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PREFACE

This book covers many aspects of the design of integrated circuits for fiber-optic
receivers and other high-speed serial data links. Fundamental concepts are explained
at the system-level, circuit-level, and semiconductor-device-level. Several books have
been published on the broad topic of fiber-optic communications, covering various
aspects of optical systems, including, optical fiber technology, wave propagation in
optical fibers, optical sources, optical detectors, optical receivers, coherent optical fiber
communication, and applications of fiber-optics. since these books cover a wide range
of topics, the chapters on receiver design are necessarily abbreviated, and few books
even mention the challenging problem of high-speed clock recovery. As it turns out,
clock recovery is the most difficult task to perform in broadband receivers. In this
book, which is devoted solely to discussing integrated optical receivers, techniques
for extracting timing information from the random data stream will be described in
considerable detail, as will all other aspects of receiver design. This book could be used
as a text for graduate and upper undergraduate courses in both analog circuit design
and communication systems. It is written in a tutorial form and should also prove
useful to practicing engineers wishing to update their knowledge through self-study.

Intended Audience

Communications systems are becoming increasingly complicated and ever smaller.
The personal communication revolution will see portable communication units fitting
in shirt pockets. Advances in disk-drives for portable computers are resulting in higher
bit-densities, requiring higher speed serial processing. As a result of this trend —
of higher-speeds, coupled with smaller packages — more elements of the system are
being implemented in integrated form, and smaller systems are becoming increasingly
complex. This requires that the IC designer be sufficiently knowledgeable about
systems theory at the global-level, and semiconductor physics at the micro-level, to
provide a middle-ground for the development of monolithic systems. This common-
ground is illustrated conceptually in Fig. 0.1.

xi
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SYSTEMS THEORY: 
Communication, and 
   Signal Processing 

    SOLID-STATE PHYSICS: 
Integrated Circuit Fabrication, 
      and Device Modeling 
 

        ANALOG IC DESIGN: 
Intermediate Frequnecy Amplifiers,  
Oscillators, Mixers, Filters, etc. 

 OPTICAL AND MICROWAVE: 
Design and Testing Techniques 

MONOLITHIC 
    SYSTEM 

Figure 0.1 Illustration of analog circuit designers filling an important gap

Circuit designers are the intended audience of this book. These are the people who
choose the circuit topology, transistor dimensions, current and voltage levels, and do
the layout and testing of integrated circuit chips. It is hoped that this work will help
to fill two serious gaps that the authors have perceived in the design of integrated
systems. One is the gap between system designer and circuit designers. The second
is the gap between designers of traditional analog circuits and microwave engineers.
Traditionally, the design of communication systems begins with systems theorists
who perform complex mathematical analysis and optimization on a global level. The
system engineer produces a block diagram containing various circuit building blocks.
Often microwave engineers design the front-end amplifier, mixer, and oscillator blocks,
leaving the design of the intermediate frequency building blocks to a circuit designer
experienced in standard analog techniques — a natural partition, since microwave
and analog designers rarely speak the same language. Despite the various disciplines
of engineering required for the design of a complete system, in the past, system-
engineers needed only a limited knowledge of circuit design, and conversely, circuit
designers needed only a limited knowledge of systems theory, for this division of tasks
to fit seamlessly together. However, when the data-rate increases to a point where
the limitations of the transistors are reached, this seam becomes ever wider. Various
parasitics have a large effect on system performance and need to be taken into account
in the system-design at the outset.

Design Philosophy

We contend that it is more appropriate for a skilled circuit designer to learn enough
about system theory to make modifications in optimal architectures, that are realizable
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at high-speeds, than it would be for a systems-engineer to anticipate all potential
problems in circuit design, and account for them a priori. The reasons for this statement
are both philosophical and pragmatic. From a philosophical point of view, the design
of a high-speed analog circuit is often as much a work of Art, as the result of a
mathematical prescription. The Art comes in developing an intuition about what can
be done in a given technology, making a leap of faith to a possible implementation, and
then using analysis to fine tune the result. Often elegant analysis deriving an optimal
structure come after the fact, and only serve to justify the validity of this intuitive leap.
Optimizing a circuit on a systems level, without knowledge of the parasitic effects that
can render the circuit useless, is usually a waste of time. From a much more practical
standpoint, if a system is going to be designed on a single chip, it is chip-designers
who are ultimately responsible for getting the system to work. The chip-designer,
therefore, has no choice but to become, at least, a novice system architect.

To aid circuit designers in filling the gap between themselves and system engineers,
Part I of this book explains the fundamentals of system theory required for the design
of broadband receivers in a manner that makes sense to a circuit designer. To this
end, emphasis is placed on intuition, and various illustrations are given to make results
clearer. It is hoped that by presenting the fundamentals in an intuitive manner, a
sufficient core knowledge of the subject can be digested to allow the reader to leap
beyond the mathematics, and apply the intuition gained to improve future circuit
designs. The mathematical development in Part I is rather lengthy, and the density
of equations may scare away circuit designers, who typically like to see more hand-
waving than at the launching of a cruise ship on its maiden voyage. Although the
chapters are dense with equations, many of the intermediate steps in the derivation
have been included. We believe this actually allows a longer book to be read faster,
than if it were shorter. Also, fundamental results are enclosed in boxes to set them
apart from steps in the derivation, and frequent rest-stops are encountered along the
way to reflect on the results and give examples.

Outline of the Book

The book is organized into two parts. Part I covers the theory of communications
systems as it applies to high-speed PAM (Pulse Amplitude Modulation) systems. The
primary emphasis is on clock recovery circuits, and two chapters thoroughly cover this
topic.

Theoretical concepts are generally grasped more easily by example. Therefore Part II
is devoted to circuit design issues that illustrate example realizations of architectures
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described in Part I. Part II is not a comprehensive step-by-step guide for designing
receiver ICs, but fundamental concepts are presented so that the reader can grasp the
main ideas and begin to design circuits of his own.

Part I

The basic requirements of a fiber-optic receiver are briefly reviewed in chapter 1.
This provides an overview of the problems that will be dealt with in considerably more
detail in the remainder of the work.

Frequency domain analysis of random data, and data derived signals, is the topic of
chapter 2. Although these results have appeared elsewhere, we found them difficult
to understand and interpret from the point of view of a circuit designer. Therefore,
We have presented results from first principles, in a tutorial form, with an emphasis on
applications to receiver design. By the end of this chapter, the reader should have the
analytical tools to answer important questions about receiver design trade-offs. More
importantly, the reader should develop a feel for the characteristics of random data,
and be able to predict the basic behavior of certain circuits by inspection.

In chapter 3, we address the problem of deriving an optimal receiver in the presence of
both non-white noise, and phase-jitter. Several books on communication theory cover
this topic adequately. Our focus will be to discuss the application of this theory to the
design of high-speed IC receivers.

In chapter 4, the theory of clock recovery in a broadband system is presented. The
recovery of a timing waveform from random data is the most difficult task that a
broadband receiver must perform. The speed of clock recovery circuits often limits
the maximum bit-rate of the receiver. Various clock recovery techniques are given,
and the advantages and disadvantages of each method are discussed. In addition,
clock recovery circuits based on maximum a posteriori (MAP) estimates in white
Gaussian noise are considered, and the resulting architectures are compared to heuristic
approaches.

In chapter 5, practical architectures for clock recovery at high-speeds are given. Some
of these circuits are modifications of previously reported schemes, and others are novel.
One novel technique in particular is outlined that has several desirable properties.
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Part II

In Part II we present the transistor-level design, and measured results, of fundamental
building blocks and test circuits. A brief review of high-speed IC processes, applicable
to fiber-optic receiver design, is given in chapter 6. The theory and properties of
HBTs (Heterojunction Bipolar Transistors) is presented. Typical models of GaAs and
InP HBTs for SPICE simulations are given at the end of this chapter.

A detailed noise analysis of a transresistance preamplifier is given in chapter 7,
showing the fundamental noise limitations of broadband receivers. Also, an InP
preamplifier design is discussed and simulated results are given. The preamplfier
circuit is integrated with a p-i-n photodiode for detection of light at a wavelength of
approximately 1.3-�m. This wavelength is ideally suited to single-mode glass optical
fibers, which display very low losses at wavelengths of 1.3-�m and 1.55-�m.

Test structures are essential for process evaluation and modeling. In chapter 8, we
report on two voltage controlled oscillators (VCOs). The measured results of the
oscillators were compared to SPICE simulations, and the model parameters of the
HBTs were optimized to fit the observed data.

In chapter 9, the circuit design and measured results of a patented VCO and a 6-GHz
phase-lock loop are presented. The VCO combines a ring oscillator with frequency
doubling to produce quadrature outputs at twice the ring frequency, and a thirdoutput at
four times the ring frequency. The PLL was designed using the VCO and demonstrates
functionality of key circuit building blocks of a clock recovery circuit.

Finally, in chapter 10, the design of a complete clock recovery and data retiming circuit,
based on the novel architecture of chapter 5, and utilizing circuits of chapters 7–9, is
presented. Simulation results are given which show that the circuits are applicable to
multi-gigabit-per-second communication systems.

It is our intention, that more than just reporting on the results of specific circuits, this
book will serve as a tutorial on the the design of integrated high-speed broadband
PAM data systems, such as, repeaters in long-haul, fiber-optic, trunk-lines, tranceivers
for use in LANs and WANs, read-channels for high-density data-storage devices,
and wireless communication hand-sets. We hope this work will provide a basis for
improved designs of the future.

Aaron Buchwald

Kenneth W. Martin

Hong Kong
30 September 1994
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Perhaps it will one day be said

that I have written something of substance,

something useful,
that I have entered the Mystery.

When cutting an axe handle with an axe,
surely the model is at hand.

Each writer finds a new entrance into the Mystery,
and it is difficult to explain.

Nonetheless, I have set down my thinking
as clearly as I am able.

— Lu Chi, Wen Fu



PART I

SYSTEM CONSIDERATIONS





What we've got here | is a failure to communicate.

—Donn Pearce, Cool Hand Luke





1
INTEGRATED FIBER-OPTIC

RECEIVERS: AN OVERVIEW

1.1 INTRODUCTION

Once the exclusive domain of high-cost telecom applications, multi-gigabit-per-second
fiber-optic communications circuits are finding there way into a variety of datacom sys-
tems. A new class of networks is emerging, which uses SONET (Synchronous Optical
Network) or SDH (Synchronous DigitalHierarchy) hardware and ATM (Asynchronous
Transfer Mode) packet-switching for multimedia data communication. Plans to build
avenues connecting this information super-highway to the public will create a large de-
mand for fiber-optic communication systems. Another, potentially enormous, market
for fiber-optics is wireless personal communication; widespread usage will require a
large number of base-stations, separated by a few hundreds of meters in densely popu-
lated areas. It is likely that communication between base-stations will also be through
high-speed optical systems. With this large demand for fiber-optic systems, focus has
shifted, from high-speed-at-any-cost approaches, toward economical systems for high-
volume production, thereby creating a large incentive for designing fully-integrated
receivers and transmitters. Previous receivers, which used highly tuned and expensive
discrete microwave components for low-volume telecom circuits, are now being re-
placed with low-cost integrated circuit transceivers. As a result, the task of receiver
design now falls upon IC chip designers, who may not be as familiar as they would
like with system-level issues and clock recovery difficulties. In this book we cover the
relevant theory and discuss circuit design issues so as to equip IC designers with the
necessary tools to realize next generation fiber-optic receivers.

5



6 Chapter 1

Scope of the Book

Several books on fiber-optic systems cover the subject thoroughly— from components
and devices — to applications. Four excellent books are those by Personick [1],
Keiser [2], Green [3], and Senior [4]. In this book we will narrow our scope and be
primarily interested in the design of high-speed integrated receivers for pulse amplitude
modulated (PAM) transmission of digital data. We will only discuss direct-detection
receivers; coherent systems will not be covered. By high-speed, we mean speeds
close to the limitations of the transistors used. This implies data-rates of from 1–
2 Gb/s for fine-line CMOS, 2–10 Gb/s for advanced silicon bipolar, and 10 Gb/s
and beyond for III–V FETs and heterostructure devices. By integrated, we mean a
high-degree of integration, although we include multi-chip hybrids in this definition.
This is in contrast to systems built primary with discrete microwave components, or
with monolithic-microwave integrated circuits (MMICs), containing only a few active
components per chip. Although MMIC techniques are not considered here, this does
exclude their usage in a practical cost-effective receivers.

The circuits considered contain on the order of 100–1000active devices, and the design
methodologies use traditional analog techniques, relying on small intra-chip distances
so that transmission-line effects can be ignored. Still, a multitude of problems arise at
these very high speeds, making the design task difficult. The primary challenge of the
design of high-speed integrated receivers, therefore, is to make the circuit insensitive to
deleterious parasitic effects, which become increasingly troublesome at high-speeds.
This is considered both from an overall system standpoint, by choosing an acceptable
architecture, and from a physical standpoint in the IC layout. Most of the circuits
presented in this book used III–V heterojunction bipolar transistor (HBT) structures
(GaAs and InP). However, they are also directly applicable to Si-bipolar, and the
design techniques and architectures presented can be realized using either CMOS or
high performance FETs with appropriate circuit modifications.

Target Applications

Much of this book focuses on the design of circuits and development of architectures
that will lead to the eventual implementation of a 10-Gb/s fiber-optic receiver for
long-haul telecommunication trunking. Prototype circuits were designed to meet this
objective. In what follows, the term receiver will refer to all the electronics, after,
and including the photodetector. A block diagram of a typical fiber-optic receiver
is shown in Fig. 1.1. Aside from the primary usage in telecom applications, the
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Figure 1.1 Block diagram of a fiber-optic receiver.
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architectures and circuits presented here have a wider applicability to any high-speed
PAM communication system; such applications include the following.

LANs (Local Area Networks), providing broadband data communication links
between computers over optical fibers such as FDDI (Fiber-Distributed Data
Interface).

WANs (Wide Area Networks) for multimedia applications (as mentioned above
these can be based on SONET hardware with ATM switching).

High-speed read/write channels for magnetic data-storage (as the bit-density of
data storage devices is reduced, the serial data-rates are fast approaching the
gigabit-per-second range).

Date transfer between wireless-communication base-stations.

High-speed serial data communication on metallic transmission media, such as
coaxial cable and twisted pairs.

Video-on-demand, Cable TV, and two-way video communications to the home.

High-speed interconnections between integrated circuits, highly-parallel connec-
tions for neural networks, and conceivably, interconnections between electronic
and biological signal processing systems.

An attempt was made in the writing of this book to keep the analysis, and design tech-
niques as general as possible, making the results readily applicable to all applications
requiring high-speed processing of serial data. In this first chapter we will present a
brief overview of integrated fiber-optic receivers and note some of the challenges faced
in the design of circuits for multi-gigabit-per-second systems.

1.2 ADVANTAGES OF FIBER-OPTICS

In recent years there has been a significant research effort in the area of high-speed
electronics for communication. Higher speeds are required in order to take full advan-
tage of the broadband capabilities of optical fibers. In particular integrated solutions
are sought for practical systems to reduce cost and improve reliability. One of the
target bit-rates for integrated fiber optic receivers is 10 Gb/s, which is consistent with
the SONET hierarchical specification [5]; practical transmission systems at these ex-
tremely high data rates will open the way to unexplored territory in networking. Each
of these systems will require high-speed, low-cost interface electronics.
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Currently, the bandwidth of optical fiber (1400 GHz-km for 1.3 �m single-mode
fibers) and low losses (0.15 dB/km) can not be fully exploited. A bottleneck in
system throughput exists due to speed limitations of the electronics in the receiver and
transmitter. This bottleneck can be circumvented by optically multiplexing several
lower data-rate channels through a single fiber. Both a 9.6 Gb/s wavelength-division
multiplexing (WDM) system [6], and a 20 Gb/s time-division multiplexing (TDM)
system [7], have been demonstrated in laboratory experiments. These systems are
capable of handling enormous data rates, because all of the high-speed processing,
including amplification, can be done optically. These systems, however, are quite
expensive and complicated.

1.3 STATUS OF INTEGRATED FIBER-OPTIC RECEIVERS

In the near term, optical communications systems must rely on electronic circuits for
high-speed data processing. A low-cost solution to high-capacity fiber-optic trans-
mission is to integrate high-speed electronic transmitters, and receivers onto a single
chip, or a chip-set for use in a hybrid system. This requires circuits capable of
processing multi-gigabit-per-second data. Several front-end circuits, such as: pream-
plifiers, postamplifiers, decision circuits, multiplexers and demultiplexers have been
reported [8, 9, 10, 11, 12, 13, 14, 15], as shown graphically in Fig. 1.2. Although
most of these circuits can process data at rates above 10 Gb/s, with others still capable
of handling rates greater than 20 Gb/s [16, 17], little has been reported on fully-
integrated clock extraction circuits above 2 or 3 Gb/s [18], with recent results of 8 Gb/s
demonstrated in the laboratory [19].

In this book,new clock extraction architectures will be investigated, and transistor-level
circuit solutions will be developed to enable the integration of a fiber-optic receiver
operating in the multi-gigabit-per-second range. The IC technology used, and the
maximum date rate will depend on the application. Bulk CMOS can be used for 622-
Mb/s to 2.5-Gb/s systems (SONET levels 12–48). SONET and SDH levels are given in
table 1.1. SONET is a hierarchical systems and development is underway for circuits
operating at level OC–192 (STM–64) at a bit-rate of 9953.28-Mb/s (�10-Gb/s). These
10-Gb/s circuits could use silicon bipolar processes, GaAs FETs, BiCMOS, or SOI-
CMOS (Silicon on Insulator)-CMOS. For even higher speeds, heterojunction devices
such as HBTs (Heterojunction Bipolar Transistors) or HEMTs (High-Elector Mobility
Transistors) could be used.
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Figure 1.2 Status of fiber-optic receivers for nonreturn-to-zero digital data as of 1993.

Bit Rate (Mb/s) SONET-Level SDH-Level
51.84 OC–01

155.52 OC–03 STM–1
622.08 OC–12 STM–4

1244.16 OC–24 STM–8
1866.24 OC–36 STM–12
2488.32 OC–48 STM–16

Table 1.1 Bit-rates and correspondingSONET (North America) and SDH (Europe) levels.
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1.3.1 High-Speed Integrated Circuit Processing Technologies

Most of the prototype circuits in this research were fabricated using TRW’s Al-
GaAs/GaAs HBT process (fmax '=40-GHz), which has consistently demonstrated a
level of integration with over 1000 devices. Other smaller circuits were be realized
in TRW’s developmental indium-phosphide (InP) HBT process (fmax '=80-GHz).
Dissimilar materials are utilized in an HBT to form a heterojunction, such that the
bandgap energy on the emitter side of the junction is larger than the base bandgap
energy. This energy difference gives the process engineer an additional parameter
for controlling device behavior. In particular, emitter-injection-efficiency is domi-
nated by the bandgap energy difference, and is no longer controlled by the ratio of
emitter-to-base doping levels. This allows doping levels to be optimized for high-
speed performance, without being constrained by current-gain considerations. It is
not uncommon for the base to have a higher doping concentration than the emitter,
resulting in lower base resistances, and lower emitter junction capacitances, and thus
higher speeds. Due to bandgap engineering, the HBT can have anywhere from a 20%
to a 100% speed advantage over homojunction devices with similar dimensions. More
will be said about HBTs in chapter 6.

1.4 OVERVIEW OF FIBER-OPTIC RECEIVER DESIGN

A simplified block diagram of a fiber-optic receiver is shown in Fig. 1.3. It consists
of a high impedance detector at the front-end. This can be either a p-i-n diode, or
an avalanche photodetector (APD). The low-level signal from the photodetector is
amplified by a low-noise preamplifier, followed by a main amplifier with automatic
gain control. A clock extraction and data regeneration circuit recovers the timing
information from the random data, and samples the data stream at the appropriate



12 Chapter 1

instant. Finally, a serial to parallel converter demultiplexes the retimed serial data to
a lower rate, where it can be processed by other circuitry. What follows is a brief
description of each of these blocks, and the problems that must be solved to produce a
successful receiver IC.

1.4.1 Photodetector

When light pulses, traveling down an optical fiber, reach their destination, they are
focused onto a photodetector diode, which absorbs the light energy and generates
electron-hole pairs. These electron-hole pairs are swept across the depletion region
of the diode, resulting in a current that is proportional to the incident optical power.
The absorption mechanisms of single-mode glass fibers are such that three separate
wavelength windows exist, where the attenuation of light pulses in the fiber achieves a
local minimum. These windows are at wavelengths of 0.82 �m, 1.3 �m, and 1.55 �m.
For low impurity fibers, the dominant loss mechanism inside these windows is due
to Rayleigh scattering. Since Rayleigh scattering is inversely proportional to the
fourth power of the wavelength in a given material, the lowest loss is at the longest
wavelengths, specifically 1.55 �m for glass fibers [1].

The wavelength of light absorbed by AlGaAs photodetectors is approximately 0.8 �m.
This is well matched to the short wavelength low-loss window for glass fibers. How-
ever, the attenuation at this wavelength is about 10 dB higher than at 1.55�m. Because
the attenuation at 0.8 �m is relatively high, three separate implementations can be pur-
sued with regard to the photodetector when using AlGaAs HBTs. The first is to
integrate a p-i-n diode using AlGaAs with the receiver circuitry to obtain a lightwave
communication system at a wavelength near 0.8 �m. This system will be capable of
processing high data rates, but the scattering losses of the fiber will restrict the distance
between repeaters to at most 10–20 kms, which is applicable to short-haul trunk-lines
and local area networks. The second alternative is to use an external long-wavelength
detector. Lower losses of the long wavelength transmission system will enable com-
munication over a longer distance. However, the interconnect between the detector and
preamplifier will increase parasitic capacitances and inductances, which can degrade
both the noise performance, and the frequency response. As a third alternative, a
photodetector and a low-noise preamplifier can be integrated in an InP based material
system. InP has a bandgap energy that corresponds to a wavelength of about 1.3 �m.
InP HBTs with extremely high fts ( 60–110 GHz ) can be fabricated on the same chip
with the photodetector. Although this technology is not very mature, ten transistor
circuits can be fabricated with a reasonable yield. Using InP for the detector and the
preamplifier will improve the noise performance, because the InP HBTs are faster
than the GaAs HBTs. We will see in the next section that the noise of a preamplifier
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Figure 1.4 Block diagram of a transimpedance preamplifier.

at high-speeds is related to the maximum speed of the transistors. Integrating the
photodetector with the amplifier eliminates interconnect problems, because intercon-
nections are now made between the preamplifier output, and the postamplifier input,
where impedance levels are much easier to control. Also, noise performance is not
degraded at this point, because any added noise will be well below the noise floor.

1.4.2 Preamplifier

The low-level signal current from the photodetector must be amplified so that additional
processing will not add significantly to the noise. A preamplifier is used to convert
this current into a voltage for subsequent processing. The sensitivity of the receiver
and the signal-to-noise ratio will be determined at this stage. Therefore, a very
low-noise amplifier is required. A transimpedance amplifier, like the one shown in
Fig. 1.4, has typically been used for this purpose, and its noise performance is well
characterized [20, 21, 22, 23, 24, 25]. The input referred current-noise spectral-density
for a preamp with a bipolar input device is given by

SnB(f) =
4kT

RF

+
2qIC
�

+4kTrb (2�fCds)
2+

�
2qIC +

4kT

RC

��
2�fCTB

gm

�2

(1.1)

and for an FET input device the result is

SnF (f) =
4kT

RF

+

�
4kT�gm +

4kT

RC

��
2�fCTF

gm

�2

(1.2)

where RF = feedback resistor

RC = collector/drain resistor in first stage

rb = base resistance
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Cds = detector plus stray capacitance

CTB = Cds +C� +C�

CTF = Cds +Cgs + Cgd

� = FET excess noise factor.

The noise at lower frequencies can be shown to be dominated by thermal noise in the
feedback resistor, and by the base-current shot-noise, for a bipolar front-end. Because
an FET device lacks this base-current shot-noise term, it has generally been accepted
that FET devices will exhibit superior noise performance. However, input noise levels
comparable to, and even lower than FETs are obtainable using bipolar devices when
the bandwidth is broadened [24]. This is possible because at higher frequencies, the
collector current shot-noise becomes dominant, and the input-noise-current spectral-
densities for a bipolar device reduce to

SnB(f) � 4kTrb (2�fCds)
2 +

�
2qIC +

4kT

RC

��
2�fCTB

gm

�2

; (1.4)

and for an FET device,

SnF (f) �

�
4kT�gm +

4kT

RC

��
2�fCTF

gm

�2

: (1.5)

Since HBTs can be fabricated with very low base resistance, the first term in (1.4) can
be made small. The remaining term is proportional to the square of a capacitance-
transconductance ratio, or an effective time-constant. For a bipolar device with large
bias current, this time constant asymptotically approaches �F , the forward transit time
in the base, which can be quite small for high-speed HBTs (�1ps). Since HBTs
have higher gain than FET devices, the same transconductance can be obtained at a
much lower bias current. Therefore, at high data rates, where the collector-current
shot-noise is dominant, an FET device will generally require significantly more bias
current to reduce the term CTF=gm in order to achieve the same noise performance as
a bipolar device at equal temperatures. However, since the noise power is proportional
to temperature, the FET can have higher noise than an HBT of equal speed due to the
increased power dissipation of the FET. Therefore, in a fully-integrated receiver, where
power dissipation must be kept low, achieving low-noise with low bias currents is an
extremely advantageous property. Aside from the noise penalty due to an increase in
operating temperature, an FET device may never reach the same noise level of an HBT
device with a low base-resistance, high �, and small �F , even when the bias current of
the FET is raised beyond practical limits of a single-chip preamplifier (100–200 mA).

A schematic of an electro-optical InP integrated low-noise transimpedance preamplifier
is shown in Fig. 1.5. This amplifier has a p-i-n photodetector integrated on the same
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Figure 1.5 A low-noise InP transimpedance preamplifier.

chip. The design of this circuit, and a detailed noise analysis will be presented in
chapter 7.

1.4.3 Main Amplifier

The main amplifier will act to buffer the circuit from process variations and changes
in signal strength, and will also perform noise shaping. It must contain either a
limiter, or an automatic-gain-control circuit to provide the proper signal level to the
clock-extraction and data-recovery circuit, regardless of the output power of the preamp
circuit. The single-ended signal from the preamplifier will be converted to a differential
signal, and fully-differential circuits will be employed throughout the remainder of the
receiver. The main amplifier circuit will make extensive use of adaptive biasing
techniques to automatically adjust its dc levels to match the common-mode level of
the clock extraction and data recovery circuit. The saturation characteristics of this
stage will be considered carefully as they will affect the overall dynamic range of the
receiver.

Specific challenges in this circuit are in providing dc level restoration. Since long
sequences of data can be transmitted without transitions, the data can contain low-
frequency information. Therefore, a dc restoration that subtracts the average-data
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Figure 1.6 Block diagram of a clock recovery and data retiming circuit using a bandpass
filter.

from the input data is forbidden. Another challenge is in conversion of the single-
ended output from the preamplifier to a differential signal. At high-speeds, care must
be taken to equalize the delays in the positive and negative paths.

1.4.4 Clock Extraction and Data Recovery

Clock extraction circuits for nonreturn-to-zero (NRZ) data can be grouped into two
main categories: open loop filters, and closed loop synchronizes. Formally, filters
have been used almost exclusively in high bit-rate receivers. With this open loop
technique, the periodic timing information is extracted from the data by first using
a nonlinear edge-enhancement circuit to generate a spectral line at the bit rate. The
signal is then passed through a narrowband filter, centered at the bit-rate frequency, as
shown in Fig. 1.6. The filter must be highly selective (highQ) in order to minimize the
phase-jitter in the clock signal. Typically, surface-acoustic-wave (SAW) filters have
been used for this purpose, however commercially available SAW filters are limited to
a frequency of less than 3 GHz [26].

The open-loop technique is attractive because it doesn’t suffer from instabilities and
nonlinear problems, such as frequency acquisition and cycle-slipping. However, open-
loop systems usually need to be manually adjusted to center the clock-edge in bit-
interval. This one-time adjustment will not track phase offsets due to temperature
variations and component aging. The filter is also external to the receiver electronics
and bulky, leading to both packaging and interconnect problems.

In contrast to an open loop filter, a closed loop system is integrable, and can continually
compensate for changes in the environment and the input bit-rate. This technique
requires that a voltage-controlled oscillator (VCO) be tuned by a suitably filtered error
signal, so as to align its transitions to the center of the bit interval. This is illustrated
conceptually in Fig. 1.7. Although the loop has the desirable property of being self-
adjusting, complications due to nonlinear frequency acquisition and tracking makes
the circuit difficult to design.
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Figure 1.7 Block diagram of a clock recovery and data retiming circuit using a PLL.

Clock recovery circuits presently limit the obtainable data-rate of multigigabit-per-
second integrated fiber-optic receivers. Currently, practical receivers that include
methods for extracting the clock signal are limited to about 2.5 Gb/s, both for systems
using a SAW filter for clock extraction [27, 28], and systems using a PLL [18], although
recently reported experimental circuits are fast approaching the 10-Gb/s range [19].

Several groups are working to produce practical 10-Gb/s integrated fiber-optic re-
ceivers. Among them are: AT&T, Bellcore/Rockwell, NTT, NEC, R�uhr Univer-
sit�at in Bochum Germany, and UCLA/TRW. Preamplifier and postamplifier ICs [29,
30], an amplifier and mixer [31], a demultiplexer and phase-aligner IC [32, 33], a
phase/frequency-detector [34, 35], a PLL (phase-lock loop) [36, 37], and a clock-
extraction and data-retimming circuit [19] are among the circuits presented recently.
Thus far, all of the main functional blocks of a 10-Gb/s receiver have been demon-
strated with one notable exception — the clock recovery circuit. This circuit is the
most complicated, and the most difficult to design; it’s not surprising that development
of high-speed clock recovery has lagged behind development of the simpler amplifier
and demultiplexer circuits.

One of the major thrusts of this book will be in developing the clock extraction and
data recovery circuit. Several special challenges exist in designing a single chip
system. In keeping with the goal of economy, the amount of external trimming
should be minimized. For an integrated solution, a phase-locked loop will be used.
Several advantages of integration will be exploited in this circuit. For example, simple
oscillator circuits, such as multivibrators and ring oscillators, can be realized with
sufficiently low phase-jitter, and PLLs can be used to further purify the spectrum and
reduce low-frequency jitter and drift. Also, one can take advantage of the matching of
devices to obtain continual phase alignment and frequency acquisition.

A conceptual diagram of a self-correcting clock-recovery and data-retiming circuit
using this technique is shown in Fig. 1.8. The clock recovery loop measures the clock-
phase and aligns it so as to minimize the bit-error-rate. Since we propose to design
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Figure 1.8 Block diagram of a self-adjusting clock recovery circuit.

a fully-integrated receiver, no external delay lines can be used for tuning. Therefore,
the optimal phase alignment of the clock recovery circuit must be done on chip; a
self-correcting circuit additionally requires the decision circuit to be included in the
feedback loop for final clock-phase adjustment. This is shown explicitly in Fig. 1.8 as
the phase error correction signal.

Practical High-Speed Clock Recovery and Data Retiming Circuits

Clock recovery circuits are explained in considerable detail in chapters 4 and 5. Here
we will briefly describe three self-adjusting circuits capable of high-speed operation.
One method of recovering the clock was first described by Alexander [38]. A block
diagram of this approach is shown in Fig. 1.9. The basic idea of this circuit is to use
the decision flip-flop in conjunction with an identical reference flip-flop to obtain a
differential error signal. The sample (a) is the previous data symbol, and the sample (c)
is the current data symbol. The reference sample (b) is taken at the data crossover. The
timing of these three samples is illustrated in Fig. 1.10. The digital logic block looks
at the three samples, and decides whether the clock was early, late, or indeterminate
for each sampling interval. This decision is averaged, and used to control a VCO.

A second method is a variation on the early-late gate technique. This circuit, illustrated
in Fig. 1.11, is similar to the one previously described, in that it uses identical decision
circuits to arrive at a differential phase-error measure. In this circuit, data is detected
using an early clock, a late clock, and an on-time clock. By subtracting the late
from the early signal, and multiplying by the retimed data to remove random polarity
variations, a phase-error signal is derived, which will go to zero when the early and



Integrated Fiber-Optic Receivers 19

D     Q 

D     Q 

Data - in 

 
CENTER 

 
TRANSITION 

Data - out Clock - out 

VCO 

D     Q 

D     Q 

F(s) 

 
P

H
A

S
E

 / F
R

E
Q

U
E

N
C

Y
 L

O
G

IC
 

ε 

(a) 

(c) 

(b) 

Figure 1.9 A self-correcting phase detector for a clock-recoveryand data retiming circuit.
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Figure 1.10 Illustration of timing of samples in Alexander’s clock recovery and data
retiming circuit.
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Figure 1.12 Block diagram of a data transition tracking loop for timing recoveryand data
regeneration.

late clocks are exactly centered about the optimal sampling point. The usual depiction
of the early and late gates as dumped integrators has been replaced by a matched
filter with sample-and-holds, which facilitates high-speed operation. An alternative
implementation of this circuit could use two levels of bit-interleaving, so that dual
track-and-holds can be multiplexed to perform the sample-and-hold function, and the
VCO would run at half the data rate. Since the early- and late-gate correlators are
matched to the decision circuit correlator, their delay times will track each other, and
the circuit will be automatically, and continually, optimally phase aligned.

A practical clock recovery circuit will require some type of frequency acquisition aid.
A PLL-based clock recovery circuit is only capable of pulling-in a frequency error
of the same order of the closed-loop bandwidth, which is typically a factor of 1000
less than the bit-rate. Therefore, without frequency acquisition aids, the VCO center
frequency will have to be stable to within 0.1% over all processing and temperature
variations, which is quite a stringent specification.

A third clock recovery circuit that was adopted for application to 10-Gb/s systems
is known as a data transition tracking loop (DTTL) [39, 40]. A conceptual block
diagram of DTTL circuit is shown in Fig. 1.12; this circuit is discussed in detail in
chapter 5, and simulations results are given in chapter 10. A frequency discriminator
was added to the DTTL to increase the pull-in range, and the circuit can be implemented
using two levels of bit-interleaving. A block diagram of the interleaved DTTL with
frequency detection is shown in Fig. 1.13. This circuit has several desirable properties
as discussed in section 5.4; these advantages are briefly outlined in table 1.2.
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Figure 1.13 Block diagram of an interleaved DTTL with frequency detection.

Advantages of DTTL Clock Recovery Circuit

Can function at very high-speeds

Is inherently self-adjusting

Using Sample-and-holds before decision circuits improves sensitiv-
ity

Phase-detector function is monotonic over the bit interval
[�T=2; T=2], improving phase-tracking and frequency-acquisition

The phase-error is independent of the transition density, eliminating
pattern dependent jitter.

Resampling the phase error only after a data transition eliminates
ripple, and significantly reduces ripple-induced phase-jitter

Table 1.2 Advantages of data transition tracking loop for clockextraction and data retiming
of random NRZ data.
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In order to understand the design trade-offs employed in the optimization of circuit
performance, a solid grasp of the fundamentals of communication theory, as it applies
to high-speed, broadband digital receivers is required. This theory is outlined in the
remainder of Part I, and special emphasis in placed on clock recovery in broadband
systems. The circuit designs, and measured results of the fabricated test structures will
be presented in Part II.
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2
MATHEMATICAL PRELIMINARIES:

POWER SPECTRAL DENSITIES
OF RANDOM DATA AND NOISE

In this chapter techniques for determining the power spectral density (PSD) of random
data and random signals derived from the data will be presented. There exists a
complete theory for determining the spectral content of random signals [1, 2, 3, 4].
However, the general theory involves a knowledge of probability distributions, and is
restricted in application only to stationary, or wide-sense stationary random signals.
The condition of stationarity is violated for random binary non-return-to-zero (NRZ)
data, and the general theory cannot be directly applied to the problem at hand. However,
an NRZ data stream in not totally random; such signals are termed cyclo-stationary
because their statistics are cyclic. There exists a well defined structure in the data such
that the absolute value of the signal in the bit period T is precisely known — only
its polarity is random. Therefore it is reasonable to assume that the representation of
this random data stream in the frequency domain can be obtained directly by applying
the definitions of the Fourier series and Fourier transform, and problems with non-
stationarity can be averted.

The spectral analysis of random data has been considered previously. Bennett’s work
on the statistics of regenerative digital transmission at Bell Labs was published in
1958 [5], and Titsworth and Welch of the Jet Propulsions Laboratory published their
work on power spectra of random signals in 1961 [6]. These works are significant, but
the average circuit designer will likely gain little insight from these formulations based
on Markov chains and probability transitions matrices. Our goal in this chapter is not
to repeat these works, but rather to illuminate their applicability to fiber-optic receiver
design. To meet this goal, we will develop a frequency domain description of random
data, and data-derived signals systematically, starting from first principles. The results
will then be generalized, and related to the general theory of random signals. By
presenting the power spectral densities in this manner, the interpretation of the results
is straightforward. Moreover, intuition is enhanced that will enable us to find quick
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solutions to complex problems, especially when the data-derived signal results from a
nonlinear operation on the data, as is required in clock recovery schemes.

2.1 ANALYTICAL EXPRESSIONS FOR NRZ BANDLIMITED

DATA

A random data stream can be represented analytically as the sum of pulses shifted in
time by a multiple of the bit-period T. If the data is binary and symmetric, then the
pulse shape will be identical for each bit. Multiplication by a random variable rn(�)
determines the polarity, such that the data signal is given by1

d(t; �) =
N�1X
n=0

rn(�)pT (t � nT ): (2.1)

If the data is NRZ, then the only pulse that can be used to represent the data in this
manner is a rectangular pulse that is unity in the interval [0; T ] and zero elsewhere.
Therefore,

pT (t) = rect(t=T � 1=2); (2.2)

where the rectangular function is defined by

rect(t=T )
4

=

�
1 for jtj � T=2

0 for jtj > T=2.
(2.3)

If the NRZ data has non-zero rise times, then memory must be introduced into the
expression for d(t; �), because the shape of the function during a transition will depend
on the previous data values. The data can then be represented analytically as the output
of a linear filter with rectangular NRZ data as an input, such that the bandlimited data
is represented by the convolution;

d(t; �) = h(t) �

"
N�1X
n=0

rn(�)pT (t� nT )

#
: (2.4)

1A random variable rn(�) represents the entire ensemble of possible outcomes of random trials. If each
random trial were given labels [�1; �2; �3; : : :], then rn(�1) is the value of the random variable resulting
from the outcome of the first random trial. Likewise, a random process can be represented as d(�; �). The
interpretation of this notation is that d(�; �) is an ensemble of all possible sample functions of the random
process. At any given value of time, d(t; �) is a random variable. d(�; �1) is the sample function, over
all time, that corresponds to the outcome of the first random trial. Finally d(t; �1) is the value of the first
sample function at time t. This notation may seem a bit cumbersome, but the authors have found it helpful
in keeping track of which variables are random, and which are deterministic.
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Figure 2.1 A rectangular data pulse
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Figure 2.2 A rectangular data pulse superimposed with tones whose frequencies are a
multiple of the bit-rate BT = 1=T .

2.2 FOURIER SERIES FREQUENCY DOMAIN

REPRESENTATIONS

Qualitative Analysis of Frequency Content Before gettingbogged down in the details
of determining the precise functional form of the PSD for NRZ data, we should spend
a few moments to consider qualitatively what type of results to expect. For rectangular
NRZ data the pulse shape is shown in Fig. 2.1. The frequency content of a signal
is obtained by correlating the signal with tones of various frequencies. We can first
consider any tone at a frequency that is a multiple of the bit-rate, as in Fig. 2.2. A
tone at frequency BT or any harmonic of this tone will complete an integer number
of cycles within on bit-period. Since there is a positive portion to precisely cancel a
negative portion of the signal in a time T , the correlation of these harmonic tones with
the data pulse (the integral of the product of the tone with the data signal) is easily
seen to be zero. Therefore, one would expect to find nulls in the PSD of the data steam
at integer multiples of the bit-rate. Further, we can consider the contribution to the
correlation integral when the frequency of the tone is increased. Fig 2.3 shows the data
pulse superimposed with two tones of different frequencies. The symmetric portion
of the integral is shown shaded; the residual unshaded portion is the contribution to
the integral. As the frequency of the tone is increased, the portion of the signal that
contributes to the integral is reduced in proportional to the reduction in the period.
Therefore, we should also expect an envelope of the frequency spectrum proportional
to the period of the tone, or 1=f , where f is the frequency of the tone. Since the PSD
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Figure 2.3 Rectangular data pulses superimposed with tones of different frequencies.
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Figure 2.4 Approximate power spectral density of NRZ data based on qualitative argu-
ments

is obtained by squaring the the frequency spectrum, the PSD will have an envelope
proportional to 1=f2.

Now we can sketch the approximate shape of the frequency content of the data signal
based on the previous qualitative observations which can be summarized as follows:

The frequency spectrum has nulls at multiples of the bit-rate.

The PSD has an envelope proportional to 1=f2.

This approximate PSD is plotted in Fig. 2.4. Based on previous experience, we might
assume that the PSD has the form of a (sin(x)=x)2 function. The next few sections
are devoted to deriving this functional form precisely, and interpreting exactly what it
means to speak of a power-spectral-density when the time-signal is random data.

2.2.1 Fourier Series Representation of NRZ data

A rectangular NRZ random data stream d(t; �) of length N-bits has an analytical
representation given in (2.1). A pseudo-random data sequence dN (t; �) can be
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generated from d(t; �) by repeating the signal every N bits. Since dN (t; �) is periodic
with a period of NT , it can be represented by a Fourier series of the form

dN (t; �) =
a0(�)

2
+

1X
m=1

am(�) cos

�
2�mt

NT

�
+

1X
m=1

bm(�) sin

�
2�mt

NT

�
: (2.5)

The coefficients of the Fourier series are random variables and can be extracted from
the original signal. Since all harmonics of the fundamental frequency are mutually
orthogonal when integrated over the period NT , random spectral coefficients are
determined according to

am(�) =
2

NT

Z NT

0

dN (t; �) cos

�
2�mt

NT

�
dt (2.6)

bm(�) =
2

NT

Z NT

0

dN (t; �) sin

�
2�mt

NT

�
dt: (2.7)

These coefficients of the Fourier series can be considered as “dot-products,” or equiv-
alently, projections of the data signal onto the orthogonal basis functions. Since the
cosine and sine are quadrature signals, they are also mutually orthogonal, and both
must be included in the Fourier series expansion, with the relative magnitudes of the
coefficients am(�) and bm(�) determining the phase. In the analysis that follows both
am(�) and bm(�) will be evaluated directly from the above definitions, and the inter-
pretation of the result will be clear. Later the complex form of the Fourier series and
negative frequencies will be introduced for analytical convenience.

The process of finding the power spectral density of the random data begins by evalu-
ating am(�) directly. Applying the definition,

am(�) =
2

NT

Z NT

0

N�1X
n=0

rn(�)pT (t� nT ) cos

�
2�mt

NT

�
dt; (2.8)

interchanging the order of integration and summation,

am(�) =
2

NT

N�1X
n=0

rn(�)

Z NT

0

pT (t� nT ) cos

�
2�mt

NT

�
dt; (2.9)

and recalling that the pulse pT (t) is rectangular, such that

pT (t� nT ) =

�
1 for nT � t � (n+ 1)T

0 elsewhere,
(2.10)

am(�) can now be expressed as the sum of integrals

am(�) =
2

NT

N�1X
n=0

rn(�)

Z (n+1)T

nT

cos

�
2�mt

NT

�
dt: (2.11)
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Evaluating the integrals

am(�) =
1

�m

N�1X
n=0

rn(�)

�
sin

�
2�m(n + 1)

N

�
� sin

�
2�mn

N

��
: (2.12)

To facilitate manipulation of the sinusoids we define

�n
4

=
2�mn

N
and, �

4

=
�m

N
:

The result in (2.12) can now be simplified. Leaving in all of the intermediate steps,

am(�) =
1

�m

N�1X
n=0

rn(�)=
�
ej�nej2� � ej�n

	
(2.13a)

am(�) =
1

�m

N�1X
n=0

rn(�)=
�
ej�ej�n

�
ej� � e�j�

�	
(2.13b)

am(�) =
1

�m

N�1X
n=0

rn(�)=
�
ej�ej�n [2j sin(�)]

	
(2.13c)

am(�) =
2 sin(�)

�m

N�1X
n=0

rn(�)=
�
jej�ej�n

	
(2.13d)

am(�) =
2 sin(�)

�m

N�1X
n=0

rn(�) cos(�n + �): (2.13e)

Using the definition of the sinc function

sinc(x)
4
=

sin(�x)

�x
;

then the Fourier series coefficients am(�) are given by

am(�) =
2

N
sinc(m=N )

N�1X
n=0

rn(�) cos

�
2�m

N
(n+ 1=2)

�
: (2.14)

The random coefficients bm(�) can be found in a similar manner.

bm(�) =
2

NT

Z NT

0

N�1X
n=0

rn(�)pT (t � nT ) sin

�
2�mt

NT

�
dt (2.15)
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This too can be expressed as the sum of integrals

bm(�) =
2

NT

N�1X
n=0

rn(�)

Z (n+1)T

nT

sin

�
2�mt

NT

�
dt: (2.16)

The result of the integration is

bm(�) = �
1

�m

N�1X
n=0

rn(�)

�
cos

�
2�m(n + 1)

N

�
� cos

�
2�mn

N

��
: (2.17)

From (2.13) it can be seen that bm(�) can be expressed similarly,

bm(�) = �
2 sin(�)

�m

N�1X
n=0

rn(�)<
�
jej�ej�n

	
; (2.18)

and after simplifying

bm(�) =
2

N
sinc(m=N )

N�1X
n=0

rn(�) sin

�
2�m

N
(n+ 1=2)

�
: (2.19)

The pseudo-random rectangular NRZ data stream has now been represented by a
Fourier series expansion, where the coefficients given in (2.14) and (2.19) are random
variables that depend on the actual data stream. It is desirable to find the average
behavior of the data in the frequency domain so that the result would correspond to
the output of a spectrum analyzer, averaging several sweeps. Each sweep measures
the time-averaged power in a given bandwidth, and the final display is an average
over several smaller segments of the complete data signal. To perform this operation
analytically, we first need to find the time-averaged power of the random data in a
given bandwidth. This power will be a random variable which also depends on the
actual data sequence. By averaging over the ensemble of all possible data sequences
the statistical average of the time-averaged power2 can be determined.

For a deterministic signal of the form,

f(t) = am cos(2�fmt) + bm sin(2�fmt); (2.20)

2Thus far we have not defined the units ofam and bm . However, if we want to talk about power, then they
clearly must have units proportional to

p
Watts. Normally we will consider the signal f(t) to be a either a

current or a voltage. Therefore, a resistance must be associated with the coefficients to obtain a power. If we
associate a 1
 resistor with each coefficient, then for a voltage signal the units are Volts=

p
1
 =

p
Watts,

and for a current the units are Amps
p
1
 =

p
Watts. However, usually we will ignore the 1
 normalization

and still talk about the power when the units are actually Amps2 or Volts2 and not Watts. Although this is a
misnomer, we will use the word “power,” when it should be kept in mind that we actually mean the power
dissipated in a 1
 resistor.
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the time-averaged power Pm is equal to

Pm =
a2m + b2m

2
: (2.21)

A periodic deterministic signal can be represented by a Fourier series, such that

g(t) =
a0
2

+
1X

m=1

am cos(2�fmt) +
1X

m=1

bm sin(2�fmt): (2.22)

Since the basis functions are mutually orthogonal, then the power in the mth harmonic
is also given by (2.21), except at dc where the average power is

P0 =
a20
4
: (2.23)

To facilitate power calculations it is convenient to express the Fourier series coefficients
as the real and imaginary parts of a complex number. From (2.14) and (2.19) it can be
seen that am(�) and bm(�) can be expressed in the following form

am(�) =
2

N
sinc(m=N )<

(
N�1X
n=0

rn(�)e
�j�e�j�n

)
(2.24a)

bm(�) = �
2

N
sinc(m=N )=

(
N�1X
n=0

rn(�)e
�j�e�j�n

)
: (2.24b)

Defining a complex Fourier coefficient as

cm(�)
4

=
am(�)� jbm(�)

2
; (2.25)

then

cm(�) =
1

N
sinc(m=N )

(
N�1X
n=0

rn(�)e
�j�e�j�n

)
: (2.26)

The squared magnitude of cm(�) is proportional to the average power,

jcm(�)j2 = cm(�)c�m(�) =
am(�)2 + bm(�)2

4
(2.27)

so that

Pm(�) =

�
jcm(�)j2 for m = 0

2jcm(�)j2 for m 6= 0.
(2.28)
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Now the magnitude of cm(�) can be determined from (2.26).

jcm(�)j2 =

�
1

N
sinc(m=N )

�2 N�1X
n=0

rn(�)e
�j�e�j�n

N�1X
n=0

rn(�)e
j�ej�n ; (2.29)

and writing this as a double summation we have

jcm(�)j2 =

�
1

N
sinc(m=N )

�2 N�1X
n=0

N�1X
k=0

rn(�)rk(�)e
j(�n��k): (2.30)

Ensemble Expectations of the Average Power Continuing with the analysis we want
to find the ensemble average of Pm(�). To do this requires a knowledge of the statistics
of the random variable rn(�). Since rn(�) represents the polarity of the pulse, it can
only take on values of +1 or -1. It will be assumed, unless otherwise specified, that the
data is equally likely to be positive as it is negative. Therefore,

rn(�) =

�
+1 with Probability 1/2

�1 with Probability 1/2.
(2.31)

As a result, the mean of the data is zero,

E[rn(�)] = 0: (2.32)

It is further assumed that all data bits are uncorrelated, so that a knowledge of one, or
more bits, gives no information about the value of any other bit. Therefore,

E[rn(�)rk(�)] =

�
1 for n = k

0 for n 6= k
(2.33)

Now the expected value of jcm(�)j2 can be determined.

E[jcm(�)j2] =

�
1

N
sinc(m=N )

�2 N�1X
n=0

N�1X
k=0

E[rn(�)rk(�)]e
j(�n��k) (2.34)

The inner sum vanishes for all values of k 6= n, so that the double sum can be replaced
by a single sum.

E[jcm(�)j2] =

�
1

N
sinc(m=N )

�2 N�1X
n=0

(1)ej0 (2.35)

=
1

N
sinc2(m=N ) (2.36)
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Figure 2.5 (a) Power of Fourier series constituent tones for N = 16, (b) Cumulative
power.

Letting the mean of the of the time-averaged power be defined by

Pm
4

= E[Pm(�)];

then

Pm =

8><
>:

1

N
for m = 0

2

N
sinc2(m=N ) for m 6= 0.

(2.37)

Pm is plotted in Fig. 2.5a for the case of N = 16 bits. We recall that this is a plot of
the expected value, over all possible periodic pseudo-random sequences with a period
of 16 bits, of the time averaged power in each of the harmonics of the Fourier series
representation of NRZ data. We can use Parseval’s Theorem that equates the average
power in the time and frequency domains to check this result.

Ptime
4
= E

"Z NT

0

d2N (t; �)dt

#
= 1 (2.38)

Pfreq
4

=
1

N
+

2

N

1X
m=1

sinc2(m=N ) = 1; (2.39)

and we see that the expected value of the time-averaged power is the same in both the
time and frequency domains as anticipated. The cumulative power of the coefficients
is plotted in Fig. 2.5b, where it can be seen that 80% of the expected signal power
lies within a bandwidth of BT =2. Since the frequency increment in the Fourier Series
expansion is

�f = BT =N = 1=NT; (2.40)
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a spectral-density coefficient can be defined that gives the power in a given harmonic,
divided by the frequency spacing;

Pm
�f =

�
T for m = 0

2T sinc2(m=N ) for m 6= 0.
(2.41)

Interpretation of Results

It is interesting to note that the power spectrum of the random NRZ data contains a
component at dc, even though the data is balanced around zero, and is equally likely
to be positive, as it is to be negative. The emergence of a dc component arises because
Pm was derived using an ensemble expectation operator which averages the square of
one particular sample function of the random process. Therefore, we need a moment
to clarify what is actually meant by the presence of a “dc” term. The interpretation of
the results is, for every possible combination of sequences N-bits long, there will not
always be an equal number of positive and negative pulses (“ones” and “zeros”) in the
bit sequence. The average dc value of this sequence will be the difference between the
number of “ones” and “zeros” �1=0 divided by the total bit length N .

Naturally, any deterministic, periodic sequence will have a well defined dc value. If
the number of positive pulses is equal to the number of negative pulses, then�1=0 = 0,
and the dc value is also zero. However, if the sequence is very long, and is broken into
several subintervals of length Ns, then each of these subintervals will have an average
value that may not be zero. Therefore it can be considered to have a “dc” component,
if the idea of “dc” is interpreted to mean a frequency that varies slower than can be
observed in the given measurement interval. For example: if we have a 65.5 KHz
clock and a pseudo-random sequence of length, N = 216 � 1, then the sequence will
repeat once every second. If the “dc” value is measured once every 0.1 s, squared, and
averaged over a one-second interval, then a non-zero result can occur.

Finding the dc Power in the Time-Domain Instead of findingP0 as in (2.37) we could
do it in the time domain. The average dc power for the sample function corresponding
to the random event �1 is then

P0(�1) =

�
�1=0(�1)

N

�2
; (2.42)

and the expected value of the dc power for all possible sample functions is

P0 = E

"�
�1=0(�)

N

�2#
: (2.43)
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Data rate = BT 

Clock Frequency = BT /2 

+ + + - - - - + + - + 

Figure 2.6 Random NRZ data and a tone with a frequency of one-half of the bit-rate.

This operation implies that we need to find the difference between the positive and
negative pulses for all possible sequences and average the square. This seems an
ominous task and it illustrates the power of the using the expectation operator and the
statistical correlation between bits. P0 can be obtained as follows;

P0 = E

"
1

N

N�1X
n=0

rn(�)

#2
(2.44)

=
1

N2

N�1X
n=0

N�1X
k=0

E [rn(�)rk(�)] (2.45)

= 1=N; (2.46)

which is the same result obtained in the frequency domain. The result also shows that
the dc value does approach zero, for equally likely �1 signals, as the length of the
period NT is increased.

The reason for devoting a lengthy discussion to the power in the dc component is
because the expected value of all harmonic power components Pm have a similar
interpretation. The mean of the random Fourier coefficients am(�) and bm(�) are in
fact all equal to zero as can be seen from (2.14) and (2.19). Fig. 2.6 illustrates how a
tone at half of the bit-rate lines up in phase with the data half of the time and is out of
phase with the data the other half. Hence, there is no frequency component at any of
the harmonics on average. However, any individual sample function will have bits that
line-up in the appropriate order such that there is a residual component at, for instance,
the 3rd, or the 7th, harmonic. When these values are squared and averaged over all
possible sample functions, a non-zero average power Pm is obtained.

This has been a rather long journey to confirm the result that was anticipated in Fig. 2.4,
that the PSD is a sinc2 function in the ensemble average. In the sections to follow,
these results will be considered within a larger framework so that similar results can
be obtained much more readily.
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Figure 2.7 NRZ data, edge-detected data, and a tone at the bit-rate that is in phase-
alignment with the edge-detected signal.

2.2.2 Fourier Series Representation of Edge-Detected Data

It was determined in the previous section that the PSD of NRZ data has a null at
the bit-rate, but clearly, if bits are being transmitted at a rate of BT , then there must
be information about the bit-rate contained within the data signal itself. Since any
linear operation on the data will always contain a null at the bit-rate, it is appropriate
to consider what types of nonlinear operation can be performed on the data that will
generate a tone at either BT or a multiple of BT . One such nonlinear operation is
edge-detection. Since the data does not return to zero in the bit-interval, there is no
discernible timing information contained in the data, unless adjacent bits are different.
Therefore the timing information is contained in the transitions between adjacent,
non-identical, bits. However, since this transition is equally likely to be positive as
negative, at any time t = nT for [n = 1; 2; 3 : : :], this random phase reversal, as was
illustrated in Fig. 2.6, prevents the accumulation of a steady-state resonance if the
data signal were applied directly to the input of a bandpass filter. It was found that a
residual signal at half the bit-rate exists simply due the the random placement of bits in
the proper phase, but this frequency component is small and indistinguishable from all
of the other frequency components in the data signal. Noticing that the random phase
reversals are what prevents a resonant circuit at BT =2 from sustaining oscillation, we
can devise an operation that removes the random phase reversals, and a signal with
a strong clock component can be derived. Consider generating a positive pulse for
a fraction of the bit period every time that a transition of the data is encountered.
This operation is illustrated in Fig. 2.7. It can be seen that the edge-detected pulses
eN (t; �) are always in-phase with a resonant signal at the bit-rate; eN (t; �) could be
used as the input to a resonant circuit, and a sustained oscillation at a frequency of BT

would result. Therefore, one would expect to find a strong component in the frequency
domain description of eN (t; �) at BT . The task at hand is to determine the PSD of
eN (t; �) and predict the power in the derived clock signal.

Functional Form of the Edge-Detected Signal The signal eN (t; �) can be expressed
in the same manner as the NRZ data. The fundamental pulse shape eT (t) is shown in
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eT(t) 

τp 

1 

t 
T 

Figure 2.8 Pulse shape for edge-detected data

Fig. 2.8, where

eT (t) =

�
1 for 0 � t � �p

0 elsewhere.
(2.47)

A time limited signal derived from an N-bit data sequence is then given by

e(t; �) =
N�1X
n=0

sn(�)eT (t � nT ); (2.48)

where sn(�) is a random variable derived from two adjacent data bits. If the data bits
are identical then sn(�) = 0, and sn(�) = 1 when the adjacent bits are different. It is
clear that adjacent data bits are equally likely to be identical as they are different so
that

sn(�) =

�
1 with Probability 1/2

0 with Probability 1/2
(2.49)

The random variable sn(�) can be written in terms of a random variable qn(�).

sn(�) = 1=2(1 + qn(�)); (2.50)

where qn(�) has statistics that are identical with the original data polarity random
variable rn(�).

qn(�) =

�
+1 with Probability 1/2

�1 with Probability 1/2,
(2.51)

and

E[qn(�)] = 0 (2.52)

E[qn(�)qk(�)] =

�
1 for n = k

0 for n 6= k.
(2.53)

Therefore, e(t; �) can be written as the sum of a deterministic signal and a random
signal. This decomposition into two parts is illustrated in Fig. 2.9, and the signal can
be expressed analytically as,

e(t; �) =
1

2

N�1X
n=0

eT (t � nT ) +
1

2

N�1X
n=0

qn(�)eT (t� nT ): (2.54)
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Figure 2.9 Decomposition of a edge-detected NRZ random signal into a deterministic and
random parts.

The signal eN (t; �) is now derived by repeating e(t; �) indefinitely.

Power Spectrum of the Edge-Detected Signal Since eN (t; �) is periodic with a period
of NT , it can be represented by a Fourier series with a fundamental frequency of
BT =N . Obtaining the Fourier series coefficients is a linear operation, so we can utilize
superposition to determine the coefficients due to the deterministic part and random
parts of the signal separately. We can write

eN (t; �) = eND(t) + eNR(t; �); (2.55)

and the deterministic portion can be written as

eND(t) =
aD0
2

+
1X

M=1

aDM cos

�
2�Mt

T

�
+

1X
M=1

bDM sin

�
2�Mt

T

�
: (2.56)

Evaluated aDM directly from (2.6)

aDM =
2

T

Z T

0

1

2
eT (t) cos

�
2�Mt

T

�
dt (2.57a)

=
1

T

Z �p

0

cos

�
2�Mt

T

�
dt (2.57b)

=
1

2�M
sin

�
2�M�p

T

�
(2.57c)

=
1

�M
sin

�
�M�p
T

�
cos

�
�M�p
T

�
; (2.57d)

and defining a pulse-width parameter

p
4

= �p=T; (2.58)



42 Chapter 2

N
or

m
al

iz
ed

 P
ow

er
 

Normalized Frequency (f / B  ) T 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5

Pulse-Width = 0.5T 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5

N
or

m
al

iz
ed

 P
ow

er
 

Normalized Frequency (f / B  ) T 

Pulse-Width = 0.4T 

(a) (b)

Figure 2.10 The power in harmonics of the deterministic portion of an edge-detected NRZ
data signal: (a) p = 0:5, (b) p = 0:4. The dotted line is the sinc function envelope that is
controlled by the shape of the edge-detected pulses.

the Fourier coefficients aDM for the deterministic part are

aDM = psinc(Mp) cos(�Mp): (2.59a)

The quadrature coefficients bDM are found similarly to be

bDM = psinc(Mp) sin(�Mp): (2.59b)

Clearly the power in each harmonic for the deterministic portion is

PDM =

(
p2

4 for M = 0

p2

2 sinc2(Mp) for M 6= 0
(2.60)

where the frequency increment between harmonics is now BT instead of BT =N as in
the previous section. Comparing the average power in the time and frequency domains,

1X
M=0

PDM =
p

4

"
1X

M=1

2psinc2(Mp) + p

#
=

p

4
: (2.61)

This is equivalent to the time-domain result obtained by averaging the square of the
deterministic pulse over one period T, which has a magnitude of 1=2 over the time
interval [0; pT ]. The average power in the harmonics is plotted in Fig. 2.10 for p = 0:5
and p = 0:4. Notice that particular harmonics of the bit-rate can be nulled by choosing
the value of p appropriately. For p = 1=2:5 = 0:4, there is a spectral null at multiples
of 2:5BT so that every 5th harmonic is zero. For the case of p = 1=2, all even harmonic
are nulled.
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Figure 2.11 Graphical illustration showing the sum of cosines and sines as projects onto
“x” and “y” axes of unit magnitude vectors.

We now want to add these deterministic Fourier coefficients with those obtained from
the random portion of the signal. A problem arises in that the the random portion has a
period that is N-times longer than the deterministic part. This can be fixed by stuffing
zeros in the coefficients for the deterministic part at frequencies that are not a multiple
of BT . Alternatively we could have obtained this result directly by using a period of
NT instead of T . In this case the Fourier series coefficients for the deterministic part
are

aDm =
p

N
sinc

�pm
N

�N�1X
n=0

cos

�
2�m

N
(n+ p=2)

�
(2.62a)

bDm =
p

N
sinc

�pm
N

�N�1X
n=0

sin

�
2�m

N
(n+ p=2)

�
(2.62b)

The two summation terms in (2.62) are the sums of the projections onto the “x” and
“y” axes respectively of N equally spaced vectors around the unit circle with an initial
phase offset of �0(m) = �pm=N radians. This sum can be illustrated graphically, as
in Fig. 2.11. Since the total phase between successive vectors is 2�m=N , each new
vector is traced by traversing the unit circle Integer(m=N ) times, and then adding a
phase increment of 2� times the remainder of m=N . For the case of N-odd, there are
always N equally spaced vectors, and for N-even, the vectors continue to double-up,
depending on whether N is divisible by a power of 2. In both cases the distribution of
the vectors is symmetric, so that if these vectors were the spokes of a bicycle wheel that
were balanced horizontally on its hub, then hanging an equal weight from from each
of the spokes will keep the wheel in a level position. Due to this symmetry, the vector
sum is equal to zero in these cases. If the spokes were distributed in an unsymmetrical
way, then the wheel would tip over in the direction of the vector sum of the spokes. For
the above summations, only in the case where m is a multiple of N (modN (m) = 0)
do all the vectors line up on the offset angle and their sum accumulates to a non-zero
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value. Therefore the Fourier coefficients are given by

aDm =

� p
N

sinc
�
pm
N

�
N cos

�
�pm
N

�
for modN (m) = 0

0 for modN (m) 6= 0
(2.63a)

bDm =

� p
N sinc

�
pm
N

�
N sin

�
�pm
N

�
for modN (m) = 0

0 for modN (m) 6= 0.
(2.63b)

Clearly the average powerPDm is the same asPDM given in (2.60), whereM = m=N .

Now we need to determine the Fourier coefficients for the random portion of eN (t; �).
This will be simple, however, since the form of the signal is very similar to the form
of the random NRZ data itself. Recall that eNR(t; �) is given by,

eNR(t; �) =
1

2

N�1X
n=0

qn(�)eT (t � nT ): (2.64)

whereas the data itself is

dN (t; �) =
N�1X
n=0

rn(�)pT (t� nT ): (2.65)

It was shown in (2.11) that the Fourier coefficient am(�) for NRZ data is

am(�) =
2

NT

N�1X
n=0

rn(�)

Z (n+1)T

nT

cos

�
2�mt

NT

�
dt; (2.66)

whereas aRm(�) for the random part of the edge detected signal is

aRm(�) =
1

NT

N�1X
n=0

qn(�)

Z (n+p)T

nT

cos

�
2�mt

NT

�
dt: (2.67)

It was also shown in (2.13e) that am(�) could be simplified to

am(�) =
2 sin(�)

�m

N�1X
n=0

rn(�) cos(�n + �); (2.68)

where � = �m=N . A similar result can be obtained for aRm(�). Defining �p
4

=
�pm=N , then

aRm(�) =
sin(�p)

�m

N�1X
n=0

qn(�) cos(�n + �p): (2.69)
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Therefore the expressions for the Fourier coefficient of eNR(t; �) are

aRm(�) =
p

N
sinc(pm=N )

N�1X
n=0

qn(�) cos

�
2�m

N
(n+ p=2)

�
: (2.70a)

bRm(�) =
p

N
sinc(pm=N )

N�1X
n=0

qn(�) sin

�
2�m

N
(n+ p=2)

�
; (2.70b)

and since qn(�) has identical statistics of rn(�), then the expected value of the time
averaged power is

PRm =

(
p2

4N for m = 0

p2

2N sinc2(pm=N ) for m 6= 0.
(2.71)

Now we have derived the power in the deterministic and random parts. All that remains
is to find the average power in the total signal. From superposition we know that

am(�) = aDm + aRm(�)

bm(�) = bDm + bRm(�):
(2.72)

The time averaged power is then

Pm(�) =
1

2
(a2Dm + 2aDmaRm(�) + a2Rm(�))

+
1

2
(b2Dm + 2bDmbRm(�) + b2Rm(�)):

(2.73)

Taking the expected value gives

Pm = PDm + PRm + aDmE[aRm(�)] + bDmE[bRm(�)];

and since the expected values of aRm(�) and bRm(�) are zero, then the total power is
just the sum of the two individual powers,

Pm = PDm + PRm: (2.74)

Therefore, the expected value of the time averaged power per harmonic of the edge
detected signal is

Pm =

8>><
>>:

p2

4 [1 + 1=N ] for m = 0

p2

2 [1=N ] sinc2(pm=N ) for m 6= 0, modN (m) 6= 0

p2

2 [1 + 1=N ] sinc2(pm=N ) for m 6= 0 modN (m) = 0.

(2.75)
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Figure 2.12 The power in harmonics of an edge-detected NRZ data signal for: (a)p = 0:5,
(b) p = 0:4.
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Figure 2.13 Simulated and calculated power in harmonics of an edge-detected NRZ data
signal for: (a) p = 0:5, (b) p = 0:3438.

This power spectrum is plotted in Fig. 2.12 for N = 16. It can be seen that the large
spikes at multiples of the bit-rate are due to the deterministic part, and the power in the
random part is spread more uniformly over all frequencies. This analytical expression
can be verified in simulation. A discrete-time rectangular NRZ data sequence was
generated using a a sampling interval of 32 samples-per-bit. A pulse of width pT was
generated whenever a transition in the data occurred. A Discrete Fourier Transform
DFT was taken from the edge-detected data. Since the frequency interval for the DFT
is �f = BT=32, then the PSD from the simulated data was compared to the calculated
value for N = 32. The results are plotted in Fig. 2.13, where it can be seen that the
simulated value is coincident with the calculated value. This result is consistent with
expectations based on arguments about resonant circuits. Once the random phase
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reversals have been removed from the data, a sustained oscillation can appear at the
output of a bandpass filter tuned to the data-rate. The edge-detected signal must,
therefore, have a strong spectral component at BT . This was indeed found to be true,
and it was also found that by varying the pulse-width pT , the relative magnitudes of
the harmonics of the clock could be altered. Specifically, for p = 1=2, all even clock
harmonics are nulled.

2.2.3 Summary of Fourier Series Analysis

Thus far a Fourier series representation of rectangular NRZ data, and an edge-detected
signal derived from this data have been found. It was shown that the coefficients of the
Fourier series are random variables, and are linear combinations of the random data.
The ensemble average of each of these coefficients is zero, because it was assumed the
data was equally likely to be positive as negative. Meaningful results of the frequency
content of the random signal were obtained by finding the time-averaged power in
each harmonic for a given sample function of the random process, and then taking the
expected value of this power over all possible sample functions of the ensemble. The
result of this operation is analogous to what one would observe in the laboratory, if a
long random sequence is input to a spectrum analyzer, and the display of the spectrum
analyzer is set to average several sweeps.

Although the calculations in the previous section were straightforward, with unambigu-
ous interpretations, they were also quite cumbersome. The results have been obtained
directly without introducing negative frequencies, impulse functions, or several subtle
concepts from the general theory of random signals such as: autocorrelation functions,
stationarity, cyclo-stationarity and ergodicity. However each of these concepts have
been referenced implicitly. In the following section the above concepts will be intro-
duced, and the results obtained thus far will be placed in a more general framework
so that the effect of further processing can be determined quickly. The goal of this
chapter is to develop an intuition about random data and data-derived signals, so that
the frequency content of such a random signal can be determined almost by inspection.
As with any useful intuition, it must be based on a solid grasp of fundamental concepts.
In this section the foundations have been laid for more sophisticated analysis to come.
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2.3 FOURIER TRANSFORM FREQUENCY DOMAIN

REPRESENTATIONS

In the previous section we used the Fourier series to represent a pseudo-random
rectangular NRZ data sequence that repeated every N bits. It was found that the signal
had a discrete power spectrum with power only at frequencies of �f = mBT =N =
m=NT where m = [1; 2; 3; : : :]. As the length of the period NT is increased, the
frequency increments get closer together. The amplitude of the power in any given
harmonic is reduced by N as the average power per period becomes distributed over
more and more frequencies. If the power coefficients are divided by the frequency
interval, then the amplitude of the coefficient is independent ofN , and gives the power
normalized to a one Hertz bandwidth. Dividing by the frequency interval is equivalent
to multiplying by NT , so the resulting coefficients can also be considered as the total
energy in N bits of the pseudo-random sequence.

In the previous section it was also found that using complex numbers to represent the
in-phase and quadrature components of the coefficients simplified the analysis. The
Fourier series was defined such that

f(t) =
a0
2

+
1X
m=1

am cos

�
2�mt

T

�
+

1X
m=1

bm sin

�
2�mt

T

�
: (2.76)

Letting

!m
4
=

2�m

T
; (2.77)

and substituting the following identities

cos(!mt) �
ej!mt + e�j!mt

2
(2.78a)

sin(!mt) �
ej!mt � e�j!mt

2j
; (2.78b)

then the Fourier series becomes

f(t) =
a0
2

+
1

2

1X
m=1

(am � jbm) ej!mt +
1

2

1X
m=1

(am + jbm) e�j!mt: (2.79)

A complex coefficient can be defined as in (2.25), such that

cm =
am � jbm

2
: (2.80)
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Using this complex coefficient, the Fourier series can be expressed as

f(t) =
a0
2

+
1X
m=1

cme
j!mt +

1X
m=1

c�me
�j!mt: (2.81)

The complex coefficient cm can be extracted from the defining equations for am and
bm.

am � jbm =
2

T

Z T

0

f(t) [cos(!mt) � j sin(!mt)] dt (2.82)

cm =
1

T

Z T

0

f(t)e�j!mt: (2.83)

For m negative we can write

c�m =
1

T

Z T

0

f(t)ej!mt (2.84)

c�m =
1

T

Z T

0

f(t) [cos(!mt) + j sin(!mt)] dt (2.85)

c�m =
am + jbm

2
= c�m: (2.86)

So the complex coefficients display conjugate symmetry. Therefore, summing c�me
�j!mt

over positive frequencies is the same as summing cmej!mt over negative frequencies,
and

f(t) =
a0
2

+
1X
m=1

cme
j!mt +

�1X
m=�1

cme
j!mt: (2.87)

Since the dc coefficient c0 = a0=2, then the Fourier series can be written compactly
in complex form as

f(t) =
1X

m=�1

cme
j!mt

cm =
1

T

Z T=2

�T=2

f(t)e�j!mtdt;

(2.88)

where

cm =
am � jbm

2
and jcmj

2 =
a2m + b2m

4
: (2.89)

The power in a real signal at the mth harmonic is

Pm = jcmj
2 + jc�mj

2 = jcmj
2 + jc�mj

2 = 2jcmj
2 for m 6= 0; (2.90a)
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and the dc power is just
P0 = jc0j

2: (2.90b)

Parseval’s theorem relating the power in the time and frequency domains is also
expressed compactly using the complex coefficient.

P =
1X

m=�1

jcmj
2 =

1

T

Z T=2

�T=2

jf(t)j2dt: (2.91)

The frequency interval between successive harmonics is �f = 1=T , and the periodic
time function can be written as

f(t) = T

1X
m=�1

cme
j2�fmt�f: (2.92)

An energy spectral density coefficient can be defined as

em
4
= Tcm (2.93)

so that the interpretation of this coefficient is that 2jemj2�f = TPm which is the total
energy over the time T of the mth harmonic, and 2jemj

2 is the energy per unit Hertz.
In terms of the energy spectral density coefficients, the Fourier series can be expressed
as

em =

Z T=2

�T=2

f(t)e�j2�fmtdt (2.94a)

f(t) =
1X

m=�1

eme
j2�fmt�f (2.94b)

Fourier Transform as Limiting Case of Fourier Series In the limit as T ! 1 the
frequency interval �f ! 0, and em becomes a continuous function of frequency
F (j2�f) known as the Fourier Transform of f(t), where the defining relationships are

F (j2�f) =

Z
1

�1

f(t)e�j2�ftdt

f(t) =

Z
1

�1

F (j2�f)ej2�ftdf

(2.95)

The portion of the time averaged signal energy contained within the bandwidth from
f1 to f2 is

Ef1f2 = 2

Z f2

f1

jF (j2�f)j2df: (2.96)
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f(t) $ F (j2�f)

f(t � t0) $ e�j2�ft0F (j2�f)

f(t)ej2�f0t $ F (j2�(f � f0))

f(at) $ 1
jajF (j2�f=a)

df(t)
dt

$ j2�fF (j2�f)R t
�1 f(� )d� $ F (j2�f)

j2�f + 1
2F (0)�(f)

f1(t) � f2(t) $ F1(j2�f)F2(j2�f)

f1(t)f2(t) $ F1(j2�f) � F2(j2�f)

f�(t) $ F �(�j2�f)R1
�1 jf(t)j2dt =

R1
�1 jF (j2�f)j2df

Table 2.1 Properties of the Fourier transform.

Certainly this information is nothing new. Excellent treatments of Fourier analysis can
be found in [7, 8, 9, 10] and countless other texts. However, various authors define the
Fourier transform and Fourier series coefficients differently with constants of 2� and
T popping in and out unexpectedly like unwanted guests. The previous discussion has
provided a unified development of the Fourier series and Fourier transform with clear
connections between F (j2�f) and cm. These connections are extremely important
when interpreting spectral density results for random data. Table 2.1 lists several
properties of the Fourier transform that will be used extensively. Table 2.2 lists some
commonly used transform pairs. The last transform pair is particularly interesting. It
shows that the Gaussian is an eigenfunction of the Fourier transform. In addition
to the above tables it is also useful to know that the integral of a sinc function and a
sinc2 function are both equal to unity according to

T

Z 1

�1
sinc(fT )df = 1 (2.97)

T

Z 1

�1
sinc2(fT )df = 1: (2.98)
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�(t) $ 1

1 $ �(f)

u(t) $ 1
j2�f + 1

2�(f)

sgn(t) $ 1
j�f

rect(t=T ) $ T sinc(fT )

sinc(Ft) $ 1
F

rect(f=F )

ej2�f0t $ �(f � f0)

cos (2�f0t) $ 1
2�(f � f0) +

1
2�(f + f0)

sin (2�f0t) $ 1
2j �(f � f0)� 1

2j �(f + f0)

e�jtj=� $ 2�
1+(2�f�)2 for � > 0

1p
2��

e�
1
2 (

t��

� )2 $ e�j2�f�e�
1
2
(2�f�)2

Table 2.2 Fourier transform pairs.
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lim
T!1

rect(t=T ) $ lim
T!1

T sinc(fT ) = �(f)

lim
T!1

rect(t=T ) � 1

T
rect(t=T ) $ lim

T!1
T sinc2(fT ) = �(f)

lim
F!0

sinc(Ft) $ lim
F!0

1

F
rect(f=F ) = �(f)

lim
�!1 e�

1
2 ( t� )

2

$ lim
�!1

p
2��e�

1
2
(2�f�)2 = �(f)

Table 2.3 Various equivalent forms of the impulse function.

These and other unit integrals can be used in the limit to represent an impulse function,
where the impulse �(t) is defined by

�(t) =

�
0 for t 6= 0

undefined for t = 0
(2.100a)

Z 0+

0�
�(t)dt = 1: (2.100b)

Several equivalent representations of an impulse function are given in table 2.3. The
time domain functions begin with: a rectangular pulse, a triangular pulse, a sinc pulse,
and a Gaussian pulse. Each of these pulse are stretched wider and wider in time so
that in the limit, the result is a dc value of unity. In the frequency domain the Fourier
transforms are: a sinc pulse, a sinc2 pulse, a rectangle, and a Gaussian, respectively.
Each of these functions get narrower in frequency and approach an impulse in the limit.

2.3.1 Fourier Transform of NRZ data

Now we can return to the problem of finding the energy spectrum of random rectangular
NRZ data, taking advantage of the properties of the Fourier transform to simplify the
analysis. In the previous section a random data segment N-bits long was repeated
indefinitely. For the the Fourier transform to exist the signal must have finite energy,
so we will deal only with one period of the pseudo-random sequence, but we can let
the period grow arbitrarily large. The NRZ data is given by

d(t; �) =
N�1X
n=0

rn(�)pT (t � nT ): (2.101)
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The Fourier transform of this time-limited data sequence is

Fd(j2�f; �) =
Z 1

�1

N�1X
n=0

rn(�)pT (t� nT )e�j2�ftdt; (2.102)

and this can be written as the sum of integrals just as (2.11)

Fd(j2�f; �) =
N�1X
n=0

rn(�)
Z (n+1)T

nT

e�j2�ftdt; (2.103)

and after evaluating the integral

Fd(j2�f; �) = T sinc(fT )
N�1X
n=0

rn(�)e�j2�f(n+1=2)Tdt: (2.104)

This is the same functional form obtained for the Fourier series coefficients in (2.26),
except that now the sinc function is continuous in frequency and not simply the
envelope of discrete coefficients. Since Fd(j2�f; �) is a random variable, we can
take the expected value by ensemble averaging as was done for the Fourier series
coefficients. Defining the energy spectral density of the data sequence as

Sd(f)
4
= E

�jFd(j2�f; �)j2� = E [Fd(j2�f; �)F �d (j2�f; �)] ; (2.105)

then

Sd(f) = T 2sinc2(fT )
N�1X
n=0

N�1X
m=0

E[rn(�)rm(�)]e�j2�f(n�m)T : (2.106)

Since the data is uncorrelated, the double sum becomes

N�1X
n=0

N�1X
m=0

E[rn(�)rm(�)]e�j2�f(n�m)T =
N�1X
n=0

ej0 = N: (2.107)

Therefore, the energy spectral density for the random NRZ data is

Sd(f) = NT 2sinc2(fT ): (2.108)

This result is consistent with the total energy in the time domainZ 1

�1
d2(t; �)dt = NT (2.109a)

NT

Z 1

�1
T sinc2(fT )df = NT (2.109b)
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It is useful to define an energy spectral density that is normalized to give the average
energy in each bit.

SBd(f) = T 2sinc2(fT ): (2.110)

This is simply Sd(f)=N . As expected the result depends of T , but is independent of
the length of the data sequence N .

Comparison of Results with the Periodic Case We can compare this result with the
periodic case of section 2.2. Recall from (2.37) that the power in the mth harmonic is

Pm =

(
1
N

for m = 0
2
N

sinc2(m=N ) for m 6= 0
(2.111)

where the frequency interval is �f = 1=NT , and the frequency fm = m=NT ; the
energy in one fundamental periodNT is NTPm, and the average-energy-per-bit EBm
in a time NT is simply TPm, so that

EBm =

(
T
N for m = 0
2T
N sinc2(fmT ) for m 6= 0

(2.112)

The energy in a bandwidth of �f in the signal d(t; �) can be found by integrating
Sd(f).

EBd

����fm+
�f

2

fm��f

2

= 2

Z fm+�f=2

fm��f=2
T 2sinc2(fT )df (2.113a)

' 2T 2sinc2(fmT )�f for �f small (2.113b)

=
2T

N
sinc2(fmT ) for m 6= 0 (2.113c)

=
T

N
for m = 0: (2.113d)

Therefore, the continuous energy spectrum per bitSBd(f) multiplied by the incremen-
tal bandwidth is equivalent to the discrete Fourier series coefficients multiplied by the
bit-period. It is also useful to define an average power spectral density Pd(f) for the
time-limited data sequence as the average-energy-per-bit divided by T . Therefore,

Pd(f) = T sinc2(fT ) (2.114)

which is the envelope of the Fourier coefficient E[jcm(�)j2]=�f
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Figure 2.14 Decomposition of a edge-detected NRZ random signal into a deterministic
and random parts.

2.3.2 Fourier Transform of Edge-Detected Data

Energy Spectrum of the Deterministic Part of Edge-Detected Data Now we can
use the Fourier transform to find the energy spectral density of the edge-detected data
analyzed in section 2.2.2. The random pulses e(t; �) were separated into the sum of
a random and deterministic part. This separation was illustrated in Fig. 2.9 and is
repeated here in Fig 2.14 for convenience. It was found that the deterministic part had
a Fourier series representation. Therefore the time limited signal eD(t) can be written
as the product of the periodic Fourier series and a rectangular windowing function
WNT (t). From (2.59)

eD(t) = WNT (T )
1X

M=�1
cMe

j2�Mt

T (2.115a)

cM =
p

2
sinc(Mp)e�j�Mp; (2.115b)

where,

WNT (t) = rect
�
t �NT=2

NT

�
=

�
1 for 0 � t � NT

0 elsewhere.
(2.115c)

Since the Fourier transform is a linear operator, the Fourier transform FeDN (j2�f)
of the periodic pulse stream is the sum of the Fourier transforms of exp(j2�Mt=T )
weighted by the coefficients cM . Therefore,

FeDN (j2�f) =
1X

M=�1

p

2
sinc(Mp)e�j�Mp�

�
f � M

T

�
; (2.116)
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and since the impulses are non-zero only at one point, the sinc function can be expressed
as a continuous envelope.

FeDN (j2�f) =
p

2
sinc(fpT )e�j�fpT

1X
M=�1

�

�
f � M

T

�
; (2.117)

The Fourier transform of the windowing function can be found from the rectangular
function entry of table 2.2. Using this result, together with the time shifting property
of table 2.1;

FWNT
(j2�f) = NT sinc(fNT )ej�fNT : (2.118)

The Fourier transform of eD(t) is then found using the multiplication property of
table 2.1, such that

FeD(j2�f) = F [eDN (t)WNT (t)] = FeDN (j2�f) � FWNT
(j2�f): (2.119)

Recalling that convolving a function with an impulse just shifts that function to the
center of the impulse,

f(t) � �(t� t0) = f(t � t0); (2.120)

then

FeD(j2�f) =
p

2
sinc(fpT )e�j�fpT

1X
M=�1

NT sinc

��
f � M

T

�
NT

�
ej�(f�

M
T )NT :

(2.121)
This shows that the Fourier transform of the time limited pulses is the same as for the
periodic function except the impulse functions have been replaced with narrow sinc
functions. The width of the envelope sinc pulse is determined by the pulse width pT
and the narrow sinc pulse width is controlled by the length of the sequence N. When
N is large the narrow since pulses have most of their energy concentrated in a small
bandwidth around harmonics of the bit-rate, and there is minimal interaction between
adjacent sinc pulses. Therefore the energy spectral density

SeD (f) =
hp
2

sinc(fpT )
i2 �����

1X
M=�1

NT sinc

��
f � M

T

�
NT

�
ej�(f�

M
T )NT

�����
2

(2.122)
can be approximated for large N as

SeD (f) =
hp
2

sinc(fpT )
i2 1X

M=�1
N2T 2sinc2

��
f � M

T

�
NT

�
: (2.123)

This energy spectrum is plotted in Fig. 2.15 for p = 0:4, and N = 16.
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Figure 2.15 The energy spectral density of the deterministic part of an edge-detected
16-bit data stream, where detected pulse-width is T=2:5.

Energy Spectrum of the Random Part of Edge-Detected Data For the random part
eR(t; �) the energy spectrum is the same as for the NRZ data with T replaced by pT
and the amplitude reduced by 1=2. Whereas the Fourier transform for the NRZ data
in (2.104) is

Fd(j2�f; �) = T sinc(fT )
N�1X
n=0

rn(�)e�j2�f(n+1=2)Tdt; (2.124)

the Fourier transform of eR(t; �) is

FeR(j2�f) =
pT

2
sinc(fpT )

N�1X
n=0

qn(�)e�j2�f(n+p=2)Tdt: (2.125)

The energy spectrum of eR(t; �) is then

SeR(f) = N

�
pT

2
sinc(fpT )

�2
: (2.126)

The spectrum of the random part of the signal is a factor of N less than the envelope
of the spectrum for the deterministic part.

Using the principle of superposition to find the energy spectrum of the total signal
e(t; �)

Fe(j2�f; �) = FeD(j2�f) + FeR(j2�f; �); (2.127)

and the expected value of the energy spectrum is then

Se(f) = E
�
[FeD (j2�f) + FeR(j2�f; �)]

�
F �eD(j2�f) + F �eR(j2�f; �)

��
(2.128)
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Expanding this we obtain

Se(f) = SeD (f) + SeR (f)

+ FeD(j2�f)E
�
F �eR(j2�f; �)

�
+ F �eD(j2�f)E [FeR(j2�f; �)] ;

(2.129)
and since the random variable FeR(j2�f; �) is obtained from a linear combination of
zero-mean random variables, then

E [FeR(j2�f; �)] =
pT

2
sinc(fpT )

N�1X
n=0

E[qn(�)]e�j2�f(n+p=2)Tdt = 0; (2.130)

and the total energy spectrum is just the sum of the individual energy spectrums

Se(f) = SeD (f) + SeR(f): (2.131)

Therefore the energy spectral density of e(t; �) for large N is given by

Se(f) = N

�
pT

2
sinc(fpT )

�2 "
1 + N

1X
M=�1

sinc2
��

f � M

T

�
NT

�#
:

(2.132)
For very large N the energy in the narrow sinc pulses will be concentrated in a very
small bandwidth and can be approximated as an impulse function with all of its energy
concentrated at one frequency. From (2.97)Z 1

�1
sinc2(fNT )df =

1

NT
(2.133)

therefore,

N
1X

M=�1
sinc2

��
f � M

T

�
NT

�
' 1

T

1X
M=�1

�

�
f � M

T

�
: (2.134)

The energy spectral density per bit is obtained by dividing Se(f) by the number of
bits. The final results is then

SBe(f) =

�
pT

2
sinc(fpT )

�2 "
1 +

1

T

1X
M=�1

�

�
f � M

T

�#
; (2.135)

and dividing by T gives the power spectral density

Pe(f) =
hp
2

sinc(fpT )
i2 "

T +
1X

M=�1
�

�
f � M

T

�#
: (2.136)
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2.3.3 Power-Spectral Densities of Various PCM Signals

A general expression for the power spectra of signals modulated by random, and
pseudorandom data sequences can be derived by representing the random data sequence
as a Markov process with a known transition probabilitymatrix. This analysis was first
reported in 1961 by Titsworth and Welch in a Jet Propulsions Laboratory Technical
Report [6], and was summarized later in a book by Lindsey and Simon [11, sec. 1-5].
The general expression is rather complicated, and requires several definitions that will
not be discussed here. For the special case of binary, symmetric, equally likely signals,
(s1(t) = �s0(t) = s(t)) the general expression for the PSD reduces to to the simple
result

P (f) =
1

T
jFs(j2�f)j2; (2.137)

where Fs(j2�f) is the Fourier transform of the data pulse s(t). When the data pulse
is rectangular,

s(t) = rect(t=T ); (2.138)

the Fourier transform is given by

Fs(j2�f) = T sinc(fT ): (2.139)

Therefore, the PSD, using the method of Titsworth and Welch, is

P (f) = T sinc2(fT ); (2.140)

which is the same result that we derived by applying the definition of the Fourier
transform directly to the signal. In addition to NRZ data, Lindsey and Simon give
results for various pulse-code-modulation (PCM) formats. These formats are illustrated
in Fig. 1.5 of [11], and are summarized here in Fig. 2.16. Although we will be dealing
with NRZ data in the remainder of this dissertation, before moving on, it is instructive
to consider the spectra of other data formats.

Return-to-Zero (RZ) Signaling Format PSD The RZ format has a dc value, and
also has spectral lines at harmonics of the bit-rate. For equiprobable data, the PSD as
given in (1-23) of [11] is

P (f) =
1

16
�(f)

| {z }
(dc value)

+
1

16

1X
n=�1

n 6=0

�
2

n�

�2
�(f � nBT )

| {z }
(clock tone harmonics)

+
T

16
sinc2(fT=2)

| {z }
(continuous spectrum)

:

(2.141)
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Figure 2.16 Various pulse-code-modulation (PCM) formats for transmission of binary
data.

Non-Return-to-Zero (NRZ) Signaling Format PSD We have already shown that
the PSD for NRZ data is given by

P (f) = T sinc2(fT ): (2.142)

Bi-Phase or Manchester Coding PSD Bi-phase, or Manchester coded waveforms
are obtained by dithering an NRZ bit-stream with the system clock, and [11] gives the
PSD in (1-25) as

P (f) = T sinc2(fT=2) sin2(�fT=2): (2.143)

Delay Modulation or Miller Coding PSD The PSD for delay modulation is given
in (1-31) in [11]. If we define a parameter � such that

�
4
= �fT; (2.144)

and two vectors a and b as

a =

26666666666664

23
�2
�22
�12

5
12
2

�8
2

37777777777775
; b =

26666666666664

cos(0)
cos(�)
cos(2�)
cos(3�)
cos(4�)
cos(5�)
cos(6�)
cos(7�)
cos(8�)

37777777777775
; (2.145)
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Figure 2.17 Power spectral Densities for RZ, NRZ, Manchester coded, and Miller coded,
binary signaling formats.

then the PSD can be written as

P (f) =
T

2�2(17 + 8 cos(8�))
[a � b]: (2.146)

Comparison of Spectra for Various PCM Formats The power spectra for the above
PCM signaling formats are plotted in Fig. 2.17. We notice that the PSD for RZ data
has the same functional form as for NRZ data, except that the bandwidth is doubled,
and there are spectral lines in the RZ spectrum. The spectral lines arise because the
random phase reversals that we saw in NRZ data are no longer present. Since the RZ
data is always forced to return to zero, there is no ambiguity about the starting point
of a transition. In other words, falling edges only occur at the start of a bit period,
and rising edges only occur in the middle of a bit-period. Since spectral lines are
present in RZ data, we could extract the clock directly from the data signal without
using edge-detection circuits. However, the penalty in terms of increased bandwidth
required, is most often too high a cost to pay for this convenience.

Manchester coded data also has its power spread over a larger bandwidth than NRZ
data. However, due to the presence of at least one transition per bit-period, there is little
dc energy in this signal. This can be important for practical circuit design. For example,
when the data is detected with an optical transducer, there will be indeterminate dc
offsets. Further, there will be an unknown dark current present in the photodiode
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detector, also giving rise to an unknown dc value in the final data steam. Often the
data processing circuitry that follows the optical transducer requires a well defined dc
value, necessitating a restoration of the dc value of the data. A common technique
for restoring the dc value is to average the data, compare it to a reference, and add
the difference back to the data. The problem with this technique is that it performs
a highpass function on the data, and any dc components of the data will be filtered
out. This is a serious problem in dealing with NRZ data which has most of its energy
concentrated at low frequencies. However, with Manchester coded data, the problem
is averted.

Miller Coding (delay modulation) offers desirable time-domain and frequency domain
properties. In the time domain there is an average of one transition per bit-period
as opposed to 1/2 for NRZ data. We will see in chapter 4 that the accuracy of the
recovered clock is proportional to the square-root of the average number of transitions
per bit-period. Miller coding also has desirable frequency-domain properties. As in
the case of Manchester coding, the power at dc is also zero, so that we can avoid
problems with restoring the dc value. The primary benefit is that most of the power
is concentrated in a much narrower frequency band than for RZ, NRZ, or Manchester
coding. This means that a narrowband filter can pass the majority of the signal power,
while reducing the contribution of additive broadband noise in comparison with the
other signaling formats.

2.3.4 Summary of Fourier Transform Analysis

The Fourier transform was introduced as a limiting case of the Fourier series coeffi-
cients normalized to give the energy in one fundamental period per unit bandwidth.
Frequency analysis was simplified using the Fourier transform by taking advantage
of several useful properties listed in table 2.1. The results obtained using Fourier
transform analysis can be related to laboratory measurements via the PSD defined as
EjF (j2�f; �)j2=NT . This is the energy spectral density divided by the time-interval
of the data sequence. The time averaged process can be related to the ensemble expec-
tation if it is assumed that small time segments of length n of a long N-bit data stream
are identical to ensemble sample functions of an n-bit data signal. 3

3A random process is said to be ergodic if the averages over a long period of time converge to ensemble
averages. This assumption is typically made when relating results obtained by using ensemble averaging
to laboratory measurements. In the lab we only have one sample function d(�; � 1) of the random process
d(�; �), so the only way to obtain any statistical data is to time-average this one sample function.
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Figure 2.18 Illustration of the convolution integral.

2.4 LINEAR FILTERING OF RANDOM DATA

The primary reason for going to all the trouble to find the Fourier transform of random
data is that the effect of linear filtering can be determined simply and intuitively in the
frequency domain. Frequency domain analysis can be used to determine the optimal
shape of the transitions of NRZ data, and the optimal pulse-shape of the of edge-
detected data. We will also use frequency domain analysis in chapter 3 to find the
optimal shaped weighting function used to average the noise in the detector circuit.
Parseval’s theorem also provides a method for determining the average energy per bit
by integrating the energy spectral density function in the frequency domain. This is
often simpler than performing the equivalent operation in the time domain.

Linear Filtering as a Convolution Integral An input to a linear network, such as a
random data signal d(t; �), can be considered as an impulse of magnitude d(n�t; �)�t
for each time interval �t. If a network has an impulse response h(t), and if the
network is linear, then the output of the network, via superposition, is a weighted sum
of impulse responses shifted in time. In the limit as �t ! 0, the superposition sum
becomes a convolution integral, and the output y(t; �) is given by

y(t; �) = d(t; �) � h(t) =
Z 1

�1
d(�; �)h(t� � )d� (2.147)

This convolution operation is illustrated in Fig. 2.18 The power of using the Fourier
transform for analysis of linear filtering is provided by the convolution property of
table 2.1. Taking the Fourier transform of both sides of (2.147) gives

Fy(j2�f; �) = Fd(j2�f; �)H(j2�f); (2.148)
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and the energy spectrum of the output signal y(t; �) is simply

Sy(f) = Sd(f)jH(j2�f)j2: (2.149)

jH(j2�f)j2 is known as the “frequency response” of the filter, since it scales the
input signal spectrum; H(j2�f) is known as the “transfer function” because the input
Fourier transform is transferred to the output through multiplication by H(j2�f). It
should be pointed out that Fy(j2�f; �) is the “steady-state” output after all transients
have died out; this is an artifact of starting the convolution integral at �1, which
implies that the input was applied to the system just prior to the “Big-Bang.”

2.4.1 Bandlimited NRZ Data

Thus far we have been dealing only with rectangular NRZ data because it is easy
to represent analytically as the sum of square pulses. However, real data will have
non-zero rise and fall times. It was shown in section 2.1 that bandlimited data can be
obtained by passing rectangular data through a linear filter, such that

y(t; �) = h(t) �
"
N�1X
n=0

rn(�)pT (t� nT )

#
: (2.150)

The filtering operation introduces memory into the signal, so that y(t; �) is a linear
combination of the original data over a time interval TH , where TH is the time over
which h(t) is non-zero. If TH is longer than the bit-period T , then intersymbol
interference (ISI) will exist. If TH is less than T , then there will be a time in an
interval nT � t � (n+ 1)T such that y(t; �) is a linear combination of the data only
over one bit.4

NRZ Data with Sinusoidal Transitions This discussion is more clearly illustrated by
an example. Consider a filter with an impulse response of a half-cosine as shown in
Fig. 2.19. This impulse response can be written as

h(t) =
�

2T
cos

�
�t

T

�
rect(t=T ): (2.151)

The constant multiplier of �=2T is for normalization. The Fourier transform can be
obtained easily using the multiplication property. The transform of the cosine wave is

Fc(j2�f) =
�

4T
� (f � BT =2) ; (2.152)

4It is possible to to obtain no ISI with TH longer than T . This requires that the filters impulse response
be orthogonal to shifted data bits at discrete sampling instances. This technique is encountered frequently
in bandlimited channels, where the actual data pulse may extend over several bit periods. The pulses are
designed to have zero-crossings at the center of each bit-period so that at one particular time instance in
each bit-period, the data signal amplitude is due only to the current bit.
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Figure 2.19 Half-cosine impulse response of a low-pass filter.
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Figure 2.20 Magnitude squared of the transfer function of a filter with a half-cosine
impulse response: (a) linear squared magnitude, (b) magnitude in dB compared to a sinc
function.

where BT is the bit-rate = 1=T . The Fourier transform of the rectangular window is
found from table 2.2 to be the familiar sinc function.

Fr(j2�f) = T sinc(fT ) (2.153)

The Fourier transform of the product is the convolution in the frequency domain of the
individual Fourier transforms. Therefore,

H(j2�f) =
�

4
[sinc ((f �BT =2)T )) + sinc ((f + BT =2)T ))] : (2.154)

The filter frequency response is the sum of two sinc function of equal magnitude shifted
so that the centers are at �BT =2. The squared magnitude of this transfer function is
plotted in Fig. 2.20a; this is compared with the magnitude of the sinc function itself
in Fig. 2.20b, where it can be seen that jH(j2�f)j2 provides better attenuation of
high-frequencies. When rectangular NRZ data is applied to the input of this filter, a
little thought will indicate that the data will have sinusoidal transitions. If the data
were a square-wave, then the output would be a single tone at half the data rate. When
the data is random, the output will be constant when the data doesn’t change, and
the output will follow a sinusoidal path in its transition from a high-to-low value or
visa-versa. A typical NRZ data sequence is shown in Fig. 2.21a, and the data filtered
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Figure 2.21 Typical random data sequences for: (a) rectangular NRZ data, (b) rectangular
NRZ data passed through a filter with a half-cosine impulse response.

by a half-cosine impulse response is shown in Fig. 2.21b. It was shown in (2.110) that
the energy-spectral-density-per-bit (ESDB) of rectangular NRZ data is

SBd(f) = T 2sinc2(fT ): (2.155)

Therefore, the ESDB of half-cosine filtered data is

SBy(f) = jH(j2�f)j2T 2sinc2(fT ); (2.156)

and substituting (2.154), SBy(f) is given by

SBy(f) =
�
�
4 [sinc ((f � BT =2)T )) + sinc ((f + BT =2)T ))]

�2
T 2sinc2(fT )

(2.157)
This energy spectrum is plotted in Fig. 2.22b, which shows (2.157) plotted in dashed
lines compared to numerical simulation plotted in a solid line. The discrepancy between
the results is due to the the discrete time nature of the simulation used. In order to
force h(t) to zero in the discrete time simulation at t = 0 and at t = T , a frequency of

fsim =
BT
2

Ns

Ns � 1
(2.158)

had to be used, where Ns = 32 is the number of samples per bit. The simulated and
calculated spectrums for the input rectangular NRZ data is shown in Fig. 2.22a for
comparison. The simulation was performed using 32 samples per bit. The results
of Fig. 2.22 show the integral of the one-sided PSD over a bandwidth increments
of BT=32 where BT has been normalized to unity. Therefore, to get the PSD from
these plots simply divide by �f , which is equivalent to multiplying by 32 or adding
10 log32 = 15:05 dB.
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Figure 2.22 Simulated and calculated power spectrums for: (a) rectangular NRZ data, (b)
rectangular NRZ data passed through a filter with a half-cosine impulse response.
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LPF-Differentiate-Square  

 Pulses 
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2(  ) 2  d 
dt 

(   ) 
T 
π 

Edge Detector 

Figure 2.23 Block diagram of a circuit used to detect transition in random NRZ data.

2.4.2 Bandlimited Edge-Detected Data

We can now make use of the linear filtering properties of random data signals to find
the ESDB of edge-detected data where the pulses are no longer rectangular. Often
the data transitions are detected using the circuit of Fig. 2.23. If the lowpass-filter in
Fig. 2.23 has a half-cosine impulse function, then the transitions will be sinusoidal,
and of the form(

� sin (2�(BT=2)t) for a negative transition �T
2 � t � T

2

sin (2�(BT=2)t) for a positive transition �T
2 � t � T

2 .
(2.159)

T=� times the derivative of the data is equal to zero when there is no transition and, is
equal to (

� cos (�BT t) for a negative transition �T
2 � t � T

2

cos (�BT t) for a positive transition �T
2 � t � T

2 .
(2.160)
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dc(t,  ) 

  
  ec (t,  ) 

Figure 2.24 NRZ data with sinusoidal transitions and raised cosine pulses at each transi-
tion.

τp 

1/ 

t 
T 

τp 

Figure 2.25 Pulse shape for edge-detected data normalized to have unit area.

After squaring and multiplying by 2, the result is that the edge-detected data is zero
for no transition, and for both positive and negative transitions the signal is

ec(t; �) = 2 cos2(�BT t) (for � transitions) (2.161)

= 1 + cos(2�BT t) for � T=2 � t � T=2: (2.162)

The resulting signal gives a raised cosine pulse when a transition occurs, as illustrated
in Fig. 2.24. If the data signal were alternating every bit, then ec(t; �) would be a single
tone at the bit-rate.

Derivation of the Energy Spectral Density Based on Rectangular Pulses Results
To find the ESDB of ec(t; �) the Fourier transform could be obtained directly from
the definition. However, it is simpler to apply the results already obtained for the
rectangular edge-detected data. If the fundamental pulse shape eT (t) from Fig. 2.8, is
normalized to have unit area as shown in Fig. 2.25, then the new pulse uT (t) is given
by

uT (t) =

�
1=pT for 0 � t � pT

0 elsewhere,
(2.163)

and the ESDB from (2.135) is

dSBeu(f) = SBe(f)

(pT )2
=

�
1

2
sinc(fpT )

�2 "
1 + N

1X
M=�1

sinc2
��

f � M

T

�
NT

�#
:

(2.164)
As p tends toward zero, the envelope gets broader, until in the limit it approaches a
constant of 1=4, and the normalized energy spectrum is shown if Fig. 2.26 In the time
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Figure 2.26 Normalized energy spectrum for edge detected data with pulses of unit area.

domain, as p approaches zero, then the train of unit area pulses uT (t) become a train of
impulse functions. The signal that we desire can now be represented as a convolution
of a kernel raised-cosine pulse with this train of random impulses.

ec(t; �) = lim
p!0

eu(t; �) � [1 + cos(2�BT t)] rect(t=T ) (2.165)

Defining a normalized transfer function G(j2�f) such that

G(j2�f)
4
= F

�
1

T
[1 + cos(2�BT t)]rect(t=T )

�
; (2.166)

we can easily recognize thatG(j2�f) as the Fourier transform of rect(t=T ) convolved
with impulses of magnitude 1=T at f = 0, and impulses of magnitude 1=2T at
f = �BT , so that G(j2�f) is simply expressed as the superposition of three sinc
functions.

G(j2�f) =
1X

m=�1

�
1

2

�jmj
sinc ((f �mBT )T ) (2.167)

jG(j2�f)j2 is plotted if Fig. 2.27a, and is compared to a sinc2 function in Fig. 2.27b.
The ESDB for the pulses ec(t; �) is then given by

SBec(f) = T 2jG(j2�f)j2 lim
p!0

dSBeu(f); (2.168)

or

SBec(f) =
T 2

4
jG(j2�f)j2

"
1 +

1X
M=�1

sinc2
�
f �MBT
BT =N

�#
: (2.169)
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Figure 2.27 Squared magnitude response of a filter with a raised-cosine impulse response:
(a) linear plot, (b) magnitude in dB compared to a sinc2 function.

As the number of bits N grows the narrow sinc2 pulses can be replaced by impulses
with equal area as in (2.135), so that

SBec(f) =
T 2

4

"
1X

m=�1

�
1

2

�jmj
sinc

�
f �mBT

BT

�#2 "
1 +

1

T

1X
M=�1

�(f �MBT )

#
(2.170)

Since the envelope of SBec(f) is jG(j2�f)j2, then this energy spectrum will have
the desirable property that all harmonics of the signal at multiples of the bit-rate are
nulled. This property results from having a kernel-pulse that is non-zero in the interval
t 2 [0; T ], whereas the rectangular pulses were only non-zero for t 2 [0; pT ].

Discrete Power Spectrum for Comparison with Simulation The ESDB from (2.170)
can be converted to energy dissipated in a 1
 resistor by integrating SBec(f) over
the appropriate frequency intervals. If ec(t; �) is input to a spectrum analyzer with
bandwidth intervals of �f = BT =Ns, where fn = n�f , then the average two-sided
energy-per-bit of the signal in the nth frequency bin is

EBec(fn) =
T 2

4

Z fn+BT =2Ns

fn�BT =2Ns
jG(j2�fn)j2df +

hT
4
jG(j2�fn)j2 for modBT (fn) = 0

i
:

(2.171)
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For Ns large, the integral can be approximated by jG(j2�fn)j2�f . Therefore,

EBec

�
nBT
Ns

�
=

1

4

T

Ns

����G�
j2�

nBT
Ns

�����2| {z }
modNs (n)6=0

+
1

4
T jG(0)j2�̂(n)

+
1

4
T jG(j2�BT )j2�̂

�
n

Ns
� 1

�
+
1

4
T jG(�j2�BT )j2�̂

�
n

Ns
+ 1

�
;

(2.172)
where b�(n) = �

1 for n = 0

0 for n 6= 0.
(2.173)

The average power is obtained by dividing the energy by the time intervalT . Consider-
ing positive frequencies, and remembering that the dc component doesn’t get doubled,
then

Pec

�
nBT
Ns

�
=

1

2

�
1

Ns

����G�
j2�

nBT
Ns

�����2| {z }
modNs (n)6=0

+
1

2
jG(0)j2b�(n)

+jG(j2�BT )j2b� � n
Ns
� 1

��
:

(2.174)
(2.174) gives the power in Ns equally spaced frequency bins; this can be compared
directly with simulation results. First, however, we realize that the dc value due to
the deterministic part is 1=4jG(0)j2 = (1=2)2, so the dc term can be removed by
subtracting 1=2 from the original signal. It is clear that the average value of ec(t; �) is
zero when no pulse occurs, and unity when there is a pulse. Since the probability of
a pulse is 1=2, then the expected value of the signal is 1=2, so that by subtracting 1=2
from ec(t; �) produces a zero-mean random process. A plot of this signal bec(t; �) is
shown in Fig. 2.28a with the random NRZ data dc(t; �). After removal of the mean, the
power spectrum is shown plotted in Fig. 2.28b. The calculated spectrum for Ns = 32
is shown in dashed line and a simulation using 32 samples per bit is plotted with a
solid line. The simulated curves shows small variations around the calculated curve.
These variation can be reduced by averaging over even more data segments.

2.4.3 Bandpass Filtering of Edge-Detected Data

A clock at the receiver is often extracted from the data by passing the edge-detected
signal through a bandpass filter tuned to the data rate. This operation is illustrated
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Figure 2.28 Transition detected pulses using a raised-cosine kernel function: (a) the
zero-mean pulse stream in the time domain and the NRZ random data, (b) calculated and
simulated normalized power in a bandwidth of BT =32.
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Figure 2.29 Block diagram showing the extraction of a clock by bandpass filtering the
edge-detected data.
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| HB(j2πf) |2 
1 

-BT BT 

BT/Q BT/Q 

Figure 2.30 Magnitude response of an ideal bandpass filter.

in Fig. 2.29. An important figure of merit for an oscillator is the ratio of the power
in the pure tone, to the power in the side-bands. We can determine this ratio for
the clock c(t; �) if the transfer function of the bandpass filter (BPF) is known. For a
first order analysis we’ll consider an ideal bandpass filter with a magnitude response
jHB(j2�f)j2 shown in Fig. 2.30. The Q-factor of the filter is defined as the ratio
of the center-frequency to the bandwidth. Therefore, Q = BT =B. The ESDB at the
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output of the BPF is
SBc(f) = SBec(f)jHB(j2�f)j2; (2.175)

where SBec(f) is given in (2.170). The average energy-per-bit in the tone is

Etone =
T 2

4
jG(j2�f)j2 1

T

Z 1

�1
�(f � Bt)df =

T

2
jG(j2�BT )j2: (2.176)

The average energy-per-bit in the side-band around the tone is

Esb = 2

�
T 2

4

�Z BT+BT =2Q

BT�BT =2Q
jG(j2�f)j2df; (2.177a)

and for large Q this can be approximated by

Esb '
T 2

2
jG(j2�BT )j2BT

Q
=

T

2
jG(j2�BT )j2 1

Q
: (2.177b)

Therefore, the energy ratio is simply equal to the selectivity of a bandpass filter:

Etone
Esb

= Q (2.178)

This quantityQwill play an important role in section 2.5, where relationships between
the energy spectrum of a random signal and its time-domain statistics will be developed.

Energy Ratio for Rectangular Pulses The previous result can be compared to an
edge-detected signal using rectangular pulses. SBe(f) from (2.135) is given by

SBe(f) =

�
pT

2
sinc(fpT )

�2 "
1 +

1

T

1X
M=�1

�

�
f � M

T

�#
; (2.179)

The average energy-per-bit in the tone is

Etone =
T

2
[psinc(p)]2; (2.180)

and the in the side-bands

Esb =
T

2
[psinc(p)]2

1

Q
; (2.181)

so the energy ratio is also equal to the filter selectivity:

Etone
Esb

= Q (2.182)
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This result holds for all values of p, however, the absolute power in the tone varies
with p. Other sources of noise in the system will raise the noise-floor above 1=Q times
the tone level. In this case it is important to maximize the power in the tone for a
given peak-to-peak signal level. The raised-cosine pulses were normalized to have a
peak-to-peak value of 2, and the rectangular pulses had a peak-to-peak value of 1. For
an equal comparison the rectangular pulses will be multiplied by 2 which multiplies
the energy by 4. Therefore

Erec=Ercos = 2T [psinc(p)]2=
T

2
jG(j2�BT )j2 (2.183a)

=

�
4

�
sin(�p)

�2
; (2.183b)

where G(j2�BT ) = 1=2 was substituted. The pulse width parameter varies from
0 � p � 1. It is easy to see that the value of p that maximizes the energy ratio is
p = 1=2, and at the maximum value

Erec=Ercos =

�
4

�

�2

= 1:621: (2.184)

This shows that for signals of equal amplitude, the raised-cosine signal has only 61.7%
of the tone power as a rectangular signal with a pulse width ofT=2. Since the tone power
is due to the deterministic part of the signal, then this term (4=�) is just the Fourier
series coefficient of the fundamental tone for a square-wave. This comparison of the
tone powers is interesting, and has been done to illustrate the analytical techniques.
As a practical matter, however, we realize at high-speeds there are no such things as
rectangular pulses.

2.4.4 Summary of Linear Filtering Results

Thus far we have been dealing with the energy, or power spectral densities of a random
signal. Frequency domain analysis provides a useful tool for analyzing the effect
of linear filtering. Insight is also gained that aids in signal design. Pulse-shapes
can be tailored to null specific harmonics in the edge-detected signal. However, the
PSD does not provide a unique description of a signal. Since phase information
has been ignored in obtaining the PSD, several signals with various phase-shifts can
have the same power spectrum. Often the phase information is crucial in predicting
performance. For example the phase-jitter in the recovered clock is a key parameter
that effects the overall bit-error rate (BER) of the recovered data. The phase response
of a filter can convert excess side-band power into either amplitude-modulation, or
phase-jitter. This topic will be taken up in sections 2.6 and 2.7, but before moving
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on, we need to develop a more general connection between the PSD and time domain
statistics. This connection is provided by Parseval’s theorem , which allows us to find
the average power in the time domain by integrating the PSD over a given bandwidth.
The following section will show how the average power of the random signal in the
frequency domain is related to the variance of the random-process.

2.5 REVIEW OF GENERAL THEORY OF RANDOM

SIGNALS

Thus far when we wanted to find the power-spectral density of a random process we first
found an explicit representation of the signal in the time-domain, and transformed the
signal into the frequency domain, where the frequency domain representation was itself
a random process. Then the expected value of the time averaged energy was determined
over the ensemble of random sample functions. If the frequency transformations, and
the expected value are linear operators, then the order of expectation and frequency
domain transformation can be reversed. Doing these operations in reverse order can
be extremely useful. In most cases an explicit form of the random signal cannot be
written, but the statistics of the signal are known. Therefore the PSD can be found
directly from the time-domain statistics.

2.5.1 Autocorrelation functions: Time and Ensemble

An important function derived from a random process r(�; �) is the time-autocorrelation
function defined by5

ar(�; �) 4= lim
tr!1

Z tr=2

�tr=2

r(t; �)r(t+ �; �)dt (2.185)

This function gives an indication of the speed in which the signal r(t; �) varies with
time. For � large, one would expect that the correlation goes to zero, and for � small,
the correlation will be a maximum. The function ar(�; �) is also a random variable,

5This in provided that the integral converges. One condition can be artificially imposed is to consider
only time-limited data sequence. This becomes a problem when the data sequence is passed through a linear
filter with an infinite duration impulse response, then the output will no longer be time limited. However, as
long as the filter is “well behaved” and is the type of filter that one finds in practice, then provided that the
input data has finite energy, then the output data will also have finite energy.
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and the expected value can be taken such that

Ar(� )
4
= E[ar(�; �)] = lim

tr!1

Z tr=2

�tr=2

E[r(t; �)r(t+ �; �)]dt (2.186)

The expression inside the integral is defined as the the ensemble auto-correlation
function.

Rr(t; � )
4
= E[r(t; �)r(t+ �; �)] (2.187)

For a stationary process the signal statistics are independent of time so that Rr(t; � )
depends only on the time offset � .

Rr(t; � ) = Rr(� ) for r(t; �) stationary; (2.188)

If in addition to being stationary, Rr(� ) is non-zero only over a finite interval Tr , then
Ar(� ) is proportional to Rr(� ) according to

Ar(� ) = TrRr(� ); (2.189)

In the general case, when the random signal is non-stationary, then

Ar(� ) = lim
tr!1

Z tr=2

�tr=2
Rr(t; � )dt (2.190)

Fourier Transform ofAr(� ) The expected value of the time-autocorrelation function
is a deterministic signal that depends only on the offset � . The Fourier transform can
be obtained for this signal such that

FA(j2�f) =

Z 1

�1

Ar(� )e
�j2�f�d�: (2.191a)

Substituting (2.186) for Ar(� )

FA(j2�f) =

Z 1

�1

lim
tr!1

Z tr=2

�tr=2
E[r(t; �)r(t+ �; �)]dt e�j2�f�d�: (2.191b)

Letting � = t̂� t, and moving the expectation outside both integrals, then

FA(j2�f) = E

"Z 1+t

t̂=�1+t

lim
tr!1

Z tr=2

t=�tr=2

r(t; �)r(t̂; �)e�j2�f(t̂�t)dtdt̂
#

(2.191c)
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In the limit6 both integrals span [�1;+1] and the result is

FA(j2�f) = E

�Z
1

�1

r(t̂; �)e�j2�ft̂dt̂
Z
1

�1

r(t; �)ej2�ftdt
�
: (2.191d)

We recognize that each integral is a Fourier transform, and since r(t; �) is a real signal,
then

FA(j2�f) = E [Fr(j2�f; �)F �r (j2�f; �)] = Sr(f): (2.191e)

Therefore, the energy-spectral density Sr(f) can be found directly by taking the
Fourier transform of the expected value of the auto-correlation function Ar(� ). The
autocorrelation function evaluated at 0 gives the expected value of the total energy in
the signal.

Ar(0) =

Z 1

�1

E[jr(t; �)j2]dt =
Z 1

�1

Sr(f)df (2.192)

2.5.2 NRZ Data Revisited

The time-autocorrelation function can be used to determine the ESD of random NRZ
data. For an N-bit sequence, ad(0; �) will equal the total energy in the random sample
function. As the time offset � is shifted slightly away from zero, only a fraction of
identical bits will line up in the correlation. The remaining portion of the integral
will be over two different and uncorrelated bits. As � is increased to the point where
no identical bits line up, then the average correlation will be zero. Therefore, the
expected value, Ad(� ) will start at a maximum of NT at � = 0 and fall off linearly
to zero at � = �T , and will be zero for any value of j� j > T . A plot of Ad(� ) is
shown in Fig. 2.31. Ad(� ) can be easily recognized as the convolution of two identical
rectangular pulses.

Ad(� ) = N [rect(t=T ) � rect(t=T )] (2.193)

Therefore the ESD of the random data is the Fourier transform of Ad(� ) and is simply
given by

Sd(f) = NF frect(t=T )g2 = NT 2sinc2(fT ): (2.194)

This is identical to (2.108), but the result was obtained with much less effort. Using
the autocorrelation Ad(� ) also provides additional insight into the spectral content,
by explicitly showing a time domain description of the how fast the signal varies on
average.

6Taking the limit of the term limt!1(�1+ t) can be problematic in the strictest mathematical sense.
However if r(t; �) is assumed to be time limited to [�Tr; Tr ], then problems can be circumvented. For

the this case the second integral has finite limits
R Tr

�Tr
. With jtj limited to jTr j, then taking the limit is no

problem, and the first integral is then integrated over
R
1

�1
. We will developanalytical tools for time-limited

data, and then apply the results to data that is not time-limited, but has “tails” that die out much faster than
the length of the “main-part” of the data sequence.
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Figure 2.31 Expected value of the time auto-correlation function for random rectangular
NRZ data.

2.5.3 Theory of Stationary Random Processes Applied to

Non-stationary Signals

There exists a complete theory of spectral analysis of random processes, where fre-
quency domain techniques are used when the random process is stationary or at least
wide-sense stationary. [1, 2, 3, 4]. A stationary random process is one in which all of
the statistics of the process are independent of time. A process is said to be stationary
in the wide-sense if all of the first and second order statistics are independent of time.
Wide-sense stationarity implies that the ensemble autocorrelation functionRd(t; � ) is
only a function of the time offset � .

Basic Results for Stationary Random Processes For a wide-sense stationary random
process the power spectral density is defined as the Fourier transform of Rr(� ).

Pr(f) =

Z 1

�1

Rr(� )e
�j2�f�d� (2.195)

The inverse Fourier transform gives Rr(� ) when the power spectral density is known.

Rr(� ) =

Z
1

�1

Pr(f)e
j2�f� df (2.196)

Setting the time offset to zero gives

Rr(0) = E[r(t; �)r(t; �)] = �2r =

Z 1

�1

Pr(f)df: (2.197)

Therefore, the variance of the random processes in the time domain is obtained by
integrating Pr(f) over frequency. The power spectral density at the output of a linear
filter with an impulse response of h(t) is the same as the results obtained in section 2.4.

Py(f) = Pr(f)jH(j2�f)j2: (2.198)



80 Chapter 2

The following section will demonstrate how there results can be applied to cyclo-
stationary random processes in certain instances.

Cyclo-Stationary Random Data Although it has not been explicitly stated, the NRZ
data signal is a non-stationaryprocess. However, there is a definite structure embedded
in the randomness, and the statistics of the signal are periodic with a period equal to
the data bit-period T . This type of random process is known as a cyclo-stationary
process, because the statistics are periodic. To see that the statistics are periodic we’ll
consider the auto-correlation function of rectangular NRZ data Rd(t; � ) given by

Rd(t; � ) = E[d(t; �)d(t+ �; �)] (2.199)

For rectangular data the function Rd(t; � ) is illustrated in Fig. 2.32, where it can be
seen that the shape of Rd(t; � ) is unchanged, but is shifted depending on where t lies
in the interval [nT; (n+1)T ]. For the first period centered around t = 0, this function
can be written as

Rd(t; � ) = rect
�
t + �

T

�
: (2.200)

In section 2.5.1 it was shown that the expected value of the time-autocorrelation
function is

Ad(� ) =

Z 1

�1

Rd(t; � )dt (2.201a)

For a time limited data sequence of N-bits, then the integral can be replaced by the sum
of N integrals, each integrated over one period, and since the statistics are periodic,
then Ad(� ) is just N times the integral over one period.

Ad(� ) = N

Z T=2

�T=2
rect

�
t+ �

T

�
dt (2.201b)

The integral of Rd(t; � ) over each period is plotted in Fig. 2.33. Multiplying the
integrand by rect(t=T ) doesn’t change the integral since the the function is unity over
exactly the limits of integration. Therefore,

Ad(� ) = N

Z T=2

�T=2

rect(t=T )rect

�
t+ �

T

�
dt (2.201c)

= N

Z 1

�1

rect(t=T )rect
�
t+ �

T

�
dt (2.201d)

= N

Z 1

�1

rect(�t=T )rect

�
� � t

T

�
dt; (2.201e)
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Figure 2.32 Periodic autocorrelation function for rectangular NRZ data.
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Figure 2.33 Integral per period of the autocorrelation function of rectangular NRZ data.
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and since the rect function is symmetric rect(t=T ) = rect(�t=T ), then

Ad(� ) = N

Z
1

�1

rect(t=T )rect

�
� � t

T

�
dt (2.201f)

= N [rect(t=T ) � rect(t=T )]: (2.201g)

This is the same function plotted in Fig 2.31. However, we can now make use of
the results from the theory of stationary random processes to relate Ad(� ) to signal
statistics. For a cyclo-stationary random process the variance is periodic with period
T . From the definition of Ad(� ) for an N-bit sequence,

Ad(� ) = NT

"
1

T

Z T=2

�T=2

Rd(t; � )dt

#
(2.202a)

Ad(0) = NT

"
1

T

Z T=2

�T=2

�2d(t)dt

#
(2.202b)

Ad(0)=NT = �2d(t) (2.202c)

This result states that the average variance over one period is equal to the time auto-
correlation function divided by the time intervalNT . For the case of rectangular NRZ
data the variance can be determined easily in the time domain. The data is either +1
or -1, so the variance is equal to 1. In the general case the variance will be periodic,
but in this special cases it is a constant. The variance is equal to Rd(t; 0), and from
Fig. 2.32 it can be seen that Rd(t; 0) is always unity. It is also clear from Fig. 2.33
that Ad(0)=NT = 1. The results are summarized in table 2.4 for a cyclo-stationary
random data sequence that is limited in time.

Time-Limited Random Signals Passed Through Linear Filters As we alluded to
earlier, when time-limited data is passed through a filter with an infinite impulse
response, the data will no longer be time limited. This raises the question of how to
deal with such a situation. For the time limited case it was shown that the expected
value of the energy in the signal is given by

Ed = Ad(0) = E

"Z NT

0

d2(t; �)dt
#

(2.203)

=

Z 1

�1

Sd(f)df: (2.204)

If the time limited data is passed through a filter, then there will be a transient response
at the beginning and end of the data sequence and a steady-state response for most of
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Rd(t; � ) = E[d(t; �)d(t+ �; �)]

Rd(t; 0) = E[jd(t; �)j2] = �2d(t)

�2d =
1

NT

Z NT=2

�NT=2

�2d(t)dt =
1

T

Z T=2

�T=2

�2d(t)dt

ad(�; �) = lim
td!1

Z td=2

�td=2

d(t; �)d(t+ �; �)dt =

Z NT=2

�NT=2

d(t; �)d(t+ �; �)dt

Ad(� ) = E[ad(�; �)] =

Z NT=2

�NT=2

Rd(t; � )dt

Sd(f) = F fAd(� )g

Pd(f) = Sd(f)=NT

Ad(0) =

Z NT=2

�NT=2

�2d(t)dt = NT�2d

Ad(0) =

Z
1

�1

Sd(f)df = NT�2d

�2d =

Z
1

�1

Pd(f)df = Ad(0)=NT

Table 2.4 Summary of Relations for Time-Limited Cyclo-Stationary Random Signals.
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Figure 2.34 Energy spectrum of a clock recoveredby passing an edge-detecteddata signal
through a BPF.

the duration of the data. Therefore, the energy can be written as

Ad(0) =

Z t1

0

+

Z NT+t2

t1

+

Z NT+t3

NT+t2

; (2.205)

where transient behavior occurs in the time intervals [0; t1] and [NT + t2; NT + t3].
As the number of bits becomes very large, the first and third integrals are negligible
compared to the middle integral, provided that the filter is stable and the transient
response dies out over time. As a practical consideration, when the length of the
random sequence NT is very large compared with the time constant of a filter that
operates on the data, then the output energy of the filter can be approximately obtained
by integrating over the interval [0; NT ], and ignoring the transient behavior. Therefore,
the results of table 2.4 can be applied to data that is not time limited, provided that N
is large compared to the normalized transient time ttran=T .

2.6 RANDOM AMPLITUDE MODULATION

Now we’re finally in a position to use the theory for a practical problem. We would
like to predict the rms value of the amplitude modulation in a clock signal that was
recovered from the data by passing the edge-detected signal through a bandpass filter
(BPF). The energy spectrum of an edge-detected signal at the output of a BPF is shown
in Fig. 2.34. It will be assumed that the side-band energy in the recovered clock is due
entirely to amplitude modulation, and the recovered clock signal will be assumed to be
limited in time to [�NT=2; NT=2]. If the clock is not time limited, then the analysis
will still hold if the energy in the transient tails of the clock are negligible compared to
the energy in the interval [�NT=2; NT=2]. Under these assumptions the clock signal
can be expressed as

c(t; �) = [(1 + am(t; �)) cos(2�BT t)] rect(t=NT ); (2.206)
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where am(t; �) is a zero-mean random variable that represents the normalized amplitude
modulation. It is desired to find the power spectral density for this clock signal. We
start by finding the Fourier transform of c(t; �).

Fc(j2�f; �) =
�
1
2�(f � BT ) +

1
2Fam(j2�(f �BT )

� �NT sinc(fNT )

= 1
2 [NT sinc(NT (f � BT ))]+

1
2
[Fam(j2�f) �NT sinc(NT (f � BT ))] :

(2.207)
Since the number of bits is assumed to be large, the sinc function can be approximated
as an impulse.

NT sinc(fNT ) ' �(f):

Replacing the second sinc function with an impulse gives

Fc(j2�f; �) = 1

2
[NT sinc(NT (f � BT )) + Fam (j2�(f � BT ))] (2.208)

We delay replacing the first sinc function with an impulse until after the magnitude
is squared to avoid mathematical difficulties associated with squaring an impulse
function. Since the signal is also narrow-band, the sidebands don’t overlap and the
squared magnitude is

jFc(j2�f; �)j2 = 1
4 [NT sinc(NT (f � BT )]

2+

1
4

�jFam (j2�(f �BT )) j2 + jFam (j2�(f + BT )) j2
�
+

cross-terms(f; �):
(2.209)

The ESD is found by taking the expected value of jFc(j2�f; �)j2. Since the expected
value of Fc(j2�f; �) = 0, then the expected value of the cross-terms are also zero. The
sinc2 function can now be replaced by an impulse function of equal area. Therefore,

Sc(f) = E
�jFc(j2�f; �)j2� = 1

4
[NT�(f � BT ) + Sam(f �BT )] ; (2.210)

where Sam(f) is the ESD for the baseband amplitude modulation. The variance
of the baseband amplitude modulation is obtained by integrating the ESD over all
frequencies.

NT�2am =

Z 1

�1

Sam(f)df (2.211)

The total energy in the side-bands of the clock is then

Esb =
1

4

Z 1

�1

[Sam(f �BT ) + Sam(f +BT )]df (2.212a)

=
NT

2
�2am; (2.212b)
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Figure 2.35 Clock recovered by passing edge-detected NRZ data through, linear-phase
bandpass filter with approximate selectivities of: (a) Q = 100, (b) Q = 25.

and the energy in the pure tone is

Etone =
1

4
NT

Z 1

�1

[�(f � BT ) + �(f + BT )] df =
1

2
NT: (2.213)

Therefore, the variance of the amplitude modulation is given by the energy ratio

�2am =
Esb

Etone
(2.214)

It was shown in (2.178) and (2.182) that this energy ratio is approximately equal to
1=Q for a narrow-band ideal BPF. Therefore, we have finally arrived at the simple
and useful result, that the rms deviation in the envelope of the clock signal derived by
passing an edge-detected signal through and ideal, linear-phase BPF with a selectivity
of Q.

�am =
1p
Q

(2.215)

Simulations Results: Amplitude Modulations of Extracted Clock Simulation results
of clock extraction using BPFs with approximate Q values of 100 and 25 are shown in
Fig. 2.35. For Q = 100 the predicted rms amplitude modulation is 10%, and is 20%
forQ = 25. The normalized PSD of the clock signal forQ � 25 is shown in Fig. 2.36.
For any non-ideal filter shape an effective Q can be defined in terms of the sideband
power according to

Psb = 2QeqBT jH(j2�BT )j2; (2.216)
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Figure 2.36 Normalized narrowband spectrum of a bandpass filter with Qeq = 20:75.

and the equivalent selectivity is then

Qeq =
1

BT jH(j2�BT )j2
Z
1

0

jH(j2�f)j2df: (2.217)

With this definitionofQeq we can express the rms envelope deviation for any arbitrarily
shaped bandpass filter as

�am =
1p
Qeq

(2.218)

Using (2.217) the equivalent Q values for the simulated filters were found to be
92:63 and 20:75 respectively. The theory predicts that the standard deviation in
the the envelope is 1=

p
Qeq, which gives us values for �am of 0:1039 and 0:2198

respectively. These results can be compared with the simulation by extracting the
envelope of the clock signals and determining the envelopes statistics. Fig. 2.37
shows histograms of the deviation in the envelopes of the simulated recovered clocks.
The simulated rms envelope deviation was �am = 0:1038 for Qeq = 92:63, and
�am = 0:2195 for Qeq = 20:75, which is within 0.14% of the results predicted using
the frequency domain power ratios. One final remark can be made about the envelope.
The narrowband filter has a bandwidth of approximately BT =Qeq. It was shown
that the energy in this band is just the baseband amplitude modulation shifted to the
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Figure 2.37 Histograms of the random envelope deviation in simulated edge-detected
NRZ data passing through an ideal, linear- phase BPF with: (a) Q = 100, (b) Q = 25.
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Figure 2.38 Illustration of the narrowband spectrum being down converted to be centered
around dc.

clock frequency. Therefore, by down converting the narrowband spectrum to dc as
shown in Fig. 2.38 it is clearly seen that the amplitude has a maximum frequency of
approximately BT =2Qeq. Therefore, we should expect on average that the envelope
will have one random cycle in every 2Qeq clock periods.

Energy Spectral Densities are not Unique Mappings As stated previously, the energy
spectral densities ignore phase information, and the the mapping of a signal from the
time domain to the ESD is not unique. In fact several different signals can have the
same ESD. In this section the narrow-band spectrum was assumed to have been the
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result of only amplitude modulation. This is the case when the signal was passed
through a linear-phase filter. In the following section we will show how the identical
ESD could have resulted from phase-modulation.

2.7 PHASE-JITTER

The narrow-band spectrum of Fig. 2.34 could have resulted from a clock signal with
phase-modulation only. Such a signal can be written as

c(t; �) = [sin (2�BT t+ �(t; �))] rect(t=NT ) (2.219)

Using the identity

sin(A+ B) = sinB cosA+ cosB sinA;

then the phase-noise can be separated from the center frequency.

c(t; �) = [sin(�(t; �)) cos(2�BT t) + cos(�(t; �)) sin(2�BT t)] rect(t=NT ): (2.220)

When the phase modulation is small, then we can make the following first-order
approximations,

sin(�(t; �)) ' �(t; �)
cos(�(t; �)) ' 1:

Under the small-signal approximation, the clock signal can be written as

c(t; �) ' [�(t; �) cos(2�BT t) + sin(2�BT t)] rect(t=NT ); (2.221)

and we see that for small angle deviations, the phase-modulation is approximately
equal to amplitude modulation of a carrier in quadrature with the main clock tone.

To obtain the power spectrum, we start by taking the Fourier transform of the random
clock signal of (2.221).

Fc(j2�f; �) = 1

2
F�(j2�(f � BT ); �) + 1

2j
�(f �BT )� 1

2j
�(f + BT ) (2.222)

The expected value of the squared magnitude of Fc divided by the time interval NT ,
gives us the desired PSD;

Pc(f) =
1

4
P�(f �BT ) +

1

4
�(f � BT ) (2.223)
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The phase-noise variance can be found from the baseband PSD by integrating over all
frequencies.

�2� =

Z 1

1

P�(f)df (2.224)

Using the narrowband assumption that the overlap of the positive and negative parts
of the frequency spectrum is insignificant, then the baseband power can be expressed
as an integral over the bandpass spectrum. The sideband power is therefore

Psb =
1

4

Z 1

�1

P�(f �BT )df =
1

2

Z 1

�1

P�(f)df =
�2�
2
; (2.225)

and the power in the tone is

Ptone =
1

4

Z 1

1

�(f � BT )df =
1

2
: (2.226)

Therefore, the noise variance, in radians squared, is just given by the ratio

�2� =
Psb
Ptone

(2.227)

For a bandpass filter with Qeq defined by (2.217), then we obtain the simple result

�� =
1p
Qeq

: (2.228)

This is the same result that we obtained for amplitude modulation which is not surpris-
ing since the small-signal linearization converted the phase-noise to amplitude noise.
In the next few pages the same result will be derived more rigorously, and it will be
shown that a second-order approximation of the rms phase noise can be given by

�� =
1p

1 + Qeq

: (2.229)

An illustrationof the narrowband spectrum to be derived that will give rise to the above
second-order approximation is shown in Fig. 2.39. The reader wishing to be spared
the details of the following derivation may want to skip to page 96.

2.7.1 Second-Order Estimate of Phase-Noise Variance

The goal of this analysis is to find an expression for the narrowband power spectrum
Pc(f) in terms of the baseband PSD P�(f) of the random phase modulation. We can
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Figure 2.39 Narrowband power spectral density of a signal due to random phase modula-
tion.

find the ESD Sc(f) of this clock signal using the techniques of section 2.5, by first
finding the time-autocorrelation function.

ac(�; �) =
Z NT=2

�NT=2

c(t; �)c(t+ �; �)dt (2.230)

The expected value of ac(�; �) is the integral of the ensemble autocorrelation function.

Ac(� ) = E[ac(�; �)] =
Z NT=2

�NT=2

Rc(t; � )dt (2.231)

The narrow-band spectrum that we are looking for is the ESD of c(t; �), which is the
Fourier transform of Ac(� ).

Sc(f) = F fAc(� )g (2.232)

Explicit Expression for Rc(t; � ) The above outlined analysis can be carried out by
first finding an explicit expression for the ensemble autocorrelation function Rc(t; � )
of the clock signal. By definition

Rc(t; � ) = E

�
[sin (2�BT t+ �(t; �))] rect(t=NT )�

[sin (2�BT (t+ � ) + �(t+ �; �))] rect ((t+ � )=NT )

� (2.233)

Now we can make make use of some trigonometric manipulations to separate terms
into sum and difference frequencies. Recalling

sinA sinB =
1

2
cos(A �B) � 1

2
cos(A +B);
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then

Rc(t; � ) = E

�
1

2
cos (2�BT � + �(t+ �; �)� �(t; �))

� 1

2
cos (2�(2BT )t+ 2�BT � + �(t+ �; �) + �(t; �))�

rect(t=NT )rect ((t + � )=NT ) ;

(2.234)

and recalling also that

cos(A +B) = cosA cosB � sinA sinB;

then the fast varying center-frequency terms can be separated from the random phase-
noise terms.

Rc(t; � ) =

�
1

2
cos(2�BT � )E[cos (�(t+ �; �)� �(t; �))]

� 1

2
sin(2�BT � )E[sin (�(t+ �; �)� �(t; �))]

� 1

2
cos (2�(2BT )t+ 2�BT � )E[cos (�(t+ �; �) + �(t; �))]

+
1

2
sin (2�(2BT )t+ 2�BT � )E[sin (�(t+ �; �) + �(t; �))]�

rect(t=NT )rect ((t+ � )=NT ) :

(2.235)

With one more application of the previous trig identity and

sin(A+ B) = sinA cosB + cosA sinB;
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then terms involving t, can be separated from terms involving � , and we finally get the
desired form of the auto-correlation function:

Rc(t; � ) =

�
1

2
cos(2�BT � )E[cos (�(t+ �; �)� �(t; �))]

� 1

2
sin(2�BT � )E[sin (�(t+ �; �)� �(t; �))]

� 1

2
cos (2�(2BT )t) cos(2�BT � )E[cos (�(t+ �; �) + �(t; �))]

+
1

2
sin (2�(2BT )t) sin(2�BT � )E[cos (�(t+ �; �) + �(t; �))]

+
1

2
sin (2�(2BT )t) cos(2�BT � )E[sin (�(t+ �; �) + �(t; �))]

+
1

2
cos (2�(2BT )t) sin(2�BT � )E[sin (�(t+ �; �) + �(t; �))]�

rect(t=NT )rect ((t+ � )=NT ) :

(2.236)
Since we are dealing with a narrow-band signal, then the baseband modulation, by
definition, varies much slower than the tone. Therefore, the terms involving

E[cos (�(t+ �; �) + �(t; �))]
E[sin (�(t+ �; �) + �(t; �))]

are expectations of a slowly varying signal, and these terms remain essentially constant
over several periods of the double-frequency (2BT ) signal. Hence, when (2.236) is
integrated over time, the last four terms will vanish.

Approximations for Small Angles To continue the analysis it is helpful at this point
to make some approximations assuming that the phase modulation is small. This is a
valid assumption, because any clock signal that has a large cycle-to-cycle phase jitter
�(t; �) is of no use to us, so there is no need to analyze it. Instead we will be considering
a clock signal with small phase deviations. Recalling the series expansions for sine
and cosine around zero

sin � = � � �3

3! +
�5

5! � � � �
cos � = 1� �2

2! +
�4

4! � � � � ;

and ignoring any terms of 3rd order or greater, then

E [sin (�(t+ �; �)� �(t; �))] ' E[�(t+ �; �)]�E[�(t; �)]; (2.237)
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and for a zero-mean phase-noise process

E[�(t+ �; �)]�E[�(t; �)] = 0� 0 = 0: (2.238)

Using the small-angle approximation for the cosine function

E [cos (�(t+ �; �)� �(t; �))] ' 1� 1

2

h
E[�2(t + �; �)] + E[�2(�; �)]

� 2E[�(t+ �; �)�(t; �)]
i
:

(2.239)
If the base-band phase-noise process is assumed to by wide-sense stationary with a
variance of �2� and an auto-correlation function R�(� ), then

E [cos (�(t+ �; �)� �(t; �))] ' 1� �2� +R�(� ): (2.240)

Energy Spectral Density Now the expected value of the time-autocorrelation function
Ac(� ) can be found by integrating Rc(t; � ). Define an effective ensemble auto-
correlation function cRc(� ) as,

cRc(� )
4
=

1

2
cos(2�BT � )

�
1� �2� +R�(� )

�
: (2.241)

Integrating the horrendous expression in (2.236) reduces to

Ac(� ) =

Z NT=2

�NT=2

Rc(t; � )dt

= cRc(� )

Z NT=2

�NT=2
rect(t=NT )rect ((t+ � )=NT )dt

= cRc(� ) [rect(�=NT ) � rect(�=NT )]

(2.242)

Taking the Fourier transform of Ac(� ) will finally give us the energy spectral density
function of the narrowband signal in terms of the baseband ESD. In anticipation of
the final result we’ll define a power spectral density Pc(f) as the Fourier transform ofcRc(� ).

Pc(f)
4
= F

ncRc(� )
o

(2.243a)

Pc(f) =
1

4
(1� �2�)�(f �BT ) +

1

4
P�(f � BT ); (2.243b)
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where P�(f) is the PSD of the baseband phase noise. Therefore,

Sc(f) = F
ncRc(� )

o
� F frect(�=NT ) � rect(�=NT )g (2.244a)

Sc(f) = Pc(f) � [NT sinc(fNT )]2; (2.244b)

and using the now familiar approximation of the sinc2 function with an impulse of
equal area we obtain

Sc(f) = Pc(f) �NT�(f) (2.244c)

Sc(f) = NTPc(f); (2.244d)

dividing the ESD by the time interval NT the power spectral density of the phase-
modulated signal is as anticipated

Pc(f) =
1

4
(1� �2�)�(f �BT ) +

1

4
P�(f � BT ): (2.245)

Determining the Phase Noise Variance from Pc(f) It was assumed that the time
domain signal corresponding to the energy spectrum was a constant amplitude tone
with small-signal phase modulation. The expression for the narrowband PSD was
expressed in terms of the PSD of the baseband phase-noise as in (2.245). The result
is that the PSD consists of a pure tone plus the baseband noise PSD shifted to �BT .
This is illustrated in Fig. 2.39. The phase-noise variance can be found by taking the
ratio of the tone power and the sideband power. From (2.245) the tone power is

Ptone =
1

4

Z 1

�1

(1� �2�)�(f � BT )df =
1

2
(1� �2�); (2.246)

and the sideband power is

Psb =
1

4

Z 1

�1

P�(f �BT )df (2.247a)

=
1

2

Z 1

�1

P�(f)df (2.247b)

=
�2�
2
: (2.247c)

Therefore the ratio of the two powers is simply related to the phase-noise variance by

Psb
Ptone

=
�2�

1� �2�
: (2.248)
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Alternatively, we can express the noise variance in terms of the power ratio

�2� =
Psb=Ptone

1 + Psb=Ptone
: (2.249)

Returning to the example of edge-detected NRZ data passing throughan ideal bandpass
filter of selectivity Q, the above power ratio, which is the same as the energy ratio, is
just equal to 1=Q. The noise variance of the recovered clock signal is therefore,

�2� =
1

1 +Q
: (2.250)

For an arbitrary filter we use the equivalent selectivity, so that the general result is

�� =
1p

1 +Qeq

radians (2.251)

This result, however, assumes that all of the sideband energy is converted to phase-
noise, and there is no contribution to the envelope deviation. Therefore, (2.251) gives
an upper-bound on the phase-noise obtained by filtering random edge-detected data.
In the following section we will show how a nonlinear phase filter distributes the noise
power between amplitude and phase modulation. Before, ending this section, however,
we will give some simulation results that verify the theory.

2.7.2 Simulation of Narrowband Phase-Noise

To illustrate the application of the above theory for predicting phase noise, the following
signal was simulated for various values of rms phase-noise �(t; �)

c(t; �) = cos(2�f0t+ �(t; �)): (2.252)

The simulated eye-diagrams for two cases are shown in Fig. 2.40. The noise variance
can be calculated in the time domain because we have explicit control of the phase-
noise in the simulation. The normalized histograms for the phase noise are shown
in Fig. 2.41, where the rms phase deviation was calculated to be 0.0994 and 0.1962
radians respectively. The power-spectral density of the clock signals with random
phase jitterwas obtained by taking a discrete Fourier transform of the signal. The signal
was broken into 128 intervals of 32 periods each, and the power spectrum of each short
segment was averaged to obtain the estimates of the PSDs shown in Fig. 2.42. The
theory predicts that the phase-noise variance is just the ratio of the tone power to the
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Figure 2.40 Eye-diagrams of a clock signal with random phase-noise: (a) � � ' 0:1, (b)
�� ' 0:2.
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Figure 2.41 Normalized phase-noise histograms: (a) �� = 0:0994, (b) �� = 0:1962.
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Figure 2.42 Average power in a bandwidth of BT =32. The rms phase-noise calculated
from the frequency domain is: (a) �� = 0:0994, (b) �� = 0:1975.

sideband power. These ratios are (101:1)�1 and (25:64)�1 respectively from which
we calculate the rms noise as

�� =
1p
101:1

= 0:0994 = 5:70� for (a)

�� =
1p
25:64

= 0:1975 = 11:32� for (b)

(2.253)

For a gaussian random variable, the peak-to-peak deviation is approximately 6�. We
can see from the eye-diagrams that the phase deviation is approximately 34:2� and
67:9� in Figs. 2.40a and b respectively.

Since the simulation was performed with 32 samples per period. The bandwidth is
therefore BT=32. In order to double the rms phase noise the sideband power has to
increase by a factor of 4. Therefore we see that the noise power is 6 dB higher in
the second simulation. It is shown that the noise power is -35 dBc in Fig. 2.42a, and
-29 dBc in Fig. 2.42b at an offset of 20% of the clock frequency. To convert these
numbers to dBc/Hz, we subtract 10 log(BT=32). For the example of a 10 GHz clock
10 log(BT =32) = 85 dB. This results in the noise power being down by -120 dBc/Hz
and -114 dBc/Hz at 2 GHz offset, in Figs. 2.42a and b respectively.

These simulation results verify that the theory can be used to predict the rms noise in the
time domain from the PSD provided that the assumption of no amplitude modulation
has not been violated. In this example the error in the estimate is 0.66% in case (b),
and various other simulations have shown that the error is typically on this order for
the length of the simulation and number of samples per period chosen. In the case
of frequency noise in a voltage controlled oscillator, the phase is the integral of the
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frequency noise, and the phase variance goes to infinity as time increases.7 We will
defer discussion of this important and practical case until Chapter 8. In the following
section, all of the results of this chapter will be tied together to obtain the connection of
how random amplitude modulation, through nonlinear phase shifts, can be converted to
phase noise. With this information we will be able to predict the minimum obtainable
phase jitter in a clock recovered from NRZ data by using a bandpass filter.

2.8 EFFECT OF BPF PHASE RESPONSE ON ANGLE AND

AMPLITUDE MODULATION

It was found that for narrowband amplitude modulation, the rms deviation in the
envelope is 1=

p
Q, which is the same result obtained for the rms phase deviation.

Therefore, it has been shown that a BPF with an ideal magnitude response can generate
a clock signal that contains only amplitude modulation, or only phase modulation. The
actual distributionof the sideband energy between envelope deviations and phase-jitter
will be determined by the phase response of the filter. A filter with linear phase (constant
group delay) will give rise to a clock signal with only amplitude modulation. However,
a real analog filter can only approximate a constant group delay. Any deviation from a
constant delay will result in a conversion of envelope deviation energy into phase-jitter.
Even if a BPF has linear phase, other non-ideal circuit elements will convert amplitude
modulation to phase-jitter. Since the recovered clock signal has a randomly varying
envelope, induced by random, data-dependent amplitude modulation, then a limiter,
or automatic-gain-control (AGC) amplifier needs to be used to produce a constant
amplitude clock. The phase-response of such a limiter circuit will also contribute
to clock jitter. The nonlinear phase response of the limiter provides different delays
through the circuit at different frequencies. In addition, nonlinear, voltage dependent
parasitic capacitance in integrated circuits cause the delay time through the circuit to
be amplitude dependent, adding further to the phase-jitter. It is a complicated matter
to determine the relative contributions of these nonlinear delays to the phase-jitter, and
envelope deviation respectively. However, assuming that the rms phase-jitter in the
clock due the the random data itself is 1=

p
Q is a reasonable first order approximation

for the final clock after the amplitude modulation has been removed: Likewise it is a

7This is a practical example of the random walk problem, where a man (presumably drunk, or extremely
dizzy) takes steps in random directions. The distance the man is away from the starting point is a random
variable. It is equally likely that the man will walk in any direction; one might therefore expect to find the
man at the starting point as time increases since each random movement will be balanced by one in the
opposite direction. However, this is not the case, and the variance of the distance from the starting point
approaches infinity as the time is increased to infinity. This process is also known as Brownian motion. A
little thought will reveal that the variance must go to infinity, otherwise no gases would ever diffuse.
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reasonable approximation to assume the rms envelope deviation at the output of the
BPF is also 1=

p
Q.

2.9 SUMMARY

If you look at the literature concerning cyclo-stationary random processes [5, 6, 11],
and compare that with the seat-of-the-pants analysis used by most circuit hackers,
you’ll find an enormous gap. In this chapter we have tried to fill this gap by explaining
some of the concepts from random signal theory in the language of circuit design such
as, Q-factors, transfer functions, and impulse responses. As far as signals go, pulse-
amplitude-modulated (PAM) baseband signals are not very complex; yet a mastery of
the theory required to make even the simplest of calculations becomes too involved to
make it worthwhile. Also a complete theory can often become formalism for formalism
sake. The reason is because signals will be processed by nonlinear operations such as
edge-detectors and limiters; followingformal analysis through such a systems becomes
intractable. In this chapter we have aimed at developing an intuitionabout such signals
so that intelligent systems can be designed even when closed-form mathematical
descriptions escape us.

This chapter certainly is not a rigorous mathematical tour de force, but it does help us
to reach our goal of designing better receiver ICs. We have been primarily concerned
with the following questions.

What is the spectrum of random PAM data for various signaling formats?

How is the signal affected by linear filtering, both in the time and frequency
domains?

How is the spectrum affected by nonlinear operations?

How does prefiltering the data before nonlinear processing affect the harmonic
content of the clock tone?

What is the ratio of the clock-tone energy to the random sideband energy, and
how can this ratio be maximized?

How much amplitude modulation will result when a clock is extracted from
random data using a bandpass filter of a given Q?

How much phase-jitter is present in a clock extracted from random data, where
does it come from, and how can it be reduced?
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By the end of this chapter, the reader should have the analytical tools to answer these
questions. More importantly, the reader should develop a feel for the characteristics of
random data, and be able to predict the basic behavior of certain circuits by inspection.
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3
OPTIMAL DECISION THEORY
APPLIED TO HIGH-SPEED IC

RECEIVER DESIGN

The purpose of a telecommunication system is to convey a message, as accurately
as possible, from a source to a destination. A model for a typical system is shown
in Fig. 3.1. Along the way, the transmitted message can be corrupted by noise and
distortionas it travels to its final destination. The purpose of a receiver is to observe the
corrupted received signal, and estimate what the original message should have been.

Multilayered Sources of Errors in Communication A receiver is considered “opti-
mal” if it provides the “best” performance relative to some quantitative performance
measure, under a given set of assumptions. Errors in communication can occur at
several levels; choosing a criteria for optimality in the context of the overall system
is non-trivial, because the quality of the received message is generally a subjective
judgment. To illustrate this hierarchy of communication, we could represent a con-
versation between two people using the block diagram of Fig. 3.1. In this example,
the source will be considered as a thought, or an idea in the brain of the speaker. This
thought can be pictured as roaming around in a multidimensional vector-space of all
thoughts. The speaker then maps only a shadow of this idea onto a lower dimensional
vector space of thoughts that can be expressed by words. This mapping is analogous
to quantization, where an infinite dimensional signal is mapped to a finite number of
discrete levels. At this point, much information may have already been lost. The
speaker may realize that the idea he is about to express is difficult to understand, so
he may repeat key phrases, or offer an analogy to reduce confusion. This is similar
to channel coding, where a communication system will purposely add redundancy to
reduce errors. Before sending the message, the speaker evaluates the conditions of
the communication channel. If the room is noisy, then the speaker might adjust his
volume to keep the signal-to-noise ratio at an acceptable level as he modulates his
vocal chords and transmits a sound wave in the direction of the listener’s ears. If the
listener has a good idea of what the speakers voice sounds like, and knows that English

105
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Figure 3.1 Block diagram of a fiber-optic telecommunications link.

words are being spoken, then he can “tune-in” to the speaker, and the soundwaves can
be converted to words by the listener, even when the noise is larger than the signal.
Electronic receivers perform similar demodulations in the presence of noise by only
looking for a given frequency, phase, or pulse shape, and ignoring large background
noise. The listener then takes the sequence of words that he has understood, and does
the channel decoding. Perhaps one or two words were not clear, but the listener waits
for the completion of the sentence, then the missing word can often be filled in by the
context of the sentence. Finally, the listener maps the corrected sequence of words to a
thought in his own brain. Clearly there are several things that can prevent the errorless
communication of ideas. The largest source of error in this example is undoubtedly
the mappings of ideas to words, and visa-versa. Not only is this an approximation
at best, but to make matters worse, there is no guarantee that the two people talking
are using identical mappings. The same words can mean different things to different
people, especially when the two speakers are of the opposite sex!

The fascinating subject of human communication has often been left to neurophys-
iologists, and psychologists. However, engineers have recently utilized biological
models to implement neural-network sensors for machine perception, and artificial
intelligence. Likewise, utilization of results from linguistics has resulted in improved
systems for speech synthesis and recognition. Human perception is often ignored by
engineers doing quantitative analysis of communication systems, but ultimately for
voice, video, fax, etc., it is the final human perception that determines the quantitative
performance criteria that must be met. As interesting as this subject is, we will leave
it behind, and concentrate only on errors in the transmission of the words themselves,
and not in the interpretation of these words by humans.
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Video Telecommunications Example Towards developing a quantitative measure of
receiver performance, we will consider video communication, and elaborate further
on each of the functional blocks in Fig. 3.1. The source encoder in a video system
performs the very important task of data rate compression by removing the redundancy
in the input signal. Its goal is to reduce the data rate to such an extent that the statistics
of the final quantized data are random and uncorrelated. Such techniques include:
differential coding, linear predictive coding, subband coding, and vector quantization.
Compression of the data is performed both within and between frames. Motion
compensation is utilized for inter-frame data reduction, where only the errors between
the image, and the translated portion of the previous image are quantized.

Channel Coding The channel coder now takes the random, uncorrelated data from
the source coder and adds redundancy in an efficient and predictable manner, so that
the receiver will be able to correct for errors in transmission. A spell-checker programs
operates on this principle. Errors can be corrected in misspelled words only because
all possible combinations of letters in the alphabet are not allowed, only those that
constitute words in the English language. Often when a word is misspelled, it can be
corrected by finding the nearest legal spelling that most closely matches the incorrect
word, provided that there are not too many initial errors. If the minimum-distance
vector search is not adequate to correct the errors, then we must look to the context
of the sentence. Errors can also be corrected in this manner because all sequences
of words are not allowed to be strung together. We only allow sequences that obey a
certain grammatical structure. For a video system, the spell-checker is analogous to a
convolutional, or Viterbi code that is used to structure the order of short bit sequences,
or words. The Viterbi decoder is used to remove bit errors, provided that they don’t
occur in clusters. The convolutional coded bits, or words, can then be organized into
blocks resembling sentences that obey a fixed structure. These block codes can remove
errors in whole words.

Inter-Bit Correlation of Coded Data Sequences In the previous discussion it was
implicitly assumed that a device at the receiver exists that can detect the individual
letters of the alphabet of possible transmitted signals, and make a decision as to which
one was sent. In the example of spoken english, the symbol alphabet is the familiar
26-letter alphabet, plus the digits 0–9, and various punctuation symbols. For a binary
system, the alphabet consists of only two symbols, generally referred to as “one” and
“zero,” each with an equal probabilityof being sent. The previous discussion of coding
in telecommunication is intended to illustrate that there exists a structure within the
transmitted data so that the actual transmitted bits are indeed correlated. Therefore, if
we wanted to develop an optimal decision rule for deciding the polarity of each binary
bit, the decision rule would have to include all of the correlation information about the
random data, and the data’s past history. For example, if a coder is used that forces
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a transition every 8-bits, and the receiver has just detected 7 “zeros” in a row, then
this information needs to be given to the decision circuit so that the next decision is
biased in favor of detecting a “one.” However, the decoding of the receiver is usually
implemented hierarchically. First, the bits are detected assuming no prior knowledge
of the statistics that the coding imposes on the data. Next, bit-errors are corrected by
convolutional decoding of the detected bit. Finally, word errors can be corrected by the
block decoder. This separation of tasks makes the implementation simpler, however,
the performance is degraded compared to a conceivable system that takes into account
all of the structure in the data in every decision.1

Concept of a Receiver The concept of a receiver for telecommunications is quite
broad. Issues that determine performance span the range from human perception,
to quantitative measures, such as distortion, signal-to-noise-ratio, and probability of
error. In the remainder of this work we will use the term receiver in a much more
limited sense to refer to a circuit that looks at the received signal over one bit period,
and decides which bit was sent, using no knowledge of previous bits. This type of
receiver assumes that the binary data is random, so that all bits, and all sequences of
bits of arbitrary length, are mutually uncorrelated. We realize that this assumption is
violated when a channel coder is used, but the data can be made to “look” uncorrelated,
especially when time-division multiplexing is used, so we will adopt this model and
use it from now on. As a further rationale for adopting this model, the penalty incurred,
in terms of increased signal-power required in the simple receiver to reach the same
level of performance as the “all-in-one” decision circuit, is only about 0:5dB, or 12%.
Therefore, the reduction in receiver complexity afforded by using the uncorrelated
model far outweighs the power penalty suffered. The performance criteria most
applicable to this type of receiver is the probabilityof error, or the bit-error-rate (BER).
Therefore, we seek to find the receiver that minimizes the BER for a given set of
assumptions. To obtain a mathematical description of the receiver we turn to the
theory of hypothesis testing. Before jumping straight into the theory, it is helpful to
take a moment to reflect, qualitatively, on the operations that the receiver needs to
perform, and to obtain an intuitive feel for the type of processing required. In this
manner we can develop a list of ideas, that seem like reasonable things to do, and then
compare this list with the theoretical results.

1Trellis-coded modulation is an example of a technique that combines the modulation and coding of the
signal into a single step for improved performance.
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Figure 3.2 Rectangular NRZ data and eye-diagramsboth without and with additive noise.
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Figure 3.3 Impulse response of a moving-average lowpass filter.

3.1 QUALITATIVE DETECTION OF INDEPENDENT

BINARY PULSES

The task of a binary receiver is to determine which of two possible signals were
transmitted. For the case of zero-mean rectangular NRZ data, the symbols are either
+V or �V in an interval of T seconds. An NRZ data stream is shown in Fig. 3.2
together with its eye-diagram, both for data with and without added noise. From the
eye-diagram of the noisy data it can be seen that there is virtually no opening in which
to obtain a valid data sample. If a decision were to be made about the polarity of the
signal by using only one sample, then several errors will result. A better approach is
to average the signal over the bit-period. Since the data signal is constant over this
interval, and the noise is essentially uncorrelated with zero-mean, the signal will add
coherently to the average, and the noise contribution to the average will tend towards
zero — if the bit-period is long enough. Averaging the signal over each bit period
and sampling at intervals of T , is equivalent to passing the signal through a “moving-
average” lowpass filter and sampling also at intervals of T , as illustrated in Fig. 3.3.
The “moving average” filter has a rectangular impulse response of

hr(t) =
1

T
rect(t=T ) (3.1)
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Figure 3.4 Rectangular NRZ data and eye-diagrams with and without additive noise after
passing through a lowpass filter with a rectangular impulse response.
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Figure 3.5 Rectangular NRZ data and eye-diagrams with and without additive noise after
passing through a lowpass filter with a half-cosine impulse response.

The data signals of Fig. 3.2 are shown in Fig. 3.4 after being filtered by a moving-
average lowpass filter. It can be seen that the averaging operation reduces the noise
and provides a wider opening in the eye-diagram.

Clock Jitter Tolerance Instead of using a strict average, we could also have used a
weighted average, and this may give desirable results in some instances. Using the
half-cosine weighting function

hc(t) =
�

2T
cos

�
�t

T

�
rect(t=T ); (3.2)

the data signals of Fig. 3.5 will result. In this case the vertical eye-opening is not as high
as in the case for a rectangular impulse response. However, the horizontal eye-opening
is wider. Therefore, we would expect to find that using a weighted average filter, that
concentrates most of the energy in the center of the data pulse, will be less sensitive
to clock jitter. In other words when the data is sampled at a point that is offset from
the center of the eye, the SNR penalty is not as severe as when a rectangular impulse
response filter is used.
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Colored Noise In the general case the additive noise will be non-white or colored.
The lowpass filter that averages the data can be tailored to reduce the noise by biasing
the filter’s frequency response away from where the noise has the most power. As
an example, if the noise PSD increases with the square of frequency, then the desired
lowpass noise filter should have good suppression of high-frequency content. The
frequency response of the rectangular and half-cosine filters were given in Fig. 2.20(b),
where it was noted that the half-cosine filter provided better high-frequency attenuation
compared to a simple moving average filter. The optimal filter in the presence of colored
noise will be the one that produces the largest SNR at a given sampling point. We
would expect the optimal filter to have its energy concentrated in frequency bands
where the signal power is the strongest, and have small amounts of energy where the
noise is the strongest.

In sections to follow, a receiver will be derived that is optimal in the sense that the BER
is minimized provided that a given set of assumptions are satisfied. From the previous
discussion we realize that the receiver should perform the following functions.

The receiver should perform filtering to average the noise.

A weighted average filter can be implemented by using a windowing function
which might improve receiver performance in the presence of clock jitter.

The frequency response of the filter can be altered to improve receiver performance
in colored noise.

In the following sections a mathematical framework will be introduced so that the
above statements about receiver performance can be quantified.

3.2 HYPOTHESIS TESTING

Given the assumptions that each data symbol is independent of all previous data
symbols, and that the a priori probabilities for the symbols are known, the problem of
determining an optimal decision criteria for the receiver can be posed mathematically
as a hypothesis test [1, 2]. The receiver observes a signal over a bit interval, and
determines the probability that the received signal resulted from each one of the pulses
in the alphabet. A cost is associated with an incorrect decision, and the optimum
receiver is one which minimizes the expected cost. Fig. 3.6 illustrates a channel for
a binary communication system. The receiver’s task is to observe the received signal
r(t; �), over an interval T , and determine whether s0(t) or s1(t) was the transmitted
signal in that interval. At the receiver two separate hypotheses can be formulated:
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CHANNEL 

n(t,  ) 

Σ r(t,  ) 

Additive Noise 

To Receiver nT 
SO(t) 

S1(t) 

Figure 3.6 Block diagram of a channel for communication of binary data.

H0 ) Hypothesis that s0(t) was sent,

H1 ) Hypothesis that s1(t) was sent.

Without loss of generality we can consider the received signal to be a series of samples.
Later the number of samples can be made to approach infinity. Therefore, the received
signal r(t; �) can be represented as a K dimensional vector r(�), where K is the
number of samples in an interval of length T .2 Based on the two hypotheses, a pair of
multidimensional probability density functions (pdfs) can be defined.

P0(r)
4
= P (rjH0); (3.3)

whereP0(r) is the conditional pdf as a function of rgiven that s0(t)was sent. Likewise

P1(r)
4
= P (rjH1) (3.4)

is the conditional pdf given that s1(t) was sent. The noise can always be considered
to be additive by definition, so that the received signals under the two hypotheses are

r(�)jH0 = s0 + n(�)

r(�)jH1 = s1 + n(�):
(3.5)

For a binary decision, the vector spaces spanned by r(�) can be divided into two
regions. In the region R0 the receiver chooses that s0(t) was sent, and in R1, s1(t) is
chosen. A decision function d(r) can also be defined in these regions such that

d(r) = 0 for r 2 R0

d(r) = 1 for r 2 R1

(3.6)

2A comment about the slightly sloppy notation used may be helpful here. The random received vector is
denoted as r(�), whereas any vector in the space spanned by r(�) is noted as r. The vector r is not a random
vector, but is only a dummy variable used to specify the coordinates in a vector space.
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Finally a cost matrix can be defined such that cij is the cost of choosing i when in fact
j was actually sent. The expected cost is now written as

c = c00 � Pr[d(r(�)) = 0 jH0] + c01 � Pr[d(r(�)) = 0 jH1]+
c10 � Pr[d(r(�)) = 1 jH0] + c11 � Pr[d(r(�)) = 1 jH1]:

(3.7)

With the assumption that the a priori probabilities are known:

�0 = Pr[H0];

�1 = Pr[H1];
(3.8)

the average cost can be written as an integral of the conditional pdfs over the two
decision regions.

c(d; �) =c00�0

Z
R0

P0(r)dr + c01�1

Z
R0

P1(r)dr +

c10�0

Z
R1

P0(r)dr + c11�1

Z
R1

P1(r)dr:

(3.9)

The problem now stated in mathematical terms is to choose the regions R0 and R1

such that the above average cost is minimized.

Determination of Optimal Decision Regions The integral of a probability density
function, by definition, must equal unity. Since the two decision regions are mutually
exclusive, and span the entire vector space,Z

R0

P0(r)dr +

Z
R1

P0(r)dr = 1

Z
R0

P1(r)dr +

Z
R1

P1(r)dr = 1:

(3.10)

As a result, the average cost can be written as an integral over only one of either of the
decision regions R0 and R1. Therefore, integrating over R1, the average cost is

c(d; �) = c00�0

�
1�

Z
R1

P0(r)dr

�
+ c01�1

�
1�

Z
R1

P1(r)dr

�
+

c10�0

Z
R1

P0(r)dr + c11�1

Z
R1

P1(r)dr:

(3.11)
Combining terms, this can be written as a single integral;

c(d; �) = c00�0 + c01�1 +

Z
R1

[�0(c10 � c00)P0(r)� �1(c01 � c11)P1(r)]dr:

(3.12)
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The expected cost in (3.12) consists of a constant term, and an integral over the region
R1. If the integrand is positive, then the integral will increase the expected cost.
However, when the integrand is negative, the integral reduces the average cost. It is
clear that the minimum cost is obtained by choosing R1 such that the integrand is
always negative, or

�1(c01 � c11)P1(r) � �0(c10 � c00)P0(r) (3.13)

Therefore, the region R1 in the vector space spanned by r(�) that minimizes the
expected cost satisfies the condition,

R1;
�1P1(r)

�0P0(r)
� c10 � c00

c01 � c11
(3.14)

This decision rule is known as the Bayes criterion, and the resulting minimum cost is
the Bayes risk.

Bit-Error-Rate in a Binary Communication System In a communication system
there is no “cost” in making a correct decision:

c00 = c11 = 0; (3.15)

and there is an equal “cost” of making a wrong decision. If this cost is arbitrarily
chosen to be unity such that

c01 = c10 = 1; (3.16)

then the Bayes risk is just the probability of error, and the decision rule is

R1; �1P1(r) � �0P0(r); (3.17)

and in the usual case where �0 = �1 = 1=2, then

R1; P1(r) � P0(r)

R0; P0(r) � P1(r)
(3.18)

The probability of error is then from (3.12) found by integrating the conditional pdfs
over the optimal decision region.

Pe =
1

2

�
1�

Z
R1

[P1(r) � P0(r)] dr

�
(3.19)

At the boundary where P0(r) = P1(r), the decision function d(r) can be set arbi-
trarily to either 1 or 0 without affecting the probability of error. However, systems
considerations may make one of these choices more desirable than the other.
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3.3 PROPERTIES OF GAUSSIAN RANDOM VARIABLES

In the previous section, the criteria for determining optimal decision regions for known,
independent binary signals was established. The error performance of the system
can also be determined by evaluating the integral in (3.19). However, this general
criteria is not very illustrative, and performance evaluation involves performing a
multidimensional integration, which is no fun. Greater insight into the problem, and
simplifications in the analysis can be obtained by making some assumptions about the
statistics of the noise. The standard assumption made is that the noise is additive-
white-Gaussian-noise (AWGN). Gaussian distributed random variables have many
nice properties that facilitate analysis. In this section we will review a few of these
properties.

3.3.1 One-Dimensional Gaussian Random Variables

A Gaussian, or “normal” random variable x(�) has a probability density function given
by the familiar expression

pdfx(�)(x) = p(x) =
1p
2��

e�
1

2
( x��� )

2

; (3.20)

where � is the mean of the random variable x(�), and �2 is the variance. Two very
useful properties of Gaussian random variables are that,

Any linear combination of Gaussian random variables is also Gaussian.

The probability density function of a Gaussian random variable is completely
defined by a knowledge of only the mean and variance.

The Complementary Error Function We will often be interested in the probability
that x(�) is within a certain interval [a; b], given by the integral

Pr[a � x(�) � b] =
1p
2��

Z b

a

e�
1

2
( x��� )2dx: (3.21)

Since there is no known closed form of the integral in (3.21), we can make use of the
normalized Gaussian distribution. A zero-mean and unit-variance Gaussian random
variable z(�) can be defined as

z(�) 4= x(�)� �

�
; (3.22)
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z 

φ(z) 

y 

Figure 3.7 Illustration of the complementary error function integral �(y).

and the normalized Gaussian probability density function is given by

pdfz(�)(z) = �(z) =
1p
2�

e�
1

2
z2 : (3.23)

We can define a complementary error function�(y) as the probability that z(�) is larger
than y. This probability is given by the integral of the tail of the Gaussian pdf from y
to infinity. Therefore

�(y)
4
=

Z 1

y

�(z)dz (3.24)

This integral is illustrated in Fig. 3.7, where it can be seen that �(�1) = 1, �(0) =
1=2, and �(1) = 0. Using this plot, or a table of values of �(y), the probability for
any general Gaussian random variable x(�) can be obtained. Clearly due to symmetry
�(y) + �(�y) = 1. Now we can express the integral in (3.21) in terms of �.

Pr[a � x(�) � b] = �

�
a � �

�

�
��

�
b� �

�

�
(3.25)

The logarithmof�(y) is plotted in Fig.3.8a for values of y 2 [1; 8]. It can be seen from
this plot that the probability of a Gaussian random variable being 6 standard deviations
away from the mean is 10�9. For values of y > 3, �(y) can be approximated by

�(y) ' �(y)

y
=

1

y
p
2�

e�
1

2
y2 for y > 3: (3.26)

Using this approximation, a closed form expression for the error probability as a
function of the signal-to-noise-ratio (SNR) parameter y is given by

� log [�(y)]
y>3' y2

2 ln(10)
+ log(y) +

1

2
log(2�); (3.27)
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Figure 3.8 Complementary error function: (a) actual and approximate values vs. y, (b)
actual values vs. 20 log(y).

Pr[z(�) > y] y 20 log(y)
10�3 3:115 9:869
10�6 4:762 13:556
10�9 6:002 15:556
10�12 7:037 16:948
10�15 7:943 18:000

Table 3.1 Values of y required to achieve a given probability.

and putting in numbers

� log [�(y)]
y>3' y2

4:6
+ log(y) + 0:4 (3.28)

We will typically be interested in finding a probability of error expressed in terms of
�(y), where y is a ratio of a signal to noise, normally given in decibels. Therefore,
Fig. 3.8b shows the error function plotted against 20 log(y). Values of y required to
achieve a given error probability are given in table 3.1.

3.3.2 Multidimensional Gaussian Random Variables

In section 3.2 a random signal r(t; �) was represented by a random vector r(�), and
a multidimensional pdf was defined over the vector space spanned by r(�). In this
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section, the concepts of a one-dimensional Gaussian random variable will be extended
to the multidimensional case, so that the results can be applied directly to the problem
at hand. The simplest random vector is one composed of N independent random
variables.

x(�) = [x1(�); x2(�); x3(�); : : :xN (�)]T (3.29)

Since the individual components of the random vector are independent, the pdf of the
vector is simply equal to the product of the pdfs of each random component,

pdfx(�)(x) = p(x) =
NY
i=1

p(xi); (3.30)

and if the the components are Gaussian random variables, then

p(x) =
NY
i=1

1p
2��i

e
� 1

2

�
xi��i
�i

�
2

; (3.31)

or equivalently

p(x) =
1

(2�)N=2

 
NY
i=1

1

�i

!
exp

"
�1

2

NX
i=1

�
xi � �i
�i

�2
#
: (3.32)

(3.32) can be written compactly by making use of vector notation, and the covariance
matrix

R
4
= E[x(�)x(�)�]: (3.33)

For a random vector x(�) with independent components, the covariance matrix will be
diagonal, with the diagonal entries equal to the variances of each component.

R = diag[�21; �
2
2; �

2
3; : : : ; �

2
N ] (3.34)

The determinant of R is just the product of the variances for each component. There-
fore,

1

(detR)1=2
=

NY
i=1

�
1

�i

�
; (3.35)

Since R is a diagonal matrix, the inverse of R is also diagonal with entries of 1=�2i .
Using the inverse covariance matrix, the argument of the exponential can be written as

(x � �)TR�1(x� �) =
NX
i=1

�
xi � �i
�i

�2

: (3.36)
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Notice that the previous expression is actually a “dot-product”, or “inner-product” of
two vectors. In the following sections the notation hx;yi will be used to represent
“dot-products” making this operation more explicit, where

hx;yi 4= x
T
y = x � y (3.37)

Using vector notation the multidimensional probabilitydensity function for a Gaussian
random vector is given by

pdfx(�)(x) = p(x) =
1

(2�)N=2(detR)1=2
exp

�
�1

2



(x � �);R�1(x � �)

��
(3.38)

In the previous discussion we assumed that the components of the random vector x(�)
were mutually uncorrelated to arrive at the above result. Although we have considered
only a special case it can be shown that (3.38) is the general form of the pdf for a
multidimensional Gaussian random vector when the components are correlated [3, p.
172], [2, ch. 2]. In the general case the covariance matrixRwill no longer be diagonal.

Average of a Random Vector A statistic that will be of primary interest to us is the
average of a random vector. If we consider a vector z(�) comprising N zero-mean,
unit-variance, independent random variables, then from (3.38)

pdfz(�)(z) = p(z) =
1

(2�)N=2
e�

1

2
hz;zi: (3.39)

We can define a new random variable as the average of the components of z(�) as

av(�) = 1

N

NX
i=1

zi(�): (3.40)

Since the pdfs of all zis are known, in principle we can find the pdf of av(�). This is a
complicated procedure at best. However, since all zis are Gaussian random variables,
any linear combination of these is also Gaussian. Therefore, av(�) is Gaussian, and we
need only find the mean and variance of av(�) to completely determine the pdf. The
mean of av(�) is clearly zero;

E[av(�)] = 1

N

NX
i=1

E[zi(�)] = 0; (3.41)

and since the elements of z(�) are independent, the variance is found simply by

E[a2v(�)] =
1

N2

"
NX
i=1

E[zi(�)]
#2

=
1

N2

NX
i=1

E[z2i (�)] =
1

N
: (3.42)
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Therefore the pdf of the average is

pdfav(�)(av) = p(av) =
1p
2�N

e�
1

2
a2v=N (3.43)

This analysis illustrates the power of assuming the random disturbances to be Gaussian.
The pdf of any linear combination of Gaussian random variable can be easily found
when the mean and variance are known. The mean of the random process is just
the dc value, and the variance is the average ac power. We saw in chapter 2 that the
variance can be determined by integrating the ac power spectral density over frequency.
Obtaining the pdf from the dc value and the average ac power of a Gaussian random
process is a useful technique that will be widely used in the following sections. Before
moving on, however, we should note that the standard deviation of the average of
N unit variance independent random variables from (3.42) is �av = 1=

p
N . As the

number of independent samples increases, the variance approaches zero inversely with
the square-root of the number of samples. Therefore, if we have a signal of unit value
added to noise with unit variance, then it will be difficult to detect the signal in this
noise. If we took 100 samples of the signal-plus-noise and averaged it, then the signal
would still have a unit average, but the noise standard deviation is now 1/10. If we
wanted to reduce the noise standard deviation to 1/1000, or approximately a 10 bit
resolution, then we would need to average 10002 or one-million samples.

3.4 OPTIMAL DECISION RULE FOR

ADDITIVE-WHITE-GAUSSIAN-NOISE

In section (3.2), the general criteria for determining the optimal decision region for
the case of known, independent, binary pulses was established. The optimal decision
region from (3.18) is for equal a priori probabilities

R1; P1(r) � P0(r) (3.44)

and the probability of error from (3.19) is the following multidimensional integral

Pe =
1

2

�
1�

Z
R1

[P1(r)� P0(r)] dr

�
(3.45)

When the noise is assumed Gaussian, the expression for the optimum decision rule,
and evaluation of the probability of error is greatly simplified. The received signal
r(�), under the two hypotheses are from (3.5)

r(�)jH0 = s0 + n(�)

r(�)jH1 = s1 + n(�):
(3.46)
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If we assume that the noise is zero-mean, Gaussian noise, then the conditional means
of r(�) will be s0, and s1 respectively, and the conditional pdfs in the time interval
[0; T ] can be written explicitly as

P0(r) =
1

(2�)N=2(detRn)1=2
exp

�
�1

2



(r � s0);R

�1
n (r � s0)

��
(3.47)

when s0 is sent, and

P1(r) =
1

(2�)N=2(detRn)1=2
exp

�
�1

2



(r � s1);R

�1
n (r � s1)

��
(3.48)

when s1 is sent. The optimal decision regionR1 can be written as a simple likelihood
ratio

R1;
P1(r)

P0(r)
� 1; (3.49)

which is always greater than zero. Alternatively, since the logarithm is a monotonicly
increasing function for positive arguments, we can take the log of both sides;

R1; ln

�
P1(r)

P0(r)

�
� ln(1) = 0: (3.50)

Therefore, the optimal decision region for additive Gaussian noise is

R1; �1

2



(r � s1);R

�1
n (r � s1)

� � �1

2



(r � s0);R

�1
n (r � s0)

�
: (3.51)

If in addition to being Gaussian, the noise is assumed to be uncorrelated and stationary,
then

R
�1
n =

1

�2n
I (3.52)

The decision rule for additive white Gaussian noise (AWGN) is then

R1;


(r � s1); (r � s1)

� � 
(r � s0); (r � s0)
�
: (3.53)

Using the following notation for the norm of a vector

krk2 4= hr; ri; (3.54)

then the decision rule can be expanded in the form

R1; krk2 � 2hr; s1i+ ks1k2 � krk2 � 2hr; s0i + ks0k2: (3.55)

Therefore, the final form of the optimal decision rule for AWGN is

R1; hr; s1i � hr; s0i � ks1k2 � ks0k2
2

(3.56)
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Figure 3.9 Optimal receiver for Binary signals in AWGN assuming that the time of arrival
is known, and that the transmitted signals s0(t) ands1(t) are preciselyknownat the receiver.

Interpretation of Decision Rule as a Correlation Receiver In the limit as the
number of samples of the random received vector approaches infinity, the “dot-product”
becomes an integral

lim
N!1

1

N
hr; s1i = 1

T

Z T

0

r(t)s1(t)dt (3.57)

The resulting receiver that implements this decision rule is shown in Fig. 3.9. The
receiver has stored at the destination a copy of both pulses s0(t) and s1(t). The arrival
time of the pulses is assumed to be precisely known. Over each time interval of length
T , the receiver correlates the random observed signal with the two possible signals. If
s0(t) and s1(t) have a difference in energy, then this bias is subtracted out, and the
remaining signal is compared to zero. If the result is positive then s1(t) is chosen,
and s0(t) is chosen if the result is negative. The optimal receiver for binary pulses
is even simpler, when it is assumed that the data is balanced around zero, so that
s1(t) = �s0(t) = s(t). In this case the optimal decision rule is

R1; hr; si � 0: (3.58)

For balanced symmetric signals with equal a priori probabilities the optimal receiver
is shown in Fig. 3.10.

3.4.1 Optimal Matched filter for AWGN
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Figure 3.10 Optimal receiver for Binary signals in AWGN where s1(t) = �s0(t) = s(t)
is known, and the time of arrival is also known.

Often it is more convenient, both for implementation and for analysis, to replace the
optimal correlator with a matched filter, whose output at discrete sample t = nT
is the same as the output of the correlator. Describing the correlation as matched
filters will enable us to evaluate the performance of the receiver for non-white noise,
and for receivers with clock jitter. The correlation operation can be replaced by an
equivalent matched filter. The operation of a weighted integration is accomplished
by the shape of the impulse response of the filter as it is convolved with the data
signal. For rectangular data, the correlation is equivalent to filtering the data with a
rectangular impulse response filter. In general, if the data pulse has the shape s(t),
then the operation

1

T

Z T

0
s(t)r(t; �)dt (3.59a)

with a change of variables, is equivalent to the following integral

1

T

Z T

0

s(T � � )r(T � �; �)d�: (3.59b)

This integral is equivalent to

1

T

Z T

0

s(T � � )r(t� �; �)d� (3.60)

only at the time t = T . We could write (3.60) asZ T

0

hs(� )r(t� �; �)d�

where hs(� ) =
1

T
s(T � � )

(3.61)

Finally, since the pulse shape s(t) is defined to be zero outside the interval [0; T ], we
can write (3.61) as a convolution,Z 1

�1

hs(� )r(t � �; �)d� = hs(t) � r(t; �): (3.62)
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Figure 3.11 Illustration of the equivalence of a correlation receiver and a matched filter
receiver. The Correlate and dump signal is equal to the matched filter signal at integer
multiples of the bit-period T .

The function hs(t) can now be thought of as the impulse response of a linear filter that
is matched to the data signal s(t). Fig. 3.11 illustrates the equivalence of a correlation
receiver and a matched filter receiver when the two are sampled at the same time
intervals (intervals of nT in this case).

3.4.2 Comparison with Qualitative Analysis

The receiver of Fig. 3.10 is intuitively satisfying because it corresponds to the same
operation that we described qualitatively in section 3.1. If the transmitted data pulses
are rectangular NRZ, then the optimal receiver simply takes the average of the data over
the bit interval. The signal adds coherently to the average, while the noise average tends
to zero. It was shown in ( 3.43) that the average of identically distributed zero-mean
Gaussian random variables can be made arbitrarily close to zero, if enough samples
are taken. Therefore, we find a fundamental tradeoff between SNR and bandwidth. If
the SNR is high, then the pulse period T can be made small. However, if the SNR is
low, then T must be increased so as to average out the noise over a longer interval to
achieve the same probability of error.

It is important at this point to reflect on the assumptions that have been made in deriving
the optimal receiver. These assumptions are that:

The noise is assumed to be additive and Gaussian.

The noise is white ) the noise power in a bandwidth of B Hz is N0B for all B.
(Adjacent samples of the noise process are uncorrelated, no matter how close the
two samples are taken in time, which implies that the autocorrelation function of
the noise is an impulse function of weight N0=2).
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The transmitted symbol is known precisely at the receiver, (Any distortion due to
the channel has been equalized).

There is no intersymbol-interference (ISI), (Any dispersion of adjacent signals
has also been equalized).

All data pulses are uncorrelated, (A knowledge of the past data pulses gives no
information about the current data pulse).

The time of arrival of the signals is known, (A clock exists at the receiver that is
in perfect phase synchronization with the arrival of the data).

If any of the above assumptions are violated, the correlation receiver is no longer
optimal. For practical broadband fiber-optic receivers the following conditions will
hold.

Since the clock at the receiver has to be recovered from the random data itself,
there will always be jitter in the recovered clock, and the arrival time of the data
will not be known precisely.

The noise power spectral density is non-white. The dominant noise source will be
due to the preamplifier. Since the photodiode has a large capacitance � (0:5pF),
creating a dominant pole with the preamplifier’s input impedance, negative feed-
back is required to broadband the amplifier. The PSD will be shown in chapter 7
to have a “zero” due to the dominant pole at the amplifier input, causing the PSD
to increase with the frequency squared.

Even when the assumptions needed for optimality are violated, we often still use the
correlation receiver because it corresponds to our intuition about how the noisy signal
should be processed and is proven to provide the best performance under nominal
conditions. In section 3.9, the shape of the correlation pulse will be altered to provide
better performance in the presence of clock-jitter, and non-white noise. Before con-
sidering these extensions, we will evaluate the performance of the correlation receiver
under ideal conditions.

3.5 PERFORMANCE EVALUATION OF THE

CORRELATION RECEIVER IN AWGN

We are interested in evaluating the performance of a correlation receiver shown in
Fig. 3.10 in AWGN. For every time interval of lengthT , the received signal is multiplied
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by a copy of the original signal, and integrated. A decision is made at times (n+ 1)T
based on the polarity of the result of the test statistic pn(�), where

pn(�) = 1

T

Z (n+1)T

nT

s(t � nT )r(t; �)dt: (3.63)

If the random variable pn(�) is positive, then it is assumed that s(t) was the transmitted
signal, and if pn(t) is negative, then it is decided that �s(t) was sent. There are two
different errors that can occur: the receiver could choose �s(t) when s(t) was sent,
or it can choose s(t) when �s(t) is the actual transmitted signal. The purpose of this
analysis is to determine the probability of these errors. In the first case, s(t) is the
actual transmitted signal. Therefore, in the interval for n = 0, the receiver signal is
given by

r(t; �)jH1 = s(t) + n(t; �); (3.64)

and the random test statistic, obtained by performing a correlation with a noiseless
copy of the signal, is then

p0(�)jH1 =
1

T

Z T

0

s2(t)dt+
1

T

Z T

0

s(t)n(t; �)dt (3.65)

We recognize the first integral as the average power in the zeroth bitP0 of the noiseless
received signal. Therefore, the test statistic is reduced to

p0(�)jH1 = P0 +
1

T

Z T

0

s(t)n(t; �)dt: (3.66)

Since the noise is assumed to have zero mean, the expected value of p0(�)jH1 is simply

E[p0(�)jH1] = P0 +
1

T

Z T

0

s(t)E[n(t; �)]dt = P0: (3.67)

The variance of the test statistic is given by

�20jH1 =
1

T 2
E

"Z T

0

s(t)n(t; �)dt
Z T

0

s(t)n(t; �)dt
#
: (3.68)

Now we can make use of the assumption that the noise is white with a constant power
spectral density of N0=2. The ensemble autocorrelation function of a stationary
random process was shown in (2.196) to be the inverse fourier transform of the PSD.
Therefore the autocorrelation function is simply an impulse of magnitude N0=2;

Rn(� ) = F�1
�
N0

2

�
=

N0

2
�(� ): (3.69)
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Now the variance of the test statistic can be found as follows

�20jH1 =
1

T 2

Z T

t1=0

Z T

t2=0

E[n(t1; �)n(t2; �)]s(t1)s(t2)dt1dt2 (3.70a)

=
1

T 2

N0

2

Z T

t1=0

Z T

t2=0

�(t1 � t2)s(t1)s(t2)dt1dt2 (3.70b)

=
1

T 2

N0

2

Z T

t1=0

s2(t1)dt1 (3.70c)

=
N0

2T
P0: (3.70d)

Since the noise is assumed Gaussian, p0(�)jH1, which is a linear combination of the
noise, is also Gaussian. Therefore, we can write the pdf since we know the mean and
variance.

pdfp0(�)jH1
(p) =

1q
2�NO2T P0

exp�1

2

"
(p� P0)2

N0

2T P0

#
(3.71)

Repeating the procedure for the case when the transmitted signal is actually�s(t), the
results will be the same except that the mean is now �P0. Therefore the conditional
pdf is

pdfp0(�)jH0
(p) =

1q
2�NO2T P0

exp�1

2

"
(p+ P0)

2

N0

2T
P0

#
: (3.72)

The total probability of error is the sum of the probabilities of each type of error;

Pe = �1Pr[p0(�)jH1 � 0] + �0 Pr[p0(�)jH0 > 0]: (3.73)

This is a general result, but we recall that the correlation receivers is only optimal for
�0 = �1 = 1=2. If this is not the case a correlation receiver can still be used, but
the decision threshold will not be zero, but will be biased in favor of the more likely
signal. The error probability is illustrated graphically in Fig. 3.12. This figure shows
that the two-conditional pdfs are identical Gaussians centered at P0 and �P0. The
error probability is the weight in the part of the tails of these Gaussian pdfs that cross
the origin. The error probability can be expressed in terms of the complementary error
function.

Pr[p0jH1 � 0] = �

"
P0�

N0

2T P0
�1=2

#
= �

"�
P0

N0=2T

�1=2
#

(3.74)
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Figure 3.12 Eye-diagram of rectangular NRZ data after passing through a matched filter
with the conditional probability density function of the test statistics shown to the right.

Due to symmetry Pr[p0jH0 > 0] is given by the same expression. Therefore, the error
probability is

Pe = (�1 + �0)�

"�
P0

N0=2T

�1=2
#
; (3.75)

or simply

Pe = �

"�
P0

N0=2T

�1=2#
: (3.76)

Signal-to-Noise Ratio The parameter P0=(N0=2T ) is an important quantity. This is
the ratio of the average power in the zeroth bit to the noise power in a bandwidth of
1=2T . Since the bit-rate BT is equal to 1=T , the noise power is equivalent to passing
the white-noise through an ideal lowpass filter with a bandwidth of half the bit-rate
BT =2. This signal-to-noise power ratio (SNR) can also be written in terms of energies
as follows,

SNR0 =
P0T

N0=2
=

E0

N0=2
: (3.77)

Therefore, the error probability is determined by the complementary error function of
the square-root of the SNR, where the SNR is the total energy in the bitE0 divided by
the constant white-noise power spectral densityN0=2 which also, obviously, has units
of energy. The complementary error function �(y) was plotted in Fig. 3.8, and from
table 3.1 we find that for Pe = 10�9 then

SNR0 =
P0

N0=2T
=

E0

N0=2
= 62 = 15:566 dB: (3.78)
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Therefore, to achieve Pe = 10�9 the rms signal amplitude should be 6 times larger
than the rms noise. At this error probability, a fiber-optic communication system
operating at 10-Gb/s will experience 10 errors-per-second on average. It is useful to
have a closed form expression for Pe in terms of the SNR. It was shown in (3.28) that
for an SNR > 9 = 9:542 dB, that Pe can be approximated by

� log [Pe]
SNR>9' SNR

4:6
+

1

2
log(SNR) + 0:4 (3.79)

In following sections, the concept of maximizing the SNR of a test statistic will be
used to evaluate the performance of correlation receivers in the presence of non-white
noise, and clock jitter. First however, we will consider a fundamental limitation on the
maximum achievable SNR.

3.6 QUANTUM LIMIT IN OPTICAL COMMUNICATION

SYSTEMS

Before proceeding further to consider the effect of clock jitter and colored noise on
receiver performance, we might rightfully ask whether there is a fundamental limit
on the performance of an optical receiver, and if so, what is that limit? Due to the
quantum nature of light, the energy delivered to a receiver occurs in discrete packets
called photons. The arrival of these photons is random, so that the fundamental nature
of the signal itself exhibits noise called quantum noise [4, ch. 7, p. 279], [5, sec. 8.4].
In this section we will evaluate the “quantum limit” of a fiber-optic receiver, which is
the minimum number of photons that must be incident on a photo-detector, on average,
in order to achieve a given error probability.

3.6.1 Approximate Quantum Limit Using AWGN Assumption

First we will consider a non-physical approximation to an optical receiver, and evaluate
the quantum limit based on this model. Later we will determine the actual quantum
limit based on a consideration of arrival statistics of photons. In this example we will
assume that we have bipolar light, so that when we want to transmit a one we send a
light pulse, and when we want to transmit a zero we send the negative of this light pulse.
We also assume that we have a photo-detector that can produce a bipolar current output
with no bias current (I for a “one” and�I for “zero”). We will further assume that the
photo-detector is 100% efficient, so that each photon produces an electron-hole pair.
Therefore, if n photons are incident on a photo-detector in a time interval T, then the
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current will be I = nq=T , where q is the charge on an electron. Since we would like
to get a reasonable estimate of the quantum limit based on concepts that are familiar
to circuit designers, we will also assume that the quantum noise has the same statistics
as shot-noise. Therefore the two-sided noise PSD is equal to qI. In the anti-case,
negative photons are sent giving rise to a current of �I, which also has a noise power
spectral density of qI.

Approximate Quantum Limit Derived from Shot-Noise Assumption For this sym-
metric example, the energy delivered to a 1
 resistor is the same for every bit, and is
given by

EB = I2T: (3.80)

The SNR is given by the ratio of the average bit energy to the white-noise PSD;

SNR =
I2T

qI
=

I

q=T
(3.81)

Therefore we have the interesting interpretation that the SNR is the ratio of the average
current produced in one bit period, to the current produced by one single charge in
the same time interval. Substituting for I we obtain the SNR in terms of the average
number of photons incident on the detector in a time T .

SNR =
nq=T

q=T
= n; (3.82)

or the SNR is just the average number of photons per bit period. We know from
table 3.1 that for Pe = 10�9 we require an SNR of approximately 36. Therefore,

n ' 36 photons/bit for Pe = 10�9 (3.83)

Improved Estimate for On-Off Modulation We can get a more realistic approximation
to the actual quantum limit if we realize that the light pulse will be on only half of
the time. Consider an optical system which transmits a light pulse for a one and no
light pulse for a zero. We will further assume that there is no noise when a zero is
sent. Therefore the error probabilityP0 of detecting a one when a zero is sent is zero
(P0 = 0). Therefore the total error probability is given by

Pe =
1

2
P0 +

1

2
P1 =

1

2
P1; (3.84)

and
P1 = 2Pe = 2� 10�9: (3.85)
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The average number of photons needed to achieve this higher probability will be
slightly less than 36. We find from (3.79) that the average number of photons needed
per one symbol n1 = 34:64: Therefore the number of photons per bit n is given by

n =
1

2
n0 +

1

2
n1 =

1

2
n1 = 17:32 ' 18: (3.86)

The interpretation of this result is that the arrival of photons is a random event. If we
want to reduce the chances of getting a negative result in the bit interval to once out of
every one-billion bits, then we have to make sure that on average we have 18 photons
arriving per bit interval. If we let the probability of error rise to one-in-a-million
(Pe = 10�6), then the SNR needed is 22.7, which requires 11.35 photons per bit on
average.

We have used the familiar concept of shot-noise to approximate the quantum limit as
n1 ' 36 and n ' 18. However, we know that the noise can not be negative (either we
detect a photon or we do not, but there are no negative photons). Therefore if only one
photon is detected, the result will be positive and we will interpret this as a one, and
no amount of noise will turn this positive result negative. Therefore we should be able
to reduce the average number of photons needed to obtain Pe = 10�9 to less than 18.
To find the actual quantum limit we must consider the arrival statistics of photons at
the receiver more carefully.

3.6.2 Actual Quantum Limit from Poisson Distribution

In the previous section, the results for AWGN were applied to a fictitious example
to get an estimate of the quantum limit in terms of parameters that are familiar to a
circuit designer. In this section, we will determine the actual quantum limit based
on the random arrival statistics of photons. To determine the absolute minimum
power needed, we will assume that we have the capability to detect a single photon.
Furthermore, we’ll assume that we have a light source with a 100% extinction ratio
(when the light is off, it is really off). The received signal will consist of either a
light pulse, or no light pulse. When there is no light pulse, there is absolutely no way
we can detect a photon (this assumes that there is no ISI). Therefore the conditional
probability density function when no pulse is sent is

P0(r) = �(r); (3.87)

which means that the received signal is identically zero with probability one. We can
express the optimal decision rule as

R0; r = 0

R1; r 6= 0:
(3.88)
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That is, we choose s1(t) when the received signal is anything but zero. The total error
probability for this system is

Pe =
1

2
Pr[d(r) = 1jH0] +

1

2
Pr[d(r) = 0jH1]; (3.89)

and since there is no noise when there is no light, there is no chance of making an error
when no light is transmitted. The only chance of making an error is when we don’t
detect any photons when we were supposed to. In other words, we turn on the light
source, but because of the random nature of photon emission, no photons are emitted
in a time T , even when the light source is on. The total error probability is just due to
the later situation, and is given by

Pe =
1

2
Pr[d(r) = 0jH1]: (3.90)

To find the probability of this event, we must consider the arrival statistics of the
photons themselves.

Derivation of Error Probability If we look at very short time intervals �t, we
will assume that the probability of the arrival of one photon in this time interval is
proportional to �t,

P1(�t) = a�t; (3.91)

where the significance of the proportionality constant a will be demonstrated later.
Since the time interval is short, either one photon arrives or it doesn’t, but the time
interval is too short to allow more than one arrival. Therefore,

P0(�t) + P1(�t) = 1

P0(�t) = 1� a�t
(3.92)

We are interested in finding the probability that no arrivals occurred in a time interval
of length T . We can consider an interval of length T +�t, and we further assume that
the arrival of a photon in the time �t is independent of the arrival of a photon in the
previous time interval T . The probability of no emission in a time period of T +�t
is then given by

P0(T +�t) = P0(T )P0(�t) = P0(T )[1� a�t]; (3.93)

and writing this as a difference equation we get

P0(T +�t)� P0(T )

�t
= �aP0(T ): (3.94)

In the limit as �t goes to zero, the difference equation becomes a differential equation

dP0(T )

dT
= �aP0(T ); (3.95)
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with the solution of
P0(T ) = e�aT ; (3.96)

where we have made use of the boundary condition

P0(0) = lim
�t!0

P0(�t) = 1: (3.97)

RelationshipBetween Parameter a and Observable Statistics (3.96) gives the desired
result, but is expressed in terms of the parameter a. In order to determine a relationship
for this parameter in terms of observable statistics it is necessary to continue the
derivation to determine Pn(T ), the probability of obtaining precisely n photons in a
given time interval T . Following Davenport and Root [6, ch. 7, pp. 115–118], we will
consider the probability of observing n photons in a time interval of length T + �t.
We can restrict �t to be so small that no more than one photon can arrive in this time;
therefore are only two possibilities exist: either one photon is emitted, or none are.
Since we have assumed that emissions at any time t are independent of emissions in
the past, for small �t the probability of observing n photons in an interval of length
T +�t is simply given by

Pn(T +�t) = Pn(T )P0(�t) + Pn�1(T )P1(�t): (3.98)

Recalling that P1(�t) = a�t, and P0(�t) = 1� a�t, it follows that

Pn(T +�t)� Pn(T )

�t
+ aPn(T ) = aPn�1(T ): (3.99)

In the limit as �t! 0, we obtain a differential recursion equation

dPn(T )

dT
+ aPn(T ) = aPn�1(T ); (3.100)

which has a solution given by3

Pn(T ) = ae�aT
Z T

0

Pn�1(� )e
a�d�; (3.101)

where we have utilized the boundary condition Pn(0) = 0. For the case of n = 1 we
can make use of the result P0(T ) = e�aT from (3.96) to obtain

P1(T ) = ae�aT
Z T

0

e�a� ea�d� = (aT )e�aT : (3.102)

3Davenport and Root reference Richard Courant, “Differential and Integral Calculus,” I. rev. ed., 1937;
II, 1936, Interscience Publishers, New York.
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For the case of n = 2, we can substitute the previous result to obtain

P2(T ) = ae�aT
Z T

0
(a� )e�a� ea�d� =

(aT )2e�aT

2
: (3.103)

It is not difficult to see the pattern that emerges from the recursion and therefore
determine the probability for any arbitrary n as

Pn(T ) =
(aT )ne�aT

n!
(3.104)

Using (3.104) we can find the expected number of arrivals in time T as

n1 =
1X
n=0

nPn(T ) =
1X
n=0

n(aT )ne�aT

n!
(3.105)

This sum can be evaluated explicitly as follows. First consider the Taylor series
expansion for eaT .

1X
n=0

(aT )n

n!
= eaT (3.106a)

Taking the derivative with respect to both sides gives

1X
n=0

n(aT )n�1

n!
= eaT ; (3.106b)

and multiplying by (aT ) gives a series expansion for (aT )eaT :

1X
n=0

n(aT )n

n!
= (aT )eaT (3.106c)

Finally, multiplying by e�aT puts this in the form of (3.105).

n1 =
1X
n=0

n(aT )ne�aT

n!
= aT (3.106d)

Now we can see the significance of the parameter a and substitute aT = n1 into (3.96)
to obtain

P0(T ) = e�n1 ; (3.107)

which is the probability of not getting any photons in a time T , when on average we
get n1.

Quantum Limit in Terms of Number of Photons per Bit Using the above results, the
desired probabilityP0(T ) can now be expressed in terms of n1, which is an observable
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Pe n1 n
10�3 6:2 3:1
10�6 13:1 6:6
10�9 20:0 10:0
10�12 26:9 13:5
10�15 33:8 16:9

Table 3.2 Quantum limit in terms of average photons per one symbol n 1 and average
photons per bit n incident on the photo-detector in one bit period T to insure a given error
probability Pe.

quantity. The total error probability for a fiber-optic receiver operating at the quantum
limit is given by

Pe =
1

2
P0(T ) =

1

2
e�n1 : (3.108)

We have now arrived at the desired result that, due to quantum noise, we require on
average n1 photons per one symbol to insure an error probability of Pe, where

n1 = � ln(2Pe) (3.109)

Since there are no photons transmitted for a zero symbol, the average number of
photons per bit n is given by

n =
1

2
(n0 + n1) =

1

2
n1; (3.110)

therefore

n = � ln(2Pe)

2
(3.111)

The quantum limits n1 and n are given in table 3.2, where we see that, approximately,
an additional 7 photons per one symbol are required on average to reduce Pe by 3
decades.

Plots of Pn(T ) are given in Figs. 3.13(a) and (b) for n1 = 10 and 20 respectively. It
can also be shown using the same method as outlined in (3.106) that the variance of
the Poisson distribution is also equal to n1. Therefore the standard deviation is equal
to the square-root of the average number of photons, and the average SNR is equal to
1=
p
n1, which is a familiar result for independent random variables.
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Figure 3.13 Possion distribution for n1 equal: (a) 10, (b) 20.

Quantum Limit in Terms of Optical Power We can relate the quantum limit to optical
power for a given bit interval T . Continuing with our example of a 10 Gb/s system,
the bit-interval T is equal to 100 ps. The energy in a photon is given by

eph =
hc

�
; (3.112)

where h is Planck’s constant, and c is the speed of light. Substituting these constants
the photon energy is

eph =
198:6� 10�12(nJ � �m)

�
: (3.113)

The photon power is the energy divided by the interval T ;

pph =
eph
T

=
1:986(nW � �m)

�
for T = 100ps: (3.114)

Since the light pulse is only on half of the time, the average optical power is

pav =
1

2
(0) +

1

2
(n1pph) = npph; (3.115)

or substituting (3.109), we can write the average power at the quantum limit in terms
of the desired error probability, for a bit-rate of 10-Gb/s such that,

pav = � log(2Pe)

�
2:29(nW � �m)

�

�
: (3.116)

The following equation expresses the result for an arbitrary bit-rate BT ,

pav =
� ln(2Pe)

2

�
hc

�

�
BT ; (3.117)
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Pe n1 pav(� = 0:80�m) pav(� = 1:30�m) pav(� = 1:55�m)
dBm dBm dBm

10�3 6:2 �51:1 �53:2 �54:0
10�6 13:1 �47:9 �50:0 �50:8
10�9 20:0 �46:0 �48:1 �48:9
10�12 26:9 �44:7 �46:9 �47:6
10�15 33:8 �43:8 �45:9 �46:6

Table 3.3 Quantum limit for various wavelengthsof light in terms of averageoptical power
incident on the photo-detector for a 10 Gb/s optical receiver (T=100 ps) to insure a given
error probability.

and substituting for the numerical constants we obtain the general expression for the
quantum limit in an optical system using on-off modulation and no coding.

pav = � log(2Pe)

�
0:229(nW � �m)

�

��
BT

1-Gb/s

�
(3.118)

Table 3.3 gives the quantum limit in terms of the minimum average optical power
required to achieve various error probabilities for different wavelengths of light at a
data rate of 10-Gb/s. We can see that, at best, we need an optical power of about
-48 dBm for Pe = 10�9. This analysis gives us a theoretical limit on the minimum
received power. However practical implementation problems will limit the sensitivity
of the receiver such that many more photons above the quantum limit will be needed
for accurate communication.

3.6.3 Practical Limitations on the Minimum Number of Photons

Required

Although the quantum-limit tells us the absolute minimum average number of photons
needed to obtain a given Pe, the actual number will be much higher in practice. The
reason is that all the electronic circuitry used to detect the optical signal is also governed
by the same quantum statistics, thus adding to the noise level. Even worse is that the
magnitude of the electronic noise sources of the receiver circuitry will be several orders
of magnitude larger than the quantum noise. This is best illustrated with an example.
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Example of Practical Limitations In a 10 Gb/s communication system fabricated
with integrated circuits, with typical parasitic capacitances at the input of 0.5 pF, a
voltage swing of 400 mV in 100 ps requires a current of 2 mA. The number of charges
needed to produce a current of 2 mA in 100 ps is

N =
2mA � 100ps
1:6� 10�19C

= 1:25� 106 (3.119)

The chances of trying to resolve an incremental 20 charges (n1 for Pe = 10�9),
compared to the one-and-a-quarter million charges due to the bias current, is pretty
slim. This implies a quantum resolution of

RESQ =
1:25� 106

20
= 62:5� 103 � [16� bits]: (3.120)

16-bits is a very high resolution; typically current due to the photodetector will be far
below the noise floor of the preamplifier. If we consider the shot noise current alone
at the output of the optimal correlator, the rms current in a bandwidth of BT=2 is

irms =

r
Iq

T
=
p
2mA � 1:6nA = 1:79�A: (3.121)

We can express this in terms of the average number of charges N

irms =

r
Iq

T
=

r
N
� q
T

�2
=
p
N
� q
T

�
(3.122)

Therefore the number of charges giving rise to the rms current in a time of 100 ps is
just 4

nrms =
1:79�A
100ps

=
p
N = 1118: (3.123)

Comparing the bias current to the rms noise current, the circuit’s maximum resolution,
due to shot-noise alone is limited to

RESS =
Ibias
Irms

=
1:25� 106

1118
=

Np
N

=
p
N = 1118 � [10� bits]: (3.124)

4Notice that averaging shot-noise gives us the same result of averaging identically distributed random
variables. If the average number of charges passing a barrier in a time T is N , then the rms deviation of
the average of this number is

p
N . Therefore, the SNR is just

p
N . This gives us a very simple way to

determine the amount of filtering required to get a given deviation in the dc current. If we require an SNR of
1000, then we need 106 charges passing. For a 1.6 mA current in 100 ps we get 10 6 charges, so averaging
over this time period gives a result with an rms deviation from the mean of one part in 1000. If we want to
increase the resolution by 2 bits, or a factor of 4, the time interval must be increased by a factor of 16 to
1.6 ns.
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If the input signal power level is at the quantum limit, then the receiver will have to
resolve 16 bits in a system that is inherently limited to 10 bits of resolution! This
can not be easily accomplished, therefore the signal level will have to be increased.
For a system that is dominated by the shot-noise of a single transistor running with
a 2 mA bias current the noise-level will be constant and will be determined by the
bias current. The signal peak-to-peak value will be determined by nQ1, which is the
is the quantum limit in photons per one symbol. This signal current will appear as a
deviation of �nQ1=2 = �nQ from the bias current. The SNR for a signal with power
at the quantum limit for Pe = 10�9 is therefore

p
SNR =

Isig
Irms

=

�
20=2

1118

�
'
�

1

112

�
=

nQ1=2p
N

; (3.125)

So we need to increase the signal level by approximately a factor of 112, just to get
the SNR to unity. Since we know that Pe � 10�9 requires an SNR� 62, we need to
increase the signal level approximately (6�112) times, or 671 times above the quantum
limit level in a practical system to reach this performance objective. Therefore, the
number of photons-per one symbol required in this practical receiver is

n1 = 6nQ1

" p
N

nQ1=2

#
= 12

p
N (3.126a)

n1 ' 20� 671 = 13; 416 Photons per one symbol; (3.126b)

The average number of photons-per-bit is just half of n1 or

n =
n1
2

= 6
p
N = 6708; (3.127)

which implies an incident optical power of -19.8 dBm for � = 1:3�m. We can now
estimate the current required at the outputof the photo-detector. Assuming each photon
produces an electron-hole pair, the current produced is

I =
qn1
T

; (3.128)

where T=100-ps for a 10-Gb/s system. Therefore nQ1 = 20 corresponds to a peak
current of 32-nA. For a practical system with n1 = 13; 416, the peak current required
is approximately 21.5-�A. This is 671 times or (28.3-dB of optical power) larger than
the quantum limited current of 32-nA. The average current is 10.7-�A, which is half
the peak current and 6 times the shot-noise rms current of 1.79-�A given in (3.121).

Receiver Sensitivity in Terms of Distance Between Repeaters From our previous
discussion of limitations in integrated receivers, we know that the number of photons
required in a practical systems needs to be increased by a factor of approximately
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Figure 3.14 Simplified diagram of a fiber-optic receiver for approximate sensitivity cal-
culations.

671, or 28 dB over and above the quantum limit. From table 3.3 the quantum limited
power is approximately -48 dBm for a 10-Gb/s system at a wavelength of 1.3-�m.
Therefore, we would expect a practical receiver to require approximately -20 dBm,
or 10 �W of optical power, producing an average output current of about 11-�A at
the photodetector. For a low-loss optical fiber (0.15-dB/km), and an optical source
capable of launching 1-mW (0 dBm) of optical power at the transmitter, a received
power greater than -20 dBm implies that the maximum repeater spacing is (20/0.15)
or 133 kilometers.

Receiver Sensitivity in Terms of Circuit Parameters Thus far we have not talked about
the actual preamplifier circuit needed to detect the arrival of photons. Nevertheless
we can continue with this approximate analysis to obtain a good indication of how a
real circuit might behave. The circuit we have been considering implicitly is shown in
Fig. 3.14. The number of charges N needed to charge the capacitorC to the noise-floor
voltage vnf is found from

I =
qN

T
=

Cvnf
T

; (3.129)

from which we obtain

N =
Cvnf
q

(3.130)

We saw that the number of photons needed per bit to achieve Pe = 10�9 is given by

n = 6
p
N = 6

"s
Cvnf
q

#
: (3.131)

The average optical power is then

pav = npph =
neph
T

=
nhc

�T
; (3.132)
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and writing pav in terms of circuit parameters we obtain

pav =
6hc

�T

s
Cvnf
q

: (3.133)

Hence for a given wavelength �,

pav / BT

p
Cvnf : (3.134)

The minimum optical power needed to achieve a given BER is proportional to the
bit-rate BT = 1=T and to the square-root of the input capacitance and the noise-
floor voltage. The reasons for this relationship are clear. The term involving C and
vnf determine the number of photons needed per bit. The square-root dependence
occurs due to independent random events having a standard deviation proportional to
the square-root of the observations. The number of photons per bit is independent
of BT , but as BT increases, more photons are required per second, thus increasing
the optical power linearly. The preceding analysis is just a first-order estimate that
gives us a feeling for how circuit parameters will affect the receiver sensitivity. The
actual values of the optical power needed will depend on the quantum efficiency of
the photo-detector, and the noise PSD of the preamplifier. We will see that circuit
parameters will affect the noise-floor voltage vnf , and this voltage will also increase
with frequency. These issues will be discussed in greater detail in chapter 7.

3.7 CORRELATION RECEIVER PERFORMANCE IN THE

PRESENCE OF CLOCK-JITTER

Until now we have only analyzed receivers with no error in the estimation of the arrival
time of each symbol, however, as mentioned previously, there will always be jitter in
the recovered clock, and a well designed receiver must be robust against such jitter. It
is beyond the scope of this work to derive the form of optimal receivers in the presence
of clock jitter, and non-white, or colored-noise. Our approach will be to constrict
ourselves to a correlation receiver, and we will consider different windowing functions
that maximize the SNR at specified sampling intervals.

Windowing Functions to Reduce Susceptibility to Clock Jitter When there is uncer-
tainty in the arrival time of the received data pulses, errors in the correlator, or matched
filter output will occur. The errors will be due to the overlap of the correlation pulse
with the adjacent data bits as illustrated in Fig. 3.15. If the data is rectangular, then
the reduction in the signal power will be linearly proportional to the clock offset when
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Figure 3.15 Diagram showing the error incurred in the output of a correlation receiver
when an error in the clock phase is present.
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Figure 3.16 Illustration of SNR degradation due to timing errors for rectangular NRZ
data.

adjacent bits are different, but there will be no penalty when adjacent bits are identical.
This error can be reduced by using a windowing function that reduces the contributions
of errors at the edges, by concentrating the majority of the pulse energy in the center
of the time interval. However, the maximum obtainable SNR will be reduced. In this
section we will analyze the performance degradation of a receiver in the presence of
clock-jitter, and consider different windowing functions that can reduce the receivers
susceptibility to timing errors.

SNR Degradation in Rectangular Pulse Correlation Receivers For rectangular NRZ
data there will be no degradation in performance unless a bit transition occurs. This
situation is illustrated in Fig. 3.16. For the case of the fourth bit, the SNR is the same as
if there were no timing error. For the first bit, however, the correlation pulse overlaps
a portion of the second bit. Since the two bits are of opposite polarity, the contribution
from the overlap subtracts directly from the SNR. The sample statistic of a correlation
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Figure 3.17 Eye-diagram of rectangular NRZ data after passing through a matched filter
with the conditional probability density function of the test statistics shown to the right: (a)
for the case of a timing error of magnitude j�tj = 1=4.

receiver is then

p0(�)jH1 =
1

T

Z T

�t

s(t)s(t ��t)dt+

1

T

Z T+�t

T

�s(t)s(t ��t)dt+

1

T

Z T+�t

�t

n(t; �)s(t��t)dt

(3.135)

The mean of this statistic is a maximum at �t = 0, and falls off linearly to zero when
j�tj = 0:5. Therefore,

� = P0

�
1� 2

j�tj
T

�
for j�tj � 0:5: (3.136)

The variance of the statistic is independent of timing errors, and from (3.70) is

�2 =
N0

2T
P; (3.137)

where P0 = P , because the power in each bit is identical for rectangular data, whether
or not a transition occurs. The SNR for this case is given by

SNRrec = �2=�2 =
P

N0=2T

�
1� 2

j�tj
T

�2

(3.138)

This reduction in SNR is illustrated in Fig. 3.17. This is similar to Fig. 3.12, but now
the mean of the Gaussians are moved closer to the origin, while the variance remains
constant.
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Figure 3.18 The probability of error for a correlation receiver in white noise with a nominal
SNR of 6:0022 as a function of the timing error.

The total probability of error, for a correlation receiver in white noise, with a timing
error of �t 2 [�1=2; 1=2], is

Pe =�

"�
P

N0=2T

�1=2#
� Pr[no transition] +

�

"�
P

N0=2T
(1� 2j�tj=T )2

�1=2
#
� Pr[transition]:

(3.139)

Since there is a 50% chance that a transition will occur between adjacent bits, the error
probability is

Pe =
1

2
�

"�
P

N0=2T

�1=2#
+

1

2
�

"�
P

N0=2T
(1� 2j�tj=T )2

�1=2#
(3.140)

for j�tj � 1=2.

For the case of an offset of half a bit (j�tj = 1=2), and a very large SNR, the receiver
will almost always be correct when no transition occurs, but during a transition the
SNR will drop to zero, and the receiver can only guess at the actual bit value, and will
be correct only half of the time. The error probability for this case is

Pe =
1

2
�(1) +

1

2
�(0) = 1=4: (3.141)

The probability of error for a nominal SNR of 6:0022 is plotted in Fig. 3.18 as a
function of the timing error. It can be seen that the error is 10�9 at �t = 0, and
increases to approximately 1/4 at (j�tj = 1=2).

The reduction in SNR due to a timing error results from the overlap of the correlation
pulse with adjacent bits. It has been alluded to earlier that by windowing the correlation
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Figure 3.19 Illustration of SNR degradationdue to timing errors for rectangular NRZ data
with a half-cosine correlation pulse.

pulse to minimize edge effects, and concentrating most of the pulse energy in the center
of the bit-interval, the receiver can be made less sensitive to timing errors. We will find
that the curve in Fig. 3.18 can be flattened, at the expense of increasing the minimum
attainable error probability.

3.7.1 Simple Windowing Functions for Reduced Edge Effects

Half-Cosine Window A simple windowing function that is practical to implement,
and has the desired characteristics, is a half-cosine pulse, as illustrate in Fig. 3.19. The
correlation pulse can be written as

ch(t) =
p
P
�

2
sin

�
�t

T

�
rect

�
t� T=2

T

�
(3.142)

For no transitions, the pulse has been normalized to give a mean of P , such that

� =
P

T

Z T

0

�

2
sin

�
�t

T

�
dt = P: (3.143)

For the interesting case when a transition occurs, the mean of the test statistic is

� =
P

T

Z T

�t

�

2
sin

�
�(t ��t)

T

�
dt�

Z T+�t

T

�

2
sin

�
�(t ��t)

T

�
dt (3.144)

Shifting the time axis and evaluating the integral we obtain

� =
P

2

"
� cos

�
�t

T

� ����
T��t

0

+ cos

�
�t

T

� ����
T��t

T

#
; (3.145a)
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or

� = �P cos

�
�(T ��t)

T

�
= P cos

�
��t

T

�
(3.145b)

The noise variance is independent of the mean of the test statistic and is given by

�2 =
P

T 2
E

"Z T

0

n(t; �)�
2
sin

�
�t

T

�
dt

#2
(3.146)

For white noise the integral reduces to

�2 =
PN0

2T

��
2

�2 1

T

Z T

0

sin2
�
�t

T

�
dt =

PN0

2T

��
2

�2 1
2

(3.147)

The SNR for a transition in adjacent bits is then given by the ratio of the mean-squared,
to the variance.

SNRhcos(j�tj=T ) = EB

N0=2

8

�2
cos2

�
��t

T

�
(3.148)

The resulting probability of error for the half-cosine windowing function is then given
by

Pe =
1

2
�

"�
EB

N0=2

8

�2

�1=2#
+

1

2
�

"�
EB

N0=2

8

�2
cos2

�
��t

T

��1=2#
(3.149)

Raised-Cosine Window A raised cosine has a more gradual role off at the edges than a
half-cosine, so we would expect the raised cosine pulse to have even less susceptibility
to timing errors. A raised cosine pulse that is centered around the origin can be written
as

cr(t+ T=2) =
p
P

�
1 + cos

�
2�t

T

��
rect(t=T ): (3.150)

The mean of the correlation test statistic, when there is no transition in adjacent bits,
is just the integral of the pulse itself, multiplied by a constant rectangular pulse of
magnitude

p
P . Therefore,

� =
P

T

Z T=2

�T=2

dt+
P

T

Z T=2

�T=2

cos

�
2�t

T

�
dt = P: (3.151)

When there is a transition between adjacent bits, the correlation pulse will overlap a
positive, and a negative bit. Therefore, the mean of the correlation output is

� =
P

T

"Z T=2��t

�T=2

1 + cos

�
2�t

T

�
dt

#
� P

T

"Z T=2

T=2��t

1 + cos

�
2�t

T

�
dt

#
;

(3.152)
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evaluating this expression the mean is therefore

� = P

�
1� 2j�tj

T
+

1

�
sin

�
2�j�tj
T

��
for j�tj � 1=2: (3.153)

The noise variance will be the same independent of the timing error, and is given by

�2 =
P

T 2
E

"Z T=2

�T=2

n(t; �)
�
1 + cos

�
2�t

T

��#2
(3.154)

For white noise with Rn(� ) = (N0=2)�(� ), the noise variance is

�2 =
PN0

2T

"
1

T

Z T=2

�T=2

1 + 2 cos

�
2�t

T

�
+ cos2

�
2�t

T

�
dt

#
(3.155)

�2 =
PN0

2T
� 3
2

(3.156)

The signal-to-noise ratio is then given by

SNRrcos(j�tj=T ) =
�

EB

N0=2

�
2

3

�
1� 2

j�tj
T

+
1

�
sin

�
2�
j�tj
T

��2
; (3.157)

and the total error probability is

Pe(j�tj=T ) = 1

2
�
hp

SNRrcos(0)
i
+

1

2
�
hp

SNRrcos(j�tj=T )
i

(3.158)

3.7.2 Comparison of Simple Windowing Functions with a

Rectangular Pulse

We can now make some comparisons and observations about the performance of
the correlation receiver in white noise with clock-jitter and systematic phase-offsets.
Defining an SNR degradation factor such that

� =
SNR�
EB
N0=2

� (3.159)
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Figure 3.20 Degradation in SNR for a correlation receiver in white noise using a: rectan-
gular correlation pulse, a half-cosine correlation pulse, and a raised cosine correlation pulse.
(a) linear scale, (b) decibels.

Then from (3.138), (3.148), and (3.157) the SNR degradation factors for rectangular,
half-cosine, and raised-cosine correlation pulses are respectively

�rec =

�
1� 2j�tj

T

�2

�hcos =
8

�2

�
cos

�
�j�tj
T

��2

�rcos =
2

3

�
1� 2j�tj

T
+

1

�
sin

�
2�j�tj
T

��2 (3.160)

These SNR degradations are plotted in Fig. 3.20. It can be seen that the rectangular
correlation pulse achieves the maximum SNR with no clock phase offset. However,
the SNR falls off quickly when a timing error occurs. The half-cosine pulse has a
lower peak SNR, but its reduction is more gradual than for a rectangular pulse, and
for time offsets larger than about 5.7% of the bit interval, the SNR is higher than for a
rectangular correlation pulse. The time offsets where the SNR degradation crosses the
rectangular degradation are given in table 3.4. Using a raised-cosine pulse can further
flatten the SNR curve, but due to the more severe penalty in the peak SNR, this pulse
has little advantage over a half-cosine pulse at large time offsets.

It was shown in table 3.1 that an SNR of 15.556 dB is required to achieve Pe = 10�9,
and that a 2 dB loss in SNR increases Pe by 3 orders of magnitude to Pe = 10�6. If
we require our receiver to maximize the time offset that can be accommodated, and
still maintain better than 2 dB loss, then we see from table 3.5 that a half-cosine pulse
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Correlation Pulse j�tj=T degrees
half-cosine 5:7% 20:5�

raised-cosine 9:6% 34:6�

Table 3.4 Time offsets when SNR degradation equals SNR loss with a rectangular corre-
lation pulse.

Correlation Pulse j�tj=T at 2dB loss j�tj=T at 3dB loss
rectangular 10.3% 14.6%
half-cosine 15.6% 21.2%

raised-cosine 12.9% 22.4%

Table 3.5 Time offsets for 2dB and 3dB SNR degradation.

extends the allowable time offset from 10.3% when a rectangular pulse is used, to
15.6%.

3.7.3 Practical Limitations on Timing Estimation

Although 10:3% = 37:1�, which is the point where the SNR for a rectangular cor-
relation pulse drops by 2-dB, seems to be a large offset, at a data rate of 10 Gb/s,
this corresponds to a time offset of only 10.3 picoseconds! We can compare this time
offset with the delay-time of a single differential pair with resistive loads, constructed
of transistors with an fmax = 50 GHz. It will be shown in chapter 8 that the delay
through this circuit is on the order of 20–40 ps. Therefore, it is essential to match
all the critical delay paths in the system. A 40 ps time-offset will have devastating
effects of the error probability, and will render the receiver useless. Even when care is
taken to match all delay paths, random delay mismatches, and inevitable mismatches
in signal lines in a planar IC process can easily contribute 5ps–10ps offsets. To avoid
degrading the system performance in the presence of clock jitter and systematic time
offsets, the technique that will be used in the design of the receiver is both to design the
physical delay paths in the circuit so that the best matching is obtained, and to adopt
a system approach that has low sensitivity to phase-errors, such as using a half-cosine
windowing function.
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Figure 3.21 Colored noise PSD filtered by: (a) a rectangular impulse response filter, (b)
a half-cosine impulse response filter.

3.8 OPTIMUM CORRELATION RECEIVERS IN COLORED

NOISE

When the noise is colored, the common-sense best strategy for optimal detection is
to bias the spectrum of the correlation pulse in favor of where the signal power is the
strongest, and the noise power is the weakest. If the noise PSD increases with the
square of frequency, then using a correlation pulse, or matched filter, that provides
good high-frequency attenuation, is desirable. The resulting receiver can be derived
from the optimal correlation receiver in AWGN, by using windowing functions to
change the correlation pulse in a manner that provides better high-frequency attenua-
tion. Fig. 3.21(a) shows a colored noise spectrum processed by a filter matched to a
rectangular pulse, while Fig. 3.21(b) shows the same noise spectrum filtered by a half-
cosine impulse response filter. It can be seen that windowing the rectangular correlation
pulse with the half-cosine pulse provides desirable high-frequency attenuation.

3.8.1 Condition for Maximizing SNR of the Test Statistic

We saw earlier in (3.61) the optimal correlation receiver in AWGN can be written asZ T

0

hs(� )r(T � �; �)d� (3.161)

so that if we have a matched filter output of the form

pn(t; �) =
Z (n+1)T

nT

hs(� )r(t � �; �)d� (3.162)
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then the samples of the signal pn(t; �) at values of (n + 1)T are equivalent to the
optimal test statistics for a correlation receiver in AWGN. If we now are operating
in non-white noise, we wish to find the shape of the windowing function that will
maximize the signal-to-noise ratio of the test statistic. It can be shown [1, Ch.6, p.
173] that the windowing function h0(� ) that maximizes the SNR for a noise process
with an autocorrelation function Rn(� ) satisfies the conditionZ T

0

h0(� )Rn(� )d� = s(T � t) for 0 � t � T; (3.163)

3.8.2 Matched Filter Approximation to Optimal Receiver in

Colored Noise

Since the integral in (3.163) is only over [0; T ] instead of [�1;1], then h0(t) can
not be considered to be an impulse response of a matched filter. Notice if h0(t)
extends beyond a bit period, then the filtering operation will overlap adjacent bits
and cause intersymbol interference (ISI), unless additional care is taken to insure that
h0(t) is orthogonal to shifted data bits at specified sampling points. We can however,
gain additional insight into the the shape of h0(t) if we make the approximation that
h0(t) �Rn(t) is negligible outside the interval [0; T ]. In this case we can replace the
integral in (3.163) with a convolution;Z T

0

h0(� )Rn(� )d� '
Z 1

�1

h0(� )Rn(� )d�: (3.164)

Therefore,
h0(t) �Rn(t) = s(T � t) for 0 � t � T: (3.165)

Under this approximation, h0(t) can now be considered as the impulse response of a
matched filter. Taking the Fourier transform of both sides of (3.165) gives,

H0(j2�f)Pn(f) = F �s (j2�f)e
�j2�fT ; (3.166)

where Pn(f) is the power spectral density of the noise. Therefore the magnitude
response of the filter is given by

jH0(j2�f)j = jFs(j2�f)j
Pn(f)

(3.167)

This result corresponds to the common-sense approach of making the frequency re-
sponse of the matched filter large where the SNR is high, and weak where the SNR
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Figure 3.22 Illustration of optimal matched filter frequencyresponse in colored noise: (a)
magnitude of rectangular NRZ pulses and colored noise PSD, (b) magnitude response of
matched filter.
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Figure 3.23 Impulse response of a matched filter in colored noise that increase as a
function of frequency.

is low. The warping of the frequency spectrum of the matched filter is illustrated
in Fig. 3.22 for rectangular NRZ data. The signal spectrum is a sinc function. The
PSD of the noise is shown with a break frequency, where the noise begins to rise in
proportion of the square of the frequency. The resulting spectrum of the matched filter
that maximizes the SNR at sample intervals of T is then shown in Fig. 3.22b. After
taking the inverse FFT of the optimal spectrum, we obtain the impulse response h0(t)
as is shown in Fig. 3.23. By windowing this impulse response so that it goes to zero
outside the interval [0; T ], we can obtain a correlation pulse that improves the SNR of
the test statistic, and does not introduce any ISI.

Comparison With Optimal Correlator in White Noise In the previous sections we
were dealing with white noise with a constant PSD ofN0=2. In this case jH0(j2�f)j /
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w(t) m(t) 

Whitening 
Filter 

Matched Filter 
for White Noise 

s(t) + n(t,  ) 
w(t)    s(t) *  

+ White Noise y(t,  ) 

Figure 3.24 Block diagram of a matched filter in colored noise represented as a whitening
filter, and a matched filter in white noise.

jFs(j2�f)j, and we can show that the optimal filter impulse response for white noise
is

h0(t) / s(T � t) for white noise: (3.168)

This is equivalent to the optimal matched filter given in (3.61). Since s(t) is zero
outside the interval [0; T ], our assumption that the integral in (3.163) could be replaced
by a convolution is valid. The fact that h0(t) is confined to the interval [0; T ] for white
noise results from Rn(t) being an impulse function so that the spread in time of the
convolution integral is no greater than the integration limits. Conversely, the higher
the correlation in the noise, or the larger the spread of Rn(t) compared to s(t), the less
valid is our assumption made in (3.165).

3.8.3 Whitening Filter

The optimal matched filter in colored noise can be understood more intuitively by
splitting the filter into two parts as shown in Fig. 3.24. The first filter whitens the noise
producing a constant spectral density at the output. Therefore, the PSD at the output
is given by

jW (j2�f)j2Pn(f) = 1; (3.169)

and the magnitude of the whitening filters frequency response must satisfy

jW (j2�f)j = 1

Pn(f)1=2
: (3.170)

Now the second filter is just the matched filter in white-noise for a signal w(t) � s(t),
which is the original signal warped by the prewhitening filter. We know that the
impulse response of the optimal matched filter in white noise is given by

m(T � t) = w(t) � s(t): (3.171)

The magnitude response of the second filter is easily found by taking the Fourier
transform;

jM (j2�f)j = jW (j2�f)jjFs(j2�f)j (3.172)



154 Chapter 3

Since we know the magnitude response of the whitening filter, then substituting gives

jM (j2�f)j = jFs(j2�f)j
Pn(f)1=2

(3.173)

The overall transfer function of the two filters is then given by the product of the
individual transfer functions, so that

jH0(j2�f)j = jW (j2�f)jjM (j2�f)j = jFs(j2�f)j
Pn(f)

; (3.174)

which is the same as that obtained in (3.167).

It is still important to keep in mind that it has been assumed that h(t) is only non-zero
for t 2 [0; T ], When this is not the case, (ISI) will be introduced, and the conditions
under which this receiver was assumed optimum will be violated. Nevertheless, this
discussion illustrates how the correlation pulse windowing functions can be altered to
improve the performance in colored noise. In the following section the performance
of a correlation receiver will be evaluated for various windowing functions in one
particular type of colored noise. The results will be compared to see the improvement
gained over using a correlation receiver that was optimized under the assumption that
the noise was white.

3.9 CORRELATION RECEIVER PERFORMANCE IN

COLORED NOISE

In this section we will consider a correlation receiver operating in colored noise of one
particular form, and we will analyze the receiver’s performance when a rectangular
correlation pulse is used. For the initial analysis we will assume a simple form of
the colored noise spectrum and we’ll make some general observations based on the
results. Later, we’ll make the colored noise spectrum more complicated, and find the
SNR by numerical integration. The initial noise PSD will be assumed to have the form
as shown below

Pn(f) =
1

2

�
N0 +N0

�
f

f0

�
rect(f=2F )

�

where;

N0=2 is the white noise PSD

f0 is the corner frequency

F is the band-limiting frequency

(3.175)
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Figure 3.25 Colored Noise: (a) frequency spectrum, (b) autocorrelation function.

This noise spectrum is shown in Fig. 3.25a. It will be shown in chapter 7 that this
noise spectrum is a reasonable approximation of the output spectrum of a low-noise
preamplifier for a fiber-optic receiver.

3.9.1 Time Domain SNR calculations

We can find the SNR directly in the time domain when we know the functional form
of the autocorrelation function of the noise. The autocorrelation can be found by
taking the inverse Fourier transform of the PSD in (3.175). Therefore,

Rn(� ) =
N0

2
�(� ) +

N0

2
F�1

(�
f

f0

�2
rect(f=2F )

)
: (3.176)

Realizing that a sinc function in the time domain transforms to a rectangle in the
frequency domain;

sinc(2Ft)$ 1

2F
rect(f=2F ); (3.177)

and that taking the derivative in time corresponds to multiplying the frequency domain
function by (j2�f), then we know that

d2

dt2
sinc(2Ft)$ 1

2F
(j2�f)2rect(f=2F ) = �(2�f)2

2F
rect(f=2F ); (3.178)

and the desired autocorrelation function has the form

Rn(t) =
N0

2

�
�(t) � F

2(�f0)2
d2

dt2
sinc(2Ft)

�
: (3.179)
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Evaluating, the first derivative gives

d

dt
sinc(2Ft) =

1

t
[cos(2�Ft)� sinc(2Ft)] ; (3.180)

and the second derivative is

d2

dt2
sinc(2Ft) = � 2

t2

�
cos(2�Ft)� sinc(2Ft)

�
1� 1

2
(2�Ft)2

��
: (3.181)

Therefore the autocorrelation function of the colored noise is given by

Rn(� ) =
N0

2

�
�(� ) +

F

(�f0� )2

�
cos(2�F� )� sinc(2F� )

�
1� 1

2
(2�F� )2

���
:

(3.182)
A plot of this autocorrelation function is shown in Fig. 3.25b. The cutoff frequency F
controls the spread of Rn(� ), and the corner frequency f0 controls the amplitude. The
ringing in Rn(� ) is due to Gibbs phenomenon; when the frequency spectrum has an
abrupt cutoff, the time domain response will always exhibit ringing.

Evaluation of the SNR for a Rectangular Correlation Pulse We can now use the
explicit form of Rn(� ) given in (3.182) to find the SNR of the sample statistic of a
correlation receiver in colored noise. For a correlation pulse c(t), the variance of the
test statistic is given by

�2 =
1

T 2
E

"Z T=2

�T=2

n(t; �)c(t)dt
#2
: (3.183)

Writing this as a double integral we obtain

�2 =
1

T 2

Z T=2

t1=�T=2

Z T=2

t2=�T=2

Rn(t1 � t2)c(t1)c(t2)dt1dt2; (3.184)

and letting �
4

= t1 � t2, then

�2 =
1

T 2

Z T=2

t1=�T=2

c(t1)

Z t1+T=2

�=t1�T=2

Rn(� )c(t1 � � )d�dt1: (3.185)

For a rectangular pulse c(t1 � � ) = rect[(t1 � � )=T ] is unity between the limits of
integration. Therefore, the noise variance for a rectangular pulse is given by

�2 =
P

T 2

Z T=2

t1=�T=2

Z t1+T=2

�=t1�T=2

Rn(� )d� (3.186)
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This integration can be expedited when we realize thatRn(� ) was originally expressed
as an impulse plus a second derivative. Therefore the variance can be written as

�2 =
PN0

2T

"
1� 1

2T

Z T=2

�T=2

F

(�f0)2
d

d�
sinc(2F� )

����
t1+T=2

t1�T=2

dt1

#
; (3.187)

and carrying out the second integration we get

�2 =
PN0

2T

"
1� FT

2(�f0T )2

"
sinc (2F (t1 + T=2)) � sinc (2F (t1 � T=2))

����
t1=T=2

t1=�T=2

##
:

(3.188)
We finally arrive at the expression of the colored-noise variance using a rectangular
correlation pulse;

�2 =
PN0

2T

�
1 +

FT

(�f0T )2
[1� sinc(2FT )]

�
: (3.189)

Finally, since we know that the mean of the test statistic is P , the SNR which is equal
to �2=�2 is

SNR =
EB

N0=2

�
1 +

FT

(�f0T )2
[1� sinc(2FT )]

��1
: (3.190)

We can make some useful observation about the SNR given in (3.190) by realizing
that the bandwidth limiting parameter F will be close to the data rate BT = 1=T .
Therefore we can define a parameter � with a value in the vicinity of unity as

�
4

= FT; =) F = �BT : (3.191)

Therefore the SNR can be written as

SNR =
EB

N0=2

"
1 +

�
BT

f0

�2
�

�2
[1� sinc(2�)]

#�1
: (3.192)

This SNR is plotted in Fig. 3.26(a), as a function of the normalized corner frequency
f0=BT , for various values of �. For the case of � = 1, the SNR is simply

SNR =
EB

N0=2

"
1 +

�
BT

�f0

�2#�1
(3.193)

Typical colored noise PSDs for � = 1 are shown in Fig. 3.26b for various corner
frequencies. From (3.193) we can see that the SNR is reduced by 3 dB for a corner
frequency of f0 = BT =�, and the SNR is reduced by 6 dB when BT is �

p
3 = 5:44

times the corner frequency.
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Figure 3.26 (a) SNR reduction for a correlation receiver in colored noise a a function of
the corner frequency for various values of �; (b) Power spectral densities of a simple type
of colored noise for various corner frequencies and � = 1.

3.9.2 Frequency Domain SNR calculations

In chapter 2 we saw that the variance of a random process can be obtained by integrating
the PSD in the frequency domain. The correlation receiver is equivalent to a matched
filter with a rectangular impulse response sampled at specified intervals. The matched
filter impulse response is of the form

m(t) = c(T � t); (3.194)

where c(t) is an arbitrary correlation pulse. For a rectangular pulse

c(t) =

p
P

T
rect(t=T ): (3.195)

The magnitude response of the matched filter is therefore,

jM (j2�f)j2 = P sinc2(fT ) (3.196)

At the output of the matched filter the PSD of the noise is

Pm(f) = Pn(f)jM (j2�f)j2; (3.197)

and the variance of the test statistic is therefore just the integral of Pm(f) over all
frequencies.

�2 =
PN0

2

Z 1

�1

"
1 +

�
f

f0

�2
rect(f=2F )

#
sinc2(fT )df (3.198)
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This can be evaluated easily recalling that the integral of sinc2(fT ) function is just
1=T . Therefore,

�2 =
PN0

2T
+
PN0

2
� 1

(�f0T )2

Z F

�F

sin2(�fT )df; (3.199)

from which we obtain

�2 =
PN0

2T

�
1 +

FT

(�f0T )2
[1� sinc(2FT )]

�
: (3.200)

This result agrees with (3.190), obtained from a time domain approach. However,
doing the analysis in the frequency domain is not only simpler, but it provides a much
better intuitive approach on how one can go about altering the frequency response
of the correlation pulse to obtain better performance. We will normally forego the
calculation of noise variances in the time domain for the windowing functions, and
skip directly to the frequency domain.

3.9.3 Constrained Optimization in Colored Noise

We saw in the previous analysis, that the actual shape of the optimal correlation pulse
depends on the parameters of the colored noise spectrum. If we were using a correlate-
and-dump receiver in our high-speed fiber-optic system, we could continue with this
type of analysis to find the shape of the correlation window that maximizes the SNR of
the test statistic. However, the shape of the correlation function will be sensitive to the
placement of the noise peak in relationship to the nulls in the matched filter spectrum.
These nulls are a result of the impulse response of the matched filter being non-zero
only in the interval [0; T ]. In a real, high-speed system, these nulls won’t exist, so that
continuing an optimization in this manner is rather pointless.

In a high-speed system, we can only approximate a matched filter. Typically we
will use a simple one- or two-pole, approximation, and we will take advantage of
the parasitics of the transistors themselves to do our noise-reduction filtering. We
can therefore perform a constrained optimization for such a system, by varying a
few parameters of the preamplifier and postamplifier to alter pole locations. We will
use the frequency domain techniques described above to find the best SNR under the
constraints of the system. We will find that the resulting SNR will be only slightly less
than what we could obtain with an ideal matched filter. These and other issues will be
investigated in more detail in in chapter 7, where we will consider the actual circuit
implementation of the low-noise preamplifier, and determine the precise functional
form of its colored-noise spectrum.
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3.10 SUMMARY

In this chapter we have addressed the problem of deriving an optimal receiver in
the presence of both non-white noise, and phase-jitter. Although several books on
communication theory cover this topic adequately, (Whalen’s popular book is an
excellent example [1]). We have specifically discussed the application of this theory
to the design of high-speed IC receivers. The types of questions that we considered
were as follows.

What is the optimal receiver in the presence of additive white gaussian noise, and
what is its performance?

How can a correlation receiver be modified to reduce its sensitivity to phase-jitter
and systematic timing offsets?

What is the quantum limit of a receiver, and how does this affect the minimum
optical power that must be received?

How do practical considerations affect the minimum receiver power, and how
does this translate to the maximum distance that optical repeaters can be spaced?

How can a correlation receiver be approximated by a matched filter, and what is
the penalty of using the parasitic bandwidth limitations of the preamplifier and
postamplifier for noise filtering, as opposed to an optimal matched filter?

How can a correlation receiver be modified to produce the best signal-to-noise
ratio in the type of non-white noise that can be expected in fiber-optic receivers?

This chapter has provided the theoretical background to answer the above questions.
In a practical systems we can only approximate an optimal receiver, but the theory
gives us a benchmark for performance characterization, and gives a guide to the design
and optimization of the essential building blocks of the receiver.
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4
CLOCK RECOVERY

IN BROADBAND
COMMUNICATION

SYSTEMS

When random data is transmitted over a channel, in the form of a sequence of symbols
belonging to a given alphabet, a receiver designed to interpret these signals must
perform two separate tasks. The primary task is to decide which of the signals
from the original alphabet was transmitted. But the receiver can not do this until it
first performs the equally important task of estimating the time of arrival of the data
symbols. Both tasks are complicated by the presence of additive noise, nonlinear
distortion, and dispersions that cause intersymbol interference. In addition, for a full-
duplex system, echoes of a response signal being transmitted in the opposite direction
add to the difficulty in detecting the received pulses. In the previous chapter, techniques
for determining the optimal signal processing operations required to minimize the
probability of error in a binary decision circuit were presented. In this chapter, circuits
for deriving the necessary clock signal from random data will be discussed. Since
in any high-efficiency signaling scheme, the clock signal is completely suppressed,
and has to be recovered, or extracted from the data itself by nonlinear operations,
the process of estimating the time of arrival of random data is often referred to as
clock-recovery, or clock-extraction, and we will use these terms interchangeably.

Nyquist Limited Signals and Narrowband Modulation Schemes

Approaches for recovering a clock from a random data signal vary depending upon
the modulation scheme used. For communication over a bandlimited channel, the
pulses of each individual symbol can extend far beyond the bit interval (e.g. 100–200
symbol periods). This causes a great deal of intersymbol interference (ISI) . There is
generally a smaller opening in the data-eye, where the ISI goes to zero in any given
symbol period, especially for multilevel symbol pulses. A typical eye-diagram for a
16-quadrature-amplitude-modulated (16 QAM) communication channel is shown in

163
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Figure 4.1 Eye diagrams of one quadrature component of a 16 QAM communication
system over, copper wire with a 3 dB bandwidth of 4 kHz, and with a signal rate of
400 kbaud/s = 1.6 Mbit/s.

Fig. 4.1. 1 Only after careful channel equalization to compensate for the distortions
in the transmission can the data be properly detected. And in the case of a full duplex
system, the transmitted signal, and its echoes, must also be separated from the received
signal. Recent efforts to increase data rates over twisted pairs of copper wire have
shown impressive results. The High Bit-Rate Digital Subscriber Line standard (HDSL)
provides for full-duplex communication over two twisted-pairs at bit-rates of 800-kb/s
over each pair, for a total bit-rate of 1.6-Mb/s; while the Asymmetric Digital Subscriber
Line standard (ADSL) provides for one-way communication on a single twisted pair
at 1.6-Mb/s. For a typical phone-line twisted-pair transmission channel, the 3 dB
bandwidth is about 4 KHz. In an ADSL system, a pair of quadrature pulses, with 4
levels of amplitude modulation each (16 QAM), centered at a frequency of 300-KHz,
are sent on the transmission line at a symbol rate of 400 kbaud (100 times the 3 dB
bandwidth). By the time the 2.5 V-peak-signal reaches its destination, the amplitude
is approximately 2 mV (-62 dB). Aside from the attenuation, channel bandwidth
limitations cause severe smearing of adjacent symbols. Techniques for recovering a
clock in these circumstances are usually based on optimal stochastic estimation theory.
Often the baud rate is slow enough to afford a significant amount of signal processing.
For example, all-digital systems are proposed, that implement sophisticated algorithms
for channel equalization and clock recovery. Since the opening in the post-equalized
data-eye is still narrow even after equalization, tight controls on the phase jitter of the
recovered clock are required. For purposes of implementation, multi-phase clocks can
be generated easily at a low baud rate, and the best phase can be chosen from among
them. Also, digitally controlled variable frequency oscillators, or a direct-digital
frequency synthesizer (DDFS) , can be utilized.

1Communication channel simulations and eye diagrams provided by Babak Daneshrad.
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Figure 4.2 Eye diagram of broadband NRZ binary data with additive noise: (a) before
filtering, (b) after filtering.

Broadband Signaling Schemes

In contrast to bandlimited channels, broadband communication systems, such as optical
fiber networks, have primary data-rate limitations due to receiver and transmitter
electronics, and are not restricted by channel characteristics. ISI is generally minimal,
and the data-eye opening is wide. A typical eye diagram for a broadband binary NRZ
system is shown in Fig. 4.2. In a broadband receiver, the clock recovery operation
is the most difficult to perform, and is often the limiting factor on the speed of the
overall system. Techniques for extracting a clock have almost exclusively centered on
spectral-line techniques, where a clock-tone component is generated from the data by
a nonlinear operation; the resulting tone, plus random, data-dependent, noise, is passed
through a bandpass filter producing a periodic clock waveform. Alternatively, the data-
derived signal can be input to the phase detector of a phase-lock loop (PLL); the filtered
phase-error is used to synchronize a tunable oscillator to the data rate. Although the
mathematics of determining optimal estimates of arrival times of a random pulse are
the same for narrowband and broadband systems, many simplifying techniques exist
for broadband systems, where ISI is ignored. These simplifications are not applicable
to narrowband systems. For example, edge detection is a technique used in broadband
systems to generate a spectral-line at the bit-rate, but can not be applied directly to a
signal with large ISI, since no clear edges exist. Clock recovery circuits in broadband
systems normally perform operations on data over only one bit-period to arrive at
an immediate estimate of the phase error, whereas in narrowband systems, several
symbol periods must be observed so that ISI contributions of adjacent symbols can be
removed. For the remainder of this chapter, we will concentrate only on techniques
that are suitable for implementation in a broadband system. Key features of broadband
clock recovery circuits are as follows:
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Speed. Since the clock recovery circuit limits the maximum obtainable data rate,
we will be primarily interested in the speed of the these circuits.

Self-Correction. The data rates are so high that even a 10 ps systematic timing
error can reduce the SNR by 2 dB. The delay of the decision circuit must be
accounted for in the final estimate of the optimal clock phase.

Phase-Jitter. Aside from the systematic phase-error, the random phase-jitter can
also substantially reduce the effective SNR. This jitter is data-dependent, and can
lead to errors whenever specific data patterns are encountered.

In the followingsection we will qualitatively discuss different techniques for extracting
a clock signal from random NRZ data. This will help in developing our intuition about
such systems. Later, we will describe the problem mathematically, and compare our
intuitionwith various systems which derive clocks using both, spectral-line techniques,
and maximum a posteriori (MAP) estimates.

4.1 QUALITATIVE ANALYSIS OF CLOCK RECOVERY

SCHEMES

An NRZ signaling scheme is often used to conserve bandwidth in a baseband commu-
nication system. Since the data does not return to zero in one bit period, the maximum
fundamental frequency in the data is half of the data rate, and occurs when the data
is alternating ones and zeros. A typical waveform of an NRZ data signal is shown in
Fig. 4.3(a), and the PSD of this data signal is shown in Fig. 4.3(b). The 3 dB bandwidth,
required of a lowpass filter to pass 80% of the data signal power, is about 0:80BT , as
shown in Fig 4.4. Therefore, a 10 Gb/s system can, in principle, be implemented with
circuits limited to a bandwidth of approximately 8 GHz, with a penalty in maximum
SNR of 20%, or approximately 1 dB, by having suppressed the high frequency edges.
We would like to extract a clock signal directly from the random data. However, from
Fig. 4.3(b) we see there is a spectral-null at the bit-rate. The reason for this spectral-
null was discussed in detail in chapter 2. From the eye-diagram of Fig. 4.2 we notice
a definite timing structure embedded in the data, despite its random nature. When the
data does not change values, the signal stays either high or low, and there is no way
to obtain any timing information from a constant signal. However, the cross-overs in
the eye-diagram occur at integer multiples of the bit period T . Therefore, in an NRZ
data signal timing information is only contained in the transitions between different
bits, and we can extract a clock by synchronizing a periodic signal with these data
transitions. This procedure can be illustrated more clearly with an example.
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Figure 4.3 Random NRZ data: (a) typical time domain sample, (b) power spectral density.
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Figure 4.4 Cumulative power in rectangular NRZ data after passing through a lowpass
filter with a 3-dB frequency of f3dB : (a) linear scale, (b) decibels.
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Figure 4.5 Metronome, as an analogy of a variable frequency oscillator used to recover a
clock from random data.

4.1.1 Traffic Light Analogy

We could imagine ourselves trying to recover a clock from random data manually.
Imagine sitting on a park bench in Munich, just after having purchased a metronome,
like the one shown in Fig. 4.5, for our piano at home. While waiting for our train, we
decide to pass the time by synchronizing the metronome with the traffic-light across
the street. Our goal is to find the lowest fundamental clock period used to control the
traffic lights. As we are watching, we see long periods where the light stays either red
or green. When the light is constant on one color, we have no idea as to the timing
information controlling the traffic signal. Suddenly, the light switches to yellow, and
we start our pendulum swinging; we want to try to get the pendulum to return by
the time the light turns red. If the pendulum doesn’t get there in time, we speed it
up by sliding the weight down on the pendulum; if there was more than one cycle
of the pendulum during one yellow light, then we slow the pendulum by moving the
weight higher. Over several cycles of the traffic light we get the pendulum swinging
so that it has exactly one cycle on every yellow light, and has an integer, but not
necessarily equal, number of cycles when the light is red or green. We will notice that
the pendulum will need a slight adjustment every now-and-then because there will be
drift in both the metronome, and the traffic-light timing; therefore feedback is required
to keep the two clocks synchronized. Adjustments are made by measuring the position
of the pendulum whenever a change occurs in the colors of light being transmitted.
This system, albeit operating at a very low data rate, is a model of a wavelength-shift-
keyed (WSK) optical communication system, where different wavelengths (or colors)
of light are transmitted across the same channel. In this case there are three colors
transmitted, each with a distinct interpretation. In our analogy we used a PLL to extract
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the clock from the data by applying feedback to adjust a variable frequency oscillator
in accordance with phase-error estimates obtained by looking at transitions in the data.

Instead of the metronome we could have used a slinky2 with a weight on the end.
We can vary the natural frequency of this harmonic oscillator by holding the slinky
in different places, thus altering the effective spring-constant. We will try to match
the self-resonance of the spring and mass system to the clock rate of the traffic lights.
This is analogous to pre-tuning a bandpass filter to the bit-rate of a communication
system. Each time that we notice the traffic light changing colors we give the slinky
a push downward. When the light stays constant, the slinky keeps oscillating, but the
amplitude gets smaller due to dissipation in the spring. Then the light changes and we
give the slinky another push to keep in going. This example illustrates clearly how
dissipation (finite Q) in the resonator leads to random amplitude modulation in the
clock signal.

From the above analogies we see there is no mystery in extracting a clock from a system
such as this. We have just outlined how the clock can be recovered from random data
using either a PLL, or a BPF. Our challenge will be to design a circuit that will do this
clock extraction automatically and considerably faster.

4.2 INTERMITTENT PHASE-READJUSTING APPROACHES

TO CLOCK RECOVERY

An approach to clock recovery, that can be understood simply from a qualitative point
of view, is intermittentadjustment of the phase of a local oscillator, in jumps, at discrete
time increments, so as to synchronize it with the data. This approach can tolerate slight
frequency errors in the local clock at the receiver. Perhaps clock-recovery is a slight
misnomer, and phase-recovery is a more appropriate term. When recovering a clock,
we are interested in frequency-recovery, and phase-recovery, and both are explicitly
implied. However, some systems have there own local clocks at the receiver, that are
not synchronized in frequency with the data-rate. An effective sampling rate, equal to
the data-rate, can be achieved by restarting the clock phase in the center of the data-eye
before a cycle-slip occurs. This method is illustrated conceptually in Fig. 4.6.

Readjusting the phase at discrete time intervals is analogous to the synchronization
method used for wall-clocks in public schools, that many may remember. The clock
in each room was allowed to run freely; slightly before the end of the hour, each clock

2Slinky is the brand name of a toy that is merely a long, loose spring with a small spring-constant. Despite
its simplicity the slinky is a wonderful, wonderful toy, that’s fun for a girl or a boy.
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Figure 4.6 Conceptual block diagram of discrete phase-readjusting method of timing
recovery.

was sped-up, forcing the second-hand to a held position on “12,” until the master clock
simultaneously released all of clocks. For the remainder of the next hour, each clock
again ran open-loop. As long as the individual clock frequency errors, relative to the
master clock, were small, timing throughout the building remained within acceptable
levels of synchronization.

Synchronization by this method uses feedback only at discrete, times, and phase
adjustments are made in discrete jumps. This is not a particularly good approach for
low SNR systems, or ones with tight controls on the allowable phase-jitter. However,
there are systems operating with very high SNRs over short transmission distances,
such as local area networks (LANs), where the primary goal is to make the receiver
circuitry simple since there is plenty of signal power to spare. We can think of this
method as “living” with an error, but correcting it every chance that we get. Naturally
we make corrections every time that a transition in the data occurs. One of the problems
with this approach is that phase errors accumulate when there are no transitions. If the
frequency of the local clock differs from the bit-rate by 1%, then in 50 transitionless data
bits, the clock-phase will be sampling at the data cross-overs instead of the maximum
data value, and communication through the network will cease. Even after 10 bits in a
row without a transition, we will have a 10% phase error which reduces the equivalent
SNR by 2 dB. For an optical fiber with a loss of 0.15 dB/Km, this corresponds to a
13 Km reduction in the maximum repeater spacing.

Since phase errors accumulate when no transitions occur, the maximum obtainable
phase-error can be limited by using coding to force a data transition every few bits.
For a system using Manchester coded data, there are guaranteed transitions in each
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Figure 4.7 Simple clock recovery circuit that uses the edges of NRZ data to retrigger a
multivibrator.

bit period. As a result, the phase can be constantly corrected, and there will never
be more than one period of error accumulation. The FDDI (Fiber Distributed Data
Interface) standard for local area networks (LANs) provides for communication over
multi-mode fibers using light-emitting-diode (LED) sources at a symbol rate of 125
MHz, and a bit-rate of 100 Mb/s. The reason for the discrepancy between the bit-rate
and baud-rate is that a 4b/5b code is used to code every 4 bits into a block-code 5-bits
long. The code is designed in such a way as to produce at least one transition every 5
bits. Therefore, in our previous example of a clock frequency error of 1%, the maxi-
mum phase error accumulates over 4 bits without a transition and is equal to 4%. We
saw in chapter 3 that a 4% timing error reduces the effective SNR by approximately
1 dB. Although, this phase readjusting technique generates significant phase-errors, it
may be a penalty worth paying when instantaneous frequency acquisition is required.
Unlike narrowband filters, or PLLs which act like heavy flywheels, and take a long time
to start spinning, the retriggered multivibrator scheme generates a clock after the first
data transition. This property can be extremely important in various types of commu-
nication systems, other than long-haul fiber-optic trunk-line. Two specific examples
of intermittent phase-readjusting clock-recovery circuits will now be discussed.

4.2.1 Retriggering a Multi-Vibrator

A simple technique used to recovery a clock from NRZ data is to use the data edges to
retrigger a multi-vibrator. One such circuit is described by Witte and Moustakes [1],
and is illustrated in Fig. 4.7. The first circuit block generates a positive pulse of width
pT , where p ' 1=2, whenever a transition in the data occurs. The pulses are used to
reset the free-running oscillator, constructed by using feedback around a monostable
multivibrator. The delay in the feedback loop �T is set as close to T as possible
to achieve a frequency of oscillation equal to the bit-rate. However, there will be
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Figure 4.8 Clock recovery circuit using two gated oscillator.

inevitable errors and � will differ from unity, causing phase-error accumulation when
no data transitions occur.

An even simpler implementation of the circuit of Witte and Moustakes was reported
by Eng et al. [2]. This circuit is illustrated in Fig. 4.8, and consists of two gated
oscillators. When the gating signal is high, the oscillator is free-running. When the
gating signal is low, the output of the oscillator is held high. The effect of cascading
two such oscillators is that the second oscillator can operate in one of three conditions.
It is free-running whenever the data input is low, is reset to the data-transition whenever
the data changes from low to high, and is reset to the transitions of the first free-running
oscillator when the data stays high. The net result is that the clock-phase only gets
realigned on a positive data transition, and synchronization information contained in
the negative transitions are ignored.

4.2.2 Choosing One Phase of a Multi-Phase Clock

An implementation of a simple clock recovery circuit that derives its active decision
clock from among only two clock phases was recently reported by Yamanaka et al. [3]
for a 2-Gb/s system. A block diagram of this clock recovery circuit is shown in
Fig. 4.9. Digital logic is used to control a multiplexer that selects the clock phase
closest to the center of the data-eye. Since only two clock phases exist, there will be
a severe SNR penalty due to errors in timing. However, for the designed purpose of
this chip-set, namely high-speed interconnect of VLSI modules, the SNR degradation
is not a primary concern. A similar circuit that chooses the best of two clock phases
was also reported by Bagheri et al. [4, 5]. This circuit used AlGaAs/GaAs HBTs,
and functioned at a bit-rate of 6.1-Gb/s.
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Figure 4.9 Clock recovery circuit that chooses the best among two clock phases.
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Figure 4.10 Clock recovery circuit based on a hybrid analog/digital approach of choosing
the best clock among 32 separate phases.

An implementation of a multi-phase clock recovery scheme, with 32 separate clock
phases, was described by Kim et al. in [6], and is explained in more detail in Kim’s
Ph.D. thesis [7]. A block diagram of this circuit is shown in Fig. 4.10. The local
oscillator is a 16-stage, fully-differential, tapped delay line. Using both outputs of each
differential delay cell, provides 32 separate clock phases, equally spaced across the bit-
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interval. There is one decision circuit for every clock phase, and the resulting decisions
are clocked into parallel registers. A final decision as to the data value can then be
made by the digital logic circuit. The digital logic is also used to determine which of
the 32 clock phases is closest to the middle of the data-eye. An obvious disadvantage
of this circuit is its complexity. However, with complexity comes added flexibility.
Various clock phase-shifting schemes can be implemented. This is important in a long
chain of repeaters when jitter accumulation may necessitate a large discrete jump in
the clock phase. Also, various decision circuit voting algorithms can be implemented
easily by programming the digital logic block.

This circuit runs open-loop in the sense that the recovered clock is not locked to the
bit-rate. However, in Kim’s implementation, a PLL is used to lock the tapped delay-
line oscillator to a crystal reference clock. This keeps the center frequency of the
multi-phase clock close to the data rate, avoiding frequent cycle-slips. This circuit was
designed to operate at a bit-rate of 30-Mb/s, and is therefore not directly applicable to
high-speed systems. However, we will see similar looking approaches for high-speed
implantations that use multi-phase clocks for interleaving parallel decision circuits,
such as Pottb�acker’s approach to be described in chapter 5 (see Fig. 5.15).

4.2.3 Clock Recovery Using Line-Coding

Clock extraction can be simplified if a coding scheme is used to impose a predictable
structure in the data signal. For example, coding can be used to install a framing pulse
at periodic intervals. A low frequency clock can be locked to these framing pulses
during start up. Synchronization will be maintained during operation provided that the
PLL frequency doesn’t drift far enough in one frame, so as to confuse a data-pulse with
a framing-pulse. This technique was adopted for a 1.5-Gb/s computer data interface
chipset, designed at Hewlett-Packard by Walker et al. [8, 9]. An earlier 5-Gb/s circuit
employing the same approach was described by Bentland et al. [10]. Although line
coding can simplify the clock recovery circuitry, with minimal bandwidth overhead,
we will assume for the remainder of this book that no such coding is used.

4.3 EDGE DETECTION

Synchronizability in Relation to Transition Density We have seen that the timing
information for random NRZ data is contained in the transitions between different
symbols. If the SNR is high enough for the receiver to distinguish between different
pulses, then it should also be able to estimate the time at which the data-pulses change
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value. The accuracy with which the receiver can estimate the data transition time,
will, to a large extent, determine the probability of error for the overall receiver. Since
timing information is contained in the data transitions, the more transitions available
to observe in a given time interval, the smaller will be the rms error in the estimated
arrival time. We have seen that using NRZ data signaling format reduces the required
bandwidth by a factor of 2 over RZ signaling. However, what we gain in bandwidth,
we sacrifice in synchronizability. Moeneclaey [11] has shown that the lower bound
on the variance of a minimum mean-square estimate (MMSE) of the data arrival
time is inversely proportional to the average number of transitions NT per bit-period.
Moeneclaey gives an expression for the Cram�er-Rao lower bound on the timing error
for a signal in additive white Gaussian noise as

�T � T

2

"
1p
Qeq

1p
SNR

1p
2NT

#
; (4.1)

where the SNR is the ratio of the average energy-per-bit, divided by the two-sided
white noise PSD value,

SNR =
EB

N0=2
: (4.2)

There are three contributions to the lower bound as seen from (4.1). First, is the
bandwidth of the filtering used, which is represented by the parameter Qeq. Second, is
the ratio of the bit-energy to the additive white noise spectral density. And third, is the
average number of data transitions. The significance of the first two factors are clear.
We can understand the significance of the parameterNT if we recall from chapter 3 that
the standard deviation of the average of several independent observations was reduced
by the square-root of the number of observations. Since we can only make timing
measurements when a transition occurs, then the number of observations possible in a
given time period is proportional to NT . Table 4.1 gives values of NT , and the 80%
power bandwidth for the binary signaling formats discussed in section 2.3.3.

Importance of Edge-Detection in Clock Recovery Schemes In a binary communica-
tion system, changes in the data manifest themselves as either rising, or falling edges
in the data signal. Therefore, it’s not surprising that edge-detection of the data will
play an important roll in clock-recovery circuits. The PSD of edge-detected data was
studied extensively in chapter 2. We saw that simply detecting an edge by differen-
tiating the signal is not, by itself, sufficient to generate a spectral-line at the bit-rate.
Since the data is random, the polarity of the edge pulses will also be random. To
generate a strong clock component, the random phase reversals have to be removed.
This can be easily accomplished with either a squaring circuit, or a rectifier. A typical
sample of rectangular edges detected from an NRZ data sequence is shown in Fig. 4.11.
This signal can be separated into the sum of a deterministic, periodic waveform, with
a fundamental frequency at the data rate, and a random, zero-mean, data-dependent
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PCM Signaling Format NT B80

NRZ 1=2 0:50BT

RZ 1 1:00BT

Manchester 3=2 1:25BT

Miller 1 0:66BT

Table 4.1 Average number of transitions per bit-period NT , and the 80% bandwidth for
various binary PCM signaling formats.
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Figure 4.11 Detection of transitions in random NRZ data, and its decomposition into the
sum of a deterministic and random part.

signal. The deterministic part gives rise to the clock tone, and its harmonics, while the
random part generates amplitude modulation and phase-jitter.

The important feature of an edge detection circuit for NRZ data is that it produces a
pulse, always in the same direction, whenever a transition in the data occurs. The shape
of this pulse will determine the harmonic content of clock signal, and the functional
form of the continuous noise spectrum. There are several circuits that can be used to
generate these pulses. Five of them will be illustrated here in block diagram form.

4.3.1 Delay and EXOR

A common technique for detecting the edges of rectangular data is to exclusive-or
(EXOR) the data with a delayed version of the same signal, as illustrated in Fig. 4.12.
It can be seen from the timing diagram in Fig. 4.12, that the circuit will generate a
rectangular pulse of width pT whenever a transition in the data stream occurs. We
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Figure 4.12 Edge detection circuit using an EXOR gate.
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Figure 4.13 Simulated and calculated power in harmonics of an edge-detected NRZ data
signal for: (a) p = 0:5, (b) p = 0:3438.

saw in chapter 2 that for p = 0:5, all even harmonics of the bit-rate are nulled, and
the power in the fundamental clock tone is maximized. The power spectral densities
of the edge-detected signals were given in Fig. 2.13 for p = 0:5, and p = 0:3438, and
are repeated here in Fig. 4.13 for convenience. The functional form of the PSD was
derived in (2.136), and is given by

Pe(f) =
hp
2

sinc(fpT )
i2 "

T +
1X

M=�1

�

�
f � M

T

�#
: (4.3)
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Figure 4.14 Edge detection circuit using a lowpass filter followed by a squaring circuit.

4.3.2 Lowpass Filter and Square.

Another example of an edge-detection circuit is shown in Fig. 4.14. The data is first
lowpass filtered so that the transitions are smeared over a greater percentage of the
bit-period. After squaring, the new signal has a constant dc value when there are no
data transitions, and has negative pulses whenever there is a change in the data. It
was shown in chapter 2 that for raised cosine kernel pulses, all harmonics of the clock
signal are nulled. The dc component can also be nulled with an appropriate level shift.
The zero-mean edge-detected signal, and the power-spectral density were shown in
Fig. 2.28, and are repeated here in Fig. 4.15. The functional form of the PSD was also
derived in (2.170), and was shown to be of the form

Pe(f) =
1

4

"
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2
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�(f �MBT )

#
(4.4)

for the special case of raised cosine pulses.

4.3.3 Lowpass Filter, Highpass Filter, and Square

Another technique that will give results similar to the previous circuit is shown in
Fig. 4.16. In this example the data is also lowpass filtered initially to smear the edges
over the bit-period. The changes in the edges are detected by a highpass filter, often
implemented as a differentiator [12]. The random phase reversals of the detected
edges are removed by squaring the signal. For data with sinusoidal transitions, the
edge-detected pulses after differentiation will be raised cosines.
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Figure 4.15 Transition detected pulses using a raised cosine kernel function: (a) the zero-
mean pulse stream in the time domain and the original NRZ random data, (b) calculated and
simulated normalized power in a bandwidth of BT =32.
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Figure 4.16 Edge detection circuit using LPF followed by an HPF and a squaring circuit.
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Figure 4.17 Edge detection circuit using a lowpass filter followed by a rectifier.
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Figure 4.18 Edge detection circuit using LPF followed by an HPF and a rectifier.

4.3.4 Lowpass Filter and Rectify.

The circuit of Fig. 4.14 could have been implemented with a rectifier instead of a
squaring circuit. This modification is shown in Fig. 4.17. Implementing the phase
reversal circuit as a rectifier has advantages for broadband operation, because diodes
can perform this operation at high-speeds.

4.3.5 Lowpass Filter, Highpass Filter, and Rectify

Likewise, in the circuit of Fig. 4.16, the squaring operation can be replaced by rectifi-
cation. The resulting circuit, and the edge-detected pulses, are illustrated in Fig. 4.18.
Unlike the smooth pulses generated by squaring circuits, the abrupt nonlinear rectifi-
cation creates harmonics at the bit-rate much the same as a rectangular edge-detected
pulse. Typical power-spectral-densities for the circuits of Fig. 4.17 and Fig. 4.18 are
given in Figs. 4.19(a) and (b) respectively.
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Figure 4.19 Typical power spectral densities for edge-detected pulse obtain from: (a)
Lowpass filtering and rectifying, (b) Lowpass filtering, highpass filtering, and rectifying.

4.3.6 Alternative Representations of Identical Circuits

Any particular edge-detection circuit can be derived using several different, and seem-
ingly distinct, approaches. At high-speeds there are no clean signal edges; signals
thought to be digital are in effect analog signals. When it comes to implementing a
clock-recovery architecture as an interconnection of transistors, most techniques will
look rather similar. For example, we saw that for digital signals, an EXOR gate, to-
gether with a time delay, can be used to detect edges. For an analog signal, squaring the
data, in conjunction with highpass filtering, is also a viable technique. Fig. 4.20 shows
how a high-pass filter, and a squaring circuit, used for edge-detection, can be thought
of as a delay-and-EXOR circuit. First consider the block diagram representation of this
circuit shown in Fig. 4.20(a). In the analog domain, delaying a signal and subtracting
it from itself performs a high-pass function, as in Fig. 4.20(b). Therefore, the same
circuit could be used either as a delay, or as part of an HPF. In Fig. 4.20(c) the squaring
operation is shown conceptually as the sum of three multiplications. If we assume that
the data is rectangular, then the squared data, and the squared delayed-data, will be
dc signals with equal value. Fig. 4.20(d) shows the equivalent circuit for rectangular
data where the new edge-detected signal ê(t; �) is a level shifted version of the signal
e(t; �). This delay and multiply edge-detection circuit was described by Millicker
and Standley [13, 14]. However, it is essentially equivalent to a delay and EXOR. In
the transistor level design, an EXNOR gate can have the same circuit topology as a
balanced multiplier. Whether one calls the circuit a multiplier, or an EXNOR gate,
is a matter of interpretation, and the level of signals one is using. Fig. 4.20(e) shows
the analog multiplier represented as an EXNOR gate with one inverting input, which
is logically equivalent to an EXOR gate, Fig. 4.20(f). Therefore, we have illustrated
how one clock recovery circuit can be thought of as an extension of the other. The
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Figure 4.20 Edge-detectioncircuit using an HPF and squaringcircuit showingrelationship
to a delay-and-EXOR circuit.

authors have found it very useful to look at a given clock recovery scheme from as
many points of view as possible. This not only leads to a better understanding of the
signal processing being performed, but also to circuit embellishments that improve
performance.

4.4 SPECTRAL LINE TECHNIQUES

In the previous section we saw that several different nonlinearities can be used to
extract a tone component from random NRZ data. The operation of edge-detection
creates a spectral-line at the bit-rate, and techniques of clock recovery employing this
method are often referred to as spectral-line clock extraction circuits. The clock can be
recovered using either a bandpass resonator or a PLL. In the case of a resonator tuned
to the bit-rate, the edge-detected data is used as an input signal to keep the resonator
ringing in response to the edge-detected signal. In the case of a PLL, a variable
frequency oscillator is adjusted by feeding back a comparison of the clock-phase with
the phase of the edge pulses. There are advantages and disadvantages of each method,
which will now be discussed.

4.4.1 Clock Recovery using High-Q Bandpass Filters

Once we have the edge detected signal, we now want to separate the pure tone at
the bit rate from the random data-dependent variations. One method is to filter out
the unwanted signal with a bandpass filter tuned to the clock bit-rate. The BPF is
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a resonant circuit that will ring in response to an input pulse. The signal e(t; �) is a
random stream of identical pulses at integer multiples of the bit-period. A pulse will
be present when there was a transition in the data, and no pulse will be present when
the data does not change states. Clearly this signal can be used to keep a resonator
ringing at the bit-rate, provided that the pulse repetition rate is within the bandwidth
of the BPF. Since there will be missing pulses whenever no data transition occurs, the
ringing will tend to die away during long periods of missing pulses due to dissipation
in the resonator. This dissipation will cause both amplitude, and phase modulation in
the extracted tone. This effect can easily be seen in the time domain. For a simple
second-order BPF with a transfer function of the form

H(s) =
2�!ns

s2 + 2�!ns+ !2n
(4.5)

there is a zero at the origin, and two complex poles, as shown in the pole-zero plot of
Fig. 4.21(a). The dissipation of the filter is the real-part of the complex poles ��!n,
where � is the damping ratio, and !n is the undamped natural frequency. We saw in
(2.218) and (2.228) that random amplitude and phase modulations were related to the
equivalent selectivity of the filter by

�am =
1p
Qeq

(4.6)

for pure amplitude modulation, and

�� =
1p
Qeq

(4.7)

for pure phase modulation. We can relate the selectivity to the dissipation in this simple
filter as the inverse of the integral of the normalized frequency response.

1

Qeq
=

1

!njH(j!n)j2
Z 1

0

jH(j!)j2d!

=

Z 1

0

4�2!̂2

1 + (4�2 � 2)!̂2 + !̂4
d!̂

= ��

(4.8)

We can also define a selectivity Q3dB that is the ratio of the 3-dB bandwidth to the
center frequency. For a second-order bandpass this can be shown to be

Q3dB =
1

2�
(4.9)
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Figure 4.21 Second-order bandpass filter, (a) pole-zero diagram, (b) frequency response
of real filter and equivalent ideal filter for Qeq = 4.

Therefore, the relationship between these two selectivities is

Qeq =
1

��
=

2

�
Q3dB (4.10)

The frequency response of this second-order bandpass filter is shown in Fig. 4.21(b)
together with an ideal BPF of normalized bandwidth 1=Qeq. In this plot Qeq = 4,
which correspond to a damping ratio of � = 1=4�. Taking the inverse Laplace
transform we know that the impulse response of the filter has a decaying envelope of
the form cenv(t) = e��!nt (4.11)

For a filter that is tuned to the bit-rate, then !n = 2�BT , and if we normalize time by
the bit-period such that

nt
4
=

t

T
; (4.12)

then the decaying envelope of the impulse response of the filter is

env(nt) = exp(��2�nt)

= exp

��2nt
Qeq

� (4.13)

This can be written in terms of a normalized time constant n� , where n� is the number
of bit-periods before the envelope decreases to a value of 1=e = 0:37;

env(nt) = exp

��nt
n�

�
; (4.14)
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and the normalized time constant is given by

n� =
Qeq

2
=

Q3dB

�
: (4.15)

The decay in the power envelope is proportional to the voltage squared, and is simply

Penv(nt) = exp

� �nt
n�=2

�
; (4.16)

which is the same as the result given in [15] with Q = Q3dB.

Physical Interpretation of Quality Factor Q (4.15) can be written in a form that
adds physical insight [16, ch. 10, p. 297]. The envelope of the stored energy in the
system will have the same functional form as the envelope of the dissipated power. For
example, we could consider the signal of interest to be the voltage across a capacitor,
in which case the energy stored on this capacitor is E = 1=2(CV 2), and the envelope
of the stored energy can be written as

Eenv(nt) = E0 exp

� �nt
n�=2

�
; (4.17)

where E0 is the initial stored energy at time t0. Differentiating both sides gives

dEenv(nt)
dnt

=
�E0

n�=2
exp

� �nt
n�=2

�
=

�1
n�=2

Eenv(nt); (4.18)

which is a first-order differential equation relating the rate of energy dissipation to the
total energy stored, from which we observe that

n� = 2

�
Eenv(nt)

�dEenv(nt)=dnt

�
: (4.19)

Therefore the normalized time constant n� is twice the ratio of the stored-energy to the
energy-lost-per-cycle; substituting for values of Q we obtain the following physical
interpretation for the filter’s quality factor.

Qeq = 4

�
stored energy for the nth cycle

energy lost in the nth cycle

�

Q3dB = 2�

�
stored energy for the nth cycle

energy lost in the nth cycle

� (4.20)

Since Q is a constant, the fractional energy-lost-per-cycle is constant and equal to
4=Qeq. Hence for a bandpass filter with Qeq = 10, the resonator will lose 40% of its
stored energy per cycle if no input is applied.
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Deviations in Clock Signal Envelope in Terms of Q Due to energy dissipation in
the resonator, the voltage envelope is reduced by 86.5%, and the power envelope is
reduced by 98% inQeq clock periods. Statistical analysis shows that the rms envelope
deviation for a linear phase filter is 1=

p
Qeq. For example, a 3� variation in the clock

envelope of within 50% requires Qeq � 36. However, this result is derived from an
ensemble average, and there will be time intervals when the deviation in the clock
envelope is significantly worse. The above time domain analysis gives us another
means to estimate the selectivity of a BPF needed to meet desired specifications. If we
have a requirement that the clock envelope can not drop below 50% of the nominal for
NB consecutive bits without a transition, then we required

e�NB=n� � 1=2 =) n� � NB

ln(2)
; (4.21)

therefore,

Qeq � 2NB

ln(2)
= 2:89NB ' 3NB : (4.22)

So as a rule of thumb for an arbitrary BPF, the number of consecutive bits without a
transition that can be tolerated before the clock amplitude is cut in half is

NB ' Qeq

3
; (4.23)

and NB ' Qeq=6 before the clock power is halved. If all bits are independent and
equally likely, then the probability that a sequence ofNB bits will not have a transition
is

PNB = Pr[no transition] = 2�(NB�1) (4.24)

Therefore, for a given probability, the sequence length is given by

NB = 1 +
� log(PNB)

log(2)
; (4.25)

and the required filter selectivity is therefore

Qeq = 2:89� 9:6 log(PNB): (4.26)

Therefore, a probability of less than 10�9 that the clock amplitude will fall below
50% of the nominal value requires Qeq � 90. For the same probability that the clock
power falls below 50%, Qeq must be greater than 180. For a 10-Gb/s data signal, the
probability of an event of duration 100 ps happening once in ten years of operation is
3:17� 10�19. This corresponds to a transitionless string of bits of length NB = 62.
The resultingQeq values needed are 180 for 50% envelope reduction, and 360 for 50%
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power reduction; the Q3dB values are 283 and 566 respectively. It should be stressed
that all of this analysis is approximate because it is assumed that the clock signal was
at the nominal value when the string of no transitions started. In reality, shorter strings
of data with no transitions will cause the same envelope reduction, provided that the
shorter strings occur in rapid succession. This analysis, however, does provide useful
information about Qeq and its relationship between the transition density of data and
the amplitude modulation; (4.26) supplements the information derived previously that
the rms amplitude and phase modulations are approximately equal to 1=

p
Qeq. These

results together provide the fundamental guidelines for determining the maximum
selectivity of a BPF required to meet a given specification.

4.4.2 Clock Recovery Using Surface-Acoustic-Wave Filters

To reduce the random amplitude and phase modulations and improve the accuracy of
the data arrival-time estimate, a very high selectivity filter is required. For a 1% rms
envelope deviation, which implies a peak-to-peak deviation of approximately 6�, or
6% in the clock envelope, we require a filter Q of 1002, or 10; 000. From the analysis
of the previous section we see that for Qeq = 10; 000 the impulse response of the
filter rings approximately 3333 clock cycles before reducing in amplitude by 50%,
and will ring 20; 000 cycles before reducing by 98%. Special design considerations
are required to achieve such a low dissipation and narrow bandwidth in a bandpass
filter. Lumped element bandpass filters, for example, can achieve Q values in the
hundreds, and mechanical and crystal filters can achieve Q values on the order of
1000. One clock recovery method that has been very popular in recent years involves
the use of surface-acoustic-wave (SAW) filter. SAW techniques have made possible
stable resonators with very high Q values; practical filters achieve Q’s in excess of
50,000 [17, p. 887].

Brief Overview of Transversal SAW Filters SAW filters are constructed using trans-
ducers on a piezoelectric material, usually quartz, that converts electrical energy to
acoustic waves and back again. Both resonator-type, and transversal filters are real-
izable. We will briefly describe the operation of a transversal SAW filter, such as the
one shown in Fig. 4.22. The filter operation is analogous to a finite-impulse-response
(FIR) filter. The electrical input signal transduces an acoustic wave that propagates
in the direction of the output transducer, where it is reconverted to an electrical signal.
An illustrative analogy describes a transversal SAW filter as “beating on one side of
drum, and picking up the vibrations on the other side.3” During each period of the
input signal, a new acoustic wave is launched. If the input signal frequency is such that
the new wave constructively interferes with the old ones, then a large acoustic wave

3Analogy given by Dr. Scott Willingham
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Figure 4.22 Conceptual diagram of a transversal SAW filter.

builds up, and is detected by the output transducer. If the input signal is not at the
proper frequency, then the waves interferes destructively, and no signal is transmitted
to the output.

The transducer typically consists of several hundred metal fingers. As each acoustic
wave travels in space, it interacts with new waves launched by the input signal at
different finger locations. The final acoustic wave transmitted to the output transducer
is, therefore, a convolution of the input signal, with a sinusoidal, time-limited, acoustic
wave. The impulse response of the filter is essentially the portion of a surface-
acoustic wave that overlaps the transducer, and is therefore of finite duration. If the
finger spacing and the velocity of the SAW are uniform, then the impulse response
is symmetric, and the filter will have a linear-phase, or a constant group-delay. The
frequency-domain magnitude response will be a narrowband filter, where the center
frequency depends on the finger spacing, and the propagation speed of the SAW. The
more fingers in the transducer, the longer the convolution pulse, and therefore, the
narrower the bandwidth. The Q value as given in [15] is

Q =
�NT

2
; (4.27)

where NT is the number of transducer fingers. For a typical value of NT = 500,
Q is approximately 800. Problems with SAW filters are that they are generally very
lossy, and the sub-micron finger spacing required for high-speed operation limits their
applicability to 3–5 GHz.
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Figure 4.23 Frequency instability of a narrowband BPF: (a) When Q is too large, the
clock tone is out of the filter bandwidth. (b) When Q is relaxed, the tone lies within the
passband.

Frequency Stability and Detuning Limitations on MaximumQ

Center-frequency stability places limitations on the maximum Q value of a filter for
clock recovery circuits. In order to filter as much of the unwanted noise and random
data dependent modulation as possible, the filter should zoom-in very close in frequency
to the clock tone. However, if the filter zooms-in too closely, it runs the risk of missing
the clock tone itself. This situation is illustrated in Fig. 4.23(a), where the clock tone
falls outside of the filter passband. When the BPF is not tuned to the bit-rate, then we
say that the filter is detuned. Factors that contribute to detuning are:

Fluctuations in the data rate due to frequency instabilities in the clock at the
transmitter.

Limited accuracy in which the filter can be manufactured and tuned after manu-
facturing

Drift in the filter’s center frequency with temperature.

Drift in the filter’s center frequency due to aging.

When all of these detuning factors are taken into consideration they impose a limitation
on the maximum Q value needed to insure that the clock tone lies within the passband
of the filter for worst-case center frequency deviations. Fig. 4.23(b) illustrates the
situation when Q is reduced. The clock tone now lies within the passband, but not
necessarily at the center frequency. The penalty incurred by increasing the filter
bandwidth is of course an increase in noise. If we define qualitative measures for the
performance degradation due to filter detuning, versus increased noise, then we can
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derive an optimumQ value, or at least, a range of Q values that simultaneously satisfy
both the detuning and noise requirements.

QuantitativeQ Limits The actual limitations on Q will depend on the choice of filter
and the accuracy with which the center frequency can be maintained. We can illustrate
the procedure for deriving the allowable range of Q values for a simple example. If we
return to the second-order bandpass filter example we recall that the transfer function
is given by

H(j!̂) =
2�j!̂

(1� !̂2) + 2�j!̂
; (4.28)

where !̂ = !=!n. The phase is therefore given by

� = 6 2�!̂ + j(1 � !̂2) = tan�1
�
1� !̂2

2�!̂

�
: (4.29)

This expression is more enlightening when we write the frequency in terms of the
deviation from the center frequency �!̂ = !̂ � 1. Recalling that Q3dB = 1=2� we
obtain

� = tan�1
�
�Q3dB�!̂

2 + �!̂

1 + �!̂

�
: (4.30)

We can take this normalization one step further, and express �!̂ in terms of the
one-sided 3-dB bandwidth. Therefore,

�!Q = 2Q3dB�!̂ (4.31)

so that j�!Qj = 1 at approximately the points of 3-dB attenuation, as illustrated in
Fig. 4.24. If the BPF were symmetric about the center frequency, then j�!Qj would
equal unity at exactly the 3-dB attenuation frequencies. The phase response is then
given by

� = tan�1
�
��!Q

2

�
2Q3dB +�!Q=2

Q3dB +�!Q=2

��
; (4.32)

and for large values of Q3dB, the result simplifies to

� ' tan�1 [��!Q] : (4.33)

Furthermore, since we will be interested in small phase deviations, where the tangent
function is approximately linear,

� ' ��!Q = �2Q3dB

�
f � fn
fn

�
: (4.34)



Clock Recovery 191
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Figure 4.24 Illustration of frequency normalization in a bandpass filter.

Relating Q to Maximum Phase Deviation To find a limit on the maximum value
of Q, we need to determine the maximum allowable deviation in the phase due to
detuning of the filter. We saw in table 3.5 and Fig. 3.20 that a steady-state phase error
in the clock signal reduced the effective SNR of the test statistic. In particular for a
rectangular correlation pulse, a 10% error in the clock-phase caused a 2-dB drop in
the SNR, which increases the error probability from 10�9 to 10�6. If we allow for a
phase deviation budget of 10% in our design, then we might arbitrarily allocate 2.5%
of the phase deviation to the filter detuning. From (4.34) we can find the maximum
frequency deviation that will produce a 2.5% phase deviation;

�max = 2�

�
2:5

100

�
�
����2Q3dB

�
�f

fn

����� : (4.35)

This imposes an upper limit on Q3dB of

Q3dB � �max
2

�
fn
j�f j

�
(4.36)

We can further express the filter detuning in terms of the deviations caused in the
center frequency of the filter. If each contribution to filter detuning is �fi, then in the
worst-case

j�f j =
X
i

j�fij: (4.37)

Since the filter is nominally tuned to the bit-rate (fn = BT ), the detuning upper limit
on Q3dB is given by

Q3dB � �max
2

�
BTP
i j�fij

�
; (4.38)
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and in terms of the equivalent noise power selectivity

Qeq � �max
�

�
BTP
i j�fij

�
; (4.39)

To obtain a lower limit on Qeq we recall from chapter 2 that when all of the energy
in the amplitude modulation of the clock is converted to phase-noise, the rms phase
deviation is given by

�� = 1=
p
Qeq: (4.40)

If we assume that the peak deviation in the phase-noise is approximately 3�� in each
direction, then we obtain the rough lower limit

�max � 3�� = 3=
p
Qeq (4.41)

Qeq � 9=�2max: (4.42)

Putting the two limits together we finally obtain the desired relationship

9

�2max
� Qeq � �max

�

�
BTP
i j�fij

�
: (4.43)

For our numerical example of �max = 2:5% = 0:157 rad = 9� we find that

365 � Qeq � 5%

�
BT

j�f j
�
: (4.44)

In order to simultaneously satisfy both requirements then� j�f j
BT

�
� 5%

365
= 137 ppm: (4.45)

Therefore, the worst-case detuning of the BPF can not exceed 137 ppm. If the bit-rate
is 2-Gb/s, this requirement imposes a total worst case drift in the BPF center frequency
of 274-KHz. This detuning allocation is within typical specifications of commercially
available filters as reported in [18].

Summary of Clock Recovery Using SAW Filters

Although the above analysis is only approximate, it does illustrate the trade-offs that
must be made between noise suppression and center-frequency stability in choosing
a Q value for the BPF. Typical Q values for such systems are on the order of 1000.
Extensive analytical and experimental studies of SAW filter for use in undersea long-
haul fiber-optic systems were undertaken in the mid 1980s at Bell Labs. The results
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Clock Recovery Using SAW Filters
Advantages Disadvantages

� Simple to implement
� Fixed center frequency doesn’t

track the data rate
� Proven Reliability � Noise bandwidth is fixed

� No problems such as frequency
acquisition and cycle-slipping
common in phase-locked loops

� Limiter circuit is required
to eliminate amplitude modulation,
which generates additional
phase-noise

� Variations due to aging and
temperature changes are manageable

� Phase adjustment is required, open-
loop adjustment doesn’t track
variations in operating conditions

� Maximum frequency limited to about
3–5 GHz

� Maximum Q limited by detuning
requirements

� SAW Filter not compatible with
IC process. I/O buffers add excess
phase-shifts that must be cancelled

Table 4.2 Advantages and Disadvantages of using SAW filters for clock recovery in
broadband communication systems.

Data In 

EDGE 
DETECT 

 
DELAY 

PHASE ADJUSTMENT 

DECISION 

SAW FILTER 

Data Out 

Clock 

Figure 4.25 Block diagram of a clock recovery circuit using a SAW filter.

are summarized in two papers by Rosenberg et al. [15, 18]. SAW filters have proven
their reliability in practical systems, and as a result have been used extensively in clock
recovery circuit for multi-gigabit-per-second fiber-optic systems [15, 18, 19, 20, 21,
22, 23, 24]. However, there are several disadvantages of using a SAW filter, (namely,
the filter is not compatible with standard IC processes, and must be external to the
signal processing electronics). The advantages and disadvantages of using SAW filters
are listed in table 4.2.
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A block diagram of a clock recovery system using a SAW filter is shown in Fig. 4.25.
Since the filter is external to the chip, input- and output-buffers, with indeterminate
phase delays, are required. The output-buffer couples the edge-detected signal, from
the chip, into the external filter, while the input-buffer is needed to couple the filtered
clock-signal back into the chip. Compensation must be made for the phase-shifts
caused by these interface circuits by adding an adjustable phase shifter. This adjust-
ment must be manually tuned during an evaluation phase, where it will be set to a
nominal value that minimizes the error during test. However, this phase adjustment
is a one-time adjustment and can not compensate for variations in the bit-rate, or
environmental changes once the filter is in operation. Fig. 4.25 also shows a limiter
that is needed to remove the amplitude modulation in the recovered clock. The lim-
iter contributes excess phase-noise to the clock by two distinct methods. One is the
nonlinear phase-shift variations as a function of frequency, which is a characteristic of
any causal infinite-impulse-response circuit. The other is the conversion of amplitude
modulation into phase-noise by a nonlinear, amplitude-dependent, phase delay of the
buffer, which is often the dominant phase-jitter contribution. This is a characteristic
of any semiconductor device, where the parasitic capacitances are voltage dependent.
Therefore, delays will vary with the power level of the input signal. A technique for
reducing both types of these nonlinear delays is described by Nakamura et al. [25].

A further severe limitation on the use of SAW filters is that the maximum center
frequency is currently limited to about 3 GHz, with 5 GHz projected as the maximum
[17]. When a SAW filter can not be used, other techniques such as lumped-element,
microstrip-line, resonant-cavity, or dielectric resonators [23, 26, 13, 27] (Q ' 1000)
can be substituted for bit-rates up to 20 Gb/s. However, limitations in the maximum
center frequency can be circumvented by using mixers, or frequency dividers, to
heterodyne the clock-tone to a lower frequency, where the filtering can be done by a
SAW filter. A system that uses this approach to mix the clock frequency down by a
factor of 2 is described by Wang et al. [19, 20]. In the extreme case the signal could
be mixed all the way down to dc, and the noise filtering can be done in the baseband.
However, this doesn’t solve the detuning problem. Mismatches between the local
oscillator and bit-rate still need to be accounted for. However, if the local oscillator
can be made to track the bit-rate, then the detuning restriction can be eliminated. One
such tracking system is known as a phase-lock loop (PLL). Clock recovery using PLLs
is the subject of the following section.

4.4.3 Using PLLs to Synchronize a VCO to the Data Rate

Most of the disadvantages of using SAW filters, or other fixed frequency bandpass
filters, for clock recovery can be overcome by using a PLL. This comes at the expense
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Clock Recovery Using Phase-Locked Loops
Advantages Disadvantages

� Can achieve arbitrarily high Q,
and therefore a narrow noise bandwidth

� Requires frequency acquisition aids

� Clock tracks the bit-rate,
eliminating detuning safeguards

� Complex circuit design

� Clock has no amplitude modulation
eliminating the need for a
limiter amplifier

� Nonlinear frequency acquisition
and cycle-slipping limit performance

� Can be used to implement clock
recovery systems based on optimal
stochastic estimation

� With appropriately designed phase
detectors can be self-adjusting to
compensate for the phase-errors due
to other circuits in the system

Table 4.3 Advantages and Disadvantages of using PLLs for clock recovery in broadband
communication systems.

of increased design complexity. In addition to overcoming several of the disadvantages
of BPFs, PLLs are directly applicable to clock extraction using optimal stochastic
estimation techniques, to be described in section 4.5, whereas fixed filters would
require a feedback loop to be added for controlling an electronically tunable delay
in response to an error signal. The advantages and disadvantages of using a PLL
for clock recovery are given in table 4.3. Since the loop tracks the input bit-rate,
detuning constraints are eliminated and the effective Q of the PLL can be arbitrarily
large. Ultimately, limitationson the effective Q, which is controlled by the closed-loop
noise bandwidth of the PLL, will be set by nonlinear transient behavior constraints,
such as frequency acquisition, and frequency tracking. There are, however, analogies
to detuning that place limits on the maximum possible noise suppression. PLLs can
only naturally acquire frequency errors on the order-of-magnitude of the closed-loop
bandwidth. Therefore, if we depended on natural acquisition of the PLL alone, we
would be faced with the same detuning limitations discussed in the previous section.
However, we rarely depend on natural acquisition, and supplement the process with a
frequency acquisition aid of one kind or another to be discussed further in chapter 5.

A block diagram of a spectral-line clock recovery technique using a PLL is shown
in Fig. 4.26. Since a PLL can be fabricated on the same chip as signal processing
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Figure 4.26 Block diagram of a spectral-line clock recovery circuit using a PLL.

circuitry, the need for interface circuits, to bring signals on and off chip, and their
associated phase delays, are eliminated, thereby substantially reducing the phase-lag
in the lower-arm of the circuit. However, this doesn’t eliminate the need for the
phase adjustment altogether. There are still residual differences in the delays of signal
propagation in the data path and the clock path. Even in the decision circuit itself, it is
typical to find unequal delays in the data, and clock paths. The result is that for very
high data-rates, phase adjustments are ultimately required to center the clock edge in
the data-eye. Although, elimination of interface circuits reduces the magnitude of the
phase adjustment, we are still faced with the same problem that we had when using
a BPF for clock recovery, (namely, the open-loop phase-adjustment will not track
variations in the bit-rate due to temperature, or aging). We then have two options in the
design: we can perform open-loop phase compensation to account for the worst-case
detuning effects in the design, or we can design a special phase detector that measures
all of the excess phase errors, which can be zeroed using the negative feedback of the
PLL. Techniques for implementing the former approach are the topic of this section.
The later, self-adjusting systems, will be discussed in section 4.6.

PLL as a Bandpass Filter A PLL can is some respects be considered as an adaptable
BPF where the center frequency is automatically tuned to the bit-rate. If we look at the
operation in the frequency domain we see that the phase-detector functions as a mixer
to heterodyne the edge-detected input signal down to the baseband. This is illustrated
in Fig. 4.27(a). When the loop is in lock, the clock signal of the VCO is in quadrature
with the spectral line tone of the edge-detected signal. There will be no resulting dc
component since the two signal are orthogonal. The action of the PLL tracks the phase
of the edge-detected signal and mixes the signal energy, from a band of frequencies
around the clock rate, down to dc where it can be suppressed by the loop filter. The
mixer has the effect of zooming-in directly on the interesting part of the edge-detected
signal spectrum. Since the PLL is automatically tuned, the loop filter bandwidth
doesn’t have to be made large to account for various detuning factors. Therefore, the
loop filter can be be made narrowband, and excess noise is not added by processing
the signal in guard-band frequencies that contain only noise with no information. The
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Figure 4.27 Illustration of a PLL converting: (a) passband energy to baseband energy, (b)
baseband energy back to passband energy.

tuning of the PLL is accomplished by filtering the phase-error signal and using the
filtered signal to adjust a variable frequency oscillator. This baseband tuning signal
frequency modulates the VCO, and therefore shifts the spectrum of energy spectrum
to that of an FM signal center around BT . This operation is illustrated in Fig. 4.27(b).

Extremely high Q values are possible using a PLL without requiring a high-quality
resonator, although in many respects, since a low-phase-noise clock requires a low-
phase-noise VCO, we have just passed the problem of designing a good resonator
from the filter designer to the VCO designer. However, when the majority of the
phase-noise in the recovered clock is due to random modulations in the data, or due to
additive noise, as is typically the case for recovery of a clock from random data, the
bandwidth of the noise-suppression filter is the critical parameter in determining the
phase-noise in the recovered clock, and the added jitter of the free-running oscillator is
of secondary importance. Therefore we can use a somewhat noisy VCO with a low-Q
resonance together with a narrowband loop filter to achieve the same jitter performance
of a SAW filter with a high-Q resonance. Since the PLL is free from the detuning
constraints that limited the maximum Q in a bandpass filter, we can easily achieve an
effective Q of one million. If we design a PLL with a lag-lead loop filter such that the
closed-loop transfer function is second-order with a damping ratio of � = 1=

p
2, and

a natural frequency of fn=5-KHz, then for a clock tone at 10-GHz, the effective Q is
approximately

QPLL =
10 GHz
2 � 5 kHz

= 106: (4.46)

This effective Q can be interpreted by realizing that the PLL averages the phase-error
over several cycles; in this case it takes approximately one-million clock-cycles before
the loop filter can accumulate a large enough signal on the VCO control line to respond
to the error in phase. We can think of a PLL as a flywheel that is spinning at a rate
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Figure 4.28 Phase detection of edge-detected pulses in a direct implementation of a
spectral-line clock recovery system using a PLL.

close to the data rate. The flywheel has a timing mark on it. Input data signal acts
like a strobe light that flashes every time that a data transition is detected, revealing
the current phase-error of the timing mark. Feedback is used to align the timing mark
to the desired position. Increasing the time constant of the loop filter is analogous to
increasing the mass of the flywheel. A narrowband loop acts like a very heavy flywheel
that takes a lot of energy to alter its momentum. Whereas in the case of a BPF we saw
that the effective Q was determined by how many cycles the resonator could ring, in a
PLL the Q is determined by how many clock cycles it takes for the VCO to respond to
a phase error.

Direct Implementation of Spectral-Line PLL Clock Extractors

A balanced multiplier and a lowpass filter are typically used for phase detection in
PLLs. The phase detection process for random data is best illustrated in the time
domain. We will assume that an edge-detection scheme has been used that generates
raised cosine pulses. Timing diagrams for early, on-time, and late clocks are shown in
Fig. 4.28. During data transitions, the circuit acts as a traditional phase detector. The
dc output of the phase detector goes to zero when the two signals are in quadrature,
is a maximum when they are in-phase, and is a minimum when they are 180� out of
phase. When there is no data transition, we have already reasoned that there is no
phase information. The phase detector, therefore, contributes nothing to the average
phase error signal. When no transition occurs the edge-detected signal is steady at
some dc value. Multiplying by the recovered clock produces a pure ac signal that is
suppressed by an ideal lowpass filter. However, the ripple is not suppressed completely,
and residual ripple leads to excess clock phase jitter. One technique for reducing this
jitter is to use a tri-state phase detector that switches to a zero-state when no transitions
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occur. It can be seen from Fig. 4.28, that the ripple in the tri-state phase detector is
significantly reduced as compared to a standard phase detector.

Data Density Dependence and Pattern-Dependent Jitter Non-ideal effects will cause
degradations in performance. We have already mentioned that the transmission of
high-frequency ripple through the lowpass filter will modulate the VCO, resulting in
increased phase-jitter. In addition, noises in the circuit will modulate the phase-error
around zero, and constant adjustments have to be made by the negative feedback of the
PLL to maintain average synchronization. Since contributions to the phase-error only
occur during a data transition, the phase error magnitude is dependent on the transition
density of the data. Therefore, the dynamic behavior of the loop will vary significantly
for dense, and sparse transitions, leading to data pattern-dependent jitter in the recov-
ered clock (Certain data patterns will contribute much more jitter than others. As a
result the receiver is more likely to make an error when these patterns are transmitted.).
Pattern-dependent jitter is always present in a direct implementation. However, this
problem can be avoided by using alternative phase-detection methods. In section 4.6
we will present a technique that is similar to direct implementations, but uses a spe-
cial phase detector circuit, which is insensitive to data-density, thereby significantly
reducing pattern-dependent jitter. For now we will briefly review three different clock
recovery circuits that are direct implementations of spectral-line techniques using a
PLL.

The Circuit of Cordell et al. (Bell Labs 1979)

A direct implementation of a spectral-line clock recovery using a PLL was designed
at Bell Labs in 1979, and is described by Cordell et al. [12]. The circuit operates at a
data rate of only 50-Mb/s, however, the circuit was fabricated in a 300-MHz bipolar
process. Therefore, the transistor-speed-to-bit-rate ratio, fmax=BT ' 6, is favorable.
Modern transistors are 100 times faster, so that the techniques described by Cordell are
applicable to 5-Gb/s systems using technologies available in 1992. A block diagram of
the circuit used by Cordell is given in Fig. 4.29. The edge detection is performed using
a lowpass filter, differentiate, and rectify technique. The differentiation is performed
using a differential pair with capacitive emitter coupling, and the rectification is done
simply by tapping the emitters of an emitter-coupled pair. Cordell uses a tri-state phase
detector that turns off when no data transition occurs. As we saw in Fig. 4.28, this
prevents the double frequency ripple from coupling to the VCO and increasing the
phase jitter when the data is constant.

Cordell gives a very clear and concise overview of clock recovery in broadband systems.
Helpful timing diagrams are given as well as practical bipolar transistor-level circuit
realizations of critical functional building blocks. A frequency discriminator was used
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Figure 4.29 Block diagram of clock recovery circuit used by Cordell et al.

to aid in PLL frequency acquisition. The frequency detector was based on a circuit
described earlier by Bellisio [28], which was a quantized version of a quadricorrelator
first introduced in 1954 by Richman [29] in his classic paper on phase synchronization
accuracy in color television. The quadricorrelator and other frequency detectors will
be discussed in chapter 5.

The Circuit of Ransijn and O’Connor (AT&T 1991)

The circuit of Ransijn and O’Connor confirms that the technique of Cordell et al. can
be used to implement multi-gigabit-per-second systems using modern technologies.
Ransijn and O’Connor use AlGaAs heterojunction FETs to operate at data rates of
4-Gb/s with transistor fts of 26-GHz (ft=BT = 6:5). This represented the state-
of-the-art in PLL based clock recovery circuits in 1991. And it demonstrated that
monolithic PLL clock recovery circuit were approaching the speeds of 10-Gb/s hybrid
circuits using dielectric resonator bandpass filters [26, 27]. A block diagram of the
clock recovery and data retiming circuit is shown in Fig. 4.30. The data is first passed
through a limiter. The edges of the data are detected using a delay and EXOR circuit.
The phase and frequency of these edge pulses are detected using a quadricorrelator.
The resulting clock phase depends on the half-bit delay of the edge-detection circuit
as shown in Fig. 4.31. A tunable shorted strip-line is used to generate the delay. The
optimum clock phase is determined by adjusting this delay. The delay is adjusted in
both directions until the BER increases above a certain threshold. The final delay is then
set in the center of this interval. Although this may, nominally, not be at the optimal
sampling point in terms of maximizing the SNR, it does provide good immunity to
parasitic effects. Since the decision circuit and phase detector are fabricated using
similar circuits, their respective delays will track to a first order. Furthermore, as long
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as td is stable, the clock phase will be relatively fixed at the proper sampling point over
a broad range of operating conditions.

Ransijn and O’Connor give several helpful details concerning testing, and photographs
of high-speed hybrid circuits required for system integration are given. They also share
the belief with these authors, that the primary challenge of high-speed receiver design
is in minimizing parasitic effects that can render an otherwise good design useless.
This idea is probably best stated by Ransijn and O’Connor as follows:

“Although parameters such as input ambiguity, clock (phase), and attainable
bit rate are prime objectives, the real challenges in a circuit such as this,
with its various types of signals, are in finding ways to route the high-speed
signals and bypass the bias signals without introducingcrosstalk interference
that could easily result in reduced sensitivity, or worse, injection locking of
the PLL. The physical layout of the chip as well as its environment are as
important as the electrical design.”

When operating at a bit rate of 2.5-Gb/s, the 3-dB closed loop bandwidth of the
PLL is 1.2-MHz, which corresponds to Q ' 1000. The measured rms clock jitter
was 2�, which is approximately equal to the simple estimate derived in chapter 2
(1=

p
Q)180=� = 1:8�. The reported frequency acquisition time is approximately 4-

ms. Ransijn and O’Connor surmised that the fundamental limitation in the maximum
bit rate is due to the decision circuit. We will now present methods for overcoming
speed limitations in the decision circuit, by using bit interleaving.

Interleaving for Reduced Bandwidth Requirements

Direct implementations result in straightforward circuit design, but are rather wasteful
of precious bandwidth. If we were to implement the circuit of Fig. 4.26 directly, it
must pass the clock tone at a rate of BT . To pass 80% of the clock power requires a
circuit with a 3-dB bandwidth close to 2BT , which is more bandwidth than we may
care to sacrifice. We must keep in mind that our goal is to cram as much data through
transistors with limited speed as possible. For NRZ data, 80% of the signal power can
be passed by a lowpass filter with a 3-dB bandwidth of 0:8BT . The frequency content
of the data establishes a fundamental limitation on the speed of the circuitry required.
Since the speed of the electronics is the bottleneck in system throughput, we don’t
want to impose a more restrictive limit, due to our own sloppy circuit design than is
absolutely necessary. One might ask how we can reduce the bandwidth requirement
when we need a clock at a rate of BT ? The answer is that we need a clock at a
rate BT , but we don’t necessarily need a signal with a bandwidth of BT . Fig. 4.32
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Figure 4.32 Block diagram of a clock recovery and decision circuit using two-level inter-
leaving and a clock frequency of BT =2.

illustrates how a signal with a fundamental frequency of BT =2 can be used in a two-
level interleaved system to provide clocking at a rate of BT . Two identical decision
circuits are used. One is triggered on the positive edge of the clock, and the other
is triggered on the negative edge. The retimed data can be multiplexed back to the
original data rate, or the decision circuit interleaving can function as the first level of
demultiplexing of the data. The maximum required speed of the decision circuit is cut
in half, as is the maximum clock rate.

Potential Problems with Interleaving One should always be suspicious of claims
about increased throughput; in reality there will always be second-order effects to
counteract the proposed gains. One potential problem is that the half-rate clock may
not have a 50% duty-cycle. If this is the case, the sampling-instant will appear to have
jitter, and this jitter will be pattern-dependent. Another limitation is the setup-time of
the interleaved flip-flops. Looking at Fig. 4.32 we see that the flip-flops are clocked at
half the data-rate, however, the input to each flip-flop is still the high-speed data. Such
a flip-flop must be fast in order to grab the data as it goes by, because no matter how
slowly the flip-flop is clocked, the setup time remains short (one bit interval). It is still
an open questions as to how much speed improvement one gains in using a flip-flop as
a decision circuit in an interleaved receiver. Ideally the gain in throughput from using
bit interleaving will be somewhereN , whereN is the number of stages of interleaving,
but in practice that gain will be somewhere between 1 and N . We will discuss this
matter in a slightly different context in section 4.6.3, and in chapter 5 we will present
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Figure 4.33 Conceptual diagram combining the function of edge-detection and phase-
detection into one circuit.

an alternative approach to using a flip-flop as a decision circuit which may circumvent
these problems.

Clock Recovery Circuit of Enam and Abidi (UCLA 1992)

Considering the block diagram of Fig. 4.26, we see that the essential control signal,
required to adjust the VCO, is the phase-error. Since the input signal and the recovered
clock will be very close in frequency, the phase-error signal will be a slowly varying
baseband signal. If we can combine the functions of the edge-detector and the phase-
detector, as illustrated conceptually in Fig. 4.33, into one circuit that produces a slowly
varying phase-error output, without producing an intermediate signal at a frequency
of BT , then no internal circuits are required with a bandwidth of 2BT . This is the
goal of an ideal bit-interleaved approach by insuring that no circuit nodes within the
clock-recovery or decision circuits place limitations on the maximum obtainable data
rate that the circuit can process.

A realization of a bit-interleaved approach was reported by Enam and Abidi [30, 31].
The circuit, as illustrated in Fig. 4.34, uses two-levels of interleaving. The VCO
produces an in-phase and a quadrature clock at a frequency of half the bit-rate. The
function of the circuit can be understood simply as a spectral-line PLL clock extractor.
Edge-detection is performed by squaring the data, which has been pre-conditioned
by a lowpass filter so that the data transitions are smeared across one bit-interval. A
second multiplier acts as a frequency doubler by mixing the in-phase and quadrature
signals from the VCO. Therefore the input to the third frequency detection multiplier
is an edge-detected signal containing a spectral-line at BT , and a clock signal at
a frequency close to BT . Multiplying these signals, and then lowpass filtering the
product, produces the desired phase error. Thus far, nothing has been gained in terms
of reduced bandwidth requirements, because the circuit, as described, still requires
high-speed internal signals. However, the benefit of Enam and Abidi’s implementation
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Figure 4.35 Enam’s phase detector combining edge-detection, frequency doubling and
phase-detection in one circuit that produces a low-frequency output.

is in the clever design of the phase-detector shown in dashed lines in Fig. 4.34. This
circuit is a quadruple-stacked multiplier, as shown in Fig. 4.35.

Although we have developed an understanding of the operation of this circuit in the
frequency domain, in terms of spectral-line techniques, we also could have derived
the same function in the time domain. The quadruple-stacked phase detector can
be thought of as an early-late clock recovery circuit. We will develop the early-late
concept more thoroughly in section 4.5. The phase detector can be viewed as ideal
switches that steer the tail current either, down the early-side, or down the late-side.
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The difference between the quiescent current in each leg is integrated by the parasitic
load capacitance at the output nodes. The bottom two levels of the phase detector
switch the current under control of the clock signals only. The end result is that the tail
current will be sourced down the early-side for the first half of each timing interval, and
down the late-side for the last half. The top two levels of the phase detector redirect
the current depending on the data polarity. The result of this current switching will
now be described for the various cases of data transitions.

data high When the data stays high during a timing interval, the current will be
sourced straight down the early-leg for the first half, and straight down the late-
leg during the last half. The average current in each leg will be half the tail
current, so there is no net current diverted to the parasitic integration capacitors,
and the resulting phase error obtained by subtracting the early signal from the late
signal will be zero.

data low The condition is similar when the data stays low. However, now the current
will follow a zig-zag path to the negative power supply. But the final result will
be that no phase-error signal is accumulated.

on-time transition The interesting case occurs when a data transition falls within the
timing interval. Since the data has been pre-filtered, the transition is smeared
across the bit interval. For this discussion we will assume that the transition is
symmetric. If a transition occurs so that the zero crossing falls precisely in the
middle of the timing interval, then during the first half of the interval, most of the
current will flow down the early-side, with some residual current being steered
to the late-side. During the next half cycle, the reverse will be true, and since
the transition in the data is symmetric there will be no net difference between the
early and late outputs.

early transition We can now see what will happen if the transition occurs early. Now,
too much of the current that was supposed to flow on the early side gets passed
to the late side. Therefore, the early output will be higher than the late output. If
we subtract the late signal from the early signal we get a negative result that can
be used to slow down the VCO.

late transition Clearly when the pulse is late in the timing interval, the late output
will be greater than the early output and the positive difference will speed up the
VCO.

In the following section we will derive the operation that a receiver must perform in
order to produce a maximum a posteriori (MAP) estimate. We will see that the early-
late technique implemented by the phase detector of Enam and Abidi is a limiting case
of a MAP clock extractor.
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4.5 MAXIMUM A POSTERIORI (MAP) SYMBOL

SYNCHRONIZATION

In this section, the problem of estimating the random arrival time, or epoch, of a
random data-bearing signal will be posed in mathematical terms. As has been the trend
in this book, several of the intermediate steps of the derivation will be shown explicitly.
These authors believe this approach makes the treatment more readable for the intended
audience of circuit designers, who may not be as familiar with probability theory as the
systems engineer. We will find that the basic operation required of the optimal receiver
is to perform multiple correlations of the received data signal with stored replicas of
the original data pulses, each replica pulse being shifted in time, to varying degrees,
relative to the received data signal. This is similar to template matching, where the time
offset corresponding to the template producing the highest correlation is declared the
maximum a-posteriori (MAP) epoch estimate. The mathematical derivation to come,
could well have been placed in an appendix. However, it has been included here for
continuity. The reader wishing to skip the mathematical details and get straight to the
results can proceed to section 4.5.2 on page 217.

4.5.1 Mathematical Derivation of MAP Clock Extractors

The analysis to follow is a summary of that given by Lindsey and Simon [32, ch. 9].
Similar analysis can be found for maximum-likelihood (ML) symbol synchronization
in the book by Stiffler [33, ch. 7]. The reader is also referred to a discussion on
minimum-mean-square estimation (MMSE) of arrival time, in the book by Lee and
Messerschmitt [34, ch. 15]. To make the problem tractable, we must necessary impose
certain conditions on the system. The primary assumptions made are the following:

A clock exists at the receiver of exactly the same frequency as the bit-rate — only
the phase of the clock is unknown.

There exists an exact replica of the transmitted pulse at the receiver. This assumes
either no distortion due to the channel, or that all distortion has been equalized.

The interfering noise is assumed additive, white, and Gaussian (AWGN).

The parameters of the observed data signal do not change during the observation
interval (time invariance).

A Word or Two About Notation It is appropriate at this point to say a few words
about notation. Often the same variable name is used to represent several different
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things. For example, in the literature, y can be: all possible outcomes of a random
experiment, one possible outcome, or a dummy variable of integration. Such notation
has been a great source of confusion to these authors. We will use the notation y(�) to
represent the ensemble random variable. y(�) is the result of the random experiment
�. And y is a dummy variable that spans the space of all possible outcomes of the
experiment. Therefore, a random signal may be represented as y(�), and the pdf of the
random variable is p(y). But don’t make the mistake of thinking that y(�) and y are
the same thing. y is just a dummy variable that we integrate over to find probabilities.
We could give y any name, but we give it a name similar to y(�) so we are reminded
of which random variable we’re dealing with.

Statement of the Problem

The problem can be stated as follows. The bit-interval is known to be T seconds long.
However, the arrival time of the bits t"(�) is unknown, and can take on any value in
the interval [0; T ]. After having observed the signal over the specified time period, we
want to evaluate the probability, at the receiver, that the actual phase error is equal to
t", given that we have observed one particular sample function of y(�), namely y(�).
We will choose for our timing estimate the value t̂" that maximizes this probability.
Stated mathematically,

t̂";
t"

max
h
Pr(t"jy)

��
y(�)

i
: (4.47)

Since t"(�) can take on a continuum of values, the probability of any particular value
t" is zero. Therefore, instead of maximizing the probability, the optimal estimate is
the value of t" that maximizes the a posteriori probability density function (pdf):

t̂";
t"

max
h
p(t"jy)

��
y(�)

i
(4.48)

Naturally, the parameters of the received signal will change over time, and the phase
estimate will have to be periodically updated. We can restrict our attention to time
intervals of length [0;KT ], over which the signal parameters are assumed to remain
constant. We observe a data signal y(t; �) for (K + 1) bits. For every time interval we
choose t̂", such that p(t"jy) is maximized. We see already that this receiver requires
storage of (K + 1) bits. Upon arrival of the last bit in this sequence, the receiver must
go back in time to make decisions about the polarity of the previous data. This analog
data storage is not practical; indeed, distortion-free storage is not even possible. In
reality, the clock phase will be continuously adjusted, and the next bit will be clocked
with a phase derived from the previous (K + 1) bits, thus eliminating the storage
requirements. The rest of this section is devoted to finding an explicit expression
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Figure 4.36 Sample data waveform with random phase t"(�) both with and without
additive noise.

for p(t"jy) as a function of t", under a given set of assumptions. Maximizing this
expression with respect to t" will reveal the mathematical operations that the receiver
must perform to derive a MAP arrival-time estimate.

Towards an Explicit Expression for the a Posteriori PDF

We will restrict our attention here to rectangular signals. Over a time interval [0;KT ],
the data can be represented as

y(t; �) =
KX
k=0

rk(�)pT [t� (k � 1)T � t"(�)] + n(t; �) (4.49)

There are three independent random variables in the above expression. The first rk(�)
is due the data polarity, the second t"(�) is the data phase, and the third n(t; �) is the
random additive noise, assumed to be zero-mean, white, and Gaussian. This data
signal is shown in Fig. 4.36, both with, and without, additive noise. Referring to
Fig. 4.36, we can make the following definitions. The time interval corresponding to
the kth subinterval is given by

Tk(t"); t 2 [(k� 1)T + t"; kT + t"]: (4.50)
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Notice that this time interval definition is a function of the dummy variable t" that we
will vary in our optimization procedure. But Tk(t") is independent of the true time
offset t"(�). Since the time is restricted to be within [0;KT ], we see that the 0th

and the Kth subintervals are truncated to t" and T � t" respectively. Although this
condition will cause some of the simplifying assumptions made later to be violated, as
long as K is sufficiently large, these edge effects will be insignificant.

Vector Representation of Signals We have already expressed the signal y(t; �) as a
vector. Now we will justify this more rigorously. Without loss of generality, we can
sample the data signal using M samples-per-bit. The number of sample can later be
made to approach infinity. Since we are dealing with white noise, we have a problem,
in that the variance of the noise sample is infinite, because the bandwidth is also infinite.
Therefore, we need some method of limiting the bandwidth, and letting the bandwidth
approach infinity together with the number of samples-per-bit. We will now describe
two conceptual methods of bandwidth limitation.

Bandwidth Limitations for Sampled White Noise If we assume that we have non-
ideal sampling, so that the sampler produces the average of the signal over the sampling
interval �t = T=M , then the resulting noise will be averaged, and the variance will
be finite. As M gets large, the sampler becomes closer to an ideal impulse sampler.
The sampling interval �t is assumed so small that the signal doesn’t changes in this
interval. Therefore replacing the signal value with the average doesn’t affect the result.
The autocorrelation function for the white noise is given by

rn(� ) =
N0

2
�(� ) (4.51)

and the variance of the average noise in the interval �t is

�2n = E

"
1

�t

Z �t

0

N0

2
�(� )d�

#2
=

N0

2�t
=

N0

2

M

T
(4.52)

Each noise sample in all sampling windows are uncorrelated.

We could also consider a method whereby the receiver is preceded by an ideal lowpass
filter of bandwidthB = M=2T . The frequency response of the ideal filter is given by

H(f) = rect(fM=T ): (4.53)

The variance of the noise passing through this filter is just

�2n =
N0

2

M

T
: (4.54)
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The autocorrelation function is given by

rn(� ) =
M

T
sinc

�
�

T=M

�
: (4.55)

The sinc function has nulls at multiples of T=M = �t. Therefore noise samples
separated in time by �t are uncorrelated.

Whether we assume that the system is preceded by an ideal lowpass filter, or the
samples arise from a non-impulse sampler, we will end up with the same result when
M is allowed to grow arbitrarily large. In bothcases the noise samples are uncorrelated,
and the variance of each sample is finite and given by �2n = N0M=2T . We can now
use vector representations for the signals and noise without worrying about problems
when the noise variance becomes infinite. We can order the samples in row vectors.
Therefore the received data signal can be expressed as

y(t; �) =
KX
k=0

rk(�)pT [t� (k � 1)T � t"(�)] + n(t; �)

y(�) =
KX
k=0

[rk(�)pT [k; t"(�)] +n(�)] ;

(4.56)

where

pT [t] =

�
V0 for t 2 [0; T ]

0 elsewhere.
(4.57)

We can define each shifted version of the original data pulse as

pk[t"(�)] = pT [t� (k � 1)T � t"(�)]
pk[t"(�)] = pT [k; t"(�)]:

(4.58)

Relationships Between Various Conditional Probabilities

We want to maximize the a posteriori pdf p(t"jy). This task can be made simpler by
expressing p(t"jy) in terms of a priori pdfs, and likelihoods. From Bayes’ rule [35, p.
30] the joint pdf can be expressed as

p(t";y) = p(t"jy)p(y) = p(yjt")p(t"); (4.59)

therefore

p(t"jy) = p(t")

p(y)
p(yjt"): (4.60)
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The conditional pdf p(yjt") is the likelihood of observing y when in fact the timing
error is t". However, y is also a function of the random data rk(�). Letting r(�) be a
row vector of the (K + 1) data values such that4

r(�) = [r0(�); r1(�); r2(�); : : : ; rK(�)]; (4.61)

then the desired likelihood can be obtained by averaging over all possible data se-
quences r. We would like to represent p(yjt") in terms of p(yjt"; r), for which we can
find an explicit representation. This can be accomplished with further applications of
Bayes’ rule. We begin by writing the likelihood expression in terms of the joint pdf;

p(yjt") = p(y; t")

p(t")
: (4.62)

Further, the joint pdf can be extracted by integrating p(y; t"; r) over all possible data
sequences r;

p(y; t") =

Z
r
p(y; t"; r)dr: (4.63)

Therefore, the likelihood is

p(yjt") = p(y; t")

p(t")
=

Z
r

p(y; t"; r)

p(t")
dr; (4.64)

and the desired a posteriori pdf is given by

p(t"jy) = p(t")

p(y)

Z
r

p(y; t"; r)

p(t")
dr: (4.65)

Continuing, the combined joint pdf can be expressed in terms of the the double
conditional density

p(y; t"; r) = p(yjt"; r)p(t"; r): (4.66)

Since the data is independent of the phase error, then

p(t"; r) = p(t")p(r): (4.67)

Finally, substituting (4.66) and (4.67) into (4.65), we get the first simplification of the
a posteriori conditional pdf

p(t"jy) = p(t")

p(y)

Z
r
p(yjt"; r)p(r)dr: (4.68)

4Notice that this vector is different from the ones defined previously. The signal is represented by aKM
dimensional vector obtained by takingM samples per bit. The vector r(�) is a (K+ 1) dimensional vector
that has only one value per bit.
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Assumptions Concerning the Data and the Additive Noise Further simplifications
can be made by making the reasonable assumption that all data symbols are uncorre-
lated. This implies

p(r) =
KY
k=0

p(rk): (4.69)

In addition, when each symbol is equally probable, the random variable rk, which
determines the data polarity, has a pdf that consists of two impulse functions of
magnitude 1/2 at +1, and -1;

p(rk) =
1

2
�(rk � 1): (4.70)

Since the initial noise is assumed to be white, each bandlimited noise sample is
uncorrelated. With both the data, and additive noise being uncorrelated in different
sampling windows, the received signal pdf can be separated into the product of pdfs
over each of the (K + 1) bit intervals.

p(yjt"; r) =
KY
k=0

p(ykjt"; rk): (4.71)

This condition implies that any sample in one bit interval, provides no information
about the data value, or the noise value in any other bit interval. Therefore, the integral
in (4.68) can be expressed as the integral of the product of the pdfs for each bit interval;

Z
r
p(yjt"; r)p(r)dr =

Z
r

KY
k=0

p(ykjt"; rk)p(rk)dr: (4.72)

This integral of products can be grouped as the product of integrals, so that

p(t"jy) = p(t")

p(y)

KY
k=0

Z
rk

p(ykjt"; rk)p(rk)drk: (4.73)

Substituting p(rk), as given in (4.70), into the above expression we obtain the second
simplification of the a posteriori pdf.

p(t"jy) = p(t")

p(y)

KY
k=0

1

2
[p(ykjt"; 1) + p(ykjt";�1)] : (4.74)

Assumptions Concerning the Time Offset and Received Data To obtain the final
form of the expression that we desire, we make the reasonable assumption that the
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random arrival time t" is uniformly distributed over the interval [0; T ]. This implies
that the the pdf p(t") is a constant, independent of t". We also assume hat the statistics
of signal y(�), over the entire observable time interval [0;KT ], are independent of
t". This will be true for K >> 1, where the edge effects mentioned earlier become
insignificant. Therefore, both p(t") and p(y) are independent of t", so that maximizing
p(t"jy) with respect to t" is equivalent to maximizing

KY
k=0

[p(ykjt"; 1) + p(ykjt";�1)] : (4.75)

We can see that maximizing the above expression is nothing more than maximizing
the likelihood. Hence, for the assumptions made, the MAP estimate is equivalent to
the ML estimate. We now have the condition that the MAP epoch estimate t̂" is given
by

t̂";
t"

max
KY
k=0

[p(ykjt"; 1) + p(ykjt";�1)]
��
yk(�)

: (4.76)

MAP Estimator in Gaussian Noise

If we now assume that the noise is zero-mean and Gaussian, we can find an explicit
expression for the pdfs given in (4.76). The data in each bit interval can be expressed
as

yk(�)j(t"; 1) = pk[t"(�)] +nk(�)

yk(�)j(t";�1) = �pk[t"(�)] +nk(�)
(4.77)

From section 3.3.2 we know that the multi-dimensional Gaussian pdf can be written as

p(ykjt"; rk) = 1

(2�)M=2(detRn)1=2
exp

�
�1

2



(yk � rkpk(t"));R

�1
n (yk � rkpk(t"))

��
(4.78)

Since the noise is uncorrelated, the covariance matrix is diagonal;

Rn = �2nI; R�1n =
1

�2n
I : (4.79)

And due to the bandwidth limitations of (4.52) and (4.54) that we have conceptually
imposed, the variance is equal to

�2n =
N0

2

M

T
: (4.80)
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The pdf can then be simplified to

p(ykjt"; rk) = 1

(2��2n)
M=2

exp

�
� 1

2�2n
kyk � rkpk(t")k2

�
: (4.81)

The sum of the two conditional densities,

S(yk; t") = p(ykjt"; 1) + p(ykjt";�1); (4.82)

is therefore given by

S(yk; t") =
1

(2��2n)
M=2

�
exp

�
� 1

2�2n
kyk � pk(t")k2

�
+ exp

�
� 1

2�2n
kyk + pk(t")k2

��
(4.83)

Expanding the arguments of the exponentials we obtain

S(yk; t") =
C

2

�
exp

�
1

�2n
hyk;pk(t")i

�
+ exp

�
� 1

�2n
hyk;pk(t")i

��
; (4.84)

where
C

2
=

1

(2��2n)
M=2

exp� 1

2�2n

�kykk2 + kpk(t")k2
�
: (4.85)

We see that kpk(t")k2 = P0 is the transmitted power in a bit interval T . Since we
have defined the time intervals Tk(t") such that exactly one bit is contained in that
interval, then t" only translates the received data and has no effect on the power. Indeed
for rectangular data, it wouldn’t matter if a transition had fallen in the middle of a bit
interval; the average-power-per-bit would still be constant. kykk2 = Py is the received
average power per bit interval. This is only a function of the dummy variable yk and
is independent of the the time offset t". Further realizing that

cosh(x) =
ex + e�x

2
; (4.86)

then the sum S(yk; t") in (4.84) is given by

C cosh
1

�2n
hyk;pk(t")i (4.87)

The arrival time estimate that maximizes the a posteriori probability is therefore

t̂";
t"

max
KY
k=0

cosh
1

�2n
hyk;pk(t")i

��
yk(�)

: (4.88)

The hyperbolic cosine function is always positive. Since the natural logarithm is a
monotonic function for positive values, then maximizing � over positive values is
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equivalent to maximizing ln(�). By taking the natural logarithm we obtain the desired
function that the receiver must maximize in order to estimate the arrival time;

t̂";
t"

max
KX
k=0

ln

�
cosh


yk;pk(t")
�2n

�� ��
yk(�)

: (4.89)

In the following section we will see how this result can be extended to the continuous
time case when M approaches infinity.

Extension to Continuous time

The dot-product operation in (4.89) can be written as

1

�2n
hyk(�);pk(t")i =

MX
m=1

ykm(�)pkm(t")

N0=2

T

M
: (4.90)

In the limit as M !1 the dot-product becomes an integral;

Ik(y; t") =
1

N0=2

Z
Tk(t")

y(t; �)pk(t")dt: (4.91)

In the case of rectangular pulses the integral simplifies to

Ik(y; t") =
V0

N0=2

Z kT+t"

(k�1)T+t"
y(t; �)dt: (4.92)

We can define a normalized received signal z(t; �) such that

z(t; �) = y(t; �)
V0

: (4.93)

The correlation integral can then be written in terms of the normalized signal

Ik(z; t") =
V 2
0 T

N0=2

"
1

T

Z kT+t"

(k�1)T+t"
z(t; �)dt

#
: (4.94)

We recognize V 2
0 T as the energy per bit E0. Recalling that the signal-to-noise ratio

from chapter 3 is given by

SNR =
E0

N0=2
; (4.95)
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Figure 4.37 Open-loop implementation of a MAP timing estimate circuit.

we arrive at the expression that must be maximized to obtain a MAP timing estimate,

t̂";
t"

max
KX
k=0

ln

"
cosh

 
SNR

"
1

T

Z kT+t"

(k�1)T+t"
z(t; �)dt

#!#
(4.96)

In the following sections, block diagrams of receivers will be presented that implement
the search algorithm given in (4.96).

4.5.2 Open Loop Correlator

An open-loop system that approximates the operation outlined by (4.96) is illustrated
in Fig. 4.37. In this implementation, only a discrete number of correlators are used.
The number of correlations needed depends on the desired accuracy of the estimate.
This circuit is not practical because it requires perfect frequency synchronization at
the receiver, several parallel correlations, and a multi-phase clock. Nevertheless, it is
instructive to consider the operation of the open-loop estimator.

In the absence of noise, and at the optimal sampling phase, the integral

1

T

Z kT+t"

(k�1)T+t"
z(t; �)dt; (4.97)

will be equal to unity. When a transition occurs in the bit-interval the integral will
be linearly proportional to the timing error, dropping to a value of zero for an error
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Figure 4.38 Plots of the weighting function ln(cosh(x)) for: (a) small values of x, (b)
large values of (x).

of jT=2j. In the presence of additive noise however, this integral will fluctuate. We
multiply the integral by the SNR and take a weighted average over K bits to get
an indication of the degree to which our timing estimate is accurate. The weighting
function ln[cosh(x)] is plotted in Fig. 4.38. For those readers familiar with bipolar
transitor circuits, the function ln[cosh(x)] is perhaps better understood by looking at a
circuit which produces it. The circuit of Fig. 4.39 shows two identical differential pairs
biased with the same current. One is driven with a differential input voltage and the
other provides a reference voltage. The difference between the voltages at the coupled
emitters of the two pairs is given by

�V

VT
= ln

�
cosh

�
Vd
2VT

��
: (4.98)

From Fig. 4.38(a) we can see that for low SNR the weighting function is approximately
equivalent to squaring the signal, while at high SNR, the weighting function amounts
to rectification. Therefore at high SNRs all correlations, large and small, are given
approximately equal weighting. At low SNR however, the signal is close to the noise
floor, and a large part of the correlation output is due to noise. Therefore, a large
correlation event is biased much more heavily than a small one. For example, a single
correlation value of 10 is given much more weight than 10 separate correlations of
unit value. However, the nonlinear weighting is only relevant for SNR less than unity.
We saw in chapter 3 that in order to achieve an error probability less than 10�9, an
SNR greater than 36 is required. For broadband fiber-optic communications systems
the SNR will be large, so that the weighting function can, for all practical purposes be
replaced by a rectifier. For our circuit analogy this means Vd >> VT .
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Figure 4.39 Circuit used to produce the logarithm of a hyperbolic cosine

Although it has been stated that this open-loop system is not practical it can be used
when the desired accuracy of the timing estimate is not crucial. In this case an
intermittent phase readjusting approach could be used as outlined in section 4.2. Only
a small number of discrete clock phases need be used, and slight frequency errors in the
clock at the receiver can be tolerated. In the following sections we will show practical
closed-loop clock recovery circuits based on the MAP estimate.

4.5.3 Closed-Loop Stochastic Gradient Based Clock Extractors

The correlation function �[z(t; �); t"] given in (4.96) is obtained by taking a weighted
average of the following correlations performed on each bit

Ik[z(t; �); t"] =
SNR
T

Z
Tk(t")

z(t; �)pk(t")dt: (4.99)

The pulse pk(t") is normalized by the average energy such that

pk(t") =
pk[t"]

V0
=

pT [t� (k � 1)T � t"]

V0
= pT [t� (k � 1)T � t"]; (4.100)

where VO is defined for a general pulse as

V0
4
=

"
1

T

Z T

0

p2T (t)dt

#1=2
(4.101)

The optimal open-loop correlator sums all integral outputs Ik for (K +1) bits through
the weighting function [ln cosh(Ik)], which is an even function and thus removes
random phase reversals due to the data polarity. We can plot the output of the correlator
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Figure 4.40 (a) Correlation output as a function of t". (b) Negative gradient of correlation
function.

as a function of the phase estimate t" as shown in Fig. 4.40(a). The optimal phase
estimate t̂" is shown at the point where �[z(t; �); t"] is a maximum. The negative
gradient of the correlation function is shown in Fig. 4.40(b). We can see that the
gradient goes to zero at the optimal estimate, is negative for an early clock, and is
positive for a late clock. Instead of building a receiver to find the correlation function,
we can design one that finds the gradient of the correlation function, and use the
gradient in a closed loop system to synchronize the clock to the optimal phase. A
closed-loop system is desirable because the clock at the transmitter and the channel
characteristics drift over time, and need to be continuously tracked. To reveal the
operations that such a receiver must perform, we will find an explicit expression for
the gradient by differentiating �[z(t; �); t"] with respect to t".

Explicit Expression for the Gradient

The correlation function is given by

�[z(t; �); t"] =
KX
k=0

ln [cosh (Ik[z(t; �); t"])] : (4.102)
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The negative gradient by the chain rule is then

�@�[z(t; �); t"]T

@t"
= �T

KX
k=0

1

cosh(Ik)

@ cosh(Ik)

@t"

= �T
KX
k=0

sinh(Ik)

cosh(Ik)

@Ik
@t"

= �T
KX
k=0

tanh(Ik)
@Ik
@t"

:

(4.103)

We now have the problem of evaluating

@Ik[z(t; �); t"]

@t"
=

@

@t"

"
SNR
T

Z kT+t"

(k�1)T+t"
z(t; �)pk(t")dt

#
; (4.104)

where the variable t" appears both in the integrand, and in the limits. Derivatives of
this type can be evaluated using an extension of Leibniz’s rule [36, p. 360], stating that
if

F (t") =

Z �(t")

�(t")
f [t; t"]dt; (4.105a)

then

@F (t")

@t"
=

Z �(t")

�(t")

@f

@t"
dt+

@�(t")

@t"
f [�(t"); t"]� @�(t")

@t"
f [�(t"); t"]: (4.105b)

Therefore, the derivative in (4.104) is given by

@Ik[z(t; �); t"]

@t"
=

SNR
T

Z kT+t"

(k�1)T+t"
z(t; �)

@

@t"
pT [t� (k � 1)T � t"]dt+

SNR
T

�
z[kT + t"; �]pT (T ) � z[(k � 1)T + t"; �]pT (0)

�
:

(4.106)

Since we can build a circuit to process the data signals in real time, we would like to
relate the derivative with respect to t" to derivatives with respect to time. The pulse
pT [t� (k � 1)T � t"] is plotted in Fig. 4.41(a) as a function of time for a fixed value
of t", and conversely in Fig. 4.41(b). We see that

� @

@t"
pT [t� (k � 1)T � t"] =

@

@t
pT [t� (k � 1)T � t"]; (4.107)



222 Chapter 4

t 

pT( t - (k-1)T -tε ) 

(k-1)T + tε kT + tε 
tε 

pT( t - (k-1)T -tε ) 

t - kT t - (k-1)T 

(a) (b)

Figure 4.41 Plots of the normalized data pulse: (a) as a function of t for a fixed offset t",
(b) as a function of t" for a fixed time t.

which is obvious by a substitution of variables. However, illustrating the derivative
of the pulse shapes aids in understanding the resulting clock recovery circuit on an
intuitive level. For the case of rectangular pulses, pT equals unity in the interval [0; T ].
Therefore,

� @

@t"
pT [t� (k � 1)T � t"] = ��[t" � (t� kT )] + �[t" � (t � (k � 1)T )]

= � [t � ((k � 1)T + t")]� � [t � (kT + t")] :
(4.108)

For a half-cosine pulse of the form

pT [t] =

�p
2 sin

�
�t
T

�
for t 2 [0; T ]

0 elsewhere,
(4.109)

The derivative is given by

� @

@t"
pT [t� (k � 1)T � t"] =

�
p
2

T
cos
h�
T

(t� (k � 1)T � t")
i
: (4.110)

These derivatives are shown in Fig. 4.42. We can see that the derivative of the pulse
makes a transition from positive to negative over the bit interval, with a zero crossing
at the center of the bit. The steeper the transition in the data, the more the energy in the
derivative signal will be concentrated at the edges. Substituting into (4.103) we can
now write the negative gradient of �[z(t; �); t"] in terms of operations with respect to
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Figure 4.42 Negative gradients of pulse shapes as a function of the offset time t" for: (a)
a rectangular pulse, (b) a half-cosine pulse.

time. The result is given by
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SNR [z[(k � 1)T + t"; �]pT (0) � z[kT + t"; �]pT (T )]

�
:

(4.111)

Direct Implementation of Gradient Based Clock Recovery

The signal processing required to produce the gradient given in (4.111) can be un-
derstood much more easily in block diagram form, as shown in Fig. 4.43, for the
special case of a signal pulse that is equal to zero at the end points 0, and T [37, p.
233] [32, p. 431]. The hyperbolic tangent function can be implemented easily using
bipolar transistors as a simple emitter-coupled pair. For large SNR the tanh function
approaches a hard-limiter with the transfer characteristic of a signum function. The
accumulation of correlation values over (K +1) bits has been replaced by a filter with
a transfer functionF (s). Since the clock extraction circuit is a negative-feedback sys-
tem, F (s) must be designed appropriately for loop-stability and the desired dynamic
behavior. Effective accumulation of the phase-errors over the (K + 1) bit sequence is
accomplished by a convolution with the impulse response of the loop filter. Since the
statistics of the signal are constantly changing, we prefer to weight recent bit correla-
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Figure 4.43 Block diagram of a direct implementation of MAP gradient-basedclosed-loop
clock extractor.

tions more heavily than those from the past. Therefore, the impulse response should
have a decaying envelope and effectively go to zero beyond (K + 1) bits. Traditional
filters have this type of impulse function, and we favor them over a moving average
accumulator.

Phase-Detector Characteristic The timing recovery circuit of Fig. 4.43 is reminiscent
of a Costas Loop used for carrier recovery in binary phase-shift keyed (BPSK) systems.
The operation of the circuit is understood simply if we assume the clock is nearly
synchronized with the data. In this case the data-arm signal is the retimed data, and the
phase-error-arm produces an estimate of the timing offset. However, the polarity of
the phase-error varies randomly with the data. By multiplying the phase-error with the
retimed data, the random polarity ambiguity is removed, and an error signal is produced
with an average value proportional to the time offset. This error signal is negative for
an early clock, and positive for a late clock. We are interested in determining the error
function produced at the input of the loop filter F (s) as a function of the timing offset
t". The actual phase-error function will be random. Its magnitude will depend on the
number of data transitions, and it will have ripple components that will depend on the
data pattern. However, we can determine the basic operation of the phase detector be
considering maximum data density (alternating ones and zeros, or a periodic input with
a frequency of half the data rate). The inherent nonlinearities of the circuit will warp
the phase-error estimate, producing a nonlinear function of the time offset in general.
This warping will depend on the data-pulse shape, and will now be illustrated for some
special cases.

Half-Cosine Pulses Correlations for an early, on-time, and late clock are shown in
Fig. 4.44. For an early clock, the data and the derivative are out of phase, and the
correlation is negative — slowing down the clock. When the clock is on time, the
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Figure 4.44 Illustration of correlation of a half-cosine pulse with its derivative for and
early, on-time, and late clock.
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Figure 4.45 Phase error as a function of timing offset for half-cosine data pulses and
maximum data density.

data and the derivative are in quadrature, producing an error of zero, so that the clock
phase stays fixed. For the case of a late clock, the data and derivative are in-phase.
The phase-error produced is positive, and the clock frequency will be increased to
compensate for the error.

We have shown results for a positive data pulse. The results will be the same for a
negative pulse, because the polarity of the error is determined by the product of the
correlations with the sign of the retimed data value. The resulting error signal is plotted
in Fig. 4.45 as a function of the actual time offset. We see that the error function is a
switched sinusoidal, with stable equilibrium points at multiples of T , and is monotonic
over the bit interval [�T=2; T=2].
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Figure 4.47 Phase error as a function of timing offset for rectangular data pulses and
maximum data density.

Rectangular Pulses For the case of rectangular pulses, the data is non-zero at the end
points. Substituting the impulse functions for the derivative into (4.111) we arrive at
the result

�
@�[z(t; �); t"]T

@t"
=

KX
k=0

tanh

"
SNR
T

Z kT+t"

(k�1)T+t"
z(t; �)dt

#
�

2SNR
�
z[(k � 1)T + t"; �]� z[kT + t"; �]

�
:

(4.112)

We see that the phase error is obtained by taking the difference of the data at the two
end points and multiplying by the retimed data. The difference at the end points is
illustrated in Fig. 4.46 for timing errors of magnitude less than T=2. It can be seen that
the difference is negative for t" 2 [�T; 0] and positive for t" 2 [0; T ]. However, the
data changes sign at the points�T=2, and we end up with a square wave phase-error
function as shown in Fig. 4.47. This phase error function is undesirable from a stability
standpoint because of the steep transition through the equilibrium point. However, this
square-wave characteristic is equivalent to quantizing the phase-error to one-bit. Since
the closed-loop bandwidth is much less than the clock rate, these one-bit errors will
average out to produce a stable equilibrium.
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Altering the Pulse Derivative to Enhance the Phase Error Function We can see from
the previous examples that the monotonic range of the phase detector is determined
by the time over which the energy is spread in the derivative pulse. For half-cosine
pulses the derivative had energy over the entire bit interval, and the phase-error was
also monotonic over the interval. Often we will be dealing with rectangular pulses,
and we would like to increase the monotonic range of the phase error function. This
improves both phase tracking and frequency acquisition properties of PLL-based clock
recovery circuits. A straightforward method of increasing the monotonic range is to
replace the derivative with a finite difference over a time �t. This will have the effect
of spreading the energy in the impulses over a larger portion of the bit interval. Clock
recovery circuits based on this approximation of the derivative are discussed in the
following section.

4.5.4 Early-Late Clock Recovery Circuits

We can approximate the time derivative of the data pulse by a difference. If we let t
be in the center of an interval �t, then the derivative is approximately given by

@

@t
pT (t) '

pT [t+
�t
2 ]� pT [t�

�t
2 ]

�t
; (4.113a)

or

@

@t
pT [t� (k � 1)T � t"]�t '

pT [t� (k � 1)T � (t" �
�t
2 )]| {z }

early

� pT [t� (k � 1)T � (t" +
�t
2 )]| {z }

late

(4.113b)

Approximations of this derivative for various values of �t are illustrated in Fig. 4.48.
We also recall that for rectangular pulses, the term

z[(k� 1)T + t"; �]pT (T )� z[kT + t"; �]pT (0) = z[(k� 1)T + t"; �]� z[kT + t"; �]
(4.114)

produces a square-wave phase-error response, as we saw in Fig. 4.47. Since we don’t
want a square-wave output from the detector, we can ignore this term in favor of a
more gradual transition through the equilibrium point. After substituting (4.113b) into
(4.111), and ignoring the last term, we arrive at the following approximation for the
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A circuit that implements this function is shown in Fig. 4.49, where a hard limiter
replaces the tanh function for large SNR. One of the problems with processing signals
skewed in time is that they must be “deskewed” before being operated upon. In
Fig. 4.49 we show a delay of �t in the early-arm, and a delay of �t=2 in the on-time-
arm. This ensures that the signals x, y and d2 arrive synchronously. Other methods
of deskewing, such as sample-and-holding the signals, or using shift-registers in a
quantized realization, are also viable techniques.

Self-Adjusting Property of Early-Late Circuits The early-late clock recovery circuit
of Fig. 4.49 is an example of a self-adjusting circuit. The self-synchronizing property
arises due to the fact that identical circuits are used for both the phase-detector and the
decision circuit. Therefore, any parasitic delay in the decision circuit will be accounted
for by the phase-detector, and the clock phase will be automatically compensated. More
will be said about self-adjusting circuits in section 4.6.
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Figure 4.49 Block Diagram of an early-late gate clock recovery circuit.

Early-Late Circuit Using Rectifiers

We can arrive at a slightly different early-late gate structure if we first approximate
the ln[cosh(Ik)] nonlinearity for large SNR before we differentiate. Recalling that the
correlation function is given by

�[z(t; �); t"] =
KX
k=0

ln[cosh(Ik)]; (4.116)

we realize that for large SNR, the function is approximately equal to the absolute value
of the argument;

ln[cosh(Ik)] = ln

�
eIk + e�Ik

2

�
' ln

�
ejIkj

2

�
= jIkj � ln(2) ' jIkj: (4.117)

This property can be seen easily from Fig. 4.38(b). Making this approximation, the
correlation function is now simplified to

�[z(t; �); t"] '
KX
k=0

jIk(z(t; �); t")j: (4.118)

Further, using the difference approximation for the derivative, the negative gradient is
of the form

�
@�[z(t; �); t"]

@t"
'

�[z(t; �); t" ��t=2]� �[z(t; �); t" +�t=2]

�t
: (4.119)
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(4.120)
A block diagram of a circuit that performs this function for rectangular signals is shown
in Fig. 4.50. This circuit has been used extensively, and is described throughout the
literature [37, p. 235], [34, p. 577]. Performance comparisons of various implantations
of this basic structure are given by Lindsey and Simon [32, pp. 458–465].

Comparison of Early-Late Circuits The difference between the early-late circuits
of Fig. 4.49 and Fig. 4.50 is the manner in which the phase reversal is implemented;
this has an affect on the phase-error characteristic. Consider the timing diagram of
Fig. 4.51 for the early-late circuit using multiplication of the error estimate by the
retimed data to reverse the phase. The case of an early clock is illustrated. The second



Clock Recovery 231

On Time 1 

Early 1 

Late 1 / Early 2 

Late 2 / Early 3 

Data 

(Z) 
Early Delayed (T)  -  Late 

(d2) Retimed Data 

 Delayed (T/2)  

(ε) 
Phase Error 

dc < 0 
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Figure 4.52 Timing diagram for a rectifying early-late gate circuit for an early clock with
�t = T .

signal is the result of taking a sliding average of the data signal. The waveform Z is
the difference of the deskewed early and late correlations, d2 is the deskewed data,
and � is the phase-error signal. It can be seen that the dc value of the error signal is
negative, indicating an early clock.

We can compare these results with those obtained for the circuit of Fig. 4.50. Since
this circuit takes the absolute value of the early and late correlations before taking the
difference, we would expect that there will be a penalty because information contained
in the polarity of the individual signal is being thrown away. This penalty is manifested
in the reduced amplitude of the phase-detector, and is illustrated by the timing diagram
of Fig. 4.52. For the case of �t = T , we see that the early and late correlations
are symmetric about the zero crossing when a data transition occurs, and therefore
have identical absolute values. The dc value of � in this case is zero. Therefore
the separation of the early and late clocks, �t, is restricted when using a rectifier in
both arms. The phase-error magnitude increases linearly with �t, until it reaches a



232 Chapter 4

Late  

T -T tε 

pd ( tε ) 

Early  

∆t 
2 
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Figure 4.54 Phase detector characteristics for early-late clock recovery circuits using a
multiplier (solid-line) and rectifiers (dashed-line).

maximum at �t = T=2. This is half of that obtainable with the multiplying early-
late circuit. The phase error magnitude decreases linearly with increasing �t until it
reaches a value of zero again at �t = T . For an early-late circuit that uses a multiplier
for phase polarity reversal, as in Fig. 4.49, the phase detector characteristic is shown
plotted in Fig. 4.53. The monotonic range of the phase-detector is �t. This can be as
large as T , but is limited to T=2 in a realization using rectifiers in the early and late
arms, such as the circuit shown in Fig. 4.50. The phase detector characteristic for the
circuits of Fig. 4.49 and Fig. 4.50 are shown in Fig. 4.54 for �t = T and �t = T=2
respectively.

Although the amplitude, and maximum monotonic range of the phase detector is
reduced when taking the absolute value in each arm, the circuit becomes less sensitive
to the deskewing delay. Since taking the average of an early-late difference is a linear
operation, identical dc values will result at the loop filter output, whether or not the
early arm correlation has been delayed. Therefore, the circuit is functional when the
delay �t, from Fig. 4.50 is removed. However, the deskewing delay is important for
the reduction of phase-detector ripple that causes excess clock-phase jitter. Without
this delay, a zero-value phase error will be produced by a square-wave, alternating



Clock Recovery 233

Data 
y( t,   ) 

kT + tε   Data out 

Clock +/- 

F(s) VCO 

Phase Error 
ε 

  (  ) dt 

(k-1)T + tε  

kT + tε   1 
T 

X   (  ) dt 

(k-1)T + tε  

kT + tε   1 
T 

X 

kT + tε   

+/- 

+/- 

X 

f = BT/ 2 
In-Phase 

Quadrature 

Figure 4.55 Block diagram of a clock recovery circuit using a clock at half the data rate.

between a high and low value. This ripple will not be completely suppressed by the
loop filter, and will modulate the VCO, causing jitter.

Special Cases for�t = T

Simplified Stochastic Gradient Circuit For the special case of �t = T the phase-
detector characteristic in Fig. 4.53 is a sawtooth wave, as can be seen from Fig. 4.54,
and the difference approximation of the derivative of the data pulse becomes a square
wave, as shown in Fig. 4.48. Realizing that the data-pulse derivative approximation is a
square-wave, simplifies its generation. If we have a square-wave VCO operating at half
of the bit-rate, then a quadrature shifted clock provides the desired derivative, except the
polarity is reversed for alternating bits. This can be corrected if the quadrature-clock
is multiplied by the in-phase clock. The resulting signal makes a positive-to-negative
transition in the middle of each bit-interval. A block diagram of such a clock recovery
circuit is shown in Fig. 4.55. The � symbols in the block diagram indicate that the
signal is sampled on both the positive, and negative clock transitions. In reality this
circuit would be implemented using bit-interleaving with two decision circuit being
clocked on alternate phases. Therefore, the integrators are not required to dump
instantaneously, and timing constraints can be relaxed.

We notice that the circuit of Fig. 4.55 is virtually identical to the circuit of Enam and
Abidi, Fig. 4.34, discussed in the previous section as an example of a spectral-line
circuit. The difference between the two circuits is that the polarity reversal in Fig. 4.55
is accomplished using the retimed data. Whereas Enam and Abidi use the data itself,
which amounted to squaring the data before it entered the phase-error arm. In Enam
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Figure 4.56 Special case of an early-late gate circuit for�t = T .

and Abidi’s approach, the decision circuit is implemented apart from the clock recovery
circuit, and is therefore not self-adjusting.

Simplified Early-Late Gate We recognize that for the special case of �t = T the
late sample of the current bit is exactly the same as the early sample of the next bit.
Therefore, the early result can be obtained by delaying the late correlator output, thus
eliminating the early correlator. A block diagram of this circuit is shown in Fig. 4.56.
For a slightly different derivation, the reader is referred to a discussion of this circuit
by Stiffler [33, p. 227]. The speed of this circuit is limited by the need to perform the
integrate and dump functions. However, by replacing the correlators with a matched
filter, we obtain a circuit that is applicable for high-speeds. A block diagram of this
circuit is given in Fig. 4.57. In a practical design, the sample and limit function in
the on-time arm could be replaced with a single flip-flop. Also if we quantize the
phase-error from the late arm to one-bit, then the cross-over sampling switch can
also be replaced by a flip-flop. The deskewing time delays, are now operating on
quantized data and can be implemented with a shift register. This one-bit phase-error
quantization can still maintain accuracy of the phase estimate. Since the bandwidth of
the loop filter is much smaller than the data rate, several quantized errors will have to
be accumulated before the VCO will respond. Much like a �-� data converter,5 the
resulting filtered phase-error estimate can be quite accurate. The circuits of Figs. 4.56
and 4.57 are self-adjusting, since the decision element, and the phase-detector are
realized using identical circuits. A practical clock recovery circuit implementing a
quantized version of the circuit of Fig. 4.57 was first reported by Alexander [38]. This

5Also known as a�-� data converter.
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and other self-adjusting clock extractors designed with familiar circuit building blocks
will be presented in the following section.

4.6 PARASITIC-DELAY INSENSITIVE CLOCK RECOVERY

SCHEMES

When we refer to the speed of a system, we will be speaking in terms of the bit-
rate, in comparison with the maximum oscillating frequency of the transistors fmax.
Since the speed of the electronics in a fiber-optic receiver limits the overall speed of
the communication system, we would like to get the symbol-rate as close to fmax
as possible for a given IC process. Therefore, we will be primarily concerned with
high-speed systems, where the bit-rate will be somewhere between fmax/50 and
fmax/4. Clock recovery circuits using an external BPF will almost always require
a phase adjustment, because the delays associated with input and output buffers are
substantially larger than delays internal to the integrated circuit. The need for an
additional phase adjustment can be eliminated only if the phase-lag due to the additional
signal processing in the clock recovery arm is insignificant compared to the bit-period.
This will certainly be true at very low data-rates. However, even at moderate bit-rates
(fmax/50), the excess phase shift is significant enough to require compensation.

Clock extraction circuits using a monolithic PLL, at moderate bit-rates, have been able
to avoid additional phase compensation, since the steady-state phase offset contribution
from parasitic delays is only a few degrees. As bit-rates move closer to fmax, the excess
phase becomes increasingly problematic and must be compensated in an efficient way,
eliminating the need for manual tuning. Such a self-adjusting circuit can automatically
center the clock in the data-eye; parasitic delays can be nulled by the feedback loop.
Self-adjusting circuits are necessary at high-speeds, where parasitic delays make up a
significant portionof the bit interval. To design a self-adjustingcircuit, all asymmetries
resulting in different delays in the clock-path and the data-path must be taken into
account in the phase detector design. Therein lies the challenge of designing a clock
recovery circuit for high-speed networks.

4.6.1 Fundamental Requirements of Self-Adjusting Circuits

A block diagram of a self-adjusting clock recovery circuit is shown in Fig. 4.58. The
key feature is the inclusion of the decision circuit in the feedback loop. We must keep
in mind that the purpose of the clock recovery circuit is to provide a sampling signal at
precisely at the moment that the SNR of the test statistic is at a maximum. To obtain
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Figure 4.58 Block diagram of a self-adjusting clock extraction circuit.

the desired error signal, a measurement of the clock phase, directly at the decision
circuit, is required. Therefore, we need a circuit that will either directly, or indirectly
measure the SNR of the test statistic at the decision circuit, producing an error signal
that adjusts the VCO phase. Taking the derivative of the absolute value of the test
statistic produces a zero output when the SNR is maximum. The value of the output
signal gives an indication of both the magnitude and direction of the phase error. We
saw in the previous section that this derivative was approximated by a finite difference
in an early-late circuit, and the clock phase was optimized assuming,

the early, on-time, and late decision circuits are matched,

the peak SNR lies exactly between the early and late samples,

there is no error in the clock phases (the early, and late clocks are equals spaced
around the on-time clock).

Therefore, the measurement of the maximum SNR point is indirect, but the assumptions
allowing us to infer a direct measurement are reasonable. In the following sections
we will describe several architectures that use the decision circuit as part of the phase
detector. The degree to which the maximum SNR is explicitly measured by the phase
detector will determine how well the circuit can adjust itself to the optimum sampling
phase.

4.6.2 Alexander’s Clock Recovery and Data Retiming Circuit

Several clock recovery circuits for moderate bit rates have emerged recently [39, 40,
41, 42, 43, 44, 27], all of which are based on a phase-detector similar in concept to
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Figure 4.59 Block diagram of Alexander‘s self-adjusting clock recoveryand data retiming
circuit.
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Figure 4.60 Illustration of sampling points (a), (b), and (c) for early, on-time, and late
clocks.

circuit described in 1975 by Alexander [38]. This clock recovery circuit is based on
a digital approximation to an early-late technique, described in the previous section.
The basic circuit is shown in Fig. 4.59. The phase detector is designed so that during
any particular clock interval there are three binary samples of the data signal available:
(a) is the previous data value, (b) is a sample of the data at the transition, and (c) is
the current data value. The ordering of these three samples are illustrated in Fig. 4.60
for early, on-time, and late clocks respectively. The retimed data can be taken from
either the (a) or (c), and is usually taken from (a) so as to get an additional squaring of
the data pulse by passing through two decision circuits. Based on the binary outcome
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Enable Control Frequency

a� c b� c

0 0 f0

0 1 f0

1 0 f0 +�f

1 1 f0 ��f

Table 4.4 Truth-table enumerating control possibilities for clock recovery using a bang-
bang oscillator.

of the samples, we can devise a set of rules used to control the phase of the sampling
clock 6.

If a = b 6= c, the clock is early) slow down the clock.

If a 6= b = c, the clock is late) speed up the clock.

If a = b = c, no data transition occurred) do nothing.

If a = c 6= b, shouldn’t happen in phase-lock) possible frequency error.

The digital logic block translates the above rules into signals that control the phase of a
local oscillator. When the clock is on-time, the center sample (b) will randomly equal
(a) or (c), causing the clock to randomly switch between, speeding up, and slowing
down. On average, (b) will equal both (a) and (c) half of the time. It is interesting to
note that this system, is an early example of a Fuzzy-Logic control system.

Discrete Frequency Adjustment Circuit Alexander describes two methods for clock
recovery using his phase detector. The first assumes that a VCO exists that can operate
at three discrete frequencies: f0, f0 ��f , and f0 + �f . Such an oscillator is often
referred to as a bang-bang oscillator. From the list of control rules, we can see that the
truth-table 4.4 provides the necessary control signals for the circuit. A simple circuit to
implement this operation is shown in Fig. 4.61. When the enable signal is low, no data
transition occurred, and the VCO remains at the center frequency. When a transition
does occur, the enable goes high, and the frequency is shifted up or down slightly

6Although Alexander states the early-late conditions correctly in the text, he reverses the order in the
itemized list, and in the truth-tables.
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Figure 4.61 Block diagram of a bang-bang VCO used for clock recovery.

depending on the polarity of the control signal. When the control signal is high, the
clock was late, so the frequency is increased. A high control signal indicates an early
clock, and the VCO frequency is reduced. The signal a� b could also be used for the
control signal, in which case the polarity is opposite of the circuit shown in Fig. 4.61.

The Hewlett-Packard 622-Mb/s Circuit A circuit based on Alexander’s phase detector
was used in a 622-Mb/s clock recovery and data retiming IC designed by Lai and Walker

of Hewlett Packard [39]. This circuit used a coarse-tune/fine-tune approach. The
average of the phase-error signal is used in a narrowband feedback loop to adjust the
nominal center frequency of the VCO, and the fine-tuning of the phase is accomplished
using the discrete frequency adjustment. The same phase detector was used in a 1.5-
Gb/s system designed by Walker et al. [8, 9], which used line-coding to achieve
simultaneous frame- and bit-synchronization.

3-Level Phase Error Circuit Alexander also described how his phase detector could
be used to produce a 3-level phase error for use in tuning an analog PLL. In this case
the desired phase error can be obtained by subtracting the early from the late signal.
The truth-table for this situation is given in table 4.5. A circuit that implements this
truth table is shown in Fig. 4.62. A lowpass filter is used to average the phase-error
over several cycles. The net dc value will give an indication of the phase error, and
this filtered signal is used to adjust the VCO. Alternatively these control signal can
be used as the inputs of a charge-pump that converts pulse widths into voltage levels
by controlling the charging-time of integration currents. Since the phase is adjusted
according to the outputs of decision circuits, the clock is automatically adjusted to the
proper phase. However, the sampling of the center point (b) varies randomly, so that in
steady-state, the phase-error will have a strong ripple component leading to increased
clock-jitter. Since this circuit uses concatenated decision circuits, the maximum data
rate will be limited by the decision circuit delay. To insure proper circuit operation this
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Late Early Phase-Error

a� b b� c

0 0 0

0 1 -1

1 0 1

1 1 0

Table 4.5 Truth-table describing the 3-level output phase-detector.
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- 

Figure 4.62 Phase detector for 3-level Alexander circuit.
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Hogge’s circuit, (b) Whitt’s circuit.

delay must not exceed the bit-interval. However, interleaving can be used to increase
the throughput when td > T .

4.6.3 Hogge’s Phase Detector and Decision Circuit

A simple self-adjusting phase detection technique, illustrated in Fig. 4.63(a), was re-
ported by Hogge in 1985 [40]. This circuit is very similar to the ones described by
Alexander. However, Hogge’s circuit does not quantize the phase error, but rather pro-
duces a continuous phase measure. A circuit nearly identical to Hogge’s was submitted
for publication by Whitt six-months after Hogge, but appeared in the literature one
month earlier [41]. This circuit is illustrated in Fig. 4.63(b), and was actually described
by Hogge [40, Fig. 5] as a variation of his method. The implementations of these two
circuits are slightly different, but the basic principle is the same. However, Whitt uses
a delay-line, which directly controls the ultimate clock phase. Since this delay-line
must be manually tuned, the clock recovery circuit is not self-adjusting. In contrast,
Hogge uses a reference decision circuit instead of a delay-line. Ideally, the reference
circuit tracks the delays of the decision circuit, and the clock adjusts itself to the proper
phase regardless of parasitic delays. We will now explain the operation of Hogge’s
basic circuit. The delay-line approach of Whitt, although not self-adjusting, will be
considered later as a method of overcoming problems in high-speed applications.

In Hogge’s basic circuit, a phase-error estimate is obtained by taking the difference of
two pulses, both of which are generated whenever a data transition occurs. The width
of p1 is linearly related to the clock phase, and is given by

t1 = T=2 + td + t�; (4.121)
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Figure 4.64 Timing diagram of Hogge’s phase-detector.

where td is the decision circuit delay, and t� is the timing error in the clock. The
second decision circuit and EXOR gates produces a pulse p2 when a data transition
occurs, with a fixed width of T=2+ td. An estimate of t� is obtained by subtracting p2
from p1, which generates a residual pulse of width t�. By using a reference decision
circuit to generate a differential error signal, the common-mode parasitic delays of
the decision circuits are cancelled, and the resulting phase error is precompensated
for the decision circuit delays. The differential phase-error pulses are lowpass filtered
to convert pulse-widths to a dc voltage. A timing diagram for the circuit is given in
Fig. 4.64.

In the straightforward implementation we see that the phase-error signal p1 � p2
produces a dc value that is proportional to the phase error. However, since p2 is
delayed by 90� relative to p1, the difference of these signals will have a strong ripple
component, which causes excess clock phase-jitter. The ripple can be removed by
delaying p1 by 90�, or T=2 seconds, before p2 is subtracted. This delayed signal is
represented by p̂1 and the resulting phase error is shown in Fig. 4.64. We see that the
dc value is unchanged, but the ripple has been removed. Shin et al. [42] describes a
circuit that implements Hogge’s phase detector, using a delay of T=2, and also gives
expressions showing the improvement in phase-jitter. The T=2 delay used, does not
have to be exact. Any errors in this delay will simply result in a residual ripple, causing
a second order degradation of the clock-phase jitter. However, the nominal clock phase
will not be affected.

Indirect Measure of Maximum SNR The Hogge circuit doesn’t measure the point
of maximum SNR directly. It only equalizes the time delays between the input and
output of two identical circuits. However, even in an idealized situation, this doesn’t
guarantee that the circuit is sampling at the point of maximum SNR. And worse, in a
real circuit, systematic errors exist that will be exaggerated at high speeds. Whenever
relying on a cancellation of identical operations, one has to ask what is it about these
two, supposedly identical, circuit paths, other than random mismatches, that makes
them different. In the case of Hogge’s circuit the answer is clear. The first decision
circuit is making a decision on the data signal with a clock that is nominally aligned for
optimal sampling. The second decision circuit is sampling a retimed data waveform,
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Figure 4.65 Illustrations of asymmetries in Hogge’s circuit that reduce its effectiveness at
high-speeds.

where the phase error of the sampling depends on the delay of the first decision circuit.
In other words, if the first decision circuit is sampling with an optimal clock phase, then
the second decision circuit is sampling with a clock timing error of td. This asymmetry
restricts the use of Hogge’s circuit in high-speed applications. This is best illustrated
by the sample timing diagram of Fig. 4.65. Assuming that the clock is centered in the
data-eye, and the decision circuit delay time is close to half of a bit-period (50-ps for
a 10-Gb/s system), the second decision circuit will be sampled very near to the data
transition. Since each decision circuit has a finite gain, the rise times of the retimed
data will depend on the magnitude of the data at the sample point. Therefore, (Q2)
will not be an exact time shifted replica of (Q1). Likewise, the retimed signal (Q1)
will not be a replica of the original data signal. The EXOR circuits that generate the
phase-error pulses will also have a finite gain. The resulting pulse shapes depend on
the shape, magnitude, and rise-times of the data and retimed data signals. The retimed
data (Q2) in Fig. 4.65 is shown with a smaller magnitude than (Q1) because the second
circuit samples near the cross-overs, where the input signal value is weak. Therefore,
p1 will be larger than p2. The system will interpret this as a late clock, and the phase
will be adjusted to make the clock arrive earlier, resulting in a systematic phase-error.

Because of the asymmetries in the circuit, the natural action of the feedback loop will
try to adjust the clock phase so that both waveforms (Q1), and (Q2) are similar in
shape. This will have the effect of forcing the delay of the decision circuit to straddle
the center of the data-eye. Therefore, if td = T=2, the positive clock-edge will occur
T=4 seconds early and the negative edge will occur T=4 seconds late. As the delay
time of the decision circuit gets closer to T , the problem gets worse. Obviously if td
is greater than T , the circuit will not work at all, because the second decision circuits
will be sampling the previous bit.
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The decision circuit delay td also limits the tracking and acquisition range. For a delay
free circuit, the phase-detector outputs a correct signal for phase errors in the range
[�T=2; T=2], however, td subtracts directly from this range. For td = T=2, the range
is reduced to [�T=4; T=4]. We can determine a very rough limit on the maximum
bit-rate that can be handled by the Hogge circuit. If we assume that the decision circuit
can be made with a delay td of approximately

td '
2:5

fmax
; (4.122)

and if we only allow a maximum phase error of 10% then td can not be greater than
20% of the bit-period;

td '
2:5

fmax
� T=5

BT �
fmax
10

:

(4.123)

Allowing for a safety margin of a factor of two, the maximum data rate that can be
handled is approximately limited to

BT �
fmax
20

: (4.124)

For high-speed bipolar transistors or HBTs with fmax ranging from 20–50-GHz,
Hogge’s circuit is applicable to data rates of approximately 1–2.5-Gb/s. Hogge points
out that the delay of the first decision circuit is a problem. In high-speed applications
he adds a trimmable delay element to compensate, thereby defeating the purpose of
using a self-adjusting circuit in the first place. Once we have given up on the idea of
designing a self-adjusting circuit, then the implementation described by Whitt provides
a simple method of measuring the phase error, provided that the delay-line has been
precalibrated, but we must keep in mind that variations in operating conditions will
not be tracked, and large clock-phase deviations can result.

Despite these speed limitations predicted by us, a tunable phase shifter that implements
the Hogge phase detector has recently been reported by Wennekers et al. for a circuit
operating at 10-Gb/s [27] using transistors with f t = 45-GHz (ft=BT = 4:5). A
high-Q bandpass filter is used to extract the clock whose phase is adjusted using a
tunable delay element in a feedback loop. As was predicted in the above analysis,
the phase detector was shown to function only over a small phase interval of �54� or
�(0:15)T . It is also not clear from [27] whether the clock-phase at the point of zero
phase error is correct or not. Also the circuit relies on a delay of approximately T=2 in
the data line. This delay directly effects the phase-error signal. But the tuning of this
delay was not discussed in the paper. It is believed that either one of two situations
occurred which allowed the circuit to function. The first is that the T=2 data delay
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Figure 4.66 Block diagram of a transition-density-independent phase detector.

was adjusted to center the clock in the bit-interval. The second alternative is that the
decision circuit, and buffer delays, happen to be at the proper value so as to achieve
the desired result. In fact, the phase detector, as drawn in [27], will not function unless
these parasitic delays are nominally equal to T=4. Although, the circuit of Wennekers
et al. does demonstrate functionality of a 10-Gb/s circuit utilizing the Hogge phase
detector, it is suspected that either external tuning was required, or parasitic delays
happened to be of the proper value. The results of Wennekers et al. not withstanding,
we still believe the Hogge method is not applicable for data rates above fmax=20,
unless external phase-adjustments are provided.

4.6.4 Analog Devices Transition-Density-Independent Circuit

A problem with all of the phase-detectors that we have discussed thus far, is that the dc
value of the phase-error depends on the data transition density. As a result, the phase
detector gain, and therefore, the loop gain, are proportional to the data-density. This
causes variations in the dynamic response of the PLL, leading to pattern dependent
jitter in the recovered clock. Data-density-dependency is an artifact of the phase-error
going to zero when no transitions occur. If the phase-error is held in place during
periods of no transition, then the phase-detector output will be the same for both dense
and sparse data. A phase detector, based on the Hogge circuit, that is data-density-
independent was designed at Analog Devices by DeVito et al. [43], and utilized in the
circuit of Lee and Bulzacchelli [44, 45]. A block diagram of this circuit is shown in
Fig. 4.66. The first two decision circuits of Fig. 4.66 are the same as in the Hogge
circuit. When a data transition occurs, a pulse p1 is generated. The width of p1 is
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Figure 4.67 Conversion of phase detector pulses to voltages by an up-down-down-up
sequence of integrating currents.

linearly related to the clock phase,

t1 = T=2 + td + t�: (4.125)

The remaining three decision circuits and EXOR gates produce pulses p2, p3, and p4,
when a data transition occurs, all of which have a fixed width of T=2+ td. In Hogge’s
circuit an estimate of t� was obtained by subtracting p2 from p1, which generates a
pulse of width t�. When no data transitions occur the phase-error pulses are missing,
and the resulting dc phase error is modulated by the data density.

The approach adopted by DeVito is to convert the pulse width information directly into a
voltage by integration. The pulses are used to control switches as shown in Fig. 4.67 that
controls an up-down-down-up sequence of integrating currents on the load capacitor.
A timing diagram showing the resulting phase error on the load capacitor for an early,
on-time, and late clock is shown in Fig. 4.68. The clever aspect of this design is that
the integrated value of the phase-error on the load capacitor in steady-state operation
is the same for both dense, and sparse data transitions. Another nice feature is that
the integration cycle takes two clock periods to complete. Therefore, when the data
is dense, up integrations from one transition will cancel down integrations from the
previous transition, and the phase detector will have no ripple for adjacent transitions,
reducing the eventual clock-jitter.

Limitations of Devito’s Phase Detector Although Devito’s circuit solves the problem
of data density dependence, it is limited in application to low and moderate bit-rates.
We saw that cascading two decision circuits limited the performance of Hogge’s circuit
at high-speeds. This problem is exacerbated in Devito’s circuit because 4 decision
circuits are cascaded. Therefore the clock phase error in the last decision circuit will
be 3 times worse than in the Hogge circuit. The approximate bit-rate limitation is then
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Figure 4.68 Timing diagram for data-density-independent phase detector.

given by

BT �
fmax
60

: (4.126)

The designed application of Devito’s circuit was for a 52-MHz and a 155-MHz circuit.
Using GaAs HBTs the approach may be good for bit-rates of from 300-Mb/s to 1-Gb/s.

Problems with Hogge’s and Devito’s circuits are that they use serial connections of
decision circuits to estimate the phase error. Therefore, the decision circuit delay
alters the sampling phase of successive decisions. The serial decision circuit delay
is in the critical path; as a result, these circuits can not be pipelined. Pipelining,
or bit-interleaving is only possible when all sampling is done in parallel. Instead of
using resampling with a chain of flip-flops, as in the circuits of Hogge and Devito,
appropriate time skewing of the samples can be obtained by using a multi-phase clock.
The sampled data can be clocked to deskewing registers for further processing. Since
at the front-end, all sampling is performed with matched circuit, all of which are
sampling the original data, and not retimed data, the parasitic delays of the sampling
circuits will track each other. Variations in parasitics delays due to changes in the
environment will be automatically compensated, and won’t degrade the accuracy of
the final clock-phase estimate.

Based on these considerations, the circuit of Alexander is a prime candidate for high-
speed clock recovery, because the two front-end flip-flops, generating the data and
phase-control information, are operating in parallel. In the following chapter, practical
modifications to the circuit of Alexander will be presented that are applicable for mono-
lithic clock recovery and data retiming at bit-rates near fmax=4. In addition, a novel
data-density independent phase detector circuit will be presented, which implements
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all of the desired features efficiently, and is ideally suited to self-adjusting, PLL-based,
clock extraction at data rates in excess of 10-Gb/s.

4.7 SUMMARY

A significant amount of material has been covered in this chapter. We have looked at
clock recovery circuits in the following ways.

Qualitative approaches.

Spectral-line or frequency domain approaches.

Optimal stochastic estimates or time domain approaches.

Our goal has been to tie all of these approaches together into a unified treatment which
clearly exposes the advantages and disadvantages of each circuit. We have utilized the
theory developed in chapters 2 and 3 in order to have quantitative methods to measure
the goodness of competing designs. Comprehensive analysis of a particular circuit
have not been presented, rather we have aimed at giving the reader an overall view
of clock recovery techniques that are applicable for high-speed broadband receivers.
With this information the circuit designer should be able to choose which circuit best
meets his design needs. A recapitulation of the main topics of this chapter will now be
given in the form of questions that the serious reader ought to be able to answer.

Qualitative Approaches to Clock Recovery

When a clock is recovered from random data using a BPF, why is there amplitude
modulation on this clock, and how is it related to the Q of the filter?

Intermittent-phase-readjusting clock recovery circuits can begin clocking data
immediately after the first data transition is detected. Why can circuits using a
PLL or a BPF not do this?

Are intermittent-phase-readjusting schemes good, or bad for low SNR applica-
tions? Are they good, or bad for systems requiring tight phase-jitter tolerance.
When would you use this approach? Discuss how such a circuit accumulates
phase errors when no data transition occurs.
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Spectral-Line Techniques

Why is it necessary to pre-process the data with a nonlinear edge detection circuit?

What is the essential requirement of an edge-detection circuit, and why do several
different approaches produce the same result?

How is the selectivity of a bandpass filter related to energy dissipation in the
natural response of the resonator?

What imposes a maximum limitationonQ? What imposes a minimum limitation?
What are typical Q values for BPFs in clock recovery circuits?

A PLL can track the data rate provided that it can first achieve lock. How large of
a frequency deviation can be acquired by the PLL, and how stable does the center
frequency of the VCO have to be to insure locking occurs?

Why is a frequency discriminator important for PLL-based clock recovery cir-
cuits? What methods other than using a frequency discriminator can be employed
to insure that the PLL will achieve lock under worst-case frequency offsets?

Discuss the advantages and disadvantages of bit-interleaving. If the setup time
to a flip-flop is too short, can the flip-flop capture the proper data if the clock is
slowed down? How does the setup time limit the effectiveness of bit-interleaving
for increasing throughput when a flip-flop is used as a decision circuit?

MAP Estimate Based Clock Recovery

Show that in AWGN the MAP estimate of data arrival is obtained by correlating
each bit with a template of the received data, and finding the maximum sum
of these correlations for all observed bits, weighting each correlation through a
ln(cosh(x)) function.

Discuss how various closed-loop circuits and early-late circuits can be derived by
making different approximations to the gradient of the MAP correlation function.

Why do some early-late circuits have a phase-detector characteristic that is mono-
tonic over the bit interval and some do not? How does a monotonic characteristic
improve frequency acquisition and tracking of the PLL?

What is essential for a clock recovery circuit to be self-adjusting? Why is an
early-late circuit self-adjusting?

Explain Alexander’s circuit in terms of a quantized early-late circuit. Is it self-
adjusting? What are its limitations in speed of operation?
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What causes the phase error to depend on the data pattern? How can this be
reduced, thereby reducing pattern-dependant jitter? How does a tri-state phase
detector reduce ripple-induced jitter?
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5
PRACTICAL ARCHITECTURES

FOR HIGH-SPEED CLOCK
RECOVERY AND DATA RETIMING

In the previous chapter, several techniques for recovering a clock from NRZ data were
discussed. There are inherent disadvantages in nearly all of the architectures presented
thus far, preventing integrated PLL based, clock recovery circuits from operating above
4-Gb/s [1]. Practical integrated hybrid solutions at 10-Gb/s have been described [2, 3]
that use dielectric resonate filters to extract the timing information. However, using
external filters for clock extraction has the added drawbacks of requiring precise phase
adjustment, and power-hungry I/O buffers. In addition, packaging of the IC chip with
the external filter can be problematic.

Thus far we have provided an overview of the underlying theories, and reviewed
several circuits that fall short of our goal. In this chapter, practical architectures for
clock recovery and data retiming ICs will be presented that are capable of operating
at rates exceeding 10-Gb/s. We will illustrate how modifications can be made to
some of the circuits discussed in chapter 4, extending their applicability to higher
speeds. In section 5.4 a novel structure will be presented, culminating our effort in
developing efficient, pipelineable, self-adjusting, data-density-independent structures
for high-speed clock extraction. Circuit design techniques required to implement these
practical architectures will be deferred to Part II of this book.

5.1 FREQUENCY DETECTION

As we have mentioned previously, any practical clock recovery circuit using a PLL
will require some type of frequency acquisition aid. Exceptions are when very stable
VCOs, such as crystal oscillators, are used to insure that the frequency error is never
larger than the natural acquisition range of the PLL (on the order of the PLLs closed-
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Figure 5.1 Illustrations of clock recoveryPLLs using frequencydetectors to aid frequency
acquisition: (a) circuit summing phase and frequencyerrors, (b) circuit combines phase and
frequency detectors into a single function.

loop bandwidth). Excluding these stable VCOs, and other acquisition aids, such
as frequency sweeping, a frequency discriminator is required as an integral part of
any phase-detector. Before presenting practical clock recovery and data retiming
architectures, we will first briefly present some block diagrams illustrating how a
frequency discriminator can be utilized in a PLL-based clock recovery circuit. Then
we will present a rotational analogy that is very useful for deriving various frequency
detector circuits.

5.1.1 Applications of Frequency Detectors in Clock Recovery

Circuits

A straightforward application of a frequency detector to a clock recovery PLL is shown
in Fig. 5.1(a). In this application, the error signal � is the sum of a phase-error term,
and a frequency error term. One requirement of the frequency detector is that its
output go to zero when frequency acquisition has been obtained. Problems with this
approach is that ripple from the frequency detector can still exist when the loop is in
lock, causing excess phase-jitter. Also the frequency detector output needs to be taken
into consideration when optimizing the loops dynamic response. Some systems use a
dead-zone that breaks the frequency detector (FD) from the loop when the phase-error
is within a zone surrounding zero. This prevents the FD from interfering with the
phase acquisition process. A second alternative is to use a phase/frequency detector
(PFD) as shown in Fig. 5.1(b). Although this may seem a trivial extension, later we
will see that, with simple modifications, both phase, and frequency can be detected
with the same circuit, thus eliminating duplicate functions.
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Figure 5.2 Bad ideas for using frequency acquisition aids for a VCO with two coarse and
fine tuning inputs.

A Couple of Bad Ideas

In some cases it is desirable to have a VCO with two controls. One is a coarse
adjustment used to set the center frequency close to the bit-rate, the other is a fine
adjustment that is used to track the input, once the frequency error is within a specified
range. A tempting idea, that invites all types of trouble, is shown in Fig. 5.2(a). Since
no real integrator can be realized without dissipation, a VCO input signal will have
to be continually updated to maintain its value at the proper level. This will require
the error signals �f and �c to periodically deviate from a zero value. However, any
significant deviation from zero in the signal �c will require a frequency error, and
several cycle-slips will have to occur before the tuning signal can be readjusted to the
proper value.

Another bad idea is to replace the FD in Fig. 5.2(a) with a PFD, as shown in Fig. 5.2(b).
Since a non-zero value can appear at the outputof the PFD in the absence of a frequency
error, lock can be maintained without intermittent cycle-slips. However, now we have
two loops that are fighting each other for control of the VCO phase. Provided that this
condition produces a steady-state output, the resulting phase will most likely not be
what is desired.

Techniques for Simultaneous Coarse and Fine Tuning

When adjusting two signals simultaneously, there must be sufficient degrees of freedom
for a solution to exist. In other words, we can not try to drive the phase of a VCO
to two different values simultaneously. A master-slave approach to setting the center
frequency is shown in Fig. 5.3. The master-loop is used to acquire the input frequency.
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Figure 5.3 Illustration of a master-slave approach for simultaneous coarse and fine adjust-
ment of the VCO controls.

Since the clock from the master loop is not the clock that samples the data, cycle-
slipping is allowed in the master clock. It is only in the slave clock where cycle-
slipping is forbidden. Therefore, an FD can be used in the master loop, creating a
frequency-locked loop (FLL), that will not maintain phase-lock. The tuning signal
can be fed forward to the slave loop, which contains a VCO matched to the master
VCO. Using a filter in the feedforward path decouples the dynamic response of the two
loops. For example, the master filter Fc(s) can be adjusted to meet specific dynamic
response requirements. Then using a lowpass filter in the feedforward path, can make
the slave-loop appear as if the coarse tuning signal is a dc value. The master-slave
approach can be used to reduce the steady-state phase offset, without requiring a high
dc gain in the slave loop. The steady-state phase offset in a PLL is proportional to
the frequency deviation of the input signal from the center-frequency of the VCO, and
inversely proportional to the dc gain. The master-loop will reduce the frequency offset
to within the matching accuracy of the VCOs, allowing the slave-loop to operate in the
center of the dynamic range, without a high dc gain.

Delay-Locked Loops for Fine-Tuning the Clock Phase An alternative approach for
adjusting the clock phase, after frequency and phase acquisition is established is shown
in Fig. 5.4. In this circuit a PFD must be used so that the top-loop can maintain phase-
lock. The resulting loop is a phase/frequency-locked loop (PFLL). However, the final
VCO phase may still need compensation to achieve optimal clocking of the input data
stream. This can be achieved by using a delay-locked loop (DLL), where a precise,
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Figure 5.4 Clock recovery schemes using a voltage controlled delay for: (a) a clock
extracted using a PLL, (b) a clock extracted using a bandpass filter.

self-adjusting, phase-detector measures the residual phase error, and fine tunes it to
zero via a voltage controlled delay (VCD). It is also possible to replace the PFLL in
Fig. 5.4(a) with a bandpass filter clock extractor as shown in Fig. 5.4(b). This approach
was used by Wennekers et al. [3], to achieve 10-Gb/s operation, where the clock was
originally extracted with a dielectric resonator filter.

In this section we have illustrated several possible methods for incorporating a fre-
quency detector into the design of clock recovery circuits. Because of the important
role FDs play in aiding PLL frequency acquisition, we will now present several imple-
mentations of FDs and PFDs.

5.1.2 Quadricorrelator Frequency Detector

We have already seen examples of circuits using a frequency discriminator in chapter 4.
Both the circuits of Cordell et al. [4], and Ransijn and O’Connor [1] utilized a scheme
similar to a quadricorrelator, which was first described, and given its name by Rich-
man [5] in 1957. Richman applied the quadricorrelator to carrier-phase synchronization
in color television. In 1976, Bellisio reported on a quantized quadricorrelator for use
in clock recovery circuits for NRZ data formats [6]. Before discussing the general re-
quirements of frequency discriminators, it is instructive to look at this quadricorrelator
in more detail.
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Figure 5.5 Block diagram of a quadricorrelator frequency-error detector.

A block diagram of a quadricorrelator is shown in Fig. 5.5. The circuit consists of two
correlators: one is in-phase with the input signal, and the other is in quadrature. The
input signals to the mixers have the following form:

sd(t) = cos(!d + �d);

si(t) = cos(!i + �i);

sq(t) = � sin(!i + �i):

(5.1)

Modelling the mixers as ideal multipliers, their outputs are given by the sum and
difference frequencies. For the in-phase arm,

mi(t) =
1

2
cos

�
(!i + !d)t + �i + �d

�
+

1

2
cos

�
(!i � !d)t+ �i � �d

�
(5.2a)

and for the quadrature arm,

mq(t) = �
1

2
sin

�
(!i + !d)t+ �i + �d

�
�

1

2
sin

�
(!i � !d)t+ �i � �d

�
: (5.2b)

After lowpass filtering the resulting signals are

pdi(t) =
1

2
cos

�
(!i � !d)t + �i � �d

�
(5.3a)

and

pdq(t) = �
1

2
sin

�
(!i � !d)t+ �i � �d

�
: (5.3b)
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We can define frequency and phase difference quantities such that

�! = !i � !d

�� = �i � �d:
(5.4)

Therefore, the lowpass filtered signal for �� = 0 are given by

pdi(t) = 1

2
cos(�!t) = 1

2
cos(j�!jt)

pdq(t) = �1

2
sin(�!t) = �1

2
sgn(�!) sin(j�!jt)

(5.5)

Therefore, we see that the sign of the quadrature correlated signal pdq(t) depends on
the sign of the frequency difference, whereas the in-phase correlation pdi(t) is an even
function of �!. By taking the negative derivative of pdi(t) we can generate a signal
with an amplitude that is proportional to the frequency error;

�
dpdi(t)

dt
T = ��!T

�
�
1

2
sin(�!t)

�
=

1

2
j�!jT sin(j�!jt): (5.6)

This signal is in-phase with the quadrature signal when the frequency error is negative
and out-of-phase when the frequency error is positive. multiplying these two signal
gives

Miq(t) = �
1

4
�!T sin2(�!t) = �

1

8
�!T +

1

8
�!T cos(2�!t): (5.7)

After lowpass filtering to remove the double frequency ripple, we are left with a dc
value that is proportional to the frequency error, and opposite in sign;

� = �
�!T

8
: (5.8)

Therefore, if the clock is too fast, �! is positive, and the frequency detector outputs
a negative value that can be used to slow down the clock. With a little thought, the
reader will realize that this result is independent of ��.

5.1.3 Rotating Wheel Analogy

Now that we’ve seen how a quadricorrelator frequency detector works, we can abstract
the notion of frequency detection, and from this abstraction develop ideas that will
be useful in alternative schemes. We can visualize the mixing, and lowpass filtering
operations, using the analogy of a strobe-light and a rotating wheel with a timing
mark. Consider a wheel rotating clockwise at a given rate. This is analogous to a local
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Figure 5.6 Illustration of rotating wheels with timing marks: (a) wheel appears to rotate
backwards when clock is slow, (b) wheel appears to rotate forward when clock is fast.

clock with a given angular frequency. The data signal is used to control a strobe-light.
Whenever the data makes a transition, the light flashes, revealing the position of the
timing mark on the rotating wheel. The value of the clock signal at any point in time is
the projection of the timing mark onto the positive x-axis. When the data-rate and clock
are in perfect phase-lock, the timing mark will align precisely on the x-axis every-time
that the strobe-light flashes; therefore, the mark will appear to be stationary. When a
phase-error exists, the timing mark will be offset from the x-axis by the phase-error
angle. Fig. 5.6(a) shows the condition when the clock-rate is too slow. In this case the
wheel can not make a full revolution in one data interval. As the strobe-lightflashes the
timing mark appears to be rotating backwards at a rate equal to the difference between
the data-rate and the clock frequency. In Fig. 5.6(b) the reverse is true. The clock is
too fast, and the timing mark appears to rotate forward at the difference rate.

Phase is One-Dimensional; Rotation is Two-Dimensional

If we look only at the phase-error signal in Fig. 5.6, we see a projection of the
timing mark onto the x-axis oscillating back-and-forth at a rate equal to the frequency
difference. However, since we have taken a two-dimensional rotational concept, and
projected it onto a one-dimensional line, we have no way of knowing the direction
of the error; rotation in both directions produces the same shadow on the x-axis. To
obtain directional information, we need a second timing mark, preferable one that is
orthogonal to the first. An illustration of a rotating wheel with two orthogonal timing
marks is shown in Fig. 5.7. For a clockwise rotation we see that the quadrature signal
vector has a projection onto the x-axis given by

sq(t) = � sin(!it); (5.9a)

and the in-phase vector I, has an x-axis projection of

si(t) = cos(!it) (5.9b)

It can be seen from Fig. 5.7, that the quadrature signal leads the in-phase signal by
90�. If the projection ofQ onto the x-axis is used as the phase error signal for the PLL,
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Figure 5.7 Illustration of a wheel rotating clockwise, with two orthogonal timing marks:
I is the in-phase signal and lags the quadrature signalQ by 90 �.
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Figure 5.8 Illustration of the operation performed by a quadricorrelator.

then the position of the vectors shown in Fig. 5.7 shows the equilibrium condition,
where the PLL will achieve phase-lock. The phase-error signal is zero in this case.
If the wheel starts to rotate too fast, then Q will cross the y-axis into the negative
x-half-plane, producing a negative error signal that acts to slow the wheel down. This
equilibrium condition can be visualized as a marble sitting at the bottom of a cylinder.

Vector Diagram Representation of a Quadricorrelator

Using two orthogonal signal vectors, the apparent direction of rotation of the wheel
can now be determined. When the clock is too fast, the beat-note rotation is forward,
and Q still leads I by 90�. However, when the clock is too slow, the beat-note rotation
reverses, and I now leads Q. We have already seen how a quadricorrelator uses this
information to derive a frequency error. This is illustrated using the rotational analogy
in Fig. 5.8. Taking the negative derivative of a sinusoidal signal delays the signal by
90�, and scales it by the frequency. In Fig. 5.8(a), we see that the negative derivative
of the I vector falls on top of the Q vector when the clock is too slow, producing a
positive frequency error proportional to �!. Whereas in Fig. 5.8(b), delaying I by
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Figure 5.9 Block diagram of a phase-frequency detector.

90� causes it to point in the opposite direction of Q, therefore producing a negative
error signal.

A Phase/Frequency Detector

We can use the vector operations of a quadricorrelator to derive a single circuit that
produces both a phase, and frequency error. Instead of taking the negative derivative
of the I vector, we could simply delay it by 90�. This will keep the magnitude of the
resulting vector constant with respect to the frequency error. Therefore, a non-zero
result can occur when the frequency error is zero. A circuit that performs this function
is illustrated in Fig. 5.9. This phase-frequency detector was used in the clock-recovery
circuit of Ransijn and O’Connor [1]. The in-phase and quadrature signals have the
same phase relationships as in the quadricorrelator; the phase detector outputs are

pdi(t) = cos(�!t+��)

pdq(t) = � sin(�!t+��):
(5.10)

After delaying the in-phase signal by 90� we obtain

p90(t) / sgn(�!) sin(�!t+��): (5.11)

After multiplying p90(t) with pdq(t) we obtain

p90(t)� pdq(t) / �sgn(�!) sin2(�!t +��)

/ �sgn(�!) + cos(2�! + 2��):
(5.12)

Therefore, when a frequency error exists, the phase-error signal is the sum of a constant
dc value, and a double frequency ripple term. If the lowpass filter completely suppresses
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Figure 5.10 (a) Phase detector output vs. �� for maximum density data. (b) vector
diagram showing the two possible equilibrium points.

the ripple term, then the error signal is given by

� / �sgn(�!) for �! 6= 0: (5.13)

When frequency acquisition has been established, pdi(t) = cos(��) will be constant,
so delaying it by 90� will have no effect. Therefore, the phase error signal is given by

� / � cos(��) sin(��)

/ � sin(2��)
(5.14)

It can be seen from Fig. 5.10(a), which plots the phase detector output as a function
of ��, that two stable nulls exist in each bit interval. The presence of two stable nulls
can result in ambiguous results. In one case the clock edge will fall in the center of
the bit interval as desired. In the other stable point, the clock edge will fall precisely
on the data zero-crossings. One simple method of removing the undesired stable null
(�� = 180� in this example) is to detect when I is negative and add a phase error
that is sufficient to force the PLL off of this null. Perhaps a better method is to use a
multiplexer to feed both clock phases to the decision circuit. The polarity of the I vector
will determine which clock phase gets passed. Another alternative is to use a separate
phase detector signal that has only one stable null per cycle, as in the circuit of Cordell.

This is easily obtained by taking the output of a quadricorrelator and summing
it with the quadrature arm phase error signal. Before discussing some alternative
frequency detectors, we will briefly discuss how nonlinear frequency acquisition and
cycle-slipping can be visualized using the rotating vector diagram.

Vector Diagram Representation of Cycle-Slipping

This vector diagram is convenient for visualizing nonlinear frequency acquisition and
cycle-slipping. Consider the case where we have a heavy flywheel spinning too fast,
as shown in Fig. 5.11. For the case illustrated, the momentum of the wheel is so
great, that although the phase-error is negative, forcing the wheel to slow down as
the Q vector is in the negative x-half-plane, it can’t put the brakes on fast enough to
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Figure 5.11 Illustration of cycle-slipping and frequency acquisition in a PLL with a
sinusoidal phase detector characteristic.

prevent the wheel from rotating another half turn. Once the Q vector crosses back to
the positive x-half-plane, then the restoring force on the wheel is positive, which is the
wrong direction. As a result of this oscillating behavior, several cycle-slips may occur
before a steady-state is reached. We can also reason that if the initial frequency error
is large enough, and the wheel is sufficiently heavy (narrow closed-loop bandwidth),
then cycle-slips can continue indefinitely, and the loop will never achieve lock.

It may seem slightly counter intuitive, at first glance, that a PLL could ever achieve
frequency acquisition once cycle-slipping has begun, because the restoring force will
oscillate, causing the wheel to alternately slow down, and then speed up again. How-
ever, from Fig. 5.11 we see that when the phase-error is negative, the restoring force
acts to reduce the frequency error. Therefore the beat-note frequency will be reduced,
and the phase-errorQ vector will spend more time in the negative half-plane, than in the
positive. The end result is that the wheel was slowed more in one cycle than it was sped
up. If this difference accumulates over several cycles, then the PLL will eventually
achieve lock.1 The phase-error signal is plotted in Fig. 5.12(a) and (b) for frequency
acquisition of a clock that is too slow, and too fast respectively. In each case the dc

1This method of frequency acquisition is reminiscent of a game one of the authors (A.B.) used to play
with his brothers. The object of the game was to stop a rotating fan with your finger. The fan had a rubber
blade. On the perimeter of the hub (about the diameter of coffee can), was the rubber sleeve of the fan
blade, which was about the same thickness as a human finger. When the fan speed was low, stopping the
blade with finger pressure was no problem, and produced only a faint smell of burning flesh. As we worked
our way to the highest speed, the problem became increasingly difficult. When the speed was set on MAX,
we could only leave our finger on the fan sleeve until we felt like it was going to catch on fire. We would
then remove it for an instant, and quickly press it hard against the fan sleeve again. Each time we removed
our finger, the fan speed increased, but it never got back to full speed; so that the next assault started at
slightly more favorable initial conditions (much like taking a brief rest while running up a down escalator).
Using this technique we were able to stop the fan on MAX speed. The winner of the game was the one who
removed his finger the least amount of times before the fan was stopped. It goes without saying that any
audible cries of pain resulted in immediate disqualification.
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Figure 5.12 Illustration of the output of a phase-detector during closed loop cycle-slip of
a PLL: (a) the local oscillator frequency is too slow, (b) the local oscillator frequency is too
fast.

value of the phase detector signal is of the proper polarity to reduce the frequency error.
If this signal is integrated, and then applied to the VCO control input. The dc value
will accumulate and the loop will acquire the frequency. This is illustrated in Fig. 5.12
as the beat-note is shown to reduce in frequency with each cycle-slip. However, the dc
value from the phase-detector can be quite small, especially for large frequency errors.
In a real circuit, this small dc signal can be indistinguishable from offsets; also, the
accumulation of the error signal may not have sufficient strength to overcome dissipa-
tion in the integrator. Therefore, in a practical PLL, the frequency acquisition range is
similar to the PLLs closed-loop bandwidth (the heavier the flywheel, the smaller the
range of frequency offsets that can be acquired).

5.1.4 Frequency Detectors Based on Rotational Analogy

The rotating vector analogy is convenient for understanding the necessary and sufficient
conditions for a circuit to produce a frequency error output. If only the error direction
is required, then one can develop a small list of rules that will produce this function.
Based on these rules, several different, but similar circuits can be derived. In this
section we will briefly discuss a few of these options.

Sequential Phase-Frequency Detector Circuits

An example of a circuit based on some heuristic rules is the well-known sequential
phase/frequency detector. We realize from our vector analogy that some sort of past
history of the signal is required to determine frequency error direction. However,
instead of using signals separated by 90�, we could use digital storage elements to hold
the quantized signal value at a given time, and use this delayed signal value, together
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with the current signal information to determine the direction of the frequency error.
The sequential phase/frequency detector is such a circuit, and it has been described
throughout the literature. In particular, Gardner offers a clear and concise explana-
tion [7, pp. 121–125]. This circuit is commonly used in charge-pump PLLs at low
frequencies, and is not applicable for our needs. Since it functions by producing pulses
between data and clock transitions, it is not fast enough for high-speed applications,
and it is confused by random data with missing transitions. We only mention it here
for completeness.

Rotational Phase-Frequency Detector Circuits

Messerschimtt [8] presents a set of heuristic rules, also based on a rotational analogy.
The clock-cycle is divided into four quadrants. By monitoring the position of the data
transition in these quadrants a frequency error signal can be derived. Messerschimtt
shows that a triangular phase-detector function results for periodic square-wave inputs.
The triangle wave is monotonic over the range [�T=2; T=2]. However, Messerschimtt
doesn’t give any circuit implementations, and his technique is limited to low-speed
applications. We mention it here as another example of a frequency detection scheme
derived from a rotational analogy,and we will use a very similar concept in section 5.2.1
when we add frequency detection to Alexander’s phase-detector.

A Cycle-Slip-Transition Frequency Detector

We will now consider a practical high-speed frequency detector based on quantizing
the sampled outputs of each arm of a quadricorrelator. One very simple method of pro-
ducing a frequency error is to detect a cycle-slip, and use the polarity of the quadrature
signal to determine which direction the cycle-slip occurred. We can illustrate this with
the rotating wheel diagram of Fig. 5.13. We can see from Fig. 5.13 that the I vector
makes a negative transition at the top of the wheel, while theQ vector is positive, when
the clock is too slow. When the clock is too fast, the I vector makes a positive-to-
negative transition at the bottom of the wheel, where Q is negative. Therefore, we can
derive the following simple rules for producing a frequency error.

When I makes a negative transition, quantize Q to one-bit and pass it to the
output.

When I makes a positive transition, quantize Q to one-bit and pass the negative
of Q to the output.
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Figure 5.13 Illustration showing the position of the Q vector when a cycle-slip occurs:
(a) the clock is too slow, (b) the clock is too fast.
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Figure 5.14 Block Diagram of a phase/frequencydetector which producesunipolar pulses
when a cycle-slip occurs. The pulse polarity depends on the sign of the frequency error.

A phase/frequency detector that implements these rules is shown in Fig. 5.14. In
the presence of a frequency error, � will consist of a zero-mean signal due to the
phase error, and a dc signal in the opposite direction of the frequency error. We
have embellished this circuit with a lock-detector gate. Since the previous frequency
error will persist, even after the frequency error has gone to zero, we must detect this
condition and force the frequency error signal to zero. One simple method of lock
detect gating is to use a tri-state gate that is enabled by a transition in I, and disabled
by a Q transition. Therefore the output of the frequency detector will be a series of
unipolar pulses with the direction of the pulse determined by the frequency error. The
pulses will be activated at a cycle-slip boundary and deactivated at the center of these
boundaries. The in-phase signal is used to detect a cycle-slip boundary. Therefore,
the quadrature signal can have a time offset relative to the input signal in the range
[�T=4; T=4] before a frequency error is detected.
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The frequency detectors that we have discussed thus far require an edge-detector
preprocessor. It seems reasonable that we could do away with the edge detector and
determine the frequency error directly from the data. In the following section a stand-
alone phase/frequency detector for NRZ data, which does not require edge detection
preprocessing will be described.

5.1.5 Phase/Frequency Detector of Pottb�acker et al.

A clever phase/frequency detector (PFD) was recently reported by Pottb�acker et al.
[9, 10]. This circuit uses the data transitions to sample the clock, and has nearly a
one-to-one correspondence with the rotating wheel analogy, where the sampling of
the clock signal is analogous to looking at the position of the rotating vector when a
strobe-light, controlled by the data transition, flashes. A block diagram of this circuit is
shown in Fig. 5.15. Although the circuit is not directly applicable to our needs as a self-
adjusting clock recovery and data retiming circuit, it nevertheless implements useful
functional building blocks efficiently, and serves as an excellent starting point for our
discussion of practical clock extraction circuits. This PFD is fabricated in an advanced
silicon bipolar technology, and can operate at a data-rate of 8-Gb/s. Although, the
transistor-level design of this PFD is just as important, if not more, than the concept,
we will only discuss the architecture of this circuit, and refer the interested reader
to [9, 10] for a discussion of the circuit design details.

Since the polarity of the data is random, the sampling is performed on both the
positive, and negative data edges. This was the same effect of detecting the data
edges, but doesn’t preprocess the data to produce an explicit edge-detected signal.
When a frequency error occurs, the sampled signals Q1, and I1 will be beat-note
square-waves at a frequency equal to the magnitude of the frequency error �f . When
�f > 0, Q1 will lead I1, and the reverse will be true for �f < 0. By monitoring
the magnitude of I1, when Q1 makes a transition, the direction of the frequency error
can be determined. When in lock, the in-phase signal I1 will always by positive. The
frequency error detector always outputs a zero value for I1 > 0, so as not to interfere
with the normal loop operation in phase-lock. Therefore two events must occur before
a frequency error appears. The first is that I1 must go negative. This occurs at timing
errors greater than jT=4j in magnitude. However, this value will not be transferred to
the sample-and-hold output until a transition inQ1 occurs at phase errors of�T=2 and
T=2. Therefore, the circuit has the desirable property that the complete monotonic
range of the phase detector is spanned before a cycle-slip is detected.

At high-data rates, this circuit has a fairly narrow pull-in range. It was reported that
frequency errors on the order of 100-MHz can be acquired at 8-GHz. This is only
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Figure 5.15 Block diagram of the phase frequency detector of Pottb�acker et al..

1.25%, which means that the center frequency of the VCO must be stable to within
this accuracy to guarantee acquisition. However, the factors limiting frequency pull-in
were not discussed in [9, 10].

Clock Recovery and Data Regenerator IC Pottb�acker utilized this PFD to design a
fully-integrated 8-Gb/s clock recovery and data regenerator IC [11]. At the time of
this writing Pottb�acker’s circuit is the fastest fully-integrated, PLL-based fiber-optic
receiver.2 Pottb�acker’s circuit generates a clock at the proper frequency, but the steady-
state phase is not well controlled and depends on several parasitic delays which depend
on processing and temperature. Therefore the resulting clock may be very far away
from the proper sampling phase. Pottb�acker addressed this problem by having the VCO
generate four separate clock phases; the closest of the four to the optimal sampling
phase is used as the active clock. This is an adequate approach in low SNR systems,
where the phase of the recovered clock is not required to be precise. However, in long-
haul telecommunication applications there can be a significant reduction in sensitivity
due to offsets in the sampling phase, as was discussed in section 3.7.

2Several fiber-optic receivers have been reported which operate at higher data rates than 8-Gb/s, however
these use some type of external filter for clock extraction and are not “fully-integrated.”
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Figure 5.16 Block diagram of Alexander’s clock recovery and data retiming circuit with
deskewing delays added to account for flip-flop delays.

Despite the success of this PFD and clock recovery IC, it uses the data transitions to
sample the clock, which is the opposite of what is required in a self-adjusting approach.
Since we ultimately have to use the clock to sample the data in the decision circuit, it
behooves us to use this information, if we can, in the phase/frequency detector. The
remainder of this chapter describes practical high-speed architectures, using building
blocks that function both as phase/frequency detectors and decision circuits. This not
only gives us two functions for the price of one, but also leads to circuits that are
inherently self-adjusting.

5.2 MODIFIED ALEXANDER CIRCUIT

The first practical clock recovery and data retiming circuit that will be presented is
a modification of Alexander’s circuit [12] that was shown in Fig. 4.59. The basic
operation of the circuit was explained in chapter 4. The modified circuit is illustrated
in Fig. 5.16. In normal operation, the flip-flop labelled center, samples the data signal
in the center of the eye-diagram, and the transition flip-flip samples the signal at the
data transitions. The binary quantized outputs of these two circuits are clocked into
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storage locations for further processing. The delay of the decision circuit is denoted
as td. We have modified the basic structure by adding delays of approximately td to
skew the clock before resampling the quantized data. This allows the outputs of the
center and transition flip-flops to settle. An identical delay is used to skew the signal
(c) so that the samples (a), (b), and (c) arrive at the phase/frequency detection logic
block simultaneously.

Notice, that the delays elements do not have to be precise. They only have to be close
enough to td to insure that the proper value is resampled into the deskewing register.
The relative phase information between the data and clock is contained in the output of
the center and transition flip-flops. In a fully-differential circuit, inversion of the clock
is accomplished simply by reversing the polarity of the differential signals. Therefore
the positive and negative clocks are exactly 180� degrees out of phase, and precise
timing is inherent in this structure. When the loop is in lock, the phase separation is
T=2. It is this time offset that controls the phase-estimate accuracy. Once the samples
have been quantized, the timing of the rest of the circuits will not affect the results. As
long as the deskewing is sufficient to allow the circuit to work at high data-rates, the
phase estimate will be independent of changes in td.

5.2.1 A Frequency Detector Based on Sequential Early-Late

Decisions

We have stated that the logic block can detect errors in frequency by using the infor-
mation that it is provided. We have a couple of options for adding frequency detection
to the standard Alexander circuit. One technique is to use a start-up sequence. This
allows frequency acquisition to occur before the random data is sent, and the frequency
error can be detected easily with virtually no additional hardware. The second alterna-
tive adds complexity to the receiver design, but does not rely on a start-up sequence to
establish frequency acquisition. Both of these techniques will now be briefly described.

Frequency Detection Using a Start-up Sequence

If during a start-up phase we send a sequence of alternating ones and zeros (a periodic
waveform at a frequency ofBT =2), we will have no trouble detecting a frequency error
using the samples that are already available. In fact, we can see that the Alexander
circuit is actually the front-end of a quantized quadricorrelator, provided that the input
signal is periodic with a period of 2T . We can therefore use the samples (b) and (c)
as the quadrature and in-phase samples of the waveform respectively. This technique
was used by Walker et al. [13, 14] in a 1.5-Gb/s serial data link.
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Figure 5.18 Conceptual block diagram of a frequency detector of Alexander’s circuit
when a start-up sequence is used.

Consider the case illustrated in Fig. 5.17. The frequency error is detected easily with
one flip-flop and a multiplexer. When (b) makes a positive transition we pass (c) to the
output, and when (b) makes a negative transition, we pass the negative of (c). This is
shown conceptually in Fig. 5.18.

Rotational Four-Quadrant Frequency Detector

In many cases, it may be undesirable from a systems standpoint to use a start up se-
quence to insure frequency acquisition. In these instances, we need to obtain frequency
error information from the random data itself. The quadricorrelator of the previous
section will be confused by random polarity variation in the data. Therefore, we need
to adopt a different approach, and we turn again to the rotational analogy. One alterna-
tive is too add two more sampling flip-flops at the front-end. If we offset these samples
(x) and (y) by T=4 from the original samples, then we can arrive at the sampling
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Figure 5.20 Rotational analogy of data transitions

order illustrated in Fig. 5.19. We can also represent four quadrants, [A,B,C,D], as the
time intervals between successive samples. In normal operation there will either be
no transitions, or one transition between the samples (a) and (c). When the loop is in
phase-lock, the transition should fall precisely at the sample (b). We can represent a
clock-cycle of length T on a circle, and consider the transition location, as if it were
rotating. This circle is shown in Fig. 5.20, which illustrates the locked condition, where
the data-transition occurs at sample (b). In normal locked operation this transition will
fall either in quadrant B or C. We can devise our frequency detection circuit so as not
to interfere with the normal locked condition. Therefore, we can set the frequency
error to zero whenever the data-transition is in quadrant B or C. A cycle-slip is detected
when the transition crosses into quadrant A or D, at which time, the frequency error
signal is activated. This provides a time-offset range of [�T=4; T=4] over which the
frequency error is always equal to zero.

The cases of a clock that is too slow, and one that is too fast are shown in Figs. 5.21(a)
and (b) respectively. We can now use the direction of the rotation of the transition
to derive a frequency error. A conceptual circuit for obtaining this error is shown in
Fig. 5.22. The output of the SR flip-flop is a series of positive pulses. The signal
is equal to zero in quadrants B or C, and is high in quadrants A or D. This signal is
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either passed directly to the output, or is inverted and then passed, depending on the
direction of the rotation. In this diagram we have shown that the direction signal should
be set high when a B-to-A transition occurs, indicating that the clock is slow, and the
transition is rotating backward. When the clock is fast, the signal is set low on a C-to-D
transition. We will not show a complete schematic here. Once the rotational concept
is understood, the implementation is straight forward. In the following section we will
discuss a further modification to the Alexander circuit, showing how the throughput
can be increased by using bit-interleaving.

5.2.2 Interleaved Alexander-Late Circuit for Higher Throughput

It is clear that Alexander’s circuit is easily pipelined. If the throughputof the receiver is
limited by the delay of the decision circuit, then two decision circuits can be interleaved
to double the maximum bit-rate. A block diagram of an interleaved circuit is shown
in Fig. 5.23. The clocking of this circuit assumes that the flop-flops have no delays.
One can visualize the sampling of the data as rotating counter-clockwise around the
four outer flip-flops. On clock cycle �1, (a1), (b1), and (c1) are clocked into the logic
PFD logic block; on phase �3, (a3), (b3), and (c3) are transferred. The PFD logic
makes decisions as to whether the clock was early or late, and multiplexes the result
of phase 1, and phase 3, onto a signal � which is sent to the loop filter, and in turn, to
the VCO. Obviously at high-speed, this circuit will require embellishments to account
for flip-flop delays.

Interleaved Circuit using a 4-Phase Clock to Account for Flip-Flop

Delays

An efficient means of deskewing signals, before resampling is to make use of multi-
phase clock signals to compensate for the decision circuit delay. A simple multi-
phase VCO is shown in Fig. 5.24. This VCO is a 4-stage ring oscillator, built with
differential tunable delay elements. As well as the four phases [�1; �2; �3; �4], we also
have an additional four signals [�̂1; �̂2; �̂3; �̂4], for a total of eight possible clocking
phases. Therefore, time offsets in increments of T=4 can be obtained by skipping the
appropriate number of clock phases. If we consider an example where the decision
circuit delay is close to the bit-period T , then we can obtain the clocking scheme for
a high-speed circuit as shown in Fig. 5.25. Since �1 and �2 are separated by T=2,
then a delay of T in the clocking corresponds to skipping to phase �3. Therefore, the
clock phases in brackets in Fig. 5.25 have been obtained by adding a delay of T to the
clocks shown in Fig. 5.23. However, we still need to add a delay of approximately
T , for skewing of the signals (c1) and (c3). This can be accomplished by using four
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identical delay cells as were used in the VCO of Fig. 5.24. Since the VCO delay cells
have a delay of T=4, feeding the control signal forward to the deskewing elements
produces a delay of exactly T . However, since this delay does not have to be exact,
we could use a VCO delay cell running at a quarter of the current, and at four-times
the impedance level to produce a delay approximately four-times as large as the delay
of a single VCO cell, thereby saving in both area, and power dissipation.

We could also implement a rotational frequency detection scheme easily with this
4-stage ring VCO. The samples offset by T=4 can be taken using the clock phases
[�̂1; �̂2; �̂3; �̂4]. This interleaved circuit with frequency detection is ideally suited for
circuits implemented in fine-line CMOS, where the phase/frequency detection logic
can be realized efficiently, and data rates in excess of 2-Gb/s can be realized.

Maximum Speed of Interleaving

The interleaved Alexander circuit is an example of a practical self-adjusting clock
recovery and data retiming circuit that is capable of operating at very high data rates.
The 4-stage ring VCO has a frequency of one-half the bit-rate, and a period of 8tvco.
The bit-period T is given by

T = 4tvco (5.15)
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A delay cell can be realized such that the delay is between 1=fmax and 2=fmax.
Therefore, the maximum bit-rate that can be achieved is approximately in the range

fmax
8

< BT <
fmax
4

(5.16)

Advantages of using this circuit are as follows.

If all 4 outer flip-flops are matched, the clock will be automatically adjusted to
the proper phase, independent of the delay and setup times of the flip-flops.

Frequency detection can be accomplished with some additional digital logic, or
by using a start-up sequence.

There are some disadvantages however.

The phase error is obtained by making a hard decision, and, therefore, the circuit
is limited to high SNR applications.

Since the transition sample is quantized, it will randomly alternate between a high
and low value. This oscillation will increase jitter in the recovered clock.

Although we mention these disadvantages based on qualitative reasoning, no analysis
was performed by these authors to determine precisely at what SNR the circuit falls
apart, or how much excess phase-jitter results in the clock as compared to a MAP
estimator.

Limitations of Flip-Flops as Decision Circuits

Bit-interleaving can be extended to higher orders, but generally, one would not use
more than two levels. The reason is that additional amplifiers and filters are also needed
on the same IC chip — fabricated with the same transistors as the decision circuit. It
is a safe bet, that if one can not make a decision circuit fast enough to respond within
two bit periods, then the chances are that one also won’t be able to build an amplifier
fast enough to handle the raw data.

An additional problem occurs when a flip-flop is used as a decision circuit for high-
speed applications. A decision circuit must perform three separate tasks:

1. sampling; the signal must be observed at a specific instant in time,
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Figure 5.26 Short section of NRZ data and recovered clock.

2. comparison; the sampled signal must be compared to a reference and quantized
(one-bit quantization in this case),

3. regeneration; the signal must be latched using positive feedback to regenerate
the signal so that it will not change state until the next active clock phase.

In a ideal flip-flop each of the three functions are separated. However, when the clock
rise-time is slow, these function will interfere with each other. In the limiting case
the data will be changing at the same speed that the clock is rising; this can produce
ambiguous results.

Example of Flip-Flop Clocking Problems at High-Speed We will illustrate the type
of problems that can occur with an example. If we consider a case where the decision
circuit delay is on the order of the bit-interval, then the data will be moving very fast
relative to the response time of the flip-flop. A short section of a data signal and a
recovered clock is shown in Fig. 5.26. A typical flip-flop works by using the clock
signal to switch between a track-mode, and a regeneration-mode. In the regeneration
mode, positive feedback is used to clamp the signal in one of two directions, depending
on the polarity of the signal at the end of the track-mode. However, we see in a high-
speed system, that the clock-edge will have a transition�t that is a significant portion of
the bit-interval. During this transition, the track-mode and regeneration-mode signals
of the flip-flop will be fighting against each other. This is a serious problem when
the data makes a transition. In the case illustrated, when the clock makes a positive
transition, we switch from tracking to regeneration. As the clock begins a positive
transition, the track-mode signal starts to become attenuated in favor of the regenerated
signal. This can have the effect of reducing the SNR. For example, if the track signal is
supposed to be positive, but it has not crossed the axis when the clock transition starts,
then the positive feedback of the regeneration will act to keep the signal negative as the
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track-mode tries to push it positive. Therefore, the end result will not be as positive as
it should be.

During the second half of this cycle, the regeneration will be pushing the output
positive, but if the next bit is negative, the track-mode circuit plays the role of spoiler,
and can prevent the regeneration from reaching a maximum positive value, especially
when the data-sample was originally small in magnitude. We therefore are faced with
two fundamental problems when using flip-flops as decision circuits.

The maximum SNR of the data sample will be reduced by the interactionsbetween
the track-mode and regeneration-mode circuit.

It is difficult to tell where the clock-edge should be placed to achieve a maximum
SNR sample. Since, interactions within the flip-flop itself affects the SNR of the
sample, there is no reason to believe that the optimal clocking phase will be in
the center of the data eye.

Therefore, we see a definite problem with Alexander’s method when using flip-flops
as the decision circuit. The feedback mechanism is set up to find the point of sampling
that is most random (the crossover point), and sample the data with a clock that is
offset by T=2 from this point. Although this is a good place to sample, we are not
sure if it is optimum, because interaction within the flip-flop can effect the sampling
process.

From the above discussion, we see that the problem with flip-flops as high-speed
decision circuits is the interaction between the track- and regeneration-modes. If we
can decouple these two modes, then we can obtain a higher SNR sample, and get a
better estimate of the optimal sampling phase. This decoupling can be accomplished by
preceding the regeneration stage with a sample-and-hold circuit. Using a sample-and-
hold will keep the signal fixed before it is regenerated by the flip-flop, thus doubling
the setup time. This will allow the full benefits of interleaving to be realized. In the
following sections we will present two clock-recovery, and data-retiming circuits that
make use of high-speed sample-and-holds.

5.3 EARLY-LATE CIRCUIT USING A MATCHED FILTER

We saw in chapter 4 that an early-late gate clock recovery circuit can be realized using
a matched-filter, together with sample-and-holds, as was illustrated in Fig. 4.57. A
slightly different version of this circuit is shown here in Fig. 5.27, where we take the
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Figure 5.27 An early-late gate clock recovery and data retiming circuit using a matched
filter and sample and holds to replace the integrate and dump function.

absolute value of the early and late samples to remove phase-error-polarity ambiguity
caused by the random data. We recall from the discussion of early-late gates in
chapter 4, that the offset �t should be closed to T=4 for maximum phase-detector
gain, and the resulting error signal � will contain a significant ripple component when
the loop is in lock. This ripple occurs because the early and late samples are skewed
in time relative to each other.

It is desirable to separate the early and late samples by T=2 to obtain a phase-detector
characteristic that is monotonic over the complete bit-interval. This was the case for
the circuit of Fig. 4.57, which is repeated here in Fig. 5.28 for convenience. We can
see that this circuit is very similar to Alexander’s circuit with some notable exceptions.

The flip-flop decision circuits used in Alexander’s realization is replaced by a
sample-and-hold followed by a limiter/regenerator. This decouples the sampling
from the regeneration and improves the SNR of the data sample.

Since the error signal in not quantized, it is a continuous function of the phase-
offset. This reduces the ripple at the phase-detector output and therefore reduces
the clock jitter.
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Figure 5.28 Early-late gate with matched filter and sample and holds.

In the sampled early-late circuit, we make use of one on-time sample, and two
cross-over samples (early) and (late), to produce a phase-error signal. Whereas in
Alexander’s circuit, two on-time samples (a) and (c), and one cross-over sample
(b) was used.

In a practical implementation of the early-late circuit of Fig. 5.28, we would use
bit-interleaving to increase the throughput. The VCO clock will then be running at
half of the bit-rate, and the sample-and-hold functions can be realized by multiplexed
track-and-hold circuits. It is left to the reader to figure out the proper clock scheme
for such a bit-interleaving technique. We will turn instead to a superior circuit, that is
very similar to that of Fig. 5.28. However, this new circuit adds one additional level
of resampling, and by doing so, makes the phase-error signal independent of the data
transition-density.
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Figure 5.29 NRZ data before and after being processed by a matched filter.

5.4 HIGH-SPEED DATA TRANSITION TRACKING LOOP

At the very outset of our discussion of clock recovery for digital NRZ data, we
emphasized that timing information is only present when the data makes a transition. It
is therefore quite logical to ignore any output of a phase-detector during intervals when
no data transition occurs. This implies that we use some type of gating mechanism to
shut off the phase detector in the absence of transitions. One example of this was seen
in the circuit of Cordell et al. [4], where a tri-state gate was used to null the phase-error
when no transitions were present. Devito et al. [15] and Lee and Bulzacchelli [16, 17]
used a technique to hold the previous phase-error value between data transitions,
thereby making the phase-detector output independent of the transition-density. The
circuit presented in this section is a slight modification of an early-late gate, utlizing
an additional sampling stage, such that the phase-detector output is transferred to the
loop-filter only when a data transition has occurred. This circuit was used in the Mars
Mariner in 1969, and was patented by Anderson, Hurd, and Lindsey in 1971 [18].3

Lindsey and Simon [19, pp. 442–457] refer to this circuit as a data transition tracking
loop (DTTL). They also present considerable performance analysis of the DTTL.

The DTTL can be understood most easily by considering the time domain operation.
Fig. 5.29 shows typical rectangular NRZ data before, and after, being passed through
a matched filter. The matched filter produces a linear transition, which extends over
the bit interval. Since we are only interested in what happens during transitions, we
can restrict our attention to the positive data pulse shown in Fig. 5.30, from which we
can determine the circuit behavior during a data transition. Recall that the ultimate
goal is to position the clock-phase so that it samples the data at the point where the
filtered data signal achieves a maximum SNR. Therefore, we would like to find the
gradient of the on-time samples and force this value to zero. Finding the gradient can
be greatly simplified by realizing that the pulse shape is essentially sinusoidal. In the
case of high-speed systems, several parasitic poles near the data-rate provide additional
filtering of the data. The result is that the data transitions follow nearly a sinusoidal
path; for a data pattern of alternating ones and zeros, the data signal is a sinewave
at half the bit-rate. For the special case of sinusoidal transitions, the gradient of the

3U.S. and Canadian patents are pending for high-speed realizations of DTTLs presented in this section.
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Figure 5.30 A positive data pulse showing the optimal sampling point.
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Figure 5.31 Illustration of a positive data pulse. The gradient of the on-time sample is
equal to the value of the cross-over sample.

on-time samples can be found by shifting the sampling phase half of a bit-period, or
90�. This is illustrated in Fig. 5.31. In this example,

when the clock is early the quadrature sample is negative,

when the clock is on-time, the quadrature sample is zero,

when the clock is late, the quadrature sample is positive.

Considering the opposite condition when the data pulse is negative, as shown in
Fig. 5.32, the polarity of the data cross-over samples are reversed. We can correct
for the polarity reversal by multiplying the data-cross-over samples (or quadrature
samples)4 by the retimed data. With these observations, and the fact that the the
cross-over samples are transfered to the loop filter only when a data transition occurs,

4If the data pulse is sinusoidal, then the data-cross-over samples will be 90 degrees out of phase with
the on-time samples. Because of this 90 degree phase shift we will often call these cross-over samples
“quadrature samples.”
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Figure 5.32 Illustration of a negative data pulse. The error signal is equal to the negative
value of the cross-over sample.

the following simple list of rules for producing the desired phase-error signal can be
obtained.

If the data makes a low-to-high transition, pass the quadrature sample to the
phase-detector output.

If the data makes a high-to-low transition, pass the negative of the quadrature
sample to the phase-detector output.

If the data makes no transition, hold the previous phase-error value.

Block-Level Description of DTTL

A block diagram of a circuit that implements these rules is shown in Fig. 5.33. The
clock is operating at the data rate and will experience both a positive, and a negative
transition in one bit-period. The in-phase sample-and-hold (top left) samples on the
positive transition of the clock, and the quadrature sample-and-hold (bottom left)
samples on the negative transition of the clock. We are considering the case where
the data-sampling is performed on a positive transition of the clock, in which case
the quadrature samples are taken when the data crosses over the axis. The cross-over
samples will contain the phase error information, but the information is valid only when
a data transition occurs. The polarity of this signal also switches when the data changes
value. Therefore we must post-process these sample by the sample-and-hold at the
right. This circuit must sample on both a positive and negative transition in the data, and
thereby ignores quadrature samples taken when no data transition occurred. Finally,
the resampled phase information has the polarity ambiguity removed by multiplying
the signal by the retimed data. The resulting signal � is an estimate of the phase-error.
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Figure 5.33 Block diagram of a data transition tracking loop (DTTL).

It is filtered by F (s) and used to drive the VCO to the proper phase. In a practical
implementation the multiplications should be done before the sampling, but in this
idealized model it makes no difference. The block diagram is meant only to illustrate
the concept.

Monotonic Phase Error Characteristic

A monotonic phase-error characteristic is desirable for several reasons: frequency
acquisition will be improved, the locking range will be extended, and the phase-
jitter transfer function will become more linear. To see that the resulting phase-error
characteristic is monotonic over the bit interval we can first look at Fig. 5.29. Notice
that the ideal NRZ data signal consists of square pulses, whereas the lowpass filtered
signal transitions, from low-to-high, and vice versa, follow a linear path that extends
over the entire bit-interval. Parasitic poles will smooth the sharp edges of the signal in
Fig. 5.29 such that the transitionswill be sinusoidalas was shown in Figs. 5.31 and 5.32.

Shape of Phase Characteristic Determined by Shape of Data Pulse The quadrature
sample leads the in-phase sample by half a bit-period. The receivers job is to sample
at the peaks of the data signal, and make a decision as to whether these samples are
high or low. For optimal behavior we need to find these peaks. The DTTL operates on
the principle that it is difficult to find signal peaks — but easy to find zero crossings.
The peak of the in-phase sample is found indirectly by finding the zero-crossing of
the quadrature sample. If the peak lies exactly between zero crossings, then we can
sample in the middle of the zero crossing and hit the peak of the in-phase sample. In
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Figure 5.34 The phase-detector characteristic of a DTTL follows the shape of the data
transition until it abruptly changes sign at time offsets each to jT=2j.

equilibrium the in-phase sample is at a peak, and the quadrature sample will be at zero.
If the clock phase changes, the quadrature sample will differ from zero. Since these
quadrature samples will be taken from the data itself, the shape of the data transition
will give rise to the phase error function produced by the phase detector. Because
the data signal is passed through a limiter before multiplying the quadrature samples,
the polarity of the signal changes abruptly at a cycle-slip boundary, giving rise to
a sawtooth-type phase-detector characteristic as shown in Fig. 5.34. It can be seen
that the quadrature samples follow the shape of the data-transition, as a function of
the phase-offset, where linear transition give rise to a sawtooth wave and sinusoidal
transitions result in a switched-sinusoidal characteristic. It can also be observed that
the phase-detector has the desirable property of being monotonic over the complete
bit-interval [�T=2; T=2].

In a practical realization, a bit-interleaving scheme as shown in Fig. 5.35 could be
used. The VCO center frequency is half the data-rate, and the VCO has a quadrature
output for sampling at the data cross-over points. The multiplexed track-and-hold
circuits perform the function of sample-and-holding the data on both the positive and
negative clock transitions. A repeatable structure, of two track-and-holds followed
by a multiplexer, can be identified. Although the resampling circuit has a reversal of
polarity for a negative data transition, in a fully-differential circuit this is easily realized
by switching the polarity of the differential signals; thus the layout is identical to the
front-end circuit, except for a cross-over in the wiring. A buffer has been added in the
data cross-over arm, or quadrature arm, of the DTTL, which is used to compensate
for the delay of the limiter in the in-phase arm. The matching of the delay times
between buffer and limiter does not have to be accurate. What is essential, however,
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Figure 5.35 A bit-interleaved DTTL.

is that these delays are close enough in magnitude to make sure that the resampling
performed by the track-and-holds on the right side of the circuit are operating on the
correct quadrature samples and not a sample that is shifted in time relative to the
in-phase arm. This phase detector has several desirable properties as listed below.

High-speed The circuit can function at very high speeds — limited by the speed of
the track-and-hold circuits and multiplexer; both of which can operate near the
limitations of the transistors.

Self-adjusting The phase-detector and decision circuit use identical building blocks.
Thus the sampling phase is inherently self-adjusting, because the parasitic delays
of the sampling circuits, in the in-phase and quadrature arms, will track each
other.

Optimal sampling The circuit samples at T=2 seconds offset from the data cross-
overs, which for sinusoidal pulse-shapes, or any other pulse that achieves a
maximum SNR at the center of the bit-interval, is an optimal sampling point
in terms of provided a MAP estimate of the data arrival time and obtaining the
maximum SNR at the sampling instant.

High sensitivity Since the signal is sampled and held before a decision is made, the
regeneration does not interfere with the data acquisition. Thus the SNR is not
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adversely affected. When flip-flops are used to sample and regenerate the data,
as is the case for other circuits, the effect of the regeneration on the data sampling
makes it unclear as to where the optimal sampling point occurs, and it may not
be in the center of the bit-interval; this sampling uncertainty further reduces the
receiver sensitivity in other approaches which use flip-flops as decision circuits.

Monotonic phase-error The phase-detector function is monotonic over the bit inter-
val [�T=2; T=2]. This improves acquisition and tracking, and linearizes the jitter
transfer function.

No double-frequency ripple Resampling the phase-error signal at data-transitions
significantly reduces ripple in the error signal at twice the clock frequency, which
reduces phase-jitter in the recovered clock.

Independent of data pattern Since the phase error is only transferred when a tran-
sition in the data occurs, the Phase-detector output is independent of the data
transition-density to a first-order. This substantially reduces pattern-dependent
jitter in the recovered clock.

Symmetry: Primary Advantage of DTTL for High-Speed Operation We have dis-
cussed in chapter 3 how systematic offsets in timing recovery are the dominant factors
in performance degradation at high-speeds. Therefore, the primary advantage of this
sampled DTTL is its symmetry, which makes the circuit insensitive to systematic
errors. The residual phase-error in the recovered clock will be a result of random
mismatches in the circuits and the layout, which can be maintained to a high-degree
of accuracy. This circuit looks like a sampled Costas Loop, and can be viewed as a
modification of a gradient-based MAP estimator as described in chapter 4. For sinu-
soidal data transitions, the quadrature samples give the gradient. Therefore, the DTTL
provides a MAP clock-phase estimate in steady-state operation.

5.4.1 Frequency Detection in a DTTL

The DTTL has several desirable properties. However, as it stands, it can not lock to
a data-signal that differs substantially from the VCO frequency. In fact, the natural
acquisition of the loop can only pull-in frequency errors of the same order as the
closed loop bandwidth. Since a narrow bandwidth is needed to reduce the phase-jitter
(high-Q), this pull-in range will be quite narrow. At a data-rate of 10-Gb/s, the VCO
frequency is 5-GHz. For an effective Q of 1000, the maximum frequency deviation is
on the order of 10-MHz, or 0.2% of the VCO frequency. It is undesirable to design a
VCO with a center frequency stable to within 0.2% for this application, therefore, we
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Figure 5.36 Illustration of the error signal � with a sawtooth-type characteristic as a
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Figure 5.37 Circuit for extracting a frequency error signal from a sawtooth-type phase-
error characteristic.

require the addition of a frequency detector (FD) to insure that frequency acquisition
will occur upon start-up.

Several options exist for adding a frequency detector to the DTTL. We could use any of
the circuits discussed thus far, as stand-alone frequency detectors, and simply add the
resulting frequency error to the phase-error of the DTTL. However, since the DTTL
has available in-phase data samples and quadrature cross-over samples, we have a
structure that looks very much like a quadricorrelator already. All that is needed is to
utilize this information wisely to provide an indication of the frequency error with a
minimal addition of hardware.

We can derive a simple frequency detector by realizing that the phase-error signal �
is a sawtooth-type function of the phase-error. Two different conditions exist for a
slow clock and a fast clock as illustrated in Figs. 5.36(a) and (b). The derivative of
the error function is in the proper direction most of the time, however the dc value of
the derivative is zero. A simple approach to deriving a frequency error that gives only
the sign of the frequency error is to limit the derivative, as shown in Fig. 5.37. The dc
value at the output of the limiter will be positive for a slow clock and negative for a
fast clock. When the derivatives are passed through a hard-limiter, the result is shown
in Fig. 5.38
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Figure 5.38 Frequencyerror polarity extraction from a sawtooth type phase-error function
for: (a) a slow clock, (b) a fast clock.

Unique Properties of DTTL for Sawtooth Frequency Detector

The DTTL is ideally suited for implementing the sawtooth FD because the error signal
� is resampled and contains virtually no ripple. Therefore, only a broadband lowpass
filter is needed to smooth glitches before producing the desired sawtooth function.
We have seen other circuits that produce a sawtooth phase-error characteristic, such
as an early-late circuit of Fig. 5.28. However, these circuits have severe ripple in the
absence of data transitions, and a narrowband lowpass filter is required to reduce this
ripple before a sawtooth function is obtained. The sawtooth FD approach could be
applied to the early-late circuit as well. However, the FD will not be able to recognize
a frequency error outside the bandwidth of the ripple-reduction filter and therefore
will have a built-in range limitation. Since the DTTL does not require a narrowband
ripple-reduction filter, it can recognize frequency errors of at least 10–20%, providing
a significant range over which the VCO center frequency can vary and still be pulled-in
by the DTTL.

MATLAB SimulationResults System-level simulations of the DTTL were performed
to verify functionality. The resultingerror signal � is shown in Fig. 5.39 for the case of a
5% frequency error. The input signal is random NRZ data with sinusoidal transitions.
It can be seen that the phase-detector characteristic is not a smooth switched sinusoid,
which is an artifact of the random nature of the data; when several bits arrive without a
transition, the phase error will make a larger jump after a transition finally occurs. We
require filtering with a bandwidth on the order of 25% of the bit-rate to smooth this
phase-detector output before further processing.

The error signal � was used to derive the direction of the frequency error. A finite
difference was taken, and the result was passed through a hard-limiter to obtain the
signal �f�. This signal consists of pulses with a dc value in the opposite direction of
the frequency error. The resulting frequency error signal �f� for the same condition
of a 5% frequency error is shown in Figs. 5.40 (a) and (b), for a slow, and a fast clock
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Figure 5.39 Phase-error signal resulting from a MATLAB simulation of a DTTL for
frequency errors of (a) -5%, (b)+5%.
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Figure 5.40 Frequency-error signal resulting from a MATLAB simulation of a DTTL for
frequency errors of (a) -5%, (b)+5%.
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Figure 5.41 Block diagram of a DTTL with frequency detection

respectively. It can be seen that the filtered version of �f� is positive for a slow clock,
and negative for a fast clock. Various other simulation results of the DTTL will be
reserved for chapter 10 where the actual transistor-level implementation is discussed.

Variations of the Sawtooth Frequency Detector

Once we make the primary observation that the slope of a sawtooth phase charac-
teristic can give us the direction of the frequency error, then we can add various
gating techniques and other embellishments to the FD to improve performance. The
basic structure of a practical DTTL with frequency detection is shown in Fig. 5.41.
Considerations of closed-loop stability and jitter-peaking will dictate the gain and
transfer function of the filter Ff (s) in the frequency-error path. When the loop is in
lock, the average frequency error will go to zero. However, it will vary randomly, and
can disturb the dynamics of the PFLL. To reduce the effect of the frequency error signal
on the loop when in phase-lock, a lock-detector can be used to force the frequency
error to zero after the phase acquisition is complete. One simple technique is to use
a dead-zone near the point of zero phase-error. This is illustrated in Fig. 5.42, where
the frequency-error is only enabled when the phase-error exceeds a given threshold.
With this technique, the operation of frequency acquisition can be separated from
phase tracking. During frequency acquisition, the phase-error signal will nominally
equal zero, and will have no effect on the loop. Once frequency acquisition has been
established, the phase-error signal takes over, and the frequency-error feedback path
is broken.
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Figure 5.42 Illustration showing how the frequency error signal can be forced to zero
when the phase error is within a boundary surrounding zero.

5.5 SUMMARY

In this chapter we considered some of the practical aspects of clock recovery circuits
used in high-speed applications. To insure that a clock can be recovered from the
data, either a frequency reference, or a frequency acquisition aid is required. A
frequency reference would take the form of a stable resonator, such as a quartz crystal,
whereas an acquisition aid will produce an error signal, which can drive the VCO
to the correct frequency. Various frequency detection schemes were described in
this chapter. A rotating wheel analogy was used extensively for conceptualizing the
frequency detection operation.

A few clock recovery and data-retiming circuit were presented, all of which are self-
adjusting, which is a result of the decision circuit being utilized in a balanced con-
figurations for extracting phase-error information. At this point, the reader may be
interested in some quantitative performance comparisons of several of the clock re-
covery techniques discussed thus far. Parameters of particular interest are as follows.

Bit-error-rate as a function of the SNR.

Clock phase-jitter as a function of the noise-bandwidth and the SNR.

Frequency acquisition, and tracking ranges.

Sensitivity to offsets in the clock phase.

Certainly these parameters are important. However, in a high-speed system, parasitics
of the actual circuit will ultimately determine performance. From a practical point
of view we might be more interested in comparing the following specifications of
alternative architectures:
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Maximum operating speed.

The minimum input signal level. Since regenerators have a finite gain, the input
must be greater than a given level to result in a full-level output signal.

SNR penalty compared to an ideal receiver with impulse sampling.

Robustness against transistor model variations and temperature changes.

These quantities are all inexorably linked to the transistor-level circuit and layout.
Therefore, it is difficult to evaluate system performance until, at least, the primary
functions have been designed at the transistor-level, so that circuit-simulations using
SPICE can be performed. However, even obtaining circuit-level simulation results are
difficult. A few of these difficulties are described below.

High-Q Clock extractors are necessarily high-Q circuits. Therefore, thousands of
clock cycles need to be simulated to examine the low frequency behavior of the
circuit after lock has been established. Even longer simulations are required to
extract information about cycle-slipping and frequency acquisition. For example
Pottb�acker et al. [9, 10] reported on an 8-GHz frequency-detector with an acqui-
sition time on the order of 1 ms. Therefore, the system needs 8-million clock
cycles to acquire frequency; a horrendously long transient simulation would be
required to observe this phenomenon.

Random Data To make matters worse, the data is random, and several simulations
are required to determine average circuit behavior.

Random Noise We want to test the circuits performance in noise, which is also
random, implying that we need to look at noise and data statistically and simul-
taneously — adding another dimension to an already large problem.

Cross-Coupling Coupling is not implicitlymodeled, so it is very easy to ignore effects
in simulation that could in reality be detrimental.

Review of Part I

Since complete circuit characterization from simulations are impractical, and indeed,
even impossible, the strategy used by these authors is to first design prototype- and
test-circuits, and use the measured results to determine the affect of various parasitics
on system performance. With this knowledge of circuit parasitics the fundamental
aspects of receiver design were reevaluated in terms of their applicability to high-
speed applications. Basic theories needed for evaluation of circuit performance were
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presented in chapters 2 and 3. Various receiver block diagrams were presented in
chapter 4 and practical high-speed versions of these circuits were described in this
chapter. It is hoped that by providing a background in the theory, and reviewing
several previously reported circuits, Part I of this bookbook has helped to unify circuit
design with systems theory, and provide a basis for improved circuit designs of the
future.

Introduction to Part II

To gain a full understanding of integrated fiber-optic receivers there is no substitute
for doing transistor-level circuit designs. Multiple problems will arise in the design
process, the solution of which generally enhances the designers understanding of both
the circuit and the overall system. Therefore Part II of this book, which describes the
detailed circuit design of various building blocks of a fiber-optic receiver, is necessary
to provide integrationand expand comprehension of the informationpresented in Part I.

Since Part II of this book concerns detailed circuit design issues, it is difficult to speak
in general terms. Therefore we will restrict our attention to a specific technology
and to a specific architecture. The technology we will use is AlGaAs/GaAs HBTs
(Heterojunction Bipolar Transistors), and the architecture that we intend to implement
is the interleaved DTTL described in the previous section. We present Part II as an
application of the ideas presented in Part I, but we are not implying that the technology
and architecture chosen are preferable in all cases. We have spent a great deal of
effort to explain the underlying concepts in Part I, but the real challenge of producing
integrated fiber-optic receivers is in the circuit design. We will now turn to this topic
where we will concern ourselves with problems of a more physical nature.
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Turn on your radio and let me hear the song

Switch on your electric light
Then we can get down to what is really wrong

— Van Morrison





6
HETEROJUNCTION BIPOLAR

TRANSISTORS:
A BRIEF INTRODUCTION

One of the first tasks to be performed in the design of ICs for fiber-optic receivers is
choosing an appropriate IC technology. Primary factors to consider are speed, perfor-
mance, reliability, and cost. The ultimate choice will depend on the specific application
and the anticipated volume of production. For high-volume data communication ap-
plications, such as LANs (Local Area Networks) the best choice will likely be bulk
CMOS, because of its low cost and adequate performance in a high SNR environment.
Conversely, in low SNR applications, such as telecommunications, or in high-speed
ATM (Asynchronous Transfer Mode) switching, where extra speed and performance
justify a large increase in circuit costs, HEMT (High Electron Mobility Transistors) or
HBTs might be used. Since HEMTs and HBTs are fabricated from III–V compounds,
it is possible to integrate light sources and detectors on the same substrate with the
circuitry; this can be advantageous for low-noise operation and can be used to control
I/O impedance levels, thereby reducing interconnect problems.

Overview of Available IC Technologies

In the following section we will list some of the available IC technologies and discuss
their advantages and disadvantages for use in high-speed serial communication links.

BJT Silicon bipolar junction transistors are versatile devices; they offer high-speed,
high reliability, and relatively low cost. They could be used in both telecommu-
nication and data communication applications at data rates from 1–10 Gb/s [1].

CMOS CMOS is well known for its low cost, high reliability, and high packing
density. The speed is almost as good as BJTs; as gate lengths shrink, the speed
will continue to increase. CMOS is ideal for datacom applications such as FDDI

309



310 Chapter 6

and ATM receivers. CMOS has been used for gigabit-per-second data links [2],
and is currently applicable to data rates up to 2.5 Gb/s, with this number increasing
as the minimum gate length drops.

BiCMOS It is often advantageous to combine the speed and high transconductance
of BJTs, with the high input impedance and high packing density of CMOS [3].
BiCMOS has been utilized in a 6-GHz, 60-mW PLL, which could be used in
a complete fiber-optic receiver [4, 5]. BiCMOS is more expensive than either
CMOS or BJT, but is also more versatile; applications include both telecom and
datacom systems operating at data rates of 1–10 Gb/s.

SOI CMOS Silicon-on-Insulator (SOI) is an emerging technology with a long his-
tory [6]. In the early eighties CMOS SOS (Silicon-on-Sapphire) was used for
radiation-hardened military applications, but was too expensive for the consumer
market. Recently, high quality transistors have been fabricated using a thin-
film of silicon on top of an insulating oxide layer. SOI has the advantages that
parasitic capacitances to the substrate are drastically reduced, if not eliminated,
cross-coupling is reduced substantially, and latch-up is no longer a consideration,
allowingdevices to be packed extremely close to one another. The devices are also
easily scaled for deep-submicron ULSI applications. Past results have been im-
pressive, producing ring-oscillator gate delays of 13 ps! Presently the technology
is not widespread and is still expensive, (this is due primarily to wafer costs; the
actual processing of SOI is simpler than bulk CMOS because of the elimination
of wells, well contacts, and field implants) but increased volume of production
is expected to drive the costs down and make this a common technology in the
future. SOI could be used in both telecom and datacom and could operate at data
rates as high as 20 Gb/s.

GaAs FET GaAs field-effect transistors have been used extensively in MMICs (Mono-
lithic Microwave Integrated Circuits) and have proven reliability. GaAs FET pro-
cessing is more expensive than silicon-based technologies, but the higher speed
might be attractive for some telecom applications. GaAs FETs have been used
in multi-gigabit-per-second systems [7] and are applicable for data rates in the
range of 1–20 Gb/s.

HEMT High Electron Mobility Transistors (HEMTs) have been used in millimeter-
wave, low-noise applications, and could be used in high-speed fiber-optic receivers
[8]. One disadvantage is the high-cost, but this could be offset by the fact that light
sources and detectors can be integrated together on the same substrate. As long
as one must use III–V compounds for electro-optic devices, it might actually be
more economical to integrate, at least, some of the receiver circuitry, such as low-
noise amplifiers, with the electro-optics, thereby reducing noise and allowing for
controlled impedance interconnections. HEMTs would typically find application
in systems operating at 10–20 Gb/s and beyond.
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Technology Data Rate Cost Applications
BJT 1–10 Gb/s Low telecom, datacom

CMOS 0–2.5 Gb/s Low datacom
BiCMOS 0.5–10 Gb/s Medium telecom, datacom

SOI CMOS 0.5–20 Gb/s Medium telecom, datacom
GaAs FET 1–20 Gb/s Medium telecom

HEMT 5– <20 Gb/s High telecom
HBT 5– <20 Gb/s High telecom

Table 6.1 Summary of applicability of various technologies to use in integrated fiber-optic
receivers.

HBT Heterojunction bipolar transistors are fabricated with the same materials as
HEMTs, but are bipolar transistors as opposed to FETs. HBTs are suitable for
high-speed logic; Vbe for various transistors can be matched to within a few
millivolts, which allows realization of low-voltage digital circuits with acceptable
noise-margins. Since HBTs can be made of III–V alloys, they can also be
integrated on the same substrate with electro-optic devices (we will see an example
of this in chapter 7, Fig. 7.36). HBTs are also expensive and are therefore used
primarily in special telecom applications at speeds in the range of 5–20 Gb/s or
higher [9, 10, 11].

Some of the key aspects of the technologies just described for use in high-speed fiber-
optic receivers are summarized in table 6.1. For the remainder of this book we will
be discussing circuits designed and fabricated using HBTs. The following sections
introduce this technology and give SPICE models that will be used in simulations.

6.1 OVERVIEW OF HBTs

In order to achieve the high speeds required in a 10-Gb/s fiber-optic receiver, it is
proposed to realize the circuitry using heterojunction bipolar transistors (HBTs). This
exciting new technology has several advantages for high-speed operation, which were
noted as early as 1948 by Shockley in his original patent of bipolar transistors [12], but
which have only recently shown promise due to advances in molecular beam epitaxy
(MBE) technology. Kroemer [13] developed the theory and analysis of HBTs that
has resulted in modern devices. HBTs with fts in the 100 GHz range have already
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been reported [14, 15], and it is anticipated that devices may reach the 200 GHz
range in the future [16]. Further process enhancements are expected to make HBTs
a dominant technology for both high-speed analog and digital circuits. HBTs are
bipolar devices with charge transport being controlled by the bulk properties of the
semiconductor. This can be advantageous as opposed to field-effect transistor (FETs),
with charge transport occurring at the surface of the semiconductor material, where
high defect concentrations can degrade performance. In comparison to FETs, HBTs
have high transconductance, can be matched closely, have low flicker noise, high
output impedance, and no hysteresis effects. These properties make them attractive for
analog design as well as low-voltage-swing current-mode digital circuits. In addition,
HBTs exhibit high linearity, and can operate at large current densities, making them
attractive for use in power amplifiers.

In this chapter we will present a brief introduction to HBTs, and give some first-
order models. For the reader interested in a more detailed discussion of HBTs, the
book by Ali and Gupta is an excellent place to start [17], offering chapters on both
theory, and applications. Kroemer’s overview of HBTs presented in 1982 is also
recommended [18].

6.2 ADVANTAGES OF HBTs FOR HIGH-SPEED OPERATION

The key feature of an HBT resulting in increased speed is the formation of a het-
erojunction at the base-emitter interface such that the bandgap energy on the emitter
side of the junction is larger than the energy gap on the base side. A band diagram
of a graded base Npn (N denotes a wider band-gap than n and p) HBT is shown in
Fig. 6.1, [18, p. 15], [17, p. 256]. This energy difference �Eg blocks reverse charge-
carrier injection from the base to emitter, resulting in near unity emitter injection
efficiency, independent of the doping levels. The freedom to optimize doping levels
for wideband performance, without suffering a degradation in current gain (�), gives
HBTs an approximate 2:1 speed advantage over comparable homojunction bipolar
junction transistors (BJTs). The base doping of an HBT can be increased to lower the
base resistance and increase fmax; simultaneously, the emitter doping can be reduced,
lowering the base-emitter junction capacitance Cje. Further improvements in speed re-
sult from using GaAs or InP as the semiconductor material. The high electron-mobility
of these materials reduces the base-transit time �f , and the semi-insulating substrate
reduces the collector-substrate capacitance Ccs. In addition, the high base-doping level
gives rise to a large early-voltage which improves linearity.
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Figure 6.1 Energy band diagram of a linearly graded Npn HBT.

6.3 AlGaAs/GaAs HBTs: TYPICAL PARAMETERS

The most mature HBT technology to date is AlGaAs/GaAs, with fmax in the 30-50
GHz range consistently reported by TRW [19, 20], Rockwell [14], and NTT [21].
Rockwell has demonstrated prescalars operating at input frequencies up to 26.9 GHz,
while TRW has fabricated a voltage-controlledoscillator (VCO) operatingat 37.7 GHz.
TRW has also demonstrated LSI capabilities in recent A/D converters. This level of
integration has now made it feasible to integrate a fiber-optic receiver onto a single
chip.

Processing of the HBT circuits for this research, was donated by TRW who also
provided financial support for this effort.1 A cross-section of TRWs AlGaAs/GaAs
HBT process is shown in Fig. 6.2. This process also has Schottky diodes available, as
well as thin-film 100 
/square NiCr resistors. Typical device parameters for (3�m
x 10�m) and (1�m x 10�m) emitter-area devices are given in table 6.2. The small-
signal SPICE model used in simulation is shown in Fig. 6.3, with typical parameters
for a (3�m x 10�m) emitter device shown. The forward biased base-emitter junction
voltage Vbe is approximately 1.3–1.4 Volts, which is twice that of a silicon BJT. Since
TRWs AlGaAs/GaAs HBT process was in the developmental stages when this research
began, and small emitter-area devices were not reliable, the conservative (3�m x 10�m)

1This research was supported by the University of California MICRO Program and TRW, Inc. under
Grants 90-102 and 91-102.
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Figure 6.2 Cross-sectional view of TRW’s AlGaAs/GaAs HBT process.

Emitter Area 3�m � 10�m 1�m � 10�m
dc Current 2 mA 2 mA

Current Density 67 (�A/�m2) 200 (�A/�m2)
Vbe 1.2–1.4 V 1.2–1.4 V
Cje 45 fF 15 fF
rb 50 
 25 

re 10 
 10 


Beta (�) 25–200 25–200
ft 22 GHz 40 GHz

fmax 30 GHz 50 GHz

Table 6.2 Typical AlGaAs/GaAs HBT device parameters.
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Figure 6.3 HBT SPICE subcircuit and small-signal model parameter values for a (3�m x
10�m) emitter device

minimum device dimension was chosen to maximize yield and ensure functionality in
first-generation circuits. As the process matured, (1�m x 10�m) devices have shown
proven reliability. An approximate increase in speed by a factor of two can be obtained
in second-generation circuits simply by substituting (1�m x 10�m) devices for the
existing transistors in the prototype circuits.

6.4 InP-BASED HBTs: TYPICAL PARAMETERS

The electron mobility in an InP-based HBT is even higher than in GaAs. Therefore,
InP-based HBTs can achieve higher speed than their GaAs counterparts. Furthermore,
InP has additional advantages for use in medium-scale integrated fiber-optic receivers.
The bandgap energy of InP is well suited for use as a long wavelength photodetector
(1.3�m and 1.55�m). This is ideal for single-mode glass optical fibers that have low
losses at these wavelengths. Also InP has a thermal conductivity which is not as good
as silicon, but is better than GaAs. Therefore, problems with power dissipation are
somewhat relaxed in InP as opposed to GaAs. Vbe of an InP HBT also lies between
GaAs HBTs and silicon BJTs at about 1 Volt for a collector current of 4 mA.

A cross-sectional view of TRW’s Npn InP-based HBT is shown in Fig. 6.4. This
device can achieve a unity power gain frequency of fmax = 100 GHz. Typical device
parameters are given in table 6.3, and the corresponding small-signal model is shown
in Fig. 6.5, for a bias current of 4-mA. We can calculate ft and fmax for the InP-based
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Doping Profile 
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Figure 6.4 Cross-sectional view and doping profile for and Npn InP-based HBT using
InAlAs as the wideband emitter.

fmax 100 GHz
ft 65 GHz
Breakdown Voltage Vce Vce ' 3 V for Ic 1–4mA
C� 300fF @ Ic = 4mA
C� 75fF
Ccs 10fF
rb 10

re 2

rc 3

Lb 15pH
Lc 30pH

Table 6.3 Typical small-signal parameters for a (1�m� 10�m) emitter InP-based HBT.
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Figure 6.5 Small-signal model of an InP-based HBT with parameters shown for a bias
current of 4-mA.

HBT of Fig. 6.5. The expression for the unity current gain frequency is given by

ft '
gm

2�(C� + C�)
; (6.1)

from which we find that ft = 65 GHz (Ic = 4-mA, gm = 1=6:5
). The following
expression is commonly used to approximate fmax [22, p.117];

fmax '
1

2

s
ft

2�C�rb
: (6.2)

For the values given in table 6.3, we find that fmax ' 70 GHz for a 4-mA bias current.

6.5 SPICE MODELS FOR CIRCUIT SIMULATION

We conclude this brief introduction to HBTs by presenting nominal models for circuit
simulation using SPICE. The reader should keep in mind, that these models are ap-
proximate, and only give a first-order indication of actual device behavior. However,
the models are useful for predicting the relative importance of various parasitics on
circuit performance.
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6.5.1 AlGaAs/GaAs HBT SPICE Models

The maximum current gain (�), due to reverse carrier injection into the base, is
controlled by the parameter BF , which is set to 106. Therefore, the actual current gain
in the model is dominated by recombination, and is determined by the slope-parameters
NF and NE . The following expressions are used in the model to determine the dc
currents.

Ic = IS exp

�
1

NF

Vbe
Vt

�
(6.3a)

Ib = ISE exp

�
1

NE

Vbe
Vt

�
: (6.3b)

Therefore, the current gain is given by

� =
Ic
Ib

=
IS
ISE

�
Ic
IS

�(1�NF=NE )

: (6.3d)

We can now express the ratio (NF =NE) in terms of the current parameters as

NF

NE
=

ln [Ic=(�ISE )]

ln [Ic=IS ]
: (6.3e)

This expression can be used to find NE when Ic, IS , ISE , and � are known.

Table 6.4 gives examples of two SPICE model files for a (3�m x 10�m) emitter. The
first model is typical, and the second model gives best-case parameter values. For
higher current applications, dual and quad emitter devices can be used. SPICE model
files for these devices are given in table 6.5.
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GaAs HBTs
Nominal Case Best Case

MODEL FOR HF3X10SEB

.SUBCKT HBTSE 1 2 3
Q1 5 4 3 MHBT1
RBX 2 4 55
RC 1 5 10
CJX 4 5 40fF
DCJX 4 5 MDCX

.MODEL MHBT1 NPN

+ RE=25 RC=1 RB=30
+ CJE=45fF CJC=7.5fF XCJC=1.0
+ VJE=1.25 VJC=1.0
+ MJE=0.5 MJC=0.5
+ BF=1MEG BR=0.001
+ IS=13E-24 ISE=40E-21
+ NF=1.1333 NE=1.5167
+ TF=6ps

.MODEL MDCX D
+ IS=1E-20 CJO=7fF
.ENDS HBTSE

MODEL FOR HF3X10SEB

.SUBCKT HBTSE 1 2 3
Q1 5 4 3 MHBT1
RBX 2 4 20
RC 1 5 3
CJX 4 5 20fF
DCJX 4 5 MDCX

.MODEL MHBT1 NPN

+ RE=5 RC=1 RB=15
+ CJE=45fF CJC=7.5fF XCJC=1.0
+ VJE=1.25 VJC=1.0
+ MJE=0.5 MJC=0.5
+ BF=1MEG BR=0.001
+ IS=13E-14 ISE=40E-21
+ NF=1.1333 NE=1.5167
+ TF=3ps

.MODEL MDCX D
+ IS=1E-20 CJO=4fF
.ENDS HBTSE

Table 6.4 SPICE models for a (3�m� 10�m) GaAs HBT: nominal and best case.
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GaAs HBTs
Dual Emitter Quad Emitter

MODEL FOR HF3X10DEB

.SUBCKT HBTDE 1 2 3
Q1 5 4 3 MHBT1
RBX 2 4 27.5
RC 1 5 12
CJX 4 5 64fF
DCJX 4 5 MDCX

.MODEL MHBT1 NPN

+ RE=12.5 RC=1 RB=15
+ CJE=90fF CJC=15fF XCJC=1.0
+ VJE=1.25 VJC=1.0
+ MJE=0.5 MJC=0.5
+ BF=1MEG BR=0.001
+ IS=26E-24 ISE=80E-21
+ NF=1.1333 NE=1.5167
+ TF=6ps

.MODEL MDCX D
+ IS=1E-20 CJO=11.2fF
.ENDS HBTDE

MODEL FOR HF3X10QEB

.SUBCKT HBTQE 1 2 3
Q1 5 4 3 MHBT1
RBX 2 4 13.8
RC 1 5 10
CJX 4 5 112fF
DCJX 4 5 MDCX

.MODEL MHBT1 NPN

+ RE=6.3 RC=1 RB=7.5
+ CJE=180fF CJC=30fF XCJC=1.0
+ VJE=1.25 VJC=1.0
+ MJE=0.5 MJC=0.5
+ BF=1MEG BR=0.001
+ IS=52E-24 ISE=160E-21
+ NF=1.1333 NE=1.5167
+ TF=6ps

.MODEL MDCX D
+ IS=1E-20 CJO=19.6fF
.ENDS HBTQE

Table 6.5 Typical SPICE models for (3�m� 10�m) dual and quad emitter GaAs HBTs.
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Figure 6.6 Illustration of subcircuit for InP-based HBT used in SPICE simulations.

6.5.2 InP-Based HBT SPICE Models

The subcircuit for a (1�m � 10�m) emitter InP-based HBT is illustrated in Fig. 6.6.
The SPICE model file and model parameters are given in table 6.6.

6.6 SUMMARY

Fiber-optic communication can be used for various applications over a wide range of
data rates. The IC technology most appropriate for a given application will depend on
the speed, SNR, cost and volume of production, and several other factors relating to
the overall system. In this chapter, we a gave a very brief overview of important IC
technologies and indicated where these would be most effectively utilized. The circuits
designed in the remainder of this book use HBTs, but the circuit design techniques are
applicable to any IC technology. HBTs were chosen for their high-speed advantage.
Since this work was a research project, economic considerations, such as production
costs, did not enter into this decision; concerns of product development for high-
volume, lower speed applications, would have exerted stronger economic pressure to
utilize BJTs or CMOS. To aid the reader in understanding the circuits presented in the
following chapters, an introduction to HBTs was given and simple circuit models for
SPICE simulation were provided.
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InP-Based HBT: (1�m � 10�m) Single-Emitter
Model File Parameters

MODEL FOR INP-105

.SUBCKT HBTSE 1 2 3
Q1 5 4 3 MHBT1
RBX 2 4 PRBX
RC 1 5 PRC
CJX 4 5 PCJX

.MODEL MHBT1 NPN

+ RE=PRE RC=1 RB=PRB
+ CJE=PCJE CJC=PCJC XCJC=1.0
+ VJE=1.25 VJC=1.0
+ MJE=PMJE MJC=0.5
+ BF=1MEG BR=0.001
+ IS=PIS ISE=PISE
+ NF=PNF NE=PNE
+ TF=PTF FC=0.69

.ENDS HBTSE

PRBX = 20.0
PRB = 15.3
PRE = 15.0
PRC = 3.6
PTF = 1.80ps
PCJX = 11.0fF
PCJC = 14.3fF
PCJE = 163.0fF
PMJE = 0.500
PIS = 1.897E-11
PISE = 2.256E-10
PNF = 1.0310
PNE = 1.5460

Table 6.6 Typical SPICE model for a (1�m� 10�m) emitter InP-based HBT.
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7
LOW-NOISE PREAMPLIFIER:

THEORETICAL ANALYSIS AND
DESIGN OF A 12-GHz InP HBT

PROTOTYPE CIRCUIT

The goal of this chapter is to determine the effect of noise in electronic circuits
on overall system performance and to establish design criteria so that these noise
contributions can be minimized. The data-bearing optical signal emanating from a
fiber is converted into a small electric current via the photodetector. The purpose of
a preamplifier, as shown in Fig. 7.1, is to boost this current to a high enough level
such that noise added by following stages will be negligible in comparison to the
signal. The added noise is most troublesome when the signal level is the smallest, and
this occurs at the preamplifier input. Therefore the total system noise, and thus the
receiver sensitivity, will be determined by the preamplifier’s noise performance. In
the following sections we will discuss physical sources of noise in electronic circuits
and analyze their affect on system performance for a fiber-optic preamp. We will also
discuss the circuit design, and simulated results, of a low-noise preamplifier designed
using InP-based HBTs. This circuit contains an integrated positive-intrinsic-negative
(PIN) photodetector for detection of light at a wavelength of 1.3-�m. We will show in
the following analysis that the reduction of parasitic capacitance afforded by integrating
the photodetector and preamplifier on the same chip, as in this circuit, improves the
noise performance of the receiver.

7.1 SOURCES OF NOISE

We saw in chapter 3 that the performance of a fiber-optic receiver is limited by random
fluctuations in the received signal. The transmitted light signal consists of discrete
energy packets or photons emitted randomly from a source. This quantum nature of
light imposes a limit, such that approximately 20 photons are required on average for
each one symbol to achieve an error probabilityof 10�9. This is known as the Quantum

325
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Figure 7.1 Block diagram of a transresistance fiber-optic preamplifier.

Limit in an optical receiver, and for a 10-Gb/s system corresponds to an optical power
of -48.1 dBm for a wavelength of 1.30-�m, as was shown in table 3.3. In a practical
receiver, however, the optical power must be increased by several orders of magnitude
above the quantum limit in order to overcome the noises inherent in the receiver’s
electronics. The charge transport process in electronic circuits is analogous to the
transmission of photons, and its random fluctuations obey similar statistics. We will
now discuss the sources of random noise in electronic circuits, and give expressions
for their power spectral densities (PSDs) as a function of frequency.

7.1.1 Shot Noise

Electrical current consists of discrete charges moving randomly within a conductor.
The average current in a given time interval is determined by the average number of
charges crossing a surface. The instantaneous current, however, will vary around this
average value. These random variations are known as Shot Noise, and they represent
a fundamental limitation on the accuracy of any electronic circuit. Shot noise was
first described by Schottky and given its name (Schroteffekt) in 1918 in a classic paper
written in Germany at the end of World War I [1].

Shot noise is present whenever charges cross a barrier, such as a depletion region in a
pn junction or free-space in a vacuum tube. Recombination processes also exhibit shot
noise, for example, the base current of a bipolar transistor. The statistical variations of
electron emissions, or recombinations, can be derived assuming that these processes are
governed by a Possion process [2, ch. 7], [3, ch. 16]. For a large range of frequencies,
the noise PSD1 is essentially constant with a value given by the Schottky Equation;

Ŝ(f) = qI (A2=Hz); (7.1)

1The term “power spectral density” (PSD) will be used even though the units will be in (A2=Hz) or
(V 2=Hz). However, to be proper we should actually say that this is the power dissipated in a 1
 resistor.
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Iin(t) h(t) Iout(t) 

Figure 7.2 Linear network.

where q is the charge on an electron, and I is the average current. This noise power
goes to zero for frequencies much greater than 1/�t, where �t is the transit time of a
charge across the boundary. Normally, the transit frequency is quite a bit higher than
the maximum usable frequency of the device fmax. Therefore, assuming the noise
PSD to be constant, or white, for all frequencies is an accurate approximation. The
noise power in a bandwidth of B Hertz, is given by

hi2ni = qI(2B) (A2): (7.2)

Using the white noise approximation the spectrum is no longer bandlimited, and the
noise will have infinite power. However, we always view the effect of the shot-noise
in the context of a bandlimited system so that the noise power will be finite.

In previous chapters we have dealt with the two-sided noise PSD, defined as the Fourier
transform of the autocorrelation function. However, for circuit design, we traditionally
use the one-sided PSD, defined as twice the two-sided PSD. Therefore the one-sided
PSD for shot noise is simply

S(f) = 2qI (A2=Hz): (7.3)

This shot-noise spectrum is illustrated in Fig. 7.3, where the rms noise current at the
output of an ideal bandpass filter with a bandwidth (B = 1=TB) is given by

irms =
p
2qIB =

p
I(2q=TB): (7.4)

So we see that the rms noise current is the geometric mean of the dc current and the
current produced by two charges in a time TB .

Example Shot-Noise Calculations

We will now perform a simple calculation that will help provide additional insight into
the shot-noise mechanism. For a current of value I, the average number of charges N

To remind us that this is actually not “power,” we will use the notation S(f) denoting “spectral density,” as
opposed to P(f) for “power spectral density.”
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Figure 7.3 One-sided spectral density of shot-noise and an ideal bandpass filter with a
bandwidth of B.

crossing a surface in time TB is

N =
I

q=TB
(7.5)

We can represent the instantaneous current in time TB as i(t; �), which is a random
process equal to

i(t; �) = I + in(t; �); (7.6)

where in(t; �) is a zero-mean noise current. We will make use of the autocorrelation
function rs(� ), which can be calculated as the inverse Fourier transform of the PSD.
For shot-noise, this is equal to an impulse function of weight qI;

ri(� ) = qI�(� ): (7.7)

The autocorrelation function is the expected value of two points on the same noise
sample function separated by a time � . For a zero-mean wide-sense stationary process,
the autocorrelation function is defined as

ri(� )
4
= E[in(t; �)in(t + �; �)]: (7.8)

When the result of this expression is an impulse function, we interpret this to mean
that the noise waveform is so wiggly that any two samples, no matter how closely
spaced in time, are uncorrelated. Furthermore, the correlation of two samples taken
at the same time is infinite, or in other words, the noise process has infinite power,
as it must because the PSD is non-zero for all frequencies. In reality, the noise will
be correlated for small time separations on the order of �t (the transit time across a
shot-noise boundary) and the autocorrelation function is a large spike that is finite over
a small interval. However, approximating this spike with an impulse function of equal
area is quite accurate, and it is often convenient for analysis as we will soon see.

To obtain a meaningful result in our noise analysis, we must always associate the white
noise with some bandlimiting process. A simple bandlimiting operation is to take a
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moving average of the noise over a time TB . If we do this, we obtain a new random
process defined by

î(t; �) 4= I + în(t; �) (7.9)

where în(t; �) is the average of in(t; �) over a time TB given by

în(t; �) = 1

TB

Z t+TB

t

in(t1; �)dt1: (7.10)

We would now like to find the ratio of the rms noise current to the signal current. We
can calculate the rms noise as follows,

hi2ni = E
ĥ
in(t; �)

i2
= E

"
1

TB

Z TB

0

in(t1; �)dt1
#2

(7.11a)

=
1

T 2
B

Z TB

t1=0

Z TB

t2=0

E [in(t1; �)in(t2; �)]dt1dt2 (7.11b)

=
1

T 2
B

Z TB

t1=0

Z TB�t1

�=�t1

E [in(t1; �)in(t1 + �; �)]dt1d� (7.11c)

=
qI

T 2
B

Z TB

t1=0

Z TB�t1

�=�t1

�(� )d�dt1 (7.11d)

=
qI

T 2
B

Z TB

t1=0

dt1 (7.11e)

=
qI

TB
: (7.11f)

From (7.5) we find that the dc current can be expressed in terms of the average number
of charges crossing a boundary in time TB as

I = N

�
q

TB

�
: (7.12)

Substituting this for the noise variance into (7.11) we obtain

hi2ni = N

�
q

TB

�2

: (7.13)

The rms value is just the square root of hi2ni;

irms =
p
N

q

TB
: (7.14)
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The ratio of the rms noise current to the signal current from (7.12) and (7.14) is
therefore

irms
I

=
1p
N
: (7.15)

The ratio of the noise to the signal current is just the inverse of the square root of
the expected number of charges crossing a boundary in time TB . This has appeared
before; we saw in chapter 2 that the standard deviation of the average ofN independent
identically distributed random variables was also reduced by

p
N . Since random noise

fluctuations add incoherently, their average approaches zero as the square-root of
the number of observations, whereas the signal adds coherently and approaches a
steady-state, non-zero average value. The noise can be reduced to an arbitrarily low
level by increasing the expected number of charges passing the boundary. This can
be accomplished either by increasing the nominal current I, or by lengthening the
averaging interval TB . Therefore increasing the SNR requires either a higher bias
current or a lower bandwidth.

Averaging functions other than the simple moving average can be easily analyzed in
the frequency domain. The general expression for the noise variance is found by the
one-sided integral

hi2ni = 2qI

Z 1

0

jH(j2�f)j2df; (7.16)

where H(j2�f) is the Fourier transform of the impulse response h(t) of a linear noise
filter. For a simple one-pole filter with a frequency response given by

jH(j2�f)j = 1

1 + j(f=f3dB )
; (7.17)

the noise-current variance is

hi2ni = 2qIf3dB

Z 1

0

1

1 + x2
dx (7.18)

hi2ni = 2qIf3dB

Z �=2

0
d� (7.19)

hi2ni = 2qI [(�=2)f3dB] ; (7.20)

and the effective noise bandwidth of the filter is (�=2)f3dB , or 1.57 times the 3dB
frequency.

7.1.2 Thermal Noise



Low-Noise Preamplifier 331

Another source of white noise in electronic circuits results from the conversion of
momentum, due to the kinetic energy of charged particles, into a potential difference
that can be seen across the terminals of a resistor. This energy conversion involves
Boltzmann’s constant (k = 1:38054 � 10�23 J=�K), and is proportional to the
absolute temperature. The resulting electrical fluctuations are referred to as thermal
noise. This effect was also discussed by Schottky in 1918 [1]. In 1928, Johnson
was able to observe this noise in the laboratory [4]. Johnson then discussed his
results with Nyquist, who derived the expressions describing thermal noise based on
thermodynamic considerations [5]. These results follow directly from analysis of
black-body radiation [6, pp. 98–102].

Oliver summarizes the results of Nyquist and shows by the principles of statistical
mechanics and quantum mechanics that the two-sided power-spectral-density deliv-
ered, to a noiseless resistor at absolute zero, from a noisy resistor of equal value at a
temperature T , is given by [7, p. 134, eq. (16)]

ST (f) =
hf

ehf=kT � 1
(Watts=Hz); (7.21)

where h is Planck’s constant (h = 6:624 � 10�34 Js). For hf << kT (7.21) is
approximately equal to kT , which is independent of frequency f . To get a feeling
for the relative magnitude of the values kT and hf , which might have more physical
significance to a circuit designer, we can normalize by the charge on an electron. The
familiar term kT=q = VT is the thermal voltage, which is equal to 25.9-mV at 300�K;
we find that hf=q equals 4.14-�V at 1-GHz. Writing (7.21) in normalized form gives

Sp(f) = kT

�
(hf=q)=(kT=q)

e(hf=q)=(kT=q) � 1

�
= kT

�
�

e� � 1

�
; (7.22)

where � is the ratio (hf=q)=(kT=q). At a frequency of 100-GHz, hf=q = 0:414-mV,
� = 0:016, and the noise power spectral density is 0.992(kT ) at 300�K. Therefore
an error of only 1% is incurred if we assume the spectral density is flat (white noise)
all the way to 100-GHz. With this white-noise assumption, the power delivered to
the cold resistor R0 from the resistor R is equal to kT�f for all frequencies, where
�f is the frequency interval. This situation is illustrated in Fig. 7.4, where the noise
is represented by a series voltage source. The load resistor R0 is equal in value to
the source resistor R. For this case, the output voltage V0 is half of the noise source
voltage, and the power delivered in a bandwidth of B Hertz is

P0 = kTB =
�vn
2

�2 1

R
: (7.23)

Therefore the expected squared noise voltage is found to be

v2n = 4kTRB: (7.24)
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R 

Ro Vn  Vo 

Figure 7.4 Illustration of the thermal noise of a resistor R at a temperature T delivering
power to a load at temperature zero.

Since the thermal noise has a constant spectral density to very high frequencies, we
can find from (7.24) that the value of the PSD is given by

Sv(f) = 4kTR (V2=Hz): (7.25)

We could also have represented the noise as a current source in parallel with the resistor.
The value of the noise current is then

in =
vn
R

=

p
4kTRB

R
(7.26)

i2n =
4kTB

R
: (7.27)

The equivalent thermal noise current spectral density is therefore given by

Si(f) =
4kT

R
(A2=Hz): (7.28)

Example Thermal Noise Calculation To illustrate a simple thermal noise calculation
we can consider a parallel combination of a resistor and capacitor as shown in Fig. 7.5
The transfer function is that of a one-pole lowpass filter with a noise bandwidth as
found in (7.18) to be (�=2)f3dB . Therefore the expected voltage squared is

hv2ni = 4kTR

�
�

2

�
1

2�RC

��
(7.29)

hv2ni =
kT

C
: (7.30)

This result is independent of the resistance value, because as R is increased the noise
magnitude increases, but the bandwidth decreases, keeping the noise power constant.
Since all physical capacitors will have a low shunt conductance, this noise will be
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Figure 7.5 A capacitor in parallel with a noisy resistor shown modelled as a voltage noise
source and a noiseless resistor.

associated with any capacitor and is known as kT=C (kT over C) noise. If we again
normalize by q we can get a better feel for the order of magnitude of this noise. The
noise variance can be written as

hv2ni =
kT

C
=

�
kT

q

�
q

C
: (7.31)

We can define a voltage VC
4

= q=C as the voltage required to place a single charge
of value q on the capacitor C. The rms noise voltage across the capacitor is therefore
given by the geometric mean of VC and the thermal voltage VT .

vrms =
p
VTVC : (7.32)

For a specific example, at 300�K the thermal voltage is 25.9-mV, or putting this in
terms of decibels with a millivolt reference VT=28.27-dBmV. For a 1-pF capacitor,
VC=0.16-�V or -75.92-dBmV. The rms noise in dBmV is just the average of the
voltages VC and VT in dBmV; vrms = 1=2(28:27 � 75:92) = �23:82-dBmV or
64.4-�V. The noise is reduced by 10-dB/decade as C increases.

7.1.3 Frequency Dependant Noise Sources

Shot noise and thermal noise are present in all circuits. These are both white noise
sources with a constant spectral density extending to frequencies well beyond the
useful operating frequency of the devices used. Shot noise is fundamental to the
charge transport process and occurs because charges are carried in discrete packets.
Shot-noise is therefore the ultimate limiting factor on the accuracy of any electronic
circuit. Thermal noise, however, can be reduced to arbitrarily low levels by reducing
the ambient temperature, but this is nearly always too expensive for practical solutions
and is reserved for only the most critical applications.2

2Progress in superconductors has lead to the development of lower cost and lighter weight closed-cycle
refrigerators, which might find their way into a wider range of applications in the future — low-noise
amplification is certainly one such application.
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In addition to the unavoidable white noise sources, there are also noises due to imper-
fections in the materials that trap and release charges at random intervals. This type
of noise has a frequency dependent spectrum with most of its energy concentrated at
low frequencies. One such frequency-dependent noise is called (1/f) noise because the
shape of its PSD varies inversely with frequency. This is also known as flicker noise
because of the effect it has on visual displays.

Flicker noise is dependent upon the choice of materials, the processing purity, and the
concentration of defects. In a FET device, current is carried near the semiconductor’s
surface, and the flicker noise is considerably higher than it is in a bipolar device because
the concentration of defects at the surface is higher than in the bulk semiconductor.
Flicker noise is typically characterized by the corner frequency. This is the frequency
where the flicker noise is equal to the white noise in the device. For HBTs this corner
frequency is in the kilohertz range. Since we are concerned with broadband receivers
with effective bandwidths of 10-GHz, the contribution of the flicker noise at low
frequencies as compared to the broadband white noise is negligible. Therefore, in the
analysis to follow, we will ignore flicker noise and other low frequency noise sources
such as burst-noise or popcorn-noise. Ignoring low-frequency noise is justifiable in
amplifiers for the reasons just discussed. However, we must keep in mind that in other
circuits with which we will be dealing, such as oscillators and mixers, low-frequency
noise is converted to high-frequency noise and can therefore not be ignored.

7.2 RELATIONSHIP BETWEEN NOISE AND RECEIVER

SENSITIVITY

Our task is to design a fiber-optic receiver that has the highest sensitivity possible.
In other words we want the receiver to be able to function at very low optical input
power levels. The higher the receiver’s sensitivity, the farther away receivers can be
physically spaced and still maintain an acceptable level of performance (bit-error-rate
< 10�9). We saw in chapter 3 that the energy in a photon of wavelength � is given by

eph =
hc

�
; (7.33)

where h is Plank’s constant and c is the speed of light. The numerical value of the
photon energy is

eph =
198:6� 10�12(nJ � �m)

�
: (7.34)

The optical power is obtained by dividing the energy by the time interval,

pph =
eph
TB

; (7.35)
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Figure 7.6 Current output from a photodetector.

and for a bit-period of 100-ps, the optical power is

pph =
1:986(nW � �m)

�
: (7.36)

We also saw in chapter 3 that the signal to noise ratio (SNR) of the sample statistics
required to meet the performance objective was

SNR � Psig
Pnoise

= 62: (7.37)

The current produced by the photodetector in the bit-interval TB can be determined
from the average number of photons-per-bit incident on the detector n. If we define the
quantum efficiency � as the ratio of the number of photons that generate electron-hole
pairs to the number of photons arriving at the receiver, then the output current of the
photodiode for a one symbol is expressed as

Isig =
�n1q

TB
; (7.38)

where n1 = 2n. The average signal current is half of this value because the light is
a unipolar source. The output current of a photodetector is illustrated in Fig. 7.6; the
average current is just

Iav =
�nq

TB
: (7.39)

This average current establishes the reference from which the signal is compared to
the noise. To achieve the desired performance, the difference between the signal and
its average level must be greater than QSNR multiplied by the rms current;

�nq

TB
� (QSNR)irms; (7.40)
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where QSNR depends upon the noise filter used and the performance criteria. For a
bit-error-rate (BER) of 10�9, QSNR is is approximately 6, which is just the square root
of the SNR.

The average optical power for an equal number of ones and zeros is given by

Pav =
Pon
2

+
Po�
2

; (7.41)

which is simply half of the on power; therefore

Pav =

�
n1
2

�
hc

�TB
=

nhc

�TB
: (7.42)

Substituting the average power for n into (7.40) we obtain

�Pav

�
q�

hc

�
� (QSNR)irms: (7.43)

(7.43) gives us an expression for the minimum average optical power in terms of the
equivalent input rms noise current, the SNR (QSNR), the quantum efficiency of the
photodetector, and physical constants. Substituting numerical values for the physical
constants we obtain

Pav = 1:242

�
�W � �m

�A

��
(QSNR)irms

��

�
: (7.44)

For the case of QSNR=6, � = 1:3�m, � = 0:5, and irms = 1�A, the average optical
power is 11.46 �W or -19.4 dBm. We can represent this as a power penalty over
the quantum limit, which from table 3.3 is seen to be -48.1 dBm. Therefore, the
increased power above the quantum limit needed for this receiver is 28.7 dB. We will
now analyze the noise performance of a transresistance preamplifier to find the rms
current noise, which is a function of the bit-rate and circuit parameters. Then from
(7.44) we will be able to determine the minimum optical power needed to meet our
performance objective.

7.3 CALCULATIONS OF NOISE IN LINEAR CIRCUITS

In the analysis of noise in circuits we will assume that the noise is a wide-sense
stationary random process. This turns out to be a valid assumption in most cases. Any
changes in the noise statistics are usually related to temperature or aging, which vary
much more slowly than the signal, so the noise can be considered stationary within
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Figure 7.7 Arbitrary linear network to illustrate noise analysis.

the observation interval of interest. We will also assume that all sources of noise are
mutually uncorrelated. This too is a valid assumption and is due to the huge number
of charges moving within a circuit. We wouldn’t expect the thermal movement of
changes in one resistor to be synchronized with the random shot emissions of electrons
crossing a depletion region in another part of the circuit. Although these events are
related by physical laws, the mechanisms governing their random fluctuations are, at
least statistically speaking, independent. With these two assumptions; namely,

the noise is wide-sense stationary,

all noise sources are mutually uncorrelated,

we can analyze the noise behavior of circuits quite easily. Consider the linear network
shown in Fig. 7.7. The network shows M noise voltages and K noise currents. From
the theory of random processes, we know that if there were only one noise source (for
example vn1) the noise spectral density at the output would be

Soutv1 (f) = Sv1 (f) jHv1(j2�f)j2 ; (7.45)

where Sv1 (f) is the spectral density of the noise source, and Hv1(j2�f) is the transfer
function of the network from vn1 to the output. Since we have assumed all noise
sources are independent, we can find the spectral density at the output by summing
each of the individual noise contributions. Therefore, at the output

Sout(f) =
MX
m=1

Svm (f) jHvm(j2�f)j2 +
KX
k=1

Sik(f) jRik(j2�f)j2 : (7.46)
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The noise power at the output is found by integrating Sout(f) over all frequencies;

�2n =

Z
1

0

Sout(f)df: (7.47)

If we substitute (7.46) for Sout(f), we realize that the total noise variance can be
written as

�2n =
MX
m=1

�2vm +
KX
k=1

�2ik : (7.48)

In other words, the output noise power is the sum of the individual power contributions
from each noise source, and the rms noise is the square root of the sum of the powers.
Therefore, if we have a noise source producing a power of unit value, the rms noise
will also be unity. If we have two identical independent noise sources, the power will
double, and the rms noise will be equal to

p
2.

Often circuit designers are more interested in the rms noise than the noise power, and
it is common to see the noise spectral density expressed as the square root of the PSD.
For example, a current noise of (16 � 10�24A2=Hz) is expressed as (4pA=

p
Hz)2.

Therefore, to find the rms noise we take the square root of the bandwidth and multiply
by the square root of the PSD. For a bandwidth of 10 GHz the rms noise is

irms = (4pA=
p

Hz)
p
10GHz = 0:4�A: (7.49)

Since the output noise is a function of the gain of the circuit, it is also common to
express the total output noise as an equivalent noise source at the input. This is an
analytical convenience because we are not necessarily interested in the actual value
of the noise, but rather the signal-to-noise ratio (SNR). A large noise at the output
is not a problem when the signal is also large. Expressing the total output noise as
an equivalent input noise is useful for directly comparing the noise contributions of
incoming signals. As an example, we can consider the previous circuit that produced
an equivalent input current noise PSD of (4pA=

p
Hz)2 in a bandwidth of 10 GHz,

which corresponded to an rms noise of 0.4 �A. If an SNR of 62 is required, then the
input rms signal must be 6 times larger than the input noise, or at least 2.4 �A.

A Simple Example: One Transistor Amplifier

We will now demonstrate how noise can be calculated in a simple example, and we will
get a feel for the relative magnitudes of the different types of noise. A simple transistor
amplifier is shown in Fig. 7.8. The small signal equivalent circuit is shown with all of
the white noise sources. We will now calculate the noise power at the collector due to
each of the noise sources.
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Figure 7.8 Circuit diagram and small signal model of a one transistor amplifier showing
the white noise sources.

The thermal noise due to the load resistor RL adds directly to the collector voltage.
Therefore, the gain is unity, and the spectral density is given by

ScRL (f) = 4kTRL(1)
2 = 4kTRL: (7.50)

The collector voltage due to the shot-noise in the collector ic is simply

vc = RLic: (7.51)

The spectral density of the noise at the collector is then

Scic (f) = 2qIc(RL)
2; (7.52)

where Ic is the bias current in the collector. The gain from the input voltage source is
the same as the gain from the thermal noises due to the source and base resistances,
and is given by

A =
r�

r� +Rs + rb
gmRL;

A = 
�gmRL; (7.54)

where,


�
4

=
r�

r� +Rs + rb
: (7.56)

Therefore, the spectral density of the noise at the output due to the thermal noise ofRs

and rb is

Sc Rs (f) = 4kTRsA
2; (7.58)

Sc rb (f) = 4kTrbA
2: (7.59)

Finally, the bias current shot noise produces a collector voltage of magnitude

vc = ib[(Rs + rb) k r�]gmRL: (7.61)
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The average base current is just the collector bias current divided by the current gain
�. Therefore, the spectral density at the collector is given by

Sc ib(f) = 2q(Ic=�) [gmRL]
2 [(Rs + rb) k r�]2 : (7.63)

The total spectral density at the collector can be written as follows

Sc(f) = 4kT
�
A2(Rs + rb) +RL

�
+ 2qIc

�
R2
L +

(gmRL)
2[(Rs + rb) k r�]2

�

�
:(7.65)

We can now express this noise as an equivalent voltage source at the input. The gain
from the collector to the input is (1=A). Therefore, we need to divide Sc(f) by the
square of the voltage gain to obtain the spectral density at the input,

Sin(f) = Sc(f)=A
2: (7.67)

Hence,

Sin(f) = 4kT

�
Rs + rb +

RL

A2

�
+

2qIc
A2

�
R2
L +

(gmRL)2[(Rs + rb) k r�]2
�

�
:(7.69)

For the case of a low impedance source (Rs + rb � r�), 
� is approximately unity,
and the voltage gain is simply gmRL. Therefore, the input spectral density reduces to

Sin(f) = 4kT

�
Rs + rb +

1

gmA

�
| {z }

thermal noise

+2qIc

�
1

g2m
+

(Rs + rb)2

�

�
| {z }

shot noise

: (7.71)

To compare the relative contribution of the shot noise and thermal noise terms, we
multiply and divide the shot noise by kT . Remembering that the thermal voltage VT
is given by

VT =
kT

q
(25:86mV@ 300�K); (7.73)

we can write the noise spectral density as

Sin(f) = 4kT

�
Rs + rb +

1

gmA

�
+ 4kT

�
Ic
2VT

��
1

g2m
+
(Rs + rb)2

�

�
:(7.75)

Recalling that the transconductance of a bipolar device is given by Ic=VT , we finally
obtain the desired expression for the spectral density of the equivalent input noise
voltage for the circuit of Fig 7.8, which is valid for low and medium frequencies;

Sin(f) = 4kT

�
Rs + rb +

1

gmA
+

1

2gm
+
gm(Rs + rb)2

2�

�
: (7.77)
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For a transistor with the parameters given in table 7.1, we obtain the following numer-
ical values for the input referred noise spectral density

Ic = 1mA
B = 100
RL = 2:6K

rb = 50

Rs = 50

A = 100
gm = 1=26


Table 7.1 Parameters for one transistor amplifier.

Sin(f) = 4kT [50
 + Thermal noise due to Rs

50
 + Thermal noise due to rb
0:26
 + Thermal noise due to RL

13
 + Shot noise due to Ic
1:92
] Shot noise due to Ib:

(7.79)

The noise can also be expressed as an equivalent resistance,

Sin(f) = 4kTReq = 4kT (115
): (7.81)

For this example the equivalent noise resistance is 115
. Looking at the numerical
contributions we see that the noise due to the base current is smaller than the collector
current shot noise. This could be reversed, however, if the source resistance were
increased or if the current gain � were reduced. Also notice that the noise due to the
resistive load is negligible. This would not be the case if an active load were used.
Thus, we usually find resistive loads at the front-end of a low-noise amplifier.

Now we will evaluate the rms noise voltage to get a feel for typical magnitudes. It is
useful to remember that

4kT (1
) = (0:129nV=
p

Hz)2: (7.83)

Therefore, for an equivalent noise resistance of 115
, the spectral density is given by

Sin(f) = (1:39nV=
p

Hz)2: (7.85)

For an ideal lowpass filter of bandwidth �f , the variance of the input-referred noise
voltage is simply

hv2ni = Sin(f)�f: (7.87)
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The rms noise is just its square root, and it is given by

vrms = 1:39nV
p
�f: (7.89)

The equivalent noise voltages for various bandwidths are given in table 7.2; the rms
noise increases with the bandwidth at a rate of 10-dB/decade.

vrms �f
139 nV 10 kHz
4:40� V 10 MHz
139� V 10 GHz

Table 7.2 Equivalent input voltage noise for various bandwidths.

This simple example serves to illustrate the concepts used in noise analysis. However,
we have ignored parasitics that will alter the contribution of the noise at various
frequencies. We will find, in the analysis of a preamplifier for a fiber optic receiver
to follow, that the input capacitance is a crucial parameter. The reason is that the
capacitance reduces the gain of the signal but has no effect on the collector current
shot noise, thus reducing the SNR — the input-referred noise spectral density will,
therefore, increase with frequency.

7.4 TRANSRESISTANCE PREAMPLIFIER NOISE ANALYSIS

The noise analyses of preamplifiers for fiber-optic receivers have appeared throughout
the literature. Personick was the first to provide a detailed characterization of the
noise of preamplifiers with high impedance sources [8, 9, 10]. In recent years papers
by Muoi [11], Brian and Lee [12], and Kasper and Campbell [13] have reviewed the
state of the art in fiber-optic receiver design and outlined the results of detailed noise
analysis. All give similar results to those obtained by Personick with various differences
depending on the optimization criteria used. Textbooks on the subject [14, 15, 16, 17]
usually have a chapter devoted to receiver design, and they also give the fundamental
results.

In this chapter, our goal is to present the noise analysis of a transresistance preamplifier
and use the results to optimize the performance of an InP circuit. Although the general
noise analysis has appeared elsewhere, we will consider it once again and point out
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some subtleties that have not been mentioned in the literature. The analysis to follow
is meant to be tutorial in nature, and it stresses a physical understanding of the noise
mechanisms. Aside from presenting the expressions for the noise, we will show how the
results were derived and also explain the trade-offs made between noise performance,
bandwidth, and stability.

We will first state some results, explain the physical meaning of the terms, and present
simulation results that are in agreement with the expressions given. The following
table defines all of the terms used in the forthcoming analysis:

detector capacitance Cd
stray capacitance Cs
detector-plus-stray capacitance Cds = Cd + Cs

total bipolar capacitance CTB = Cds + C� + C�

parasitic capacitance, bipolar C� = Cds + ge + C�

total FET capacitance CTF = Cds + Cgss + Cgs +Cgd

excess noise factor, FET �
bipolar current gain �
bipolar base resistance rb
data rate fb
maximum bipolar ft fF = 1=2��F

normalized integration constant I2
normalized integration constant I3
integration constant ratio m = I3=I2[1 + 2=A1]

first-stage voltage gain A1 = gmRc

open-loop voltage gain A = A1A2

base resistance equivalent frequency frb = 1=2�Cdsrb

7.4.1 General Considerations and Interpretations

In this section we will present the noise analysis of a transresistance preamplifier and
discuss the physical interpretation of the results. In sections to follow we will go into
considerably more detail, but it is necessary that the reader grasps the fundamental
problems before proceeding to more complicated issues.
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Figure 7.9 A PIN photodetector.

In some of the early fiber-optic receivers, data-rates were low enough (100 Mb/s),
compared to the bandwidth of transistors, such that optimization of noise performance
concentrated on effects that were dominant at low and intermediate frequencies. Re-
sults of these optimizations led to rules-of-thumb that were used in the design of
preamplifiers. However, when the data-rates approach the transistor’s limitations,
high-frequency effects take over, and the conditions under which the noise is mini-
mized changes. In the first-order analysis to follow we will determine the dominant
noise sources at low and intermediate frequencies. We present this primarily for his-
torical reasons so that the reader can better understand some of the early literature on
the subject. Later we will broaden the bandwidth and see how the noise changes as
the data-rate approaches fmax.

The photodetector is a reversed-biased diode as shown in shown in Fig. 7.9. The small-
signal model consists of the photo-generated current id and the detector capacitanceCd.
The natural feedback configuration for this input source is a transresistance amplifier
(current in ! voltage out). A current amplifier could work, provided that its noise
is low enough; however, we will show that a common-base current-buffer actually
has more noise than a common-emitter configuration, because it has no current gain
in the first stage; therefore noise contributions from following stages will be large in
comparison to the signal.

We will consider the generic transresistance configuration shown in Fig. 7.10. Thermal
noise due to the feedback resistor is represented by a shunt current source with a spectral
density of 4kT=RF . (The gain stage is considered noiseless for the time being, and
the output impedance is assumed to be zero.) The transfer function is therefore given
by

RT (s) =
�vo

id + iRF
=

RF =[1 + �(s)]

1 +
h

�(s)
1+�(s)

i
sCinRF

: (7.91)

For low BT we can assume that the overall amplifier speed is dominated by the time
constant due to Cin and RF . The gain stage is broadband in comparison, and the loss
in the passband is simply �(s) � �0 = 1=A0, or the inverse of the dc gain. As a result,
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Figure 7.10 A transresistance amplifier figure.

the closed-loop transresistance is

RT (s) � RF

1 + s[�0CinRF ]
; (7.92)

which is a first-order system with a dominant pole due to the time-constant (�0CinRF ).
From this expression we can find the first fundamental trade-off in the transimpedance
configuration — low-noise operation vs. high-speed performance. The 3-dB frequency
for the amplifier is

f3dB =
1

2��0CinRF
=

A0

2�CinRF
; (7.93)

which is proportional to the open-loop voltage gain. The capacitance Cin is primarily
dominated by the detector capacitance Cd and is typically quite large (� 0:5 pF).
The reason for a large Cd is due to the numerical aperture of the optics — namely,
the inability to focus the light on a small area. As a result, the surface-area of the
photodetector is large (a diode area of 50 �m x 50 �m is typical) which leads to a high
capacitance. The bandwidth is fixed by the data rate. The gain A0, however, is under
the designer’s control but will have a practical limit (40–60 dB). We will see later on,
at high frequencies, that assuming a constant gain is no longer valid, and that the dc
gain will actually need to be quite a bit lower (� 10) to meet stability requirements.
For the case of low data rates, RF determines the bandwidth; therefore, to meet the
speed requirement there will be an upper limit on the feedback resistor RF given by

RF <
A0

2�f3dBCin
; (7.94)
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which is the first half of the noise-bandwidth trade-off. The second half arises from
the noise current of the feedback resistor. The input referred noise spectral density due
to RF is

SiRF (f) =
4kT

RF
: (7.95)

As a first-order approximation, the rms noise current due to RF referred to the input is

hi2ni =
4kTf3dB

RF
: (7.96)

If a maximum value is set such that hi2ni � i2m, we obtain the lower limit

RF >
4kTf3dB

i2m
: (7.97)

The maximum bandwidth occurs when the upper and lower limits are identical. Putting
these limits together,

4kTf3dB

i2m
< RF <

A0

2�f3dBCin
; (7.98)

the maximum operating frequency for a given noise level is just

fm =

s
A0

2�Cin

i2m
4kT

: (7.99)

For an input capacitance of 1 pF, the maximum 3-dB bandwidth at 300�K is

fm = [3:09(GHz=�A)]irms

p
A0: (7.100)

Typically one is forced to make the bandwidth high at the expense of the noise. In
this case, the noise resistance is chosen to be as large as possible and still meet the
bandwidth requirements. Therefore, the feedback resistor is chosen to be

RF =
A0

2�f3dBCin
; (7.101)

or for a 1 pF capacitor,

RF = [159(
 �GHz)] A0

f3dB
: (7.102)

The resulting noise for this feedback resistance is

irms = f3dB

r
4kT � 2�Cin

A0
; (7.103)

and, for an input capacitance of 1 pF at 300�K, the rms noise current is

irms =
f3dBp
A0

(0:323�A=GHz): (7.104)
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Summary of First-Order Analysis

The main points to remember in this first-order analysis are that:

Noise power due to RF increases as the square of the bandwidth — rms noise
increases linearly with the bandwidth.

Noise and bandwidth limitations are caused by the high values of capacitance of
the photodetectors.

Increasing dc gain (which reduces the voltage swing at the input node and hence
the effective capacitance Cin=A0) reduces the noise by allowing a larger feedback
resistor to be used.

This discussion has outlined some of the basic concepts in the design of low-noise
transresistance amplifiers for low or intermediate frequencies. However, the analysis
does not hold for high-speed circuits because

The assumption that the amplifier is wide-band in comparison to the dominant
pole is violated.

The assumption that the noise is predominantly due to the feedback resistor is
violated.

In the following section, the noise contribution from all of the internal noise sources
within the amplifier will be derived. It will be shown that, at low frequencies, the noise
is dominated by the feedback resistor’s thermal noise and the shot-noise of the BJT’s
base current. However, we will find that other terms (collector-current shot noise and
base-resistance thermal noise) will dominate at higher frequencies.

7.4.2 Detailed Analysis of a Transresistance Preamplifier

Performing a complete small-signal noise analysis can get complicated — even for
very simple circuits. The analysis can be simplified by realizing that many of the
noise sources in the circuit will have little or no effect on the overall noise, so these
sources can be ignored from the start. In this section we will proceed with the noise
analysis one step at a time, making approximations as we go along; then we will check
the final analytical result against simulations as further justification for making these
approximations.
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Figure 7.11 Block diagram of a transresistance preamp with a reverse-biased diode pho-
todetector.

Transresistance Calculation

We begin by finding the most important parameter of the amplifier, the transresistance.
A schematic of a typical transresistance preamplifier using a common-emitter front-
end is shown in Fig. 7.11. The analysis of feedback amplifiers is greatly simplified
using Bode’s Asymptotic Gain Formula and Blackman’s Impedance Formula, which
dispenses with the Shunt-Shunt, Series-Shunt nonsense.3 Rosenstark [18] gives a very
clear and concise explanation of the derivation and application of these formulas. It
can be shown [18, p.16] that the transresistance of a feedback amplifier can be written
in the form

RT = R1

�
L(s)

1 + L(s)

�
+R0

�
1

1 + L(s)

�
; (7.105)

where L(s) is the loop gain or return-ratio,4R1 is the transconductance of the amplifier
when the loop gain approaches infinity, and R0 is the transconductance when L(s)
approaches zero; R0 represents forward signal transmission through the feedback path
— a term that is usually not accounted for in the simplified block-diagram formulation
of feedback circuits.

The loop gain L(s) can easily be calculated for the small-signal model of Fig. 7.12 by
replacing the controlled source v with a voltage of value v1 and finding the returned

3Attempts to explain feedback in circuits, which have bidirectional signal propagation, in terms of
unidirectional block diagrams are often inadequate.

4There may be more than one loop in an amplifier. Furthermore the loop gain can be different for
different loops when local feedback is present. However, as long as R1, R0, and L(s) are all calculated
with respect to the same loop, the overall result RT will be unique, and can be obtained regardless of the
loop one chooses to consider.
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Figure 7.12 Small-signal model of a transresistance amplifier for the purpose of calculating
the loop gain and overall transresistance.

voltage v, where �(s)v is the voltage across the control impedance z1 and �(s) is the
loss of the amplifiers �(s) = 1=A(s). The return-ratio is then given by L(s) = �v1=v.
It can be seen by inspection that

��(s)v = v1
Z1

RL k Z2 +RF + Z1

�
RL

RL + Z2

�
; (7.106)

multiplying both sides by A(s), and dividing by v 1 we obtain the following expression
for the loop gain:

L(s) = � v

v1
=

A(s)Z1

RL k Z2 +RF + Z1

�
RL

RL + Z2

�
: (7.107)

If the impedanceZ1 is large compared to the feedback resistorRF, and if the impedance
Z2 is small compared to the load RL, we see that the loop gain L(s) reduces to the
forward gain of the amplifier A(s) as expected.

To find the overall transconductance we’ll consider the asymptotic limits of RT as
L(s) goes from infinity to zero. For infinite loop gain (L ! 1), the voltage across
the control impedance Z1 is zero; therefore, no current can enter Z1 and all the input
current must pass throughRF , which has one node anchored to zero volts via Z1. The
output voltage is, therefore, vo = �RF iin, and R1 = �RF .

In the other extreme, when the loop-gain is equal to zero (L! 0), the load impedance
will consist of RL k Z2, and vo can be determined by a simple current division ratio.

R0 = RL k Z2

�
Z1

Z1 + RF +RL k Z2

�
(7.108)
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The transresistance of the amplifier for an arbitrary value of the loop-gain is simply
given by

RT = �RF
L

1 + L
+ R0

1

1 + L
; (7.109)

where L is given by (7.107) and R0 is given by (7.108).

Output Impedance

The output impedance can be found easily using Blackman’s Impedance Formula:

Zout = Zo
out

1 + Lsc
1 + Loc

; (7.110)

where Lsc is the loop-gainL calculated when the output port is short-circuited,Loc is
the loop-gain when the output port is open-circuited, and Z o

out is the impedance at the
output port when the loop gain is equal to zero. We can easily see that short-circuiting
the output port will null the loop-gain, therefore, L sc = 0; open-circuiting the output
port doesn’t change the original circuit, therefore, Loc = L. Zo

out can be found easily
by inspection as a parallel combination

Zo
out = (RL k Z2) k [RF + Z1] (7.111)

Hence the output impedance of the amplifier with feedback is just

Zout =
(RL k Z2) k [RF + Z1]

1 + L
(7.112)

TypicallyZo
out will be dominated by Z2 which will be the impedance looking into the

emitter or the source of a transistor (1=gm at low frequencies), which will be a lower
impedance than either RL or RF . This impedance is further reduced by the negative
feedback, so for the usable bandwidth of the amplifier, the condition RT >> Zout
will generally hold true.

Noise due to the Feedback Resistor and Load Resistor

We will now consider the noise due to the resistors RF and RL. A small-signal model
of the transresistance amplifier with the noise sources included is shown in Fig. 7.13
The output voltage can be found as a superposition of each current source acting
individually.

vo = iinRT + iFRT � iFZout + iLZout (7.113)
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Figure 7.13 Small-signal model of a transresistance preamplifier showing the thermal-
noise current sources due to RF and RL.

The noise sources can be represented as currents in parallel with the input source,
provided that they produce the same noise level at the output as the original sources.
Therefore the equivalent noise source due to iF acting at the input has a value

inF = iF
RT � Zout

RT

= 1� Zout=RT (7.114)

inF ' iF

�
1 +

Zo
out

LRF

�
(7.115)

The input-referred current due to thermal noise in the load resistor is just

inL = iL
Zout
RT

(7.116)

inL ' �iL
Zo

out
LRF

(7.117)

We can define a parameter � to be the ratio of the output impedance to the transresis-
tance,

�
4
=

Zout
RT

' Zo
out

LRF

: (7.118)

The equivalent spectral densities of the thermal noise sources at the input due to RF

and RL are simply

SnF =
4kT

RF

(1 + �)
2 (7.119)

SnL =
4kT

RL

(�)2 =
4kT

RF

�
RF

RL

�2
�

(7.120)
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The combined spectral density of the thermal noise due toRF and RL is then given by

SnFL =
4kT

RF

�
1 + 2� + �2(1 +RF=RL)

�
: (7.121)

At low and intermediate frequencies � ' 1=L(gmRF ) << 1, where gm is the transcon-
ductance of the output transistor. Therefore, we usually ignore noise due to RL, and
approximate the spectral density of noise due to RF as just 4kT=RF .

Noise due to the Second Gain Stage

We can consider the noise due to the second gain stage in a similar manner. Consider
again Fig. 7.13 and let the noise current source iL represent the total noise of the second
stage amplifier referred to its input. If this noise has a spectral density of S2(f), then
the equivalent spectral density at the input of the first stage is simply

Sn2(f) = S2(f)�
2 = S2(f)

�
Zo

out
LRF

�2
' S2(f)

�
1

L

1

gmRF

�2
(7.122)

Since the second stage amplifier will be realized using transistors and bias-current-
levels similar to the first stage, the equivalent noise currents at the input of each stage
will be of the same order of magnitude. Therefore, when the second stage noise is
referred again to the input of the first stage it will be reduced by the factor �2 and will
be insignificant compared to noise generated in the first stage, provided that �2 << 1.
Since the signal is amplified by the first stage, the second stage can have a larger noise
than the first and this will still not degrade the overall SNR. This is true provided that
irms2=irms1 << L(gmRF ). This allows the noise requirements of the second stage to
be relaxed, but it can not be relaxed to the extent that the second-stage noise becomes
significant.

One potential problem in the above analysis is that the output impedance Zout affects
the magnitude of the input-referred noise current of the second stage amplifier. To
remove this dependence, we can represent the noise from the second stage as a voltage.
The noise current can be expressed in terms of this noise voltage as a Norton equivalent;

i2 = v2=Zout: (7.123)

Therefore, a current of value

in2 =
v2
Zout

�
Zout
RT

�
=

v2
RT

(7.124)

will produce the same output as the voltage v2, and the spectral density of the noise at
the input is divided by RT

2;

Sni2(f) = Sv2=jRT j2 (7.125)
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Figure 7.14 Block diagram of a two stage amplifier with negative feedback and two
sources of noise.
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Figure 7.15 Block diagram of a two stage amplifier with negative feedback and two noise
sources, where the second noise source has been referred to the input.

Therefore the equivalent noise spectral density is obtained by dividing by the squared
magnitude of the gain.

In general, to refer a noise spectral density to the input of a circuit we must divide by
the square of the gain from the input to the noise source. This can be illustrated simply
in block-diagram form in the feedback circuit of Fig. 7.14. If the noise signal n2 is
moved to the left of the first gain stageA1, as shown in Fig. 7.15, it will experience an
extra gain of A1. Therefore, the equivalent noise acting at the input is just n2=A1, and
the spectral density is reduced by the square of A1, such that.

Sn2(f) = S2(f)=A1
2: (7.126)

Technique for Determining Equivalent Noise Sources

In a real circuit, referring noise sources to the input becomes more complicated than just
dividingby the square of the gain. The signal propagation is bidirectional; furthermore,
the effect of the load impedance must be taken into account. Despite their limitations,
the block diagrams of Figs. 7.14 and 7.15 can be used as a guide for a more general
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Figure 7.16 Small-signal model of a two-stage transresistance preamplifier; the output
impedance is equal to zero and the second stage gain isA2 = 1=�2.

analysis technique. The gain from n1 to the output y in Fig. 7.14 is given by

H1
4

=
y

n1
=

A1A2

1 + A1A2B
; (7.127)

whereas the gain from the second noise source is

H2
4

=
y

n2
=

A2

1 + A1A2B
: (7.128)

The magnitude squared of the ratio of these gains gives the factor by which the spectral
density of the second noise signal will be reduced when referred to the input. This
ratio is obviously 1=A1, however, we will write it explicitly as

H2

H1

=
A2

A1A2

1 +A1A2B

1 +A1A2B
: (7.129)

Notice that H2=H1 is just the ratio of the numerators, or the feedforward paths, of
each signal. The denominator of the two transfer function are identical. Therefore,
any changes in the feedback parameter B, which alters the natural frequencies of the
amplifier will not effect the equivalent noise source.

Matrix Formulation The above technique will now be illustrated for the transresis-
tance preamplifier shown in Fig. 7.16. For this circuit we can write node equations at
the base and collector to obtain�

GF + g� + sC� + sCds �GF

gm �2Gc

� �
v
vo

�
=

�
iin
�ic

�
(7.130)

If we were to use a first-order approach we could divide ic by the current-gain � to refer
this noise current to the base side. However, the current gain is frequency dependent
and is altered by the presence of feedback. Therefore we will have to consider the
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individual gains from iin and ic to the output and find the ratio of these gains. Using
Kramer’s Rule we can find the transresistance.

RT
4
=

vo
iin

=
�gm
�

; (7.131)

where � is the determinant of the admittance matrix in (7.130). We can likewise find
the gain from the noise source ic to the ouput;.

RTc
4

=
vo
ic

=
�[GF + g� + sCTB ]

�
; (7.132)

where CTB = C� + Cds in this case. An equivalent noise source can be placed at
the input provided that it produces the same level of noise at the output, such that the
following condition is satisfied,

Snc(f)

����gm�
���
s=j2�f

����
2

= Sc(f)

����GF + g� + sCTB

�

���
s=j2�f

����
2

: (7.133)

Therefore,

Snc(f) = Sc(f)

�
(GF + g�)2 + (2�fCTB)2

g2m

�
; (7.134a)

and after substitutingSc(f) = 2qIc and g� = gm=�, we obtain

Snc(f) = 2qIc

"�
1

gmRF

+
1

�

�2

+

�
2�fCTB

gm

�2
#

(7.134b)

We can see that when RF ! 1 (no feedback) and CTB ! 0 (no frequency depen-
dence) the result reduces to

Snc(f) =
2qIc
�2

(first-order); (7.135)

which is the same result we would have obtained with a first-order analysis.

We can compare the result obtained in (7.134) with the shot-noise contribution of the
base current, which has a spectral density of the form

Snb(f) = 2qIb =
2qIc
�

: (7.136)

Under normal circumstances, � >> 1 and gmRF >> 1, we will find that Snb(f) >>
Snc(f) at low frequencies. Therefore, we can neglect the constant term in (7.134) and
the input-referred collector current shot-noise has a spectral density given by

Snc(f) ' 2qIc

�
2�fCTB

gm

�2

(7.137)

Therefore, the effective noise due to ic will increase with frequency.
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Figure 7.17 Small-signal model of a two-stage transresistance preamplifier with an emitter
degeneration resistor; the output impedance is equal to zero and the second stage gain is
A2 = 1=�2.

Effect of Emitter Resistance on Noise Performance

Most circuit designers are aware that emitter degeneration resistors produce local
feedback and can alter the gain and natural frequencies of the amplifier considerably.
We therefore need to determine whether or not the presence of an emitter resistor re
will alter the noise performance of the amplifier. There are two primary questions that
we need to consider:

1. How does the presence of an emitter resistor alter the performance of other noise
sources in the circuit?

2. How does the thermal noise, generated by the emitter resistor re itself, affect the
overall amplifier noise.

We can answer both of these questions by performing an analysis similar to that of the
previous section for the circuit shown in Fig. 7.17.

Effect of Emitter Resistor on Other Noise Sources We will find in the analysis to
follow that emitter resistors as large as 50
 will have little effect on the contribution
of other noise sources to the total noise, the reason being that the emitter degeneration
resistor affects the gains RT and RTc equally, so that their ratio is unchanged. To
show this we can write node-equations for the circuit of Fig. 7.17 as done previously.
However, it is more convenient in this case to write cut-set equations in terms of the
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variables v, vo, and ve. The equations are given below,2
4 GF + g� + sC� + sCds �GF GF + sCds

gm �2Gc 0
�(g� + sC�) �2Gc ge

3
5
2
4 v

vo
ve

3
5 =

2
4 iin
�ic
ie

3
5 : (7.138)

The third row of the matrix is obtained by writing KCL equations at the emitter, where
we realize that the current leaving the Gaussian surface must be equal to the current
entering, which is io = ��2Gcvo.

The transresistance is found, again using Kramer’s rule,

RT =

�
���� gm 0
�(g� + sC�) ge

����
�

=
�gmge

�
: (7.139)

The gain from ic to vo is similarly given by

RTc =

�
���� GF + g� + sC� + sCds GF + sCds

�(g� + sC�) ge

����
�

(7.140)

Since � appears in the denominator of both gains RT and RTc, the ratio of gains is
just the ratio of the feedforward paths.

RTc

RT

=
ge[GF + g� + sC� + sCds] + (g� + sC�)(GF + sCds)

gmge
(7.141)

This ratio can be written as � + s�1 + (s�2)
2, where the constant term � is given by

� =
1

gmRF

+
1

�

�
1 +

re
RF

�
: (7.142)

Since re << RF this term is virtually the same as the constant term for re = 0. The
term involving s reduces to

s�1 =
sC�

gm

�
1 +

re
RF

�
+
sCds

gm

�
1 +

re
r�

�
(7.143)

Since re << RF ; r�, this first-order term in s is also similar to the case where re = 0.

The primary effect of re on the other noise sources is to add another frequency
dependent term;

(s�2)
2 =

s2C�Cdsre
gm

: (7.144)



358 Chapter 7

Substituting s! j2�f we find the magnitude squared is given by����RTc

RT

����
2

=
�
� � (2�f�2)

2
�2

+ (2�f�1)
2 (7.145a)

= �2 + (2�f�1)
2
�
1� 2�(�2=�1)

2
�
+ (2�f�2)

4 (7.145b)

' (2�f�1)
2 + (2�f�2)

4 (7.145c)

Quantitative Limit on Emitter Resistance The presence of the emitter degeneration
resistor adds a term to the input referred noise, which multiplies the collector current
shot-noise spectral density by the frequency dependent term (2�f�2)4. However, the
effect of re will be negligible provided (2�f�1)2 > (2�f�2)4 for the frequencies of
interest. The frequency at which these two terms are equal is

fe =
�1

2��22
: (7.146a)

Substituting for �1 and �2 we find that

fe =
1

2�

C� +Cds

gm

gm
C�Cdsre

=
1

2�Cere
; (7.146b)

whereCe is the series combination ofC� andCds. For the case ofCds = C� = 0:5-pF
and re = 10
, we find that fe=64-GHz. Since the system bandwidth will be much
less than 64-GHz, the term due to (2�f�2)4 can be ignored.

We could express (7.146) as an inequality in terms of re.

re <
1

2�fCe

: (7.147)

If re is less than this limit, it will have little effect on the collector current shot noise.
For the case Ce = 0:25-pF and f = 10-GHz, we find re should be less than 64
.
Since re is generally only a few ohms, we can ignore its effect on the collector current
shot noise. Using the same analysis technique we can also show that the effect of re on
all other noise sources in the circuit is negligible for typical values of parasitic emitter
resistance.

Thermal Noise due to Emitter Resistance

To complete the analysis we need to determine the contribution of the input referred
noise due to the thermal noise of re. We can find this easily for a first-order analysis by
considering the equivalent circuit of Fig. 7.18. In this circuit the thermal noise current
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Figure 7.18 Simplified schematic of the a transresistance amplifier,where the input current
is set equal to zero, and the amplifier is driven by the noise voltage at the positive terminal.

ie can be expressed as a Th�evenin equivalent voltage reie. If the voltage gain of the
voltage amplifier is reasonable high, the circuit looks like a follower; therefore, the
output voltage vo is also reie. Since we know the transconductance is approximately
�RF , a current at the input of value ine will produce the same output voltage, provided
that �ineRF = reie or

ine = �ie(re=RF ); (7.148)

the spectral densities are related by the square of this ratio

Sne(f) = Se(f)

�
re
RF

�2
=

4kT

re

�
re
RF

�2
=

4kT

RF

�
re
RF

�
: (7.149)

The feedback resistor RF will contribute a noise term of 4kT=RF . Therefore, the
thermal noise, due to RF and re combined, has a spectral density of

SF (f) + Sne(f) =
4kT

RF

�
1 +

re
RF

�
: (7.150)

For re << RF the contribution due to re is negligible and this noise current has a
spectral density of approximately 4kT=RF .

High Frequency Effects of Thermal Noise due to Emitter Resistance The previous
analysis is correct for low and intermediate frequencies, however, at higher frequencies
re can contribute a much larger noise. We can determine the amount of noise produced
as a function of frequency by returning to the network equations (7.138),which describe
Fig. 7.17. We find that the gain from ie to the output vo is

RTe =
vo
ie

=

�
���� GF + g� + sC� + sCds GF + sCds

gm 0

����
�

(7.151)

The ratio of the gains is then given by

RTc

RT

=
�gm(GF + sCds)

gmge
= �

�
re
RF

+ sCdsre

�
; (7.152)
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and the magnitude squared of this ratio is

����RTc

RT

����
2

=

�
re
RF

�2

+ (2�fCdsre)
2: (7.153)

This consists of a constant term and a frequency dependent term. The constant term is
the same that was obtained with the first-order analysis and can be ignored. Therefore
the input-referred noise spectral density due to thermal noise in re is given by

Sne(f) = Se(f)

����RTc

RT

����
2

' Se(f)(2�fCdsre)
2: (7.154)

We saw previously in (7.137) that

Snc(f) = 2qIc

�
2�CTB

gm

�2

; (7.155)

we would like to express Sne(f) in a similar form for comparison. After some
manipulation we find

Sne(f) = 2qIc [2gmre]

�
2�fCds

gm

�2

= 2qIc

�
2Ve
VT

��
2�fCds

gm

�2

; (7.156)

where Ve is the dc voltage drop across re (Ve = reIc), and VT is the thermal voltage
' 26-mV. The ratio of the noise spectral densities of emitter-resistance-thermal-noise
to collector-current-shot-noise is

xec =
Sne(f)

Snc(f)
= 2gmre(Cds=CTB)

2: (7.157)

If thermal noise due to re is to be negligible, xec must be small. For a representative
case, (Cds=CTB)2 = 1=2, we obtain the following simple restriction on the maximum
size of re.

re <
1

gm
=

VT
Ic

(7.158)

Therefore, for a bias current of 2-mA, 1=gm = 13
 and the thermal noise due to re can
be neglected if re << 13
. In what follows we will assume that re is small enough
such that its noise contributions can be ignored. If this is not the case, the effect of
noise due to re can be determined from (7.145) and (7.156).
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Figure 7.19 Small signal model for two-stage preamp with dominant noise sources.

7.4.3 Summary of Results for the Common-Emitter

Configuration

We are now in a position to determine the complete input referred noise current from all
the noise sources in the amplifier. A schematic of a typical transresistance preamplifier
using a common-emitter front-end was shown in Fig. 7.11. A small signal model of
this amplifier, with all the non-neglible noise sources, is shown in Fig. 7.19. The
spectral density of the input noise current is found to be

SnB (f) =
4kT

RF

+
2qIC
�

+ 4kTrb (2�fCds)
2
+

�
2qIC +

4kT

RC

��
2�fCTB

gm

�2

(7.159)
We have discussed each of these terms previously, expect the noise due to the base
resistance rb. This noise has the same functional form as the noise due to re. However,
rb is generally much larger than re and can not be ignored.

Simulated and calculated values of this spectrum are shown in Fig. 7.20(a). This
plot shows that (7.159) can be used to accurately predict noise performance over the
useful bandwidth of the device. The first term in (7.159) is due to thermal noise in
the feedback resistor. The second term results from base-current shot noise. These
two terms are dominant at low frequencies, and their respective spectral densities are
plotted in Fig. 7.21.

The remaining terms of (7.159) all increase with frequency. The third term is due to
thermal noise in the base resistance. This is normally smaller than the other frequency
dependent noises, but it can be large if care is not taken to minimize rb. This noise
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Figure 7.20 Input referred noise spectral density of a transresistance preamplifier with a
common-emitter front-end: (a) total noise, (b) contribution due to shot noise.
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Figure 7.21 Input referred noise spectral density of a transresistance preamplifier with a
common-emitter front-end due to: (a) RF thermal noise, (b) Ib shot noise.
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Figure 7.22 Input referred noise spectral density of a transresistance preamplifier with a
common-emitter front-end due to: (a) rb thermal noise, (b) Rc thermal noise.

is plotted in Fig. 7.22(a), and the thermal noise due to Rc is shown in Fig. 7.22(b).
The fourth term results from collector-current shot noise. This is the dominant noise
at high frequencies, and its spectral density was shown in Fig. 7.20(b), where it can be
compared directly with the total noise. We have omitted the dc contributions of these
frequency-dependent terms because they are much less than the noise terms due to RF

and ib. However, the noise begins to increase at a break frequency determined by the
dominant pole of the open-loop amplifier, because the forward gain, which keeps the
input-referred noise low, starts to fall off. (This effect is similar to the reduction of the
common-mode-rejection ratio or the power-supply-rejection ratio of an opamp.)

For an FET input device the result is

SnF (f) =
4kT

RF

+

�
4kT�gm +

4kT

RC

��
2�fCTF

gm

�2

: (7.160)

(7.160) ignores the contributions due to the base-current shot noise and thermal noise
in the base resistor that we saw in (7.159). For a broadband amplifier, the frequency
dependent terms become increasingly important. Therefore it is desirable to minimize
the following terms:

�Bipolar = CTB=gm; (7.161)

�FET = CTF=gm: (7.162)

These are equivalent delay times which are determined by the capacitance to transcon-
ductance ratio. With all else equal, the device with the highest speed (the lowestC=gm
ratio) will exhibit the lowest noise.
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Qualitative Explanation for Frequency Dependence of Noise

A photodiode generates electron-hole pairs in proportion to the number of photons
incident on the device. We would like to make use of all of these electron-hole pairs
to evaluate the strength of the incoming signal. However, many of these charges are
lost at the outset, and are used to fill empty lattice sites in the depletion region of the
photodiode. The reason these charge carriers are lost is because a voltage swing must
appear at the input of the amplifier to steer the current through the feedback resistor.
This voltage can only be generated by the accumulation of charge in the depletion
layer. At higher frequencies more current from the diode will be lost to the depletion
capacitance and the signal strength will weaken.

The noise power at the output will contain a constant term due to the shot-noisefrom the
collector current. As the signal is reduced in magnitude at higher frequencies, the input
referred noise power will therefore increase — a weaker signal with constant noise at
the output is equivalent to a constant signal with increasing noise at the input. The
equivalent input noise will increase with the square of the capacitance. The noise will
also depend on the transconductance, which determines how large the input voltage
has to swing in order to switch a fixed amount of current. If the transconductance is
high, only a small voltage is needed; therefore, few charges are lost in the depletion
capacitance and a larger percentage can be detected as a signal at the output. We have
reasoned that the rms noise will increase with the capacitance and with frequency,
but will be inversely proportional to gm. The noise power will vary with the square
of these quantities. Therefore, we expect a term in the input-referred noise spectral
density of the form (C=gm)2f2.

7.4.4 Results for the Common-Base Configuration

Before presenting methods for optimizing the noise performance, we will compare the
previous results with those obtained for a different circuit topology. An alternative
circuit architecture uses a current buffer. One example of this technique uses a common-
base input stage and is shown in Fig. 7.23. The input referred PSD of this structure
can be found to be

SnCB (f) =
4kT

RF

+
2qIC
�

�
1 + (2�fCdsrb)

2
�
4kTrb (2�fCds)

2
+

2qIC

�
2�fCTB

gm

�2
4kT

Rc

"
1

�2
+

�
2�fCTB

gm

�2
#
:

(7.163)

We can recognize that this is the same spectral density that was obtained for the
common emitter circuit with an added contribution due to the thermal noise in the
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Figure 7.23 Block diagram of a transresistance preamp with a common-base front-end.

collector resistor Rc. The term � is the current efficiency parameter given by

�
4

=
�

1 + �
; (7.164)

and it is normally close to unity. Therefore the noise PSD can be written as

SnCB (f) = SnB (f) +
4kT

Rc

; (7.165)

where SnB (f) is the PSD of a common-emitter front-end. These spectral densities
are compared in Fig. 7.24. The increased noise of the common-base stage occurs
because there is no current gain from the input to the collector. Therefore, the noise
from Rc adds directly to the signal instead of � times the signal. Likewise, the noise
current from the second stage will also add directly to the noise of the signal; the
result will be that the common-base configuration will have at least twice the noise of
a common-emitter configuration.

7.4.5 Effect of a Cascode Transistor on the Noise Performance

We saw in the previous section that a large input capacitance increases the noise.
Cascoding is a common technique used to reduce the input capacitance of a negative
gain stage, and it is illustrated in Fig. 7.25. If the cascode transistorQ2 were not there,
the base-collector capacitance of the transistorQ1 would be multiplied by (1+gm1Rc)
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Figure 7.24 Comparison of the input currentnoise spectral densities for a common-emitter
and common-base front-end. The higher noise of common-base is to due the thermal noise
in Rc.

when referred to the input. This Miller capacitance will degrade the frequency response
and the noise performance.

Using a cascode device keeps the collector voltage ofQ1 at a low impedance so that the
Miller multiplication factor is unity. This will help the noise performance by reducing
Cin, but we must determine whether the noise sources from the cascode device increase
the noise more than the reduction in Cin reduces the noise.

It is quite easily seen that the cascode device Q2 will have negligible noise compared
to the input device Q1. We can draw a Gaussian surface around Q2 such that the sum
of the ac currents entering the surface must equal the sum of the ac currents leaving
the surface. When considering noise performance, we set the input signal to zero.
Looking into the collector of Q1 we see a current source with no ac current flowing.
Therefore, to satisfy Kirchoff’s law for our surface, the base current of Q2 must flow
through the load resistor, and the output current contribution due to Q1 is � times the
base current. Therefore, the noise current contribution from Q2 at the load Rc is a
factor of � less than the noise current due toQ1, and the noise power is reduced by �2.

This result has been derived without looking into the details of the current flow within
the device. One might be concerned about the collector current shot-noise of Q2. The
key to the noise reduction of this term is the negative feedback of the emitter-follower
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Figure 7.25 Small-signal noise analysis of cascoded device.

configuration of Q2. Due to the high impedance at the emitter of Q2, the noise current
inc2 is forced to recirculate. The noise current raises the voltage v2 which reduces
the collector current through negative feedback in such a way as to cancel out its own
noise. Writing the KCL equations at v2:

inc2 = ib + �2ib ) ib =
inc2

1 + �2
: (7.166)

Since ib must also be the current that is left over in the load resistor,

v3 =
�Rcinc2
1 + �2

: (7.167)

It is this reduction in the added noise voltage from the cascode collector-current shot
noise by a factor of 1 + �2 that enables a cascode device to be used without adding
significantly to the circuit’s noise (� 5%) over an ideal current buffer. However, the
reduction in the Miller capacitance afforded by using the cascode device improves the
noise performance substantially. In the following analysis we will ignore the Miller
capacitance since we know that we can use a cascode transistor to eliminate its effect
on the input capacitance.

7.5 COMPARISON OF BIPOLAR AND FET AMPLIFIERS

In this section, we will give expressions for the optimal noise performance of a bipolar
and an FET preamplifier. Although the noise analysis is straightforward, the algebra
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Figure 7.26 Schematic diagram of a two-stage transresistance preamplifier.

is tedious, and the main aspects of the problem can be lost in the details. Instead of
going through a complete derivation, we will just state the results and offer simulations
to verify the validity of the expressions given. We will be considering a preamp of
the type shown in Fig. 7.26. A cascode device is usually inserted to reduce the Miller
capacitance, but this is not shown in the diagram.

The input-current noise spectral density for the bipolar front-end from (7.159) can be
written as follows,

Sn� (f) =
4kT

RF

+
2qIc
�

+ 4kTrb(2�fCds)
2 +

�
2qIc +

4kT

Rc

��
2�fCTB

gm

�2

;(7.168)

and for an FET device the result from (7.160) is

SnF (f) =
4kT

RF

+

�
4kT (�gm) +

4kT

Rc

��
2�fCTF

gm

�2

: (7.170)

For an arbitrary noise filter with a transfer function of H(j2�f), we can define
integration constants normalized to the data-rate fb as

I2 =
1

fb

Z
1

0

jH(j2�f)j2df; (7.172a)

I3 =
1

f3b

Z 1
0

f2jH(j2�f)j2df: (7.172b)

When the above noise spectral densities pass through a noise filter that has the nor-
malized integration constants, I2 and I3, the variance of the input-current noise for a
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bipolar device will be

hi2n�i =
4kT

RF

I2fb +
2qIc
�

I2fb+4kTrb(2�Cds)
2I3f

3
b +

�
2qIc +

4kT

Rc

��
2�CTB

gm

�2

I3f
3
b ;

(7.173)

and for an FET device

hi2nF i =
4kT

RF

I2fb +

�
4kT (�gm) +

4kT

Rc

��
2�CTF

gm

�2

I3f
3
b : (7.174)

7.5.1 Optimization of a Bipolar Device for Low Noise

Each of the above equations can be optimized for minimum noise. Consider the bipolar
device first, recall that

CTB = Cds + Cje + C� + gm�F ;

gm =
Ic
VT

:

The noise-current variance can be written as

hi2n�i =
4kT

RF

I2fb + 4kTrb(2�Cds)
2I3f

3
b +

4kTgm
2�

I2fb

+ 4kT

�
1

2
+

1

A1

�
I3f

3
b (2�)

2 (Cds + Cje +C� + gm�F )
2

gm
; (7.177)

where A1 is the voltage gain of the first stage. We can define a capacitance C�
4

=
Cds + Cje + C�, which is the input capacitance of a bipolar device due to parasitic
junctions and stray capacitances. We can separate the total capacitance into the sum
of the junctions, the stray capacitance, and the base charge storage capacitance gm�F .
Rewriting 7.177 using C� gives,

hi2n�i = 4kT

�
I2fb
RF

+
(2�rbCds)2I3f3b

rb
+
gm
2�

I2fb

+

�
1

2
+

1

A1

�
I3f

3
b (2�)

2

"
C2
�

gm
+ 2C��F + gm�

2
F

#�
: (7.179)

We wish to optimize this expression by choosing the transconductance that results in
the minimum noise. Rewriting one more time to show explicitly the optimization with
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Figure 7.27 Total input referred current noise spectral density showing shot noise contri-
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respect to gm, we get

hi2n�i = 4kT

�
I2fb
RF

+ rb(2�Cds)
2I3f

3
b +

�
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2

A1

�
I3f
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�
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+
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�
I3f

3
b (2�)
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��
linear term
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�
1
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�
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2

A1

�
I3f

3
b (2�)

2C2
�

�
inverse term (7.181)

This optimization is illustrated graphically in Fig. 7.27. Increasing the bias current
(and thus gm) increases the corner frequency where the collector current shot noise
begins to increase. However, this also increases the low-frequency base-current shot
noise. The optimization procedure adjusts the contribution of each of these terms until
the total noise is minimized. At the optimal gm, the linear term will equal the inverse
term. This occurs for

gmopt

�
fb
�

+
mf3b
f2F

�
=

1

gmopt

mf3b (2�C�)
2; (7.183)

where we have defined

fF
4

=
1

2��F
(7.185)
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as the maximum ft of the bipolar transistor, and

m
4
=

I3
I2

�
1 +

2

A1

�
: (7.186)

From (7.183) we obtain the transconductance that minimizes the noise as

gmopt
= 2�C�fb

"
1p

1=�m + f2b =f
2
F

#
; (7.188)

which is proportional to the data rate and C�. The bias current required to achieve this
transconductance is just

ICopt = gmopt
VT : (7.190)

At low data-rates, or low �,

gmopt
= 2�C�fb

p
�m; (7.192)

whereas for high data rates gmopt
increases until it reaches the limit

gmopt
= 2�C�fF : (7.194)

We can gain insight into this optimization process if we consider the relative magnitudes
of the base charge-storage capacitance compared to the junction and stray capacitance
C�. At low data rates, the optimum base-charge storage capacitance is

Cqbopt = gmopt
�F = C�

fb
p
�m

fF
; (at low data rates): (7.196)

This base-charge storage capacitance increases with the data-rate until it is equal to the
parasitic junction capacitance C� giving

Cqbopt = gmopt
�F = C�; (at high data rates): (7.198)

The optimum noise variance can be found by substituting the optimal gm back into
the noise expression. Realizing that at the optimum the linear term is equivalent to the
inverse term, the noise is just the constant term plus double the inverse term.

hi2n�opti = 4kT

�
I2fb
RF

�

+ 4kT

�
2�CdsI3

f3b
frb

�

+ 4kT

"
2�C�

�
1 +

2

A1

�
I3

"
f2b

s
1

�m
+

f2b
f2F

+
f3b
fF

##
(7.200)
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Figure 7.28 Optimum noise for a bipolar device: (a) noise vs. bit-rate, (b) noise vs. bias
current.

At low data rates, 7.200 gives

hi2n�opti � 4kT

�
I2fb
RF

�

+ 4kT

2
42�C�

h
1 + 2

A1

i
I3f

2
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3
5 : (7.202)

At high data rates, 7.200 gives

hi2n�opti � 4kT

�
2�I3f

3
b

�
Cds

frb
+

2C� [1 + 2=A1]

fF

��
: (7.204)

At low data rates � controls the noise because the base current term is important. At
higher data rates �F (or the base-charge-storage capacitance) controls the noise. In
each case we increase Ic as much as possible until limits controlled by either � or �F
are reached.

The optimum noise as a function of the bit rate is shown in Fig. 7.28(a) for various bias
currents. Fig. 7.28(b) plots the optimum noise for various bit rates as a function of bias
current. It can be seen that the bias current has a shallow optimum. Moving the bias
current slightly away from the optimal value doesn’t degrade the noise appreciably.
This shallow optimum comes about because as the bias current is increased, so also
is the base charge storage capacitance gm�F . We increase the bias current so as to
maximize the transconductance-capacitance ratio (CTB=gm). At low current this ratio
is dominated by junctions and strays since C� is small. As the current is increased
further, the ratio becomes dominated by the term (C�=gm), which approaches �F in
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Figure 7.29 (a) Optimum bias current vs. bit-rate for various transistors. (b) Calculated
and simulated rms current noise of HBT5 vs. bit-rate.

the limit. Therefore, transistors with the smallest forward transit times (highest ft)
will exhibit better noise performance, and they will be able to run at a higher current
before the term (gm�F ) becomes comparable to the parasitic input capacitance. The
optimum bias current for various devices is shown in Fig. 7.29(a) as a function of the bit
rate. Faster transistors will have lower noise, and will operate at a higher optimal bias
current. The rms current noise for the device labeled HBT5 in Fig. 7.29(a) is plotted
in Fig. 7.29(b). Both the simulated and calculated results are given. The calculated
result (dashed lines) is virtually coincident with the simulated value, showing that the
results given thus far are, at least, in agreement with SPICE simulations.

7.5.2 Optimization of an FET Device for Low Noise

The noise of the FET has no minimum like that of the bipolar device. In the FET,
the bias current can be increased until power dissipation limits are reached. However,
there is an optimum size of device to be used. The best choice of device size is to
pick the width W such that the total parasitic gate capacitance is proportional to the
the detector-plus-stray capacitance;

Cgss + Cgs +Cgd = �Cds; (7.206)

where :2 � � � 1. For minimum noise we will see that� = 1, but other considerations
(such as power dissipation and bandwidth optimization) may dictate the choice of
� [19]. With this definition, the total input capacitance can be expressed as CTF =
Cds(1 + �). Recalling that the ft of an FET device is

ft =
gm

2�(Cgss +Cgs + Cgd)
=

gm
2��Cds

; (7.208)
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Figure 7.30 Transresistance amplifier with an FET front-end.

the FET noise can be written as

hi2nF i =
4kT
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I2fb + 4kT
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I3f

3
b ; (7.210)

or in terms of ft this is

hi2nF i =
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:(7.212)

The 3 dB bandwidth of the preamplifier will be proportional to the bit rate 
fb. To
minimize noise inRF we make it as large as possible so that it still meets the bandwidth
requirements;

2�CTFRF

A
=

1


fb
;

RF =
A

2�CTF
fb
: (7.214)

Defining a new constant I

4
= I2
, we can write the input referred current noise

variance as

hi2nF i = 4kT

�
2�CTF

A
I
f

2
b +

�
2�+

2

A1

�
2�CdsI3
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:(7.216)

We recognize in (7.216) that the device scaling parameter � appears in a linear- and
inverse-term. The optimal value occurs when these two terms are equal at � = 1.
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Determination of the Dominant Noise Term

We would now like to determine which terms of (7.216) are dominant. The first is
due to thermal noise in the feedback resistor and is proportional the square of the data
rate. The last two terms are due to channel thermal noise and thermal noise in the load
resistor, respectively. These two terms are proportional to the cube of the data rate and
will eventually overpower the contributions from RF . The capacitance parameters are
given by

CTF = Cds + Cgss + Cgs + (1 + A1)Cgd;

CTF = Cds(1 + �) +A1Cgd; (7.218)

where (1 + A1)Cgd is the Miller capacitance. We can define a capacitance Cm
4
=

A1Cgd that will go to Cgd if a cascode transistor is used. The cross-over data rate,
where the gate-induced voltage due to thermal noise in the channel becomes dominant,
will occur when

CTF

A
I
 <

�
2� +

2

A1

�
CdsI3

fb
ft
(1 + 1=2(�+ 1=�));�

Cds(1 + �)

A
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Cm

A

�
I
 <

�
2� +

2

A1

�
I3
fb
ft
(1 + 1=2(�+ 1=�))Cds:(7.220)

Therefore the thermal noise due to RF starts to become negligible for normalized
frequencies greater than

fb
ft

>

h
1+�
A + Cm=Cds

A

i
h
2� + 2

A1

i
(1 + 1=2(�+ 1=�))

� I

I3
: (7.222)

Putting in some numbers for a noise-less cascode stage with � = 1 and Cm = 0, the
channel thermal noise dominates for

fb >
ft
2A�

I

I3
; I
=I3 � 10;

fb >
5ft
A�

: (7.224)

As a rough example for � = 2 and A = 40dB, the channel thermal noise dominates
when

fb >
ft
40
: (7.226)

This example shows that as the data rate gets close to the speed limitation of the
transistor ft, the frequency-dependent noise will become dominant. The actual cross-
over frequency will depend on the gain A and on the noise filtering parameters I
=I3.
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7.5.3 Qualitative Expression Comparing Bipolar and FET

Devices

The noise contributions of a bipolar front-end can now be compared to the noise of
an FET front-end. Consider the high frequency noise contributions. The noise of a
bipolar preamplifier at the optimal bias current is given by

hi2n�1 i � 4kT

�
2�C�

�
1 +

2

A1

�
I3f

3
b

�
1

fb

q
1=�m + f2b =f

2
F +

1

fF

��
;(7.228)

assuming rb is made small enough to be insignificant. (This can be done for rb � 10

for moderately sized [40� 12]�m2 HBT devices.) And the noise of an FET is

hi2nF1i � 4kT

�
2�Cds

�
2� +

2

A1

�
I3f

3
b

�
(1 + 1=2(�+ 1=�))

ft

��
; (7.230)

We can define the ratio of noise powers as

N1
4
=
hi2nF1i
hi2n�1 i

: (7.232)

For A1 � 10, � = 1, and ignoring 2=A1, we get

N1 =

Cds(2�)2
ft

C�
�
1+
p
f2
F
=�mf2

b
+1
�

fF

;

N1 =
fF
ft

Cds

C�
4�

"
1

1 +
p
f2F =�mf2b + 1

#
;

N1 =
fF
ft

"
1

1 + Cje+C�
Cds

#
4�

"
fb

fb +
p
f2b + f2F =�m

#
: (7.234)

We recall that in this ratio ft is the unity-current-gain frequency for the FET and fF

is the maximum unity-current-gain frequency of the bipolar device given by fF
4
=

1=(2��F ). For small data rates this favors FET devices;

N1 =
fb
p
�m

ft

"
1

1 + Cje+C�
Cds

#
4�: (7.236)

For large data rates (this favors the fastest devices with bias towards BJTs)

lim
fb!1

N1 =
fF
ft

"
1

1 + Cje+C�
Cds

#
2�: (7.238)
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Defining another noise ratio, N2, that includes the noise due to the base resistance, we
get

hi2n�2i = 4kT

�
2�CdsI3

f3b
frb

�

+ 4kT

�
2�C� [1 + 2=A1] I3

�
f2b

q
1=�m + f2b =f

2
F + f3b =fF

��
(7.240)

hi2F1 i = 4kT

�
2�CdsI3

f3b
ft

[2� + 2=A1] (1 + 1=2(�+ 1=�))

�
: (7.241)

As an example, for � = 1 and A1 large

1

N2
=
hi2n�2i
hi2F1 i

=
ft

frb4�
+

1
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; (7.243)
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��
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Minimizing this gives

1

N2min

= lim
fb!1

�!1

1

N2
=

ft
2�fF

�
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+

�
1 +

Cje + C�
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��
: (7.246)

1
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=
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�
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�
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Cje +C�

Cds

��
; (7.247)

For ft = gmF
=(2�Cds), we get

1

N2min

=
gmF

4�

�
rb +

2�F
Cds

�
1 +

Cje + C�

Cds

��
: (7.249)

The conclusion is that if 1=N2min
is less than one by a significant amount, then the

bipolar device can have lower noise than the FET if � and/or the data-rate is high
enough. It should be clear that for an HBT with low rb and high fF (low transit time
�F ) 1=N2min will be less than one.

7.6 InP PREAMPLIFIER

We can now make use of the results of the preceding analysis to optimize the perfor-
mance of a transresistance preamplifier. We have shown that to minimize the noise at
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Figure 7.31 A low-noise InP transimpedance preamplifier.

high frequencies we need to maximize the transconductance to capacitance (gm=C)
ratio. This ratio can be improved by using a high-speed device and by minimizing the
parasitic capacitances of the photodetector and the stray interconnect capacitance. We
have therefore chosen to implement an electro-optical InP integrated low-noise tran-
simpedance preamplifier, as shown in Fig. 7.31. InP HBTs have extremely fast transit
times (�F ' 1ps). Also a PIN photodetector matched to the low-loss wavelength of
single-mode glass optical fibers (� ' 1:3�m) can be integrated on the same chip, thus
substantially reducing interconnect capacitance.

7.6.1 Circuit Design

A minimal design was used for this prototype amplifier to maximize yield. The am-
plifier uses a single cascode stage with a dc gain of approximately 40. The high
impedance node is buffered by an emitter follower and level shifted before it is con-
nected to the feedback resistor. The bias voltages, and thus the bias currents, are
dependent on the base-emitter junction voltage (� 1V). The bias current of the input
stage is approximately 4mA.

In a broadband amplifier the natural frequencies of the circuit can be close together,
which can cause stability problems. A root locus is a useful tool to track the locations
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Figure 7.32 Root Locus of a transresistance preamplifier as a function of the loop gain for
a 5th order system.

of the natural frequencies of the system as a function of the loop gain. Two root loci
are shown in Fig. 7.32. We can see from Fig. 7.32 that the dominant poles bend toward
the right half plane and can cause the circuit to become unstable. By calibrating the
root locus plot, we can determine the value of the loop gain required to achieve the
desired pulse response.

Aside from the PIN diode that will serve as an optical detector, a provision was made
for testing with an electrical input. A 50
 termination is provided at the input that
consists of two 100
 resistors in parallel. A series resistor of 5k
was used to simulate
a the photodetector current when an electrical input is used. The output buffer is a
common emitter stage with a 50
 termination at the collector.

7.6.2 Simulated Results

The transconductance and the output noise spectral density are shown in Fig. 7.33.
This output noise is the input noise filtered by the transfer function of the amplifier.
The output noise spectrum has a peak near the data rate. We used a similar shaped
colored noise spectrum in chapter 3, where we considered the effect of various filtering
functions on receiver performance in the presence of colored noise. Now we have
provided the justification for using such a spectral density in the analysis.

We are also interested in the pulse response of the circuit. The preamplifier may have
very low noise, but if it rings, it can result in a narrow eye that degrades the BER.
The simulation results for a pseudo-random data input are shown in Fig. 7.34. We can
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Figure 7.35 Simulation results of InP preamplifier for various feedback resistances: (a)
frequency response (b) rms noise current.

see from the eye diagram in Fig. 7.34(b) that the bandwidth is too narrow and causes
intersymbol interference that reduces the eye opening.

The bandwidth and equivalent noises are shown in Fig. 7.35 for various values of the
feedback resistor. In this design we can achieve a 3 dB bandwidth of 10 GHz with a
500
 feedback resistor and a detector capacitance ofCds = 0:5pF. The equivalent rms
noise at the input for a 10 Gb/s system is approximately 1:25�A. We can therefore find
the minimum optical power needed to achieve a given BER. From (7.44) the minimum
power is

Pav = 1:242

�
�W � �m

�A

��
(QSNR)irms

��

�
: (7.251)

For QSNR = 6, � = 1:3�m, the minimum power needed is

Pav =
7:165

�
(�W); (7.252)

where � is the quantum efficiency of the photodetector. For � = :717, Pav = 10�W
or -20 dBm.

7.6.3 Measured Results

This preamplifier was processed at TRW. A microphotograph of the circuit is shown
in Fig. 7.36. Because the transistor parameters vary substantially in this developmen-
tal InP-based HBT process, a tunable feedback resistor was used to ensure that the
desired frequency response can be obtained. The feedback resistor can be changed by
selectively breaking air-bridge metal lines that shunt segments of the resistor.
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Paste 
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Figure 7.36 Microphotograph of InP integrated PIN photodetector and transresistance
preamplifier.
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Measured device parameters show an ft of 70-GHz and an fmax of 100-GHz. This
performance surpassed the models used in simulationand would result in a preamplifier
bandwidth of 12–15 GHz. The preamplifier described is currently under test and
measured results will be reported elsewhere.
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8
VOLTAGE CONTROLLED

OSCILLATORS AND
HIGH-SPEED TESTING

HBT processes using III–V semiconductors are still in their infancy as compared to
silicon technologies; in the early stages of this research (1989) it was not uncommon
for model parameters of GaAs HBTs to vary by 100% or more from run-to-run. It was,
therefore, essential to design test chips to aid in process evaluation and modeling. In
this chapter we will briefly describe two voltage controlled oscillator (VCO) circuits
used for this purpose. The first is a four-stage ring oscillator, and the second is an
emitter-coupled multivibrator.

Testing of circuits in the gigahertz range can be quite troublesome. Although mi-
crowave designers are familiar with high-speed testing techniques, this information is
not well known among designers of traditional analog circuits. Therefore, in the later
part of this chapter we will present a brief introductionto high-speed testing techniques.
References will be provided where additional information about this important topic
can be found.

8.1 FOUR-STAGE RING VCO

A useful circuit for evaluating device performance is a variable frequency ring oscil-
lator. A four-stage, fully-differential VCO is shown in Fig. 8.1(a). By measuring the
frequency of oscillation we can determine the delay times of the internal circuits as
a function of the bias current. We can also use this information to fine-tune SPICE
models to accurately predict switching speeds. The delay cell, shown in Fig. 8.1(b), is
a differential pair with a resistive load; reversed biased base-emitter junctions are used
as variable load capacitances for adjustment of the delay time, which can additionally
be altered by the bias current IB . As oscillation requires an odd number of inversions

387
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Figure 8.1 (a) four-stage ring VCO. (b) differential delay cell

in the signal path, the positive and negative inputs to one of the differential delay
cells are interchanged. The use of an even number of delay elements is advantageous
because quadrature shifted versions of any output signal are available. By using fully-
differential delay cells, the effect of power-supply noise on the oscillating frequency
is minimized, thereby reducing the phase jitter.

The frequency of oscillation was measured as a function of the control voltage for
various values of IB . The results are plotted in Fig. 8.2(a); the center frequency can be
varied from 2.5 GHz �16% by adjusting the bias current. Furthermore, VCNTR can
be used to vary the frequency by an additional�5%.

The circuit was fabricated in an AlGaAs/GaAs HBT process using (3�m x 10�m)
minimum emitter area devices. Nominal SPICE models for this process were gleaned
using several characterization methods (dc current-voltage characteristics, S-parameter
measurements, and analytical techniques based on doping profiles) to obtain nomi-
nal parameter values. Starting from these nominal models, the base-resistance and
base-collector capacitance were determined by optimization. Model parameters were
adjusted with the aid of the optimizer of HSPICE so as to fit simulations to measured
data. The resulting models were given in table 6.4.

The period of oscillation for an n-stage oscillator is given by

T = 2ntd; (8.1)
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Figure 8.3 (a) fmax and ft vs. bias current. (b) 1=fmax and 1=ft vs. bias current.



390 Chapter 8

where td is the delay of each cell. The transistor parameters fmax and ft for the
process are plotted in Fig. 8.3. We can deduce that the delay time td obtained from
Fig. 8.2(a) is approximately equal to 1=fmax. Hence, a first-order estimate of the
oscillating frequency of the VCO is given by

fo ' fmax
2n

: (8.2)

For this prototype VCO the maximum oscillating frequency of the transistors, fmax, is
about 22 GHz, from which we estimate fo to be 2.75 GHz. For TRW’s InP process with
(1�m x 10�m) transistors and an fmax of 100 GHz, the 4-stage VCO could achieve a
frequency of oscillation of approximately 12.5 GHz based on this simple estimation.
Later, in section 8.4, we will derive a more accurate expression for estimating delay
times.

8.2 EMITTER-COUPLED MULTIVIBRATOR VCO

The second VCO designed was an emitter-coupled multivibrator [1]. The schematic
for this circuit is shown in Fig. 8.4. The cross-coupled transistors provide positive
feedback for a high loop gain, and the clamping diodes, QCLT and QCLF, act to
limit the amplitude of the oscillation. Frequency tuning is accomplished by varying
the oscillating current, IOSC, which alters the charging time of the emitter capacitor
(200 fF). This current is controlled by a differential voltage across the inputs CNTRU
and CNTRD. Measured results of this circuit, fabricated in the same HBT process as
before, are given in Fig. 8.2(b). The tuning range of this circuit is 2.5 GHz �32%. It
can be seen that the frequency, as a function of the control voltage, deviates from a
linear response; this can result from the distortion in the voltage-to-current conversion
in the degenerated differential pair, and it could also be due to the fact that the
common-mode voltage is not fixed, which would lead to different values of parasitic
capacitances, as a function of the control voltage, on the emitters of QAT and QAF.
Moreover, for a relaxation oscillator, where the regeneration time is negligible, the
frequency of oscillation will ideally be linearly proportional to IOSC; however, when
the regeneration and relaxation times are comparable, as is the case in a high-speed
oscillator, the relationship between frequency and current is less obvious, and linearity
should not be expected.



Voltage Controlled Oscillators 391

CNTRUCNTRD

VEE

GND

V OT V OF

QFT

QAT QAF

QFF

C

200fF

RT RF
400 400

RDIFF

600

QVBE

QBLD

QBASE

QS1

1500

1400

RBLD

RTEST
100

QS2QS3QS4QS5

RS5 RS4 RS3
RS2

RBIAS

375 250 250 375

QUT QUF
QD

QCLT QCLF

Figure 8.4 An emitter-coupled multivibrator VCO



392 Chapter 8

Ring VCO Multivibrator VCO
Maximum Frequency 2.9 GHz 3.3 GHz

Tuning Range 2.35�23% 2.5 GHz�32%
Linearity 2.5% 5.4%

Power Supply Voltage -8V -8V
Power Dissipation 34–240 mW 178 mW

Active Area 300�m�400�m 300�m�400�m
Second Harmonic -31 dBc -11.9 dBc
Third Harmonic -30 dBc -14.0 dBc

Power 100 kHz Offset -57 dBc -53.5 dBc

Table 8.1 Measured VCO results.

8.3 COMPARISON OF RING AND EMITTER-COUPLED

VCO

Measured results of the two oscillators are summarized in table 8.1. In order to obtain
measurements in a 50
 environment, the output buffer of Fig. 8.5 was used. The
buffer circuit was operated at a bias current of approximately 10 mA, which provided a
maximum differential output voltage of 250 mV. The two circuits have similar charac-
teristics: the emitter-coupled multivibrator VCO having a larger maximum frequency
and tuning range than the ring VCO, whereas the ring oscillator has slightly less phase-
jitter (less power at 100-KHz offset from the center frequency). For extraction of the
clock signal from digital data of a known rate, a VCO center frequency is a constant
factor times the data-rate, and the tuning range must be large enough so as to center
the VCO within the required frequency for clock recovery over worst case processing
and temperature variations. The tuning range of the above VCO circuits (> �20%) is
adequate for this application. Microphotographs of the four-stage ring oscillator, and
the emitter- coupled multivibrator are shown in Figs. 8.6 and 8.7, respectively.

8.4 TIMING ESTIMATION

In the previous section we gave a very simple estimate for the frequency of oscillation
that is useful for a first-order estimate of circuit performance. However, we would like
to know which parameters are most important in limiting the frequency of operation of
the VCOs. By deriving an expression that accurately predicts circuit behavior, we can



Voltage Controlled Oscillators 393

VEE

B IAS

50 Ω 50 Ω

300 Ω

200
Ω

200
Ω

100
Ω

100
Ω

VFMOUTVFMOUT

VFILIN VFILIN

Figure 8.5 50
 output buffer.

use it both as an aid for extracting model parameters, and as a means for optimizing
circuit performance. In this section we will present one method of estimating the
timing of a ring oscillator that is applicable when the gain of each delay-stage is small
(' 2).

The basic delay cell of a current-mode ring oscillator is shown in Fig. 8.8. The dc
transfer characteristic for the differential pair, ignoring base current, is given by the
familiar hyperbolic tangent function [2].

Vout = IR

�
tanh

�
Vin
2VT

��
; (8.3)

which is plotted in Fig. 8.9. We can see that the linear range of input signals in
approximately [�4VT ; 4VT ]. At a temperature of 300�K this corresponds to a voltage
range of about [�100mV; 100mV].

The maximum gain of the circuit, A0, occurs at the balanced point when both the
differential input and output voltages are equal to zero. The value of the gain at this
point is IR=2VT . We can write the transfer characteristic in terms of A0;

Vout =
�
2VTA0 tanh

�
Vin
2VT

��
: (8.4)
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Figure 8.6 Microphotograph of an HBT four-stage ring VCO.
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Figure 8.7 Microphotograph of an HBT emitter-coupled multivibrator VCO.
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Figure 8.9 Hyperbolic tangent transfer curve of a bipolar differential pair amplifier.



Voltage Controlled Oscillators 397

The clamping voltage is 2VTA0, and for a gain of two this circuit clamps at jVoutj =
4VT . Therefore the output voltage of the delay-cell is in compliance with its linear
input range. When used in a ring oscillator, the output of one cell will drive the input
of the next, and no delay-cell will be overdriven such that the voltage excursions are
far beyond that necessary to switch the current. As a result all switching transistors
will remain in the linear operating region nearly all of the time, and linear small-signal
analysis can be used to predict circuit performance.

Period of oscillation

Now that we have justified using small-signal analysis, we can make use of familiar
circuit analysis techniques to estimate the frequency of operation. We will use a lumped
time-constant approach. Although lumping the effect of each natural frequency into
one effective pole is unsatisfactory in predicting phase-lag or the pulse response in a
feedback system, it is a useful approximation for estimating circuit delay times and
usually gives reasonable results.

Lumping all poles into a single time constant, we can model the delay cell as a
first-order system with a transfer function given by

H(s) =
A0

1 + s�
: (8.5)

In steady-state operation at the frequency of oscillation (fo), each delay cell will
contribute (�=n) radians of phase lag. This gives us a simple means of finding fo in
terms of � . The phase of a delay cell at the frequency fo is given by

� 6 H(j2�fo) = tan�1(2�fo� ) =
�

n
: (8.6)

Therefore the oscillation frequency is that value which produces the proper phase lag,
and is given by

fo =
tan(�=n)

2��
: (8.7)

The equivalent delay time per stage is then

td =
� (�=n)

tan(�=n)
: (8.8)

For the special case of n=4, we obtain the following results,

fo =
1

2��
(8.9)

td = � (�=4): (8.10)
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Explicit Expressions for the Lumped Time Constant

Now we need to find an expression for the lumped time constant in terms of device pa-
rameters. Derivation of the transfer function of the differential pair is straightforward.
However, we will skip the derivation and simply give the results. The circuit we will
analyze is shown in Fig. 8.10 with the small signal model used in hand calculations.
The differential transfer function has the following form;

A(s) = A0
1� s�n1 � (s�n2)2

1 + s�d1 + (s�d2)2 + (s�d3)3
: (8.11)

The midband gain is given by

A0 = gmRL

�

�

1 + 
�re(gm + g�)

�
; (8.12)

where the base voltage reduction factor 
� has been defined as


�
4
=

r�
Rs + rb + r�

: (8.13)

We will now give expressions for all of the time-constants in (8.11). The first-order
time-constant in the denominator is the sum of all the capacitances in the circuit
multiplied by the equivalent resistance seen across their terminals. This is our lumped
time-constant, and we will separate it into four terms such that

�d1 = �� + �m� + �o� + �cs (8.14)
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where;
�� is due to C�;
�m� is the Miller effect at the input;
�o� is the Miller effect at the output;
�cs is due to Ccs:

(8.15)

These individual delay contributions are given by the following expressions

�� = C�

�
(Rs + rb) k r� + 
�re
1 + 
�re(gm + g�)

�
(8.16a)

�m� = C�

�
(Rs + rb) k r�

�
1 + (gm + g�)(RL + re)

1 + 
�re(gm + g�)

��
(8.16b)

�o� = C�

�

� [1 + re(gm + g�)]

1 + 
�re(gm + g�)

�
RL (8.16c)

�cs = CcsRL: (8.16d)

The lumped time-constant td1 is the only parameter we need in our first-order model.
However, we will give expressions for all of the other time constant values for com-
pleteness.

The second-order time-constant in the denominator can be shown to be

�2d2 = RL(Rs + rb)

�

�

1 + 
�re(gm + g�)

�
��

(C�C� + C�Ccs)

�
1 +

re
Rs + rb

�
+ C�Ccs [1 + re(gm + g�)]

�
;

(8.17)
and the third-order time-constant is given by

�3d3 = RL(Rs + rb)re [C�C�Ccs]

�

�

1 + 
�re(gm + g�)

�
: (8.18)

The numerator time-constant expressions are found to be

�n1 =
C�

gm
[1 + re(gm + g�)] (8.19)

�2n2 =
C�

gm
C�re: (8.20)

Comparison with Simulations

This timing estimate was compared to simulations, and the results are plotted in
Fig. 8.11. It can be seen that the estimate is accurate to within about 10%. More
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Figure 8.11 Simulations version lumped time-constant approximation for a 4-stage ring
oscillator vs. bias current: (a) delay time of a single cell, (b) oscillation frequency.

important than the accuracy of the estimate is the predictionof the relative contributions
to the delay-time of each of the various parasitics. Furthermore, the estimate predicts
the variations of the oscillation frequency under various bias conditions. Given the
expression for the lumped time-constant, we can determine which parasitic is most
important and adjust bias conditions and device geometries accordingly to achieve
optimal performance.

8.5 HIGH-SPEED TESTING

For circuits operating at frequencies in the gigahertz range, testing procedures and
packaging techniques are just as important, if not more, than the actual circuit design.
Small parasitics become important at these high frequencies and can dominant circuit
performance. For example, a typical bond-wire inductance is about 0.6 nH. The
magnitude of the impedance due to the bond-wire at 1 GHz is 3.8 
. However, at
10 GHz this increases to 38 
, and is similar in magnitude to circuit impedances.
Furthermore, a bonding pad capacitance of 0.5 pF is typical. This gives a shunt
impedance of 320 
 at 1 GHz, reducing to 32 
 at 10 GHz. Therefore, at high speeds
we require techniques to minimize parasitics. We will also try to use the parasitics
to our advantage, such as incorporating bond-wires as part of an inductive peaking
scheme.

In this section we will present a brief introduction to high-speed testing procedures. In
the gigahertz range all of the testing and packaging is done in a controlled impedance
environment, using transmission lines of one type or another. For instance we will use



Voltage Controlled Oscillators 401

coaxial cables for interconnecting test equipment and circuit boards. Within the circuit
board, both microstrip and coplanar transmission lines will be used. To minimize
reflections, transmission lines should be terminated. These termination should be
placed as close to the active circuitry as possible to minimize lead inductances. There
are several references on transmission lines that the reader can consult. Elliott’s recent
book [3] on guided waves in microwave circuit provides an excellent treatment of the
subject. The books by Ott [4] and Bakoglu [5] also give valuable information on noise
reduction, parasitics, and packaging techniques.

8.5.1 Wafer Probing

The testing procedure usually begins by probing the wafer. This often gives good re-
sults because there are no parasitics associated with packaging at this point. Microwave
probes can be used up to 40 GHz. These probes use a coplanar transmission line with
a controlled impedance (usually 50 
) all the way to the tip. The probe usually has
three connections in a ground-signal-ground arrangement. Referring to the micropho-
tographs of the two VCO circuit in Figs. 8.6 and 8.7, the reader can see high-frequency
output pads arranged in a ground-signal-ground configuration for wafer probing. A
50
 terminating resistor can also be seen between the center conductor and ground. A
better termination method was used in the preamplifier circuit of Fig. 7.36, where the
termination resistor is composed of two 100 
 resistors in parallel. This configuration
allows the current density to remain symmetric at the end of the transmission line, and
improves the response at high-frequencies.

A high-speed wafer probing setup is illustrated in Fig. 8.12. Microwave probes are
mounted on a probe station. The coplanar transmission line at the tip of the probe is
converted to a coaxial line, and an SMA connector is used to interface the signal to test
equipment. The top view of a microwave probe from Cascade Microtech is shown in
Fig. 8.13. The body of the probe is approximately one inch long. Because of the large
physical size of the probe it is difficult to probe more than 4 high-speed signals at the
same time.

8.5.2 Surface-Mount Packages for Testing

To be used in the real world, circuits must be packaged. High-speed packages are
generally much more expensive than their low frequency counterparts because of the
qualityof the materials needed, and the accuracy of the dimensions required to maintain
controlled impedance transmission lines. In this research we have made extensive use
of the TEKPACTM: a surface mount test package available from Tektronix Inc. This
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Figure 8.12 Illustration of wafer probing using controlled impedance microwave probes.
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Figure 8.13 Top view of a microwave probe from Cascade Microtech.
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Figure 8.14 TEKPAC
TM surface mount package for dc-18 GHz available from Tek-

tronix.

package has been described in the literature [6, 7]. An illustration of a TEKPACTM

is shown in Fig. 8.14. The package has 8 signal lines: two per side. Each of the signal
pins are flanked by ground pins. The large metal area in the middle is a ground plane.
The signal lines are routed along the back of the package and are connected to the top
side through via holes.

After dicing, a test chip can be mounted on the surface of the TEKPACTM. This
author used silver epoxy for mounting. The epoxy was applied, and the chip was
affixed, allowing the epoxy to cure approximately 2 hours in an oven at 150�C. Wire-
bonds are then made from the IC pads to the ground-plane and signal lines of the
TEKPACTM. An illustration of a TEKPACTM with an IC mounted on the surface is
shown in Fig. 8.15. This shows 2 wires bonded to the ground plane, and 4 signal lines
bonded to 4 of the 8 available signal lines.

Evaluation Kit for Surface-Mounted ICs

In order to interface signals to and from the chip, an evaluation kit is also available
from Tektronix Inc. The evaluation kit is designed so that the TEKPACTM can be
placed in the center as shown in Fig. 8.16. Connections are made from the signal
lines of the TEKPACTM to the microstrip transmissions lines of the evaluation kit
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Figure 8.15 Bounding diagram of an IC surface mounted with silver epoxy on a
TEKPAC

TM platform.

by pressure. The microstrip lines are distributed to 8 separate SMA connectors on the
sides the evaluation kit as shown in Fig. 8.17.

To apply pressure to make the electrical connection, a plastic ring is placed on the
pins of the TEKPACTM. The evaluation kit has a lid with a piece of rubber affixed
inside the lid, which makes contact with the plastic ring as the lid is screwed into
place, applying the pressure needed to make electrical contact to the signal pins. The
evaluation kit with the lid in place is shown in Fig. 8.18. When the lid is closed, the
evaluation kit provides a grounded shield for the circuit under test against optical and
electro-magnetic interference. Signals can now be routed easily to test equipment and
to couplers using coaxial cables via the SMA connectors.

8.5.3 Microstrip Transmission line Hybrid Circuit

The TEKPACTM is a very useful package. Several chips can be mounted and bonded.
All of the test equipment can be connected and calibrated. Then different chips can be
tested simply by popping a newTEKPACTM into the evaluation kit without having to
disconnect any wires, or do any soldering. However, when more than 8 test signals are
required, a custom hybrid test circuit may be needed. If one has access to the proper
facilities it is often a simple matter to make your own hybrid test board.
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Figure 8.16 Photo of evaluation kit with VCO chip mounted on a TEKPACTM.
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Figure 8.17 Evaluation kit for TEKPACTM; approximately 1.75 in per side.
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Figure 8.18 Evaluation kit for TEKPACTM with lid.

A microstrip line can be etched on a DURIODTM board. Rubylith masks can be cut
with the aid of simple CAD tools, and the pattern can be transferred, either directly, or
by photographic reduction, to the test board. A skilled technician can layout and etch
a test board within 30 minutes. Various connectors and test fixtures can be purchased
from microwave component vendors. 180� hybrid couplers and can be used to take
the sum or difference of two signals in the GHz range; this is useful for performing
differential to single-ended conversions. Microwave passive components, such as chip-
resistors and capacitors, are also available from various vendors. Small chip resistors
can be mounted directly on the surface of the board to provide terminations, thus
minimizing inductive leads. Chip-capacitors can be placed as close to the component
as possible for power supply and bias line decoupling.

8.5.4 Packaging

We will now take a brief look at some packaging techniques that have been described
in the literature to improve high speed performance. Fujita et al. [8] described a
5-Gb/s fiber-optic receiver module, and provided a useful illustration of a high-speed
packaging technique. An avalanche photodiode (APD) was packaged together with a
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Figure 8.19 Illustration of a possible packaging technique for a multigigabit per second
fiber-optic preamplifier module.

low-noise transresistance preamplifier. A diagram of the receiver module is shown in
Fig. 8.19 illustrating how one might go about packaging such a circuit.

A 10-GHz mixer for coherent optical systems was recently reported by Fujita et
al. [9, 10]. In the packaging of the circuit, an improved bonding technique, illustrated
in Fig. 8.20, was utilized. The straightforward bonding diagram for a chip bonded to a
microstrip transmission line is shown in Fig. 8.20(a). The bond-wire to the signal line
is excessively long and has an inductance of approximately 0.6 nH. This long inductor
can be broken in half and bonded to the top plate of a capacitor with its bottom plate
connected to ground. This is illustrated in Fig. 8.20(b). The equivalent circuits for
these connections are shown in Fig. 8.21. By choosing the center capacitor properly
so that its characteristic impedance together with the 0.3 nH inductors is similar to the
characteristic impedance of the transmission line (240 fF for a 50
 line), a substantial
improvement in performance can be obtained.

Inductive Peaking and the T-Coil

In high-speed packaging we try to minimize parasitic capacitance and inductance.
However, once we realize that we must live with a certain amount of inductance and
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Figure 8.20 High-speed packaging technique.
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Figure 8.21 Circuit model for high-speed packaging technique.
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capacitance, other techniques have been developed that use the reactance of these
parasitics in an intelligent way so that circuit performance is not degraded, and in some
instances is even enhanced. Distributed amplifiers are an example of this technique,
where the input capacitance of the amplifier is utilized to construct a quasi delay-
line. Inductive peaking [11, pp. 334–344] is another technique whereby bond-wire
inductances are used to peak the frequency response, thus broad-banding the circuit.

A very clever technique for providing a constant input impedance over all frequencies
is known as a T-coil. This circuit is illustrated in Fig. 8.22. The T-coil uses coupled
inductors and a shunt capacitor. The energy is distributed among the inductors, shunt
capacitor, and input capacitance of the transistor in such a way that the impedance
seen by the transmission line is constant and real for all frequencies. A T-coil can be
approximated be using two bond-wires. The mutual coupling between the bond-wires
is rather weak, but it is strong enough to implement the broadband matching needed
to maintain a relatively constant impedance. For additional information on high-speed
packaging the reader is referred to the paper by Ellenberger [12].

8.5.5 Differential Design

Until now we have not explicitly stated that differential design is preferable at high
speeds. This should be fairly self evident. However, we will make a few comments
to point out some of the more prominent benefits. Within the chip, parasitics that
become dominant at high speeds, and seriously degrade the performance of a single-
ended circuit occur on both signal lines of a differential circuit, and are reduced by
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the common-mode rejection. Also, in a differential circuit, the switching of currents
only occurs within the chip where distances, and thus inductance are small. Therefore,
high-speed ac current don’t need to be delivered through long, high-inductance paths.
Differential I/O lines can be routed in close proximity to each other, and the total current
passing through a surface intersecting both signal lines will be constant. Ferrite beads
can be placed outside of the differential signal lines, choking common-mode signals,
while allowing differential signals to pass. All external bias and supply lines carry dc
current, where the sum of the differential currents are always constant. This minimizes
fluctuation on these lines and simplifies power supply and bias decoupling.

8.5.6 Testing Procedures

Network Analyzer An excellent source of information on testing procedures can be
obtained from manufacturers of high-speed test equipment. A network analyzer is a
versatile measurement system that can perform several types of complex measurements
quickly. Hewlett Packard’s HP 8720A is one such system, and the user’s guide provides
useful information about testing procedures [13].

Spectrum Analyzer A gigahertz spectrum analyzer is invaluable in any high-speed
measurement laboratory. One particular unit is the HP 8562A from Hewlett Packard
[14]. Several useful measurement techniques can be found in the user’s guide and in
application notes.

Sampling Scope A sampling oscilloscope is useful for looking at periodic waveforms
and performing time domain measurements. Time domain reflectometry (TDR) is
complementary to frequency domain techniques, and is useful for narrowband network
characterization. The 11801A from Tektronix is a sampling scope with a TDR sampling
head. Applications notes and a user’s guide are available from distributors [15].

Application Notes Suppliers of high-speed circuits are also a useful sources of in-
formation on high-speed testing and packaging. A seminar on high-speed design was
given by Analog Devices in 1989, and the notes are published in a volume that is
available through the company [16]. Manufactures of accessories such as bias-tees,
couplers, cables, connectors, and microwave active and passive components usually
have well written applicationnotes describing the proper usage of these devices. Appli-
cation notes, such as those given in [17, 18, 19] are also valuable sources of information
on microwave design and testing techniques.
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9
6-GHz PHASE-LOCK LOOP USING

AlGaAs/GaAs HBTs

In this chapter, a fully integrated 6 GHz phase-locked-loop (PLL), fabricated using
AlGaAs/GaAs heterojunction bipolar transistors (HBTs), is described [1]. The PLL is
an important test circuit that verifies functionality of key circuit building-blocks of a
multigigabit-per-second clock recovery circuit for fiber optic communication systems.
The PLL consists of a frequency quadrupling ring voltage controlled oscillator (VCO),
a balanced phase-detector, and a lag-lead loop filter. The closed-loop bandwidth is
approximately 150 MHz. The tracking range was measured to be greater than 750 MHz
at zero steady-state phase-error. The non-aided acquisition range is approximately
300 MHz, or twice the closed loop bandwidth. The minimum emitter-area of the
AlGaAs/GaAs HBTs was 3�m x 10�m, and the devices exhibited a unity current-gain
frequency of ft = 22 GHz, and a unity power-gain frequency of fmax = 30 GHz for
a bias current of 2 mA. The speed of the PLL can be doubled by using 1�m x 10�m
emitters in next generation circuits. The chip occupies a die area of 2mm x 3mm and
dissipates 800mW with a supply voltage of -8V. Each of the circuits composing the
PLL will be described in the following sections.

9.1 FREQUENCY QUADRUPLING RING VCO

A frequency quadrupling ring VCO was designed and fabricated separately from the
PLL [2, 3]. This VCO, illustrated in Fig. 9.1, has two quadrature outputs at twice the
ring frequency, and one output at four times the ring frequency. The core of this VCO
is a four-stage ring oscillator. When an even number (n) of matched delay elements
is used, each pair of taps separated by n=2 stages will be 90 degrees out of phase.
For example, y1 and y3 are quadrature pairs, as are y2 and y4. When each of these
pairs are mixed, the resulting signals, I and Q, are at twice the ring frequency, and are

413
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VCNTR

y1 y2 y3 y4

y1 y2 y3 y4

II QQ

XX

BIAS

IN-PHASE 
2x Ring Frequency 

QUADRATURE 
2x Ring Frequency 

4x Ring Frequency 

Steer 

Figure 9.1 VCO with I and Q, in-phase and quadrature, double frequency outputs, and a
quadrupled frequency output, X.

themselves in quadrature. Another level of frequency doubling can also be performed
by mixing I and Q to obtain a signal, X, at four times the ring frequency.

The mixing arrangement can be implemented in a variety of ways. If the signals y are
binary-valued, the multipliers are equivalent to exclusive-OR gates, and the cascade of
multipliers can be represented as (y1�y3)� (y2�y4), which is logically equivalent to
y1�y2�y3�y4. Therefore, for binary-valued signals, a modulo-two-sum of each tap
will generate a signal at 4-times the ring oscillator frequency. Razavi and Sung [4, 5]
used this approach in a 6-GHz BiCMOS PLL, which dissipated only 60-mW. The
modulo-two-sum was accomplished using a novel technique, which is applicable to
ring oscillators with an odd number of stages. For a three-stage oscillator there are
6 possible states for the taps (y1; y2; y3); if these taps could be chosen arbitrarily
there would be 8 possible states, however (-1,1,-1) and (1,-1,1) can not occur in a
ring-oscillator structure. Therefore, the modulo sum y1 � y2 � y3 is equivalent to
the algebraic sum y1 + (�y2) + y3 for the six valid states of the ring oscillator. By
representing the taps y as currents, and summing them at a common node, a frequency
tripler can be realized.

The delay cell of the VCO core is shown in Fig. 9.2. This circuit uses a differential
current steering input (STEER) for coarse adjustment of the VCO frequency, and
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Figure 9.2 Ring oscillator delay cell with differential current steering inputs for coarse
tuning and a reversed bias diode for fine tuning

a control voltage (VCNTR) of reverse-biased base-emitter junction capacitances for
frequency fine tuning. Balanced differential design helps to minimize jitter due to
common-mode noise and especially due to power supply coupling, which is a major
source of jitter in high-frequency oscillators. Simulation results reveal that a single
delay cell, terminated with a source resistor of value rb and a load resistor ofC�=C�gm,
achieves a delay time of approximately 1=fmax, where fmax is the unity-power gain
frequency of the transistor given approximately by

fmax '
1

2

s
ft

2�C�rb
: (9.1)

To ensure oscillations, a gain greater than unity is required, and the load resistor must
be increased accordingly. This increases the delay time of the ring oscillator cell, as
do the emitter-follower buffer stages inserted before the frequency doubling mixers,
resulting in an actual delay time of the loaded ring oscillator cell of between 1:5=fmax
and 2=fmax, depending on bias conditions. Therefore, the ring frequency f1 is such
that

fmax
16

< f1 <
fmax
12

; (9.2a)
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Maximum Frequency 6.8 GHz

Power Dissipation 300–400 mW

Tuning Range (Steer) 6.25 GHz � 400 MHz

Gain (Steer) 2�(440 MHz) / mA

Tuning Range (Vcntr) � 200 MHz

Gain (Vcntr) 2�(100 MHz) / Volt

Temperature Coefficient 1 MHz / � C (uncompensated)

Phase-Jitter < 1 degree (rms)

Spectral Content -100 dBc/Hz @ 100 kHz offset

Table 9.1 Measured results of the VCO.

and the 4x signal achieves a maximum frequency in the range

fmax
4

< f4 <
fmax
3

: (9.2b)

Measured results of the VCO are summarized in Table 9.1. The maximum obtainable
frequency is 6.8 GHz. The tuning range is plotted in Fig. 9.3(a) as a function of the
bias current per delay cell, and in Fig. 9.3(b) as a function of the reversed biased diode
voltage. The VCO can be tuned by approximately 1 GHz by altering the bias current,
and by 500 MHz by modulating the load capacitance diode. A microphotograph of the
VCO is shown in Fig. 9.4.

9.2 FULLY-BALANCED MIXER

Frequency doubling and phase detection are performed by a fully symmetric circuit
with the property of equal delay paths for each input signal [6]. Half of this circuit is
a Gilbert multiplier, or equivalently, a current-mode exclusive-NOR gate as shown in
Fig. 9.5. When a single Gilbert multiplier is used as the complete mixer, differences
in signal propagation delays between the top-level and bottom-level input differential
pairs results in an effective phase-shift between the two signals being multiplied. This
causes a steady-state phase-error when the multiplier is used as a phase-detector in a
PLL, reducing both the tracking and acquisition ranges. This phase lag also gives rise
to a dc offset voltage at the output of a frequency doubler when quadrature signals
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Figure 9.3 VCO measured results: (A) frequency vs. bias current, (B) frequency vs.
control voltage.

are multiplied. For this particular HBT process, the delay-time difference between
a signal applied to the top differential pair and a signal applied to the bottom, is on
the order of 15 ps. This corresponds to a phase-lag of 32 degrees at 6 GHz, which is
unacceptable.

By modeling the Gilbert multiplier of Fig. 9.5 as an ideal multiplier with an input
phase difference, the circuit of Fig. 9.6 illustrates how two such mixers can be used
in antiparallel to cancel the phase offset. Each mixer is identical, but their inputs are
interchanged. Therefore the resulting phase-errors produced by the two mixers will
be equal in magnitude, but opposite in sign. Summing the result of each mixer, the
phase-error can be eliminated to the degree of matching accuracy of the two mixers.
The fully symmetric circuit of Fig. 9.7 implements this phase-error compensation
by summing the output current of the two Gilbert multipliers at the load resistor.
Razavi and Sung [4, 5] use a similar technique, but they add a clever modification to
allow the use of low-voltage power supplies, thereby reducing the power dissipation
substantially.

9.3 LOOP FILTER

The loop filter sets the PLL’s closed-loop bandwidth as well as its dynamic response.
Considerations in designing a loop filter are stability, frequency acquisition range, and
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Figure 9.4 Microphotograph of Frequency Quadrupling VCO
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Figure 9.8 Linearized Small-Phase-Error Model of PLL

phase-jitter suppression. The familiar linearized small-phase-error model of a PLL is
shown in Fig. 9.8, where F (s) = FN (s)

FD (s)
is the transfer function of a loop filter with

unity dc-gain. Kd, Kf , and Ko are the gains of the phase-detector, loop-filter, and
VCO respectively. A frequency-modulation input signal is also shown with a gain of
Kin. The closed loop transfer function of the PLL for a general loop filter is given by

H�(s) =
�o(s)

�in(s)
=

KdKfKoF (s)

s

1 +
KdKoKfF (s)

s

=
KdKfKoFN (s)

sFD(s) +KdKfKoFN (s)
: (9.3)

Defining a gain 
k
4
= KdKfKo (rad/s), then for a lag-lead loop filter of the form

F (s) =
1 + s�z
1 + s�p

; (9.4)

the resulting closed loop transfer function is 2nd order, and is given by

H�(s) =

k(1 + s�z)

s2�p + s(1 + 
k�z) + 
k
: (9.5)

It is useful to express the loop parameters in terms of the undamped natural frequency,
!n = 2�fn and the damping ratio �.

H�(s) =

1 +
s

!n

�
2� �

!n

k

�

1 +
s

!n
2� +

�
s

!n

�2 (9.6)

where !2n =

k
�p

� =
1

2

�
!n

k

+ !n�z

�
:
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The transfer function for frequency modulated signals is identical to the phase-
modulation transfer function except for a constant term:

HFm(s) =
Fmout(s)
Fmin(s)

=
Kin

Ko

H�(s): (9.8)

Another important transfer function relates the phase-error, �(s) to the input phase.

H�(s) =
�(s)

�in(s)
=

s

!n

�
!n

k

�
+

�
s

!n

�2

1 +
s

!n
(2�) +

�
s

!n

�2 (9.9)

The magnitudes of H�(s) and H�(s) are plotted in Fig. 9.9 as a function of the
normalized frequency variable for the case of � = 1 and 
k >> !n. The loop filter
has a limited bandwidth so that the PLL attenuates modulations of the carrier frequency
above the undamped natural frequency of the loop fn. The two transfer functions H�

andH� have interesting interpretationsas regards to phase-jitter filtering. If we assume
that the input to the PLL contains phase-jitter, but the VCO of the PLL is jitter-free,
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Figure 9.10 Differential Lag-Lead Loop Filter

then the VCO output will be modulated by the input phase-jitter. However, the original
jitter will be filtered by the lowpass function H�. Therefore, to reduce the jitter of
the PLL VCO one should reduce the PLLs closed-loop bandwidth. Conversely, if the
input signal is assumed to be jitter-free, and the PLL VCO has significant free-running
phase-jitter, then the negative feedback of the loop will act to modulate the VCO in
such a way as to cancel its own phase-jitter. The PLL will be able to track and suppress
self-jitter within the loop bandwidth. The resulting closed-loop VCO jitter will then be
the original jitter filtered by the highpass function of H�. In this case jitter is reduced
by increasing the loop bandwidth.

The circuit of Fig. 9.10 approximates a lag-lead characteristic. The small-signal
transfer function for this filter, ignoring higher-order poles due to parasitics, is given
approximately by

�VOUT
�VIN

= gmR

�
1 + sCRz

1 + sC (Rz + 2R)

�
= gmR

�
1 + s�z
1 + s�p

�
(9.10)

where �z = RzC =
2�

!n
�

1


k
;
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Loop Parameters Component Values

Kd = 69 (mV/rad) �p = 5.5 (ns)

Kf = 25 �z = 1.5 (ns)

K0 = 2�800 (Mrad/s/V) C = 1.0 (pF)


k = 8685 (Mrad/s) R = 2.0 (k
)

Rz = 1.5 (k
)

Table 9.2 Loop parameters and component values.

�p = 2RC + �z =

k
!n2

:

Since the loop filter is integrated with the PLL, the maximum capacitor value is
limited by area constraints to about 1pF. The loop parameters and corresponding filter
component values are given in Table 9.2 for the design goals of fn = 200 MHz and
� = 1. The parasitic poles of the loop filter provide additional lowpass filtering of
the 12 GHz double frequency ripple from the output of the phase detector, reducing
ripple-induced phase jitter. However, these higher-order poles also add excess phase-
lag which reduces the loop phase margin, and possibly cause ringing in the transient
response. Simulations predict an overshoot in the step response of 5%, corresponding
to an equivalent damping factor of � = 0.7, which is approximately a 2-pole Butterworth
response.

9.4 OUTPUT BUFFER AND BIAS CIRCUITS

The output buffer is shown in Fig. 9.11. It consists of a pair of emitter-follower buffers,
followed by a degenerated differential pair with 50 
 on-chip load resistors. The
nominal bias current is approximately 11 mA, which results in a maximum differential
output voltage swing of 550 mV. Since the maximum anticipated differential input
signal to the buffer is 2 V, a 300
 emitter degeneration resistor is used to accommodate
a differential input signal of up to 3 V.
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Figure 9.11 Emitter Degenerated Output Buffer with 50 
 On-Chip Load Resistors

Bias Circuits

Three identical bias circuits are used, one of which is illustrated by Fig. 9.12. Separate
circuits bias the mixers, the VCO-core delay cells, and the output stage. These bias
circuits provide a nominal bias voltage of Vbe + 550 mV when VFORCE is open
circuited, but can be altered from Vbe + 400 mV to Vbe + 2.5 V if VFORCE varies from
VEE to GND.

9.5 RESULTS

A block diagram of the PLL circuit is shown in Fig. 9.13. A microphotograph of
the complete PLL is shown in Fig. 9.14. To facilitate testing, an identical VCO was
fabricated to provide an on-chip signal source. Testing of the chip was accomplished
by frequency modulating the input VCO (STEER) signal, and monitoring the buffered
control voltage, (FMOUT), of the PLL VCO. These measurements were repeated
for different values of VCNTR, which adds stress to the loop by creating an initial
frequency offset. The tracking range was measured by starting with the PLL in lock,
and slowly changing the FM input voltage until a loss of lock occurred. The acquisition
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Figure 9.14 Microphotograph of 6 GHz HBT phase-locked-loop.
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Figure 9.15 DC tracking and acquisition ranges for VCNTR = 0.0 V and -0.3 V.

range was measured by starting with the loop out of lock and varying the FM input until
lock was established. The tracking and acquisition ranges are plotted in Fig. 9.15(a)
for VCNTR = 0.0 Volts. The tracking range for this condition is 750 MHz, and
the acquisition range is approximately 300 MHz. Fig. 9.15(b) shows a plot of the
same ranges for VCNTR = -0.3 V, which adds a frequency offset and therefore, a
steady-state phase-error to the loop. In this case the tracking range is reduced to about
550 MHz, while the acquisition range is slightly less than 300 MHz. Fig. 9.16(a)
shows a measured FM output waveform of the loop dynamically losing and regaining
lock in response to modulation of VCNTR by a 2.4 V peak-to-peak sinewave at 1 KHz.
Gardner gives expressions for the maximum frequency deviation from the VCO center,
�fp, that can be "pulled-in" by the self-acquisition of the loop [7]. Expressed in terms
of circuit parameters,

j�fpj '

k

2�

p
2F (0)F (1) =


k

2�

q
2�z=�p; (9.12)

and in terms of loop parameters

j�fpj ' 2fn

r
�
k

!n
� 1=2: (9.13)

For the loop parameters given in Table 9.2, j�fpj ' 1:02GHz. Although, (9.12) takes
into account the sinusoidal phase-detector characteristic, it assumes that
k is constant
over the entire acquisition range. In this particular circuit, 
k results from a cascade
of two differential pairs (the loop-filter and the current steering VCO), and therefore
has the functional form of a double-nested hyperbolic tangent, which reduces the gain
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(a) (b)

Figure 9.16 (a) Measured FM output showing PLL dynamically losing and reacquiring
lock in response to a 2.4 Vpp 1 KHz sinewave modulation of V cntr. (b) Frequency step
input (STEER) and buffered PLL VCO input signal (FM).

substantially at the extremes of the tuning range. For an interval of 90% of the tuning
range, the average gain, 
k is a factor of 4 less than 
k at the center frequency of the
VCO. Replacing
k in (9.12) with
k gives an acquisition range of� 250 MHz, which
is still significantly greater than the measured acquisition range (j�faj ' 150 MHz).
This discrepancy is due to offsets and noise in the actual circuit. In the presence of a
large frequency error the dc value from the phase detector error signal is quite small,
and must be accumulated in the loop filter over several cycles, building up a voltage
that tunes the VCO. Such a small error signal is defeated by offsets and noise, and no
tuning signal accumulates; as a result the PLL can not acquire.

The time required to "pull-in" a frequency of �f is given by

Tp(�f) '
1

2�fn

1

2�

�
�f

fn

�2
; (9.14)

which shows that the acquisition time is proportional to the square of the initial
frequency offset. For a frequency error equal to the theoretical limit of the acquisition
range, �f = �fp, and after substituting for fn and �,

Tp(�fp) ' 2�p

�

k�z

1 + 
k�z

�
: (9.15)

For the usual case of 
k�z >> 1,

Tp(�f) ' 2�p

�
�f

�fp

�2
: (9.16)
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Figure 9.17 Cycle-slipping behavior during frequency acquisition of the PLL simulated
using SPICE: (a) time domain behavior, (b) phase-plane portrait.

This expression shows that the acquisition time depends only on the initial frequency
error and the time-constant of the dominant-pole of the loop filter. For �f = 150 MHz,
Tp = 0.25 ns. However, (9.16) is not valid for small frequency errors lying within
the locking range of the PLL, or for frequencies close to the edge of the acquisition
range as Fig. 9.17(a) illustrates. This plot shows the simulation results of frequency
acquisition for �f slightly less than �fp. For this case the acquisition time is 60 ns,
which is more than a factor of 10 greater than that predicted by (9.16). The phase-plane
portrait for this simulation is shown in Fig. 9.17(b), where it can be seen that the loop
settles to a steady-state phase offset of 32 degrees which is an artifact of the finite dc
gain 
k.

�steady-state =
2��f


k

(9.17)

The linear tracking behavior and noise bandwidth can be determined by using small-
signal modulations around the locking point. The measured closed-loop bandwidth
varied from 100 MHz to 200 MHz, depending on the steady-state phase error, with �
ranging from 0.5–1.0. The change in closed-loop bandwidth is due to the compression
nonlinearities mentioned previously. Loop gain is reduced in the presence of a steady-
state phase-error by the sinusoidal phase-detector, the differential loop filter, and the
current steering VCO control. In addition, there is some amplitude modulation of the
VCO with frequency which also reduces the loop gain. Fig. 9.16(b) shows the PLLs
pulse response for a 175 mV, 200 ns pulse to the positive current-steering FM input.
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Transistor Count 300

Die Area 2mm� 3mm

Supply Voltage -8 V

Power Dissipation 800 mW

Maximum Center Frequency 6.8 GHz

Closed Loop Bandwidth 100–200 MHz

Effective Selectivity Qeq 17–34

Tracking Range 700 MHz

Acquisition Range 300 MHz

Acquisition Time (�f = 150 MHz) 0.25 ns�

Table 9.3 Summary of measured PLL results, (* Simulated).

9.6 SUMMARY

The measured results of the PLL are summarized in Table 9.3. A fully-integrated
PLL has been fabricated using AlGaAs/GaAs HBTs. The chip contains over 300
transistors. A doubling of the speed of this PLL can be obtained in second generation
circuits by substituting1�m x 10�m devices for the 3�m x 10�m minimum emitter-area
transistors used. This PLL is a fundamental buildingblock for multigigabit-per-second
clock recovery circuits for use in fiber-optic communication systems.
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10
CLOCK RECOVERY AND DATA

RETIMING IC: CIRCUIT DESIGN
AND SIMULATION RESULTS

In this final chapter we return to system-level issues and blend them with circuit design
constraints to produce a clock-recovery and data retiming IC. We will not present a
detailed circuit, but rather outline the design procedure and give preliminary simulation
results, both at the system- and transistor-level. As was discussed at the end of chapter 5,
characterization of clock recovery circuits by simulation is difficult for two primary
reasons. First, the input signal consists of random data plus noise; therefore, typical
performance measures are based on statistical techniques, which require several data
samples. Second, the clock recovery circuit is narrow-band compared to the data-
rate, requiring thousands, or even millions, of bit-periods to be observed before the
clock phase is altered. Nonetheless, simulation can predict the maximum speed of
operation and is useful in optimizing the circuits dynamic response. Several aspects
of a clock recovery system have been simulated, and some of the results will be
presented in this chapter. We will first present system-level simulations, which are
used to evaluate various architectures under ideal conditions. Then we will show how
these architectures can be implemented as ICs and give preliminary circuit simulation
results.1

10.1 SYSTEM-LEVEL SIMULATIONS

The critical aspect of a high-speed clock recovery loop is its insensitivity to parasitics.
This was discussed in chapters 4 and 5. The performance of a given architecture

1Readers should be advised that the simulations presented in this chapter ignoreelectro-magnetic coupling
of adjacent circuits and other couplings through power supplies and bias lines. Such coupling can cause
several adverse effects, such as injection locking of the PLL. Although simulations are useful for fine-
tuning and evaluating circuit performance, many parasitic effects are difficult to model and are masked by
simulation. Therefore, in high-speed analog design there is no substitute for building and testing actual ICs.
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Figure 10.1 Block diagram of a clock recovery PLL using an LPF and squaring for edge
detection of the random data.The recovered clock is at half the data rate.

will be highly dependent upon the circuit realization. However, we can first consider
an idealized case where we ignore the parasitics. We can then perform system-level
simulations to observe overall loop behavior without getting bogged down in all of
the second-order effects. This section will present some system-level simulations that
were performed assuming idealized circuit blocks. These simulations were executed
using MATLAB.

10.1.1 Squaring Loop

We will first consider a simple architecture as shown in Fig. 10.1. This circuit low-
pass filters the random NRZ data and then squares it to produce pulses for each data
transition. The phase difference between the data transitions and the recovered clock
is detected with a multiplier and a low-pass filter. The loop filter utilizes a lag-lead
structure; the resulting second order system was designed to have a damping ratio of
� = 1. The closed-loop bandwidth was purposely chosen to be much greater than
what would actually be used. This was done so that the dynamic behavior of the loop
can be observed without having to run the simulations for an extended period of time.

Results for a Periodic Input with No Noise

Simulations with maximum data (a square-wave at a frequency of BT=2) and no
additive noise are shown in Fig. 10.2. The phase-error, frequency error, and clock
waveforms are given in Figs. 10.2 (a), (b), and (c), respectively. The phase-plane
portrait, which shows the phase-error plotted as a function of the frequency error,
is shown in Fig. 10.2(d). This simulation primarily illustrates linear behavior. The
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Figure 10.2 Simulation of a squaring clock recovery circuit for maximum data with no
noise and with no frequency error: (a) phase-error, (b) frequency error, (c) clock waveform,
(d) phase-plane portrait.
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Figure 10.3 Simulation of a squaring clock recovery circuit for maximum data with no
noise and with no frequency error: (a) phase-error, (b) frequency error, (c) clock waveform,
(d) phase-plane portrait.

loop acquires phase lock without a cycle-slip, and the phase-plane trajectory reaches
a steady-state at the origin. Similar results are shown in Fig. 10.3. The difference
between this simulation and the former is that the initial phase was shifted by 180�.

When the data-rate and the center frequency of the VCO are not identical, a steady-state
phase error will result. This stresses the loop, and it, in turn, reduces the acquisition and
tracking ranges. The phase-error also results in a timing error in the recovered clock.
This reduces the SNR of the sampling point and degrades performance. Fig. 10.4
shows the result of a simulation with a 1% frequency error. The VCO tuning voltage
must differ from zero to match the data-rate, and the resulting phase error is just the
tuning voltage divided by the product of the phase detector and loop filter gains.
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Figure 10.4 Simulation of a squaring loop with maximum data, no noise, and an initial
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Simulations with Random Data and Noise

Now that we have observed the general dynamic behavior of the loop,we can randomize
the input signal and add noise to see how this affects the loop behavior. Simulations
of the squaring clock recovery circuit for random data and an SNR of 102 are shown
in Fig. 10.5. The phase error is shown in Fig. 10.5(a). It shows the same general
behavior as in the simulations shown in Figs. 10.2 and 10.3; however, the phase is
modulated due to the random data and the additive noise. A histogram of the phase
noise, after lock has been achieved, is shown in Fig. 10.5(b). The time waveforms
of the random data and the recovered clock area are shown in Fig. 10.5(c), and the
phase-plane portrait, which shows the steady-state phase noise clearly as a blob near
the origin, is given in Fig. 10.5(d).

Simulations of the clock recovery circuit are shown in Figs. 10.6(a) and (b), where the
random data and the resulting clock signal are plotted for two different SNRs, and the
eye-diagrams for these simulations are shown in Figs. 10.6(c) and (d), respectively. It
can be seen from the eye-diagrams that the recovered clock has a nominal transition in
the middle of the bit interval, as it should. The random phase-jitter in the clock is seen
to be larger for the higher SNR, as expected. A characteristic of bi-phase signaling is
that the clock is equally likely to lock to a positive or a negative transition.

10.1.2 Simulations of a Digital Transition Tracking Loop (DTTL)

We presented the digital transition tracking loop (DTTL) in chapter 5, where we stated
several of its desirable properties for high-speed clock recovery. In this section we will
demonstrate that the idealized circuit provides the desired functionality. Later, we will
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Figure 10.7 Block diagram of a digital transition tracking loop.

simulate the DTTL using actual transistors and compare the results to the idealized
model.

Phase Detector Characteristic

A block diagram of a DTTL is shown in Fig. 10.7. As a first order of business we
need to determine whether the phase detector characteristic has the sawtooth function
that we expect. To obtain the phase error characteristic, the DTTL was simulated
open-loop. The VCO frequency was set to be either slightly less or slightly greater
than the data-rate. Therefore the phase error will increase, or decrease with time, and
we can plot the output of the phase detector � as a function of time to obtain the phase
detector characteristic, as shown in Fig. 10.8 for the case of a 5% frequency error.
Notice that the characteristic �(t) is indeed a sawtooth function, as was predicted in
chapter 5.

Interleaving and Frequency Detection

In reality, the DTTL would be interleaved as shown in Fig. 10.9. We can add frequency
detection to the circuit, as was shown in chapter 5. The frequency detection operates
by passing the derivative of the phase-error function through a limiter and a lowpass
filter. This operation is illustrated in Fig. 10.10, where the derivative is approximated
by a finite difference of � taken at one bit-period intervals. The resulting error signal for
a �5% frequency error is shown in Fig. 10.11, where it can be seen that the frequency
error signal is positive for a slow clock and negative for a fast clock.
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Figure 10.12 Plots of simulations’ results of a DTTL.
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System level simulation results of the ideal DTTL are shown in Fig. 10.12 for an
SNR of 502. The fundamental behavior of the DTTL for ideal components is similar
to the operation of the squaring loop. The resulting eye diagram of Fig. 10.12(e)
illustrates that the recovered clock has zero-crossings at the middle of the bit-interval.
The histogram of the phase error on Fig. 10.12(f) shows that the rms phase error is
approximately 1% for an SNR of 502. The actual phase jitter in the system will depend
upon the closed-loop bandwidth of the DTTL.

10.2 CIRCUIT-LEVEL SIMULATIONS

Now that we have verified the functionality of the architecture of the DTTL, we
can perform circuit level simulations to determine whether it has the expected low
sensitivity to parasitic delays. To obtain preliminary results, we will use standard
circuit building blocks. Later we can modify the circuitry to optimize performance.
However, these first-order results give a good indication of the maximum operating
speed of the circuit. Circuit simulations were performed using the models for an
AlGaAs/GaAs HBT process with emitter areas of (3�m� 10�m). At a typical bias
current of 2 mA, fmax and ft are approximately 25 GHz. These models were given in
chapter 6.

The track-and-hold circuit used in this first-order simulation is shown in Fig. 10.13 [1].
A SPICE simulation of the track-and-hold circuit at a sampling rate of 4 GS/s (8 Gb/s
in an interleaved circuit) is given in Fig. 10.14.

To multiplex the interleaved in-phase and quadrature samples back to a serial signal,
we used the simple current-mode switch shown in Fig. 10.15. Alternating samples
are passed to the output resistors by steering the bias current through the appropriate
differential pair, under the control of the clock signal.

A latch is used in the final stage of the decision circuit to boost the gain and provide
regeneration. This allows us to improve the speed by using a smaller hold capacitor
and a lower gain in the sampling circuit. The design of a current-mode latch is well
known, and we used the straightforward approach in this simulation. A schematic of
this latch is shown in Fig. 10.16.

Results of SPICE simulations of the DTTL designed using the circuits just described
are shown in Figs. 10.17 and 10.18 for data rates of 2 Gb/s and 5 Gb/s, respectively.
It is difficult to separate the waveforms in these plots. The top plot in each of these
figures is the input and output data. The middle plot shows the in-phase and quadrature
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Figure 10.13 Diode-bridge sample and hold circuit.



448 Chapter 10

Figure 10.14 SPICE simulation results of a diode-bridge track-and-hold circuit.
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Figure 10.15 Schematic diagram of a 2:1 multiplexor.
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Figure 10.16 Latch for increased gain and data regeneration.

samples of the DTTL, and the bottom plot shows the phase error between the input data
and the clock signal. For these simulations, the loop was broken to determine whether
the proper phase-error function can be obtained. We can distinguish a somewhat noisy
sawtooth phase-error function in the bottom plots of Figs. 10.17 and 10.18. For these
simulations, conservative models were used (fmax � 25GHz). The simulations show
functionality at a data rate of 5 Gb/s or (fmax=5). Therefore, if an advanced InP-based
HBT process were used with fmax = 100GHz, data-rates up to 20 Gb/s could be
accommodated by this circuit.
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Figure 10.17 SPICE Simulation of a DTTL operating at 2 Gb/s.
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Figure 10.18 SPICE Simulation of a DTTL operating at 5 Gb/s.
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10.3 FURTHER RESEARCH

To conclude, we will briefly outline some open problems related to the realization of
an integrated 10 Gb/s fiber-optic receiver.

Photodetector

In this book we have not discussed the photodetector thoroughly. It has been assumed
that either a PIN photodiode or an avalanche photodiode (APD) will be used. Work
needs to be done to optimize the quantum efficiency � of the photodetector and to
optimize the dimensions in order to obtain the highest sensitivity receiver. Aside from
�, it was shown in chapter 7 that one of the key parameters in the overall receiver
sensitivity was the parasitic capacitance of the photodetector. Improving lens systems,
so that a more optical energy can be focused onto a smaller area, can have a significant
impact on system performance.

Preamplifier

A detailed noise analysis for the preamplifier was presented. However, the SNR of
the test statistic was not optimized. This involves taking into account both the noise
performance, and the effect of the amplifier’s pulse response on the data eye. For
example, an amplifier can exhibit peaking in its pulse response. This will typically
increase the noise bandwidth, however it can also increase the signal magnitude at the
sampling instant, such that the SNR of the sample is increased. Further work is needed
to determine guidelines concerning the optimization of noise performance within the
context of a receiver for random NRZ data. This works also needs to take into account
the postamplifier, as discussed below.

Postamplifier

The Postamplifier performs noise filtering and signal conditioning. Optimal perfor-
mance of the receiver must take intoaccount the noise filtering of this stage. Aside from
noise filtering, the postamplifier must have an automatic gain control feedback loop
so as to always output a constant signal level to the clock recovery circuit. This stage
will determine the dynamic range of the overall receiver. Other important functions of
the postamp are to provide dc restoration of the signal and to convert the single-ended
signal to a balanced differential signal for subsequent processing.
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Optimization of Building Blocks

The primary focus of this work was to design first-generation prototype circuits. We
have not focused much attention on optimizing the speed once the architecture is
chosen. After a functional receiver is demonstrated, further work will be needed to
add embellishments to the circuits to improve speed and to reduce the sensitivity to
temperature and power supply variations.

Effective SNR Improvement Using a Sample-and-Hold

It was stated in chapter 5 that using a sample-and-hold circuit before the decision
circuit would improve the effective SNR as compared to using a decision circuit,
which consists of only a regenerative latch with no holding function. However, no
quantitative results were given. To determine the SNR improvement, test circuits will
have to be built to directly compare the two schemes.

Comparison of Competing Clock Recovery Schemes

Several methods for clock recovery in broadband systems were presented in chapter 5.
It would be interesting to compare the performance of various approaches in a real
system. This would require the fabrication and evaluation of several different clock
recovery circuits. It is possible that some parasitics that were overlooked by these
authors may make one circuit better than the DTTL. However, at this point the DTTL
with frequency detection appears to be the best approach for recovering a clock from
high-speed random NRZ data.

Evaluation of Actual Circuits

At the time of this writing, several communication links, operating at gigabit-per-
second rates are being realized as integrated circuits, with many more expected in the
near future. Several questions as to the preferred IC technology and the preferred
architectures for such circuits have yet to be resolved. Eventually a large volume of
these ICs will be designed and deployed for such applications as,

fiber-optics, Optical disks, ATM switches,

magnetic disk-drive electronics,

wireless communication and personal communication,
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high-speed data communication over metallic media such as coaxial cables and
twisted pairs,

others.

Various architectures and circuit building blocks will certainly emerge and become
widespread, whereas others will disappear. However, with such a wide variety of
applications, no one approach will be used in all cases. Designers will have to
understand trade-offs in cost, speed, performance, power dissipation, etc. to best
utilize available resources for a specific application. It is our hope that designers of
future high-speed communication circuits, when faced with these trade-offs, will find
the information in this book useful.
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