This is page 3
Printer: Opaque th

Pattern classification and learning
theory

Gabor Lugosi

1.1 A binary classification problem

Pattern recognition (or classification or discrimination) is about guessing or predicting the
unknown class of an observation. An observation is a collection of numerical measurements,
represented by a d-dimensional vector . The unknown nature of the observation is called
a class. It is denoted by y and takes values in the set {0,1}. (For simplicity, we restrict
our attention to binary classification.) In pattern recognition, one creates a function g(z) :
R? — {0,1} which represents one’s guess of y given z. The mapping g is called a classifier.
A classifier errs on z if g(z) # v.

To model the learning problem, we introduce a probabilistic setting, and let (X,Y) be an
R? x {0,1}-valued random pair.

The random pair (X,Y) may be described in a variety of ways: for example, it is defined
by the pair (u,n), where p is the probability measure for X and 7 is the regression of ¥ on
X. More precisely, for a Borel-measurable set A C R¢,

n(A4) = B{X € 4},
and for any z € RY,
n(z) =P{Y =1|X =z} = E{Y|X = z}.

Thus, n(z) is the conditional probability that Y is 1 given X = z. The distribution of (X,Y)
is determined by (u,n). The function 7 is called the a posteriori probability.

Any function g : R? — {0,1} defines a classifier. An error occurs if g(X) # Y, and the
probability of error for a classifier g is

L(g) = P{g(X) # Y} .
The Bayes classifier given by

g*(x):{ 1 if n(z) > 1/2

0 otherwise.
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minimizes the probability of error:

Theorem 1.1. For any classifier g : R* — {0, 1},

P{g"(X) # YV} < P{g(X) #Y}.

PRrROOF. Given X = z, the conditional probability of error of any decision g may be expressed
as
B{g(X) # Y|X = a}
1 - P{Y = g(X)|X =2}
= 1-P{Y=19X)=1X=2}+P{Y =0,9(X) =0|X =z})
= 1- (H{g(x)zl}IP’{Y =1|X =2} + I{g@)=0)P{Y = 0| X = z})

1= (Lg=1ym(@) + Lig=oy(1 = n(2)) ,
where I 4 denotes the indicator of the set A. Thus, for every z € RY,
P{g(X) #Y|X =z} - P{g"(X) #Y[X =z}

= (@) ([gr@)=1} ~ Lg@=13) + (1 = n(2)) (Tg(x)=0} = L{g(a)=03)

= (20(x) = 1) (Ig(@)=1} — Lg(0)=13)

> 0
by the definition of g*. The statement now follows by integrating both sides with respect to
u(dz). O

L* is called the Bayes probability of error, Bayes error, or Bayes risk. The proof above

reveals that
L(g) =1 = E{Iy00)=130(X) + Tgox0)—03(1 = n(X)) },

and in particular,

L* =1 E{lyx)>1/20(X) + Tgpx)<i/23(1 = 0(X))} = Emin (n(X), 1 - (X))

Note that ¢g* depends upon the distribution of (X,Y"). If this distribution is known, g*
may be computed. Most often, the distribution of (X,Y") is unknown, so that g* is unknown
too.

In our model, we have access to a data base of pairs (X;,Y;), 1 < i < n, observed in
the past. We assume that (X1,Y7),...,(X,,Y,), the data, is a sequence of independent
identically distributed (i.i.d.) random pairs with the same distribution as that of (X,Y").
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A classifier is constructed on the basis of Xi,Y7,...,X,,Y, and is denoted by g,: Y
is guessed by gn(X; X1,Y1,...,X,,Y,). The process of constructing g, is called learning,
supervised learning, or learning with a teacher. The performance of g, is measured by the

conditional probability of error
L,= L(gn) = P{gn(Xale)/i: v 7Xn;Yn) 7& Y|X17)/17 e 7Xn;Yn)} .

This is a random variable because it depends upon the data. So, L, averages over the
distribution of (X,Y’), but the data is held fixed. Even though averaging over the data as
well is unnatural, since in a given application, one has to live with the data at hand, the
number EL,, = P{g,(X) # Y} which indicates the quality on an average data sequence,
provides useful information, especially if the random variable L,, is concentrated around its

mean with high probability.

1.2 Empirical risk minimization

Assume that a class C of classifiers g : R? — {0, 1} is given and our task is to find one with a
small probability of error. In the lack of the knowledge of the underlying distribution, one has
to resort to using the data to estimate the probabilities of error for the classifiers in C. It is
tempting to pick a classifier from C that minimizes an estimate of the probability of error over
the class. The most natural choice to estimate the probability of error L(g) = P{g(X) # Y}

is the error count

~ 1<
Ln(g) = = Tig(x,#v;)-
i=1

Li(g) is called the empirical error of the classifier g.

A good method should pick a classifier with a probability of error that is close to the
minimal probability of error in the class. Intuitively, if we can estimate the error probability
for the classifiers in C wuniformly well, then the classification function that minimizes the
estimated probability of error is likely to have a probability of error that is close to the best
in the class.

Denote by g;; the classifier that minimizes the estimated probability of error over the class:

Lu(g;) < Lu(g) forallgec.
Then for the probability of error
L(g,) = P{g,(X) #Y[ D}

of the selected rule we have:
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Lemma 1.1.

L(g;) — inf L(g) < 2sup|Ln(g) — L(g)].
geC gec

1La(g%) — L(g3)] < sup|Ln(g) — L(g)|-
g€ecC

PROOF.
L(g;) —inf L(g) = L(g;) — Lu(g}) + Ln(g}) — inf L(g)
gec g€eC
< L(g;) — Lu(g;) +sup|La(g) — L(9)|
gec
< 2sup|La(g) — L(g)I-
gec

The second inequality is trivially true. |

We see that upper bounds for sup, ¢ |En(g) — L(g)| provide us with upper bounds for two
things simultaneously:

(1) An upper bound for the suboptimality of ¢} within C, that is, a bound for L(g}) —
infyec L(g).

(2) An upper bound for the error |L,(g}) — L(g*)| committed when L,(g%) is used to
estimate the probability of error L(g}) of the selected rule.

It is particularly useful to know that even though in(g,’;) is usually optimistically biased,
it is within given bounds of the unknown probability of error with g}, and that no other
test sample is needed to estimate this probability of error. Whenever our bounds indicate
that we are close to the optimum in C, we must at the same time have a good estimate of
the probability of error, and vice versa.

The random variable nL,(g) is binomially distributed with parameters n and L(g). Thus,
to obtain bounds for the success of empirical error minimization, we need to study uniform
deviations of binomial random variables from their means. In the next two sections we

summarize the basics of the underlying theory.

1.3 Concentration inequalities

1.3.1  Hoeffding’s inequality

The simplest inequality to bound the difference between a random variable and its expected
value is Markov’s inequality: for any nonnegative random variable X, and ¢ > 0,

EX
P{X >t} < —.
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From this, we deduce Chebyshev’s inequality: if X is an arbitrary random variable and ¢ > 0,

then
X -EX = E{|X - EX|? Var{X
P{] | >t} =P{|X —EX|> >} < { [’} _ Var{ }.

t2 12
As an example, we derive inequalities for P{S, — ES, > t} with S, = >, X;, where
Xq,..., X, are independent real-valued random variables. Chebyshev’s inequality and inde-

pendence immediately gives us

P{|S, — ES,| > 1} <

Var{S,} >, Var{X;}

2 t2 '
The meaning of this is perhaps better seen if we assume that the X;’s are i.i.d. Bernoulli(p)
random variables (i.e., P{X; = 1} = 1 — P{X,; = 0} = p), and normalize:

1 1-—
P{‘_in_p ZG}SM
n
i=1

ne?
To illustrate the weakness of this bound, let ®(y) = [¥__ e=t"/2/\/27 dt be the normal
distribution function. The central limit theorem states that

n 1 <& 1 e v/2
Pl - (2 X,—p| >y 11— < — ,
e R

from which we would expect something like

1 ¢ .
Pl = X, —p> ~ e~ e /(2p(1-p))

Clearly, Chebyshev’s inequality is off mark. An improvement may be obtained by Chernoff’s

bounding method. By Markov’s inequality, if s is an arbitrary positive number, then for any
random variable X, and any ¢ > 0,

sX

Ee
P{X >t} = P{e"¥ >} < s

In Chernoff’s method, we find an s > 0 that minimizes the upper bound or makes the upper
bound small. In the case of a sum of independent random variables,

eStE{exp <s Z(X’ - EX,)) }

= e ﬁ E { es(Xi_]EXi)} (by independence).
i=1

P{S, — ES, > t}

IA

Now the problem of finding tight bounds comes down to finding a good upper bound for

the moment generating function of the random variables X; — EX;. There are many ways
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of doing this. For bounded random variables perhaps the most elegant version is due to
Hoeffding (1963):

Lemma 1.2. Let X be a random variable with EX =0, a < X <b. Then for s > 0,
E{€SX} < 652(177&)2/8‘

PRrOOF. Note that by convexity of the exponential function

T —a b—=x
esb

e’” < + e’ fora<z<b.
b—a b—a
Exploiting EX = 0, and introducing the notation p = —a/(b — a) we get
b a
]EesX < sa __ sb

= b-a° b—a®

— (1 —p +pes(b7a)) efps(bfa)

def e

where u = s(b — a), and ¢(u) = —pu + log(1 — p + pe*). But by straightforward calculation
it is easy to see that the derivative of ¢ is

, _ p

therefore ¢(0) = ¢'(0) = 0. Moreover,
" _ p(l - p)e_ 1

u) = 5 < —.

(p+ (1 —plev)” ~ 4

Thus, by Taylor series expansion with remainder, for some 6 € [0, ],

2 2(h—a)?

u-
8 8

<

2
]

B(u) = H(0) +ug!(0) + - (6) <

Now we may directly plug this lemma into the bound obtained by Chernoff’s method:

P{S, — ES,, > €}

< et H E{eS(Xi*EXi)}
i=1
n
< et H e* (bimai)®/8 (by Lemma 1.2)
i=1

— eS¢ Xisi(bi—ai)?/8

= e 2%/ X (bimai)? (by choosing s = 4e/ Y7 | (b; — a;)?).
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The result we have just derived is generally known as Hoeffding’s inequality. For binomial
random variables it was proved by Chernoff (1952) and Okamoto (1952). Summarizing, we

have:

Theorem 1.2. (HOEFFDING’S INEQUALITY). Let X1,...,X,, be independent bounded ran-
dom variables such that X; falls in the interval [a;, b;] with probability one. Denote their sum
by S, =Y., X;. Then for any € > 0 we have

P{S, — ES, > ¢} < e 2/ Xinimai)®

and
P{S, — ES, < —e} < e 2/ Zimalbizan)®,

If we specialize this to the binomial distribution, that is, when the X;’s are i.i.d. Bernoulli(p),
we get
P{S,/n—p>¢€} < 6_2"62,

which is just the kind of inequality we hoped for.

We may combine this inequality with that of Lemma 1.1 to bound the performance of
empirical risk minimization in the special case when the class C contains finitely many
classifiers:

Theorem 1.3. Assume that the cardinality of C is bounded by N. Then we have for all
€>0,

P {sup IZ.(g9) — L(g)| > e} < 2Ne 2n€
geC

An important feature of the result above is that it is completely distribution free. The
actual distribution of the data does not play a role at all in the upper bound.

To have an idea about the size of the error, one may be interested in the expected maximal
deviation

Esup |Ln(g) — L(g)|-
gec

The inequality above may be used to derive such an upper bound by observing that for any

nonnegative random variable X,
o
EX :/ P{X > t}dt.
0
Sharper bounds result by combining Lemma 1.2 with the following simple result:

Lemma 1.3. Let o > 0,n > 2, and let Y1, ...,Y, be real-valued random variables such that
foralls>0and1<i<n, E{e?*i} < €5’ 12 Then

E{m<ain} <oVv2lnn .
i<n
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If, in addition, E{es(_yi)} < e’ /2 for every s >0 and 1 < i <n, then for any n > 1,
o { max 11t} < o2z
PROOF. By Jensen’s inequality, for all s > 0,
sE{max1<"Y}<E{esmaxl<"Y} ]E{ } ZE{esY}<nesa/2

Thus,

and taking s = /2Inn/o? yields the first inequality. Finally, note that max;<, |Y;| =

max (Y1, —Y1,...,Y,, —Y,) and apply the first inequality to prove the second. O
Now we obtain
~ In(2N
Bsup [, (g) - L(g)] </ o).
gec 2n

1.3.2  Other inequalities for sums

Here we summarize some other useful inequalities for the deviations of sums of independent

random variables from their means.

Theorem 1.4. BENNETT’S INEQUALITY. Let X1,..., X,, be independent real-valued ran-
dom variables with zero mean, and assume that | X;| < ¢ with probability one. Let 0> =
L5 Var{X;}. Then that for any t > 0,

no? ct
P < - -
{Sp >t} < exp( = h<n02>>’
where the function h is defined by h(u) = (1 + ) log(1 + u) —u for u > 0.

SKETCH OF PROOF. We use Chernoff’s method as in the proof of Hoeffding’s inequality.
Write

E{ 3X}—1+3E{X}+§: TE{XT}

=1+ 52 Var{X,}F, < 632 Var{X;}F;

with F; = > 02, s"2E{X[}/ (r! Var{X;}). We may use the boundedness of the X;’s to
show that E{X7} < ¢"~2? Var{X,}, which implies F; < (e*® — 1 — sc) /(sc)?. Choose the s
which minimizes the obtained upper bound for the tail probability. a
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Theorem 1.5. BERNSTEIN’S INEQUALITY. Under the conditions of the previous exercise,
for any t > 0,

t2
F{Sn >t} < exp (‘W) :

PROOF. The result follows from Bennett’s inequality and the inequality h(u) > u?/(2+2u/3),
u > 0. O

Theorem 1.6. Let X1,...,X,, be independent random variables, taking their values from
[0,1]. If m = ES,,, then for any m <t < n,

P{S, >t} < (%)t ("_m>n_t.

n—t

Also,
P{S, > 1} < (%)t e,

and for all € > 0,
P{S, > m(1+€)} < e ™A,

where h is the function defined in the previous theorem. Finally,

P{S, <m(l—e)} < e ™ /2,

1.3.3  The bounded difference inequality

In this section we give some powerful extensions of concentration inequalities for sums to to
general functions of independent random variables.

Let A be some set, and let g : A™ — R be some measurable function of n variables. We
derive inequalities for the difference between g(Xi,...,X,) and its expected value when
Xi,..., X, are arbitrary independent random variables taking values in A. Sometimes we
will write g instead of g(Xj,...,X,) whenever it does not cause any confusion.

We recall the elementary fact that if X and Y are arbitrary bounded random variables,
then E{XY } = E{E{XY|Y}} = E{YE{X|Y }}.

Te first result of this section is an improvement of an inequality of Efron and Stein (1981)
proved by Steele (1986). We have learnt the short proof given here from Stéphane Boucheron.

Theorem 1.7. EFRON-STEIN INEQUALITY. If X{,...,X) form an independent copy of
Xi,..., Xy, then

Var(g(X1,...,Xn)) < %ZE{(g(Xl,...,Xn) — (X1, XL, X0))?)
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PROOF. Introduce the notation V = g — Eg, and define

V;Z:E{g|X17"'1Xi}_E{g|X17"'7Xi71}7 i

n 2
()
=1
n
EY VZ+2EY ViV
i=1

i>j
n

— 2

= ]EE V2,
i=1

1,...,n.

Clearly, V.= 3", Vi. Then

Var(g)

since, for any i > j,
EV;V; = BE{V;V;|Xq1,..., X;} = E{V;E{V;| X1,...,X;}} =0.
To bound EV;?, note that, by Jensen’s inequality,
V? (E{g|X1,...,X:} —E{g|X1,...,X; 1})°

2
Xl,...,Xi)

(IE [E{g|X1,...,Xn} CEB{g| X1, Xty Xigts e X}
E

IN

[(E{g|X1,...,Xn} CE{gIX1, . Xty X1y X)) ‘Xl,...,Xi] ,

and therefore

IN

EV;? E[(g—E{g|X1,...,Xi,l,XZ-H,...,Xn})Q]
1 , 5
= EEI:(g(Xla7X’n)_g(XlaaXf“7X’rL}):| 3
where at the last step we used (conditionally) the elementary fact that if X and YV are
independent and identically distributed random variables, then Var(X) = (1/2)E{(X —
Y)?}. O

Assume that a function g : A™ — R satisfies the bounded difference assumption

_ sup lg(z1, .. z0) — gz, o o1, T i1, xn)| <, 1<i<n .
1s--9&m,
zi€A
In other words, we assume that if we change the i-th variable of g while keeping all the others
fixed, then the value of the function does not change by more than ¢;. Then the Efron-Stein

inequality implies that
n

1 2
Var(g) < B Zci :

i=1
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For such functions is is possible to prove the following exponential tail inequality, a powerful
extension of Hoeffding’s inequality.

Theorem 1.8. THE BOUNDED DIFFERENCE INEQUALITY. Under the bounded difference

assumption above, for allt > 0,
]P{g(Xla"';Xn)_Eg(Xla"'a )>t}<e*2t/21 L )

and
P{Eg(X1,..., Xn) = g(X1,..., Xp) > 1} < e 202/ Tt e? |

McDiarmid (1989) proved this inequality using martingale techniques, which we reproduce
here. The proof of Theorem 1.8 uses the following straightforward extension of Lemma 1.2:

Lemma 1.4. Let V and Z be random variables such that E{V'|Z} = 0 with probability one,
and for some function h and constant ¢ > 0

hZ) <V < WZ)+e.

Then for all s > 0
E{63V|Z} < 63202/8.

PrOOF OF THEOREM 1.8. Just like in the proof of Theorem 1.7, introduce the notation
V =g — Eg, and define

Vi =E{g|X1,.... X;} —E{g|X1,..., Xiz1}, i=1,...,n.
Then V = "7, Vi. Also introduce the random variables
Hi(X1,...,X;) =E{g(X1,..., Xn)| X1,..., Xi}.
Then, denoting the distribution of X; by F; fori=1,...,n,
Vi = Hi(Xq,.. /H (X1,...,Xi1,2z)F;(dz).
Define the random variables
W; = sup (HZ-(Xl,.. Xio1,u /H (X1,...,Xi1,z )F,(dx)),

and

lelnf <HZ(X1, z 1,0 /H Xl,... i—15 )Fl(d$)> .
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Clearly, Z; < V; < W; with probability one, and also

Wi — Z; = supsup (Hy(X1,..., Xij—1,u) = Hi(X1,..., Xi1,0)) < ¢,
u v

by the bounded difference assumption. Therefore, we may apply the lemma above to obtain,
foralli=1,...,n,

E{e™|Xy,..., X; 1} <e¥ /8,

Finally, by Chernoff’s bound, for any s > 0,

P{g — Eg >t}
E{e i Vi) E{esZ?;le{esvn|X1,...,Xn_l}}
— est = est
szz‘:w}
< eSQCi/SE{e !

— est

< emotes Xinaci/8 (by repeating the same argument n times).

Choosing s = 4t / S, 7 proves the first inequality. The proof of the second inequality is

i=1 "1

similar. O

An important application of the bounded difference inequality shows that if C is any class
of classifiers of form g : R¢ — {0, 1}, then

"

Indeed, if we view sup ¢ |En(g) — L(g)| as a function of the n independent random pairs

~ ~ _ 62
sup £4(9) ~ Lio) ~ Esup [Enle) ~ L) > e} <2672
gec gec

(X, Y),i =1,...,n, then we immediately see that the bounded difference assumption is
satisfied with ¢; = 1/n, and Theorem 1.8 immediately implies the statement.

The interesting fact is that regardless of the size of its expected value, the random variable
SUp,ec |in(g) — L(g)| is sharply concentrated around its mean with very large probability.
In the next section we study the expected value.

1.4  Vapnik-Chervonenkis theory

1.4.1 The Vapnik-Chervonenkis inequality

Recall from Section 1.3.1 that for any finite class C of classifiers, and for all € > 0,

P {sup |En(g) —L(g)| > e} < 2Ne*2"62,
gec
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and

~ In(2N
Bsup |La(9) — L(o)| < |/ ).
gec n

These simple bounds may be useless if the cardinality IV of the class is very large, or infinite.
The purpose of this section is to introduce a theory to handle such cases.
Let Xi,...,X, bei.i.d. random variables taking values in R? with common distribution

w(A) =P{X, € A} (ACRY.

Define the empirical distribution
1 n
i=1

Consider a class A of subsets of R%. Our main concern here is the behavior of the random
variable sup g¢ 4 |pn(A) — p(A)|. We saw in the previous chapter that a simple consequence
of the bounded difference inequality is that

|

for any n and ¢ > 0. This shows that for any class A, the maximal deviation is sharply

sup [in(4) — ()] — Esup [n(4) - u(A)I‘ >t} <o
AcA A€eA

concentrated around its mean. In the rest of this chapter we derive inequalities for the
expected value, in terms of certain combinatorial quantities related to A. The first such
quantity is the vC shatter coefficient, defined by

Sa(n) = max  |[{{z1,...,z,}NA; A€ A}|.
Z1,...,2n ERA
Thus, S 4(n) is the maximal number of different subsets of a set of n points which can be
obtained by intersecting it with elements of A. The main theorem is the following version
of a classical result of Vapnik and Chervonenkis:

Theorem 1.9. VAPNIK-CHERVONENKIS INEQUALITY.

E{ sup [jin(4) — p(A)|

} <9 log 2S 4(n)
AcA

n

Proor. Introduce Xji,..., X, an independent copy of Xi,...,X,. Also, define n ii.d.

3 <“Yns

sign variables o1,...,0, such that P{o; = —1} = P{oy = 1} = 1/2, independent of
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X1, X1,...,Xp, X}, Then, denoting u,(4) = (1/n) >, ]I[X;eA]’ we may write
2 sup 1n(4) - )]
AcA

= E{ sup |E{pn(A) — pl, (A)| X1, ... ,Xn}|}

AcA
(by Jensen’s inequality)
< IE{ sup [pn (A u;(A)I}
(since sup E(-) < Esup(-))

zn:ai (H[XieA] - ]I[XJE/‘])
=1

1
= —E{sup }
n AeA |

(because X1, X7{,...,X,, X, areii.d.)

1 n
= ZE{E{ sup ]) ‘Xl,X{,...,Xn,X;L .
n AeA i

> o (H[XieA] —Iixrea

Now because of the independence of the o;’s of the rest of the variables, we may fix the
values of X1 = 21, X] =2,...,X,, = z,, X], = z},, and investigate

zn:(fi (H[ziEA] _H[wQGA]) } .

EJ sup
AeA |

Denote by A C A a collection of sets such that any two sets in A have different intersections

with the set {x1,2!,...,2,, 2}, and every possible intersection is represented once. Thus,
Al < S4(2n), and

Observing that each o; (]I[meA] - ]I[xfeA]) has zero mean and takes values in [—1,1], we

obtain from Lemma 1.2 that for any s > 0,

Ee* =1 9 (Triea) Tprea)) H]Ee”z prea Tptea)) < gns?/2

Since the distribution of o; (]I[zieA] — ]I[z,_eA]) is symmetric, Lemma 1.3 immediately implies
that

n

E i | Ly -1, < v/2nlog2S 4(2n) .
{Ijlg;g ;Uz( [z:€A] [mieA])‘} = nlog 28 4(2n)
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Conclude by observing that S 4(2n) < S_(n)2. O

Remark. The original form of the Vapnik-Chervonenkis inequality is
P { Sup [fin(4) — pu(A)] > t} < 45 4(2n)e "5,
AcA

A combination of Theorem 1.9 with the concentration inequality for the supremum quickly
yields an inequality of a similar form.

The main virtue of the Vapnik-Chervonenkis inequality is that it converts the problem
of uniform deviations of empirical averages into a combinatorial problem. Investigating the
behavior of S 4(n) is the key to the understanding of the behavior of the maximal deviations.
Classes for which S 4(n) grows at a subexponential rate with n are managable in the sense
that E{sup 4c 4 |tn(A) — p(A)|} converges to zero. More importantly, explicit upper bounds
for S 4(n) provide nonasymptotic distribution-free bounds for the expected maximal devia-
tion (and also for the tail probabilities). Section 1.4.3 is devoted to some key combinatorial
results related to shatter coefficients.

We close this section by a refinement of Theorem 1.9 due to Massart (2000). The bound
below substantially improves the bound of Theorem 1.9 whenever sup 4¢ 4 #t(A)(1 — p(A4))

is very small.

Theorem 1.10. Let ¥ =sup ¢4 /1(A)(1 — p(A)). Then

16log 2S 4(2n 3252 1og 2S 4(2n
E{sup |,un(A)—u(A)|} < L‘Mﬂ/ g2S 4(2n)
AcA n n

PROOF. From the proof of Theorem 1.9, we have

£{ sup i (4) - )]

1
< —E{E{ sup
n AeA

By Hoeffding’s inequality, for each set A,

n

Y o (H[XieA] —]I[XgeA])‘ ‘Xl,X{,...,Xn,X,g}} .

i=1

2
]E{eszi“ 7 (Upxiea1Tpvren) ‘Xl,X{,...,Xn,X;} <& T (men Tpxien) /2

so by Lemma 1.3 we obtain

n

IE{ suE)4 |un(A) — /J,(A)|} < lIE sup Z (H[XiEA] - ]I[X;eA])2 /21og 2S 4(2n) .

Ae N AeA \ i
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To bound the right-hand side, note that

n

2
E sup Z (H[X,-GA] - ]I[X;eA])

AeA \ o

n 2
E sup (11 - i )
AGA; [(XieA] [xieA]

IN

_—

< \ E:ggi ((Tpcie = () + ((4) - H[XzeA]))2

< \ 48 sup Zzn; (Ipx,cay — p(4))

- 24 E sup En; [(Tpciear — #(A)) (1= p(A)) + p(A) (1(A) = Tix,e ) + (A1 = p(A))]
< oVny? 4+ 2\l E sup zi; (TIx,ea — u(A))‘

2vVn¥? + 2\/nIE sup |pun(A4) — u(4)| .

AcA

Summarizing, if we denote Esup 4¢ 4 [1tn(A) — p(A)| = M, we have obtained

v [lEZAC
- 2n

This is a quadratic inequality for v/ M, whose solution is just the statement of the theorem.
O

1.4.2  Inequalities for relative deviations

In this section we summarize some important improvements of the basic Vapnik-Chervonenkis
inequality. The basic result is the following pair of inequalities, due to Vapnik and Chervo-
nenkis (1974). The proof sketched here is due to Anthony and Shawe-Taylor (1993).

Theorem 1.11. For every € > 0,

su /"’(A) — /"’n(A) € n e*’l’l62/4
P {AEB‘ 7M(A) > } < 4SA(2 )
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and

S /“Ln(A) — /“L(A) € n e*’l’l62/4
P {AEE‘ 7/1%(14) > } < 4S 4(2n) .

SKETCH OF PROOF. The main steps of the proof are as follows:

1. Symmetrization.

P{sup M >e} §2P{sup Hn(A) = pin(4) >e}.
/Ay et N/1/2) (i (A) + n(A))

2. Randomization, conditioning.

“ i (A) — pn (A) .
g {Ae‘i VARG A) + (@) }

_ E{P{sup (1/n) Yizy 0illxien —Txiea) Xl,X{,...,Xn,X;L}}.
aca /(1/2)(u,(A) + pn(A))

3. Tail bound. Use the union bound and Hoeffding’s inequality to bound the conditional
probability inside. O

Using the bounds above, we may derive other interesting inequalities. The first inequalities
are due to Pollard (1995) and Haussler (1992).

COROLLARY 1.1. For allt € (0,1) and s > 0,

“ (A) = pn(A) n)e— st /4
¥ {Ae‘i ) T () + 572 t} < 45.4(2n)

and

su /"’n(A) - /“L(A) n efnst2/4
¥ {Ae‘i 2) + () + 52 t} < 454(2n) |

SKETCH OF PROOF. Take a > 0. Considering the cases u(A4) < (a + 1)2¢2a=2 and u(A4) >
(a + 1)2€2a~? separately, it is easy to show that pu(A) — pn(A) < ey/u(A) implies that
w(A) < (1+ a@)pn(A) + €2(1 + a)/a. Then choosing a = 2t/(1 —t) and € = st? /(1 —t?) we
easily prove that the first inequality in Theorem 1.11 implies the first inequality. The second
inequality follows similarly from the second inequality of Theorem 1.11. O

Finally, we point out another corollary of Theorem 1.11 which has interesting applications

in statistical learning theory:
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COROLLARY 1.2.
P{HA e A: ,u(A) > € and /j,n(A) < (1 — t)N(A)} < 48,4(277,)67"“2/4 ]
In particular, setting t = 1,

P{3A € A: pu(A) > e and u,(A) =0} < 4SA(2n)€—ne/4 _

1.4.3  Shatter coefficients

Consider a class A of subsets of R?, and let z1,...,z, € R? be arbitrary points. Recall
from the previous section that properties of the finite set A(z7]) C {0,1}" defined by

A(z?) = {b= (b1,...,b,) € {0,1}":
bi =l,eq, 1 =1,...,n for someAEA}

play an essential role in bounding uniform deviations of the empirical measure. In particular,

the maximal cardinality of A(x7)

Sa(n) = max _ [A(zy)|

Z1,...,0n ER?

(i.e., the shatter coefficient) provides simple bounds via the Vapnik-Chervonenkis inequality.
We begin with some elementary properties of the shatter coefficient.

Theorem 1.12. Let A and B be classes of subsets of R, and let n,m > 1 be integers. Then
(1) Sa(n+m) <Sa(n)Sa(m);
(2) If C = AU B, then S¢(n) < Sa(n) + Sp(n);
(3) If C ={C = A°: A € A}, then Sc(n) =S4(n);
(4) IfC={C=ANB:Ac Aand B € B}, then S¢(n) < S 4(n)Sg(n);
(5) IfC={C=AUB:Ac Aand B € B}, then S¢(n) < S 4(n)Sg(n);
(6) fC={C=AxB:AecAand B € B}, then Sc(n) < S(n)Sp(n).
Proor. Parts (1), (2), (3), and (6) are immediate from the definition. To show (4), fix
Ti,..., Ty, let N = |A(z])] < Sa(n), and denote by Ay, As,..., Ay the different sets of

the form {z1,...,2p} N A for some A € A. For all 1 < i < N, sets in B pick at most
Su(|Ai]) < Sg(n) different subsets of A4;. Thus,

N

A <Y Ss(lAil) < Sa(n)Ss(n).

i=1
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(5) follows from (4) and (3). O

The vc dimension V of a class A of sets is defined as the largest integer n such that
Sa(n) =2™.

If S 4(n) = 2™ for all n, then we say that V' = co. Clearly, if S 4(n) < 2" for some n, then for
all m > n, S 4(m) < 2™, and therefore the vc dimension is always well-defined. If | A(z?)| =
2" for some points x1, ..., Z,, then we say that A shatters the set 2 = {z1,...,2,}. As the
next basic result shows, the vC dimension provides a useful bound for the shatter coefficient

of a class.

Theorem 1.13. SAUER’S LEMMA. Let A be a class of sets with vC dimension V < oc. Then

for all n,

S4(n) < i (”)

PROOF. Fix 1, ..., 2y, such that |[A(z})| = Sa(n). Denote By = A(z}) € {0,1}™. We say
that a set B C {0,1}" shatters a set S = {s1,...,8m} C {1,2,...,n} if the restriction of B

to the components s1, ..., S, is the full m-dimensional binary hypercube, that is,
{(bsys---3bs,,) :b=1(by,...,by) € B} ={0,1}™.

It suffices to show that the cardinality of any set By C {0,1}" that cannot shatter any set
of size m > V, is at most ZZV:O (7). This is done by transforming By into a set B, with
|Br| = |Bo| such that any set shattered by B,, is also shattered by By. Moreover, it will be
easy to see that |B,| < ZZV:O (M.

For every vector b = (by,...,b,) € By, if by = 1, then flip the first component of b to zero
unless (0,be,...,b,) € Bg. If by = 0, then keep the vector unchanged. The set of vectors
By obtained this way obviously has the same cardinality as that of By. Moreover, if B
shatters a set S = {s1,82,...,8m} C {1,...,n}, then By also shatters S. This is trivial if
1¢ S.If1 € S, then we may assume without loss of generality that s; = 1. The fact that
By shatters S implies that for any v € {0,1}™~! there exists a b € B; such that b; = 1
and (bs,,...,bs, ) =v. By the construction of B; this is only possible if for any u € {0,1}™
there exists a b' € Bg such that (b} ,...,b )= u. This means that By also shatters S.

Now starting from Bj, execute the same transformation, but now by flipping the second
component of each vector, if necessary. Again, the cardinality of the obtained set By remains
unchanged, and any set shattered by Bs is also shattered by B; (and therefore also by By).
Repeat the transformation for all components, arriving at the set B,,. Clearly, B,, cannot

shatter sets of cardinality larger than V', since otherwise By would shatter sets of the same
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size. On the other hand, it is easy to see that B,, is such that for every b € B,, all vectors
of form ¢ = (eq,...,¢,) with ¢; € {b;,0} for 1 <1 < n, are also in B,,. Then B, is a subset
of a set of form

T:{be {0,1}"1)2 =0if v; :0},

where v = (v1,...,v,) is a fixed vector containing at most V' 1’s. This implies that
Y /n
s = 5ol =181 < 71= 3 (7).
i=0
concluding the proof. a

The following corollary makes the meaning of Sauer’s lemma more transparent:

COROLLARY 1.3. Let A be a class of sets with vC dimension V < oo. Then for all n,
Sa(n) < (n+1)",

and for alln >V,

PROOF. By the binomial theorem,
v v i v v
A n'V! n n
1)V = é =N >N > )
(n+1) ;” <z> Zu(v_n!—Za—Z(z-)

On the other hand, if V/n < 1, then

() S0 =20 (=26 (=01 =

where again we used the binomial theorem. a

Recalling the Vapnik-Chervonenkis inequality, we see that if A is any class of sets with
vC dimension V', then

Vlog(n + 1) +log2
E{sup Iun(A)—u(A)I}S2\/ sln+ D) +los?
AcA n

that is, whenever A has a finite vC dimension, the expected largest deviation over A con-

verges to zero at a rate O(y/logn/n).

Next we calculate the vC dimension of some simple classes.

Lemma 1.5. If A is the class of all rectangles in R?, then V = 2d.
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PROOF. To see that there are 2d points that can be shattered by A, just consider the 2d
vectors with d — 1 zero components, and one non-zero component which is either 1 or —1.
On the other hand, for any given set of 2d + 1 points we can choose a subset of at most 2d
points with the property that it contains a point with largest first coordinate, a point with
smallest first coordinate, a point with largest second coordinate, and so forth. Clearly, there
is no set in A which contains these points, but not the rest. O

Lemma 1.6. Let G be an m-dimensional vector space of real-valued functions defined on
R, The class of sets
A={{z:g(x) 20}:9€ G}

has vC dimension V < m.

PROOF. It suffices to show that no set of size m + 1 can be shattered by sets of the form
{z : g(x) > 0}. Fix m + 1 arbitrary points xi,...,Z,+1, and define the linear mapping
L:G— R™! as

L(g) = (9(z1),- .-, 9(Tmt1)) -

Then the image of G, L(G), is a linear subspace of R™*! of dimension not exceeding m. This
implies the existence of a nonzero vector v = (y1,...,Vm+1) € R™™! orthogonal to L(G),
that is, for every g € G,

1g(@) + .o+ Ymr19(@myr) =0 .

We may assume that at least one of the v;’s is negative. Rearranging this equality so that
all terms with nonnegative ~y; stay on the left-hand side, we get

> viglw) = Y —vigles) -
iy >0 i7: <0
Now suppose that there exists a g € G such that the set {z : g(z) > 0} picks exactly the z;’s
on the left-hand side. Then all terms on the left-hand side are nonnegative, while the terms
on the right-hand side must be negative, which is a contradiction, so z1,...,Zy,4+1 cannot
be shattered, which implies the statement. O

Generalizing a result of Schlaffli (1950), Cover (1965) showed that if G is defined as the
linear space of functions spanned by functions tq,...,%, : R? — R, and the vectors
U(z;) = (V1(xs),. .., Ym(x;)), i = 1,2,...,n are linearly independent, then for the class of
sets A = {{z : g(z) > 0} : g € G} we have

aeni=2% ("),
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which often gives a slightly sharper estimate than Sauer’s lemma. The proof is left as an
exercise. Now we may immediately deduce the following;:

COROLLARY 1.4. (1) If A is the class of all linear halfspaces, that is, subsets of R¢ of the
form {z :aTx > b}, where a € R%,b € R take all possible values, then V < d + 1.

(2) If A is the class of all closed balls in RY, that is, sets of the form

d

{x: (m(l),...,x(d)):zm(i) —a;|? Sb}, ai,...,aq,b €ER

i=1

then V < d+ 2.

(3) If A is the class of all ellipsoids in R?, that is, sets of form {z : xTX "1z < 1}, where
Y is a positive definite symmetric matriz, then V < d(d+1)/2+ 1.

Note that the above-mentioned result implies that the vC dimension of the class of all
linear halfspaces actually equals d + 1. Dudley (1979) proved that in the case of the class
of all closed balls the above inequality is not tight, and the vc dimension equals d + 1 (see

exercise 5).

1.4.4  Applications to empirical risk minimization

In this section we apply the main results of the previous sections to obtain upper bounds
for the performance of empirical risk minimization.

Recall the scenario set up in Chapter 2: C is a class of classifiers containing decision
functions of the form g : R? — {0,1}. The data (Xi,Y1),...,(X,,Y,) may be used to
calculate the empirical error En(g) for any g € C. g}, denotes a classifier minimizing En(g)
over the class, that is,

Lo(9*) < Ln(g) forallgeC.

Denote the probability of error of the optimal classifier in the class by L¢, that is,

L¢ = inf L(g).
c sec (9)
(Here we implicitely assume that the infimum is achieved. This assumption is motivated by
convenience in the notation, it is not essential.)
The basic Lemma 1.1 shows that

~

L(g;) — Le < 2sup |Ly(g) — L(g)|.
geC
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Thus, the quantity of interest is the maximal deviation between empirical probabilities of
error and their expectation over the class. Such quantities are estimated by the Vapnik-
Chervonenkis inequality. Indeed, the random variable sup ¢ ‘Ln(g) — L(g)| is of the form
of sup g 4 |tn(A) — p(A)|, where the role of the class of sets A is now played by the class

of error sets
{(z,9) e R*x {0,1}: g(z) £y}; g€C.

Denote the class of these error sets by A. Thus, the Vapnik-Chervonenkis inequality imme-
diately bounds the expected maximal deviation in terms of the xshatter coefficients (or vC
dimension) of the class of error sets.

Instead of error sets, it is more convenient to work with classes of sets of the form

{reR:g(x)=1}; geC.

We denote the class of sets above by .A. The next simple fact shows that the classes .4 and

A are equivalent from a combinatorial point of view:

Lemma 1.7. For every n we have S 3(n) = Sa(n), and therefore the corresponding vC

dimensions are also equal: Vz = V4.

PROOF. Let N be a positive integer. We show that for any n pairs from R? x {0, 1}, if
N sets from A pick N different subsets of the n pairs, then there are N corresponding
sets in A that pick N different subsets of n points in R?, and vice versa. Fix n pairs
(21,0),...,(®m,0), (Tm+1,1),...,(zn,1). Note that since ordering does not matter, we may
arrange any n pairs in this manner. Assume that for a certain set A € A, the correspond-
ing set A = A x {0}|JA° x {1} € A picks out the pairs (z1,0),..., (zx,0), (Tm+1,1),. .-,
(T, 1), that is, the set of these pairs is the intersection of A and the n pairs. Again, we can
assume without loss of generality that the pairs are ordered in this way. This means that A
picks from the set {z1,...,z,} the subset {z1,..., 2k, Tm+it1,-.-,Tn}, and the two subsets
uniquely determine each other. This proves S z(n) < S 4(n). To prove the other direction,
notice that if A picks a subset of k points z1, ..., zy, then the corresponding set A € A picks
the pairs with the same indices from {(z1,0),..., (zx,0)}. Equality of the vCc dimensions

follows from the equality of the shatter coefficients. a

From this point on, we will denote the common value of S 3(n) and S 4(n) by S¢(n), and
refer to is as the n-th shatter coefficient of the class C. It is simply the maximum number
of different ways n points can be classified by classifiers in the class C. Similarly, V7 = V4
will be referred to as the vC dimension of the class C, and will be denoted by V¢.

Now we are prepared to summarize our main performance bound for empirical risk mini-

mization:
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COROLLARY 1.5.

EL(g3) — Le < 4 log 28c(n) 34\/V010g(n+1)+10g2
" n

Bounds for P{L(g}) — L¢ > €} may now be easily obtained by combining the corollary

above with the bounded difference inequality.

The inequality above may be improved in various different ways. In the appendix of this
chapter we show that the factor of logn in the upper bound is unnecessary, it may be
replaced by a suitable constant. In practice, however, often the sample size is so small that
the inequality above provides smaller numerical values.

On the other hand, the main performance may be improved in another direction. To
understand the reason, consider first an extreme situation when L = 0, that is, there
exists a classifier in C which classifies without error. (This also means that for som ¢' € C,
Y = ¢'(X) with probability one, a very restrictive assumption. Nevertheless, the assumption
that Le = 0 is common in computational learning theory, see Blumer, Ehrenfeucht, Haussler,
and Warmuth (1989). In such a case, clearly L,(¢g*) = 0, and the second statement of
Corollary 1.2 implies that

P{L(g;) — Lc > €} = P{L(g;) > €} < 4Sc¢(2n)e™"/*

and therefore

BL(g;) - Le = EL(g;) < 02
(The bound on the expected value may be obtained by the following simple bounding argu-
ment: assume that for some nonnegative random variable Z, for all e > 0, P{Z > €} < Ce K¢
for some positive constants. Then EZ = [*P{Z > e}de < u+ [~ Ce~X ¢ for any u > 0.
Integrating, and choosing u to minimize the upper bound, we obtain EZ <InC/K.)

The main point here is that the upper bound obtained in this special case is of smaller
order of magnitude than in the general case (O(V¢ Inn/n) as opposed to O (\/VcTn/n) )
Intuition suggests that if L¢ is nonzero but very small, the general bound of Corollary 1.5
should be improvable. In fact, the argument below shows that it is possible interpolate

between the special case L¢ = 0 and the fully distribution-free bound of Corollary 1.5:

Theorem 1.14.

8Lc¢ In(5S¢(2n)) + 2 N 81n(10S¢(2n)) + 4
n n ’

EL(gy) — Lc < \/
Also, for every e > 0,

P{L(gy) — Lc > €} < 5Sc(2n)e_”62/16(Lc+6)_
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Proovr. For any € > 0, if

then for each g € C

L(g)

s ~ |
L,(g9) > L(g) — € To+ 2

If, in addition, g is such that L(g) > L¢ + 2¢, then by the monotonicity of the function
z — cy/z (for ¢ > 0 and z > ¢*/4),

zn(g)ZLc+2e—e =Lc +e.

Therefore,

: > L(g) — Ln(g) €
P inf Ly(g) < Le+€ep <P<su > .
{g:L(g)>Lc+Qe (g) ¢ } - {QEIC) A /L(g) vV Lec + 2¢

But if L(g’) — Lc > 2e, then, denoting by ¢’ a classifier in C such that L(g’) = L¢, there
exists an g € C such that L(g) > L¢ + 2¢ and Ly,(g) < Ly (g'). Thus,

P{L(gy) — Lc > 2¢}

< P inf L < L,(g
< {Q:L(Q)H;LC% n(9) n(g)}
< P inf  Ln(g) < Le+ey+P{Ln(g") > Lc +
< B{ 0 Blo) <Lt e} +PL0) > Lt o)
L(g) - En(g) € T /
< Pqsup > +P{L,(g9") — L¢c > €}.
{geC v/ L(g) vV Le + 2¢ {La(g') }

Bounding the last two probabilities by Theorem 1.11 and Bernstein’s inequality, respec-
tively, we obtain the probability bound of the statement.
The upper bound for the expected value may now be derived by some straightforward

calculations which we sketch here: let u < L¢ be a positive number. Then, using the tail
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inequality obtained above,
EL(g;) — Le

_ /OO P{L(g]) — Le > e}de

< u+ / 5Sc(2’n) max (6_"52/8Lc , e—ne/S) de
< <u/2 + / 5SC(2n)6_"€2/8Lc dE)

+ <u/2 +/ 5Sc(2n)e”€/8de> .

The second term may be bounded as in the argument given fot the case Ly = 0, while the
first term may be calculated similarly, using the additional observation that

> 1 [ 1
/ e de < —/ <2 + —2> e~ de
“ 2 Ju ne

TR
T 2| ne€ )

u

The details are omitted. O

1.4.5 Convex combinations of classifiers

Several important classification methods form a classifier as a convex combination of simple
functions. To describe such a situation, consider a class C of classifiers g : R? — {0,1}.
Think of C as a small class of “base” classifiers such as the class of all linear splits of R¢. In
general we assume that the vc dimension V¢ of C is finite. Define the class F as the class of
functions f : R¢ — [0,1] of the form

N
Fl) =3 wig(a)

where N is any positive integer, w1y, ..., wn are nonnegative weights with Ejvzl w; =1, and
Jgi,---,9n € C. Thus, F may be considered as the convex hull of C. Each function f € F
defines a classifier g¢, in a natural way, by

gf(x):{ 1 if f(z) > 1/2

0 otherwise.

A large variety of “boosting” and “bagging” methods, based mostly on the work of Schapire
(1990), Freund (1995) and Breiman (1996), construct classifiers as convex combinations
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of very simple functions. Typically the class of classifiers defined this way is too large
in the sense that it is impossible to obtain meaningful distribution-free upper bounds for
SUpfex (L(gf) — En(gf)) Indeed, even in the simple case when d = 1 and C is the class
of all linear splits of the real line, the class of all gs is easily seen to have an infinite vc
dimension.

Surprisingly, however, meaningful bounds may be obtained if we replace the empirical
probability of error En(gf) by a slightly larger quantity. To this end, let v > 0 be a fixed

parameter, and define the margin error by

1 n
Lu(gr) =~ D Tipixia—2vi) <al-

i=1

Notice that for all v > 0, L) (gs) > in(gf) and the L) (gy) is increasing in 5. An interpre-
tation of the margin error L7 (gy) is that it counts, apart from the number of misclassified
pairs (X;,Y;), also those which are well classified but only with a small “confidence” (or
“margin”) by g;.

The purpose of this section is to present a result of Freund, Schapire, Bartlett, and Lee
(1998) which states that the margin error is always a good approximate upper bound for
the probability of error, at least if v is not too small. The elegant proof shown here is due
to Koltchinskii and Panchenko (2002).

Theorem 1.15. For every € > 0,

202 [Vel 1 )
P{SUP (L(gr) — Ly(g5)) > V2, [Yelesn + 1) +€} <e e,
feF 5 n

Thus, with very high probability, the probability of error of any classifier g¢, f € F, may

be simultaneously upper bounded by the sum

2v2 [Velog(n+ 1
Liloy) + 22 FEn )

plus a term of the order n~'/2. Notice that, as v grows, the first term of the sum increases,

while the second decreases. The bound can be very useful whenever a classifier has a small
margin error for a relatively large v (i.e., if the classifier classifies the training data well
with high “confidence”) since the second term only depends on the vC dimension of the
small base class C. As shown in the next section, the second term in the above sum may be
replaced by (¢/7)y/Ve/n for some universal constant c.

The proof of the theorem crucially uses the following simple lemma, called the “contraction
principle”. Here we cite a version tailored for our needs. For the proof, see Ledoux and
Talagrand (1991), pages 112-113.
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Lemma 1.8. Let Zi(f),..., Z,(f) be arbitrary real-valued bounded random wvariables in-
dexed by an abstract parameter f and let o1,...,0, be independent symmetric sign vari-
ables, independent of the Z;(f)’s (i.e., P{o; = -1} =P{lo; =1} =1/2). If ¢ : R - R is a
Lipschitz function such that |¢p(z) — ¢(y)| < |z — y| with $(0) =0, then

]Esgcp > oid(Zi(f)) < ]Em]lcp > i Zi(f).
=1 =1

PRrOOF OF THEOREM 1.15. For any v > 0, introduce the function

1 ifz <0
¢y(z) =4 0 if x>~
1—z/y ifz e (0,7)

Observe that I, <o) < ¢, (7) < Ip<). Thus,

sup (L(gs) — Ly (g5)) < sup <E¢w((1 —2Y)f(X)) - %Z%((l - 2Yz-)f(X))> :

fEF

Introduce the notation Z(f) = (1 —2Y)f(X) and Z;(f) = (1 — 2Y;) f(X;). Clearly, by the
bounded difference inequality,

P {sup (m(zm) : %Zmzi(f)))

fEF

> E?gg <1E¢7(Z(f)) - % > ¢7(Zi(f))> + 6} < emne

i=1

and therefore it suffices to prove that the expected value of the supremum is bounded by

%\/ VC]%("'H). As a first step, we proceed by a symmetrization argument just like in the

proof of Theorem 1.9 to obtain

IN

fEF feF

E sup (JE%(Z(f)) -2y m(zz-(f))) E sup (% > o (@:(ZH) - ¢7<zi<f>>>)

IN

feF

2IE sup <% Zai (¢’Y(Zi(f)) - ¢'y(0))>

where 01,...,0, are i.i.d. symmetric sign variables and Z/(f) = (1 — 2Y/) f(X]) where the

k3

(X1,Y/) are independent of the (X;,Y;) and have the same distribution as that of the pairs

T
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Observe that the function ¢(x) = v(¢,(z) — ¢4(0)) is Lipschitz and ¢(0) = 0, therefore,
by the contraction principle (Lemma 1.8),

E sup — ZU, (04(Zi(f)) — ¢4(0 ))<1EsuplZU,Z(f):—Esup Zolf

fer n T ofer Nz Y fern

where at the last step we used the fact that o;(1 — 2Y;) is a symmetric sign variable, in-
dependent of the X; and therefore o;(1 — 2Y;) f(X;) has the same distribution as that of
o;f(X;). The last expectation may be rewritten as

E sup — Zo,f = —]E Sup  sup sup Zzw]mgy

feF M N N>1gi,...gvECW1,.. SWN ST =1
The key observation is that for any N and base classifiers g;, ..., gn, the supremum in
n N
sup E E w;0:95 (X;)
W1,...,WN i=1 j:1

is achieved for a weight vector which puts all the mess in one index, that is, when w; =1
for some j. (This may be seen by observing that a linear function over a convex polygon
achieves its maximum at one of the vertices of the polygon.) Thus,

E sup — ZU,]‘ = —EsupZU,g

feF n gec

However, repeating the argument in the proof of Theorem 1.9 with the necessary adjust-

ments, we obtain

Z 7ig(X.

which completes the proof of the desired inequality. O

—Esup
gec

\/210gSC(n) . \/2VC log(n + 1)

n n

1.4.6  Appendiz: sharper bounds via chaining

In this section we present an improvement of the Vapnik-Chervonenkis inequality stating

that for any class A of sets of vC dimension V,
E sup |pn(A) — p(A)] < ey/ —,
A€A n
where ¢ is a universal constant. This in turn implies for empirical risk minimization that

Ve

EL(g}) — Le < 2¢/ <.
n
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The new bound involves some geometric and combinatorial quantities related to the class A.
Consider a pair of bit vectors b = (b1,...,b,) and ¢ = (¢1,...,¢,) from {0,1}", and define
their distance by

1 n
ﬁ Z]I[bﬁéci]‘
=1

Thus, p(b, ) is just the square root of the normalized Hamming distance between b and c.
Observe that p may also be considered as the normalized euclidean distance between the
corners of the hypercube [0,1]" C R™, and therefore it is indeed a distance.

Now let B C {0,1}" be any set of bit vectors, and define a cover of radius r > 0 as a
set B, C {0,1}" such that for any b € B there exists a ¢ € B, such that p(b,c) < r. The
covering number N (r, B) is the cardinality of the smallest cover of radius r.

A class A of subsets of R? and a set of n points z7 = {z1,...,z,} C R¢ define a set of
bit vectors by

A(y) = {b=(by,...,by) € {0,1}" : b; =Ty, ca, i=1,...,n for some A € A}.

That is, every bit vector b € A(x]) describes the intersection of {z1,...,2,} with a set A
in 4. We have the following:

Theorem 1.16.

E{ sup |pn(A) — u(A)|} < e} max /01 \/log 2N (r, A(z?)) dr .

AEA \/ﬁzl,...,zne’Rd

The theorem implies that E{sup qc 4 |ptn(A4) — p(A)|} = O(1/4/n) whenever the integral
in the bound is uniformly bounded over all zy,...,z, and all n. Note that the bound
of Theorem 1.9 is always of larger order of magnitude, trivial cases excepted. The main
additional idea is Dudley’s chaining trick.
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PROOF. As in the proof of Theorem 1.9, we see that

£ sup 1, (4) - ()]

AcA

1 n
= EE{ sup |30 (Ioxiea) - H[Xze“])‘}

AeA =1
+ IE sup
A€eA

‘Xl,...,Xn}.

IN

Zai [xie4]

}

1
—E I
#{ o Soten

2
= EE{sup ZgiH[XieA]

AeA |

Z oilixiea

Just as in the proof of theorem 1, we fix the values X; = z1,...,X,, = z,, and study

= —IE]E{ sup
n AcA

E 1l ibi .
{f;‘;a 2 leiea } {béﬁ?i‘w 2o }
Now let By % {b(®} be the singleton set containing the all-zero vector b(®) = (0,...,0),

and let By, Bs, ..., By be subsets of {0,1}" such that each By, is a minimal cover of A(z7)
of radius 27%, and M = |log, v/n| + 1. Note that By is also a cover of radius 2°, and that

Bar = A(z}). Now denote the (random) vector reaching the maximum by b* = (b%,...,b%) €
A(z?), that is,

n

Z O'Zb:

i=1

= maX
beA(zT)

b

n
E o;b;
i=1

and, for each k < M, let b*) € By be a nearest neighbor of b* in the k-th cover, that is,

p(b® b*) < p(b,b*) for all b € By.
Note that p(b®),b*) < 2%, and therefore
p(0®, b)Y < p(*)5%) + p(6* =1 b7) <327

Now clearly,

n

zn: oib; = Zaibgo) + i zn:m (b(k k—1))
=1

i=1 k=1 i=1

n

M
S o (0P =Y

k=1 i=1



34 Gabor Lugosi

SO

o

M

< E E max
=1 bE By, ,c€E By _1:p(b,c)<3-2—k

> oi(bi—ci) -

i=1

Now it follows from Lemma 1.2 that for each pair b € By, c € By_1 with p(b,c) < 3-27F,
and for all s > 0,
BSZ?:1 ai(bi—cq) < es2n(3-2’k)2/2.

On the other hand, the number of such pairs is bounded by |By| - |Br_1| < |Bil]*> =
N(27F A(z}))?. Then Lemma 1.3 implies that for each 1 < k < M,

zn:(fi (bi — c:)
i=1

E max
be By, ,ceBk,l:p(b,c)§3-2—’“

< 3\/52*’“\/2 log 2N (2—F, A(a7))? .

Summarizing, we obtain

n M
E{ max [Sobi b < 3y Y27k /2l0g2N (2K, A(ey))?
beA(zT) P 1
< 1232 0 logaN (2K, A(ep))
k=1
1
< 12\/5/ \/10g2N(T,A(x’f))dr,
0

where at the last step we used the fact that N(r, A(z})) is a monotonically decreasing
function of r. The proof is finished. |

To complete our argument, we need to relate the vc dimension of a class of sets A to the
covering numbers N (r, A(z})) appearing in Theorem 3.10.

Theorem 1.17. Let A be a class of sets with vC dimension V < co. For every x1,...,&, €
REand0<r<1,

de V/(1-1/e)
N(r, AD) < (—) |
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Theorem 1.17 is due to Dudley (1978). Haussler (1995) refined Dudley’s probabilistic
argument and showed that the stronger bound

N(r, A@™)) < e(V +1) <%) .

also holds.

Proor. Fix z1,...,T,, and consider the set By = A(z}) € {0,1}". Fix r € (0,1), and let
B, C {0,1}" be a minimal cover of By of radius r with respect to the metric

We need to show that |B,| < (46/’!‘2)‘//(171/6).

First note that there exists a “packing set” C, C By such that |B,| < |C,| and any two
elements b, ¢ € C, are r-separated, that is, p(b,c¢) > r. To see this, suppose that C is such
an r-separated set of maximal cardinality. Then for any b € By, there exists a ¢ € C} with
p(b,c) < r, since otherwise adding b to the set C, would increase its cardinality, and it would
still be r-separated. Thus, C, is a cover of radius r, which implies that |B,| < |C,|. Denote
the elements of C, by ¢V, ..., ¢™) where M = |C,|. For any i,j < M, define A; ; as the
set of indices where the binary vectors ¢(9 and ¢) disagree:

Ai’j:{lgmgn:c%)#c%)} .

Note that any two elements of C,. differ in at least nr? components. Next define K indepen-
dent random variables Y7, ..., Yk, distributed uniformly over the set {1,2,...,n}, where K
will be specified later. Then for any i,j < M, i # j, and k < K,

]P{Yk € Ai7j} > r? ,

and therefore the probability that no one of Yi,..., Yk falls in the set A;; is less than
(1- rQ)K. Observing that there are less than M? sets A; ;, and applying the union bound,
we obtain that

P {for all ¢ # j,i,j < M, at least one Y}, falls in A4; ;}
>1-— M2(1-1r)K >1— M2e 57
If we choose K = [2log M/r?] + 1, then the above probability is strictly positive. This

implies that there exist K = [2log M/r?] + 1 indices y1,-..,yx € {1,2,...,n} such that
at least one y;, falls in each set A; ;. Therefore, restricted to the K components y1,...,yk,
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the elements of C, are all different, and since C,. C By, C, does not shatter any set of size
larger than V. Therefore, by Sauer’s lemma we obtain

e\
=M< &
=< ()

for K < V. Thus, if log M >V, then

e ([2log M/r?] + 1)

logM < Vlog v

4e log M
< Vilog— +1
< <og = tlog =7 )
de 1 .
< Vlogr—2 + ElogM (since logx < x/e for x > 0) .
Therefore,
Vv 4e
logM < ———log — .
M =1 /e 08 2
If log M < V| then the above inequality holds trivially. This concludes the proof. O

Combining this result with Theorem 3.10 we obtain that for any class .4 with vc dimension

v,
B sup 1, (4) ~ ()] | < @

where ¢ is a universal constant.

1.5 Minimax lower bounds

The purpose of this section is to investigate how good the bounds obtained in the previous
chapter for empirical risk minimization are. We have seen that for any class C of classifiers

with vc dimension V, a classifier g} minimizing the empirical risk satisfies

EL(g;) — Le < O (,/LCV‘;}Og" + e lsg") :

EL(g:;)—Lcso( E>.

and also

n

In this section we seek answers for the following questions: Are these upper bounds (at least
up to the order of magnitude) tight? Is there a much better way of selecting a classifier than

minimizing the empirical error?
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Let us formulate exactly what we are interested in. Let C be a class of decision functions
g : RY — {0,1}. The training sequence D, = ((X1,Y1),..., (X,,Y,)) is used to select
the classifier g,(X) = g,(X, Dy,) from C, where the selection is based on the data D,,. We
emphasize here that g, can be an arbitrary function of the data, we do not restrict our
attention to empirical error minimization, where g, is a classifier in C that minimizes the
number errors committed on the data D,,.

As before, we measure the performance of the selected classifier by the difference between
the error probability L(g,) = P{g.(X) # Y|D,} of the selected classifier and that of the
best in the class, L¢. In particular, we seek lower bounds for

Sup EL(gn) - LCa

where the supremum is taken over all possible distributions of the pair (X,Y). A lower
bound for this quantities means that no matter what our method of picking a rule from C
is, we may face a distribution such that our method performs worse than the bound.

Actually, we investigate a stronger problem, in that the supremum is taken over all dis-
tributions with L¢ kept at a fixed value between zero and 1/2. We will see that the bounds
depend on n, V¢, and L¢ jointly. As it turns out, the situations for L¢e > 0 and Le = 0
are quite different. Because of its simplicity, we first treat the case L = 0. All the proofs
are based on a technique called “the probabilistic method.” The basic idea here is that the
existence of a “bad” distribution is proved by considering a large class of distributions, and
bounding the average behavior over the class.

1.5.1 The zero-error case

Here we obtain lower bounds under the assumption that the best classifier in the class has
zero error probability. Recall that by Corollary 1.2 the expected probability of error of an
empirical risk minimizer is bounded by O(V¢ log n/n). Next we obtain minimax lower bounds
close to the upper bounds.

Theorem 1.18. Let C be a class of discrimination functions with VvC dimension V. Let X
be the set of all random wvariables (X,Y") for which Le = 0. Then, for every discrimination
rule g, based upon X1,Y7,..., X, Yy, andn >V — 1,

V-1 1
sup EL(gn) > <1 - _> -
(X,Y)ex 2en n

PRrRoOOF. The idea is to construct a family F of 2V~ distributions within the distributions
with Le = 0 as follows: first find points z1, ..., zy that are shattered by C. Each distribution
in F is concentrated on the set of these points. A member in F is described by V' — 1 bits,
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b1,...,by_1. For convenience, this is represented as a bit vector b. Assume V —1 < n. For a
particular bit vector, we let X = x; (i < V') with probability 1/n each, while X = zy with
probability 1 — (V' —1)/n. Then set Y = f,(X), where f; is defined as follows:

b, fx=x;i<V
fo(z) = v
0 ifzx=uxay.

Note that since Y is a function of X, we must have L* = 0. Also, L¢ = 0, as the set
{z1,...,2zy} is shattered by C, i.e., there is a g € C with g(z;) = fp(z;) for 1 < i < V.
Clearly,

sup E{L(gn) - LC}
(X,Y):Le=0

> sup E{L(gn) — Lc}
(X,Y)eF

= sup E{L(gn) — Lc}

> E{L(gn) - LC}
(where b is replaced by B, uniformly distributed over {0,1}V~1)

= E{L(gn)},

= P{ga(X, X1, 1,00, X, V) # f(X)) -
The last probability may be viewed as the error probability of the decision function g, :
R%x (R % {0,1})" — {0, 1} in predicting the value of the random variable fg(X) based on

the observation Z, = (X, X1,Y1,...,X,,Y,). Naturally, this probability is bounded from
below by the Bayes probability of error

L* (Zns £(X)) = inf P{g0(Z0) # (X))
corresponding to the decision problem (Z,,, fg(X)). By the results of Chapter 1,
L*(Zn, fp(X)) = E{min(n*(Zn),1 —n"(Zn))},
where n*(Z,) = P{fp(X) = 1|Z,}. Observe that

. 1/2 if X # Xq,..., X # X, X #ay
n (Zn): .
0 or 1 otherwise.
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Thus, we see that

sup E{L(gn) — Lc} > L*(Zn, fB(X))
(X,Y):Le=0
= %]P{X#XlaaX#XnaX#mV}
=
= 5 2 P{X=a}(1-P{X =a;})"
i=1
V-1 n
= S —(-1/n)
V-1 1 . et
o <1 - E) (since (1—1/n)""t | 1/e).
This concludes the proof. O

1.5.2 The general case

In the more general case, when the best decision in the class C has positive error probability,
the upper bounds derived in Chapter 2 for the expected error probability of the classifier
obtained by minimizing the empirical risk are much larger than when L = 0. Theorem 1.19
below gives a lower bound for sup(x yy.r.. fixed EL(9n) — Lc- As a function of n and Ve, the
bound decreases basically as in the upper bound obtained from Theorem 1.11. Interestingly,
the lower bound becomes smaller as L¢ decreases, as should be expected. The bound is

largest when L¢ is close to 1/2.

Theorem 1.19. Let C be a class of discrimination functions with vC dimension V > 2. Let
X be the set of all random variables (X,Y) for which for fixzed L € (0,1/2),

L= inf P{g(X) # Y} .

Then, for every discrimination rule g, based upon X1,Y1,..., X, Y,,
L(V -1
sup E(L(g,)—L)> Me*8 if n > Y= max(9,1/(1 — 2L)?).
(X,Y)ex 24n

PROOF. Again we consider the finite family F from the previous section. The notation b
and B is also as above. X now puts mass p at x;, i <V, and mass 1 — (V — 1)p at zy. This
imposes the condition (V' — 1)p < 1, which will be satisfied. Next introduce the constant
¢ € (0,1/2). We no longer have Y as a function of X. Instead, we have a uniform [0, 1]
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random variable U independent of X and define

v — 1 ing%—c+2cbi,X:aci,i<V
0 otherwise.

Thus, when X = x;, i <V, Y is 1 with probability 1/2 — ¢ or 1/2 + ¢. A simple argument

shows that the best rule for b is the one which sets

£2(@) 1 fe=z;,i<V, =1
) =
b 0 otherwise.

Also, observe that
L=V -1p(1/2—c¢).

Noting that |2n(z;) — 1| = ¢ for i < V, for fixed b, we may write

V-1
L(gn) — L > Z 2pclig, (2i,X1 Y1000, Xn Yo ) =1 fy(z:)} -
i=1
It is sometimes convenient to make the dependence of g, upon b explicit by considering
gn(z;) as a function of z;, X4,...,X,, Uy,...,U, (anii.d. sequence of uniform [0, 1] random
variables), and b;. We replace b by a uniformly distributed random B over {0,1}V~1. After
this randomization, denote Z,, = (X, X1, Y1, ..., X, Ys). Thus,

sup E{L(9n) — L} = supE{L(gs)— L}

(X,Y)eF b
> E{L(gn)— L} (withrandom B)

V-1

> 2Ry, (2 X V) =1~ f (2))

= 2cP{gn(Zn) # fB(X)}
> 2cL*(Zy, f(X)),

Y%

where, as before, L*(Z,, fg(X)) denotes the Bayes probability of error of predicting the
value of fp(X) based on observing Z,. All we have to do is to find a suitable lower bound
for

L*(Zn, f3(X)) = E{min(n"(Zn),1 = n*(Zn))},
where n*(Z,) = P{fp(X) = 1|Z,}. Observe that

vz {1 X £ X, X #X,and X # 2y
T = PB =1V, .. Vi) X=X, ==X, =24, < V.
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Next we compute P{B; = 1|Y;;, = y1,...,Y:, = yr} for y1,...,yx € {0,1}. Denoting the
numbers of zeros and ones by ko = [{j < k:y; =0} and k1 = |{j < k : y; = 1}|, we see
that

]P{Bl = 1|Y;1 =Yt Y = yk}
(1 —2¢)k1(1 + 2¢)ho
(1 —2¢)k1(1 4 2¢)ko + (1 + 2¢)k1 (1 — 2¢)ko”

Therefore, if X = X;, =---=X;, = ;,1 <V, then

min(n”*(Zn), 1 = 1"(Zn))
min ((1 — 2¢)*1(1 + 2¢)*, (1 4 2¢)*1 (1 — 2¢)*o)
(1 —2¢)k1 (1 + 2¢)ko + (1 + 2¢)k1 (1 — 2¢)ko

. 1420 "1 ko
min 1,(1f2i)

o (E)T
1

[k1—kol
142
14 (2)

In summary, denoting a = (1 4+ 2¢)/(1 — 2¢), we have
L*(Zu, f5(X) = E :
nyJB =
14 alZsx=x Y1)

> E !
- {2azj:xjx<2yj—1>}

LVl
2 Z P{X = wi}E{azj:iji(Qle)}
i=1

%(V —1ypa T @i 0]}

v

v

(by Jensen’s inequality).

Next we bound IE{ ‘Zj:Xj:zi(QYj - 1)‘} Clearly, if B(k,q) denotes a binomial random
variable with parameters £ and gq,

&=
e
S

|
=

I

3
~

L) = ot 2B (6 172 O - k).
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However, by straightforward calculation we see that

E{2B(k1/2—¢) M} < VE{@B1/2—0 k)
= k(1 —4c2) + 4k2c2
< 2ke + VE.

Therefore, applying Jensen’s inequality once again, we get

n

Z (Z)p’“(l —p)" *E{|2B(k,1/2 — ¢) — k|} < 2npc+ /np.

k=0

Summarizing what we have obtained so far, we have

Sl;pE{L(gn)_L} > 2cL*(Zy, fB(X))

> 2c%(V — 1)pa™2npe=vnp
> C(V _ 1)p672npc(a71)7(a71)\/n_p

(by the inequality 1 + z < %)
— C(V _ 1)p678np62/(172c)746\/ﬁ/(172c)‘

A rough asymptotic analysis shows that the best asymptotic choice for ¢ is given by

1

Vanp -’
Then the constraint L = (V—1)p(1/2—c) leaves us with a quadratic equation in ¢. Instead of
solving this equation, it is more convenient to take c = \/(V —1)/(8nL). If 2nL/(V —1) > 9,
then ¢ < 1/6. With this choice for ¢, using L = (V —1)p(1/2 —¢), straightforward calculation
provides

V-1L _,
sup E(L(gn) — L) > 1/ 228,
S B =2\ S
The condition p(V — 1) < 1 implies that we need to ask that n > (V —1)/(2L(1 — 2L)?).
This concludes the proof of Theorem 1.19. a

1.6 Complexity regularization

This section deals with the problem of automatic model selection. Our goal is to develop
some data-based methods to find the class C of classifiers in a way that approximately
minimizes the probability of error of the empirical risk minimizer.
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1.6.1 Model selection by penalization

In empirical risk minimization one selects a classifier from a given class C by minimizing
the error estimate En(g) over all g € C. This provides an estimate whose loss is close to the
optimal loss L* if the class C is (i) sufficiently large so that the loss of the best function in
C is close to L* and (ii) is sufficiently small so that finding the best candidate in C based
on the data is still possible. These two requirements are clearly in conflict. The trade-off is

best understood by writing
EL(g) —L* = <EL(g,’;) — inf L(g)) + (inf L(g) — L*> .
g€eC g€ec

The first term is often called estimation error, while the second is the approzimation error.
It is common to fix in advance a sequence of model classes Cy,Co, ..., which, typically,
become richer for larger indices. Given the data D,,, one wishes to select a good model from
one of these classes. This is the problem of model selection.
Denote by g a function in Cj having minimal empirical risk. One hopes to select a model
class Cx such that the excess error EL(gx ) — L* is close to

min EL(gy) — L* = min || EL(gy) — inf L +( inf L(g)—L*)|.
in EL (7. in | (E£@0) - inf L(0)) + (jnf 200) -]

The idea of structural risk minimization, (also known as complexity regularization, is to
add a complexity penalty to each of the zn@k)’s to compensate for the overfitting effect. This
penalty is usually closely related to a distribution-free upper bound for sup,¢c, |En(g) —L(g)|
so that the penalty eliminates the effect of overfitting.

The first general result shows that any approximate upper bound on error can be used
to define a (possibly data-dependent) complexity penalty C,, (k) and a model selection algo-
rithm for which the excess error is close to

min [ECn (k) + ( inf L(g) — L*)} .
k g€Cy

Our goal is to select, among the classifiers g, one which has approximately minimal loss.

The key assumption for our analysis is that the true loss of g; can be estimated for all k.

Assumption 1 There are positive numbers ¢ and m such that for each k an estimate R,

on L(gy) is available which satisfies

2

P[L(gk) > Rux + €] < ce 2me

for all e > 0.



44 Gabor Lugosi

Now define the complexity penalty by

~ . log k
Culk) = R = Ln(Gi) + 1/ o=

The last term is required because of technical reasons that will become apparent shortly. It

is typically small. The difference Ry, ; — L, (gx) is simply an estimate of the ‘right’ amount
of penalization L(gy) — En(/g\k) Finally, define the prediction rule:

where

. ~ log k
Ln(Gk) = Ln(Gk) + Cn(k) = Ry + 2 .

The following theorem summarizes the main performance bound for gJ.

Theorem 1.20. Assume that the error estimates R, i, satisfy Assumption 1 for some pos-

itive constants ¢ and m. Then

EL(g;) — L* < min []EOn (k) + (giélcfk L(g) — L)] + 105526).

Theorem 1.20 shows that the prediction rule minimizing the penalized empirical loss
achieves an almost optimal trade-off between the approximation error and the expected
complexity, provided that the estimate R, ; on which the complexity is based is an approx-
imate upper bound on the loss. In particular, if we knew in advance which of the classes Cj,
contained the optimal prediction rule, we could use the error estimates R, to obtain an

upper bound on EL(gx) — L*, and this upper bound would not improve on the bound of
Theorem 1.20 by more than O (\/log k/m)

PRroOF. For brevity, introduce the notation

L7 = inf L(g).
k glenck (9)
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Then for any € > 0,

IN

Plren - T > < B| sw (2@ - La@)) > ]

Jj=1,2,...

WE

P[L@) — La(@) > €]

I
-

~ .

by the union bound)

- . [log j
= Z;PlL(gj)_Rn’j>e+ T]
]:

(by definition)
o

ZceiQm(H\/lomT) (by Assumption 1)

=1

St .
3 e 2m( )
j=1

IN

IA

< 2ce™2™  (since Yo iTr<2).

To prove the theorem, for each k, we decompose L(g};) — L} as
Lgi) - i = (202 ~ e L(@) ) + (i L.@) - L;).

The first term may be bounded, by standard integration of the tail inequality shown above,

asE [L(g;*l) — inf} f/n@])] < y/log(ce)/(2m). Choosing g¢j such that L(g;) = L}, the second
term may be bounded directly by

Binf L,(3) ~ L < BLa() — L

= ELn (k) — L + ECn (k)
(by the definition of L, (gx))
Ein (gI:) - L(gI:) + ECn (k)

IN

(since gy minimizes the empirical loss on Cy)
= EC,(k),

where the last step follows from the fact that EL, (95) = L(g}). Summing the obtained
bounds for both terms yields that for each k,

EL(g;,) < ECyn (k) + L + +/log(ce)/(2m),

which implies the second statement of the theorem. O
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1.6.2 Selection based on a test sample

In our first application of Theorem 1.20, we assume that m independent sample pairs
(Xia Yll)v R (X;na Yrgz)

are available. This may always be achieved by simply removing m samples from the training
data. Of course, this is not very attractive, but m may be small relative to n. In this case
we can estimate L(gy) by the hold-out error estimate

1 m
Ryp=— Z;]Imxz)#w-
<

We apply Hoeffding’s inequality to show that Assumption 1 is satisfied with ¢ = 1, notice
that E[R, k| D»n] = L(gr), and apply Theorem 1.20 to give the following result.

COROLLARY 1.6. Assume that the model selection algorithm is performed with the hold-out

error estimate. Then

EL(g;) - L*

< min l]E[L@k)—En@k)]+<gi€ncka(g)_L*>+ lorik]_i_\/%_m‘

In other words, the estimate achieves a nearly optimal balance between the approximation

error, and the quantity
E L@ - La@)]

which may be regarded as the amount of overfitting.

1.6.3 Penalization by the vC dimension

In the remaining examples we consider error estimates R,, ; which avoid splitting the data.
First recall that by the Vapnik-Chervonenkis inequality, 21/(V¢, log(n + 1) +log2)/n is an
upper bound for the expected maximal deviation, within class C, between L(g) and its

empirical counterpart, Zn(g) This suggests that penalizing the empirical error by this com-
plexity term should compensate the overfitting within class Cg. Thus, we introduce the error

estimate

Ve log(n + 1) 4 log 2
n

Rn,k = in(./g\k) + 2\/
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Indeed, it is easy to show that this estimate satisfies Assumption 1. Indeed,

P[L(gk) > Rni + €
_ R \/Vc log(n + 1) + log 2 +€]

= P |L(gx) — Ln(gr) > 2 -

R el 1) + log 2
< P |sup L(g)—Ln(g)‘ >2\/ clog(n + 1) +log +e
|9€Ck n
< ® [sup [L0) - L] > B sup [L(0) - Lalo)] +
LgECr 9€Ck

(by the Vapnik-Chervonenkis inequality)

< e~ 2ne’ (by the bounded difference inequality).

Therefore, satisfies Assumption 1 with m = n. Substituting this into Theorem 1.20 gives
EL(g}) — L*

2\/Vck log(n + 1) + log 2 4 <inf L(g) —L*) N log k ] N 1
n

< min .
k n g€Ck 2n

Thus, structural risk minimization finds the best trade-off between the approximation error
and a distribution-free upper bound on the estimation error.

1.6.4 Penalization by mazimum discrepancy

In this section we propose a data-dependent way of computing the penalties with improved
performance guarantees. Assume, for simplicity, that n is even, divide the data into two
equal halves, and define, for each predictor f, the empirical loss on the two parts by

9 n/2
LP(g) = - > Tyxozy,
=1

and
~ 2
LP@) == > Lyxgzv
i=n/2+1
Define the error estimate R, ; by

~

Rk = La(@) +max (L0 (9) = LP(g) ) -

9€Cs
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Observe that the maximum discrepancy maxyec, (f%l)(g) — i%z) (g)) may be computed us-
ing the following simple trick: first flip the labels of the first half of the data, thus obtaining
the modified data set D], = (X1,Y{),...,(X],Y,) with (X],Y/) = (X;,1-Y;) for i < n/2

and (X],Y/) = (X;,Y;) for i > n/2. Next find f,” € C;, which minimizes the empirical loss
based on D!,

1 112 1 &
=D Loxpsyy = 5= Lxoev o D Txagsy
n 4 2 n“ n .

i=1 i=1 i=n/2+1

1- LM (g) + L (g)

Clearly, the function f, maximizes the discrepancy. Therefore, the same algorithm that is
used to compute the empirical loss minimizer g, may be used to find f; and compute the
penalty based on maximum discrepancy. This is appealing: although empirical loss min-
imization is often computationally difficult, the same approximate optimization algorithm
can be used for both finding prediction rules and estimating appropriate penalties. In partic-
ular, if the algorithm only approximately minimizes empirical loss over the class Cj, because
it minimizes over some proper subset of Cy, the theorem is still applicable.

Theorem 1.21. If the penalties are defined using the mazimum-discrepancy error esti-

mates, and m = n/21, then

EL(g;) — L* < min

Emax (Z((9) - LP(9))

k 9€Cy,
. log k 4.70
f L(g)—L* 4.594/ —— —.
+ <glélck (9) ) + . ] + NG

PROOF. Once again, we check Assumption 1 and apply Theorem 1.20. Introduce the ghost
sample (X7{,YY),....(X,,Y}), which is independent of the data and has the same distri-

n»n
1

bution. Denote the empirical loss based on this sample by L/ (g) = £ 3" | Iy(xn2v;. The

T n
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proof is based on the simple observation that for each k,

n

N 1
E max (L'n(g) - Ln(g)) = 5 Emax 2 (Toexpzvy = Tgxzv:)
n/2
< _E H ] 5= ]I . ;
< B mwd (Tgxnzy; = Tgexpzy:)

+ max > (Tyxnzyy — Toxozy:)

"i=n/2+1
n/2
= ZEmax > (Lyexpey ~ Tyoxmn)
n  geFu — glaA; i g{Aiq i
_ P (g) — 12
Emax (L(9) - L () (1.1)

The bounded difference inequality inequality (Theorem 1.8) implies

P&gumw—nm0>ﬁgg@mm—mwo+%sym, (1.2)

P [max (E%l)(g) - E%Q) (g)) < Emax (Eg)(g) - E%Q) (g)) - e} < emne/? (1.3)
9€Cr
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and so for each k,
P[L(gk) > Rux + €]

= 2|20 - 2@ > max (T ) - 200)) +

g€Ck
~ ~ ~ =~ Te
< P [L'n(gk) = Ln(Gk) > max (20 (9) - L2(9)) + 5]
~ ~ 2e
+P[L@) - L@ > 5
[~ ~ . -~ =~ Te
< P ILL(Gk) = Ln(gi) > max (20 (9) - L2(9)) + 5]
4 em8ne/81 (by Hoeffding)
[ -~ ~ ~ Te
() — () — O e
< P max (Ln(g) Ln(g)) > max (Ln (9) — Ly (g)) + 9}
+ 6—8ne2/81
[ ! 7 ’ 7T €
< P max (Ln(g) Ln(g)) > Emax (Ln(g) Ln(g)) + 3}

~ ~ ~ ~ 4e
; M(g) — 1O M(g) = 1.O —

+ e 8ne?/81 (where we used (1.1))
< e_m?/g 4 6_87“2/81 + 6—8ne2/81 (by (1.2) and (1.3))
< 3e Bne’/sL

Thus, Assumption 1 is satisfied with m = n/21 and ¢ = 3 and the proof is finished. O
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