistors M9-M15.  The system blocks that use

Tout+ Toue—

Figure 5.10. Multiplier cell.

Device Value
"MI-M4 | 4/10
M5-M8 20/5
M9-M10 2/40
MI11-M12 | 10/20
MI13-M14 | 40/0.5

MI5 10/0.5

Table 5.1. Multiplier elements.

the output of this multiplier require voltage input, and so the drains of devices
M5-MS are connected to resistive loads to perform an I-V conversion. Without
these extra devices, the resistive loads set both the bias point of the following
(DC coupled) amplifier stage as well as the voltage gain of the multiplier. It
is convenient to decouple these two problems. M9-M15 provide some of the
drain current for transistors M5-M8, and thereby reduce the bias current flowing
through the resistive load. By sizing M15 relative to M13 and M 14, the designer
is free to vary the output bias voltage and the multiplier gain with some degree
of independence.

Finally, note that actual use of this multiplier cell requires the two input
signals to be at different common-mode levels. The common mode level X
should be higher than Y in order to ensure that the bottom devices stay in the
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triode region. The default common-mode level for differential signals in this
system is chosen to be mid-supply (1.25V). Where this multiplier is used, then,
active steps are required to ensure that X is at least 500mV above mid-supply.

5.4.1.2 Phase error computation

The phase error computation block is built of three simple elements: ana-
log multipliers (as described in section 5.4.1.1), commutating mixers, and an
amplifier. The commutating mixers, or “choppers,” are all identical, and a
schematic is shown in figure 5.11. The sizing of these devices is not critical.

I )
clk ck  clk clk
ol e L g
+ Vin - +
) o Vout
clk clk clk clk
S S
[ —0

Figure 5.11.  Commutating mixer for chopping. NMOS devices are sized 3/0.24 , PMOS 9/0.24

The choppers are designed to operate at a maximum of SMHz when driving the
light capacitive loads of a few MOSFET gates. The only other guideline is that
the switches be made small so as to minimize the capacitive coupling from the
clocks to the output.

Device Value
MI1-M3 12/1
M4-M7 3.3/0.5
M8 49/1
M9-M10 10/2
Ml11-M14 4/4
Quiescent current | 406uA

Table 5.2. Phase error computation elements. Quiescent current includes current draw of
multiplier cells.

The multipliers are the cells described in section 5.4.1.1, and the required
subtraction is carried out in the current domain. The current-to-voltage con-
version is accomplished via the resistive loads M9-M10, and two amplification
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Figure 5.12. Phase error computation.

stages immediately follow. The purpose of these stages is to provide AC am-
plification of the product centered at 2 fy. In many chopper-stabilized schemes
this would be a true AC amplifier with capacitively coupled inputs. On-chip
capacitive coupling, however, is inconvenient on at least two counts. First,
sufficiently large coupling capacitors occupy a great deal of area. Second, the
substantial bottom plate parasitic of on-chip capacitors incurs an unavoidable
performance degradation. As an overall design strategy, AC coupling is avoided
except where absolutely necessary.

5.4.1.3 An analog integrator

A switched-capacitor (S.C.) integrator drives the realization of the phase
alignment concept, and two factors motivate this choice over continuous-time
methods. The first factor is that the offset removal accomplished by chopper
stabilizing the multipliers is wasted if the integrator that follows has a large
input-referred offset. It follows that an autozeroing integrator, of the type
commonly realized via switched-capacitor techniques,' is an attractive option
[53]. The second factor is that high speed in the phase alignment system is
unnecessary, as the proper phase setting typically evolves on time scales no
shorter than those of temperature change, aging, and process variation. A slow

'Such integrators go by various descriptors in the literature. The integrator detailed in this section, for
example, is sometimes called a “correlated double sampling integrator.”
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integrator is thus appropriate, and easily realized with a slowly clocked S.C.
integrator.

The design of a S.C. integrator starts with the design of a fully differential
op-amp. A gain-boosted, folded cascode topology is selected from among the
many known choices [54, 55, 56], mainly because of its high DC gain and
relatively uncluttered dynamics. Figure 5.13 is a schematic of the final op-

Vem opamp.nl.  opamp.nl

- B[
| |
inpo—| : @l" “M;ll_ _|E'I'3i
H—r- i | T
== outp
M25 M26 ‘
P e _M,i]]_{[;i L ] M?]l_ _{E‘m A
= 1
Mj_l_!q.u e Li[lms LEI«& Lﬁwz m:} | :dﬂs
L oL il | '_—12
Input stage Bias voltages Common mode foedback -pl,__opamp-pl>
| |
Gain-boosted cascode

Figure 5.13. Op-amp_dl, a fully differential op-amp for the S.C. integrator.

Device Value Device Value
MI1-M2 2x40/1.5 | M25-M26 20/1
M3-M11 25/1 M27-M29  11/0.24
Mi12 12.5/1 M30-M31 2x49/1
M13 5/1 M32-M33 49/1
MI14-M15 6/3 Cl1-C2 2.5pF
M16-M23 49/1 R1-R2 60k2
M24 9/1
Quiescent current 524uA

Table 5.3. Elements for integrator op-amp. Quiescent current includes current draw of
Opamp.nL and Opamp_pL.

amp. Care is taken to minimize the V' mismatch between devices in the input
differential pair. They are large transistors, and each is split into two parts to
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allow a common-centroid layout. The section labeled “Bias voltages” in the
schematic is a network to establish bias voltages for the cascode stack, and
device sizes are chosen to maximize output voltage swing. The common-mode
feedback (CMFB) is handled by a single-ended, two-stage op-amp, which sets
the common-mode level to match the Vi input. Capacitors C1 and C2 serve
as the Miller-multiplied compensation capacitors for the CMFB circuit, and
have the additional benefit of stabilizing the overall, differential op-amp. The
unloaded differential unity gain frequency of this op-amp is 17MHz, with a
DC gain of 115dB. The CMFB circuit demonstrates an 89 degree phase margin
even with a 3pF capacitive load on each differential output.

The schematics of the single-ended op-amps that perform the gain boosting
in figure 5.13 are shown in figures 5.14 and 5.15. As employed in figure 5.13,
the inputs to these op-amps are going to rest within a Viga¢ of a supply rail.
It is thus necessary to design two varieties. One, shown in figure 5.14, is
designed to handle inputs close to ground. The other, shown in figure 5.15, is
designed to handle inputs close the positive supply rail. These amplifiers play
general purpose roles. Accordingly, capacitance M18 in both circuits is placed
to ensure stability regardless of the capacitive load being driven. The folded-
cascode topology means that stability will be improved as the capacitance of
the load increases, and in this case it is actually necessary to provide a minimum
capacitance to ensure stability in the unloaded case.”> As shown, both op-amps
achieve a worst-case phase margin of better than 62 degrees.

Device Value
M1-M2 2x7/0.6
M3-M9 10/1
M10-M11 49/1
MI12 32
M13 24.5/1
M14-M17 25/1
M18 10/9
Quiescent current | 75.9uA

Table 5.4. Opamp_pL elements.

With the differential op-amp established, the core of the integrator is in place.
The rest of the design is determined by larger system issues. Chief among these
issues concerns testability: it would be nice to be able to “turn off” the phase
alignment system, or have it sit by dormant while allowing the phase alignment
to be adjusted manually. In the original prototype the solution is to implement

2Stability margins are checked with op-amps configured as unity-gain buffers.
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Figure 5.14. Opamp_pL, a single-ended op-amp for low common-mode inputs.
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Figure 5.15. Opamp.nL, a single-ended op-amp for high common-mode inputs.

a 3-mode continuous-time integrator, the three modes being preset, hold, and
normal integration. For this S.C. integrator it is convenient to implement two
modes. The first mode is simply normal integration. For the second mode the
inverted output of the integrator is connected to the input, with the result that
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Device Value
MI1-M2 2x3.5/1
M3-M4 1071
M5 2x10/1
M6-M9 51
M10-M16 2511
M17 6/1
MI18 11/11
Quiescent current | 63.9uA

Table 5.5. Opamp.nL elements.

the output is eventually driven to zero. Use of this second, reset mode during
testing enabled verification of the manual rotation system, as well as numerous
other experiments.
Figure 5.16 is a diagram of the autozeroing, switched-capacitor integrator.
The integrator relies on two non-overlapping clock phases. During clock

reset

ip N

reset o

Figure 5.16. Switched-capacitor, non-inverting integrator for phase alignment system.
Switches are complementary: NMOS 2/0.24 , PMOS 6/0.24 .

Device
Cs 0.2pF
Cc 0.2pF
Cr 2pF
Cu 1pF

Table 5.6. Integrator capacitor values.
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phase 1, the input is sampled and stored on capacitors Csg, and the input offset
of the op-amp is stored on capacitors Cy. Integration occurs on clock phase 2.

Use of this sampled-data integrator for continuous-time control requires a
minor adaptation. Even assuming zero input and perfect cancellation of the
input-referred offset, the output exhibits a jump in voltage each time the top
plates of the integration capacitors Cy are switched from one side of C¢ to
the other. The magnitude of the jump equals the magnitude of the differential
voltage stored on capacitors Cc, which is just the magnitude of the op-amp’s
input-referred offset. Unless a corrective step is taken, these jumps amount to
an undesired square wave at the sampling frequency added to the output of the
op-amp. As shown in figure 5.16 the solution for this IC is to add a sample-
and-hold (S/H). The output of the op-amp is sampled on clock phase 1 and
held on phase 2, with the result that the overall circuit better approximates a
continuous-time integrator.

Bottom plate sampling is used to reduce signal-dependent corruptions due
to switch charge injection. The general principle is illustrated by examining
the switching of the capacitors Cs. @3 and ®,p, a delayed version of @,
are high during the sampling period. At the end of the sampling period, ®4
releases the bottom plates of Cg first, leaving part of the channel charge in
these @1 switches on Cg. But because one side of these switches is tied to
a low impedance source, most of the channel charge is distributed there and
away from the sampling capacitors. Moreover, in principle the charge that gets
injected onto Cg is the same every time. This is because the conditions of the
switches are the same after every sampling instant: the source and drain rest at
Vinid, regardless of the signal level. When @1p then releases the top plates, the
bottom plates are already floating and no charge can be injected from the ®1p
switches.

To realize a slow integration, the sampling clock is in the range of tens of
kilohertz. The chopping frequency fg for the multipliers is 2.5MHz, and down-
chopping occurs at SMHz. Aliasing of chopping artifacts is thus a concern.
Filtering is undesirable because it complicates the dynamics of the phase align-
ment control system. Instead, the integrator is clocked at 39.2kHz, which has
the property of aliasing tones at 2.5MHz and SMHz to § and 7, respectively, in
the z-domain.> As a result, aliasing of these artifacts does not result in DC er-
rors. All clocks are derived from a 20MHz off-chip crystal oscillator. Chopping
clocks transition on the rising edge of the 20MHz source, while the integrator
clock transitions on the falling edge. This ensures that edges of the chopping
clocks do not occur at a sampling instant.

3Any frequency determined by %‘1. where n is an odd integer, will have this property. For this chip, n is
255.
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Figure 5.17 shows the straightforward way in which the chopping clocks
are derived from the 20MHz source. =~ Two D flip-flops ensure a quadrature

Mny
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Figure 5.17. Chopping clocks derived from off-chip source.

Device Value
M1 2/0.24
M n2 4}" 0 8 24
Mp1 6/0.24
Mp2 12/0.24

Table 5.7. Elements for chopping clocks.

relationship between cqg and cgg. The clock for down-chopping is derived from
cg and cgg using an XOR gate. It is important to note that the designation of
Caw, VEISUS Cay, 1S not arbitrary, as exchanging the two inverts the sign of the
final phase error signal.

The circuit for generating the integrator’s clock signal is shown in figure 5.18.
The requirements for this clock signal are that it transition on the tralhng edge
of the external reference, and that its frequency be related to fo by —,'EL, where
n is an odd integer. The first requirement is satisfied by the inclusion of the
inverter between the external reference and the clock input of the ripple counter.
The second is satisfied by dividing the 20MHz reference by 2 x 255, as shown
in the figure. Since 20MHz is eight times faster than fo, the —L requirement is
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Figure 5.18. Integrator clock, which transitions on the trailing edge of the external 20MHz
source.

met with n equal to 255. Finally, non-overlapping clock phases are generated
from this integrator clock signal with the circuit shown in figure 5.19 [57].

® % 21p #1D

:

% .

L Ton ®2n

Integrator
clock Qe

Figure 5.19.  Circuit for generating clock phases.

54.14 A constant 1-norm controller

To perform symbol rotation, this phase alignment system implementation
requires a circuit realization of figure 5.7. The path from concept to circuit
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is particularly straightforward if the necessary subtractions are carried out in
current domain, as shown in figure 5.20.
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Figure 5.20. Constant 1-norm controller: circuit realization of figure 5.7.

Device Value Device Value
M1-M4 12/1 M20-M21 251
M5-M7 4/0.24 | M22-M23 6x20/1
M8-M9 2512 M24 20/1
M10-M11 1212 M25 512
MI12-M13 12/1 M26 1/20
M14-M15 11/8 Cl1-C2 1.3pF
M16 49/1 R1-R2 30kQ
M17 2x49/1 R3-R4 4x3.33k2
M18-M19 49/2 R5 2x3.33kQ2
Quiescent current  400uA

Table 5.8. Constant 1-norm elements. Quiescent current includes current draw of folding
amplifier and G, cells.

As with the fully differential op-amp of this section, the common-mode out-
put level is fixed to mid-supply via a two-stage op-amp. The first stage is tran-
sistors M12-M17, and capacitors C1-C2 serve both as the Miller capacitance for
the common-mode feedback loop and to stabilize the overall, fully-differential
1-norm controller. Driving a capacitive load of S00fF on each differential out-
put, this circuit demonstrates a closed-loop bandwidth of 1.3MHz.

A feature of the constant 1-norm circuit of figure 5.20 is that an external
signal, sign, determines the sign of Veos9. The voltage Veosg is positive when
sign is high, and negative when sign is low. This feature proved useful in
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testing by extending the range of possible manual rotations from 180 to a full
360 degrees (see figure 5.5).
Figure 5.21 depicts the transconductance cell labeled 'Gu’ in figure 5.20.
A differential voltage applied to the gates of M2 and M4 results a current

y
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-L‘H M1 M3 |Fj

Figure 5.21. Differential transconductor.

Device Value
M1, M3 | 2x1/20
M2, M4 | 2x5/12

Table 5.9. Differential transconductor elements.

difference at the outputs. The unusual design is inspired by the multiplier
of figure 5.9, which by clever arrangement enables highly linear multiplication
with nonlinear devices. Here the same trick is used to realize a simple but highly
linear transconductance. Only four transistors instead of eight are needed, with
transistor pairs 2 and 4 of figure 5.9 eliminated. A mathematical understanding
of this transconductor proceeds easily from the analysis done earlier. Recall
the expressions for transistor pairs 1 and 3 from subsection 5.4.1.1:

w

I = pnCox (f) ((X Vo) (Y +y - VGS—top) +zy+az(Y - VGS—top) -
bot

(Y — Vas—top + y)z)
2
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and
w
Iy = ppCox <f) (X = Vo) (Y —y — Vas—top) — 2y + 2 (Y — Vigs—top) —
bot
(Y - VGS——top - y)2>
; .

For purposes of analyzing figure 5.21, M1 and M3 are sized Mpq¢, M2 and M4
are sized Mtop, and z = 0. The current output of this transconductor is then
Il - I3Z

w
Iout = Il - I3 = [2Mncox (‘E) (X - VT +Y - VGS—-top) Y.
bot

Table 5.9 shows the transistor sizes for the transconductor cell. In the layout,
pairs M1-M3 and M2-M4 are each arranged in common-centroid fashion to
minimize raw DC offsets.

The schematic for the folding amplifier is shown in figure 5.22.  This

outs
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Figure 5.22. Folding amplifier for constant 1-norm controller.

folding amplifier realizes the concept of figure 5.8. A bridge of CMOS switches
feeds the input directly to the output, effecting an inversion only if necessary.
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Device Value
Ml 49/1
M2-M5 12/1
M6-M7 2x50/10
M8-M11 2/0.24
M12-M13 2/2
M18-M19 1/0.24
M20-M21 3/0.24
M22-M23 2x1/1
M24-M25 | 2x1/0.24
M26-M27 2/0.24

Table 5.10. Folding amplifier elements.

Necessity is determined in part by the comparator, consisting of a latch [58]
and preamplifier, which determines the sign of the input. The switches arrange
for the output to be always positive or always negative, depending on the level
of the digital select input. The frequency and phase of the clock is not critical,
and the clock input is simply tied to ¢g from figure 5.17.

54.1.5

As shown in figure 5.5, there are two sources of rotation for the upconverted
baseband symbol. One is provided manually, and the other is that demanded
by the phase alignment system. The ultimate goal is to perform rotation on a

._.)

Forming the matrix rotation operator

baseband vector, b, according to

COS ¢y sin¢y,  €os ¢y

e = [0 ] [0

— g -
sm¢m] g

Performing the matrix multiplication, the matrix operator R is seen to be

cos(Pa + dm) —sin(da + ém) }
sin(¢a + ¢m)  cos(Pa + dm)

where the trigonometric identities

Ry = [ (5.5)

cos ¢ cos O F sin ¢ sin @ = cos(¢p £ 6)
and
sin ¢ cos @ % cos ¢ sin 6 = sin(¢ + )

have been used to simplify the final result.
The circuit that performs the matrix multiplication that rotates the baseband
symbol is described in section 5.5.1.2. Figure 5.23 depicts the computation of
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the necessary intermediate results,

€08 out = COS(Pa + Pm) = COS ¢q COS Py — Sin Py 8in Ppy
and

Sin dout = sin(Pa + dm) = sin ¢, €OS Py + CO8 P, Sin Py

The circuit is a straightforward application of the multiplier cells described

I[Im L{[Im LIEIMJ—{Ea;L{Em L(Eunl—{[j\.m

i el < 0c08 ¢out+
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Figure 5.23.  Computation of the rotation operator.

in section 5.4.1.1, with the additions and subtractions carried out in the cur-
rent domain. Resistors M7-M10 accomplish the necessary current-to-voltage
conversion, and the subsequent amplifier stages boost the voltages such that full-
scale output is approximately 500mV. By design convention, the common-mode
level of the differential inputs 8in ¢,, COS @4, 8in ¢m, and €oS P is maintained
at mid-supply (1.25V). The multipliers require a higher common-mode level
at x inputs than at the y inputs, so the source followers M31-M34 provide the
necessary level shift.
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Device Value
M1 49/1
M2-M6 12/1
M7-M10 6/5
MI11-M14 2x6/1
M15-M18 2x8/3
M19-M22 2/8
M23-M26 3.5/10
M27-M30 12/1
M31-M34 2%12/0.5
Quiescent current | 826pA

Table 5.11. Rotation operator elements.

Phase alignment system results

An overview diagram of the phase alignment system is shown in figure 5.24.
The overall current draw of the phase alignment system is computed as follows:

sign
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Figure 5.24. Overview diagram of phase alignment system.

the phase error computation block draws 406uA; the clock generator has no
static power dissipation; the analog integration requires 524uA; the constant
1-norm controllers account for 2x400uA; and the rotation angle calculation
requires 826uA. There is one more contribution to the power dissipation, which
is the current required to actually realize the symbol rotation. Because this
rotation block is tightly integrated with the upconversion mixer, discussion of
its circuit details is deferred to section 5.5. For now, the current draw for rotating
the symbol is 962uA, bringing the total current draw of the phase alignment
system to 3.5mA. With a 2.5V power supply, the total power dissipation is
8.8mW.
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Figure 5.25 summarizes the phase regulation performance of the monolithic
prototype. For this test the Cartesian feedback is run in the open-loop configura-
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Figure 5.25. Phase alignment performance for a S00mV amplitude, 10 kHz square wave.

tion. The switches in figure 5.3 are configured such that the loop drivers (H (s))
are disconnected, while the predistort I/O pins are connected to the upconver-
sion mixer. The test signals, a 10kHz, 300mV amplitude square wave on the /
channel and signal ground on the Q channel, are connected to these predistort
I/O pins, and the alignment for the 500mV amplitude case, illustrated in fig-
ure 5.25, is extrapolated from the resulting data. Static phase misalignments are
introduced manually by adjusting a potentiometer, and the phase alignment is
switched to active and allowed to settle. Alignment performance is determined
by looking at the amplitude of the square waves I’ and Q'

II
A6 = 90 — arctan <@> .

The phases of these waveforms relative to the injected square wave, always ei-
ther 0 or 180 degrees, determine the signs associated with I’ and ’. Figure 5.25
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shows that the misalignment never exceeds 9 degrees over the full 180-degree
range of disturbances.

The reason for extrapolating data concerns measurement accuracy. The am-
plitude of Q' decreases rapidly with increasing amplitude of I, making mea-
surement of @’ on the oscilloscope difficult. As discussed in detail in chapter 4,
the alignment accuracy for a given output offset in the analog multipliers of fig-
ure 5.12 improves with increasing signal amplitude. It is useful to reexamine
the equation used to illustrate this fact:

Krr'sin(A8) + 6§ = 0,

where 7 and 7’ are the polar magnitudes of the upconverted and downconverted
baseband symbols, respectively, K is the constant of proportionality associated
with the multipliers, § is the DC error in computing 1Q' — QI’, and A8 is the
phase misalignment. This experiment represents the special case for which we
can identify 7’ 8in(A6) as, in fact, the amplitude @', and r as the amplitude I.
The constant K is determined by simulation to be approximately 0.306V L.
Substituting and then rearranging terms, we may see the dependence of @’ on
the amplitude of the test signal:

! [ -4
Q' = r'sin(Af) = '
For this measurement, a 500mV amplitude for / would have resulted in a @’
of approximately 3mV. For a 300mV amplitude, this figure increases by over
60% to SmV, which is just barely, but reliably, distinguishable from the noise
on the oscilloscope trace. It is important to note that this method breaks down if
pursued too aggressively. If Krr’ ever has amagnitude less than 6, for instance,
no alignment occurs. Once / is reduced to the point where |Af] exceeds 45
degrees, the problem simply shifts from measuring @’ to measuring I’.
The procedure for gathering the data of fig 5.25, then, begins with measuring
the phase alignment that results from the 300mV signal on the / channel. This
phase alignment, A@3gomV, is used to compute J:

6= Krr' Sin(Aegogmv).
The phase alignment for the 500mV amplitude signal is thus

5
0.306V—1 - 500mV - (2027 . réomnv) '

AbOsgomv = arcsin (

Figure 5.26 shows the DC error of the phase computation circuit vs. chopping
frequency. This error is best described as an effective DC offset referred to the
input of the first gain stage in figure 5.12. The conditions for this test are
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Figure 5.26. Effective output offset, o, of the chopper-stabilized multipliers of figure 5.12.

identical to those of the alignment test, except that the manual disturbance is
always zero. The offset for a chopping frequency of 2.5MHz is 414uV, and
here the effectiveness of the chopping strategy is evident, as the differential pair
of the first gain stage alone has a 1-c Vi mismatch.* of 7.8mV. By way of
comparison, complete failure of the the phase alignment system, defined as a
90-degree error for a 500mV amplitude square wave on one channel with the
other channel grounded, corresponds to an offset of approximately 4.4mV.
Figure 5.27 is a trace capture of the type of experiment that yields the data of
figures 5.25 and 5.26. The Cartesian feedback loop is open, a S00mV amplitude,
10kHz square wave drives the / channel, and the Q channel is grounded.’
The top two traces show that, initially, the misalignment is manually set to

“This mismatch is estimated using the Pelgrom formula [59] Values for the empirical constants in the formula
are those suggested by the fabrication facility.

3The voltage droop on what is normally the flat part of the square waves is due to the fact that, at the
board-level, the predistortion inputs have been AC-coupled.
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Figure 5.27. 'Trace capture of a phase alignment experiment. The Cartesian feedback loop is
open.

45 degrees. The bottom two traces show the result of turning on the phase
alignment system (releasing it from the reset mode described in section 5.4.1.3).
Figure 5.28 serves to illustrate the impact of phase misalignment on the sta-
bility margins of the closed-loop CFB system. Dominant-pole compensation is
used in the CFB loop, and for the upper two traces the misalignment is manually
set to 74 degrees. Overshoot and ringing is evident on these waveforms, and
further misalignment causes outright oscillation. For the bottom two traces the
phase alignment system is turned on, and one sees the classic first-order step
responses that are expected when using dominant-pole compensation.

5.5 The linearization circuitry

For purposes of discussion, “linearization circuitry” now refers to all of the
blocks of figure 5.3 outside of the “Phase align” block. Section 5.5.1 describes
the circuitry that complete the IC as a fully integrated Cartesian feedback sys-
tem, and section 5.5.2 details the results of testing.

5.5.1 Circuit details

The list of conceptual blocks needed to complete the CFB system is short:
loop driver amplifiers, to provide gain and compensation; up- and downconver-
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Figure 5.28. Illustration of phase alignment stabilizing the closed-loop CFB system.

sion mixers; and a power amplifier. Realization of these components is now
discussed in detail, in addition to the (conceptual) loose ends such as biasing,
generating quadrature LO signals, etc..

5.5.1.1 Loop driver

Figure 5.29 depicts the circuit used as the loop driver amplifiers, which map
to the H(s) blocks, and the immediately preceding summations, of figure 5.3.
Three primary objectives shape the design of the loop drivers. First, their
inclusion in the signal path must not disrupt the overall differential architecture.
Next, they must have very high DC gain. Last, the user must have some control
over the dynamics.

The need to perform a subtraction of two voltage-domain, differential signals
complicates the fulfillment of the first objective. Linear subtraction of differ-
ential voltages is routinely accomplished using switched-capacitor techniques,
as testified to by the vast literature on sigma-delta modulators and pipelined
A/D converters. However, for continuous-time subtraction, as needed for this
system, two choices are considered. One is to use simple op-amp-and-resistor
summers, of the type described in [3]. This idea is rejected on grounds of power
consumption. The outputs of the op-amps involved would need to sink or source
currents well, something not demanded of op-amps that drive only transistor
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Figure 5.29. Loop driver amplifier.

gates. The other idea is to convert the voltage signals to the current domain,
where subtraction is trivial. Figure 5.29 shows that this is the approach actually
implemented. Transistors M1-M2 form the differential pair that accepts the
“command” input, while transistors M3-M4 accept the “feedback™ signal. The
current outputs are then subtracted and fed to the gain-boosted cascode. In
essence, the whole loop driver structure is simply a fully differential op-amp
with an input stage augmented to accommodate a second input.

Differential pairs, of course, have well-known nonlinear transfer character-
istics, and in general this would sabotage the linearity of the subtraction just
described. The key here is that under closed loop operation, the Cartesian feed-
back system acts to maintain identical differential currents (of opposite polarity)
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Device Value Device Value
M1-M4 2x40/1.5 | M36-M38 11/0.24
M5-M11 25/1 M39 12/1
M12-M15 2x25/1 M40 3x15/15
M16-M17 4x49/1 M41-M42 5/10
M18-M26 49/1 M43-M44 10/0.5
M27-M28 2x49/1 M45 32x12/1
M29 5/1 M46-M47 10/0.24
M30 9/1 M48-M49  8x49/1
M31 12.5/1 Cl-C2 2.5pF
M32-M33 6/3 R1-R2 60k2
M34-M35 20/1 R3-R7 10k$2
Quiescent current  1.04mA

Table 5.12. Elements for loop driver amplifier. Quiescent current includes current draw of
Opamp_nL and Opamp_pL.

in the two input pairs. To the extent that M1-M4 are matched, the differential
voltage inputs are identical. The nonlinearity of each pair is thereby cancelled.

The objectives of high gain and user-controllable loop dynamics are straight-
forward to satisfy. Gain is assured by the gain-boosting of the folded cascode,
and simulations predict a DC gain in excess of 120dB. The idea to make the
dynamics user-controllable is inspired by the externally compensated op-amps
that were once popular.® In these devices, the nodes across which a Miller com-
pensation capacitor would normally be placed are brought out to pins, where
the user may choose the value of that capacitor or even implement a more elab-
orate compensation topology. Strictly speaking, Miller multiplication is not a
feature of the folded cascode topology shown in figure 5.29. Nevertheless, the
parasitic capacitance always present at the nodes labeled “Compensation pins”
does establish a dominant pole. Because use of a network other than a simple
capacitance would result in different and potentially interesting loop dynamics,
these nodes are brought out to pins.

The output of the loop drivers feed the matrix rotation block of section 5.5.1.2,
and it is convenient in turn to feed this output to the inputs of the multipliers
that require the higher common-mode voltage. The voltage buffer of the loop
driver establishes the common-mode output at 1.75 volts, while also providing
a gain of about 5. These properties allow the compensation pins to be kept at
the mid-supply common mode voltage while reducing the signal swing. Low
signal swing combined with maximum voltage headroom minimizes the impact
of nonlinearity at these nodes, allowing the compensation to be set by the user

SNational’s LM301, for instance.
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with maximum integrity. The high common-mode for the output eliminates the
need for the level-shifting source followers of figure 5.23.

A single-device switch (6/0.24 NMOS) is placed between the compensation
pins of each of the loop drivers. During closed-loop operation this switch is
open, and has no impact on the operation of the system. During open-loop
operation, however, this switch is closed, essentially dropping the gain of the
loop drivers to zero. This prevents the loop drivers from being constantly
saturated during the open-loop, or “predistort,” mode.

5.5.1.2 Analog matrix rotation

Section 5.4.1.5 deals with computing the intermediate products sin(¢q+ @y,)
and cos(¢, + ¢, ) needed for performing analog symbol rotation. Figure 5.30
is a diagram of baseband_gy,, the circuit that takes these products and performs
the matrix rotation on the upconverted baseband symbol. Its current outputs
are fed directly to the upconversion mixer. Other than perform the needed
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Figure 5.30. Baseband_gm, a circuit to carry out the matrix rotation.

mathematical operation, the design specifications on this block are few. Good
linearity is not a concern: this symbol manipulation occurs in the forward path
of the feedback loop, so nonlinearities in baseband_g,, are corrected along with
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Device Value
M1 49/1
M2-M4 12/1
M5-M6 14x60.5/0.5
M7-M10 6/5
M11-M14 2x6/1
M15-M18 4x50.4/0.24
M19-M22 2/8
M23-M26 49/1
M27-M30 20/0.24
M3l 6x49/1
M32 60.5/0.5
Output stage quiescent current 4.1mA
Other quiescent current 962uA

Table 5.13. Matrix rotation operator elements.

those of the power amplifier. Also, one expects that the nonlinearities of the
power amplifier will be much greater. The exact same reasoning leads to the
conclusion that DC offsets in this block are not a concern.

Otherwise, baseband._gy, differs from figure 5.23 primarily in the final stage,
where transistors M15-M18 nominally operate with 2mA of bias drain current.
Gain of the preceding amplifiers is chosen such that full scale voltage inputs
result in saturating these output stages, with 4mA running down one side of
the differential pair. The saturating behavior maximizes the power efficiency
of the block. The large output currents relax the amplification requirements of
the power amplifier.

5.5.1.3 Upconversion mixer

The double-balanced upconversion mixer, shown in figure 5.31, is of the
common, Gilbert type [10]. The mixer accepts baseband inputs / and Q as
currents from baseband_gp,, and LO voltages derived from an off-chip source
(and presumed to be AC coupled). Its output is in the form of a differential
current. Here, as with baseband_gy,, linearity is not critical. The only concern
is that the devices act as close to the ideal of a perfect switch as possible. This
dictates the size of the devices chosen, as well as the drive amplitude from the
external LO.

5.5.14 Power amplifier

The power amplifier, while conceptually straightforward, has perhaps the
greatest potential for disrupting the operation of the chip through unanticipated
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or poorly modeled parasitic effects. Figure 5.32 is a schematic of the final
design.
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Figure 5.32. Power amplifier.

The primary goals for this circuit are that it provide on the order of 20dBm
of output power, and that its large, rapidly varying currents be isolated from the
other parts of the IC insofar as is possible. These goals immediately suggest the
differential structure shown in figure 5.32. Perfectly differential signals result
in no coupling of RF energy into the power supply and ground lines, easing
concerns about having a power amplifier on the same die as the linearization
system. Moreover, with a 2.5V supply, a fully differential power amplifier
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Device Value
MI1-M4 | 3x 50.4/0.24 , ibiasl = 13mA
M5-M6 | 5x 50.4/0/24 , ibias2 = 88mA

R1-R2 10k2
R3 2k2
Cc1-C2 4pF
L1-L2 5.9nH
L3-L4 4.3nH

Table 5.14. Power amplifier elements.

easily has enough voltage headroom to deliver 20dBm of power to a 502 load
without the use of an impedance transformation.

Nevertheless, there are many practical pitfalls. Since, for headroom reasons,
the differential stages of the PA do notemploy tail current sources, this amplifier
does not possess the desirable common-mode rejection characteristic of many
differential amplifiers. Chief among the pitfalls, then, is the possibility of
common-mode oscillations. Examining the figure, one sees that the grounds of
the two stages, labeled “PAgnd” and “drivergnd,” are separated. These do in fact
go to separate pins in the package. This is a specific step to reduce the chance of
a common-mode oscillation. If one imagines weak coupling between the two
grounds, one discovers a common-mode positive feedback loop. Simulations
show that sufficient capacitive coupling between these two pins will result in
the dreaded oscillatory behavior.

Adjusting for losses in the external balun, this power amplifier ultimately
produces 14.2dBm of output power. This power is delivered into a single-ended
50€2 load.

5.5.1.5 Downconverter

The overall linearity of the Cartesian feedback system is limited by the lin-
earity of the downconversion mixer. This is one area in which CFB systems
are made more difficult than, say, ordinary op-amp feedback systems. In the
latter, the feedback network consists of entirely passive components, which can
be relied upon to provide offset-free, extremely linear feedback signals. This
emphasis on linearity leads to the choice of the potentiometric downconversion
mixer. The mixer, together with the capacitive voltage divider to attenuate the
signal from the power amplifier, is shown in figure 5.33.

This realization of the potentiometric mixer differs in two important ways
from that described in the paper by Crols and Steyaert [60]. Process variations,
in both the nominal gqs of the mixing transistors and in the values of the resistors
R1-R2 (made of unsalicided polysilicon), combine to produce large potential
variations in the mixer gain. The purpose of the first change is to reduce this
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Device Value
M1-M4 8x1/1
M5 171
M6 12/1
M7 2x12/1
M8 49/1
R1-R2 33.6k2
R3-R6 10k$2
C1-C2 2x 10fF
C3-C4 16 10fF
C5-C6 1 x 10fF
C7-C8 3x10fF
Quiescent current | 931pA

Table 5.15. Downconversion mixer elements. Quiescent current includes current draw of Op-
amp.d2.

gain variation. As will be discussed in section 5.5.1.7, the source of the “pbias”
voltage, until now nearly ubiquitous in the circuit diagrams, is a constant-
gm bias cell. This “pbias” voltage is used in the downconverter to bias M5
such that its gy, is nearly independent of process variations. The LO inputs
to the downconverter are AC-coupled, so the nominal gate-to-source voltage
of devices M1-M4 is set by the common-mode voltage level at the output of
op-amp_d2, which is in turn set by the Vigg of M5. The net result is that devices
M1-M5 have the same Vgg. Now the gg4q of devices M1-M4, which are in triode
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with a drain-to-source voltage of zero, is written
w
gds = /J/nCox <f) (VGS - VT)-
1-4
The transconductance of M5 is identical in form,
w
dm = #ncox (T) (VGS - VT)-
5

Sharing, as these devices do, the same Vgg — Vi, it is seen that the gqgs of
M1-M4 inherits the same immunity to process variations as the gy, of M5. The
mixer gain variation with process is correspondingly reduced.

The second major departure from [60] is the absence of large capacitors on
the inp and inn terminals of op-amp.d2. The purpose of these capacitors is to
ensure that these nodes are virtual grounds at RF frequencies, where the op-amp
itselfis helpless to ensure this condition. These capacitors reduce the bandwidth
of the mixer and introduce correspondingly slow poles in the loop transmission
of the Cartesian feedback system, so it is desirable to forego these capacitors
if possible. The actual voltage amplitude of the RF signal applied to the gates
of M1-M4 is small relative to their voltage overdrive Vgg — V. Accordingly,
their g4s’s are never strongly modulated relative to one another. The result is
that even with large LO amplitudes, the RF amplitudes at nodes inp and inn
never exceed a few millivolts. This sum component of the downconverted RF
signal, centered at 4GHz for a 2GHz carrier, is applied to the input differential
pair of op-amp_d2. Itis then casually and harmlessly dismissed by the op-amp,
which is all but insensible to such high-frequency input. In the meantime, the
virtual ground at DC frequencies is preserved. Thus the filtering capacitors can
be dropped from this particular implementation.

Figure 5.33 shows that the compensation nodes of op-amp_d2 are left uncon-
nected. This works because resistors R1-R2, together with the mixing transis-
tors M1-M4, act to significantly lower the the loop transmission of this op-amp
feedback system at all frequencies of interest. The result is that loop crossover
occurs early enough in frequency to result in a stable system even in the absence
of an explicit compensation network.

A schematic diagram of op-amp_d2 is shown in figure 5.34. It stands out
among the several op-amp and op-amp-like structures already discussed in this
chapter in that it includes a manual offset trim. Some means of offset removal
is nearly always required in direct conversion RF receivers, which is one way
to view the feedback path of a CFB system. The need for removing the offset
in this case is particularly acute because of the large, DC, closed-loop gain of
this circuit block. Using the Pelgrom formula [59], with numerical constant
values suggested by the fabrication facility, we may estimate the 3-o threshold
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Figure 5.34. Op-amp_d2, a fully differential op-amp for the downconversion mixer.

Device Value Device Value
MI1-M2 2x50.4/0.24 | M40-M42 12/0.5
M3-M4 25.2/0.24 M43-M44  5x12/1
M5-M10 4x49/1 M45-M46 10/0.5
MI11-M17 49/1 M47-M48  10/0.24
M18-M29 12/1 M49 16x12/1
M30 4/2 R1 15k2
M31 9/1 R2-R3 30k$2
M32-M33 2x12/1 R4-R5 2k2
M34-M37 5/10 C1-C2 0.3pF
M38-M39 30/0.24 C3 2pF
Quiescent current 860uA

Table 5.16. Elements for downconversion op-amp.
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voltage offset between M1 and M2 to be:

10mV

3% 700 Sy 0 0

=6.1lmV.

Simulations show the corresponding output offset to be hundreds of millivolts,
easily overwhelming the downconverted signal itself. Devices M3-M4 are thus
included to allow the re-balancing of the downconverters.

The use of resistive feedback, as shown here, requires that the output of the
op-amp be able to sink and source current. The output buffer of figure 5.34
enables this behavior. It also allows for the common-mode output voltage to
be set by an input signal, thereby facilitating the aforementioned method of
insulating the mixer gain from the process variations.

5.5.1.6 Polyphase filters

The local oscillator source for this IC is external. Some means of deriving
quadrature phases from this source is needed, and so the RC sequence asymmet-
ric polyphase filters of figures 5.35 and 5.36 are used for this purpose [61, 62].
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Figure 5.35. A two-stage polyphase filter.

The two-stage filter provides the quadrature phases of the LO for the upconver-
sion mixer, while the three-stage filter is used for the downconversion mixer.
This approach is chosen over simply using one filter for both mixers because
the two mixers have very different requirements. The downconversion mixer
is the most sensitive component in a Cartesian feedback system, and extra care
should be taken to ensure that its quadrature LO phases are the highest quality
possible. Particularly in the face of component mismatches, the three-stage
polyphase filter has the benefit of superior amplitude matching of its two out-
puts, as well as improved quadrature accuracy compared to a one- or two-stage
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Figure 5.36. A three-stage polyphase filter.

Device | Value
R 16082
Cl 696fF
c2 355fF
C3 497fF

Table 5.17. Polyphase filter elements.

filter. The upconversion mixer requires high voltage amplitudes delivered to
its LO ports, and the two-stage polyphase network results in less attenuation.
However, because it is designed as a switching mixer, the upconversion mixer
has much less sensitivity to amplitude mismatch than does the downconversion
mixer. Because of these different requirements on the part of the two mixers,
and in the interest of isolation between the forward and feedback paths, separate
polyphase filters are employed.

55.1.7 Constant-g,, biasing

Achieving consistent performance in the face of process variations is always
a challenge. This is especially true in the case of a large analog system with
many interworking functional blocks. Accordingly, a biasing strategy is needed
that acts to mitigate performance fluctuations due to process variations for the
entire IC.

The strategy is to establish a current, referenced to an external resistor, that
corresponds to a constant transconductance for an NMOS device. Figure 5.37
shows a circuit that accomplishes this [10]. The nominal value of the external
resistor is 68k{2. The ’pbias’ signal, an input in all of the other diagrams of this
chapter, is the output here.



A Fully Integrated Cartesian Feedback System

Figure 5.37.
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Constant_gm, cell, which establishes the voltage 'pbias’ for the entire chip.

Device Value
MI1-M2 49/1
M3 /10
M4 196/0.24
M5 6x200/2
M6 3/0.24
M7 30/0.24
M8 0.62/10
Quiescent current | 46.1pA

Table 5.18. Constant-gp, bias cell elements.
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This constant-gy, cell has two stable modes of operation. The first is the

useful, desirable mode in which it functions as a current reference.

In the

second, the gates of M3-M5 rest at ground. To avoid this second disastrous
mode from occurring, a start-up circuit formed by devices M6-M8 is employed.’
The gates of M3-M5 being at ground causes M7 to turn off as well. The allows
the weak PMOS device M8 to charge up the node formed by its own drain,
the drain of M7, and the gate of M6. When this node rises above an NMOS
threshold voltage, M6 pulls current through M2 and thereby “jump starts” the
constant-gy, cell. The resulting voltage on the gate of M7 turns it on. M7 in
turn drags the gate of M6 down to ground, effectively shutting off the start-up

circuit.

"This circuit idea was given to me by Dr. Hamid Rategh during an informal discussion in the fall of 2000.
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5.5.2  Linearization system results

The overall power dissipation of this linearization system is summarized as
follows: the loop drivers account for 2x1.04mA of quiescent current; matrix
rotation draws 962uA, in addition to 4.1mA for the output stage; the down-
converters require 2x931uA; and the constant-gm cell draws 46.1uA. The
962uA from the matrix rotation is attributed to the phase alignment system of
section 5.4.2, and the 4.1mA, together with the current draw of the power am-
plifier, is not charged to the linearization system as it represents the unlinearized
transmitter. The total current draw of the components described in the previous
section is thus 4.0mA.

Together with the phase alignment system, we may attribute 7.5mA of cur-
rent draw to the complete linearization system. All of these power dissipation
figures are based on simulation, but they show excellent agreement with what
is observed in the laboratory. Some signals routed to pins as test signals use
opamp_nL or opamp_pL as buffers, adding 0.56mA to the total predicted cur-
rent draw. The measured current draw of the chip was 8mA, indicating 20mW
of power dissipation. It is important to note that the power consumed in the lin-
earization system is unrelated to the output power of the power amplifier. This
system could be applied to a IW or 1kW output-power PA with no changes that
would affect its power dissipation.

A die photo of the complete IC is shown in figure 5.38.

5.5.2.1 Linearization behavior

Taken together, figures 5.39 and 5.40 confirm the functionality of this Carte-
sian feedback system. The top two traces in each figure are the I and Q base-
band waveforms as they enter the upconversion mixer of figure 5.3. They are
the predistorted baseband symbol. They cancel the nonlinearity and noise in
the forward path, and otherwise work to match the outputs of the downcon-
version mixers as closely as possible to the command inputs. Perfection of
the downconversion mixer thus implies perfection of the RF output spectrum.
Similarly, noise and/or nonlinearity in the downconverters is referred to the RF
output. The bottom two traces are the downconverter outputs.

Figure 5.39 evinces the predistortion action of the Cartesian feedback in a
number of ways. For this test, the system is set to perfect phase alignment,
the command / channel is driven with a 1kHz sine wave, and the Q channel is
grounded.® The external compensation pins on the loop drivers are left uncon-
nected. It is seen in this figure that the system performs a gain predistortion,

8There are small DC offsets observable in the downconverter output. This is a reflection of the DC offsets in
the effective command input. The single-ended-to-differential converters between the board-level command
inputs and the inputs of the loop drivers provide one component of these offsets, together with the offsets of
the input differential pairs of the loop drivers themselves.
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as a 280mVp-p input to the I channel of the upconverter is needed to produce
a 18mVp-p output on the I channel of the downconverter. Inspection with the
unaided eye suggests correction of nonlinearity as well, as the sine wave of the
downconverter output appears to be of much “higher fidelity” than the upper-
most trace. Most remarkable is the dramatic noise reduction that the system
accomplishes, as evinced by the relative cleanliness of the bottom two traces
compared to the top two.

Figure 5.40 serves as another demonstration of the remarkable predistorting
action of the Cartesian feedback system. The experimental conditions remain
unchanged from the tests of figure 5.39, except that here the phase misalign-
ment is manually set to 45 degrees. We see that while the output traces of the
downconverters are virtually identical to those of the aligned case, the inputs
required at the upconverters are very different. In the case of perfect alignment,
the system need only provide an appropriately warped sinusoidal input to the [/
channel of the upconverters. Indeed, no sinusoid is evident on the upconverter
Q channel in figure 5.39. In the case of misalignment this must change, as a
sinusoid on the upconverter I channel will result in a sinusoid on the downcon-
verter Q channel. The solution for the system is to inject a cancelling signal
at the Q channel of the upconverter, a behavior demonstrated in figure 5.40.
Suppression of noise and nonlinearity is also evident here.

Figures 5.39 and 5.40 indicate a significant source of noise somewhere in
the forward path of the feedback system.” We may eliminate the loop drivers
as the source of noise: there is no gain between the error signals and the input-
referred disturbance of these blocks, so if the noise were in the loop drivers it
would be visible in the downconverter output. This leaves the upconversion
mixers (together with the symbol rotation circuitry), the power amplifier, and
the downconverters as the possible culprits.

Figure 541 is a comparison of the open- and closed-loop spectra of this
CFB system. The top spectrum is the result of opening the CFB loop and
driving a 1kHz sine wave directly into the / channel of the upconversion mixer.
The bottom spectrum shows the RF output during closed-loop operation with
the phase alignment system active. These figures show that the linearization
system produces a third-order harmonic reduction of just under 6dB. However,
the noise floor in the closed-loop system is raised by approximately 20dB in
relation to that of the open-loop system, providing damning evidence that the
downconverter is the dominant source of noise in this system.

How did this happen? Careful reexamination of figures 5.33 and 5.34 im-
mediately places the offset trim under suspicion. Figure 5.34 shows that the
offset input is not delivered to the op-amp in a differential way. Rather, Vpiq is

%For this discussion the outputs of the downconverters are temporarily regarded as the system outputs. This,
as opposed to the RF output, which is the true output of the system.
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the universal mid-supply reference for the entire chip, while the “offset” input
is a dedicated, single-ended pin. Vpiq and the offset input are derived from
the external power supply in different ways. It follows that any supply bounce
and noise will appear as difference-mode corruptions with respect to this offset
trim.

Suspicions increase upon examining the sensitivity of the system to distur-
bances injected at the offset trim. We start with the gain from the offset input
to the output of the op-amp for the stated resistor values, which simulations
indicate to be approximately 6 V/V. It is then necessary to refer the output of
the downconverter to the input of the upconverter. This is easily done with fig-
ure 5.39, which shows that a 280mVp-p sine wave at the upconverter emerges
as an 18mVp-p sine wave at the downconverter, representing a gain of 0.06 V/V.
Using these two numbers, we arrive at the conclusion that any signal present in
the offset trim refers to the input of the upconverters magnified by a factor of
approximately 100. Based on figures 5.39 and 5.40, we may roughly estimate
the amplitude of disturbances present on this sensitive input to be on the order
of a couple hundred microvolts.

In light of this sensitivity of the system to disturbances at the offset trim,
various artifacts in the closed-loop output spectrum make sense. The height-
ened noise floor has already been discussed. The peak centered at the carrier
frequency bespeaks DC or near-DC corruptions present in the downconverters.
Manual offset adjustments to eliminate this peak are to almost no avail, which
makes sense given that millivolt-precision adjustments referred to the upcon-
verter inputs imply a precision of 10uV for manual adjustments here. A more
subtle artifact is the heavy presence of the second harmonic in the RF output.
This is probably due to the abundance of single-ended-to-differential converters
on the board (see appendix B). It is desired to provide balanced baseband in-
puts to the chip, and active methods are preferred over baluns in order to enable
DC probing. Each of these active baluns, however, injects signal at the second
harmonic into the power supply, and thus corrupts the offset adjustment.

5.5.2.2 Loop stability

As described in section 5.5.1.1, the loop dynamics of the CFB system are
externally adjustable. We explore three compensation strategies in this inves-
tigation: dominant-pole compensation, uncompensated operation (operation
with the compensation pins left floating), and slow-rolloff compensation. The
compensation networks are illustrated in figure 5.42. Unless otherwise stated,
the LO phases are aligned manually for these experiments.

The performance of the system under dominant-pole compensation is illus-
trated in figure 5.43. For this experiment a 1kHz square wave is applied to the
I command input, and the Q command input is grounded. The 10%-90% rise
time is measured to be 39us, indicating a loop bandwidth of 9kHz. The step
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response exhibits no overshoot or ringing, confirming the appropriateness of
the dominant pole model.

Figure 5.44 depicts the step response of the uncompensated system. The
compensation pins are left unconnected (as they were for the traces of fig-
ures 5.39 and 5.40). Compared with the dominant-pole case, we see a significant
speed increase. The speed increase manifests itself in two important ways. The
first is that the noise rejection is vastly improved. This is particularly evident
from the Q channel traces of figures 5.43 and 5.44. The second is a substantial
shortening of the 10%-90% rise time: 4.3us, which indicates a bandwidth of
81kHz. This, together with knowing that the compensation capacitor for the
dominant-pole case was 1nF, permits estimating the total capacitance, Cyc, pre-
sented by the bond pads, pins, and board traces connected to the compensation
nodes of the loop driver compensation nodes:

InF + Cy.  81kHz
Cuc " OkHz

Solving for Cy yields an estimate of 125pF.

The performance of the system under slow-rolloff compensation is of partic-
ularinterest, as it provides experimental confirmation of the idea that a Cartesian
feedback system can be stable under 90-degree phase misalignment (see dis-
cussion in chapter 4). For purposes of comparison, the slow-rolloff network
of figure 5.42 is designed to yield a system with approximately the same loop
crossover frequency as in the dominant-pole case.

Figure 5.45 shows arise time virtually identical to that of the dominant-pole
compensated system, measured at 39us. The noise rejection is again worse
than in the uncompensated case, commensurate with the slower loop speed.

Figure 5.46 provides dramatic confirmation of the slow-rolloff ideas of chap-
ter 4. For this experiment, the phase misalignment of the system is manually set
to 90 degrees, and the loop compensation is varied. The top two traces show the
dominant-pole compensated system under 90-degree misalignment. Substan-
tial overshoot and ringing is visible, indicative of a lightly damped, complex
pole pair. Further misalignment to 101 degrees causes outright oscillation. The
bottom two traces show the system under slow-rolloff compensation. The step
response is remarkably similar to that of a single pole system. In this case,
oscillation does not occur until the phase misalignment reaches 117 degrees.

5.6 Summary

This chapter describes a complete Cartesian feedback system integrated on
a single die. To the author’s knowledge, this is the first time that full integration
has ever been achieved. The key to this accomplishment is the discovery of a
new, compact solution to the phase alignment problem, the theory of which is
described in chapter 4. Also, the use of Cartesian feedback as a way of training
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a predistorter is proposed as a way of fully exploiting the technique’s strengths
while circumventing its bandwidth limitation.

Problems in the execution of the downconverter design prevented a clear
demonstration of the benefits of Cartesian feedback on the RF output. As
discussed in section 5.5.2.1, numerous undesirable artifacts in the RF spectrum
can be traced directly to the sensitive offset trims of the downconverter. Two
approaches to this problem immediately present themselves. First, bringing the
trimming voltages onto the chip differentially would be an unambiguous step in
the right direction. Second, the gain from the offset trim to the downconverter
output could be substantially reduced. Based on our measurements, we expect
these changes would improve considerably the spectrum shown in figure 5.41.

In addition to the overall system, there are a number of smaller results de-
scribed in this chapter. Section 5.5.1.5 describes two meaningful changes to
the traditional potentiometric mixer. The first is the elimination of the large
filtering capacitors, and the second is the introduction of a biasing technique
to reduce the conversion gain variation over process corners. The chopping
strategy described in chapter 4 for overcoming offsets in analog multipliers is
successfully implemented here, an idea that is potentially useful in any sys-
tem requiring analog multipliers. The concept of choosing loop dynamics for
robustness to phase misalignment is experimentally demonstrated. Again, to
the author’s knowledge, this implementation represents the first realization of
the Cartesian feedback concept that is stable over a +90-degree range of phase
misalignments.

A complete description of the experimental setup, including the design of
the test board, can be found in appendix B.
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Figure 5.38. Die photo.
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Chapter 6

CONCLUSION

The purpose of the work described in this book is to contribute to the field
of power amplifier linearization. The difficulty of power amplifier modeling
is taken as a given, and so as a guiding principle techniques are sought that
require little in the way of a PA model. An investigation according to this
principle leads naturally to feedback techniques, and two feedback techniques
were explored in detail.

This book concludes with a summary of contributions, and thoughts on pos-
sibilities for further exploration.

6.1 Summary

Geometric programming has emerged as a powerful optimization technique
for analog circuit design. While GP solvers converge quickly and reliably, there
is often a great deal of work involved in manipulating a problem into the special
form of a geometric program. Chapter 2 demonstrates that the local feedback
allocation problem can be solved by geometric programming, and that a variety
of amplifier performance metrics can be optimized using this technique. Also
shown are optimization curves which illustrate the tradeoffs and different figures
of merit.

The first contribution of chapter 4 is to provide a rigorous analysis of the
effect of phase misalignment on the stability of a Cartesian feedback system.
The slow-rolloff compensation network is proposed to achieve a system that is
tolerant to phase misalignments. A new control law is proposed, which leads to
an analog, nonlinear phase alignment regulator that is amenable to integration.
Finally, as a way of overcoming the problems introduced by DC offsets in
the phase alignment system, a new chopper technique for analog multipliers is
discovered.
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Chapter 5 describes a hardware demonstration of many of the key ideas devel-
oped in this book. The first chip to successfully integrate a complete Cartesian
feedback system, a phase alignment system, and a power amplifier, is described
in detail. The phase alignment and chopper stabilization concepts of chapter 4
are realized successfully in integrated form, and the idea of Cartesian feedback
as a way to train a predistorter is proposed. Finally, the feasibility of building a
system that is tolerant to large phase misalignments is experimentally demon-
strated. Using the slow-rolloff compensation technique, it is demonstrated that
even with misalignments of =+ 90 degrees, a Cartesian feedback system can
exhibit excellent stability margins.

6.2 Future work

Once the phase alignment problems have been sorted out, Cartesian feedback
enables a number of new possibilities. One problem frequently encountered
in industry, for instance, is the varying impedance that an antenna can present
to the power amplifier. Without careful design, damage to the power amplifier
due to unanticipated, excessively high voltages at the output is a possibility.
But by enforcing output voltage amplitudes, a stable Cartesian feedback loop
quite naturally acts to protect the power amplifier from damaging itself in this
case. Also of interest are dynamically biased power amplifiers, where the bias
voltages are varied according to the data being transmitted. Despite the boost
in efficiency that such systems enjoy, dynamic biasing can effect a time-varying
distortion of the RF output. Ifthe system were enclosed in a Cartesian feedback
loop, however, this distortion would be suppressed. It would then be possible
to be more aggressive with the dynamic biasing algorithm.

Another area for further research concerns the performance limits of a fully
integrated Cartesian feedback system. The IC described in this book, for ex-
ample, does not establish new bounds on achievable linearity, nor does it ex-
plore the upper limits of closed-loop bandwidth that are obtainable in a modern
CMOS process. The development of an IC to meet cutting-edge performance
specifications would be a valuable continuation of this work.

The major idea in this book that goes undeveloped is the use of Cartesian
feedback as a way of training a predistorter, and herein lies the most significant
avenue for further research. There are a number of intriguing measurement
issues associated with filling the predistortion table. How often, for instance,
does the table need to be updated? One can imagine either mindless, regular
updates, or having the updates be triggered by a sensory event, such as a temper-
ature change. Another issue concerns the details of the table-filling operation
itself. For example, an extremely interesting case occurs if the table can be
filled very slowly, in the sense of the measurement for each symbol taking a
relatively long time. Slow measurements imply long observation times, which
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can be exploited to minimize the impact of noise in the downconverters on
system performance.
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Appendix A
The First Prototype of the Phase Alignment Concept

The first realization of the phase alignment concept is a discrete-component prototype [42],
designed to work at a carrier frequency of 250MHz. Only the parts of a Cartesian feedback system

needed to test phase alignment, namely the upconverter, downconverter, and power amplifier,
are assembled.

A.1 Phase shifter

The phase shifter is implemented using a quadrature modulator and an analog control loop,
as shown in figure A.1. This control loop forces the sum of the squares of the modulator inputs to

Mag a () J()dt I
= i Shifted
RF —
LO
Q Lo
(-)? ()?
_ i
e LO input

Figure A.1. Phase shifter.

equal a constant ("Mag’), thereby ensuring a constant amplitude for the shifted LO. This actually
introduces a small change in the math. We write the shifted LO as

I,osinwt + Qo coswt.
To within a multiplicative constant, this is equal to

cos ¢ sinwt + sin ¢ coswt.
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For this prototype, then, the analog input is proportional to the sine of the phase shift. A functional
block labeled ’arcsin(.)’ effectively exists between the integrator output and phase shifter input.
The implemented phase shifter is shown in figure A.2. Because of the squaring functional

-

LO input

Figure A.2, Phase shifter implementation.

blocks, there are in general two values of cos ¢ that would satisfy the control loop. The sign of
the incremental gain around the loop is positive for one solution and negative for the other. The
comparator in figure A.2 ensures stability by switching the sign of the loop gain based on the
current value of cos ¢.

The switches on all of the integrators are purely for testing purposes and are manually operated.
These familiar “3-mode integrators” allow the outputs of the integrators to be held at their last
value, to be manually adjusted with potentiometers, or to operate normally as integrators.

A.2  Phase error and integrator

The phase alignment system core, shown in figure A.3, represents a straightforward mapping
from the concept of chapter 4 to op-amp building blocks. For reasons discussed in that chapter,
it is necessary to trim the output offsets of the AD835 multipliers (from Analog Devices). This
trimming is crudely accomplished via a potentiometer connected to the summing input of one
of the multipliers.

A3 Test results

The prototype shown in figures A.2 and A.3 is built and tested in a 250 MHz RF system.
Figure A.4 shows the test setup. Off-the-shelf discrete components are used for the mixers,
and the amplifier is the HP8347 bench-top, leveled-power amplifier. Not shown is a resistive
voltage divider at the input of the downconversion mixer. An additional phase shifter is inserted
in the control path and is manually controlled. By varying this phase shift, we simulate drift
normally due to temperature and aging. Figure A.5 shows the outcome of this experiment. The
I channel is driven with a 50mV sinusoid, and the Q channel is grounded. It can be seen that
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Figure A.4. Test setup.

our prototype automatically and continuously compensates for misalignments as large as +88
degrees. Alignment to within 3.8 degrees is maintained over this entire range of disturbances.

Figure A.6 shows system performance as the frequency of the input sinusoid is varied. It is
seen that performance deteriorates rapidly above 2 MHz. This is due to the op-amp used to build
the subtractor (National Semiconductor’s LMC6484), which has a gain-bandwidth product of
1.5MHz.
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Figure A.5. Measured phase alignment vs. system drift

The following table ' compares the prototype with other examples from the literature.

Work Accuracy | Baseband Carrier
Bandwidth (GHz)
This work | 3.8 degrees | 2 MHz 25
[36] 10 degrees | 21 kbaud .90
[30] not reported | 25 kHz 22
[18] 15 degrees | 500 kbaud .90
Table A.1. Comparison with examples from the literature.

lAccuracy value for Ohishi et al. is inferred.
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Appendix B
The Experimental Setup for CFB IC

This appendix describes the test board for the fully integrated prototype. The final board is
fairly large, measuring approximately 8x9 inches. It has three layers of interconnect. The upper
and lower layers are used for ordinary traces, while the middle layer is a ground plane.

B.1 Single-ended-to-differential conversion

All of the critical analog signals on the IC are fully differential. This complicates the testing
somewhat, as test instruments in the laboratory normally provide (and accept) single-ended
signals. Itis therefore necessary to convert between single-ended and differential signals at the
board level.

Further complicating the design is that it is desirable to use DC and low-frequency input
signals, making itimpossible to use an ordinary transformer. Figure B. 1 shows the design solution
for single-ended-to-differential conversion used on the test board (labeled “S/D” in figure B.3).
Nominally, the common-mode level for baseband differential signals is 1.25V. Trimming to
achieve this level is done by varying the resistor indicated in figure B.1. The predistortion inputs
on the chip actually require an S/D converter with two special characteristics: the common-mode
level needed is 1.75V, and the output resistance of the converter needs to match that of the on-chip
driver used for closed-loop operation. The resistor values for this S/D converter are chosen to
satisfy these two constraints.

Differential-to-single-ended conversion is a simpler problem, involving two op-amps as volt-
age buffers and one op-amp to perform a subtraction. These D/S converters nominally drive the
capacitive inputs of an oscilloscope. Here the choice of the LM6134 op-amp proves challeng-
ing, as it is designed with unusually low stability margins. Efforts at compensation aside, it is
ultimately necessary to configure the oscilloscope such that it presents a resistive, 5082 load to
the D/S output.

B.2 Clock reference

Figure B.2 shows the crystal oscillator circuit used to provide a stable clock reference.
Complicating this normally straightforward design is that the only crystal oscillators available
currently are for 5V or 3.3V supplies, while the IC operates off a 2.5V supply. Not wishing to
add yet another supply line to the board, we make do with the +2.5V supply already available.
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Figure B.1. Converting from single-ended to differential signals.
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Figure B.2. The on-board clock reference.

The transformer in figure B.2 exploits the fact that if the oscillator output has a peak-to-peak
amplitude of 5V, each of the balanced outputs on the secondary side will have peak-to-peak
amplitudes of 2.5V. The center tap of the secondary winding is biased by the potentiometer such
that the actual clock output of this circuit swings between ground and 2.5V.

B.3 Overview of test board

A simplified diagram of the test board is shown in figure B.3. The “monitor” signals, Imonitor
and Qmonitor, are used to monitor the baseband inputs to the upconverter mixers. These are the
“predistortion inputs” of figures 5.39 and 5.40, for example. The nominal values for the voltage



Appendix B: The Experimental Setup for CFB IC 125

Test Board jacks
bl.hlﬂ Comesnn )
@ @ @ @ Mid-supply
LL o] o] [o][e] o
[so | so | [os | o |
e . B .;
1§ [ 1 §eppspt t
g g 8 ge{ g

ctivate

sign cosine

I Compensation
Q0 Compensation

1 Command input

Q Cosnmand iput Device Under Test

:;UU
%

manual sine

clock

5 5

g
5]

umop|
umopd)
A

2
L | @m oo
] o

Figure B.3. 'The test board.

supplies to the board are as follows: Vdd is 2.5, Ddrain and cascode bias are 2.1V, driver bias is
1.1V, the (upconversion) mixer supply is 3.5V, and the PA drains are biased at 2.0V. As noted in
section B.2, a -2.5V supply is also available for various board-level components.
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