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Preface

The goal of this book is to provide a concise but lucid explanation and deriva-
tion of the fundamentals of spread-spectrum communication systems. Although
spread-spectrum communication is a staple topic in textbooks on digital com-
munication, its treatment is usually cursory, and the subject warrants a more
intensive exposition. Originally adopted in military networks as a means of
ensuring secure communication when confronted with the threats of jamming
and interception, spread-spectrum systems are now the core of commercial ap-
plications such as mobile cellular and satellite communication. The level of
presentation in this book is suitable for graduate students with a prior graduate-
level course in digital communication and for practicing engineers with a solid
background in the theory of digital communication. As the title indicates, this
book stresses principles rather than specific current or planned systems, which
are described in many other books. Although the exposition emphasizes the-
oretical principles, the choice of specific topics is tempered by my judgment of
their practical significance and interest to both researchers and system design-
ers. Throughout the book, learning is facilitated by many new or streamlined
derivations of the classical theory. Problems at the end of each chapter are
intended to assist readers in consolidating their knowledge and to provide prac-
tice in analytical techniques. The book is largely self-contained mathematically
because of the four appendices, which give detailed derivations of mathematical
results used in the main text.

In writing this book, I have relied heavily on notes and documents prepared
and the perspectives gained during my work at the US Army Research Labo-
ratory. Many colleagues contributed indirectly to this effort. I am grateful to
my wife, Nancy, who provided me not only with her usual unwavering support
but also with extensive editorial assistance.
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Chapter 1

Channel Codes

Channel codes are vital in fully exploiting the potential capabilities of spread-
spectrum communication systems. Although direct-sequence systems greatly
suppress interference, practical systems require channel codes to deal with the
residual interference and channel impairments such as fading. Frequency-
hopping systems are designed to avoid interference, but the hopping into an
unfavorable spectral region usually requires a channel code to maintain ade-
quate performance. In this chapter, some of the fundamental results of coding
theory [1], [2], [3], [4] are reviewed and then used to derive the corresponding
receiver computations and the error probabilities of the decoded information
bits.

1.1 Block Codes

A channel code for forward error control or error correction is a set of codewords
that are used to improve communication reliability. An block code uses a
codeword of code symbols to represent information symbols. Each symbol is
selected from an alphabet of symbols, and there are codewords. If
then an code of symbols is equivalent to an binary code.
A block encoder can be implemented by using logic elements or memory to map
a information word into an codeword. After the waveform
representing a codeword is received and demodulated, the decoder uses the de-
modulator output to determine the information symbols corresponding to the
codeword. If the demodulator produces a sequence of discrete symbols and the
decoding is based on these symbols, the demodulator is said to make hard deci-
sions. Conversely, if the demodulator produces analog or multilevel quantized
samples of the waveform, the demodulator is said to make soft decisions. The
advantage of soft decisions is that reliability or quality information is provided
to the decoder, which can use this information to improve its performance.

The number of symbol positions in which the symbol of one sequence differs
from the corresponding symbol of another equal-length sequence is called the
Hamming distance between the sequences. The minimum Hamming distance
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Figure 1.1: Conceptual representation of vector space of se-
quences.

between any two codewords is called the minimum distance of the code. When
hard decisions are made, the demodulator output sequence is called the received
sequence or the received word. Hard decisions imply that the overall channel
between the output and the decoder input is the classical binary symmetric
channel. If the channel symbol error probability is less than one-half, then the
maximum-likelihood criterion implies that the correct codeword is the one that
is the smallest Hamming distance from the received word. A complete decoder
is a device that implements the maximum-likelihood criterion. An incomplete
decoder does not attempt to correct all received words.

The vector space of sequences is conceptually represented as
a three-dimensional space in Figure 1.1. Each codeword occupies the center
of a decoding sphere with radius in Hamming distance, where is a positive
integer. A complete decoder has decision regions defined by planar boundaries
surrounding each codeword. A received word is assumed to be a corrupted ver-
sion of the codeword enclosed by the boundaries. A bounded-distance decoder
is an incomplete decoder that attempts to correct symbol errors in a received
word if it lies within one of the decoding spheres. Since unambiguous decod-
ing requires that none of the spheres may intersect, the maximum number of
random errors that can be corrected by a bounded-distance decoder is

where is the minimum Hamming distance between codewords and de-
notes the largest integer less than or equal to When more than errors occur,
the received word may lie within a decoding sphere surrounding an incorrect
codeword or it may lie in the interstices (regions) outside the decoding spheres.
If the received word lies within a decoding sphere, the decoder selects the in-



1.1. BLOCK CODES 3

correct codeword at the center of the sphere and produces an output word of
information symbols with undetected errors. If the received word lies in the in-
terstices, the decoder cannot correct the errors, but recognizes their existence.
Thus, the decoder fails to decode the received word.

Since there are words at exactly distance from the center of
the sphere, the number of words in a decoding sphere of radius is determined
from elementary combinatorics to be

Since a block code has codewords, words are enclosed in some sphere.
The number of possible received words is which yields

This inequality implies an upper bound on and, hence, The upper bound
on is called the Hamming bound.

A block code is called a linear block code if its codewords form a
subspace of the vector space of sequences with symbols. Thus, the vector sum
of two codewords or the vector difference between them is a codeword. If a bi-
nary block code is linear, the symbols of a codeword are modulo-two sums of
information bits. Since a linear block code is a subspace of a vector space,
it must contain the additive identity. Thus, the all-zero sequence is always a
codeword in any linear block code. Since nearly all practical block codes are
linear, henceforth block codes are assumed to be linear.

A cyclic code is a linear block code in which a cyclic shift of the symbols
of a codeword produces another codeword. This characteristic allows the im-
plementation of encoders and decoders that use linear feedback shift registers.
Relatively simple encoding and hard-decision decoding techniques are known
for cyclic codes belonging to the class of Bose-Chaudhuri-Hocquenghem (BCH)
codes, which may be binary or nonbinary. A BCH code has a length that is
a divisor of where and is designed to have an error-correction
capability of where is the design distance. Although the
minimum distance may exceed the design distance, the standard BCH decod-
ing algorithms cannot correct more than errors. The parameters for
binary BCH codes with are listed in Table 1.1.

A perfect code is a block code such that every sequence is at a
distance of at most from some codeword, and the sets of all sequences
at distance or less from each codeword are disjoint. Thus, the Hamming
bound is satisfied with equality, and a complete decoder is also a bounded-
distance decoder. The only perfect codes are the binary repetition codes of odd
length, the Hamming codes, the binary Golay (23,12) code, and the ternary
Golay (11,6) code. Repetition codes represent each information bit by binary
code symbols. When is odd, the repetition code is a perfect code with
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and A hard-decision decoder makes a decision based
on the state of the majority of the demodulated symbols. Although repetition
codes are not efficient for the additive-white-Gaussian-noise (AWGN) channel,
they can improve the system performance for fading channels if the number of
repetitions is properly chosen. A Hamming code is a perfect BCH code

Since a Hamming code is capable of correcting all single errors. Binary
Hamming codes with are found in Table 1.1. The 16 codewords of a
Hamming (7,4) code are listed in Table 1.2. The first four bits of each codeword
are the information bits. The Golay (23,12) code is a binary cyclic code that
is a perfect code with and

Any linear block code with an odd value of can be converted
into an extended code by adding a parity symbol. The advantage of
the extended code stems from the fact that the minimum distance of the block
code is increased by one, which improves the performance, but the decoding
complexity and code rate are usually changed insignificantly. The extended
Golay (24,12) code is formed by adding an overall parity symbol to the Golay
(23,12) code, thereby increasing the minimum distance to As a result,
some received sequences with four errors can be corrected with a complete
decoder. The (24,12) code is often preferable to the (23,12) code because the
code rate, which is defined as the ratio is exactly one-half, which simplifies

with and
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the system timing.
The Hamming weight of a codeword is the number of nonzero symbols in a

codeword. For a linear block code, the vector difference between two codewords
is another codeword with weight equal to the distance between the two origi-
nal codewords. By subtracting the codeword  c  to all the codewords, we find
that the set of Hamming distances from any codeword c is the same as the set
of codeword weights. Consequently, in evaluating decoding error probabilities,
one can assume without loss of generality that the all-zero codeword was trans-
mitted, and the minimum Hamming distance is equal to the minimum weight
of the nonzero codewords. For binary block codes, the Hamming weight is the
number of 1’s in a codeword.

A systematic block code is a code in which the information symbols appear
unchanged in the codeword, which also has additional parity symbols. In terms
of the word error probability for hard-decision decoding, every linear code is
equivalent to a systematic linear code [1]. Therefore, systematic block codes are
the standard choice and are assumed henceforth. Some systematic codewords
have only one nonzero information symbol. Since there are at most parity
symbols, these codewords have Hamming weights that cannot exceed
Since the minimum distance of the code is equal to the minimum codeword
weight,

This upper bound is called the Singleton bound. A linear block code with a
minimum distance equal to the Singleton bound is called a maximum-distance-
separable code

Nonbinary block codes can accommodate high data rates efficiently be-
cause decoding operations are performed at the symbol rate rather than the
higher information-bit rate. Reed-Solomon codes are nonbinary BCH codes
with and are maximum-distance-separable codes with
For convenience in implementation, is usually chosen so that where
is the number of bits per symbol. Thus, and the code provides cor-
rection of symbols. Most Reed-Solomon decoders are bounded-distance
decoders with

The most important single determinant of the code performance is its weight
distribution, which is a list or function that gives the number of codewords with
each possible weight. The weight distributions of the Golay codes are listed
in Table 1.3. Analytical expressions for the weight distribution are known in
a few cases. Let denote the number of codewords with weight For a
binary Hamming code, each can be determined from the weight-enumerator
polynomial

For example,the Hamming (7,4) code gives
which yields and

weight,



6 CHAPTER 1. CHANNEL CODES

otherwise. For a maximum-distance-separable code, and [2]

The weight distribution of other codes can be determined by examining all valid
codewords if the number of codewords is not too large for a computation.

Error Probabilities for Hard-Decision Decoding

There are two types of bounded-distance decoders: erasing decoders and re-
producing decoders. They differ only in their actions following the detection
of uncorrectable errors in a received word. An erasing decoder discards the
received word and may initiate an automatic retransmission request. For a sys-
tematic block code, a reproducing decoder reproduces the information symbols
of the received word as its output.

Let denote the channel-symbol error probability, which is the probability
of error in a demodulated code symbol. It is assumed that the channel-symbol
errors are statistically independent and identically distributed, which is usually
an accurate model for systems with appropriate symbol interleaving (Section
1.3). Let denote the word error probability, which is the probability that
a received word is not decoded correctly due to both undetected errors and
decoding failures. There are distinct ways in which errors may occur
among symbols. Since a received sequence may have more than errors but
no information-symbol errors,

for a reproducing decoder that corrects or few errors. For an erasing decoder,
(1-8) becomes an equality. For reproducing decoders, is given by (1-1) because



1.1. BLOCK CODES 7

it is pointless to make the decoding spheres smaller than the maximum allowed
by the code. However, if a block code is used for both error correction and error
detection, an erasing decoder is often designed with less than the maximum.
If a block code is used exclusively for error detection, then

Conceptually, a complete decoder correctly decodes when the number of
symbol errors exceeds if the received sequence lies within the planar bound-
aries associated with the correct codeword, as depicted in Figure 1.1. When a
received sequence is equidistant from two or more codewords, a complete de-
coder selects one of them according to some arbitrary rule. Thus, the word
error probability for a complete decoder satisfies (1-8). If a complete
decoder is a maximum-likelihood decoder.

Let denote the probability of an undetected error, and let denote
the probability of a decoding failure. For a bounded-distance decoder

Thus, it is easy to calculate once is determined. Since the set of
Hamming distances from a given codeword to the other codewords is the same
for all given codewords of a linear block code, it is legitimate to assume for
convenience in evaluating that the all-zero codeword was transmitted. If
channel-symbol errors in a received word are statistically independent and occur
with the same probability then the probability of an error in a specific set
of positions that results in a specific set of erroneous symbols is

For an undetected error to occur at the output of a bounded-distance decoder,
the number of erroneous symbols must exceed and the received word must lie
within an incorrect decoding sphere of radius Let is the number of
sequences of Hamming weight that lie within a decoding sphere of radius
associated with a particular codeword of weight Then

Consider sequences of weight that are at distance from a particular codeword
of weight where so that the sequences are within the decoding
sphere of the codeword. By counting these sequences and then summing over
the allowed values of we can determine The counting is done by
considering changes in the components of this codeword that can produce one
of these sequences. Let denote the number of nonzero codeword symbols that
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are changed to zeros, the number of codeword zeros that are changed to any
of the nonzero symbols in the alphabet, and the number of nonzero
codeword symbols that are changed to any of the other nonzero symbols.
For a sequence at distance to result, it is necessary that The number
of sequences that can be obtained by changing any of the nonzero symbols
to zeros is where if For a specified value of it is necessary
that to ensure a sequence of weight The number of sequences
that result from changing any of the zeros to nonzero symbols is

For a specified value of and hence it is necessary that
to ensure a sequence at distance The number of sequences

that result from changing of the remaining nonzero components is
where if and Summing over the allowed values

of and we obtain

Equations (1-11) and (1-12) allow the exact calculation of
When the only term in the inner summation of (1-12) that is nonzero

has the index provided that this index is an integer and
Using this result, we find that for binary codes,

where for any nonnegative integer Thus, and

for
The word error probability is a performance measure that is important pri-

marily in applications for which only a decoded word completely without symbol
errors is acceptable. When the utility of a decoded word degrades in propor-
tion to the number of information bits that are in error, the information-bit
error probability is frequently used as a performance measure. To evaluate it
for block codes that may be nonbinary, we first examine the information-symbol
error probability.

Let denote the probability of an error in information symbol at the
decoder output. In general, it cannot be assumed that is independent of
The information-symbol error probability, which is defined as the unconditional
error probability without regard to the symbol position, is

The random variables are defined so that if infor-
mation symbol is in error and if it is correct. The expected number
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of information-symbol errors is

where E[ ] denotes the expected value. The information-symbol error rate is
defined as Equations (1-14) and (1-15) imply that

which indicates that the information-symbol error probability is equal to the
information-symbol error rate.

Let denote the probability of an error in symbol of the codeword
chosen by the decoder or symbol of the received sequence if a decoding failure
occurs. The decoded-symbol error probability is

If E[D] is the expected number of decoded-symbol errors, a derivation similar
to the preceding one yields

which indicates that the decoded-symbol error probability is equal to the decoded-
symbol error rate. It can be shown [5] that for cyclic codes, the error rate among
the information symbols in the output of a bounded-distance decoder is equal
to the error rate among all the decoded symbols; that is,

This equation, which is at least approximately valid for linear block codes, sig-
nificantly simplifies the calculation of because can be expressed in terms
of the code weight distribution, whereas an exact calculation of requires ad-
ditional information.

An erasing decoder makes an error only if it fails to detect one. Therefore,
and (1-11) implies that the decoded-symbol error rate for an erasing

decoder is

The number of sequences of weight that lie in the interstices outside the
decoding spheres is
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where the first term is the total number of sequences of weight and the second
term is the number of sequences of weight that lie within incorrect decoding
spheres. When symbol errors in the received word cause a decoding failure,
the decoded symbols in the output of a reproducing decoder contain errors.
Therefore, the decoded-symbol error rate for a reproducing decoder is

Even if two major problems still arise in calculating from (1-20)
or (1-22). The computational complexity may be prohibitive when and are
large, and the weight distribution is unknown for many linear or cyclic block
codes.

The packing density is defined as the ratio of the number of words in the
decoding spheres to the total number of sequences of length From (2), it

follows that the packing density is

For perfect codes, If undetected errors tend to occur more
often then decoding failures, and the code is considered tightly packed. If

decoding failures predominate, and the code is considered loosely packed.
The packing densities of binary BCH codes are listed in Table 1.1. The codes
are tightly packed if or 15. For and or 127, the codes
are tightly packed only if or 2.

To approximate for tightly packed codes, let denote the event that
errors occur in a received sequence of symbols at the decoder input. If the

symbol errors are independent, the probability of this event is

Given event for such that it is plausible to assume that
a reproducing bounded-distance decoder usually chooses a codeword with ap-
proximately symbol errors. For such that it is plausible
to assume that the decoder usually selects a codeword at the minimum dis-
tance These approximations, (1-19), (1-24), and the identity
indicate that for reproducing decoders is approximated by

The virtues of this approximation are its lack of dependence on the code weight
distribution and its generality. Computations for specific codes indicate that the
accuracy of this approximation tends to increase with The right-hand
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side of (1-25) gives an approximate upper bound on for erasing bounded-
distance decoders, for loosely packed codes with bounded-distance decoders,
and for complete decoders because some received sequences with or more
errors can be corrected and, hence, produce no information-symbol errors.

For a loosely packed code, it is plausible that for a reproducing bounded-
distance decoder might be accurately estimated by ignoring undetected errors.
Dropping the terms involving in (1-21) and (1-22) and using (1-19) gives

The virtue of this lower bound as an approximation is its independence of
the code weight distribution. The bound is tight when decoding failures are
the predominant error mechanism. For cyclic Reed-Solomon codes, numerical
examples [5] indicate that the exact and the approximate bound are quite
close for all values of when a result that is not surprising in view of the
paucity of sequences in the decoding spheres for a Reed-Solomon code with

A comparison of (1-26) with (1-25) indicates that the latter overestimates
by a factor of less than

A        symmetric channel or uniform discrete channel is one in which
an incorrectly decoded information symbol is equally likely to be any of the
remaining symbols in the alphabet. Consider a linear block code
and a symmetric channel such that is a power of 2 and the “channel”
refers to the transmission channel plus the decoder. Among the incorrect
symbols, a given bit is incorrect in instances. Therefore, the information-bit

Let denote the ratio of information bits to transmitted channel symbols. For
binary codes, is the code rate. For block codes with information
bits per symbol, When coding is used but the information rate is
preserved, the duration of a channel symbol is changed relative to that of an
information bit. Thus, the energy per received channel symbol is

where is the energy per information bit. When a code is potentially
beneficial if its error-control capability is sufficient to overcome the degradation
due to the reduction in the energy per received symbol. For the AWGN channel
and coherent binary phase-shift keying (PSK), the classical theory indicates that
the symbol error probability at the demodulator output is

where

error probability is
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and erfc( ) is the complementary error function. Consider the noncoherent
detection of orthogonal signals over an AWGN channel. The channel
symbols for multiple frequency-shift keying (MFSK) modulation are received
as orthogonal signals. It is shown subsequently that at the demodulator
output is

which decreases as increases for sufficiently large values of The or-
thogonality of the signals ensures that at least the transmission channel is
symmetric, and, hence, (1-27) is at least approximately correct.

If the alphabets of the code symbols and the transmitted channel symbols
are the same, then the channel-symbol error probability equals the code-
symbol error probability If not, then the code symbols may be mapped
into channel symbols. If and then choosing to
be an integer is strongly preferred for implementation simplicity. Since any of
the channel-symbol errors can cause an error in the corresponding code symbol,
the independence of channel-symbol errors implies that

A common application is to map nonbinary code symbols into binary channel
symbols In this case, (1-27) is no longer valid because the transmis-
sion channel plus the decoder is not necessarily symmetric. Since there is
at least one bit error for every symbol error,

This lower bound is tight when is low because then there tends to be a single
bit error per code-symbol error before decoding, and the decoder is unlikely to
change an information symbol. For coherent binary PSK, (1-29) and (1-32)
imply that

Error Probabilities for Soft-Decision Decoding

A symbol is said to be erased when the demodulator, after deciding that a sym-
bol is unreliable, instructs the decoder to ignore that symbol during the decod-
ing. The simplest practical soft-decision decoding uses erasures to supplement
hard-decision decoding. If a code has a minimum distance and a received
word is assigned erasures, then all codewords differ in at least of the
unerased symbols. Hence, errors can be corrected if If or
more erasures are assigned, a decoding failure occurs. Let denote the proba-
bility of an erasure. For independent symbol errors and erasures, the probability
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that a received sequence has errors and erasures is
Therefore, for a bounded-distance decoder,

where denotes the smallest integer greater than or equal to This in-
equality becomes an equality for an erasing decoder. For the AWGN channel,
decoding with optimal erasures provides an insignificant performance improve-
ment relative to hard-decision decoding, but erasures are often effective against
fading or sporadic interference. Codes for which errors-and-erasures decoding
is most attractive are those with relatively large minimum distances such as
Reed-Solomon codes.

Soft decisions are made by associating a number called the metric with
each possible codeword. The metric is a function of both the codeword and
the demodulator output samples. A soft-decision decoder selects the codeword
with the largest metric and then produces the corresponding information bits
as its output. Let y denote the vector of noisy output samples

produced by a demodulator that receives a sequence of
symbols. Let denote the codeword vector with symbols
Let denote the likelihood function, which is the conditional probability
density function of y given that was transmitted. The maximum-likelihood
decoder finds the value of for which the likelihood function is
largest. If this value is the decoder decides that codeword was transmitted.
Any monotonically increasing function of may serve as the metric of a
maximum-likelihood decoder. A convenient choice is often proportional to the
logarithm of which is called the log-likelihood function. For statistically
independent demodulator outputs, the log-likelihood function for each of the

possible codewords is

where is the conditional probability density function of given the
value of

For coherent binary PSK communication over the AWGN channel, if code-
word is transmitted, then the received signal representing symbol is

where is the symbol energy, is the symbol duration, is the carrier
frequency, when binary symbol is a 1 and when binary
symbol is a 0, is the unit-energy symbol waveform, and  is indepen-
dent, zero-mean, white Gaussian noise. Since has unit energy and vanishes
outside
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For coherent demodulation, a frequency translation to baseband is provided by
multiplying by After discarding a negligible integral, we find
that the matched-filter demodulator, which is matched to produces the
output samples

These outputs provide sufficient statistics because is the sole basis
function for the signal space. Since is statistically independent of
when the are statistically independent.

The autocorrelation of each white noise process is

where is the two-sided power spectral density of  and is the
Dirac delta function. A straightforward calculation using (1-40) and assuming
that the spectrum of is confined to indicates that the variance of
the noise term of (1-39) is Therefore, the conditional probability density
function of given that was transmitted is

Since and are independent of the codeword terms involving these
quantities may be discarded in the log-likelihood function of (1-36). Therefore,
the maximum-likelihood metric is

which requires knowledge of
If each a constant, then this constant is irrelevant, and the

maximum-likelihood metric is

Let denote the probability that the metric for an incorrect codeword
at distance from the correct codeword exceeds the metric for the correct
codeword. After reordering the samples the difference between the metrics
for the correct codeword and the incorrect one may be expressed as

where the sum includes only the terms that differ, refers to the correct
codeword, refers to the incorrect codeword, and Then
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is the probability that Since each of its terms is independent,
has a Gaussian distribution. A straightforward calculation using (1-41) and

which reduces to (1-29) when a single symbol is considered and
A fundamental property of a probability, called countable subadditivity, is

that the probability of a finite or countable union of events

In communication theory, a bound obtained from this inequality is called a
union bound. To determine for linear block codes, it suffices to assume
that the all-zero codeword was transmitted. The union bound and the relation
between weights and distances imply that for soft-decision decoding satisfies

Let denote the total information-symbol weight of the codewords of weight
The union bound and (1-16) imply that

To determine for any cyclic code, consider the set of codewords
of weight The total weight of all the codewords in is Let and

denote any two fixed positions in the codewords. By definition, any cyclic
shift of a codeword produces another codeword of the same weight. Therefore,
for every codeword in that has a zero in there is some codeword in that
results from a cyclic shift of that codeword and has a zero in Thus, among
the codewords of the total weight of all the symbols in a fixed position is
the same regardless of the position and is equal to The total weight of
all the information symbols in is Therefore,

Optimal soft-decision decoding cannot be efficiently implemented except
for very short block codes, primarily because the number of codewords for
which the metrics must be computed is prohibitively large, but approximate
maximum-likelihood decoding algorithms are available. The Chase algorithm
[3] generates a small set of candidate codewords that will almost always include
the codeword with the largest metric. Test patterns are generated by first
making hard decisions on each of the received symbols and then altering the

yields

satisfies
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least reliable symbols, which are determined from the demodulator outputs
given by (1-39). Hard-decision decoding of each test pattern and the discarding
of decoding failures generate the candidate codewords. The decoder selects the
candidate codeword with the largest metric.

The quantization of soft-decision information to more than two levels re-
quires analog-to-digital conversion of the demodulator output samples. Since
the optimal location of the levels is a function of the signal, thermal noise, and
interference powers, automatic gain control is often necessary. For the AWGN
channel, it is found that an eight-level quantization represented by three bits
and a uniform spacing between threshold levels cause no more than a few tenths
of a decibel loss relative to what could theoretically be achieved with unquan-
tized analog voltages or infinitely fine quantization.

The coding gain of one code compared with a second one is the reduction in
the signal power or value of required to produce a specified information-
bit or information-symbol error probability. Calculations for specific commu-
nication systems and codes operating over the AWGN channel have shown that
an optimal soft-decision decoder provides a coding gain of approximately 2 dB
relative to a hard-decision decoder. However, soft-decision decoders are much
more complex to implement and may be too slow for the processing of high in-
formation rates. For a given level of implementation complexity, hard-decision
decoders can accommodate much longer block codes, thereby at least partially
overcoming the inherent advantage of soft-decision decoders. In practice, soft-
decision decoding other than erasures is seldom used with block codes of length
greater than 50.

Performance Examples

Figure 1.2 depicts the information-bit error probability versus
for various binary block codes with coherent PSK over the AWGN channel.
Equation (1-25) is used to compute for the Golay (23,12) code with hard
decisions. Since the packing density is small for these codes, (1-26) is used
for the BCH (63,36) code, which corrects errors, and the BCH (127,64)
code, which corrects errors. Equation (1-29) is used for Inequality
(1-49) and Table 1.2 are used to compute the upper bound on for
the Golay (23,12) code with optimal soft decisions. The graphs illustrate the
power of the soft-decision decoding. For the Golay (23,12) code, soft-decision
decoding provides an approximately 2-dB coding gain for relative
to hard-decision decoding. Only when does the BCH (127,64) begin
to outperform the Golay (23,12) code with soft decisions. If an
uncoded system with coherent PSK provides a lower than a similar system
that uses one of the block codes of the figure.

Figure 1.3 illustrates the performance of loosely packed Reed-Solomon codes
with hard-decision decoding over the AWGN channel. The lower bound in (1-
26) is used to compute the approximate information-bit error probabilities for
binary channel symbols with coherent PSK and for nonbinary channel symbols
with noncoherent MFSK. For the nonbinary channel symbols, (1-27) and (1-31)
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Figure 1.2: Information-bit error probability for binary block codes and
coherent PSK.

Figure 1.3: Information-bit error probability for Reed-Solomon codes.
Modulation is coherent PSK or noncoherent MFSK.
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are used. For the binary channel symbols, (1-34) and the lower bound in (1-33)
are used. For the chosen values of the best performance at is
obtained if the code rate is Further gains result from increasing
and hence the implementation complexity. Although the figure indicates the
performance advantage of Reed-Solomon codes with MFSK, there is a major
bandwidth penalty. Let B denote the bandwidth required for an uncoded bi-
nary PSK signal. If the same data rate is accommodated by using uncoded
binary frequeny-shift keying (FSK), the required bandwidth for demodulation
with envelope detectors is approximately 2B. For uncoded MFSK using
frequencies, the required bandwidth is because each symbol represents

bits. If a Reed-Solomon code is used with MFSK, the required band-
width becomes

Code Metrics for Orthogonal Signals

For          orthogonal symbol waveforms,                                       matched filters
are needed, and the observation vector is where each is
an                   row vector of matched-filter output samples for filter    with
components Suppose that symbol of codeword   uses unit-
energy waveform where the integer  is a function of  and If codeword

is transmitted over the AWGN channel, the received signal for symbol can
be expressed in complex notation as

where is independent, zero-mean, white Gaussian noise with two-sided
power spectral density is the carrier frequency, and is the phase.
Since the symbol energy for all the waveforms is unity,

The orthogonality of symbol waveforms implies that

A frequency translation or downconversion to baseband is followed by matched
filtering. Matched-filter which is matched to produces the output
samples

The substitution of (1-50) into (1-53), (1-52), and the assumption that each of
the has a spectrum confined to yields
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where if and otherwise, and

Since the real and imaginary components of are jointly Gaussian, this
random process is a complex-valued Gaussian random variable. Straightforward
calculations using (1-40) and the confined spectra of the indicates that
the real and are imaginary components of are uncorrelated and, hence,
independent and have the same variance Since the density of a complex-
valued random variable is defined to be the joint density of its real and imaginary
parts, the conditional probability density function of given is

The independence of the white Gaussian the orthogonality condition
(1-52), and the spectrally confined symbol waveforms ensure that both the real
and imaginary parts of are independent of both the real and imaginary parts
of unless and Thus, the likelihood function of the observation
vector y is the product of the densities specified by (1-56).

For coherent signals, the are tracked by the phase synchronization sys-
tem and, thus, ideally may be set to zero. Forming the log-likelihood function
with the set to zero, and eliminating irrelevant terms that are independent
of we obtain the maximum-likelihood metric

where is the sampled output of the filter matched to the signal
representing symbol of codeword If each then the maximum-
likelihood metric is

and the common value does not need to be known to apply this metric.
For noncoherent signals, it is assumed that each is independent and uni-

formly distributed over which preserves the independence of the
Expanding the argument of the exponential function in (1-56), expressing in
polar form, and integrating over we obtain the probability density function
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where is the modified Bessel function of the first kind and order zero, This
function may be represented by

Let denote the sampled envelope produced by the filter matched to
the signal representing symbol of codeword We form the log-likelihood

function and eliminate terms and factors that do not depend on the codeword
thereby obtaining the maximum-likelihood metric

If each then the maximum-likelihood metric is

and must be known to apply this metric.
From the series representation of it follows that

From the integral representation, we obtain

The upper bound in (1-63) is tighter for while the upper bound in
(1-64) is tighter for If we assume that is often less than 2,
then the approximation of by is reasonable. Substitution into
(1-61) and dropping an irrelevant constant gives the metric

If each then the value of is irrelevant, and we obtain the Rayleigh
metric

which is suboptimal for the AWGN channel but is the maximum-likelihood
metric for the Rayleigh fading channel with identical statistics for each of the
symbols (Section 5.6). Similarly, (1-64) can be used to obtain suboptimal met-
rics suitable for large values of
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To determine the maximum-likelihood metric for making a hard decision
on each symbol, we set and drop the subscript in (1-57) and (1-61).
We find that the maximum-likelihood symbol metric is for coherent
MFSK and for noncoherent MFSK, where the index ranges
over the symbol alphabet. Since the latter function increases monotonically
and is a constant, optimal symbol metrics or decision variables for
noncoherent MFSK are or for

Metrics and Error Probabilities for MFSK Symbols

For noncoherent MFSK, baseband matched-filter is matched to the unit-energy
waveform where If is the
received signal, a downconversion to baseband and a parallel set of matched
filters and envelope detectors provide the decision variables

The orthogonality condition (1-52) is satisfied if the adjacent frequencies are
separated by where is a nonzero integer. Expanding (1-67), we obtain

These equations imply the correlator structure depicted in Figure 1.4, where the
irrelevant constant A has been omitted. The comparator decides what symbol
was transmitted by observing which comparator input is the largest.

To derive an alternative implementation, we observe that when the waveform
is the impulse response of a filter matched
to it is Therefore, the matched-filter output
at time is
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Figure 1.4: Noncoherent MFSK receiver using correlators.

where the envelope is

Since given by (1-68), we obtain the receiver structure depicted
in Figure 1.5, where the irrelevant constant A has been omitted. A practical
envelope detector consists of a peak detector followed by a lowpass filter.

To derive the symbol error probability for equally likely MFSK symbols, we
assume that the signal was transmitted over the AWGN channel. The
received signal has the form

Since is white,

Using the orthogonality of the symbol waveforms and (1-73) and assuming that
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Figure 1.5: Noncoherent MFSK receiver with passband matched filters.

in (1-69) and (1-70), we obtain

Since is Gaussian, and are jointly Gaussian. Since the covariance
of and is zero, they are mutually statistically independent. Therefore,
the joint probability density function of and is

where and
Let and be implicitly defined by and

Since the Jacobian of the transformation is we find that the joint density of
and is

The density of the envelope is obtained by integration of (1-78) over Using
trigonometry and the integral representation of the Bessel function, we obtain
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the density

where if and if Substituting (1-74), we obtain
the densities for the

The orthogonality of the symbol waveforms and (1-73) imply that the random
variables are independent. A symbol error occurs when was trans-
mitted if is not the largest of the Since the are identically
distributed for the probability of a symbol error when was
transmitted is

Substituting (1-81) into the inner integral gives

Expressing the power of this result as a binomial expansion and then
substituting into (1-82), the remaining integration may be done by using the
fact that for

which follows from the fact that the density in (1-80) must integrate to unity.
The final result is the symbol error probability for noncoherent MFSK over the
AWGN channel:

When this equation reduces to the classical formula for binary FSK:
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Chernoff Bound

The Chernoff bound is an upper bound on the probability that a random vari-
able equals or exceeds a constant. The usefulness of the Chernoff bound stems
from the fact that it is often much more easily evaluated than the probability
it bounds. The moment generating function of the random variable X with
distribution function is defined as

for all real-valued for which the integral is finite. For all nonnegative the
probability that is

Thus,

where is the upper limit of an open interval in which is defined. To
make this bound as tight as possible, we choose the value of that minimizes

Therefore,

which indicates the upper bound called the Chernoff bound. From (1-90) and
(1-87), we obtain the generalization

Since the moment generating function is finite in some neighborhood of
we may differentiate under the integral sign in (1-87) to obtain the derivative

of The result is

which implies that Differentiating (1-92) gives the second deriv-
ative

which implies that Consequently, is convex in its interval of
definition. Consider a random variable is such that

The first inequality implies that and the second inequality implies
that as Thus, since   the convex function
has a minimum value that is less than unity at some positive We
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conclude that (1-94) is sufficient to ensure that the Chernoff bound is less than
unity and

The Chernoff bound can be tightened if X has a density function such
that

For where is the open interval over which is defined,
(1-87) implies that

Thus, we obtain the following version of the Chernoff bound:

where the minimum value is not required to be nonnegative. However, if
(1-94) holds, then the bound is less than 1/2, and

In soft-decision decoding, the encoded sequence or codeword with the largest
associated metric is converted into the decoded output. Let denote the
value of the metric associated with sequence of length L. Consider additive
metrics having the form

where is the symbol metric associated with symbol of the encoded se-
quence. Let           label the correct sequence and          label an incorrect one.
Let denote the probability that the metric for an incorrect codeword at
distance from the correct codeword exceeds the metric for the correct code-
word. By suitably relabeling the symbol metrics that may differ for the two
sequences, we obtain

where the inequality results because U(2) = U(1) does not necessarily cause
an error if it occurs. In all practical cases, (1-94) is satisfied for the random
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variable X = U(2) – U(1). Therefore, the Chernoff bound implies that

where is the upper limit of the interval over which the expected value is
defined. Depending on which version of the Chernoff bound is valid, either

If are independent,
identically distributed random variables and we define

then

This bound is often much simpler to compute than the exact As in-
creases, the central-limit theorem implies that the distribution of X = U(2) –
U(1) approximates the Gaussian distribution. Thus, for large enough   (1-95)
is satisfied when E[X] < 0, and we can set in (1-103). For small (1-
95) may be difficult to establish mathematically, but is often intuitively clear;
if not, setting in (1-103) is always valid.

These results can be applied to hard-decision decoding, which can be re-
garded as a special case of soft-decision decoding with the following symbol
metric. If symbol of a candidate binary sequence agrees with the corre-
sponding detected symbol at the demodulator output, then oth-
erwise Therefore, in (1-102) is equal to +1 with
probability and –1 with probability Thus,

for hard-decision decoding. Substituting this equation into (1-103) with
we obtain

This upper bound is not always tight but has great generality since no specific
assumptions have been made about the modulation or coding.

1.2 Convolutional Codes and Trellis Codes

In contrast to a block codeword, a convolutional codeword represents an entire
message of indefinite length. A convolutional encoder converts an input of
information bits into an output of code bits that are Boolean functions of
both the current input bits and the preceding information bits. After bits
are shifted into a shift register and bits are shifted out, code bits are read
out. Each code bit is a Boolean function of the outputs of selected shift-register

or
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Figure 1.6: Encoders of nonsystematic convolutional codes with (a) K = 3 and
rate = 1/2 and (b) K = 2 and rate = 2/3.

stages. A convolutional code is linear if each Boolean function is a modulo-2 sum
because the superposition property applies to the input-output relations and
the all-zero codeword is a member of the code. For a linear convolutional code,
the minimum Hamming distance between codewords is equal to the minimum
Hamming weight of a codeword. The constraint length K of a convolutional
code is the maximum number of sets of output bits that can be affected by
an input bit. A convolutional code is systematic if the information bits appear
unaltered in each codeword.

A nonsystematic linear convolutional encoder with and K = 3
is shown in Figure 1.6(a). The shift register consists of 3 stages, each of which
is implemented as a bistable memory element. Information bits enter the shift
register in response to clock pulses. After each clock pulse, the most recent
information bit becomes the content and output of the first stage, the previous
contents of the first two stages are shifted to the right, and the previous content
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Figure 1.7: Trellis diagram corresponding to encoder of Figure 1.6(a).

of the third stage is shifted out of the register. The outputs of the modulo-2
adders (exclusive-OR gates) provide two code bits. The generators of the output
bits are the sequences and which indicate the stages
that are connected to the adders. In octal form, the two generator sequences
are represented by (5, 7). The encoder of a nonsystematic convolutional code
with and K = 2 is shown in Figure 1.6(b). In octal form(e.g.,

its generators are (13, 12, 11).
Since bits exit from the shift register as new bits enter it, only the

contents of the first             stages prior to the arrival of new bits affect the
subsequent output bits of a convolutional encoder. Therefore, the contents of
these stages define the state of the encoder. The initial state of the
encoder is generally the all-zero state. After the message sequence has been
encoded zeros inust be inserted into the encoder to complete and
terminate the codeword. If the number of message bits is much greater than

these terminal zeros have a negligible effect and the code rate is
well approximated by However, the need for the terminal zeros
renders the convolutional codes unsuitable for short messages. For example,
if 12 information bits are to be transmitted, the Golay (23, 12) code provides
a better performance than the same convolutional codes that are much more
effective when 1000 or more bits are to be transmitted.

A trellis diagram corresponding to the encoder of Figure 1.6(a) is shown
in Figure 1.7. Each of the nodes in a column of a trellis diagram represents
the state of the encoder at a specific time prior to a clock pulse. The first
bit of a state represents the content of stage 1, while the second bit represents
the content of stage 2. Branches connecting nodes represent possible changes of
state. Each branch is labeled with the output bits or symbols produced following
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a clock pulse and the formation of a new encoder state. In this example, the
first bit of a branch label refers to the upper output of the encoder. The upper
branch leaving a node corresponds to a 0 input bit, while the lower branch
corresponds to a 1. Every path from left to right through the trellis represents
a possible codeword. If the encoder begins in the all-zero state, not all of the
other states can be reached until the initial contents have been shifted out. The
trellis diagram then becomes identical from column to column until the final

input bits force the encoder back to the zero state.
Each branch of the trellis is associated with a branch metric, and the metric

of a codeword is defined as the sum of the branch metrics for the path associ-
ated with the codeword. A maximum-likelihood decoder selects the codeword
with the largest metric (or smallest metric, depending on how branch metrics
are defined). The Viterbi decoder implements maximum-likelihood decoding
efficiently by sequentially eliminating many of the possible paths. At any node,
only the partial path reaching that node with the largest partial metric is re-
tained, for any partial path stemming from the node will add the same branch
metrics to all paths that merge at that node.

Since the decoding complexity grows exponentially with constraint length,
Viterbi decoders are limited to use with convolutional codes of short constraint
lengths. A Viterbi decoder for a rate-1/2, K = 7 convolutional code has ap-
proximately the same complexity as a Reed-Solomon (31,15) decoder. If the
constraint length is increased to K = 9, the complexity of the Viterbi decoder
increases by a factor of approximately 4.

The suboptimal sequential decoding of convolutional codes [2] does not in-
variably provide maximum-likelihood decisions, but its implementation com-
plexity only weakly depends on the constraint length. Thus, very low error
probabilities can be attained by using long constraint lengths. The number of
computations needed to decode a frame of data is fixed for the Viterbi decoder,
but is a random variable for the sequential decoder. When strong interfer-
ence is present, the excessive computational demands and consequent memory
overflows of sequential decoding usually result in a higher than for Viterbi de-
coding and a much longer decoding delay. Thus, Viterbi decoding is preferable
for most communication systems and is assumed in the subsequent performance
analysis.

To bound for the Viterbi decoder, we assume that the convolutional code
is linear and that binary symbols are transmitted. With these assumptions, the
distribution of either Hamming or Euclidean distances is invariant to the choice
of a reference sequence. Consequently, whether the demodulator makes hard or
soft decisions, the assumption that the all-zero sequence is transmitted entails
no loss of generality in the derivation of the error probability. Let denote
the number of paths diverging at a node from the the correct path, each having
Hamming weight and incorrect information symbols over the unmerged seg-
ment of the path before it merges with the correct path. Thus, the unmerged
segment is at Hamming distance from the correct all-zero segment. Let
denote the minimum free distance, which is the minimum distance between any
two codewords. Although the encoder follows the all-zero path through the
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trellis, the decoder in the receiver essentially observes successive columns in
the trellis, eliminating paths and thereby sometimes introducing errors at each
node. The decoder may select an incorrect path that diverges at node and
introduces errors over its unmerged segment. Let denote the expected
value of the number of errors introduced at node It is known from (1-16)
that the equals the information-bit error rate, which is defined as the ratio
of the expected number of information-bit errors to the number of information
bits applied to the convolutional encoder. Therefore, if there are N branches
in a complete path,

Let denote the event that the path with the largest metric diverges
at node and has Hamming weight and incorrect information bits over its
unmerged segment. Then,

when is the conditional expectation of given event
is the probability of this event, and and are the maximum val-

ues of and respectively, that are consistent with the position of node in
the trellis. When occurs, bit errors are introduced into the decoded
bits; thus,

Since the decoder may already have departed from the correct path before node
the union bound gives

where is the probability that the correct path segment has a smaller metric
than an unmerged path segment that differs in code symbols. Substituting
(1-107) to (1-109) into (1-106) and extending the two summations to we
obtain

The information-weight spectrum or distribution is defined as

In terms of this distribution, (1-110) becomes
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For coherent PSK signals over an AWGN channel and soft decisions, (1-45)
indicates that

When the demodulator makes hard decisions and a correct path segment
is compared with an incorrect one, correct decoding results if the number of
symbol errors in the demodulator output is less than half the number of symbols
in which the two segments differ. If the number of symbol errors is exactly half
the number of differing symbols, then either of the two segments is chosen with
equal probability. Assuming the independence of symbol errors, it follows that
for hard-decision decoding

Soft-decision decoding typically provides a 2 dB power savings at
compared to hard-decision decoding for communications over the AWGN chan-
nel. Since the loss due to even three-bit quantization usually is 0.2 to 0.3 dB,
soft-decision decoding is highly preferable.

Among the convolutional codes of a given code rate and constraint length,
the one giving the smallest upper bound in (1-112) can sometimes be determined
by a complete computer search. The codes with the largest value of are
selected, and the catastrophic codes, for which a finite number of demodulated
symbol errors can cause an infinite number of decoded information-bit errors,
are eliminated. All remaining codes that do not have the minimum value of

are eliminated. If more than one code remains, codes are eliminated
on the basis of the minimal values of until one code
remains. For binary codes of rates 1/2, 1/3, and 1/4, codes with these favorable
distance properties have been determined [6]. For these codes and constraint
lengths up to 12, Tables 1.4, 1.5, and 1.6 list the corresponding values of
and Also listed in octal form are the generator
sequences that determine which shift-register stages feed the modulo-two adders
associated with each code bit. For example, the best K = 3, rate-1/2 code
in Table 1.4 has generator sequences 5 and 7, which specify the connections
illustrated in Figure 1.6(a).

Approximate upper bounds on for rate-1/2, rate-1/3, and rate-1/4 con-
volutional codes with coherent PSK, soft-decision decoding, and infinitely fine
quantization are depicted in Figures 1.8 to 1.10. The graphs are computed by
using (1-113), and Tables 1.4 to 1.6 in (1-112) and then truncating the
series after seven terms. This truncation gives a tight upper bound in for

However, the truncation may exclude significant contributions to
the upper bound when and the bound itself becomes looser as in-
creases. The figures indicate that the code performance improves with increases
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Figure 1.8: Information-bit error probability for rate = 1/2 convolutional codes
with different constraint lengths and coherent PSK.

in the constraint length and as the code rate decreases if The decoder
complexity is almost exclusively dependent on K because there are en-
coder states. However, as the code rate decreases, more bandwidth and a more
difficult bit synchronization are required.

For convolutional codes of rate two trellis branches enter each state. For
higher-rate codes with information bits per branch, trellis branches enter
each state and the computational complexity may be large. This complexity can
be avoided by using punctured convolutional codes. These codes are generated
by periodically deleting bits from one or more output streams of an encoder
for an unpunctured code. For a punctured code, sets of

bits are written into a buffer from which bits are read out, where
Thus, a punctured convolutional code has a rate of the form

The decoder of a punctured code uses the same decoder and trellis as the parent
code, but uses only the metrics of the unpunctured bits as it proceeds through
the trellis. The upper bound on is given by (1-112) with For most
code rates, there are punctured codes with the largest minimum free distance
of any convolutional code with that code rate. Punctured convolutional codes
enable the efficient implementation of a variable-rate error-control system with
a single encoder and decoder. However, the periodic character of the trellis of
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Figure 1.9: Information-bit error probability for rate = 1/3 convolutional codes
with different constraint lengths and coherent PSK.

Figure 1.10: Information-bit error probability for rate =1/4 convolutional codes
with different constraint lengths and coherent PSK.
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a punctured code requires that the decoder acquire frame synchronization.
Coded nonbinary sequences can be produced by converting the outputs of a

binary convolutional encoder into a single nonbinary symbol, but this procedure
does not optimize the nonbinary code’s Hamming distance properties. Better
nonbinary codes, such as the codes, are possible [3] but do not provide
as good a performance as the nonbinary Reed-Solomon codes with the same
transmission bandwidth.

In principle, can be determined from the generating function, T(D, I),
which can be derived for some convolutional codes by treating the state diagram
as a signal flow graph [1], [2]. The generating function is a polynomial in D
and I of the form

where represents the number of distinct unmerged segments characterized
by and The derivative at I = 1 is

Thus, the bound on given by (1-112), is determined by substituting
in place of     in the polynomial expansion of the derivative of T(D, I) and
multiplying the result by In many applications, it is possible to establish
an inequality of the form

where and Z are independent of It then follows from (1-112), (1-117), and
(1-118) that

For soft-decision decoding and coherent PSK, is given by (1-113).
Using the definition of given by (1-30), changing variables, and comparing
the two sides of the following inequality, we verify that

A change of variables yields

Substituting this inequality into (1-113) with the appropriate choices for and
gives
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Figure 1.11: Encoder for trellis-coded modulation.

Thus, the upper bound on may be expressed in the form given by (1-118)
with

For other channels, codes, and modulations, an upper bound on in the
form given by (1-118) can often be derived from the Chernoff bound.

Trellis-Coded Modulation

To add an error-control code to a communication system while avoiding a band-
width expansion, one may increase the number of signal constellation points.
For example, if a rate-2/3 code is added to a system using quadriphase-shift
keying (QPSK), then the bandwidth is preserved if the modulation is changed
to eight-phase PSK (8-PSK). Since each symbol of the latter modulation rep-
resents 3/2 as many bits as a QPSK symbol, the channel-symbol rate is un-
changed. The problem is that the change from QPSK to the more compact
8-PSK constellation causes an increase in the channel-symbol error probability
that cancels most of the decrease due to the encoding. This problem is avoided
by using trellis-coded modulation, which integrates the modulation and coding
processes.

Trellis-coded modulation is produced by a system with the form shown in
Figure 1.11. For each input of information bits is divided into two
groups. One group of bits is applied to a convolutional encoder while the
other group of bits remains uncoded. The output bits of the
convolutional encoder select one of possible subsets of the points in the
constellation of the modulator. The uncoded bits select one of points in
the chosen subset. If there are no uncoded bits and the convolutional
encoder output bits select the constellation point. Each constellation point is a
complex number representing an amplitude and phase.

For example, suppose that and in the encoder of Figure
1.11, and an 8-PSK modulator produces an output from a constellation of 8
points. Each of the four subsets that may be selected by the two convolutional-



Figure 1.12: The constellation of 8-PSK symbols partitioned into 4 subsets.

code bits comprises two antipodal points in the 8-PSK constellation, as shown
in Figure 1.12. If the convolutional encoder has the form of Figure 1.6(a), then
the trellis of Figure 1.7 illustrates the state transitions of both the underlying
convolutional code and the trellis code. The presence of the single uncoded
bit implies that each transition between states in the trellis corresponds to
two different transitions and two different phases of the transmitted 8-PSK
waveform.

In general, there are parallel transitions between every pair of states in
the trellis. Often, the dominant error events consist of mistaking one of these
parallel transitions for the correct one. If the symbols corresponding to parallel
transitions are separated by large Euclidean distances, and the constellation
subsets associated with transitions are suitably chosen, then the trellis-coded
modulation with soft-decision Viterbi decoding can yield a substantial coding
gain [1], [2], [3]. This gain usually ranges from 4 to 6 dB, depending on the
number of states and, hence, the implementation complexity. The minimum
Euclidean distance between a correct trellis-code path and an incorrect one is
called the free Euclidean distance and is denoted by Let denote the
total number of information bit errors associated with erroneous paths that are
at the free Euclidian distance from the correct path. The latter paths dominate
the error events when the SNR is high. An analysis similar to the one for
convolutional codes indicates that for the AWGN channel and a high SNR,
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Figure 1.13: Block interleaver.

1.3 Interleaving

An interleaver is a device that permutes the order of a sequence of symbols. A
deinterleaver is the corresponding device that restores the original order of the
sequence. A major application is the interleaving of modulated symbols trans-
mitted over a communication channel. After deinterleaving at the receiver, a
burst of channel-symbol errors or corrupted symbols is dispersed over a number
of codewords or constraint lengths, thereby facilitating the removal of the errors
by the decoding. Ideally, the interleaving and deinterleaving ensures that the
decoder encounters statistically independent symbol decisions or metrics, as it
would if the channel were memoryless. Interleaving of channel symbols is use-
ful when error bursts are caused by fast fading, interference, or even decision-
directed equalization.

A block interleaver performs identical permutations on successive blocks of
symbols. As illustrated in Figure 1.13, successive input symbols are stored
in a random-access memory (RAM) as a matrix of rows and columns. The
input sequence is written into the interleaver in successive rows, but successive
columns are read to produce the interleaved sequence. Thus, if the input se-
quence is numbered the interleaved sequence is

For continuous interleaving, two RAMs are
needed. Symbols are written into one RAM matrix while previous symbols are
read from the other. In the deinterleaver, symbols are stored by column in one
matrix, while previous symbols are read by rows from another. Consequently,
a delay of must be accommodated and synchronization is required at
the deinterleaver.

When channel symbols are interleaved, the parameter equals or exceeds
the block codeword length or a few constraint lengths of a convolutional code.
Consequently, if a burst of or fewer consecutive symbol errors occurs and
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there are no other errors, then each block codeword or constraint length, after
deinterleaving, has at most one error, which can be eliminated by the error-
correcting code. Similarly, a block code that can correct errors is capable
of correcting a single burst of errors spanning as many as symbols. Since
fading can cause correlated errors, it is necessary that exceed the chan-
nel coherence time. Interleaving effectiveness can be thwarted by slow fading
that cannot be accommodated without large buffers that cause an unacceptable
delay.

Other types of interleavers that are closely related to the block interleaver
include the convolutional interleaver and the helical interleaver. A helical in-
terleaver reads symbols from its matrix diagonally instead of by column in such
a way that consecutive interleaved symbols are never read from the same row
or column. Both helical and convolutional interleavers and their corresponding
deinterleavers confer advantages in certain applications, but do not possess the
inherent simplicity and compatibility with block structures that block inter-
leavers have.

A pseudorandom interleaver permutes each block of symbols pseudoran-
domly. Pseudorandom interleavers may be applied to channel symbols, but
their main application is as critical elements in turbo encoders and encoders of
serially concatenated codes that use iterative decoding (Section 1.4). The de-
sired permutation may be stored in a read-only memory (ROM) as a sequence
of addresses or permutation indices. Each block of symbols is written sequen-
tially into a RAM matrix and then interleaved by reading them in the order
dictated by the contents of the ROM.

If the interleaver is large, it is often preferable to generate the permutation
indices by an algorithm rather than storing them in a ROM. If the interleaver
size is then a linear feedback shift register with stages that
produces a maximal-length sequence can be used. The binary outputs of the
shift-register stages constitute the state of the register. The state specifies the
index from 1 to N that defines a specific interleaved symbol. The shift register
generates all N states and indices periodically.

An S-random interleaver is a pseudorandom interleaver that constrains the
minimum interleaving distance. A tentative permutation index is compared
with the S previously selected indices, where If the tentative
index does not differ in absolute value from the S previous ones by at least
S, then it is discarded and replaced by a new tentative index. If it does, then
the tentative index becomes the next selected index. This procedure continues
until all N pseudorandom indices are selected. The S-random interleaver is
frequently used in turbo or serially concatenated encoders.

1.4 Concatenated and Turbo Codes
A concatenated code uses multiple levels of coding to achieve a large error-
control capability with manageable implementation complexity by breaking the
decoding process into stages. In practice, two levels of coding have been found
to be effective. Figure 1.14 is a functional block diagram of a communication
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Figure 1.14: Concatenated coding in transmitter and receiver.

system incorporating a concatenated code. The channel interleaver permutes
the code bits to ensure the random distribution of code-bit errors at the input
of the concatenated decoder. Concatenated codes may be classified as classical
concatenated codes, turbo codes, or serially concatenated turbo codes.

Classical Concatenated Codes

Classical concatenated codes are serially concatenated codes with the encoder
and decoder forms shown in Figure 1.15. In the most common configuration for
classical concatenated codes, an inner code uses binary symbols and a Reed-
Solomon outer code uses nonbinary symbols. The outer-encoder output sym-
bols are interleaved, and then these nonbinary symbols are converted into binary
symbols that are encoded by the inner encoder. In the receiver, a grouping of
the binary inner-decoder output symbols into nonbinary outer-code symbols
is followed by symbol deinterleaving that disperses the outer-code symbol er-
rors. Consequently, the outer decoder is able to correct most symbol errors
originating in the inner-decoder output. The concatenated code has rate

where is the inner-code rate and is the outer-code rate.
A variety of inner codes have been proposed. The dominant and most pow-

erful concatenated code of this type comprises a binary convolutional inner
code and a Reed-Solomon outer code. At the output of a convolutional inner
decoder using the Viterbi algorithm, the bit errors occur over spans with an av-
erage length that depends on the signal-to-noise ratio (SNR). The deinterleaver
is designed to ensure that Reed-Solomon symbols formed from bits in the same
typical error span do not belong to the same Reed-Solomon codeword. Let

denote the number of bits in a Reed-Solomon code symbol. In the
worst case, the inner decoder produces bit errors that are separated enough
that each one causes a separate symbol error at the input to the Reed-Solomon
decoder. Since there are times as many bits as symbols, the symbol error
probability is upper-bounded by times the bit error probability at the
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Figure 1.15: Structure of serially concatenated code: (a) encoder and (b) clas-
sical decoder.

inner-decoder output. Since is no smaller than it would be if each set of
bit errors caused a single symbol error, is lower-bounded by this bit error
probability. Thus, for binary convolutional inner codes,

where is given by (1-103) and (1-102). Assuming that the deinterleaving
ensures independent symbol errors at the outer-decoder input, and that the
Reed-Solomon code is loosely packed, (1-26) and (1-27) imply that

For coherent PSK modulation with soft decisions, is given by (1-113); if
hard decisions are made, (1-114) applies.

Figure 1.16 depicts examples of the approximate upper bound on the perfor-
mance in white Gaussian noise of concatenated codes with coherent PSK, soft
demodulator decisions, an inner binary convolutional code with K = 7,
and rate = 1/2, and various Reed-Solomon outer codes. Equation (1-128) and
the upper bound in (1-127) are used. The bandwidth required by a concate-
nated code is where B is the uncoded PSK bandwidth. Since (1-126)
gives the codes of the figure require more bandwidth than rate-1/3
convolutional codes.

Turbo Codes

Turbo codes are parallel concatenated codes that use iterative decoding [1], [7],
[8]. As shown in Figure 1.17, the encoder of a turbo code has two component
encoders, one of which directly encodes the information bits while the other
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Figure 1.16: Information-bit error probability for concatenated codes with inner
convolutional code (K = 7, rate = 1/2), various Reed-Solomon outer
codes, and coherent PSK.

Figure 1.17: Encoder of turbo code.
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encodes interleaved bits. The iterative decoding requires that both component
codes be systematic and of the same type, that is, both convolutional or both
block.

A turbo convolutional code uses two binary convolutional codes as its compo-
nent codes. The multiplexer output comprises both the information and parity
bits produced by encoder 1 but only the parity bits produced by encoder 2. Be-
cause of their superior distance properties, recursive systematic convolutional
encoders are used in turbo encoders [1]. Each of these encoders has feedback
that causes the shift-register state to depend on its previous outputs. Usually,
identical rate-1/2 component codes are used, and a rate-1/3 turbo code is pro-
duced. However, if the multiplexer punctures the parity streams, a higher rate
of 1/2 or 2/3 can be obtained. Although it requires frame synchronization in
the decoder, the puncturing may serve as a convenient means of adapting the
code rate to the channel conditions. The purpose of the interleaver, which may
be a block or pseudorandom interleaver, is to permute the input bits of encoder
2 so that it is unlikely that both component codewords will have a low weight
even if the input word has a low weight. Thus, a turbo code has very few
low-weight codewords, whether or not its minimum distance is large.

Terminating tail bits are inserted into both component convolutional codes
so that the turbo trellis terminates in the all-zero state and the turbo code
can be treated as a block code. Recursive encoders require nonzero tail bits
that are functions of the preceding nonsystematic output bits and, hence, the
information bits.

To produce a rate-1/2 turbo code from rate-1/2 convolutional component
codes, alternate puncturing of the even parity bits of encoder 1 and the odd
parity bits of encoder 2 is done. Consequently, an odd information bit has
its associated parity bit of code 1 transmitted. However, because of the in-
terleaving that precedes encoder 2, an even information bit may have neither
its associated parity bit of code 1 nor that of code 2 transmitted. Instead,
some odd information bits may have both associated parity bits transmitted,
although not successively because of the interleaving. Since some information
bits have no associated parity bits transmitted, the decoder is less likely to be
able to correct errors in those information bits. A convenient means of avoiding
this problem, and ensuring that exactly one associated parity bit is transmitted
for each information bit, is to use a block interleaver with an odd number of
rows and an odd number of columns. If bits are written into the interleaver
matrix in successive rows, but successive columns are read, then odd and even
information bits alternate at the input of encoder 2, thereby ensuring that all
information bits have an associated parity bit that is transmitted. This proce-
dure, or any other that separates the odd and even information bits, is called
odd-even separation. Simulation results confirm that odd-even separation im-
proves the system performance when puncturing and block inter leavers are used,
but odd-even separation is not beneficial in the absence of puncturing [8]. In a
system with a small interleaver size, block interleavers with odd-even separation
usually give a better system performance than pseudorandom interleavers, but
the latter are usually superior when the interleaver size is large.
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The interleaver size is equal to the block length or frame length of the codes.
The number of low-weight or minimum-distance codewords tends to be inversely
proportional to the interleaver size. With a large interleaver and a sufficient
number of decoder iterations, the performance of the turbo convolutional code
can approach within less than 1 dB of the information-theoretic limit. However,
as the block length increases, so does the system latency, which is the delay
between the input and final output. As the symbol energy increases, the bit
error rate of a turbo code decreases until it eventually falls to an error floor or bit
error rate that continues to decrease very slowly. The potentially large system
latency, the system complexity, and, rarely, the error floor are the primary
disadvantages of turbo codes.

A maximum-likelihood decoder such as the Viterbi decoder minimizes the
probability that a received codeword or an entire received sequence is in error.
A turbo decoder is designed to minimize the error probability of each infor-
mation bit. Under either criterion, an optimal decoder would use the sampled
demodulator output streams for the information bits and the parity bits of both
component codes. A turbo decoder comprises separate component decoders for
each component code, which is theoretically suboptimal but crucial in reducing
the decoder complexity. Each component decoder uses a version of the maxi-
mum a posteriori (MAP) or BCJR algorithm proposed by Bahl, Cocke, Jelinek,
and Raviv [1], [8]. As shown in Figure 1.18, component decoder 1 of a turbo
decoder is fed by demodulator outputs denoted by the vector
where the components of sequence are the information bits and the compo-
nents of sequence are the parity bits of encoder 1. Similarly, component
decoder 2 is fed by outputs denoted by where the components
of sequence are the parity bits of encoder 2. For each information bit
the MAP algorithm of decoder computes estimates of the log-likelihood ratio
(LLR) of the probabilities that this bit is +1 or –1 given the vector

Since the a posteriori probabilities are related by
completely characterizes the a posteriori probabilities. The LLRs

of the information bits are iteratively updated in the two component decoders
by passing information between them. Since it is interleaved or deinterleaved,
arriving information is largely decorrelated from any other information in a
decoder and thereby enables the decoder to improve its estimate of the LLR.

From the definition of a conditional probability, (1-129) may be expressed
as

where is the demodulator output corresponding to the systematic or in-
formation bit and is the sequence excluding Given is
independent of Therefore, for j = 1 or 2,
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Figure 1.18: Decoder of turbo code.

Substitution of this equation into (1-130) and decomposing the results, we ob-
tain

where the a priori LLR is initially

and the extrinsic information

is a function of the parity bits processed by the component decoder The term
which represents information about provided by is defined as

where is the conditional density of given that Let
denote the noise power spectral density associated with For coherent

PSK, (1-41) with and where accounts for
the fading attenuation, gives the conditional density

Substitution into (1-135) yields
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The channel reliability factor must be known or estimated to compute
Since almost always no a priori knowledge of the likely value of the bit is

available, is assumed, and is set to zero for the first iteration
of component decoder 1. However, for subsequent iterations of either compo-
nent decoder, for one decoder is set equal to the extrinsic information
calculated by the other decoder at the end of its previous iteration. As indicated
by (1-132), can be calculated by subtracting and from
which is computed by the MAP algorithm. Since the extrinsic information
depends primarily on the constraints imposed by the code used, it provides
additional information to the decoder to which it is transferred. As indicated
in Figure 1.18, appropriate interleaving or deinterleaving is required to ensure
that the extrinsic information or is applied to each component
decoder in the correct sequence. Let B{ } denote the function calculated by
the MAP algorithm during a single iteration, I[ ] denote the interleave oper-
ation, D[ ] denote the deinterleave operation, and a numerical superscript
denote the iteration. The turbo decoder calculates the following functions
for

where When the iterative process terminates after N it-
erations, the from component decoder 2 is deinterleaved and then
applied to a device that makes a hard decision. Thus, the decision for bit is

Performance improves with the number of iterations, but simulation results
indicate that typically little is gained beyond roughly 4 to 12 iterations.

The generic name for a version of the MAP algorithm or an approximation
of it is soft-in soft-out (SISO) algorithm. The log-MAP algorithm is an SISO
algorithm that transforms the MAP algorithm into the logarithmic domain,
thereby simplifying operations and reducing numerical problems while causing
no performance degradation. The max-log-MAP algorithm and the soft-output
Viterbi algorithm (SOVA) are SISO algorithms that reduce the complexity of
the log-MAP algorithm at the cost of some performance degradation [1], [8].
The max-log-MAP algorithm is roughly 2/3 as complex as the log-MAP algo-
rithm and typically degrade the performance by 0.1 dB to 0.2 dB at
The SOVA algorithm is roughly 1/3 as complex as the log-MAP algorithm and
typically degrades the performance by 0.5 dB to 1.0 dB at The
MAP, log MAP, max-log-MAP, and SOVA algorithms have complexities that
increase linearly with the number of states of the component codes.

The log-MAP algorithm requires both a forward and a backward recursion
through the code trellis. Since the log-MAP algorithm also requires additional



memory and calculations, it is roughly 4 times as complex as the standard
Viterbi algorithm [8]. For 2 identical component decoders and typically 8 algo-
rithm iterations, the overall complexity of a turbo decoder is roughly 64 times
that of a Viterbi decoder for one of the component codes. The complexity of
the decoder increases while the performance improves as the constraint length
K of each component code increases. The complexity of a turbo decoder using
8 iterations and component convolutional codes with K = 3 is approximately
the same as that of a Viterbi decoder for a convolutional code with K = 9.

If       is unknown and may be significantly different from symbol to symbol,
a standard procedure is to replace the LLR of (1-135) with the generalized log-
likelihood ratio

where and are maximum-likelihood estimates of obtained from (1-
136) with and respectively. Calculations yield the estimates

Substituting these estimates into (1-136) and then substituting the results into
(1-143), we obtain

This equation replaces (1-137).
A turbo block code uses two linear block codes as its component codes. To

limit the decoding complexity, high-rate binary BCH codes are generally used
as the component codes, and the turbo code is called a turbo BCH code. The
encoder of a turbo block code has the form of Figure 1.17. Puncturing is
generally not used as it causes a significant performance degradation. Suppose
that the component block codes are binary systematic and
codes, respectively. Encoder 1 converts information bits into codeword
bits. Each block of information bits are written successively into the
interleaver as columns and rows. Encoder 2 converts each column of
interleaver bits into a codeword of bits. The multiplexer passes the bits of
each of encoder-1 codewords, but only the parity bits of encoder-2
codewords so that information bits are transmitted only once. Consequently,
the code rate of the turbo block code is

If the two block codes are identical, then If the minimum
Hamming distances of the component codes are and respectively,
then the minimum distance of the concatenated code is

48 CHAPTER 1. CHANNEL CODES
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The decoder of a turbo block code has the form of Figure 1.18, and only slight
modifications of the SISO decoding algorithms are required. Long, high-rate
turbo BCH codes approach the Shannon limit in performance, but their com-
plexities are higher then those of turbo convolutional codes of comparable per-
formance [8].

Approximate upper bounds on the bit error probability for turbo codes have
been derived [1], [8]. Since these bounds are difficult to evaluate except for short
codewords, simulation results are generally used to predict the performance of
a turbo code.

Serially Concatenated Turbo Codes

Serially concatenated turbo codes differ from classical concatenated codes in
their use of large interleavers and iterative decoding. The interchange of infor-
mation between the inner and outer decoders gives the serially concatenated
codes a major performance advantage. Both the inner and outer codes must
be amenable to efficient decoding by an SISO algorithm and, hence, are either
binary systematic block codes or binary systematic convolutional codes. The
encoder for a serially concatenated turbo code has the form of Figure 1.15(a).
The outer encoder generates bits for every information bits. After the
interleaving, each set of bits is converted by the inner encoder into bits.
Thus, the overall code rate of the serially concatenated code is If the
component codes are block codes, then an outer code and an inner

code are used. A functional block diagram of an iterative decoder for
a serially concatenated code is illustrated in Figure 1.19. For each inner code-
word, the input comprises the demodulator outputs corresponding to the
bits. For each iteration, the inner decoder computes the LLRs for the sys-
tematic bits. After a deinterleaving, these LLRs provide extrinsic information
about the code bits of the outer code. The outer decoder then computes the
LLRs for all its code bits. After an interleaving, these LLRs provide extrinsic
information about the systematic bits of the inner code. The final output
of the iterative decoder comprises the information bits of the concatenated
code. Simulation results indicate that a serially concatenated code with convo-
lutional codes tends to outperform a comparable turbo convolutional code for
the AWGN channel when low bit error probabilities are required [1].

Turbo Product Codes

A product code is a special type of serially concatenated code that is constructed
from multidimensional arrays and linear block codes. An encoder for a two-
dimensional turbo product code has the form of Figure 1.15(a). The outer
encoder produces codewords of an code. For an inner code,
codewords are placed in a interleaver array of rows and columns.
The block interleaver columns are read by the inner encoder to produce
codewords of length that are transmitted. The resulting product code has
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Figure 1.19: Iterative decoder for serially concatenated code. D = deinterleaver;
I = interleaver.

code symbols, information symbols, and code rate

If the minimum Hamming distances of the outer and inner codes are and
respectively, then a straightforward analysis indicates that the minimum

Hamming distance of the product code is

Hard-decision decoding is done sequentially on an array of received
code symbols. The inner codewords are decoded and code-symbol errors are
corrected. Any residual errors are then corrected during the decoding of the
outer codewords. Let and denote the error-correcting capability of the
outer and inner codes, respectively. Incorrect decoding of the inner codewords
requires that there are at least errors in at least one inner codeword or
array column. For the outer decoder to fail to correct the residual errors, there
must be at least inner codewords that have or more errors, and the
errors must occur in certain array positions. Thus, the number of errors that
is always correctable is

which is roughly half of what (1-1) guarantees for classical block codes. How-
ever, although not all patterns with more than errors are correctable, most of
them are.

When iterative decoding is used, a product code is called a turbo product
code. A comparison of (1-149) with (1-147) indicates that for a turbo
product code is generally larger than for a turbo block code with the same
component codes. The decoder for a turbo product code has the form shown in
Figure 1.20. The demodulator outputs are applied to both the inner decoder,
and after deinterleaving, the outer decoder. The LLRs of both the information
and parity bits of the corresponding code are computed by each decoder. These
LLRs are then exchanged between the decoders after the appropriate deinter-
leaving or interleaving converts the LLRs into extrinsic information. A large
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Figure 1.20: Decoder of turbo product code. D = deinterleaver; I = interleaver.

Figure 1.21: Encoder for turbo trellis-coded modulation.

reduction in the complexity of a turbo product code in exchange for a relatively
small performance loss is obtained by using the Chase algorithm (Section 1.5)
in the SISO algorithm of the component decoders [9]. For a given complexity,
the performance of turbo product codes and turbo block codes are similar [8].

Turbo Trellis-Coded Modulation

Turbo trellis-coded modulation (TTCM), which produces a nonbinary bandwidth-
efficient modulation, is obtained by using identical trellis codes as the compo-
nent codes in a turbo code [10]. The encoder has the form illustrated in Figure
1.21. The code rate and, hence, the required bandwidth of the component trel-
lis code is preserved by the TTCM encoder because it alternately selects con-
stellation points or complex symbols generated by the two parallel component
encoders. To ensure that all information bits, which constitute the encoder in-
put, are transmitted only once and that the parity bits are provided alternately
by the two component encoders, the symbol interleaver transfers symbols in
odd positions to odd positions and symbols in even positions to even positions,
where each symbol is a group of bits. After the complex symbols are produced
by signal mapper 2, the symbol deinterleaver restores the original ordering.
The selector passes the odd-numbered complex symbols from mapper 1 and



52 CHAPTER 1. CHANNEL CODES

the even-numbered complex symbols from mapper 2. The channel interleaver
permutes the selected complex symbols prior to the modulation. The TTCM
decoder uses a symbol-based SISO algorithm analogous to the SISO algorithm
used by turbo-code decoders. TTCM can provide a performance close to the
theoretical limit for the AWGN channel, but its implementation complexity is
much greater than that of conventional trellis-coded modulation [8].

The iterative decoding principle of turbo codes can be applied to equaliza-
tion, demodulation, and even other codes, notably the low-density parity-check
codes [11]. Recently, these codes have been shown to be competitive with turbo
codes in both performance and complexity.

1.5 Problems
1.

2.

3.

4.

5.

6.

7.

8.

9.

Verify that both Golay perfect codes satisfy the Hamming bound with
equality.

(a) Use (1-12) to show that Can the same result
be derived directly? (b) Use (1-13) to derive for Hamming codes.
Consider the cases and separately.

(a) Use (1-21) to derive an upper bound on Explain why this
upper bound becomes an equality for perfect codes, (c) Show that

for Hamming codes. (d) Show that for perfect codes as
both the exact equation (1-22) and the approximation (1-25) give the
same expression for

Evaluate for the Hamming (7,4) code using both the exact equation
and the approximate one. Use the result of problem 2(b) and the weight
distribution given in the text. Compare the two results.

Use erasures to show that a Reed-Solomon codeword can be recovered
from any correct symbols.

Suppose that a binary Hamming (7,4) code is used for coherent PSK com-
munications with a constant noise-power spectral density. A codeword
has if symbol in candidate codeword is a 1, and
if it is a 0. The received output samples are -0.4, 1.0, 1.0, 1.0, 1.0, 1.0,
0.4. Use the table of Hamming (7,4) codewords to find the decision made
when the maximum-likelihood metric is used.

Prove that the word error probability for a block code with soft-decision
decoding satisfies

Use (1-49) and (1-45) to show that the coding gain of a block code is
roughly relative to no code when is low.

Derive a generalization of the symbol error probability for binary FSK.
Let and denote the two-sided power spectral densities of the
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white Gaussian noise in the filter matched to the transmitted signal and
the other matched filter, respectively. Change (1-81) and (1-82) appro-
priately and then derive

10.

11.

12.

(a) Show that (b) Derive the Chernoff

bound for a Gaussian random variable with mean and variance

Consider the convolutional code defined in Figures 1.6(a) and 1.7. The
input of a Viterbi decoder is 1000100000. Show the surviving paths and
their partial metrics.

Consider a system that uses coherent PSK and a convolutional code in
the presence of white Gaussian noise, (a) What is the coding gain of
a binary system with soft decisions, K = 7, and relative to an
uncoded system for large ? (b) Use the approximation

to show that as , soft-decision decoding of a binary convolu-
tional code has a 3 dB coding gain relative to hard-decision decoding.

13. A concatenated code comprises an inner binary block code, which
is called a Hadamard code, and an outer Reed-Solomon code. The
outer encoder maps every bits into one Reed-Solomon symbol, and
every symbols are encoded as an codeword. After the symbol
interleaving, the inner encoder maps every Reed-Solomon symbol into
bits. After the interleaving of these bits, they are transmitted using a
binary modulation, (a) Describe the removal of the encoding by the
inner and outer decoders, (b) What is the value of as a function of ?
(c) What are the block length and code rate of the concatenated code?

14.

15.

Derive (1-144) and (1-145) using the steps outlined in the text.

Show that the minimum Hamming distance of a product code is equal to
the product of the minimum Hamming distances of the outer and inner
codes, respectively.
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Chapter 2

Direct-Sequence Systems

2.1 Definitions and Concepts
A spread-spectrum signal is a signal that has an extra modulation that ex-
pands the signal bandwidth beyond what is required by the underlying data
modulation. Spread-spectrum communication systems [1], [2], [3] are useful
for suppressing interference, making interception difficult, accommodating fad-
ing and multipath channels, and providing a multiple-access capability. The
most practical and dominant methods of spread-spectrum communications are
direct-sequence modulation and frequency hopping of digital communications.

At first it might seem that a spread-spectrum signal is counterproductive
insofar as the receive filter will require an increased bandwidth and, hence, will
pass more noise power to the demodulator. However, when any signal and
white Gaussian noise are applied to a filter matched to the signal, the sampled
filter output has a signal-to-noise ratio (SNR) that is inversely proportional to
the noise-power spectral density. The remarkable aspect of this result is that
the filter bandwidth and, hence, the output noise power are irrelevant. Thus,
we observe that there is no fundamental barrier to the use of spread-spectrum
communications.

A direct-sequence signal is a spread-spectrum signal generated by the direct
mixing of the data with a spreading waveform before the final carrier modula-
tion. Ideally, a direct-sequence signal with binary phase-shift keying (PSK) or
differential PSK (DPSK) data modulation can be represented by

where A is the signal amplitude, is the data modulation, is the spread-
ing waveform, is the carrier frequency, and is the phase at The
data modulation is a sequence of nonoverlapping rectangular pulses of dura-
tion each of which has an amplitude if the associated data symbol
is a 1 and if it is a 0 (alternatively, the mapping could be
and Equation (2-1) implies that
which explicitly exhibits the phase-shift keying by the data modulation. The
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Figure 2.1: Examples of (a) data modulation and (b) spreading waveform.

spreading waveform has the form

where each equals +1 or –1 and represents one chip of the spreading sequence.
The chip waveform is ideally confined to the interval to prevent
interchip interference in the receiver. A rectangular chip waveform has

where

Figure 2.1 depicts an example of and for a rectangular chip waveform.
Message privacy is provided by a direct-sequence system if a transmitted

message cannot be recovered without knowledge of the spreading sequence. To
ensure message privacy, which is assumed henceforth, the data-symbol transi-
tions must coincide with the chip transitions. Since the transitions coincide,
the processing gain is an integer equal to the number of chips in a
symbol interval. If W is the bandwidth of and B is the bandwidth of
the spreading due to ensures that has a bandwidth W >> B.

Figure 2.2 is a functional or conceptual block diagram of the basic operation
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Figure 2.2: Functional block diagram of direct-sequence systemn with PSK or
DPSK: (a) transmitter and (b) receiver.

of a direct-sequence system with PSK. To provide message privacy, data sym-
bols and chips, which are represented by digital sequences of 0’s and 1’s, are
synchronized by the same clock and then modulo-2 added in the transmitter.
The adder output is converted according to and before the
chip and carrier modulations. Assuming that chip and symbol synchronization
has been established, the received signal passes through the wideband filter and
is multiplied by a synchronized local replica of If is rectangular, then

and Therefore, if the filtered signal is given by (1-1), the
multiplication yields the despread signal

at the input of the PSK demodulator. Since the despread signal is a PSK signal,
a standard coherent demodulator extracts the data symbols.

Figure 2.3(a) is a qualitative depiction of the relative spectra of the desired
signal and narrowband interference at the output of the wideband filter. Mul-
tiplication of the received signal by the spreading waveform, which is called
despreading, produces the spectra of Figure 2.3(b) at the demodulator input.
The signal bandwidth is reduced to B, while the interference energy is spread
over a bandwidth exceeding W. Since the filtering action of the demodulator
then removes most of the interference spectrum that does not overlap the signal
spectrum, most of the original interference energy is eliminated. An approxi-
mate measure of the interference rejection capability is given by the ratio W/B.
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Figure 2.3: Spectra of desired signal and interference: (a) wideband-filter out-
put and (b) demodulator input.

Whatever the precise definition of a bandwidth, W and B are proportional to
and respectively, with the same proportionality constant. Therefore,

which links the processing gain with the interference rejection illustrated in the
figure. Since its spectrum is unchanged by the despreading, white Gaussian
noise is not suppressed by a direct-sequence system.

In practical systems, the wideband filter in the transmitter is used to limit
the out-of-band radiation. This filter and the propagation channel disperse
the chip waveform so that it is no longer confined to To avoid interchip
interference in the receiver, the filter might be designed to generate a pulse that
satisfies the Nyquist criterion for no intersymbol interference. A convenient
representation of a direct-sequence signal when the chip waveform may extend
beyond is

where denotes the integer part of When the chip waveform is assumed
to be confined to then (2-6) can be expressed by (2-1) and (2-2).

2.2 Spreading Sequences and Waveforms

Random Binary Sequence

A random binary sequence is a stochastic process that consists of indepen-
dent, identically distributed symbols, each of duration T. Each symbol takes
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Figure 2.4: Sample function of a random binary sequence.

the value +1 with probability or the value –1 with probability Therefore,
for all and

The process is wide-sense stationary if the location of the first symbol transition
or start of a new symbol after is a random variable uniformly distributed
over the half-open interval (0,T]. A sample function of a wide-sense-stationary
random binary sequence is illustrated in Figure 2.4.

The autocorrelation of a stochastic process is defined as

If is a wide-sense stationary process, then is a function of alone,
and the autocorrelation is denoted by From (2-7) and the definitions of
an expected value and a conditional probability, it follows that the autocorre-
lation of a random binary sequence is

where denotes the conditional probability of event A given the occur-
rence of event B. From the theorem of total probability, it follows that

Since both of the following probabilities are equal to the probability that
and differ,

Substitution of (2-10) and (2-11) into (2-9) yields
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If then and are independent random variables because
and are in different symbol intervals. Therefore,

and (2-6) implies that for then and
are independent only if a symbol transition occurs in the half-open interval

Consider any half-open interval of length that includes
Exactly one transition occurs in Since the first transition for is

assumed to be uniformly distributed over the probability that a transition
in occurs in is If a transition occurs in then and
are independent and differ with probability otherwise,
Consequently, if Substitution
of the preceding results into (2-12) confirms the wide-sense stationarity of
and gives the autocorrelation of the random binary sequence:

where the triangular function is defined by

Shift-Register Sequences

Ideally, one would prefer a random binary sequence as the spreading sequence.
However, practical synchronization requirements in the receiver force one to
use periodic binary sequences. A shift-register sequence is a periodic binary
sequence generated by combining the outputs of feedback shift registers. A
feedback shift register, which is diagrammed in Figure 2.5, consists of consecutive
two-state memory or storage stages and feedback logic. Binary sequences drawn
from the alphabet {0,1} are shifted through the shift register in response to clock
pulses. The contents of the stages, which are identical to their outputs, are
logically combined to produce the input to the first stage. The initial contents
of the stages and the feedback logic determine the successive contents of the
stages. If the feedback logic consists entirely of modulo-2 adders (exclusive-OR
gates), a feedback shift register and its generated sequence are called linear.

Figure 2.6(a) illustrates a linear feedback shift register with three stages and
an output sequence extracted from the final stage. The input to the first stage
is the modulo-2 sum of the contents of the second and third stages. After each
clock pulse, the contents of the first two stages are shifted to the right, and
the input to the first stage becomes its content. If the initial contents of the
shift-register stages are 0 0 1, the subsequent contents after successive shifts are
listed in Figure 2.6(b). Since the shift register returns to its initial state after 7
shifts, the periodic output sequence extracted from the final stage has a period
of 7 bits.

The state of the shift register after clock pulse is the vector
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Figure 2.5: General feedback shift register with stages.

Figure 2.6: (a) Three-stage linear feedback shift register and (b) contents after
successive shifts.
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where denotes the content of stage after clock pulse and S(0) is the
initial state. The definition of a shift register implies that

where denotes the input to stage 1 after clock pulse If denotes the
state of bit of the output sequence, then The state of a feedback
shift register uniquely determines the subsequent sequence of states and the
shift-register sequence. The period N of a periodic sequence is defined as
the smallest positive integer for which Since the number of
distinct states of an shift register is the sequence of states and the
shift-register sequence have period

The Galois field of two elements, which is denoted by GF(2), consists of
the symbols 0 and 1 and the operations of modulo-2 addition and modulo-2
multiplication. These binary operations are defined by

where denotes modulo-2 addition. From these equations, it is easy to verify
that the field is closed under both modulo-2 addition and modulo-2 multipli-
cation and that both operations are associative and commutative. Since –1 is
defined as that element which when added to 1 yields 0, we have –1 = 1, and
subtraction is the same as addition. From (2-11), it follows that the additive
identity element is 0, the multiplicative identity is 1, and the multiplicative
inverse of 1 is The substitutions of all possible symbol combinations
verify the distributive laws:

where and can each equal 0 or 1. The equality of subtraction and addition
implies that if then

The input to stage 1 of a linear feedback shift register is

where the operations are modulo-2 and the feedback coefficient equals either
0 or 1, depending on whether the output of stage feeds a modulo-2 adder.
An shift register is defined to have otherwise, the final state
would not contribute to the generation of the output sequence, but would only
provide a one-shift delay. For example, Figure 2.6 gives
and A general representation of a linear feedback shift
register is shown in Figure 2.7(a). If the corresponding switch is closed;
if it is open.

Since the output bit (2-16) and (2-19) imply that for
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Figure 2.7: Linear feedback shift register: (a) standard representation and (b)
high-speed form.

which indicates that each output bit satisfies the linear recurrence relation:

The first output bits are determined solely by the initial state:

Figure 2.7(a) is not necessarily the best way to generate a particular shift-
register sequence. Figure 2.7(b) illustrates an implementation that allows
higher-speed operation. From this diagram, it follows that

Repeated application of (2-22) implies that
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Addition of these equations yields

Substituting (2-23) and then into (2-25), we obtain

Since (2-26) is the same as (2-20). Thus, the two implementations can
produce the same output sequence indefinitely if the first output bits coincide.
However, they require different initial states and have different sequences of
states. Successive substitutions into the first equation of sequence (2-24) yields

Substituting and into (2-27) and then
using binary arithmetic, we obtain

If are specified, then (2-28) gives the corresponding initial state
of the high-speed shift register.

The sum of binary sequence and binary sequence
is defined to be the binary sequence each bit of which is the

modulo-2 sum of the corresponding bits of a and b. Thus, if we can
write

Consider sequences a and b that are generated by the same linear feedback
shift register but may differ because the initial states may be different. For the
sequence (2-29) and the associative and distributive laws of binary
fields imply that

Since the linear recurrence relation is identical, d can be generated by the same
linear feedback logic as a and b. Thus, if a and b are two output sequences of
a linear feedback shift register, then is also. If a = b, then is the
sequence of all 0’s, which can be generated by any linear feedback shift register.
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If a linear feedback shift register reached the zero state with all its contents
equal to 0 at some time, it would always remain in the zero state, and the
output sequence would subsequently be all 0’s. Since a linear feed-
back shift register has exactly nonzero states, the period of its output
sequence cannot exceed A sequence of period generated by a
linear feedback shift register is called a maximal or maximal-length sequence.
If a linear feedback shift register generates a maximal sequence, then all of its
nonzero output sequences are maximal, regardless of the initial states.

Out of possible states, the content of the last stage, which is the same
as the output bit, is a 0 in states. Among the nonzero states, the output
bit is a 0 in states. Therefore, in one period of a maximal sequence,
the number of 0’s is exactly while the number of 1’s is exactly

Given the binary sequence a, let denote a shifted binary
sequence. If a is a maximal sequence and modulo then
is not the sequence of all 0’s. Since             is generated by the same shift
register as a, it must be a maximal sequence and, hence, some cyclic shift of a.
We conclude that the modulo-2 sum of a maximal sequence and a cyclic shift
of itself by digits, where modulo produces another cyclic shift
of the original sequence; that is,

In contrast, a non-maximal linear sequence is not necessarily a
cyclic shift of a and may not even have the same period. As an example,
consider the linear feedback shift register depicted in Figure 2.8. The pos-
sible state transitions depend on the initial state. Thus, if the initial state
is 0 1 0, then the second state diagram indicates that there are two possible
states, and, hence, the output sequence has a period of two. The output se-
quence is a = (0,1,0,1,0,1,...), which implies that a(1) = (1,0,1,0,1,0,...)
and this result indicates that there is no value of

for which (2-31) is satisfied.

Periodic Autocorrelations

A binary sequence a with components can be mapped into a
binary antipodal sequence p with components by means of the
transformation

or, alternatively, The periodic autocorrelation of a periodic binary
sequence a with period N is defined as

Substitution of (2-32) into (2-33) yields
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Figure 2.8: (a) Nonmaximal linear feedback shift register and (b) state dia-
grams.

where denotes the number of agreements in the corresponding bits of a and
a(j), and denotes the number of disagreements. Equivalently, is the
number of 0’s in one period of and is the number of 1’s.

Consider a maximal sequence. From (2-31), it follows that equals the
number of 0’s in a maximal sequence if modulo N. Thus,
and, similarly,                              if             modulo N. Therefore,

The periodic autocorrelation of a periodic function with period T is
defined as

where is the relative delay variable and is an arbitrary constant. It follows
that has period T. We derive the periodic autocorrelation of assum-
ing an ideal periodic spreading waveform of infinite extent and a rectangular



2.2. SPREADING SEQUENCES AND WAVEFORMS 67

chip waveform. If the spreading sequence has period N, then has period
Equations (2-2) and (2-36) with c = 0 yield the autocorrelation of

If where is an integer, then (2-3), and (2-37) yield

Any delay can be expressed in the form where is an integer
and Therefore, (2-37) and give

Using (2-38) and (2-3) in (2-39), we obtain

For a maximal sequence, the substitution of (2-35) into (2-40) yields over
one period:

where is the triangular function defined by (2-14). Since it has period
the autocorrelation can be compactly expressed as

Over one period, this autocorrelation resembles that of a random binary se-
quence, which is given by (2-13) with Both autocorrelations are shown
in Figure 2.9.

A straightforward calculation or the use of tables gives the Fourier transform
of the triangular function:
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Figure 2.9: Autocorrelations of maximal sequence and random binary sequence.

where and sinc Since the infinite series in (2-
42) is a periodic function of it can be expressed as a complex exponential
Fourier series. From (2-43) and the fact that the Fourier transform of a complex
exponential is a delta function, we obtain

where is the Dirac delta function. Applying this identity to (2-42), we
determine the power spectral density of which is defined as the
Fourier transform of

This function, which consists of an infinite series of delta functions, is depicted
in Figure 2.10.

A pseudonoise or pseudorandom sequence is a periodic binary sequence with
a nearly even balance of 0’s and 1’s and an autocorrelation that roughly re-
sembles, over one period, the autocorrelation of a random binary sequence.
Pseudonoise sequences, which include the maximal sequences, provide practi-
cal spreading sequences because their autocorrelations facilitate code synchro-
nization in the receiver (Chapter 4). Other sequences have peaks that hinder
synchronization.

To derive the power spectral density of a direct-sequence signal with a pe-
riodic spreading sequence, it is necessary to define the average autocorrelation
of

The limit exists and may be nonzero if has finite power and infinite dura-
tion. If is stationary, The average power spectral density

is defined as the Fourier transform of the average autocorrelation.
For the direct-sequence signal of (2-1), is modeled as a random binary

sequence with autocorrelation given by (2-13), and is modeled as a random



2.2. SPREADING SEQUENCES AND WAVEFORMS 69

Figure 2.10: Power spectral density of maximal sequence.

variable uniformly distributed over and statistically independent of
Neglecting the constraint that the bit transitions must coincide with chip tran-
sitions, we obtain the autocorrelation of the direct-sequence signal

where is the periodic spreading waveform. Substituting this equation into
(2-46) and using (2-36), we obtain

where is the periodic autocorrelation of For a maximal spreading se-
quence, the convolution theorem, (2-48), (2-43), and (2-45) provide the average
power spectral density of

where the lowpass equivalent density is

For a random binary sequence, is given by (2-49) with
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Polynomials over the Binary Field

Polynomials allow a compact description of the dependence of the output se-
quence of a linear feedback shift register on its feedback coefficients and initial
state. A polynomial over the binary field GF(2) has the form

where the coefficients are elements of GF (2) and the symbol
is an indeterminate introduced for convenience in calculations. The degree of
a polynomial is the largest power of with a nonzero coefficient. The sum of
a polynomial of degree and a polynomial of degree is another
polynomial over GF(2) defined as

where denotes the larger of and An example is

The product of two polynomials over GF(2) is another polynomial over GF(1)
defined as

where the inner addition is modulo 2. For example,

It is easily verified that associative, commutative, and distributive laws apply
to polynomial addition and multiplication.

The characteristic polynomial associated with a linear feedback shift register
of stages is defined as

where assuming that stage contributes to the generation of the
output sequence. The generating function associated with the output sequence
is defined as



2.2. SPREADING SEQUENCES AND WAVEFORMS 71

Substitution of (2-20) into this equation yields

Combining this equation with (2-56), and defining we obtain

which implies that

Thus, the generating function of the output sequence generated by a linear
feedback shift register with characteristic polynomial may be expressed in
the form where the degree of is less than the degree
of The output sequence is said to be generated by Equation (2-
60) explicitly shows that the output sequence is completely determined by the
feedback coefficients and the initial state

In Figure 2.6, the feedback coefficients are and and
the initial state gives and Therefore,

Performing the long polynomial division according to the rules of binary arith-
metic yields which implies the output sequence
listed in the figure.

The polynomial is said to divide the polynomial if there is a poly-
nomial such that A polynomial over GF(2) of degree

is called irreducible if is not divisible by any polynomial over GF(2) of
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degree less than but greater than zero. If is irreducible over GF(2),
then for otherwise would divide If has an even number
of terms, then and the fundamental theorem of algebra implies that

divides Therefore, an irreducible polynomial over GF(2) must have
an odd number of terms, but this condition is not sufficient for irreducibility.
For example, is irreducible, but
is not.

If a shift-register sequence is periodic with period then its generating
function may be expressed as

where is a polynomial of degree Therefore,

Suppose that and have no common factors, which is true if is
irreducible since is of lower degree than Then must divide

Conversely, if the characteristic polynomial divides then
for some polynomial and

which has the form of (2-62). Thus, generates a sequence of period for
all and, hence, all initial states.

A polynomial over GF(2) of degree is called primitive if the smallest
positive integer for which the polynomial divides is
Thus, a primitive characteristic polynomial of degree can generate a sequence
of period which is the period of a maximal sequence generated by a
characteristic polynomial of degree Suppose that a primitive characteristic
polynomial of positive degree could be factored so that
where is of positive degree and is of positive degree A
partial-fraction expansion yields

Since and can serve as characteristic polynomials, the period of the
first term in the expansion cannot exceed while the period of the second
term cannot exceed Therefore, the period of cannot exceed
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, which contradicts the assumption that
is primitive. Thus, a primitive characteristic polynomial must be irreducible.

Theorem. A characteristic polynomial of degree generates a maximal
sequence of period if and only if it is a primitive polynomial.

Proof: To prove sufficiency, we observe that if is a primitive charac-
teristic polynomial, it divides for so a maximal sequence of
period is generated. If a sequence of smaller period could be generated,
then the irreducible would have to divide for which contra-
dicts the assumption of a primitive polynomial. To prove necessity, we observe
that if the characteristic polynomial generates a maximal sequence with
period then cannot divide because a sequence
with a smaller period would result, and such a sequence cannot be generated
by a maximal sequence generator. Since does divide it must be a
primitive polynomial.

Primitive polynomials are difficult to find, but many have been tabulated
(e.g., [4]). Those for which and one of those of minimal coefficient weight
for are listed in Table 2.1 as octal numbers in increasing order (e.g.,

For any positive integer the number of
different primitive polynomials of degree over GF(2) is

where the Euler function is the number of positive integers that are less
than and relatively prime to the positive integer If is a prime number,
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In general,

where are the prime integers that divide Thus,
and

Long Nonlinear Sequences

A long sequence or long code is a spreading sequence with a period that is much
longer than the data-symbol duration and may even exceed the message du-
ration. A short sequence or short code is a spreading sequence with a period
that is equal to or less than the data-symbol duration. Since short sequences
are susceptible to interception and linear sequences are inherently suscepti-
ble to mathematical cryptanalysis [1], long nonlinear pseudonoise sequences
and programmable code generators are needed for communications with a high
level of security. However, if a modest level of security is acceptable, short
or moderate-length pseudonoise sequences are preferable for rapid acquisition,
burst communications, and multiuser detection.

The algebraic structure of linear feedback shift registers makes them sus-
ceptible to cryptanalysis. Let

denote the column vector of the feedback coefficients of an linear
feedback shift register, where T denotes the transpose. The column vector of

successive sequence bits produced by the shift register starting at bit is

Let denote the matrix with columns consisting of the vectors
for

The linear recurrence relation (2-14) indicates that the output sequence and
feedback coefficients are related by

If consecutive sequence bits are known, then and are completely
known for some If is invertible, then the feedback coefficients can be
computed from
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Figure 2.11: Linear generator of binary sequence with period

A shift-register sequence is completely determined by the feedback coefficients
and any state vector. Since any successive sequence bits determine a state
vector, successive bits provide enough information to reproduce the output
sequence unless is not invertible. In that case, one or more additional bits
are required.

If a binary sequence has period it can always be generated by a
linear feedback shift register by connecting the output of the last stage to the
input of the first stage and inserting consecutive bits of the sequence into the
output sequence, as illustrated in Figure 2.11. The polynomial associated with
one period of the binary sequence is

Let denote the greatest common polynomial divisor of the
polynomials and Then (2-62) implies that the generating function
of the sequence may be expressed as

If the degree of the denominator of is less than
Therefore, the sequence represented by can be generated by a linear feed-
back shift register with fewer stages than and with the characteristic function
given by the denominator. The appropriate initial state can be determined from
the coefficients of the numerator.

The linear equivalent of the generator of a sequence is the linear shift register
with the fewest stages that produces the sequence. The number of stages in the
linear equivalent is called the linear complexity of the sequence. If the linear
complexity is equal to then (2-72) determines the linear equivalent after the
observation of consecutive sequence bits. Security improves as the period of
a sequence increases, but there are practical limits to the number of shift-register
stages. To produce sequences with a long enough period for high security, the
feedback logic in Figure 2.5 must be nonlinear. Alternatively, one or more
shift-register sequences or several outputs of shift-register stages may be applied
to a nonlinear device to produce the sequence [5]. Nonlinear generators with
relatively few shift-register stages can produce sequences of enormous linear
complexity. As an example, Figure 2.12(a) depicts a nonlinear generator in
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Figure 2.12: (a) Nonlinear generator and (b) its linear equivalent.

which two stages of a linear feedback shift register have their outputs applied
to an AND gate to produce the output sequence. The initial contents of the
shift-register stages are indicated by the enclosed binary numbers. Since the
linear generator produces a maximal sequence of length 7, the output sequence
has period 7. The first period of the sequence is (0 0 0 0 0 1 1), from which the
linear equivalent with the initial contents shown in Figure 2.12(b) is derived by
evaluating (2-74).

While a large linear complexity is necessary for the cryptographic integrity
of a sequence, it is not necessarily sufficient because other statistical charac-
teristics, such as a nearly even distribution of 1’s and 0’s, are required. For
example, a long sequence of many 0’s followed by a single 1 has a linear com-
plexity equal to the length of the sequence, but the sequence is very weak. The
generator of Figure 2.12(a) produces a relatively large number of 0’s because
the AND gate produces a 1 only if both of its inputs are 1’s.

As another example, a nonlinear generator that uses a multiplexer is shown
in Figure 2.13. The outputs of various stages of feedback shift register 1 are
applied to the multiplexer, which interprets the binary number determined
by these outputs as an address. The multiplexer uses this address to select
one of the stages of feedback shift register 2. The selected stage provides the
multiplexer output and, hence, one bit of the output sequence. Suppose that
register 1 has stages and register 2 has stages. If stages of register 1, where

are applied to the multiplexer, then the address is one of the numbers
Therefore, if each address specifies a distinct stage of
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Figure 2.13: Nonlinear generator that uses a multiplexer.

register 2. The initial states of the two registers, the feedback connections,
and which stages are used for addressing may be parts of a variable key that
provides security. The security of the nonlinear generator is further enhanced
if nonlinear feedback is used in both shift registers.

2.3 Systems with PSK Modulation

A received direct-sequence signal with coherent PSK modulation and ideal car-
rier synchronization can be represented by (2-1) or (2-6) with to reflect
the absence of phase uncertainty. Assuming that the chip waveform is well
approximated by a waveform of duration the received signal is

where S is the average power, is the data modulation, is the spreading
waveform, and is the carrier frequency. The data modulation is a sequence
of nonoverlapping rectangular chip waveforms, each of which has an amplitude
equal to +1 or –1. Each pulse of represents a data symbol and has a
duration of The spreading waveform has the form

where    is equal to +1 or –1 and represents one chip of a spreading sequence
It is convenient, and entails no loss of generality, to normalize the energy

content of the chip waveform according to

Because the transitions of a data symbol and the chips coincide on both sides
of a symbol, the processing gain, defined as
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Figure 2.14: Basic elements of correlator for direct-sequence signal with coher-
ent PSK.

is an integer equal to the number of chips in a symbol interval.
A practical direct-sequence system differs from the functional diagram of

Figure 2.2. The transmitter needs practical devices, such as a power amplifier
and a filter, to limit out-of-band radiation. In the receiver, the radio-frequency
front end includes devices for wideband filtering and automatic gain control.
These devices are assumed to have a negligible effect on the operation of the
demodulator, at least for the purposes of this analysis. Thus, the front-end
circuitry is omitted from Figure 2.14, which shows the optimum demodulator
in the form of a correlator for the detection of a single symbol in the pres-
ence of white Gaussian noise. This correlator is more practical and flexible
for digital processing than the alternative one shown in Figure 2.2. It is a
suboptimal but reasonable approach against non-Gaussian interference. An
equivalent matched-filter demodulator is implemented with a transversal filter
or tapped delay line and a stored spreading sequence. However, the matched-
filter implementation is not practical for a long sequence that extends over many
data symbols. If the chip-rate synchronization in Figure 2.14 is accurate, then
the demodulated sequence and the receiver-generated spreading sequence are
multiplied together, and G successive products are added in an accumulator
to produce the decision variable. The effective sampling rate of the decision
variable is the symbol rate. The sequence generator, multiplier, and summer
function as a discrete-time filter matched to the spreading sequence.

In the subsequent analysis, perfect phase, sequence, and symbol synchro-
nization are assumed. The received signal is

where is the interference, and denotes the zero-mean white Gaussian
noise. The chip matched filter has impulse response Its output is sam-
pled at the chip rate to provide G samples per data symbol. If
over then (2-75) to (2-79) indicate that the demodulated sequence cor-
responding to this data symbol is
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where

and it is assumed that so that the integral over a double-frequency
term in (2-81) is negligible. The input to the decision device is

where

Suppose that represents the logic symbol 1 and represents
the logic symbol 0. The decision device produces the symbol 1 if V > 0 and
the symbol 0 if V < 0. An error occurs if V < 0 when or if V > 0
when The probability that V = 0 is zero.

The white Gaussian noise has autocorrelation

where is the two-sided noise power spectral density. Since (2-
86) implies that A straightforward calculation using (2-83), (2-86),
(2-87), the limited duration of and yields

It is natural and analytically desirable to model a long spreading sequence
as a random binary sequence. The random-binary-sequence model does not
seem to obscure important exploitable characteristics of long sequences and is
a reasonable approximation even for short sequences in networks with asyn-
chronous communications. A random binary sequence consists of statistically
independent symbols, each of which takes the value +1 with probability 1/2
or the value –1 with probability 1/2. Thus, It then fol-
lows from (2-84) to (2-86) that and the mean value of the
decision variable is
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for the direct-sequence system with coherent PSK. Since and are indepen-
dent for

Therefore, the independence of and for all and implies that
and hence

Tone Interference at Carrier Frequency

For tone interference with the same carrier frequency as the desired signal,
a nearly exact, closed-form equation for the symbol error probability can be
derived. The tone interference has the form

where I is the average power and is the phase relative to the desired signal.
Assuming that (2-82), (2-85), (2-92) and a change of variables give

A rectangular chip waveform has which is given by (2-3).
For sinusoidal chips in the spreading waveform, where

Let denote the number of chips in for which the number
for which is Equations (2-93), (2-3), and (2-94) yield

where depends on the chip waveform, and

These equations indicate that the use of sinusoidal chip waveforms instead of
rectangular ones effectively reduces the interference power by a factor if

Thus, the advantage of sinusoidal chip waveforms is 0.91 dB against
tone interference at the carrier frequency. Equation (2-95) indicates that tone
interference at the carrier frequency would be completely rejected if
in every symbol interval.

In the random-binary-sequence model, is equally likely to be +1 or –1.
Therefore, the conditional symbol error probability given the value of is
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where is the conditional symbol error probability given the values
of and Under these conditions, is a constant, and V has a Gaussian
distribution. Equations (2-84) and (2-95) imply that the conditional expected
value of V is

The conditional variance of V is equal to the variance of which is given by
(2-88). Using the Gaussian density to evaluate and
separately and then consolidating the results yields

where is the energy per symbol and (1-30) defines

Assuming that is uniformly distributed over and exploiting the peri-
odicity of we obtain the symbol error probability

where is given by (2-97) and (2-99).

General Tone Interference

To simplify the preceding equations for and to examine the effects of tone
interference with a carrier frequency different from the desired frequency, a
Gaussian approximation is used. Consider interference due to a single tone of
the form

where I, and are the average power, frequency, and phase angle of the
interference signal at the receiver. The frequency is assumed to be close
enough to the desired frequency that the tone is undisturbed by the initial
wideband filtering that precedes the correlator. If so
that a term involving is negligible, (2-102) and (2-82) and a change of
variable yield
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For a rectangular chip waveform, evaluation of the integral and trigonometry
yield

where

Substituting (2-104) into (2-91) and expanding the squared cosine, we obtain

To evaluate the inner summation, we use the identity

which is proved by using mathematical induction and trigonometric identities.
Evaluation and simplification yield

where

Given the value of the in (2-104) are uniformly bounded constants, and,
hence, the terms of in (2-85) are independent and uniformly bounded. Since

as the central limit theorem [6] implies that when G is
large, the conditional distribution of is approximately Gaussian. Thus, V is
nearly Gaussian with mean given by (2-89) and
Because of the symmetry of the model, the conditional symbol error probability
may be calculated by assuming and evaluating the probability that
V < 0. A straightforward derivation using (2-108) indicates that the conditional
symbol error probability is well approximated by

where

and can be interpreted as the equivalent two-sided power spectral den-
sity of the interference plus noise, given the value of For sinusoidal chip
waveforms, a similar derivation yields (2-110) with
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To explicitly exhibit the reduction of the interference power by the factor G,
we may substitute in (2-111) or (2-112). A comparison of these
two equations confirms that sinusoidal chip waveforms provide a
dB advantage when but this advantage decreases as increases
and ultimately disappears. The preceding analysis can easily be extended to
multiple tones, but the resulting equations are complicated.

If in (2-109) is modeled as a random variable that is uniformly distributed
over then the character of in (2-111) implies that its
distribution is the same as it would be if were uniformly distributed over

Therefore, we can henceforth assign a uniform distribution for The
symbol error probability, which is obtained by averaging over the range
of is

where the fact that takes all its possible values over has been
used to shorten the integration interval.

Figure 2.15 depicts the symbol error probability as a function of the despread
signal-to-interference ratio, GS/I, for one tone-interference signal, rectangular
chip waveforms, G = 50 = 17 dB, and and 20 dB.
One pair of graphs are computed using the approximate model of (2-111) and
(2-113), while the other pair are derived from the nearly exact model of (2-97),
(2-99), and (2-101) with For the nearly exact model, depends not
only on GS/I, but also on G. A comparison of the two graphs indicates that the
error introduced by the Gaussian approximation is on the order of or less than
0.1 dB when This example and others provide evidence that the
Gaussian approximation introduces insignificant error if and practical
values for the other parameters are assumed.

Figure 2.16 uses the approximate model to plot versus the normalized
frequency offset for rectangular and sinusoidal chip waveforms, G = 17
dB, dB, and GS/I = 10 dB. The performance advantage of sinu-
soidal chip waveforms is apparent, but their realization or that of Nyquist chip
waveforms in a transmitted PSK waveform is difficult because of the distortion
introduced by a nonlinear power amplifier in the transmitter when the signal
does not have a constant envelope.

Gaussian Interference

Gaussian interference is interference that approximates a zero-mean, stationary
Gaussian process. If is modeled as Gaussian interference and
then (2-82), a trigonometric expansion, the dropping of a negligible double
integral, and a change of variables give
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Figure 2.15: Symbol error probability of binary direct-sequence system with
tone interference at carrier frequency and G = 17 dB.

Figure 2.16: Symbol error probability for direct-sequence system with PSK,
rectangular and sinusoidal chip waveforms, G = 17 dB, and
GS / I = 10 dB in the presence of tone interference.
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where is the autocorrelation of Since does not depend on the
index (2-91) gives

Assuming that is rectangular, we change variables in (2-114) by using
and The Jacobian of this transformation is 2. Evaluating

one of the resulting integrals and substituting the result into (2-115) yields

The limits in this equation can be extended to because the integrand is

truncated. Since is an even function, the cosine function may

be replaced by a complex exponential. Then the convolution theorem and the
known Fourier transform of yield the alternative form

where is the power spectral density of the interference after passage
through the initial wideband filter of the receiver.

Since is a zero-mean Gaussian process, the are zero-mean and
jointly Gaussian. Therefore, if the are given, then is conditionally
zero-mean and Gaussian. Since does not depend on the without
conditioning is a zero-mean Gaussian random variable. The independence of
the thermal noise and the interference imply that is a zero-mean
Gaussian random variable. Thus, a standard derivation yields the symbol error
probability:

where

If is the interference power spectral density at the input and is the
transfer function of the initial wideband filter, then Sup-
pose that the interference has a flat spectrum over a band within the passband
of the wideband filter so that

If the integration over negative frequencies in (2-119) is negligible
and
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This equation shows that or coupled with a narrow bandwidth
increases the impact of the interference power. Since the integrand is upper-
bounded by unity, This upper bound is intuitively reasonable
because where is the bandwidth of narrowband
interference after the despreading, and is its power spectral density. Equation
(2-118) yields

This upper bound is tight if and the Gaussian interference is narrowband.
A plot of (2-122) with the parameter values of Figure 2.15 indicates that roughly
2 dB more interference power is required for worst-case Gaussian interference
to degrade as much as tone interference at the carrier frequency.

2.4 Quaternary Systems

A received quaternary direct-sequence signal with ideal carrier synchronization
and a chip waveform of duration can be represented by

where two spreading waveforms, and and two data signals,
and are used with two quadrature carriers, and is the relative delay be-
tween the in-phase and quadrature components of the signal. For a quadriphase
direct-sequence system, which uses QPSK, For a direct-sequence sys-
tem with offset QPSK (OQPSK) or minimum-shift keying (MSK),
For OQPSK, the chip waveforms are rectangular; for MSK, they are sinusoidal.
One might use MSK to limit the spectral sidelobes of the direct-sequence signal,
which may interfere with other signals.

Consider the classical or dual quaternary system in which and
are independent. Let denote the duration of the data symbols before the
generation of (2-123), and let denote the duration of the channel
symbols, which are transmitted in pairs. Let denote the common chip dura-
tion of and The number of chips per channel symbol is 2G, where

It is assumed that the synchronization is perfect in the receiver,
which is shown in Figure 2.17. Consequently, if the received signal is given by
(2-123), then the upper decision variable applied to the decision device at the
end of a symbol interval during which is

where and are given by (2-82) and (2-83), respectively. The term repre-
senting crosstalk,
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Figure 2.17: Receiver for direct-sequence signal with dual quaternary modula-
tion; CMF = chip-matched filter; SSG = spreading sequence generator. Delay
= 0 for QPSK; for OQPSK and MSK.

is negligible if so that the sinusoid in (2-125) varies much more
rapidly than the other factors. Similarly, the lower decision variable at the end
of a channel-symbol interval during which is

where

Of the available desired-signal power S, half is in each of the two components
of (2-123). Since the energy per channel symbol is the
same as for a direct-sequence system with PSK, and

A derivation similar to the one leading to (2-88) gives the variances of the noise
terms and in (2-124) and (2-126):

Using the tone-interference model of Section 2.3, and averaging the error
probabilities for the two parallel symbol streams, we obtain the conditional
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symbol error probability:

where and arise from the upper and lower branches of Figure
2.17, respectively. For rectangular chip waveforms (QPSK and OQPSK signals),

and for sinusoidal chip waveforms,

where and we have used and

These equations indicate that for a quaternary direct-sequence system
and the worst value of is usually lower than for a binary direct-sequence
system with the same chip waveform and the worst value of The symbol error
probability is determined by integrating over the distribution of For
a uniform distribution, the two integrals are equal. Using the periodicity of

to shorten the integration interval, we obtain

The quaternary system provides a slight advantage relative to the binary system
against tone interference. Both systems provide the same when and
nearly the same when Figure 2.18 illustrates versus the
normalized frequency offset for quaternary and binary systems, G = 17
dB, and GS / I = 10 dB.

In a balanced quaternary system, the same data symbols are carried by both
the in-phase and quadrature components, which implies that the received direct-
sequence signal has the form given by (2-123) with Thus,
although the spreading is done by quadrature carriers, the data modulation may
be regarded as binary PSK. A receiver for this system is shown in Figure 2.19.
The synchronization system is assumed to operate perfectly in the subsequent
analysis. If the crosstalk terms similar to (2-125) are negligible. If
the transmitted symbol is then the input to the decision device
is
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Figure 2.18: Symbol error probability for quaternary and binary direct-sequence
systems with G = 17 dB, and GS / I  = 10 dB in the presence
of tone interference.

Figure 2.19: Receiver for direct-sequence signal with balanced quaternary mod-
ulation (delay = 0 for QPSK and for OQPSK and MSK); CMF
= chip-matched filter; SSG = spreading sequence generator.
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where is the duration of both a data symbol and a channel symbol. If
and are approximated by independent random binary sequences, then
the last four terms of (2-136) are zero-mean uncorrelated random variables.
Therefore, the variance of V is equal to the sum of the variances of these four
random variables, and

Straightforward evaluations verify that both types of quaternary signals provide
the same performance against Gaussian interference as direct-sequence signals
with PSK.

Consider a balanced QPSK system, for which If is a tone, then a
straightforward extension of the preceding analysis for general tone interference
(Section 2.3) yields a that is independent of Therefore,

where for rectangular chip waveforms,

and for sinusoidal chip waveforms,

If a nearly exact model similar to the one in Section 2.3 implies that
the conditional symbol error probability is

where and are the number of chips in a symbol for which and
respectively, and is the conditional symbol error

probability given the values of and and that A derivation
analogous to that of (2-99) yields

If is uniformly distributed over then

Numerical comparisons of the nearly exact model with the approximate results
given by (2-138) for indicate that the approximate results typically
introduce an insignificant error if
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If is a convex function over an interval containing the range of a random
variable X, then Jensen’s inequality (Appendix A) is

provided that the indicated expected values exist. Consider the function

Since the second derivative of is nonnegative over the interval such that
is a convex function over that interval, and Jensen’s

inequality is applicable.
The application of this result to (2-135) with and the fact that

yields a lower bound identical to the right-hand side of (2-138).
Thus, the balanced QPSK system, for which provides a lower
symbol error probability against tone interference than the dual quaternary or
QPSK system for which A sufficient convexity condition for all

is

Figure 2.20 illustrates the performance advantage of the balanced QPSK system
of Figure 2.19 against tone interference when Equations (2-131) to
(2-135) and (2-138) to (2-140) are used for the dual quaternary and the balanced
QPSK systems, respectively, and G = 17 dB, and GS/I = 10
dB. The normalized frequency offset is The advantage of the balanced
QPSK system when is small exists because a tone at the carrier frequency
cannot have a phase that causes desired-signal cancellation simultaneously in
both receiver branches.

2.5 Pulsed Interference

Pulsed interference is interference that occurs periodically or sporadically for
brief durations. Whether it is generated unintentionally or by an opponent,
pulsed interference can cause a substantial increase in the bit error rate of
a communication system relative to the rate caused by continuous interference
with the same average power. Pulsed interference may be produced in a receiver
by a signal with a variable center frequency that sweeps over a frequency range
that intersects or includes the receiver passband.

Consider a direct-sequence system with binary PSK that operates in the
presence of pulsed interference. Let denote either the pulse duty cycle, which
is the ratio of the pulse duration to the repetition period, or the probability of
pulse occurrence if the pulses occur randomly. During a pulse, the interference
is modeled as Gaussian interference with power where I is the average
interference power. According to (2-121), the equivalent noise-power spectral
density may be decomposed as
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Figure 2.20: Symbol error probability for direct-sequence systems with balanced
QPSK and dual quaternary modulations, rectangular and sinusoidal chip wave-
forms, G = 17 dB, and GS/I = 10 dB in the presence of tone
interference.

where the power spectral density of continuous interference is

In the absence of a pulse, whereas in the presence
of a pulse. If the interference pulse duration approximately equals or exceeds
the channel-symbol duration, then (2-118) implies that

If is treated as a continuous variable over [0,1] and calculus gives
the value of that maximizes

Thus, worst-case pulsed interference is more damaging than continuous inter-
ference if

By substituting into (2-149), we obtain an approximate expression
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for the worst-case when

This equation indicates that the worst-case varies inversely, rather than
exponentially, with if this ratio is sufficiently large. To restore a nearly
exponential dependence on a channel code and symbol interleaving are
necessary.

Decoding metrics that are effective against white Gaussian noise are not
necessarily effective against worst-case pulsed interference. We examine the
performance of five different metrics against pulsed interference when the direct-
sequence system uses PSK, ideal symbol interleaving, a binary convolutional
code, and Viterbi decoding [7]. The results are the same when either dual or
balanced QPSK is the modulation.

Let denote the total information weight of the paths at Hamming
distance from the correct path over an unmerged segment in the trellis dia-
gram of the convolutional code. Let denote the probability of an error
in comparing the correct path segment with a path segment that differs in
symbols. According to (1-112) with the information-bit error rate is
upper-bounded by

where is the minimum free distance. If is the code rate, is the energy
per information bit, is the bit duration, and is the processing gain of the
uncoded system, then

The decrease in the processing gain is compensated by the coding gain. An
upper bound on for worst-case pulsed interference is obtained by maximizing
the right-hand side of (2-152) with respect to where The max-
imizing value of which depends on the decoding metric, is not necessarily
equal to the actual worst-case because a bound rather than an equality is
maximized. However, the discrepancy is small when the bound is tight.

The simplest practical metric to implement is provided by hard-decision
decoding. Assuming that the deinterleaving ensures the independence of symbol
errors, (1-114) indicates that
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Figure 2.21: Worst-case performance against pulsed interference for convolu-
tional codes of constraint length K, rate and hard decisions.

Since approximately maximizes it also approximately maximizes the
upper bound on for hard-decision decoding given by (2-152) to (2-154).

Figure 2.21 depicts the upper bound on as a function of for worst-
case pulsed interference, and binary convolutional codes with
several constraint lengths and rates. Tables 1.4 and 1.5 for are used, and
the series in (2-152) is truncated after the first 7 terms. This truncation gives
reliable results only if because the series converges very slowly. How-
ever, the truncation error is partially offset by the error incurred by the use of
the union bound because the latter error is in the opposite direction. Figure
2.21 indicates the significant advantage of raising the constraint length K and
reducing at the cost of increased implementation complexity and synchroniza-
tion requirements, respectively.

Let denote the equivalent one-sided noise-power spectral density in out-
put sample of a coherent PSK demodulator. For convenience, is assumed
to have the form of the right-hand side of (2-84) normalized by multiplying the
latter by Thus, has variance Given that code symbol of
sequence has value the conditional probability density function of is
determined from the Gaussian character of the interference and noise. For a
sequence of L code symbols, the density is
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From the log-likelihood function and the statistical independence of the
samples, it follows that when the values of are known, the
maximum-likelihood metric for optimal soft-decision decoding of the sequence
is

This metric weights each output sample according to the level of the equiv-
alent noise. Since each is assumed to be an independent Gaussian random
variable, is a Gaussian random variable.

Without loss of generality, let label the correct sequence and
label an incorrect one at distance We assume that there is no quantization
of the sample values or that the quantization is infinitely fine. Therefore, the
probability that U(2) = U(1) is zero, and the probability of an error in com-
paring a correct sequence with an incorrect one that differs in symbols,
is equal to probability that The symbols that are the
same in both sequences are irrelevant to the calculation of and are ignored
subsequently. Let denote the conditional probability that given
that an interference pulse occurs during out of differing symbols and does
not occur during symbols. Because of the interleaving, the probability that
a symbol is interfered is statistically independent of the rest of the sequence and
equals Thus, (2-152 ) yields

Since is a Gaussian random variable, is determined from the condi-
tional mean and variance. A straightforward calculation gives

where is the conditional mean and is the conditional vari-
ance. When an interference pulse occurs, otherwise,
Reordering the symbols for calculative simplicity and observing that

and we obtain
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Using the statistical independence of the samples and observing that
we find similarly that

Substituting (2-159) and (2-160) into (2-158), we obtain

The substitution of this equation into (2-157) gives the upper bound on for
the maximum-likelihood metric.

The upper bound on versus for worst-case pulsed interference,
and several binary convolutional codes is shown in Figure 2.22.

Although the worst value of varies with it is found that worst-case
pulsed interference causes very little degradation relative to continuous inter-
ference. When K = 9 and the maximum-likelihood metric provides a
performance that is more than 4 dB superior at to that provided by
hard-decision decoding; when K = 9 and the advantage is approxi-
mately 2.5 dB. However, the implementation of the maximum-likelihood metric
entails knowledge of not only the presence of interference, but also its density
level. Estimates of the might be based on power measurements in adjacent
frequency bands only if the interference spectral density is fairly uniform over
the desired-signal and adjacent bands. Any measurement of the power within
the desired-signal band is contaminated by the presence of the desired signal,
the average power of which is usually unknown a priori because of the fading.
Since iterative estimation of the and decoding is costly in terms of system
latency and complexity, we examine another approach.

Consider an automatic gain control (AGC) device that measures the average
power at the demodulator output before sampling and then weights the sampled
demodulator output in proportion to the inverse of the measured power to
form the AGC metric. The average power during channel-symbol is

where B is the equivalent bandwidth of the demodulator and is the
channel-symbol duration. If the power measurement is perfect and
then the AGC metric is

which is a Gaussian random variable. This metric and (2-158) yield

This equation and (2-157) give the upper bound on for the AGC metric.
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Figure 2.22: Worst-case performance against pulsed interference for convolu-
tional codes of constraint length K, rate and maximum-
likelihood (ML) and AGC metrics.

The upper bound on versus for worst-case pulsed interference,
the AGC metric, the rate-1/2 binary convolutional code with K = 7, and

is plotted in Figure 2.22. The figure indicates that the potential
performance of the AGC metric is nearly as good as that of the maximum-
likelihood metric.

The measurement of may be performed by a radiometer, which
is a device that measures the energy at its input. An ideal radiometer (Chapter
7) provides an unbiased estimate of the energy received during a symbol interval.
The radiometer outputs are accurate estimates only if the standard deviation of
the output is much less than its expected value. This criterion and theoretical
results for indicate that the energy measurements over a symbol
interval will be unreliable if during interference pulses. Thus,
the potential performance of the AGC metric is expected to be significantly
degraded in practice unless each interference pulse extends over many channel
symbols and its energy is measured over the corresponding interval.

The maximum-likelihood metric for continuous interference is constant
for all is the white-noise metric:

which is much simpler to implement than the AGC metric. For the white-noise
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Figure 2.23: Performance against pulsed interference for convolutional code
with white-noise metric, K = 7, and

metric, calculations similar to the preceding ones yield

This equation and (2-157) give the upper bound on for the white-noise met-
ric. Figure 2.23 illustrates the upper bound on versus for K = 7,

and several values of The figure demonstrates
the vulnerability of soft-decision decoding with the white-noise metric to short
high-power pulses if interference power is conserved. The high values of
for are due to the domination of the metric by a few degraded symbol
metrics.

Consider a coherent PSK demodulator that erases its output and, hence,
a received symbol whenever an interference pulse occurs. The presence of the
pulse might be detected by examining a sequence of the demodulator outputs
and determining which ones have inordinately large magnitudes compared to the
others. Alternatively, the demodulator might decide that a pulse has occurred
if an output has a magnitude that exceeds a known upper bound for the desired
signal. Consider an ideal demodulator that unerringly detects the pulses and
erases the corresponding received symbols. Following the deinterleaving of the
demodulated symbols, the decoder processes symbols that have a probability
of being erased equal to The unerased symbols are decoded by using the
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Figure 2.24: Performance against pulsed interference for convolutional code
with erasures, K = 7, and

white-noise metric. The erasing of symbols causes two sequences that differ
in symbols to be compared on the basis of symbols where As
a result,

The substitution of this equation into (2-157) give the upper bound on for
errors-and-erasures decoding.

The upper bound on is illustrated in Figure 2.24 for K = 7,
20 dB, and several values of In this example, erasures provide no ad-
vantage over the white-noise metric in reducing the required for
if but are increasingly useful as decreases. Consider an ideal de-
modulator that activates erasures only when is small enough that the erasures
are more effective than the white-noise metric. When this condition does not
occur, the white-noise metric is used. The upper bound on for this ideal
erasure decoding, worst-case pulsed interference, dB, and several
binary convolutional codes is illustrated in Figure 2.25. The required
at is roughly 2 dB less than for worst-case hard-decision decoding.
However, a practical demodulator will sometimes erroneously make erasures or
fail to erase, and its performance advantage may be much more modest.
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Figure 2.25: Worst-case performance against pulsed interference for convo-
lutional codes with ideal erasure decoding, constraint length K, rate and

2.6 Despreading with Matched Filters

Despreading short spreading sequences with matched filters provides inherent
code synchronization. The spreading waveform for a short sequence may be
expressed as

where is one period of the spreading waveform and T is its period. If the
short spreading sequence has length N, then

where and
Consider a signal that is zero outside the interval [0, T]. A filter is said to

be matched to this signal if the impulse response of the filter is
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When is applied to a filter matched to it, the filter output is

The aperiodic autocorrelation of a deterministic signal with finite energy is de-
fined as

Therefore, the response of a matched filter to the matched signal is

If this output is sampled at then the signal energy.
Consider a bandpass matched filter that is matched to

where is one period of a spreading waveform and is the desired carrier
frequency. We evaluate the filter response to the received signal corresponding
to a single data symbol:

where is a measure of the unknown arrival time, the polarity of A is de-
termined by the data symbol, and is the received carrier frequency, which
differs from because of oscillator instabilities and the Doppler shift. The
matched-filter output is

If then substituting (2-173) into (2-174) yields

where  is the phase mismatch and If
the carrier-frequency error is inconsequential, and

where
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In the absence of noise, the matched-filter output is a sinusoidal spike with
a polarity determined by A. Assuming that (2-77) is applicable, the peak
magnitude, which occurs at equals However, if
then (2-175) is not well-approximated by (2-176), and the matched-filter output
is significantly degraded.

The response of the matched filter to the interference plus noise, denoted
by may be expressed as

where

These equations exhibit the spreading of the interference spectrum.
The envelope of the matched-filter output is

Define  such that is an integer times If is sufficiently
large that then (2-176) and (2-178) imply that if is sampled
at

where If

then (2-181) implies that

A comparison of this equation with (2-182) indicates that there is relatively
little degradation in using an envelope detector after the matched filter rather
than directly detecting the peak magnitude of the matched-filter output, which
is much more difficult.

Figure 2.26 illustrates the basic form of a surface-acoustic-wave (SAW)
transversal filter, which is a passive matched filter that essentially stores a
replica of the underlying spreading sequence and waits for the received se-
quence to align itself with the replica. The SAW delay line consists primarily
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Figure 2.26: Matched filter that uses a SAW transversal filter.

of a piezoelectric substrate, which serves as the acoustic propagation medium,
and interdigital transducers, which serve as the taps and the input transducer.
The transversal filter is matched to one period of the spreading waveform, the
propagation delay between taps is and is an integer. The chip matched
filter following the summer is matched to It is easily veri-
fied that the impulse response of the transversal filter is that of a filter matched
to

A convolver is an active matched filter that produces the convolution of
the received signal with a local reference [8]. When used as a direct-sequence
matched filter, a convolver uses a recirculating, time-reversed replica of the
spreading waveform as a reference waveform. In a SAW elastic convolver, which
is depicted in Figure 2.27, the received signal and the reference are applied to
interdigital transducers that generate acoustic waves at opposite ends of the
substrate. The acoustic waves travel in opposite directions with speed and

Figure 2.27: SAW elastic convolver.
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the acoustic terminations suppress reflections. The signal wave is launched at
position and the reference wave at The signal wave travels to the
right in the substrate and has the form

where is the modulation at position The reference wave travels to
the left and has the form

where is the modulation at position Both and are assumed
to have bandwidths much smaller than The beam compressors, which con-
sist of thin metallic strips, focus the acoustic energy to increase the convolver’s
efficiency. When the acoustic waves overlap beneath the central electrode, a
nonlinear piezoelectric effect causes a surface charge distribution that is spa-
tially integrated by the electrode. The primary component of the convolver
output is proportional to

Substituting (2-185) and (2-186) into (2-187) and using trigonometry, we find
that is the sum of a number of terms, some of which are negligible if

Others are slowly varying and are easily blocked by a filter. The
most useful component of the convolver output is

where Changing variables, we find that the amplitude
of the output is

where the factor results from the counterpropagation of the two acoustic
waves.

Suppose that an acquisition pulse is a single period of the spreading wave-
form. Then and where is the uncertainty
in the arrival time of an acquisition pulse relative to the launching of the ref-
erence signal at The periodicity of allows the time origin to be
selected so that Equations (2-189) and (2-167) and a change of
variables yield
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Since unless unless For
every positive integer let

Only one term in (2-190) can be nonzero when and

The maximum possible magnitude of is produced if and
that is, if

Since (2-191) indicates that there is some that satisfies
(2-193) if

Thus, if L is large enough, then there is some such that and
the envelope of the convolver output at has the maximum possible
magnitude If and only one peak value occurs in
response to the single received pulse.

As an example, let and The chips propagating
in the convolver for three separate time instants and are
illustrated in Figure 2.28. The top diagrams refer to the counterpropagating
periodic reference signal, whereas the bottom diagrams refer to the single re-
ceived pulse of four chips. The chips are numbered consecutively. The received
pulse is completely contained within the convolver during The
maximum magnitude of the output occurs at time which is the instant
of perfect alignment of the reference signal and the received chips.

Figure 2.28: Chip configurations within convolver at time instants
and when and
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Figure 2.29: Direct-sequence system with binary code-shift keying: (a) trans-
mitter and (b) receiver.

Noncoherent Systems

In a noncoherent direct-sequence system with binary code-shift keying (CSK),
one of two orthogonal spreading sequences is transmitted, as shown in Figure
2.29(a). One sequence represents the symbol 1, and the other represents the
symbol 0. The receiver uses two matched filters, each matched to a different
sequence and followed by an envelope detector, as shown in Figure 2.29(b). In
the absence of noise and interference, each sequence causes only one envelope
detector to produce a significant output. The data is recovered by comparing
the two detector outputs every symbol period.

Since each of the two orthogonal sequences has a period equal to the symbol
duration, symbol or bit synchronization is identical to code synchronization.
The symbol synchronizer, which provides timing pulses to the comparator or
decision device, must lock onto the autocorrelation spikes appearing in the
envelope-detector outputs. Ideally, these spikes have a triangular shape. The
symbol synchronizer must be impervious to the autocorrelation sidelobe peaks
and any cross-correlation peaks. A simple implementation with a single thresh-
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old detector would result in an unacceptable number of false alarms, premature
detections, or missed detections when the received signal amplitude is unknown
and has a wide dynamic range. Limiting or automatic gain control only exacer-
bates the problem when the signal power level is below that of the interference
plus noise. More than one threshold detector with precedence given to the
highest threshold crossed will improve the accuracy of the decision timing or
sampling instants produced by the symbol synchronizer [9]. Another approach
is to use peak detection based on a differentiator and a zero-crossing detector.
Finally, a phase-locked or feedback loop of some type could be used in the
symbol synchronizer. A preamble may be transmitted to initiate accurate syn-
chronization so that symbols are not incorrectly detected while synchronization
is being established.

Consider the detection of a symbol represented by (2-173), where is
the CSK waveform to which filter 1 is matched. Assuming perfect symbol
synchronization, the channel symbol is received during the interval
From (2-176) to (2-181) with and we find that the output of
envelope detector 1 at is

where

Similarly, if filter 2 is matched to sequence then the output of envelope
detector 2 at is

where

and the response to the transmitted symbol at is zero because of the
orthogonality of the sequences.

Suppose that the interference plus noise is modeled as zero-mean,
Gaussian interference, and the spreading sequences are modeled as determin-
istic and orthogonal. Then and If
is assumed to be wideband enough that its autocorrelation is approximated by
(2-87), then straightforward calculations using and the orthogonal-
ity of and indicate that and are all uncorrelated with
each other. The jointly Gaussian character of the random variables then implies
that they are statistically independent of each other, and hence and are
independent. Analogous results can be obtained when the transmitted symbol
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is represented by CSK waveform A straightforward derivation similar to
the classical one for orthogonal signals then yields the symbol error probability

where is given by (2-121). A comparison of (2-201) with (2-118) indicates
that the performance of the direct-sequence system with noncoherent binary
CSK in the presence of wideband Gaussian interference is approximately 4 dB
worse than that of a direct-sequence system with coherent binary PSK. This
difference arises because binary CSK uses orthogonal rather than antipodal
signaling. A much more complicated coherent version of Figure 2.29 would
only recover roughly 1 dB of the disparity.

A direct-sequence system with CSK encodes each group of binary
symbols as one of sequences chosen to have negligible cross correlations.
Suppose that bandwidth constraints limit the chip rate of a binary CSK system
to G chips per data bit. For a fixed data-bit rate, the CSK system
produces chips to represent each group of bits, which may be regarded
as a single symbol. Thus, the processing gain relative to a data symbol
is which indicates an enhanced ability to suppress interference. In the
presence of wideband Gaussian interference, the performance improvement of
quaternary CSK is more than 2 dB relative to binary CSK, but four filters
matched to four double-length sequences are required. When the chip rate is
fixed, CSK provides a means of increasing the data-bit or code-symbol
rate without sacrificing the processing gain.

Elimination of the lower branch in Figure 2.29(b) leaves a system that uses a
single CSK sequence and a minimum amount of hardware. The symbol 1 is sig-
nified by the transmission of the sequence, whereas the symbol 0 is signified by
the absence of a transmission. Decisions are made after comparing the envelope-
detector output with a threshold. One problem with this system is that the
optimal threshold is a function of the amplitude of the received signal, which
must somehow be estimated. Another problem is the degraded performance of
the symbol synchronizer when many consecutive zeros are transmitted. Thus,
a system with binary CSK is much more practical.

A direct-sequence system with DPSK signifies the symbol 1 by the trans-
mission of a spreading sequence without any change in the carrier phase; the
symbol 0 is signified by the transmission of the same sequence after a phase
shift of   radians in the carrier phase or multiplication of the signal by –1. A
matched filter despreads the received direct-sequence signal, as illustrated in
Figure 2.30. The filter output is applied to a standard DPSK demodulator that
makes symbol decisions. An analysis of this system in the presence of wideband
Gaussian interference indicates that it is more than 2 dB superior to the system
with binary CSK. However, the system with DPSK is more sensitive to Doppler
shifts and is more than 1 dB inferior to a system with coherent binary PSK.
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Figure 2.30: Receiver for direct-sequence system with differential phase-shift
keying.

Multipath-Resistant Coherent System

Carrier synchronization is essential for the coherent demodulation of a direct-
sequence signal. Prior to despreading, the signal-to-interference-plus-noise ratio
(SINR) may be too low for the received signal to serve as the input to a phase-
locked loop that produces a phase-coherent carrier. Although the despread
matched-filter output has a large SINR near the autocorrelation peak, the av-
erage SINR may be insufficient for a phase-locked loop. An alternative approach
is to use a recirculation loop to produce a synchronized carrier during the main
lobe of the matched-filter output.

A recirculation loop, is designed to reinforce a periodic input signal by posi-
tive feedback. As illustrated in Figure 2.31, the feedback elements are an atten-
uator of gain K and a delay line with delay approximating a symbol duration

The basic concept behind this architecture is that successive signal pulses
are coherently added while the interference and noise are noncoherently added,
thereby producing an output pulse with an improved SINR. The periodic input

Figure 2.31: Recirculation loop.
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consists of N symbol pulses such that

where  for or The figure indicates that the loop output is

Substitution of this equation into itself yields

Repeating this substitution process times leads to

which indicates that increases with if and enough input pulses
are available. To prevent an eventual loop malfunction, K < 1 is a design
requirement that is assumed henceforth.

During the interval or fewer recirculations of the symbols
have occurred. Since for the substitution of (2-202) into (2-205)
yields

This equation indicates that if is not exactly equal to then the pulses
do not add coherently, and may combine destructively. However, since K < 1,
the effect of a particular pulse decreases as increases and will eventually be
negligible. The delay is designed to match Suppose that the design error
is small enough that

Since and is time-limited, (2-207)
and imply that only the term in (2-206) with contributes
appreciably to the output. Therefore,

Let denote a positive integer such that is negligible if Consider
an input pulse of the form
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which implies that each of the N pulses in (2-202) has the same initial phase.
Assume that the amplitude varies slowly enough that

and that the design error is small enough that

Then (2-208) to (2-211) yield

If S is the average power in an input pulse, then (2-212) indicates that the
average power in an output pulse during the interval is
approximately

If is large enough that the recirculated noise is uncorrelated with the in-
put noise, which has average power then the output noise power after
recirculations is

The improvement in the SNR due to the presence of the recirculation loop is

Since it was assumed that is negligibly small when the maximum
improvement is nearly attained when However, the upper bound on

for the validity of (2-211) decreases as the loop phase error
increases. Thus, K must be decreased as the phase error increases. The phase
error of a practical SAW recirculation loop may be caused by a temperature
fluctuation, a Doppler shift, oscillator instability, or an imprecise delay-line
length. Various other loop imperfections limit the achievable value of K and,
hence, the improvement that the loop can provide [10].
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Figure 2.32: Coherent decision-directed demodulator.

Figure 2.32 illustrates a coherent decision-directed demodulator for a direct-
sequence signal with binary PSK and the same carrier phase at the beginning
of each symbol. The bandpass matched filter removes the spreading waveform
and produces compressed sinusoidal pulses, as indicated by (2-176) and (2-177)
when A is bipolar. A compressed pulse due to a direct-path signal may be fol-
lowed by one or more compressed pulses due to multipath signals, as illustrated
conceptually in Figure 2.33(a) for pulses corresponding to the transmitted sym-
bols 101. Each compressed pulse is delayed by one symbol and then mixed with
the demodulator’s output symbol. If this symbol is correct, it coincides with the
same data symbol that is modulated onto the compressed pulse. Consequently,
the mixer removes the data modulation and produces a phase-coherent reference
pulse that is independent of the data symbol, as illustrated in Figure 2.33(b),
where the middle pulses are inverted in phase relative to the corresponding
pulses in Figure 2.33(a). The reference pulses are amplified by a recirculation
loop. The loop output and the matched-filter output are applied to a mixer
that produces the baseband integrator input illustrated in Figure 2.33(c). The
length of the integration interval is equal to a symbol duration. The integrator
output is sampled and applied to a decision device that produces the data out-
put. Since multipath components are coherently integrated, the demodulator
provides an improved performance in a fading environment.

Even if the desired-signal multipath components are absent, the coherent
decision-directed receiver potentially suppresses interference approximately as
much as the correlator of Figure 2.14. The decision-directed receiver is much
simpler to implement because code acquisition and tracking systems are unnec-
essary, but it requires a short spreading sequence and an accurate recirculation
loop. More efficient exploitation of multipath components is possible with rake
combining (Chapter 5).
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Figure 2.33: Conceptual waveforms of demodulator: (a) matched-filter output,
(b) recirculation loop input or output, and (c) baseband integrator input.

2.7 Rejection of Narrowband Interference

Narrowband interference presents a crucial problem for spread-spectrum over-
lay systems, which are systems that have been assigned a spectral band already
occupied by narrowband communication systems. Jamming against tactical
spread-spectrum communications is another instance of narrowband interfer-
ence that may exceed the natural resistance of a practical spread-spectrum
system, which has a limited processing gain. There are a wide variety of
techniques that supplement the inherent ability of a direct-sequence system
to reject narrowband interference [11], [12]. All of the techniques directly or
indirectly exploit the spectral disparity between the narrowband interference
and the wideband direct-sequence signal. The most useful methods can be
classified as time-domain adaptive filtering, transform-domain processing, non-
linear filtering, or code-aided techniques. The general form of a receiver that
rejects narrowband interference and demodulates a direct-sequence signal with
binary PSK is shown in Figure 2.34. The processor, which follows the chip-rate
sampling of the baseband signal, implements one of the rejection methods.
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Figure 2.34: Direct-sequence receiver with processor for rejecting narrowband
interference.

Time-Domain Adaptive Filtering

A time-domain adaptive filter [13] for interference suppression processes the
baseband sample values of a received signal to adaptively estimate the interfer-
ence. This estimate is subtracted from the sample values, thereby canceling the
interference. The adaptive filter is primarily a predictive system that exploits
the inherent predictability of a narrowband signal to form an accurate replica
of it for the subtraction. Since the wideband desired signal is largely unpre-
dictable, it does not significantly impede the prediction of a narrowband signal.
When adaptive filtering is used, the processor in Figure 2.34 has the form of
Figure 2.35(a). The adaptive filter may be a one-sided or two-sided transversal
filter.

The two-sided adaptive transversal filter multiplies each tap output by a
weight except for the central tap output, as diagrammed in Figure 2.35(b).
This filter is an interpolator in that it uses both past and future samples to
estimate the value to be subtracted. The two-sided filter provides a better per-
formance than the one-sided filter, which is a predictor. The adaptive algorithm
of the weight-control mechanism is designed to adjust the weights so that the
power in the filter output is minimized. The direct-sequence components of
the tap outputs, which are delayed by integer multiples of a chip duration, are
largely uncorrelated with each other, but the narrowband interference compo-
nents are strongly correlated. As a result, the adaptive algorithm causes the
interference cancellation in the filter output, but the direct-sequence signal is
largely unaffected.

An adaptive filter with 2N + 1 taps and 2N weights, as shown in Figure
2.35(b), has input vector at iteration given by

and weight vector

where T denotes the transpose and the central tap output, which is denoted
by has been excluded from x. Since coherent demodulation produces real-
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Figure 2.35: (a) Processor using adaptive filter and (b) two-sided adaptive
transversal filter.

valued inputs to the adaptive filter,      and are assumed to have real-
valued components. The symmetric correlation matrix of x is defined as

The cross-correlation vector is defined as According to
the Wiener-Hopf equation (Appendix B), the optimal weight vector is

The least-mean-square (LMS) algorithm (Appendix B) computes the weight
vector at iteration as

where  is the estimation error, is the filter output,
and is the adaptation constant, which controls the rate of convergence of
the algorithm. The output of the adaptive filter is which is applied to the
despreader. Under certain conditions, the mean weight vector converges to

after a number of iterations of the adaptive algorithm. If it is assumed
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Figure 2.36: Processor with decision-directed adaptive filter.

that then a straightforward analysis indicates that the adaptive
transversal filter provides a substantial suppression of narrowband interference
[11]. Although the interference suppression increases with the number of taps,
it is always incomplete if the interference has a nonzero bandwidth because
a finite-impulse-response filter can only place a finite number of zeros in the
frequency domain.

The adaptive transversal filter is inhibited by the presence of direct-sequence
components in the filter input vector These components can be suppressed
by using decision-directed feedback, as shown in Figure 2.36. Previously de-
tected symbols remodulate the spreading sequence delayed by G chips (long
sequence) or one period of the spreading sequence (short sequence). After an
amplitude compensation by a factor the resulting sequence provides estimates
of the direct-sequence components of previous input samples. A subtraction
then provides estimated sample values of the interference plus noise that are
largely free of direct-sequence contamination. These samples are then applied
to an adaptive transversal filter that has the form of Figure 2.35 except that it
has no central tap. The transversal filter output consists of refined interference
estimates that are subtracted from the input samples to produce samples that
have relatively small interference components. An erroneous symbol from the
decision device causes an enhanced direct-sequence component in samples ap-
plied to the transversal filter, and error propagation is possible. However, for
moderate values of the signal-to-interference ratio at the input, the performance
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is not degraded significantly.
Adaptive filtering is only effective after the convergence of the adaptive al-

gorithm, which may not be able to track time-varying interference. In contrast,
transform-domain processing suppresses interference almost instantaneously.

Transform-Domain Processing

The input of a transform-domain processor could be a continuous-time received
signal that feeds a real-time Fourier transformer implemented as a chirp trans-
form processor [1]. In a more versatile implementation, which is depicted in
Figure 2.37 and assumed henceforth, the input consists of the output samples
of a chip-matched filter. Blocks of these samples feed a discrete-time Fourier or
wavelet transformer. The transform is selected so that the transform-domain
forms of the desired signal and interference are easily distinguished. Ideally, the
transform produces interference components that are confined to a few trans-
form bins while the desired-signal components have nearly the same magnitude
in all the transform bins. A simple exciser can then suppress the interference
with little impact on the desired signal by setting to zero the components in
bins containing the interference. The decision as to which bins contain in-
terference can be based on the comparison of each component to a threshold.
After the excision operation, the desired signal is largely restored by the inverse
transformer.

Figure 2.37: Transform-domain processor.

Much better performance against stationary narrowband interference may
be obtained by using a transform-domain adaptive filter as the exciser [14].
This filter adjusts a single nonbinary weight at each transform-bin output. The
adaptive algorithm is designed to minimize the difference between the weighted
transform and a desired signal that is the transform of the spreading sequence
used by the input block of the processor. If the direct-sequence signal uses
the same short spreading sequence for each data symbol and each processor
input block includes the chips for a single data symbol, then the desired-signal
transform may be stored in a read-only memory. However, if a long spreading
sequence is used, then the desired-signal transform must be continuously pro-
duced from the output of the receiver’s code generator. The main disadvantage
of the adaptive filter is that its convergence rate may be insufficient to track
rapidly time-varying interference.

A transform that operates on disjoint blocks of N input samples may be
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defined in terms of N orthonormal, N-component basis vectors:

which span a linear vector space of dimension N. Since the components may
be complex numbers, the orthonormality implies that

where H denotes the complex conjugate of the transpose. The input block

may be expressed in terms of the basis as

where

If the discrete Fourier transform is used, then where

The transformer extracts the vector

by computing

where B is the unitary matrix of basis vectors:

The exciser weights each component of the transform c by computing

where is the N × N diagonal weight matrix with diagonal elements
The inverse transformer then produces the excised block that

is applied to the despreader:

If there were no weighting, then Since z = x would result,
as expected when the transformer and inverse transformer are in tandem. In
general, the diagonal elements of are either set by a threshold device fed
by c or they are the outputs of the weight-control mechanism of an adaptive
filter. When N equals the processing gain G and the input comprises the
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unmodulated spreading sequence, the despreader correlates its input block with
the appropriate segment of the spreading sequence to form the decision variable:

The filtering and despreading can be simultaneously performed in the trans-
form domain. Let

denote a synchronous replica of the spreading sequence, which is generated by
the receiver code generator. Then (2-229) to (2-231) give

Thus, if the spreading sequence is used to produce the matrix then
the product of this matrix and the transform c gives V without the need for an
inverse transformer and a separate despreader.

Nonlinear Filtering

By modeling the narrowband interference as part of a dynamic linear system,
one can use the Kalman-Bucy filter [13] to extract an optimal linear estimate
of the interference. A subtraction of this estimate from the filter input then
removes a large part of the interference from the despreader input. However, a
superior nonlinear filter can be designed by approximating an extension of the
Kalman-Bucy filter.

Consider the estimation of an state vector of a dynamic system
based on the observation vector Let denote the state transition
matrix, an observation matrix, and and disturbance vectors
of dimensions and respectively. According to the linear dynamic
system model, the state and observation vectors satisfy

It is assumed that the sequences are independent sequences of in-
dependent, zero-mean random vectors that are also independent of the initial
state The covariance of is Let
denote the first     observation vectors. Let and  de-
note the probability density functions of and respectively, conditioned
on A fundamental result of estimation theory is that the estimate

that minimizes the mean-norm-squared error is the expectation

conditioned on

The corresponding conditional covariance is denoted by
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From (2-233), it follows that the expectation of conditioned on is

The covariance of conditioned on is defined as

The following theorem due to Masreliez [15] extends the Kalman-Bucy filter.
Theorem. Assume that is a Gaussian density with mean

and covariance matrix and that is twice differentiable
with respect to the components of Then the conditional expectation and
the conditional covariance satisfy

where is an vector with components

is an matrix with elements

and is the jth component of
Proof: When is given, (2-234) indicates that is independent of

Therefore, Bayes’ rule gives

With the concise notation (2-235) and the fact that a
density is a scalar function yield

Using the Gaussian density (2-237), and (2-238), and then inte-
grating by parts, we obtain
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where the gradient vector has as its component. Equa-
tion (2-234) implies that

where is the density of Substitution of this equation into the preceding
one gives

where the second equality results because is not a function of
Substituting (2-245) into this equation and evaluating the integral, we obtain
(2-239).

To derive (2-240), we add and subtract in (2-236) and simplify, which
gives

The second term of this equation may be evaluated by substituting (2-239).
The first term may be evaluated in a similar manner as the derivation of (2-
239) except that an integration by parts must be done twice. After a tedious
calculation, we obtain (2-240). Equation (2-241) is derived by using the def-
inition of given by (2-238) and then substituting (2-233), (2-237), and
(2-236). Equation (2-242) follows from (2-237).

The filter defined by this theorem is the Kalman-Bucy filter if
is a Gaussian density. Since (2-234) and (2-238) indicate that the covariance of

conditioned on is where a Gaussian
density implies that

Substitution of these two equations into (2-239) and (2-240) yields the usual
Kalman-Bucy equations.

To apply this theorem to the interference suppression problem, the narrow-
band interference sequence at the filter input is modeled as an autoregres-
sive process that satisfies
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where is a white Gaussian process with variance and the are known
to the receiver. The state-space representation of the system is

where

The observation noise is the sum of the direct-sequence signal and the
white Gaussian noise

Since the first component of the state vector is the interference the state
estimate provides an interference estimate that can be subtracted from
the received signal to cancel the interference.

For a random spreading sequence, or with equal probability. If
is zero-mean and Gaussian with variance then has the density

where

For this non-Gaussian density, the optimal filter that computes the exact con-
ditional mean given by (2-235) is nonlinear with exponentially increasing com-
plexity and, thus, is impractical. The density is not Gaussian as
required by Masreliez’s theorem. However, by assuming that this density is
approximately Gaussian, we can use results of the theorem to derive the ap-
proximate conditional mean (ACM) filter [16].

Conditioned on and the expected value of is since
and are independent of From the definition of and (2-250), it follows
that the conditional variance of is

Since is approximated by a Gaussian density, we obtain
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Substitution of this equation into (2-243) and (2-244) yields

where the innovation or prediction residual is

and

is the predicted observation based on The update equations of the ACM
filter are given by (2-239) to (2-242) and (2-260) to (2-263). The difference
between the ACM filter and the Kalman-Bucy filter is the presence of the
nonlinear tanh and sech functions in (2-260) and (2-261).

Adaptive ACM filter

In practical applications, the elements of the matrix in (2-252) are unknown
and may vary with time. To cope with these problems, an adaptive algorithm
that can track the interference is desirable. The adaptive ACM filter receives

and produces the interference estimate denoted by The
output of the filter is denoted by and ideally is plus a small
residual of An adaptive transversal filter is embedded in the adaptive ACM
filter. To use the structure of the nonlinear ACM filter, we observe that the
second term inside the brackets in (2-260) would be absent if were absent.
Therefore, may be interpreted as a soft decision on the direct-
sequence signal The input to the adaptive transversal filter at time is
taken to be the difference between the observation and the soft decision:

where

The input is a reasonable estimate of the interference that is improved by
the adaptive filter. The architecture of the one-sided adaptive ACM filter [18]
is shown in Figure 2.38. The output of the N-tap transversal filter provides the
interference estimate

where is the weight vector and
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Figure 2.38: Adaptive ACM filter.

which is extracted from the filter taps. When has only a small component
due to the filter can effectively track the interference, and is a good
estimate of this interference.

A normalized version of the LMS algorithm for the adaptive ACM filter is
given by the weight-update equation:

where is the adaptation constant and is an estimate of the input power
iteratively determined by

The division by in (2-268) normalizes the algorithm by making the choice
of an appropriate for fast convergence and good performance much less
dependent on the input power level.

The calculation of requires the estimation of If the produced
by the adaptive filter approximates the prediction residual of (2-263), then (2-
262), (2-260), (2-255), and (2-238) imply that Therefore,
if is estimated by computing the sample variance of the filter output,
then the subtraction of from the sample variance gives an estimate of

A figure of merit for filters is the SINR improvement, which is the ratio of
the output SINR to the input SINR. Since the filters of concern do not change
the signal power, the SINR improvement is
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In terms of this performance measure, the nonlinear adaptive ACM filter has
been found to provide much better suppression of narrowband interference than
the linear Kalman-Bucy filter if the noise power in is less than the direct-
sequence signal power in If the latter condition is not satisfied, the advantage
is small or absent. Disadvantages apparent from (2-265) are the requirements
to estimate the parameters and and to compute or store the tanh function.
At the cost of additional complexity and delay, a nonlinear adaptive interpolator
[17] gives a slight performance gain.

The preceding linear and nonlinear methods are primarily predictive meth-
ods that exploit the inherent predictability of narrowband interference. Further
improvements in interference suppression are theoretically possible by using
code-aided methods, which exploit the predictability of the spread-spectrum sig-
nal itself [18]. Most of these methods are based on methods that were originally
developed for multiuser detection (Chapter 6). Some of them can potentially
be used to simultaneously suppress both narrowband interference and multiple-
access interference. However, code-aided methods require even more computa-
tion and parameter estimation than the ACM filter, and the most powerful of
the adaptive methods are practical only for short spreading sequences.

2.8 Problems

1. Consider a linear feedback shift register with characteristic polynomial
Find all possible state sequences.

Derive (2-44) using the steps specified in the text.

The characteristic polynomial associated with a linear feedback shift reg-
ister is The initial state is

Use polynomial long division to determine the first
nine bits of the output sequence.

If the characteristic polynomial associated with a linear feedback shift
register is what is the linear recurrence relation? Write the
generating function associated with the output sequence. What is the
period of the output sequence? Derive it by polynomial long division.

Prove by exhaustive search that the polynomial is
primitive.

Derive the characteristic function of the linear equivalent of Figure 2.12(a).
Verify the structure of Figure 2.12(b) and derive the initial contents indi-
cated in the figure.

This problem illustrates the limitations of an approximate model in an
extreme case. Suppose that tone interference at the carrier frequency
is coherent with a PSK direct-sequence signal so that in (2-92).
Assume that and Show that Show

2.

3.

4.

5.

6.

7.
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that the general tone-interference model of Section 2.2 leads to a nonzero
approximate expression for

8.

9.

Derive (2-116) using the steps specified in the text.

To assess the effect of wideband filtering on the thermal noise, we may
substitute in place of where is the factor that accounts for the
presence of the filter. Show that for an ideal rectangular bandpass filter
of bandwidth W.

If then and the impact of the wideband filtering
is modest or small.

10.

11.

12.

13.

Derive (2-131) and (2-132) using the results of Section 2.2.

Derive (2-138) and (2-139) using the results of Section 2.2.

Derive the expression for that leads to (2-142).

Use the general interference model to plot versus GS/I for dual and
balanced quadriphase direct-sequence systems with tone interference at
the carrier frequency and Observe that the balanced
system has more than a 2 dB advantage at

Consider a direct-sequence system with binary PSK, a required
and How much additional power is required against worst-case
pulsed interference beyond that required against continuous interference.
Use

For a direct-sequence system with binary DPSK, in
the presence of white Gaussian noise. Derive the worst-case duty cycle
and for strong pulsed interference when the power spectral density of
continuous interference is Show that DPSK has a more than 3 dB
disadvantage relative to PSK against worst-case pulsed interference when

is large.

What are the values of and for the white noise metric
and for the AGC metric?

Expand (2-175) to determine the degradation in when
and the chip waveform is rectangular.

Evaluate the impulse response of a transversal filter with the form of
Figure 2.26. Show that this impulse response is equal to that of a filter
matched to

14.

15.

16.

17.

18.
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19. Consider an elastic convolver for which for some positive integer
n and where p(t) is the periodic spreading waveform. The
received signal is where A is a positive constant. Express

as a function of the periodic autocorrelation of the spreading
waveform. How might this result be applied to acquisition?

Consider the soft-decision term in (2-264). What are its values as
and as Give an engineering interpretation of these results.

20.

2.9 References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

D. Torrieri, Principles of Secure Communication Systems, 2nd ed. Boston:
Artech House, 1992.

R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread
Spectrum Communications. Upper Saddle River, NJ: Prentice Hall, 1995.

M. K. Simon et al., Spread-Spectrum Communications Handbook. New
York: McGraw-Hill, 1994.

S. B. Wicker, Error Control Systems for Digital Communication and Stor-
age. Upper Saddle River, NJ: Prentice Hall, 1995.

G. J. Simmons, ed., Contemporary Cryptology: The Science of Informa-
tion Integrity. New York: IEEE Press, 1992.

R. B. Ash and C. A. Doleans-Dade, Probability and Measure Theory, 2nd
ed. San Diego: Academic Press, 2000.

D. J. Torrieri, “The Performance of Five Different Metrics Against Pulsed
Jamming,” IEEE Trans. Commun., vol. 34, pp. 200–207, February 1986.

C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless
Communications. New York: Academic Press, 1998.

M. Kowatsch, “Application of Surface-Acoustic-Wave Technology to Burst-
Format Spread-Spectrum Communications,” IEE Proc., vol. 131, pt. F,
pp. 734–741, December 1984.

D. P. Morgan and J. M. Hannah, “Surface Wave Recirculation Loops
for Signal Processing,” IEEE Trans. Sonics and Ultrason., vol. 25, pp.
30–38, January 1978.

L. B. Milstein, “Interference Rejection Techniques in Spread Spectrum
Communications,” Proc. IEEE, vol. 76, pp. 657–671, June 1988.

H. V. Poor, “Active Interference Suppression in CDMA Overlay Systems,”
IEEE J. Select. Areas Commun., vol. 19, pp. 4–20, January 2001.

S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ:
Prentice-Hall, 2002.



128 CHAPTER 2. DIRECT-SEQUENCE SYSTEMS

14.

15.

16.

17.

M. Medley, G. Saulnier, and P. Das, “The Application of Wavelet-Domain
Adaptive Filtering to Spread-Spectrum Communications,” Proc. SPIE
Wavelet Applications for Dual-Use, vol. 2491, pp. 233–247, April 1995.

C. J. Masreliez, “Approximate Non-Gaussian Filtering with Linear State
and Observation Relations,” IEEE Trans. Automat. Contr., vol. 20, pp.
107–110, February 1975.

R. Vijayan and H. V. Poor, “Nonlinear Techniques for Interference Sup-
pression in Spread-Spectrum Systems,” IEEE Trans. Commun., vol. 37,
pp. 1060–1065, July 1990.

L. A. Rusch and H. V. Poor, “Narrowband Interference Suppression in
CDMA Spread Spectrum Communications,” IEEE Trans. Commun., vol.
42, pp. 1969–1979, Feb./March/April 1994.

S. Buzzi, M. Lops, and H. V. Poor, “Code-Aided Interference Suppression
for DS/CDMA Overlay Systems,” Proc. IEEE, vol. 90, pp. 394–435,
March 2002.

18.



Chapter 3

Frequency-Hopping
Systems

3.1 Concepts and Characteristics

Frequency hopping is the periodic changing of the carrier frequency of a trans-
mitted signal. The sequence of carrier frequencies is called the frequency-
hopping pattern. The set of M possible carrier frequencies is
called the hopset. The rate at which the carrier frequency changes is called the
hop rate. Hopping occurs over a frequency band called the hopping band that
includes M frequency channels. Each frequency channel is defined as a spectral
region that includes a single carrier frequency of the hopset as its center fre-
quency and has a bandwidth B large enough to include most of the power in a
signal pulse with a specific carrier frequency. Figure 3.1 illustrates the frequency
channels associated with a particular frequency-hopping pattern. The time in-
terval between hops is called the hop interval. Its duration is called the hop
duration and is denoted by The hopping band has bandwidth

Figure 3.2 depicts the general form of a frequency-hopping system. The
frequency synthesizers (Section 3.4) produce frequency-hopping patterns deter-
mined by the time-varying multilevel sequence specified by the output bits of
the code generators. In the transmitter, the data-modulated signal is mixed
with the synthesizer output pattern to produce the frequency-hopping signal.
If the data modulation is some form of angle modulation then the received
signal for the hop is

where S is the average power, is the carrier frequency for this hop, and
is a random phase angle for the hop. The frequency-hopping pattern

produced by the receiver synthesizer is synchronized with the pattern produced
by the transmitter, but is offset by a fixed intermediate frequency, which may
be zero. The mixing operation removes the frequency-hopping pattern from the
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Figure 3.1: Frequency-hopping patterns.

Figure 3.2: General form of frequency-hopping system: (a) transmitter and (b)
receiver.
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received signal and, hence, is called dehopping. The mixer output is applied to
a bandpass filter that excludes double-frequency components and power that
originated outside the appropriate frequency channel and produces the data-
modulated dehopped signal, which has the form of (3-1) with replaced by the
intermediate frequency.

Although it provides no advantage against white noise, frequency hopping
enables signals to hop out of frequency channels with interference or slow
frequency-selective fading. To fully exploit this capability against narrowband
interference signals, disjoint frequency channels are necessary. The disjoint
channels may be contiguous or have unused spectral regions between them.
Some spectral regions with steady interference or a susceptibility to fading
may be omitted from the hopset, a process called spectral notching. Multiple
frequency-shift keying (MFSK) differs fundamentally from frequency hopping
in that all the MFSK subchannels affect each receiver decision. No escape from
or avoidance of a subchannel with interference is possible.

To ensure the secrecy and unpredictably of the frequency-hopping pattern,
the pattern should be a pseudorandom sequence of frequencies. The sequence
should have a large period and a uniform distribution over the frequency chan-
nels and should be generated by a multilevel sequence with a large linear span.
The large period prevents the capture and storage of a period of the pattern by
an opponent. The linear span of a multilevel sequence is the smallest degree
of any linear recursion that the sequence satisfies. A large linear span inhibits
the reconstruction of the pattern from a short segment of it. The set of con-
trol bits produced by the code generator usually constitutes a symbol drawn
from a finite field with the necessary properties. A frequency-hopping pattern
is obtained by associating a distinct frequency with each symbol. A number of
methods have been found to ensure a large linear span [1], [2].

An architecture that enhances the transmission security by encrypting the
control bits is shown in Figure 3.3. The specific algorithm for generating the
control bits is determined by the key and the time-of-day (TOD). The key, which
is the ultimate source of security, is a set of bits that are changed infrequently
and must be kept secret. The TOD is a set of bits that are derived from the
stages of the TOD counter and change with every transition of the TOD clock.
For example, the key might change daily while the TOD might change every
second. The purpose of the TOD is to vary the generator algorithm without
constantly changing the key. In effect, the generator algorithm is controlled
by a time-varying key. The code clock, which regulates the changes of state
in the code generator and thereby controls the hop rate, operates at a much
higher rate than the TOD clock. In a receiver, the code clock is produced by
the synchronization system. In both the transmitter and the receiver, the TOD
clock may be derived from the code clock.

A frequency-hopping pulse with a fixed carrier frequency occurs during a
portion of the hop interval called the dwell interval. As illustrated in Figure 3.4,
the dwell time is the duration of the dwell interval during which the channel
symbols are transmitted. The hop duration is equal to the sum of the
dwell time and the switching time The switching time is equal to the
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Figure 3.3: Secure method of synthesizer control.

Figure 3.4: Time durations of a frequency-hopping pulse.

dead time, which is the duration of the interval when no signal is present, plus
the rise and fall times of a pulse. Even if the switching time is absent in the
transmitted signal, it will be present in the dehopped signal in the receiver
because of the imperfect synchronization of received and receiver-generated
waveforms. The nonzero switching time, which may include an intentional
guard time, decreases the transmitted symbol duration If is the symbol
duration in the absence of frequency hopping, then The
reduction in symbol duration expands the transmitted spectrum and thereby
reduces the number of frequency channels within a fixed hopping band. Since
the receiver filtering will ensure that rise and fall times of pulses have durations
on the order of a symbol duration, in practical systems. Implementing
a short switching time becomes an obstacle as the hop rate decreases.

Frequency hopping may be classified as fast or slow. Fast frequency hopping
occurs if there is more than one hop for each information symbol. Slow frequency
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hopping occurs if one or more information symbols are transmitted in the time
interval between frequency hops. Although these definitions do not refer to the
hop rate, fast frequency hopping is an option only if a hop rate that exceeds
the information-symbol rate can be implemented. Slow frequency hopping is
usually preferable because the transmitted waveform is much more spectrally
compact (cf. Table 3.1, Section 3.2) and the overhead cost of the switching time
is reduced.

Let M denote the hopset size, B denote the bandwidth of frequency chan-
nels, and denote the minimum separation between adjacent carriers in a
hopset. For full protection against stationary narrowband interference and
jamming, it is desirable that so that the frequency channels are nearly
spectrally disjoint. A hop then enables the transmitted signal to escape the
interference in a frequency channel.

To obtain the full advantage of block or convolutional channel codes in a
slow frequency-hopping system, it is important to interleave the code symbols
in such a way that the symbol errors in a code word or constraint length are
independent (for hard-decision decoding) or that the symbols are degraded inde-
pendently (for soft-decision decoding). In frequency-hopping systems operating
over a frequency-selective fading channel (Chapter 5), the realization of this in-
dependence requires certain constraints among the system parameter values.
Symbol errors are independent if the fading is independent in each frequency
channel and each symbol is transmitted in a different frequency channel. If each
of the interleaved code symbols is transmitted at the same location in each hop
dwell interval, then adjacent symbols are separated by after the interleaving.
Thus, a sufficient condition for nearly independent symbol errors is

where is the coherence time of the fading channel. Another sufficient
condition for nearly independent symbol errors is

where is the coherence bandwidth of the fading channel. For practical
mobile communication networks with hop rates exceeding 100 hops/s, (3-2) is
rarely satisfied. For a hopping band with bandwidth W, and a hopset with
a uniform carrier separation, Thus, (3-3) implies that the
number of frequency channels is constrained by

if nearly independent symbol errors are to be ensured. If (3-4) is not satisfied,
there will be a performance loss due to the correlated symbol errors. If

equalization will not be necessary because the channel transfer function
is nearly flat over each frequency channel. If either equalization may
be used to prevent intersymbol interference or a multicarrier modulation may
be combined with the frequency hopping.
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Let denote the length of a block codeword or the constraint length of a
convolutional code. Let denote the maximum tolerable processing delay.
Since the delay caused by coding and ideal interleaving over hops is

and distinct frequencies are desired,

is required. If this inequality is not satisfied, then nonideal interleaving is
necessary, and some performance degradation results.

Frequency-selective fading and Doppler shifts make it difficult to maintain
phase coherence from hop to hop between frequency synthesizers in the trans-
mitter and the receiver. Furthermore, the time-varying delay between the fre-
quency changes of the received signal and those of the synthesizer output in
the receiver causes the phase shift in the dehopped signal to differ for each
hop interval. Thus, practical frequency-hopping systems use noncoherent or
differentially coherent demodulators unless a pilot signal is available, the hop
duration is very long, or elaborate iterative phase estimation (perhaps as part
of turbo decoding) is used.

In military applications, the ability of frequency-hopping systems to avoid
interference is potentially neutralized by a repeater jammer (also known as a
follower jammer), which is a device that intercepts a signal, processes it, and
then transmits jamming at the same center frequency. To be effective against a
frequency-hopping system, the jamming energy must reach the victim receiver
before it hops to a new set of frequency channels. Thus, the hop rate is the
critical factor in protecting a system against a repeater jammer. Required hop
rates and the limitations of repeater jamming are analyzed in reference [3].

3.2 Modulations

MFSK

An FH/MFSK system uses MFSK as its data modulation. One of frequencies
is selected as the carrier or center frequency for each transmitted symbol, and
the set of possible frequencies changes with each hop. The general transmit-
ter of Figure 3.2(a) can be simplified for an FH/MFSK system, as illustrated
in Figure 3.5(a), where the code generator output bits and the digital input
are combined to determine the frequency generated by the synthesizer. An
FH/MFSK signal has the form

where is the average signal power during a dwell interval, is a
unit-amplitude rectangular pulse of duration is the number of symbols
per dwell interval, is the carrier frequency during dwell interval is
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Figure 3.5: FH/MFSK (a) transmitter and (b) receiver.

the MFSK frequency used for symbol of dwell interval is the phase at the
beginning of dwell interval and is the phase associated with MFSK symbol

during dwell interval If the MFSK is phase continuous from symbol to sym-
bol, then otherwise, it may be modeled as a random variable uniformly
distributed over The implementation of phase continuity is highly desir-
able to prevent excessive spectral splatter outside a frequency channel (Section
3.3).

In an FH/MFSK system, each of the frequencies or tones in an MFSK set
can be considered as the center frequency of an MFSK subchannel. Therefore,
the effective number of frequency channels is

where M is the hopset size. In the standard implementation, the subchannels
of each MFSK set are contiguous, and each set constitutes a frequency channel
within the hopping band. For noncoherent orthogonal signals, the MFSK tones
must be separated enough that a received signal produces negligible responses
in the incorrect subchannels. As shown subsequently, the frequency separation
must be where is a nonzero integer, and denotes the symbol
duration. To maximize the hopset size when the MFSK subchannels are con-
tiguous, is selected. Consequently, the bandwidth of a frequency channel
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for slow frequency hopping with many symbols per dwell interval is

where is the duration of a bit, and the factor accounts for the increase
in symbol duration when a nonbinary modulation is used. If the hopping band
has bandwidth W, the hopset size is

where denotes the largest integer in Figure 3.5(b) depicts the main
elements of a noncoherent FH/MFSK receiver. Each matched filter corresponds
to an MFSK subchannel. In practical FH/MFSK systems, the orthogonality of
the MFSK tones is imperfect because of transients that occur after every hop
in the receiver.

Soft-Decision Decoding

To illustrate some basic issues of frequency-hopping communications and the
effectiveness of soft-decision decoding, we consider an FH/MFSK system that
uses a repetition code and the receiver of Figure 3.5(b). Each information sym-
bol, which is transmitted as L code symbols, may be regarded as a codeword or
as an uncoded symbol that uses diversity combining. The interference is mod-
eled as wideband Gaussian noise uniformly distributed over part of the hopping
band. Slow frequency hopping with a fixed hop rate and ideal interleaving or
variable-rate fast frequency hopping is assumed. Both ensure the independence
of code-symbol errors. The optimal metric for the Rayleigh-fading channel
(Chapter 5) and a good metric for the additive-white-Gaussian-noise (AWGN)
channel without fading is the Rayleigh metric defined by (1-66), which is

where is the sample value of the envelope-detector output that is associated
with code symbol of candidate information-symbol and L is the number of
repetitions or code symbols. The diversity combining required by the Rayleigh
metric is often called linear square-law combining. This metric has the advan-
tage that no side information, which is specific information about the reliabil-
ity of symbols, is required for its implementation. A performance analysis of
a frequency-hopping system with binary FSK and soft-decision decoding with
the Rayleigh metric indicates that the system performs poorly against worst-
case partial-band jamming [6] primarily because a single jammed frequency can
corrupt the metrics. Furthermore, the repetition code is counterproductive be-
cause the noncoherent combining loss resulting from the fragmentation of the
symbol energy is greater than any coding or diversity gain.
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The difficulty of implementing the maximum-likelihood metric (1-61) leads
to consideration of the approximation (1-65), which requires nonlinear square-
law combining:

where is the two-sided power spectral density of the interference and noise
over all the MFSK subchannels during code symbol A plausible simplification
[8] that is much easier to analyze is the variable-gain metric:

The advantage of both metrics is that they incorporate side information con-
tained in the which must be known. The subsequent analysis is for the
the variable-gain metric.

The union bound (1-46) implies that the information-symbol error proba-
bility satisfies

where is the probability of an error in comparing the metric associated with
the transmitted information symbol with the metric associated with an alterna-
tive one. It is assumed that there are enough frequency channels that L distinct
carrier frequencies are used for the L code symbols. Since the MFSK tones are
orthogonal, the symbol metrics are independent and identically dis-
tributed for all values of and (Chapter 1). Therefore, the Chernoff bound
given by (1-103) and (1-102) with yields

where is the sampled output of an envelope detector when the desired signal
is present at the input of the associated matched filter,    is the output when
the desired signal is absent, and is the two-sided power-spectral density
of the interference and noise over all the MFSK subchannels during a code
symbol. For the symmetric channel, (1-27), (3-13), and (3-14) give an
upper bound on the information-bit error probability:

For a Gaussian random variable X with mean and variance a direct
calculation yields
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From the analysis of Chapter 1 leading to (1-78), it follows that

where and are the real and imaginary parts of respectively, and are
independent Gaussian random variables with the moments

where is the energy per symbol. By conditioning on the expectation in (3-
15) can be partially evaluated. Equations (3-17) to (3-21) and the substitution
of give

where the remaining expectation is over the statistics of
To simplify the analysis, it is assumed that the thermal noise is negligible.

When a repetition symbol encounters no interference, when it does,
where is the fraction of the hopping band with interference,

and is the spectral density that would exist if the interference power were
uniformly spread over the entire hopping band. Since is the probability that
interference is encountered, (3-22) becomes

where

and is the number of bits per information symbol, and is the
energy per information bit. Using calculus, we find that

where

Substituting (3-25) and (3-24) into (3-16), we obtain
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Suppose that the interference is worst-case partial-band jamming. An upper
bound on is obtained by maximizing the right-hand side of (3-27) with
respect to where Calculus yields the maximizing value of

Substituting (3-28) into (3-27), we obtain an upper bound on for worst-case
partial-band jamming:

Since is obtained by maximizing a bound rather than an equality, it is not
necessarily equal to the actual worst-case which would provide a tighter
bound than the one in (3-29).

If is known, then the number of repetitions can be chosen to minimize
the upper bound on for worst-case partial-band jamming. We treat L as a
continuous variable such that and let denote the minimizing value of
L. A calculation indicates that the derivative with respect to L of the second
line on the right-hand side of (3-29) is positive. Therefore, if so
that the second line is applicable for then If
the continuity of (3-29) as a function of L implies that is determined by the
first line in (3-29). Further calculation yields

Since L must be an integer, its minimizing value is approximately
The upper bound on for worst-case partial-band jamming when

is given by

This upper bound indicates that decreases exponentially as increases
if the appropriate number of repetitions is chosen and is large enough.
Thus, the nonlinear diversity combining with the variable-gain metric sharply
limits the performance degradation caused by worst-case partial-band jamming
relative to full-band jamming. Setting in (1-86) and in (3-31)
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and then comparing the equations, we find that this degradation is approxi-
mately 3 dB for binary FSK. Substituting (3-30) into (3-28), we obtain

This result shows that the appropriate choice of L implies that worst-case jam-
ming must cover three-fourths or more of the hopping band, a task that may
not be a practical possibility for a jammer.

For slow frequency hopping with a fixed hop rate, the suppression of partial-
band interference is improved by decreasing the data rate so that is increased.
If is increased enough, then (3-30) indicates that the optimal amount of
diversity combining is proportional to

For frequency hopping with binary FSK and the variable-gain metric, a more
precise derivation [8] that does not use the Chernoff bound and allows
confirms that (3-31) provides an approximate upper bound on the information-
bit error rate caused by worst-case partial-band jamming when is small,
although the optimal number of repetitions is much smaller than is indicated
by (3-30). Thus, the appropriate weighting of terms in nonlinear square-law
combining prevents the domination by a single corrupted term and limits the
inherent noncoherent combining loss.

The implementation of the variable-gain metric requires the measurement of
the interference power. One might attempt to measure this power in frequency
channels immediately before the hopping of the signal into those channels, but
this method will not be reliable if the interference is frequency-hopping or non-
stationary. Another approach is to clip (soft-limit) each envelope-detector out-
put to prevent a single erroneous sample from undermining the metric.
This method is potentially effective, but its implementation requires an accu-
rate measurement of the signal power for properly setting the clipping level.
A sufficiently accurate measurement is often impractical because of fading or
power variations across the hopping band. A metric that requires no side in-
formation is the self-normalization metric defined for binary FSK as [9]

Although it does not provide as good a performance against partial-band jam-
ming as the variable-gain metric, the self-normalization metric is far more prac-
tical and is generally superior to hard-decision decoding.

The assumption was made that either all or none of the subchannels in
an MFSK set are jammed. However, this assumption ignores the threat of
narrowband jamming signals that are randomly distributed over the frequency
channels. Although (3-31) indicates that it is advantageous to use nonbinary
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signaling when this advantage is completely undermined when
distributed, narrowband jamming signals are a threat. A fundamental problem,
which also limits the applicability of FH/MFSK in networks, is the reduced
hopset size for nonbinary MFSK indicated by (3-9) and (3-8).

Narrowband Jamming Signals

When the MFSK subchannels are contiguous, it is not advantageous to a jam-
mer to transmit the jamming in all the subchannels of an MFSK set because
only a single subchannel needs to be jammed to cause a symbol error. A sophis-
ticated jammer with knowledge of the spectral locations of the MFSK sets can
cause increased system degradation by placing one jamming tone or narrowband
jamming signal in every MFSK set.

To assess the impact of this sophisticated multitone jamming on hard-
decision decoding in the receiver of Figure 3.5(b), it is assumed that thermal
noise is absent and that each jamming tone coincides with one MFSK tone in
a frequency channel encompassing MFSK tones [4], [5]. Whether a jamming
tone coincides with the transmitted MFSK tone or an incorrect one, there will
be no symbol error if the desired-signal power S exceeds the jamming power.
Thus, if is the total available jamming power, then the jammer can maximize
symbol errors by placing tones with power levels slightly above S whenever
possible in approximately J frequency channels such that

If a transmitted tone enters a jammed frequency channel and then with
probability the jamming tone will not coincide with the transmitted
tone and will cause a symbol error after hard-decision decoding. If the jamming
tone does coincide with the correct tone, it may cause a symbol error in the
absence of thermal noise only if its power level is exactly S and it has exactly
a 180° phase shift relative to the desired signal, an event with zero probability.
Since J/M is the probability that a frequency channel is jammed, and no error
occurs if the symbol error probability is

Substitution of (3-8), (3-9), and (3-34) into (3-35) and the approximation
yields
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where denotes the energy per bit and denotes the spectral
density of the interference power that would exist if it were uniformly spread
over the hopping band. This equation exhibits an inverse linear dependence
of on which indicates that the jamming has an impact qualitatively
similar to that of Rayleigh fading. It is observed that increases with which
is the opposite of what is observed over the AWGN channel. Thus, binary FSK
is advantageous against this sophisticated multitone jamming.

To preclude this jamming, each MFSK tone in an MFSK set may be in-
dependently hopped. However, this approach demands a large increase in the
amount of hardware, and uniformly distributed, narrowband jamming signals
are almost as damaging as the worst-case multitone jamming. Thus, contiguous
MFSK subchannels are usually preferable, and the FH/MFSK receiver has the
form of Figure 3.5(b). An analysis of FH/MFSK systems with hard-decision
decoding in the presence of uniformly distributed, narrowband jamming signals
confirms the superior robustness of binary FSK relative to nonbinary MFSK
whether the MFSK tones hop independently or not [6].

Other Modulations

In a network of frequency-hopping systems, it is highly desirable to choose a
spectrally compact modulation so that the number of frequency channels is
large and, hence, the number of collisions between frequency-hopping signals
is kept small. Binary orthogonal FSK allows more frequency channels than
MFSK and, hence, is advantageous against narrowband interference distributed
throughout the hopping band. A spectrally compact modulation helps ensure
that so that equalization in the receiver is not necessary. This section
considers spectrally compact alternatives to orthogonal FSK.

The demodulator transfer function following the dehopping in Figure 3.2 is
assumed to have a bandwidth approximately equal to B, the bandwidth of a
frequency channel. The bandwidth is determined primarily by the percentage
of the signal power that must be processed by the demodulator if the demodu-
lated signal distortion and the intersymbol interference are to be negligible. In
practice, this percentage must be at least 90 percent and is often more than 95
percent. The relation between B and the symbol duration may be expressed as

where is a constant determined by the signal modulation. For example, if
minimum-shift keying is used, the transfer function is rectangular, and many
symbols are transmitted during a dwell interval, then if 90 percent of
the signal power is included in a frequency channel, and if 99 percent
is included.

Spectral splatter is the interference produced in frequency channels other
than the one being used by a frequency-hopping pulse. It is caused by the time-
limited nature of transmitted pulses. The degree to which spectral splatter may
cause errors depends primarily on (see Section 3.1) and the percentage of
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the signal power included in a frequency channel. Usually, only pulses in adja-
cent channels produce a significant amount of spectral splatter in a frequency
channel.

The adjacent splatter ratio is the ratio of the power due to spectral
splatter from an adjacent channel to the corresponding power that arrives at
the receiver in that channel. For example, if B is the bandwidth of a frequency
channel that includes 97 percent of the signal power and then no more
than 1.5 percent of the power from a transmitted pulse can enter an adjacent
channel on one side of the frequency channel used by the pulse; therefore,

A given maximum value of can be reduced by an increase in
but eventually the value of M must be reduced if W is fixed. As a result,
the rate at which users hop into the same channel increases. This increase
may cancel any improvement due to the reduction of the spectral splatter. The
opposite procedure (reducing and B so that more frequency channels become
available) increases not only the spectral splatter but also signal distortion and
intersymbol interference, so the amount of useful reduction is limited.

To avoid spectral spreading due to amplifier nonlinearity, it is desirable for
the signal modulation to have a constant envelope, as it is often impossible to
implement a filter with the appropriate bandwidth and center frequency for
spectral shaping of a signal after it emerges from the final power amplifier.
Noncoherent demodulation is nearly always a practical necessity in frequency-
hopping systems unless the dwell interval is large. Accordingly, good modula-
tion candidates are DPSK and MSK or some other form of spectrally compact
continuous-phase modulation (CPM).

The general form of a CPM signal is

where A is the amplitude, is the carrier frequency, and is the phase
function that carries the message. The phase function has the ideal form

where is a constant called the deviation ratio or modulation index, is the
symbol duration, and the vector is a sequence of channel symbols. Each
symbol takes one of values; if is even,

Equation (3-39) exhibits the phase continuity and indicates that the phase in
any specified symbol interval depends on the previous symbols.

It is assumed that the integrand in (3-39) is piecewise continuous so that
is differentiable. The frequency function of the CPM signal, which is

proportional to the derivative of is
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The frequency pulse is assumed to vanish outside an interval; that is,

where L is a positive integer and may be infinite. The presence of as a
multiplicative factor in the pulse function makes it convenient to normalize
by assuming that

If L = 1, the continuous-phase modulation is called a full-response modulation;
if L > 1, it is called a partial-response modulation, and each frequency pulse
extends over two or more symbol intervals. The normalization condition for a
full-response modulation implies that the phase change over a symbol interval
is equal to

Continuous-phase frequency-shift keying (CPFSK) is a subclass of CPM
for which the instantaneous frequency is constant over each symbol interval.
Because of the normalization, a CPFSK frequency pulse is given by

A binary CPFSK signal shifts between two frequencies separated by
Minimum-shift keying(MSK) is defined as binary CPFSK with and,
hence, the frequencies are separated by The main difference be-
tween CPFSK and MFSK is that can have any positive value for CPFSK
but is relegated to integer values for MFSK so that the tones are orthogonal to
each other. A second difference is that MFSK is detected with matched filters
and envelope detectors, whereas CPFSK with is usually detected with a
frequency discriminator. Although CPFSK explicitly requires phase continuity
and MFSK does not, MFSK is usually implemented with phase continuity to
avoid the generation of spectral splatter.

A measure of the spectral compactness of signals is provided by the fractional
out-of-band power defined as

where is the frequency variable and is the two-sided power spectral
density of the complex envelope of the signal, which is often called the equivalent
lowpass waveform. The closed-form expressions for the power spectral densities
of QPSK and binary MSK (Appendix C.2) can be used to generate Figure
3.6. The graphs depict in decibels as a function of in units of
where for a modulation. The fractional power within a
transmission channel of one-sided bandwidth B is given by
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Figure 3.6: Fractional out-of-band power (FOBP) for equivalent lowpass wave-
forms of QPSK and MSK.

Usually, the fractional power must exceed at least 0.9 to prevent signif-
icant performance degradation in communications over a bandlimited channel.
The transmission bandwidth for which is approximately for
binary MSK, but approximately for PSK or QPSK. The adjacent splatter
ratio, which is due to out-of-band power on one side of the center frequency,
has the upper bound given by

An even more compact spectrum than MSK is obtained by passing the MSK
frequency pulses through a Gaussian filter with transfer function

where B is the one-sided 3-dB bandwidth. The filter response to an MSK
frequency pulse is the Gaussian MSK (GMSK) pulse:

where As B decreases, the spectrum of a GMSK signal becomes
more compact. However, each pulse has a longer duration and, hence, there is
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more intersymbol interference. If which is specified in the Global
System for Mobile (GSM) cellular communication system, the bandwidth for
which is approximately Each pulse may be truncated
for with little loss. The performance loss relative to MSK is
approximately 0.46 dB for coherent demodulation and presumably also for dis-
criminator demodulation.

An FH/CPM signal has a continuous phase over each dwell interval with N
symbols but has a phase discontinuity every seconds at the
beginning of another dwell interval. The signal may be expressed as

where is the average signal power during a dwell interval,
is a unit-amplitude rectangular pulse of duration is the carrier
frequency during hop-interval and is the phase at the beginning of dwell-
interval

Consider multitone jamming of an FH/CPM or FH/CPFSK system in which
the thermal noise is absent and each jamming tone is randomly placed within a
single frequency channel. It is reasonable to assume that a symbol error occurs
with probability when the frequency channel contains a jamming tone
with power exceeding S. Thus, (3-34), (3-35), and (3-9) are applicable to
FH/CPM or FH/CPFSK, but (3-8) is not. The substitution of (3-9), (3-34),

and into (3-35) yield

for sophisticated multitone jamming. Since the orthogonality of the MFSK
tones is not a requirement for CPM or CPFSK, the bandwidth B for FH/CPM
or FH/CPFSK may be much smaller than the bandwidth for FH/MFSK given
by (3-8). Thus, may be much lower.

Consider multitone jamming of an FH/DPSK system with negligible ther-
mal noise. Each tone is assumed to have a frequency identical to the center
frequency of one of the frequency channels. A DPSK demodulator compares
the phases of two successive received symbols. If the magnitude of the phase dif-
ference is less then then the demodulator decides that a 1 was transmitted;
otherwise, it decides that a 0 was transmitted. The composite signal, consisting
of the transmitted signal plus the jamming tone, has a constant phase over two
successive received symbols in the same dwell interval, if a 1 was transmitted
and the thermal noise is absent; thus, the demodulator will correctly detect the
1.

Suppose that a 0 was transmitted. Then the desired signal is
during the first symbol and during the second symbol, respec-
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tively, where is the carrier frequency of the frequency-hopping signal during
the dwell interval. When a jamming tone is present, trigonometric identities
indicate that the composite signal during the first symbol may be expressed as

where I is the average power of the tone, is the phase of the tone relative to
the phase of the transmitted signal, and is the phase of the composite signal:

Since the desired signal during the second symbol is the phase
of the composite signal during the second symbol is

Using trigonometry, it is found that

If so the demodulator incorrectly decides that a 1 was
transmitted. If I < S, no mistake is made. Thus, multitone jamming with
total power is most damaging when J frequency channels given by (3-34) are
jammed and each tone has power If the information bits 0 and 1 are
equally likely, then the symbol error probability given that a frequency channel
is jammed with I > S is the probability that a 0 was transmitted.
Therefore, if and otherwise. Using (3-9) and
(3-34) with and we obtain the symbol error
probability for DPSK and multitone jamming:

The same result holds for binary CPFSK.
As implied by Figure 3.6, the bandwidth requirement of DPSK with
which is the same as that of PSK or QPSK and less than that of orthog-

onal FSK, exceeds that of MSK. Thus, if the hopping bandwidth W is fixed,
the number of frequency channels available for FH/DPSK is smaller than it
is for noncoherent FH/MSK. This increase in B and reduction in frequency
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channels offsets the intrinsic performance advantage of DPSK and implies that
noncoherent FH/MSK will give a lower than FH/DPSK in the presence
of worst-case multitone jamming, as indicated in (3-56). Alternatively, if the
bandwidth of a frequency channel is fixed, an FH/DPSK signal will experi-
ence more distortion and spectral splatter than an FH/MSK signal. Any pulse
shaping of the DPSK symbols will alter their constant envelope. An FH/DPSK
system is more sensitive to Doppler shifts and frequency instabilities than an
FH/MSK system. Another disadvantage of FH/DPSK is due to the usual lack
of phase coherence from hop to hop, which necessitates an extra phase-reference
symbol at the start of every dwell interval. This extra symbol reduces by
a factor where is the number of symbols per hop or dwell
interval and Thus, DPSK does not appear to be as suitable a means
of modulation as noncoherent MSK for most applications of frequency-hopping
communications, and the main competition for MSK comes from other forms
of CPM.

The cross-correlation parameter for two signals and each with
energy is defined as

For CPFSK, two possible transmitted signals, each representing a different
channel symbol, are

The substitution of these equations into (3-57), a trigonometric expansion and
discarding of an integral that is negligible if and the evaluation
of the remaining integral give

where and Because of the phase synchronization
in a coherent demodulator, we may take Therefore, the orthogonality
condition C = 0 is satisfied if where is any nonzero integer.
The smallest value of for which C = 0 is which corresponds to MSK.

In a noncoherent demodulator, is a random variable that is assumed to
be uniformly distributed over Equation (3-59) indicates that E[C]= 0
for all values of The variance of C is
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Since for MSK does not provide orthogonal signals for
noncoherent demodulation. If is any nonzero integer, then both (3-60) and
(3-59) indicate that the two CPFSK signals are orthogonal for any This
result justifies the previous assertion that MFSK tones must be separated by

to provide noncoherent orthogonal signals.
A noncoherent FH/CPFSK signal can be represented by (3-50). The power

spectral density of the complex envelope of this signal, which is the same as
the dehopped power spectral density, depends on the number of symbols per
dwell interval, because of the random phases The power spectral
density has been calculated [10] for binary CPFSK, assuming that each is an
independent random variable uniformly distributed over and the infor-
mation symbols are ±1 with equal probability. The 99-percent bandwidths of
FH/CPFSK with deviation ratios and are listed in Table 3.1
for different values of As increases, the power spectral density becomes
more compact and approaches that of coherent CPFSK without frequency hop-
ping. For the frequency hopping causes little spectral spreading.
However, fast frequency hopping, which corresponds to entails a very
large 99-percent bandwidth. This fact is the main reason why slow frequency
hopping is usually preferable to fast frequency hopping.

With multisymbol noncoherent detection, full-response CPFSK systems can
provide a better symbol error probability than coherent PSK systems [11]. For

detection, where is odd, the optimal receiver correlates the received
waveform over all possible patterns before making a decision about the
middle symbol. The drawback is the considerable implementation complexity of
multisymbol detection, even for three-symbol detection. An additional problem
for FH/CPFSK with multisymbol detection is that the first and last
symbols during a dwell interval cannot use the multisymbol detection without
accessing other dwell intervals, which may cause practical difficulties.

Symbol-by-symbol noncoherent detection after the dehopping of an FH/CPFSK
signal can be inexpensively implemented by using a limiter and frequency dis-
criminator, as illustrated in Figure 3.7. Analysis of the limiter-discriminator
or frequency discriminator [12] provides complicated expressions for the sym-
bol error probability in the presence of white Gaussian noise. However, the
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Figure 3.7: Frequency discriminator for CPFSK.

theoretical can be approximated to within a few tenths of a decibel by

where the parameter depends on and the product and is the
two-sided power spectral density of the noise. If the frequency discriminator has
a Gaussian IF filter, an integrate-and-dump postdetection filter, and
then it is found that is minimized when For CPFSK with and

setting in (3-61) provides an approximate least-squares fit to
the theoretical curve for over the range If then

provides a close fit over the same range for orthogonal CPFSK with
and a fairly close fit for MSK Thus, the discriminator demodulation

of MSK or orthogonal CPFSK provides approximately the same performance as
optimal noncoherent detection of orthogonal FSK. The favorable performance
of the frequency discriminator is due to its ability to exploit the phase continuity
from symbol-to-symbol of a CPFSK signal. In view of the known 0.46 dB loss
of GMSK relative to MSK when coherent demodulation is used, it is expected
that for GMSK and discriminator demodulation is well approximated by
(3-61) with

The practical advantage of noncoherent MSK is that it requires roughly half
the bandwidth of orthogonal FSK for specified levels of spectral splatter and
intersymbol interference. The increased number of frequency channels due to
the decreased value of B does not give FH/MSK an advantage over the AWGN
channel. However, the increase is advantageous against a fixed number of inter-
ference tones, optimized jamming, and multiple-access interference in a network
of frequency-hopping systems, as discussed in the next section. A further in-
crease in the number of frequency channels is possible with FH/GMSK.

Since for an FH/CPFSK system with this system has a
potential 1.46 dB advantage in relative to an FH/MSK system with

However, since CPFSK with does not have as compact a spectrum as
MSK, the FH/CPFSK system will have increased intersymbol interference due
to bandlimiting and spectral splatter relative to the FH/MSK system. Only
if these effects are negligible can the potential 1.46 dB advantage be realized.
When reducing the spectral splatter of the FH/CPFSK to the same
level that it is for FH/MSK with requires that The
increased bandwidth lowers and decreases the number of frequency channels.
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Frequency-hopping systems reject interference by avoiding it, whereas direct-
sequence systems reject interference by spreading it. Channel codes are more
essential for frequency-hopping systems than for direct-sequence systems be-
cause partial-band interference is a more pervasive threat than high-power
pulsed interference. When frequency-hopping and direct-sequence systems are
constrained to use the same fixed bandwidth, then direct-sequence systems
have an inherent advantage because they can use coherent PSK rather than
a noncoherent modulation. Coherent PSK has an approximately 4 dB advan-
tage relative to noncoherent MSK over the AWGN channel and an even larger
advantage over fading channels. However, the potential performance advan-
tage of direct-sequence systems is often illusory for practical reasons. A major
advantage of frequency-hopping systems relative to direct-sequence systems is
that it is possible to hop into noncontiguous frequency channels over a much
wider band than can be occupied by a direct-sequence signal. This advantage
more than compensates for the relatively inefficient noncoherent demodulation
that is usually required for frequency-hopping systems. Other major advan-
tages of frequency hopping are the possibility of excluding frequency channels
with steady or frequent interference, the reduced susceptibility to the near-far
problem (Chapter 6), and the relatively rapid acquisition.

A hybrid frequency-hopping direct-sequence system is a frequency-hopping
system that uses direct-sequence spreading during each dwell interval or, equiv-
alently, a direct-sequence system in which the carrier frequency changes peri-
odically. In the transmitter of the hybrid system of Figure 3.8, a single code
generator controls both the spreading and the hopping pattern. The spreading
sequence is added modulo-2 to the data sequence. Hops occur periodically af-
ter a fixed number of sequence chips. In the receiver, the frequency hopping
and the spreading sequence are removed in succession to produce a carrier with
the message modulation. Because of the phase changes due to the frequency
hopping, noncoherent modulation, such as DPSK, is usually required unless the
hop rate is very low. Serial-search acquisition occurs in two stages. The first
stage provides alignment of the hopping patterns, whereas the second stage
over the phase of the pseudonoise sequence finishes acquisition rapidly because
the timing uncertainty has been reduced by the first stage to less than a hop
duration.

A hybrid system curtails partial-band interference in two ways. The hopping
allows the avoidance of the interference spectrum part of the time. When the
system hops into the interference, the interference is spread and filtered as in
a direct-sequence system. However, during a hop interval, interference that
would be avoided by an ordinary frequency-hopping receiver is passed by the
bandpass filter of a hybrid receiver because the bandwidth must be large enough
to accommodate the direct-sequence signal that remains after the dehopping.
This large bandwidth also limits the number of available frequency channels,
which increases the susceptibility to narrowband interference and the near-far
problem. Thus, hybrid systems are seldom used except perhaps in specialized
military applications because the additional direct-sequence spreading weakens
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Figure 3.8: Hybrid frequency-hopping direct-sequence system: (a) transmitter
and (b) receiver.

the major strengths of frequency hopping.

3.3 Codes for Partial-Band Interference
When partial-band interference is present, let denote the one-sided inter-
ference power spectral density that would exist if the power were uniformly
distributed over the hopping band. If a fixed amount of interference power is
uniformly distributed over J frequency channels out of M in the hopping band,
then the fraction of the hopping band with interference is

and the interference power spectral density in each of the interfered channels
is When the frequency-hopping signal uses a carrier frequency that
lies within the spectral region occupied by the partial-band interference, this
interference is modeled as additional white Gaussian noise that increases the
noise-power spectral density from to Therefore, for hard-decision
decoding, the symbol error probability is



3.3. CODES FOR PARTIAL-BAND INTERFERENCE 153

where the conditional symbol error probability F( ) depends on the modula-
tion and fading. For noncoherent FH/MFSK and the AWGN channel, (1-85)
indicates that

where   is the alphabet size of the MFSK symbols. When frequency-nonselective
or flat fading (Chapter 5) occurs, the symbol energy may be expressed as
where represents the average energy and is a random variable with

For Ricean fading, the probability density function of is

where is the Rice factor. Replacing by in (3-62), an integration over
the density (3-65) and the use of (1-84) yield

When there is no fading and the modulation is binary CPFSK, then (3-61)
implies that

For the AWGN channel and no fading, classical communication theory indicates
that for DPSK is given by (3-67) with However, in (3-63) must
be reduced by the factor because of the reference symbol that
must be included in each dwell interval. When Ricean fading is present, (3-67)
and (3-65) yield

If is treated as a continuous variable over [0, 1] and then
straightforward calculations using (3-63) and (3-67) indicate that the worst-
case value of is

The corresponding worst-case symbol error probability is

which does not depend on M because of the assumption that is a continuous
variable. For Rayleigh fading and binary FSK, similar calculations using (3-68)
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with yield Thus, in the presence of Rayleigh fading, interference
spread uniformly over the entire hopping band hinders communications more
than interference concentrated over part of the band.

Consider a frequency-hopping system with a fixed hop interval and negligi-
ble switching time. For FH/MFSK with a channel code, the bandwidth of a
frequency channel must be increased to where is
the code rate and is the bandwidth for binary FSK in the absence of coding.
If the bandwidth W of the hopping band is fixed, then the number of disjoint
frequency channels available for hopping is reduced to

The energy per channel symbol is

When the interference is partial-band jamming, J and, hence, are parameters
that may be varied by a jammer. It is assumed henceforth that M is large
enough that in (3-63) may be treated as a continuous variable over [0, 1].
With this assumption, the error probabilities do not explicitly depend on M.

If a large amount of interference power is received over a small portion of the
hopping band, then soft-decision decoding metrics for the AWGN channel will
be ineffective because of the possible dominance of a path or code metric by a
single symbol metric (cf. Section 2.5 on pulsed interference). Thus, in choosing
a suitable code for FH/MFSK in the presence of partial-band interference, we
seek one that gives a strong performance when the decoder uses hard decisions
and/or erasures.

Reed-Solomon Codes

The use of a Reed-Solomon code with MFSK is advantageous against partial-
band interference for two principal reasons. First, a Reed-Solomon code is
maximum-distance-separable (Chapter 1) and, hence, accommodates many era-
sures. Second, the use of nonbinary MFSK symbols to represent code symbols
allows a relatively large symbol energy, as indicated by (3-72).

Consider an FH/MFSK system that uses a Reed-Solomon code with no
erasures in the presence of partial-band interference and Ricean fading. The
demodulator comprises a parallel bank of noncoherent detectors and a device
that makes hard decisions. In a slow frequency-hopping system, symbol in-
terleaving among different dwell intervals and subsequent deinterleaving in the
receiver may be needed to disperse errors due to the fading or interference and
thereby facilitate their removal by the decoder. In a fast frequency-hopping
system, symbol errors may be independent so that interleaving is unnecessary.
The MFSK modulation implies a symmetric channel. Therefore, for ideal
symbol interleaving and hard-decision decoding of loosely packed codes, (1-26)
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Figure 3.9: Performance of FH/MFSK with Reed-Solomon (32,12) code, non-
binary channel symbols, no erasures, and Ricean factor

and (1-27) indicate that

Figure 3.9 shows for FH/MFSK with and an extended Reed-Solomon
(32,12) code in the presence of Ricean fading. The frequency channels are
assumed to be separated enough that fading events are independent. Thus,
(3-63), (3-64), and (3-73) are applicable. For the graphs exhibit peaks as
the fraction of the band with interference varies. These peaks indicate that for a
specific value of the concentration of the interference power over part of
the hopping band (perhaps intentionally by a jammer) is more damaging than
uniformly distributed interference. The peaks become sharper and occur at
smaller values of as increases. For Rayleigh fading, which corresponds
to peaks are absent in the figure, and full-band interference is the most
damaging. As increases, the peaks appear and become more pronounced.

Much better performance against partial-band interference can be obtained
by inserting erasures (Chapter 1) among the demodulator output symbols be-
fore the symbol deinterleaving and hard-decision decoding. The decision to
erase, which is made independently for each code symbol, is based on side in-
formation, which indicates which codeword symbols have a high probability of
being incorrectly demodulated. The side information must be reliable so that



156 CHAPTER 3. FREQUENCY-HOPPING SYSTEMS

only degraded symbols are erased, not correctly demodulated ones.
Side information may be obtained from known test symbols that are trans-

mitted along with the data symbols in each dwell interval of a slow frequency-
hopping signal [13]. A dwell interval during which the signal is in partial-band
interference is said to be hit. If one or more of the test symbols are incor-
rectly demodulated, then the receiver decides that a hit has occurred, and all
codeword symbols in the same dwell interval are erased. Only one symbol of
each codeword is erased if the interleaving ensures that only a single symbol
of a codeword is in any particular dwell interval. Test symbols decrease the
information rate, but this loss is negligible if which is assumed
henceforth.

The probability of the erasure of a code symbol is

where is the erasure probability given that a hit occurred, and is the
erasure probability given that no hit occurred. If or more errors among the

known test symbols causes an erasure, then

where is the conditional channel-symbol error probability given that a hit
occurred and is the conditional channel-symbol error probability given that
no hit occurred.

A codeword symbol error can only occur if there is no erasure. Since test
and codeword symbol errors are statistically independent when the partial-
band interference is modeled as a white Gaussian process, the probability of a
codeword symbol error is

and the conditional channel-symbol error probabilities are

where (3-64) is applicable for MFSK symbols. To account for Ricean fading,
one must integrate (3-76) and (3-74) over the Ricean density (3-65). In the
remainder of this section, we assume the absence of fading.

The word error probability for errors-and-erasures decoding is upper-bounded
in (1-35). Since most word errors result from decoding failures, it is reasonable
to assume that Therefore, the information-bit error probability is
given by
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Figure 3.10: Performance of FH/MFSK with Reed-Solomon (32,12) code, non-
binary channel symbols, erasures, and no fading.

where and denotes the smallest integer greater
than or equal to

The     for FH/MFSK with            an extended Reed-Solomon (32,12)
code, and errors-and-erasures decoding with and is shown in
Figure 3.10. Fading is absent, and (3-74) to (3-78) are used. A comparison
of this figure with the graphs of Figure 3.9 indicates that when

erasures provide nearly a 7 dB improvement in the required
for The erasures also confer immunity to partial-band interference
that is concentrated in a small fraction of the hopping band and decrease the
sensitivity to

There are other options for generating side information and, hence, erasure
insertion in addition to demodulating test symbols. One might use a radiometer
to measure the energy in the current frequency channel, a future channel, or
an adjacent channel. Erasures are inserted if the energy is inordinately large.
This method does not have the overhead cost in information rate that is asso-
ciated with the use of test symbols. Other methods without overhead cost use
iterative decoding [14], the soft information provided by the inner decoder of a
concatenated code, or the outputs of the parallel MFSK envelope detectors.

Consider the decision variables applied to the MFSK decision device of Fig-
ure 3.5(b). The output threshold test (OTT) compares the largest decision
variable to a threshold to determine whether the corresponding demodulated
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Figure 3.11: Performance of FH/MFSK with Reed-Solomon (8,3) code, nonbi-
nary channel symbols, erasures, and no fading.

symbol should be erased. The ratio threshold test (RTT) computes the ratio
of the largest decision variable to the second largest one. This ratio is then
compared to a threshold to determine an erasure. If the values of both
and are known, then optimum thresholds for the OTT, the RTT, or
a hybrid method can be calculated [15]. It is found that the OTT tends to
outperform the RTT when is sufficiently low, but the opposite is true
when is sufficiently high. If side information concerning the presence or
absence of the partial-band interference is available at the receiver and if the
interference power is high, then a threshold determined by only and a
separate threshold determined by can be used to further improve
the performance of the errors and erasures decoding. The main disadvantage
of the OTT and the RTT relative to the test-symbol method is the need to
estimate and either or

Proposed erasure methods are based on the use of MFSK symbols, and
their performances against partial-band interference improve as the alphabet
size increases. For a fixed hopping band, the number of frequency channels
decreases as increases, thereby making an FH/MFSK system more vulnerable
to narrowband jamming signals (Section 3.2) or multiple-access interference
(Chapter 6). Thus, we examine alternatives that give less protection against
partial-band interference in exchange for enhanced protection against multiple-
access interference.

Figure 3.11 depicts for FH/MFSK with an extended Reed-Solomon
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Figure 3.12: Performance of FH/DPSK with Reed-Solomon (32,12) code, binary
channel symbols, erasures, and no fading.

(8,3) code, and A comparison of Figures 3.11 and 3.10 indicates
that reducing the alphabet size while preserving the code rate has increased the
system sensitivity to increased the susceptibility to interference concen-
trated in a small fraction of the hopping band, and raised the required
for a specified by 5 to 9 dB.

Another approach is to represent each nonbinary code symbol by a se-
quence of consecutive binary channel symbols. Then an FH/MSK
or FH/DPSK system can be implemented to provide a large number of fre-
quency channels and, hence, better protection against multiple-access interfer-
ence. Equations (3-74), (3-75), and (3-77) are still valid. However, since a
code-symbol error occurs if any of its component channel symbols is incor-
rect, (3-76) is replaced by

and (3-64) is replaced by (3-67), where for MSK and for DPSK.
The results for an FH/DPSK system with an extended Reed-Solomon (32,12)
code, binary test symbols, and are shown in Figure 3.12. It is
assumed that so that the loss due to the reference symbol in each dwell
interval is negligible. The graphs in Figure 3.12 are similar in form to those of
Figure 3.10, but the transmission of binary rather than nonbinary symbols has
caused approximately a 10 dB increase in the required for a specified
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Figure 3.13: Performance of FH/DPSK with concatenated code, hard decisions,
and no fading. Inner code is convolutional (rate = 1/2, K = 7) code and outer
code is Reed-Solomon (31,21) code.

Figure 3.12 is applicable to orthogonal FSK and MSK if and are
both increased by 3 dB to compensate for the lower value of

An alternative to erasures that uses binary channel symbols is an FH/DPSK
system with concatenated coding, which has the form illustrated in Figures 1.14
and 1.15. Although generally unnecessary in a fast frequency-hopping system,
the channel interleaver and deinterleaver may be required in a slow frequency-
hopping system to ensure independent symbol errors at the decoder input.
Consider a concatenated code comprising a Reed-Solomon outer code and
a binary convolutional inner code. The inner Viterbi decoder performs hard-
decision decoding to limit the impact of individual symbol metrics. Assuming
that the symbol error probability is given by (3-63) and (3-67) with

The probability of a Reed-Solomon symbol error, at the output of
the Viterbi decoder is upper-bounded by (1-127) and (1-114). Setting

in (3-73) then provides an upper bound on Figure 3.13 depicts this
bound for an outer Reed-Solomon (31,21) code and an inner rate-1/2, K =7
convolutional code. This concatenated code provides a better performance than
the Reed-Solomon (32,12) code with binary channel symbols, but a much worse
performance than the latter code with nonbinary channel symbols. Figures 3.10
through 3.13 indicate that a reduction in the alphabet size for channel symbols
increases the system susceptibility to partial-band interference. The primary
reason is the reduced energy per channel symbol.
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Trellis-Coded Modulation

Trellis-coded modulation is a combined coding and modulation method that is
usually applied to coherent digital communications over bandlimited channels
(Chapter 1). Multilevel and multiphase modulations are used to enlarge the sig-
nal constellation while not expanding the bandwidth beyond what is required
for the uncoded signals. Since the signal constellation is more compact, there
is some modulation loss that detracts from the coding gain, but the overall
gain can be substantial. Since a noncoherent demodulator is usually required
for frequency-hopping communications, the usual coherent trellis-coded mod-
ulations are not suitable. Instead, the trellis coding may be implemented by
expanding the signal set for M/2-ary MFSK to M-ary MFSK [16]. Although
the frequency tones are uniformly spaced, they are allowed to be nonorthogonal
to limit or avoid bandwidth expansion.

Trellis-coded 4-ary MFSK is illustrated in Figure 3.14 for a rate-1/2 code
with four states. The signal set partitioning, shown in Figure 3.14(a), parti-
tions the set of four signals or tones into two subsets, each with two tones. The
partitioning doubles the frequency separation between tones from to

The mapping of code bits into signals is indicated. In Figure 3.14(b), the
numerical labels denote the signal assignments associated with the state tran-
sitions in the trellis for a four-state encoder. The bandwidth of the frequency
channel that accommodates the four tones is approximately

There is a trade-off in the choice of because a small allows more fre-
quency channels and thereby limits the effect of multiple-access interference
or multitone jamming, whereas a large tends to improve the system perfor-
mance against partial-band interference. If a trellis code uses four orthogonal
tones with spacing where is the bit duration, then
The same bandwidth results when an FH/FSK system uses two orthogonal
tones, a rate-1/2 code, and binary channel symbols since
The same bandwidth also results when a rate-1/2 binary convolutional code is
used and each pair of code symbols is mapped into a 4-ary channel symbol.
The performance of the 4-state, trellis-coded, 4-ary MFSK frequency-hopping
system [16] indicates that it is not as strong against worst-case partial-band
interference as an FH/MFSK system with a rate-1/2 convolutional code and 4-
ary channel symbols or an FH/FSK system with a Reed-Solomon (32,16) code
and errors-and-erasures decoding. Since the latter system is weaker than the
FH/DPSK system used in Figure 14, we find that trellis-coded modulation is
relatively weak against partial-band interference. The advantage of trellis-coded
modulation in a frequency-hopping system is its relatively low implementation
complexity.

Turbo Codes

Turbo codes provide an alternative to errors and erasures decoding for sup-
pressing partial-band interference. A turbo-coded frequency-hopping system
that uses spectrally compact channel symbols will also resist multiple-access in-
terference. An accurate estimate of the variance of the interference plus noise,
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Figure 3.14: Rate-1/2, four-state trellis-coded 4-ary MFSK: (a) signal set par-
titioning and mapping of bits to signals, and (b) mapping of signals to state
transitions.

which is modeled as zero-mean, white Gaussian noise, is always needed in the
iterative turbo decoding algorithm (Chapter 1). When the channel dynamics
are much slower than the hop rate, all the received symbols of a dwell interval
may be used in estimating the variance associated with that dwell interval.

Consider an FH/DPSK system in which each code bit can take the values
+1 or – 1. The dwell interval is too short for conventional phase synchronization
to be practical. The architecture of interactive turbo decoding and channel
estimation is illustrated in Figure 3.15. As explained in Chapter 1, the log-
likelihood ratio (LLR) of a bit conditioned on a received sequence of
demodulator outputs applied to decoder is defined as the natural logarithm
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Figure 3.15: Receiver and decoder architecture for frequency-hopping system
with turbo code.

of the ratio of the posteriori probabilities:

Successive estimates of the LLRs of the code bits are computed by each compo-
nent decoder during the iterative decoding of the turbo code. The usual turbo
decoding is extended to include the iterative updating of the LLRs of both
the information and parity bits. After each iteration by a component decoder,
its LLRs are updated and the extrinsic information is transferred to the other
component decoder. The fact that

and (3-80) imply that the posteriori probabilities are

These equations indicate that the channel estimator can convert a LLR trans-
ferred after a component decoder iteration into the probabilities and
Using these probabilities for all the bits in a dwell interval, estimates of the in-
dependent random carrier phase, the fading attenuation, and the noise variance
for each dwell interval can be integrated into the iterative decoding of a turbo
code if these parameters are constants over the dwell interval [17].

After the dehopping, the received signal for symbol of a dwell interval is
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where is the symbol energy when is the symbol duration, is
the intermediate frequency, when binary symbol is a 1 and
when binary symbol is a 0, is the unit-energy symbol waveform, is
the fading attenuation, and is independent, zero-mean, white Gaussian
noise with two-sided noise power spectral density The phase shift is
introduced by the transmission channel and is assumed to be constant during
the dwell interval. A derivation similar to that of (1-56) indicates that the
conditional probability density of demodulator output given the values of

and is

where is the number of demodulator outputs during the dwell interval.
After forming the log-likelihood function for the set of demodulator outputs
during a dwell interval, the maximum-likelihood estimates of and C are
found by calculating those values that maximize the log-likelihood function.
Straightforward calculations indicate that the maximum-likelihood estimates
are

Since the are unknown, estimates are obtained by calculating approximate
expected values of these expressions. If is the most recently computed value
of or then suitable estimates are

the estimates and also improve. Substitution of these estimates
into (3-85) and the evaluation of (1-135) yield

which represents the information about provided by If known symbols
are inserted into the dwell interval, then we set if and

where and are factors adjusted to make the estimates
unbiased. As the decoders provide progressively improved estimates of the
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if If the fading attenuation has the known value then (3-88) is
still a suitable estimate if is adjusted to ensure that the magnitude of is
equal to If phase synchronization is available but the dynamics of the
transmission channel are faster than the hop rate, then must be separately
estimated for each symbol and, hence, (3-90) should be replaced by (1-145), as
shown in Chapter 1.

A simulation of a turbo-coded FH/DPSK system [17] that uses the preced-
ing estimates indicates that its performance is more than 2 dB better than that
shown in Figure 3.10. The rate-1/3 turbo code uses two 4-state systematic re-
cursive convolutional encoders, each with octal generator (5,7), a 200-bit turbo
interleaver, ideal channel interleaving, 5 decoder iterations, and

For a sufficiently large dwell interval, the resulting performance is
almost as good as theoretically possible with perfect side information about the
carrier phase and the fading attenuation. Known symbols may be inserted into
the transmitted code symbols to facilitate the estimation, but the energy per
information bit is reduced. Increasing improves the estimates because they
may be based on more observations and more known symbols can be accom-
modated. However, since the reduction in the number of independent hops per
information block of fixed size decreases the diversity, and hence the indepen-
dence of errors, there is a limit on beyond which a performance degradation
occurs.

Although turbo codes are generally used with binary channel symbols, their
error-control capabilities are strong enough to compensate for the relatively
low channel-symbol energy. However, if the system latency and computational
complexity of turbo codes is unacceptable, then there is a trade-off in the choice
of the modulation and code.

Turbo product codes (Chapter 1) are an attractive option because of their
reduced complexity compared with other turbo codes. The outer encoder fills
the block interleaver row-by-row with the outer codewords. Since the inter-
leaver columns are read by the inner encoder to provide the channel symbols,
there is an inherent interleaving of the inner code. Since the outer code is
not inherently interleaved, the channel interleaver of Figure 1-14 is an essen-
tial part of the transmitter. The channel interleaver precludes the possibility
that sufficiently corrupted outer codewords due to dwell intervals hit by in-
terference can undermine the iterative process in the turbo decoder, which is
illustrated in Figure 1-20. Side information about whether or not a hit has
occurred is obtained by hard-decision decoding of the inner codewords. The
metric for determining a hit occurrence is the Hamming distance between the
binary sequence resulting from the hard decisions and the codewords obtained
by bounded-distance decoding. When full interleaving and side information are
used, the turbo product code is competitive in performance with other turbo
codes except for a slight inferiority against partial-band interference occupying
a small fraction of the hopping band [18].
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3.4 Frequency Synthesizers
A frequency synthesizer converts a standard reference frequency into a different
desired frequency. In a frequency-hopping system, the frequencies of the hopset
must be synthesized. In practical applications, the frequencies of the hopset
have the form

where and the are rational numbers, is the reference frequency, and
is a frequency in the spectral band of the hopset. The reference signal, which
is a tone at the reference frequency, is usually the output of a frequency divider
or multiplier fed by a stable frequency source, such as an atomic or crystal
oscillator. The use of a single reference signal, which even generates ensures
that any output frequency of the synthesizer has the same stability and accuracy
as the reference. The three fundamental types of frequency synthesizers are the
direct, digital, and indirect synthesizers. Most practical synthesizers are hybrids
of these fundamental types [19], [20], [21], [22].

Direct Frequency Synthesizer

A direct frequency synthesizer uses frequency multipliers and dividers, mixers,
bandpass filters, and electronic switches to produce signals with the desired
frequencies. Direct frequency synthesizers provide both very fine resolution
and high frequencies, but often require a very large amount of hardware and do
not provide a phase-continuous output after frequency changes. Although a
direct synthesizer can be realized with programmable dividers and multipliers,
the standard approach is to use the double-mix-divide (DMD) system illustrated
in Figure 3.16. The reference signal at frequency is mixed with a tone at
the fixed frequency The bandpass filter selects the sum frequency
produced by the mixer. Another mixing and filtering operation with a tone at

produces the frequency If the fixed frequencies and
are chosen so that

then the divider produces the output frequency In principle, a single
mixer and bandpass filter could produce this output frequency, but two mixers
and bandpass filters simplify the filters. Each bandpass filter must select the
sum frequency while suppressing the difference frequency and the mixer input
frequencies, which may enter the filter because of mixer leakage. If the sum
frequency is too close to one of these other frequencies, the bandpass filter
becomes prohibitively complex and expensive.

The DMD system of Figure 3.16 can be used as a module in a direct fre-
quency synthesizer that can achieve arbitrary frequency resolution by cascad-
ing enough DMD modules. A synthesizer that provides two-digit resolution is
shown in Figure 3.17. When the synthesizer is used in a frequency-hopping sys-
tem, the control bits are produced by the code generator. Each decade switch
passes a single tone to a DMD module. The ten tones that are available to
the decade switches may be produced by applying the reference frequency to



3.4. FREQUENCY SYNTHESIZERS 167

Figure 3.16: Double-mix-divide module, where BPF = bandpass filter.

Figure 3.17: Direct frequency synthesizer with two-digit resolution.

appropriate frequency multipliers and dividers in the tone generator. Equation
(3-92) ensures that the output frequency of the second bandpass filter in DMD
module 2 is Thus, the final synthesizer output frequency is

Example 1. It is desired to produce a 1.79 MHz tone. Let
and The ten tones provided to the decade switches are 5, 6, 7, . . . ,
14 MHz so that and can range from 0 to 9 MHz. Equation (3-92) yields

If and then the output frequency is
1.79 MHz. The frequencies and are such that the designs of the bandpass
filters inside the modules are reasonably simple.

Digital Frequency Synthesizer

A digital frequency synthesizer converts the stored sample values of a sine wave
into an analog sine wave with a specified frequency. The periodic and symmetric
character of a sine wave implies that only values for the first quadrant need to be
stored. The basic elements of a digital frequency synthesizer are shown in Figure
3.18. A set of bits, which are produced by the code generator in a frequency-
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Figure 3.18: Digital frequency synthesizer.

hopping system, determine the synthesized frequency by specifying a phase
increment The accumulator converts the phase increment into successive
samples of the phase by adding the increment to the content of an internal
register after every cycle of the reference signal. A phase sample

defines an address in the read-only memory (ROM) at which the
value is stored. This value is applied to a digital-to-analog converter
(DAC), which performs a sample-and-hold operation at a sampling rate equal
to the reference frequency The converter output is applied to an anti-aliasing
lowpass filter with a cutoff frequency less than The output of the lowpass
filter is the desired analog signal.

The numerical capacity of the accumulator determines the maximum num-
ber of ROM addresses that the phase accumulator can specify. One sample
value of is read out after every cycle of the reference signal. If N sample
values are read out during each period of then the frequency of the analog
signal produced is

where is the frequency of the reference signal. The output frequency
is produced when every stored sample value is read out at the reference
rate. Thus, if the phase accumulator increments by after every cycle of the
reference signal, then

which implies that is the frequency resolution and the minimum frequency
that can be generated by the synthesizer.

The maximum frequency that can be generated is produced by using
only a few samples of per period. From the Nyquist sampling theorem,
it is known that is required to avoid aliasing. Practical DAC and
lowpass filter requirements further limit to approximately 0.4 or less.
Thus, samples of per period are used in synthesizing and
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The lowpass filter may be implemented with a linear phase across a flat pass-
band extending to approximately The frequencies and are limited
by the speed of the digital-to-analog converter.

Let denote the number of bits in the accumulator register. The numeri-
cal capacity of the accumulator is Suppose that and are
specified minimum and maximum frequencies that must be produced by a syn-
thesizer. Equations (3-93) and (3-95) imply that and
Therefore, and the required number of accumulator bits
is

where denotes the largest integer in
The ROM stores or fewer distinct words. Each word represents

one possible value of in the first quadrant or, equivalently, one possible
magnitude of The input to the ROM comprises parallel bits. The
two most significant bits are the sign bit and the quadrant bit. The sign bit
specifies the polarity of The quadrant bit specifies whether is in
the first or second quadrants or in the third or fourth quadrants. The least
significant bits of the input determine the address in which the magnitude of

is stored. The address specified by the least significant bits is appropriately
modified by the quadrant bit when is in the second or fourth quadrants. The
sign bit becomes one of the ROM output bits. The phase accumulator
uses bits. Since bits are needed by the ROM, the least
significant bits in the accumulator are not applied to the ROM. The memory
requirements of a ROM and the number of its input bits can be reduced by
using trigonometric identities and hardware multipliers.

Since ROM output bits specify the magnitude of the quantization
error produces the worst-case noise power

in the digital-to-analog converter output. The magnitude of is called the
spectral purity of the synthesizer.

Example 2. A digital synthesizer is to be designed to cover 1 kHz to 1
MHz with a spectral purity greater than 45 dB. According to (3-97), the use
of 8-bit words in the ROM is adequate for the required spectral purity. The
ROM contains or fewer distinct words and requires input
bits. If 2.5 then since (3-96) yields Thus,
a 12-bit phase accumulator is needed. Since we may choose N =
4000. If the frequency resolution and smallest frequency is to be
then (3-93) indicates that is required. When the frequency is
desired, the phase increments are so small that increments occur
before a new address is specified and a new value of is produced. Thus,
the 4 least-significant bits in the accumulator are not used in the addressing of
the ROM.

The direct digital synthesizer can be easily modified to produce a modulated
output when high-speed digital data is available. For amplitude modulation,
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the ROM output is applied to a multiplier. Phase modulation may be im-
plemented by adding the appropriate bits to the phase accumulator output.
Frequency modulation entails a modification of the accumulator input bits. For
a quaternary modulation, separate sine and cosine ROMs may be used.

A digital frequency synthesizer can produce nearly instantaneous, phase-
continuous frequency changes and a very fine frequency resolution despite its
relatively small size, weight, and power requirements. A disadvantage is the
limited maximum frequency, which restricts the bandwidth of the covered fre-
quencies following a frequency translation of the synthesizer output. For this
reason, digital frequency synthesizers are often used as components in hybrid
synthesizers. Another disadvantage is the stringent requirement for the lowpass
filter to suppress frequency spurs generated during changes in the synthesized
frequency.

Indirect Frequency Synthesizers

An indirect frequency synthesizer uses voltage-controlled oscillators and feed-
back loops. Indirect synthesizers usually require less hardware than comparable
direct ones, but require more time to switch from one frequency to another. Like
digital synthesizers, indirect synthesizers inherently produce phase-continuous
outputs after frequency changes. The principal components of a single-loop
indirect synthesizer, which is similar in operation to a phase-locked loop, are
depicted in Figure 3.19. The control bits, which determine the value of the
modulus or divisor N, are supplied by a code generator. The input signal at
frequency may be provided by another synthesizer. Since the feedback loop
forces the frequency of the divider output, to closely approximate
the reference frequency the output of the voltage-controlled oscillator (VCO)
is a sine wave with frequency

where N is a positive integer. Phase detectors in frequency-hopping synthesizers
are usually digital devices that measure zero-crossing times rather than the
phase differences measured when mixers are used. Digital phase detectors have
an extended linear range, are less sensitive to input-level variations, and simplify
the interface with a digital divider.

Since the output frequencies change in increments of the frequency res-
olution of the single-loop synthesizer is For stable operation and the sup-
pression of sidebands that are offset from by it is desirable that the
loop bandwidth be on the order of 0.1 The switching time for changing
frequencies, which is inversely proportional to the loop bandwidth, is roughly
approximated by

This equation indicates that a low resolution and a low switching time may
not be achievable by a single loop. The switching time is less than or equal
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Figure 3.19: Indirect frequency synthesizer with single loop.

to defined previously for frequency-hopping pulses, which may have addi-
tional guard time inserted. To decrease the switching time while maintaining
the frequency resolution of a single loop, a coarse steering signal can be stored
in a ROM, converted into analog form by a digital-to-analog converter (DAC),
and applied to the VCO (as shown in Figure 3.19) immediately after a fre-
quency change. The steering signal reduces the frequency step that must be
acquired by the loop when a hop occurs. An alternative approach is to place
a fixed divider with modulus M after the loop so that the output frequency is

By this means, can be increased without sacrificing
resolution provided that the VCO output frequency, which equals is not
too large for the divider in the feedback loop. To limit the transmission of spu-
rious frequencies, it may be desirable to inhibit the transmitter output during
frequency transitions.

The switching time can be dramatically reduced by using two synthesizers
that alternately produce the output frequency. One synthesizer produces the
output frequency while the second one is being tuned to the next frequency
following a command from the code generator. If the hop duration exceeds the
switching time of each synthesizer, then the second synthesizer begins producing
the next frequency before a control switch routes its output to a modulator or
a dehopping mixer.

A divider is a binary counter that produces a square-wave output. The
divider counts down by one unit every time its input crosses zero. If the modulus
or divisor is the positive integer N, then after N zero crossings, the divider
output crosses zero and changes state. The divider then resumes counting down
from N. Programmable dividers have limited operating speeds that impair their
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ability to accommodate a high-frequency VCO output. A problem is avoided
by the down-conversion of the VCO output by the mixer shown in Figure 3.19,
but spurious components are introduced. Since fixed dividers can operate at
much higher speeds than programmable dividers, one might consider placing a
fixed divider before the programmable divider in the feedback loop. However,
if the fixed divider has a modulus then the loop resolution becomes
so this solution is usually unsatisfactory.

A dual-modulus divider, which is depicted in Figure 3.20, allows synthesizer
operation at high frequencies while maintainingthe frequency resolution equal

Figure 3.20: Dual-modulus divider.

to The dual prescalar consists of two fixed dividers with divisors equal
to the positive integers P and P + Q. The two programmable dividers count
down from the integers A and B, where B > A and A is nonnegative. These
programmable dividers are only required to accommodate a frequency
The dual prescalar initially divides by the modulus P + Q. This modulus
changes whenever a programmable divider reaches zero. After (P + Q)A input
transitions, divider 1 reaches zero, and the modulus control causes the dual
prescalar to divide by P. Divider 2 has counted down to B – A. After P(B – A)
more input transitions, divider 2 reaches zero and causes an output transition.
The two programmable dividers are then reset, and the dual prescalar reverts
to division by P + Q. Thus, each output transition corresponds to A(P + Q) +
P(B – A) = AQ + PB input transitions, which implies that the dual-modulus
divider has a modulus

and produces the output frequency
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If Q = 1 and P = 10, then the dual-modulus divider is called a 10/11
divider, and

which can be increased in unit steps by changing A in unit steps. Since B > A
is required, a suitable range for A and minimum value of B are

The relations (3-98), (3-101), and (3-102) indicate that the range of a synthe-
sized hopset is from to Therefore, a spectral
band between and is covered by the hopset if

and

Example 3. The Bluetooth communication system is used to establish
wireless communications among portable electronic devices. The system has a
hopset of 79 carrier frequencies, its hop rate is 1600 hops per second, its hop
band is between 2400 and 2483.5 MHz, and the bandwidth of each frequency
channel is 1 MHz. Consider a system in which the 79 carrier frequencies are
spaced 1 MHz apart from 2402 MHz to 2480 MHz. A 10/11 divider with
MHz provides the desired increment, which is equal to the frequency resolution.
Equation (3-99) indicates that which indicates that 25 potential data
symbols will have to be omitted during each hop interval. Inequality (3-103)
indicates that MHz is a suitable choice. Then (3-104) is satisfied
by Therefore, dividers A and B require 4 and 5 control bits,
respectively, to specify their potential values. If the control bits are stored in a
ROM, then each ROM location contains 9 bits. The number of ROM addresses
is at least 79, the number of frequencies in the hopset. Thus, a ROM input
address requires 7 bits.

Multiple loops

A multiple-loop frequency synthesizer uses two or more single-loop synthesizers
to obtain both fine frequency resolution and fast switching. A three-loop fre-
quency synthesizer is shown in Figure 3.21. Loops A and B have the form of
Figure 3.19, but loop A does not have a mixer and filter in its feedback. Loop
C has the mixer and filter, but lacks the divider. The reference frequency
is chosen to ensure that the desired switching time is realized. If A > M, then
loop C does not appreciably degrade the switching time. The divisor M is
chosen so that is equal to the desired resolution. Loop A and the divider
generate increments of while loop B generates increments of Loop C
combines the outputs of loops A and B to produce the output frequency
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Figure 3.21: Indirect frequency synthesizer with three loops.

where B, A, and M are positive integers because they are produced by dividers.
Loop C is preferable to a mixer and bandpass filter because the filter would have
to suppress a closely spaced, unwanted component when and were
far apart. To ensure that each output frequency is produced by unique values
of A and B, it is required that To prevent degradation
in the switching time, it is required that Both requirements are met
by choosing

According to (3-105), a range of frequencies from to is covered if

and

Example 4. Consider the Bluetooth system of Example 3 but with the
more stringent requirement that which only sacrifices 3 potential
data symbols per hop interval. The single-loop synthesizer of Example 3 cannot
provide this short switching time. The required switching time is provided by a
three-loop synthesizer with The resolution of 1 MHz is achieved
by taking M = 10. Equations (3-106) indicate that              and

Inequalities (3-107) and (3-108) are satisfied if
and The maximum frequencies that must be accommodated by
the dividers in loops A and B are and
respectively. Dividers A and B require 5 and 4 control bits, respectively.
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Fractional-N Synthesizer

A fractional-N synthesizer uses a single loop and extensive auxiliary hardware
to produce an output frequency given by (3-105) with Although
the switching time is inversely proportional to the resolution is which
can be made arbitrarily small in principle. The synthesis method alters the loop
feedback by dividing the output frequency by B most of the time but dividing
B + 1 every M/A output cycles so that the effective divisor is N = B + A/M.
The main disadvantage of the fractional-N synthesizer relative to the other
synthesizers of comparable performance is its production of relatively high-level
spurious signals that frequency-modulate its output signal.

As shown in Figure 3.22, the number A/M is added to the content of an
accumulator every output cycle. Each time the content exceeds unity, a carry

Figure 3.22: Fractional-N frequency synthesizer.

bit is generated that causes division by B + 1 instead of B. For example, if
and it is desired to generate then B = 9 and

A/M = 0.15 is added to the content of an accumulator every output cycle. The
output frequency is divided by B + 1 = 10 every M/A = 1/0.15 = 6.67 output
cycles on the average. The cycle swallower is a device that blocks one of the
VCO output cycles in response to a carry bit from the accumulator. For the
VCO to produce a stable output frequency, its input must be approximately
a direct-current signal. However, for every reference cycle, the VCO output
undergoes N cycles, and the divider output undergoes N/B = 1 + A/BM
cycles. Therefore, the relative phase between the two phase-detector inputs
increases by radians per amplifier output. Since the accumulator
output increases by A/M every reference cycle, a programmable amplifier with
a gain of yields the output needed for cancellation.
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Example 5. Consider a fractional-N synthesizer for the Bluetooth system
of Example 4 in which If the output of the fractional-N synthesizer
is frequency-translated by 2300 MHz, then the synthesizer itself needs to cover
102 MHz to 180 MHz. The switching time is achieved by taking
The resolution is achieved by taking M = 10. Equation (3-105) indicates that
the required frequencies are covered by varying B from 10 to 18 and A from 0
to 9. The accumulator increases its content by A/M = A/10 every reference
cycle. The integers B and A require 5 and 4 control bits, respectively.

3.5 Problems
1.

2.

3.

4.

5.

6.

7.

An n-stage feedback shift register is used as the code generator in the
FH/MFSK transmitter shown in Figure 3.5(a). What is the maximum
number of effective frequency channels in the hopset? What is required
for message privacy?

Consider FH/MFSK with soft-decision decoding of repetition codes and
Show that is given by (3-30).

Consider FH/MFSK with soft-decision decoding of repetition codes and
large values of Suppose that the number of repetitions is not
chosen to minimize the potential impact of partial-band jamming. Show
that a nonbinary modulation with bits per symbol gives a better perfor-
mance than binary modulation in the presence of worst-case partial-band
jamming if

Draw the block diagram of a receiver for an FH/MFSK system with an
independently hopped MFSK set. This system precludes sophisticated
multitone jamming.

How many symbols per hop are required for the loss due to a phase-
reference symbol to be less than 0.1 dB in an FH/DPSK system?

This problem illustrates the importance of a channel code to a frequency-
hopping system in the presence of worst-case partial-band interference.
Consider an FH/MSK system with limiter-discriminator demodulation,
(a) Use (3-70) to calculate the required to obtain a bit error rate

when no channel code is used, (b) Calculate the required
when a Golay (23,12) code is used. As a first

step, use the first term in (1-25) to estimate the required symbol error
probability. What is the coding gain?

Consider an FH/DPSK system with a turbo decoder, (a) Derive the
maximum-likelihood estimates of (3-86) and (3-87). (b) Assume that the

are correct. Derive the value of the factor necessary for to be
unbiased, (c) If phase synchronization is available, is the same for
each symbol, and both and the attenuation are known, show that
(3-90) reduces to (1-137).
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8. It is desired to cover 198 – 200 MHz in 10 Hz increments using double-mix-
divide modules. (a) What is the minimum number of modules required?
(b) What is the range of acceptable reference frequencies? (c) Choose a
reference frequency. What are the frequencies of the required tones? (d)
If an upconversion by 180 MHz follows the DMD modules, what is the
range of acceptable reference frequencies? Is this system more practical?

9. It is desired to cover 100 – 100.99 MHz in 10 kHz increments with an
indirect frequency synthesizer containing a single loop and a dual-modulus
divider. Let in Figure 3.19 and Q = 1 in Figure 3.20. (a) What is
a suitable range of values of A? (b) What are a suitable value of P and
a suitable range of values of B if it is required to minimize the highest
frequency applied to the programmable dividers?

10. It is desired to cover 198 – 200 MHz in 10 Hz increments with a switching
time equal to 2.5 ms. An indirect frequency synthesizer with three loops
in the form of Figure 3.21 is used. It is desired that (a)
What are suitable values of the parameters M,

and ? (b) If the desired switching time is reduced to 250
and is minimized, what are the values of these parameters?

11. Specify the design parameters of a fractional-N synthesizer that covers
198 – 200 MHz in 10 Hz increments with a switching time equal to 250
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Chapter 4

Code Synchronization

A spread-spectrum receiver must generate a spreading sequence or frequency-
hopping pattern that is synchronized with the received sequence or pattern; that
is, the corresponding chips or dwell intervals must precisely or nearly coincide.
Any misalignment causes the signal amplitude at the demodulator output to
fall in accordance with the autocorrelation or partial autocorrelation function.
Although the use of precision clocks in both the transmitter and the receiver
limit the timing uncertainty in the receiver, clock drifts, range uncertainty, and
the Doppler shift may cause synchronization problems. Code synchronization,
which is either sequence or pattern synchronization, might be obtained from
separately transmitted pilot or timing signals. It may be aided or enabled by
feedback signals from the receiver to the transmitter. However, to reduce the
cost in power and overhead, most spread-spectrum receivers can acquire code
synchronization from the received signal.

4.1 Acquisition of Spreading Sequences
In the first part of this chapter, we consider direct-sequence systems. To de-
rive the maximum-likelihood estimate of the code phase or timing offset of the
spreading sequence, several assumptions are made. Since the presence of the
data modulation impedes code synchronization, the transmitter is assumed to
facilitate the synchronization by transmitting the spreading sequence without
any data modulation. In nearly all applications, noncoherent code synchroniza-
tion must precede carrier synchronization because the signal energy is spread
over a wide spectral band. Prior to despreading, which requires code synchro-
nization, the signal-to-noise ratio (SNR) is unlikely to be sufficiently high for
successful carrier tracking by a phase-locked loop. The received signal is

where is the desired signal and is the additive white Gaussian noise.
For a direct-sequence system with PSK modulation, the desired signal is
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where S is the average power, is the spreading waveform, is the carrier
frequency, is the random carrier phase, and and are the unknown code
phase and frequency offset, respectively, that must be estimated. The frequency
offset may be due to a Doppler shift or to a drift or instability in the transmitter
oscillator.

The coefficients in the expansion of the observed waveform in terms of or-
thonormal basis functions constitute the vector The likelihood
function for the unknown and is the conditional density function of r given
the values of and Since is a random variable, the likelihood function is

where is the conditional density function of r given the values of
and and is the expectation with respect to The maximum-

likelihood estimates are those values of and that maximize
The coefficients in the expansion of in terms of the orthonormal basis

functions are statistically independent. Since each coefficient is Gaussian with
variance

where the are the coefficients of the signal when and are given.
Substituting this equation into (4-3) and eliminating factors irrelevant to the
maximum-likelihood estimation, we obtain

Expansions in the orthonormal basis functions indicate that if the
likelihood function may be expressed in terms of the signal waveforms as

where is the energy in the signal waveform over the observation interval
of duration T. Assuming that does not vary significantly over the ranges
of and considered, the factor involving may be dropped from further
consideration. The substitution of in (4-2) into (4-6) then yields

For noncoherent estimation, the received carrier phase is assumed to be
uniformly distributed over A trigonometric expansion followed by an
integration of (4-7) over gives (cf. (7-14))
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where is the modified Bessel function of the first kind and order zero given
by (D-30), and

Since is a monotonically increasing function of (4-8) implies that
is a sufficient statistic for maximum-likelihood estimation. Ideally,

the estimates are determined by considering all possible values of and and
then choosing those values that maximize (4-9). A device that implements (4-9)
is called a noncoherent correlator.

A practical implementation of maximum-likelihood estimation or other type
of estimation is greatly facilitated by dividing synchronization into the two oper-
ations of acquisition and tracking. Acquisition provides coarse synchronization
by limiting the choices of the estimated values to a finite number of quantized
candidates. Following the acquisition, tracking provides and maintains fine syn-
chronization.

One method of acquisition is to use a parallel array of processors, each
matched to candidate quantized values of the timing and frequency offsets.
The largest processor output then indicates which candidates are selected as the
estimates. An alternative method of acquisition, which is much less complex,
but significantly increases the time needed to make a decision, is to serially
search over the candidate offsets. Since the frequency offset is usually negligible
or requires only a few candidate values, the remainder of this chapter analyzes
code synchronization in which only the timing offset is estimated. Search
methods rather than parallel processing are examined. Code acquisition is the
operation by which the phase of the receiver-generated sequence is brought
to within a fraction of a chip of the phase of the received sequence. After
this condition is detected and verified, the tracking system is activated. Code
tracking is the operation by which synchronization errors are further reduced or
at least maintained within certain bounds. Both the acquisition and tracking
devices regulate the clock rate. Changes in the clock rate adjust the phase or
timing offset of the local sequence generated by the receiver relative to the phase
or timing offset of the received sequence.

In a benign environment, sequential estimation methods provide rapid ac-
quisition [1]. Successive received chips are demodulated and then loaded into
the receiver’s code generator to establish its initial state. The tracking system
then ensures that the code generator maintains synchronization. However, be-
cause chip demodulation is required, the usual despreading mechanism cannot
be used to suppress interference during acquisition. Since an acquisition fail-
ure completely disables a communication system, an acquisition system must
be capable of rejecting the anticipated level of interference. To meet this re-
quirement, matched-filter acquisition and serial-search acquisition are the most
effective techniques in general.
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Figure 4.1: Digital matched filter.

Matched-Filter Acquisition

Matched-filter acquisition provides potentially rapid acquisition when short pro-
grammable sequences give adequate security. The matched filter in an acquisi-
tion system is matched to one period of the spreading waveform, which is usu-
ally transmitted without modulation during acquisition. The sequence length
or integration time of the matched filter is limited by frequency offsets and
chip-rate errors. The output envelope, which ideally comprises triangular au-
tocorrelation spikes, is compared with one or more thresholds, one of which is
close to the peak value of the spikes. If the data-symbol boundaries coincide
with the beginning and end of a spreading sequence, the occurrence of a thresh-
old crossing provides timing information used for both symbol synchronization
and acquisition. A major application of matched-filter acquisition is for burst
communications, which are short and infrequent communications that do not
require a long spreading sequence.

A digital matched filter that generates for noncoherent acquisition of
a binary spreading waveform is illustrated in Figure 4.1. The digital matched
filter offers great flexibility, but is limited in the bandwidth it can accommodate.
The received spreading waveform is decomposed into in-phase and quadrature
baseband components, each of which is applied to a separate branch. The
outputs of each digitizer are applied to a transversal filter. Tapped outputs of
each transversal filter are multiplied by stored weights and summed. The two
sums are squared and added together to produce the final matched-filter output.
A one-bit digitizer makes hard decisions on the received chips by observing the
polarities of the sample values. Each transversal filter is a shift register, and
the reference weights are sequence chips stored in shift-register stages. The
transversal filter contains G successive received spreading-sequence chips and a
correlator that computes the number of received and stored chips that match.
The correlator outputs are applied to the squarers.
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Figure 4.2: Configuration of a serial-search acquisition system enabled by a
matched filter.

Matched-filter acquisition for continuous communications is useful when
serial-search acquisition with a long sequence fails or takes too long. The trans-
mission of the short sequence may be concealed by embedding it within the
long sequence. The short sequence may be a subsequence of the long sequence
that is presumed to be ahead of the received sequence and is stored in the pro-
grammable matched filter. Figure 4.2 depicts the configuration of a matched
filter for short-sequence acquisition and a serial-search system for long-sequence
acquisition. The control signal provides the short sequence that is stored or
recirculated in the matched filter. The control signal activates the matched
filter when it is needed and deactivates it otherwise. The short sequence is de-
tected when the envelope of the matched-filter output crosses a threshold. The
threshold-detector output starts a long-sequence generator in the serial-search
system at a predetermined initial state. The long sequence is used for verifying
the acquisition and for despreading the received direct-sequence signal. Several
matched filters in parallel may be used to expedite the process.

4.2 Serial-Search Acquisition

Serial-search acquisition consists of a search, usually in discrete steps, among
candidate code phases of a local sequence until it is determined that the local
sequence is nearly synchronized with the received spreading sequence. Con-
ceptually, the timing uncertainty covers a region that is quantized into a finite
number of cells, which are search positions of relative code phases or timing
alignments. The cells are serially tested until it is determined that a particular
cell corresponds to the alignment of the two sequences to within a fraction of a
chip.



186 CHAPTER 4. CODE SYNCHRONIZATION

Figure 4.3: Serial-search acquisition system.

Figure 4.3 depicts the principal components of a serial-search acquisition
system. The received direct-sequence signal and a local spreading sequence are
applied to a noncoherent correlator that produces the statistic (4-9). If the
received and local spreading sequences are not aligned, the sampled correlator
output is low. Therefore, the threshold is not exceeded, the cell under test is
rejected, and the phase of the local sequence is retarded or advanced, possibly
by generating an extra clock pulse or by blocking one. A new cell is then
tested. If the sequences are nearly aligned, the sampled correlator output is
high, the threshold is exceeded, the search is stopped, and the two sequences
run in parallel at some fixed phase offset. Subsequent tests verify that the
correct cell has been identified. If a cell fails the verification tests, the search
is resumed. If a cell passes, the two sequences are assumed to be coarsely
synchronized, demodulation begins, and the tracking system is activated. The
threshold-detector output continues to be monitored so that any subsequent
loss of synchronization activates the serial search.

There may be several cells that potentially provide a valid acquisition. How-
ever, if none of these cells corresponds to perfect synchronization, the detected
energy is reduced below its potential peak value. The step size is the separa-
tion between cells. If the step size is one-half of a chip, then one of the cells
corresponds to an alignment within one-fourth of a chip. On the average, the
misalignment of this cell is one-eighth of a chip, which may cause a negligi-
ble degradation. As the step size decreases, both the average detected energy
during acquisition and the number of cells to be searched increase.

The dwell time is the amount of time required for testing a cell and is ap-
proximately equal to the length of the integration interval in the noncoherent
correlator (Section 4.3). An acquisition system is called a single-dwell system
if a single test determines whether a cell is accepted as the correct one. If ver-
ification testing occurs before acceptance, the system is called a multiple-dwell
system. The dwell times either are fixed or are variable but bounded by some
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Figure 4.4: Flow graph of multiple-dwell system with consecutive-count strat-
egy.

maximum value. The dwell time for the initial test of a cell is usually designed
to be much shorter than the dwell times for verification tests. This approach
expedites the acquisition by quickly eliminating the bulk of the incorrect cells.
In any serial-search system, the dwell time allotted to a test is limited by the
Doppler shift, which causes the received and local chip rates to differ. As a
result, an initial close alignment of the two sequences may disappear by the end
of the test.

A multiple-dwell system may use a consecutive-count strategy, in which a
failed test causes a cell to be immediately rejected, or an up-down strategy,
in which a failed test causes a repetition of a previous test. Figures 4.4 and
4.5 depict the flow graphs of the consecutive-count and up-down strategies,
respectively, that require D tests to be passed before acquisition is declared. If
the threshold is not exceeded during test 1, the cell fails the test, and the next
cell is tested. If it is exceeded, the cell passes the test, the search is stopped,
and the system enters the verification mode. The same cell is tested again, but
the dwell time and the threshold may be changed. Once all the verification
tests have been passed, the code tracking is activated, and the system enters
the lock mode. In the lock mode, the lock detector continually verifies that code
synchronization is maintained. If the lock detector decides that synchronization
has been lost, reacquisition begins in the search mode.

The order in which the cells are tested is determined by the general search
strategy. Figure 4.6(a) depicts a uniform search over the cells of the timing un-
certainty. The broken lines represent the discontinuous transitions of the search
from the one part of the timing uncertainty to another. The broken-center Z
search, illustrated in Figure 4.6(b), is appropriate when a priori information
makes part of the timing uncertainty more likely to contain the correct cell than
the rest of the region. A priori information may be derived from the detection
of a short preamble. If the sequences are synchronized with the time of day,
then the receiver’s estimate of the transmitter range combined with the time of
day provide the a priori information.
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Figure 4.5: Flow graph of multiple-dwell system with up-down strategy.

Figure 4.6: Trajectories of search positions: (a) uniform search and (b) broken-
center Z search.

The acquisition time is the amount of time required for an acquisition system
to locate the correct cell and initiate the code tracking system. To derive the
statistics of the acquisition time [2], one of the possible cells is considered
the correct cell, and the other cells are incorrect. The difference in
timing offsets among cells is where the step size is usually either 1
or 1/2. However, it is convenient to allow the correct cell to include two or
more timing offsets or code phases. Let L denote the number of times the
correct cell is tested before it is accepted and acquisition terminates. Let C
denote the number of the correct cell and denote the probability that
Let v(L,C) denote the number of incorrect cells tested during the acquisition
process. The functional dependence is determined by the search strategy. Let

denote the total rewinding time, which is the time required for the
search to move discontinuously within the timing uncertainty. Since an incorrect
cell is always ultimately rejected, there are only three types of events that
occur during a serial search. Either the  incorrect cell is dismissed after

seconds, a correct cell is falsely dismissed for the time after
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seconds, or a correct cell is accepted after seconds, where the first subscript
is 1 if dismissal occurs, and 2 otherwise; the second subscript is 1 if the cell is
incorrect, and 2 otherwise. Each of these decision times is a random variable.
If an incorrect cell is accepted, the receiver eventually recognizes the mistake
and reinitiates the search at the next cell. The wasted time expended in code
tracking is a random variable called the penalty time. These definitions imply
that the acquisition time is the random variable given by

The most important performance measures of the serial search are the mean
and variance of Given and the conditional expected value of

is

where and are the expected values of each and
respectively. Therefore, the mean acquisition time is

where is the probability that We assume that the test statistics
are independent and identically distributed. Therefore,

where is the probability that the correct cell is detected when it is tested dur-
ing a scan of the uncertainty region. After calculating the conditional expected
value of given that and and using the identity
we obtain

The variance of is

In some applications, the serial-search acquisition must be completed within
a specified period of duration If it is not, the serial search is terminated,
and special measures such as the matched-filter acquisition of a short sequence
are undertaken. The probability that can be bounded by using
Chebyshev’s inequality (Appendix A):

where P[A] denotes the probability of the event A.
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Uniform Search with Uniform Distribution

As an important application, we consider the uniform search of Figure 4.6(a)
and a uniform a priori distribution for the location of the correct cell given by

If the cells in the figure are labeled consecutively from left to right, then

The rewinding time is

where is the rewinding time associated with each broken line in the figure.
If the timing uncertainty covers an entire sequence period, then the cells at the
two edges are actually adjacent and

To evaluate and we substitute (4-13), (4-17), (4-18), and (4-19) into
(4-12) and (4-14) and use the following identities:

where Defining

we obtain

and

In most applications, the number of cells to be searched is large, and simpler as-
ymptotic forms for the mean and variance of the acquisition time are applicable.
As (4-22) gives
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Similarly, (4-23) and (4-15) yield

These equations must be modified in the presence of a large uncorrected
Doppler shift. The fractional change in the received chip rate of the spreading
sequence is equal to the fractional change in the carrier frequency due to the
Doppler shift. If the chip rate changes from to then the average
change in the code or sequence phase during the test of an incorrect cell is
The change relative to the step size is The number of cells that are
actually tested in a sweep of the timing uncertainty becomes
Since incorrect cells predominate, the substitution of the latter quantity in place
of in (4-24) and (4-25) gives approximate asymptotic expressions for and

when the Doppler shift is significant.

Consecutive-Count Double-Dwell System

For further specialization, consider the consecutive-count double-dwell system
described by Figure 4.4 with D = 2. Assume that the correct cell actually sub-
sumes two consecutive cells with detection probabilities and respectively.
If the test results are assumed to be statistically independent, then

Let and denote the search-mode dwell time, false-alarm prob-
ability, and successive detection probabilities, respectively. Let
and denote the verification-mode dwell time, false-alarm probability, and
successive detection probabilities, respectively. Let denote the mean penalty
time, which is incurred by the incorrect activation of the tracking mode. The
flow graph indicates that since each cell must pass two tests,

and

Equations (4-26) to (4-28) are sufficient for the evaluation of the asymptotic
values of the mean and variance given by (4-24) and (4-25).

For a more accurate evaluation of the mean acquisition time, expressions for
the conditional means and are needed. Expressing as the conditional
expectation of the correct-cell test duration given cell detection, enumerating
the possible durations and their conditional probabilities, and then simplifying,
we obtain

Similarly,
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Single-Dwell and Matched-Filter Systems

Results for a single-dwell system are obtained by setting
1,                                                                   and in (4-28) to (4-30). We
obtain

Thus, (4-22) yields

Since the single-dwell system may be regarded as a special case of the double-
dwell system, the latter can provide a better performance by the appropriate
setting of its additional parameters.

The approximate mean acquisition time for a matched filter can be derived
in a similar manner. Suppose that many periods of a short spreading sequence
with N chips per period are received, and the matched-filter output is sampled

times per chip. Then the number of cells that are tested is and
Each sampled output is compared to a threshold so is the

time duration associated with a test. For or 2, it is reasonable to regard
two of the cells as the correct ones. These cells are effectively tested when a
signal period fills or nearly fills the matched filter. Thus, (4-26) is applicable
with and (4-32) yields

where Ideally, the threshold is exceeded once per period, and each
threshold crossing provides a timing marker.

Up-Down Double-Dwell System

For the up-down double-dwell system with two correct cells, the flow graph of
Figure 4.5 with D = 2 indicates that

Similarly,

and is given by (4-26). If an incorrect cell passes the initial test but fails
the verification test, then the cell begins the testing sequence again without
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any memory of the previous testing. Therefore, for an up-down double-dwell
system, a recursive evaluation gives

Substitution of (4-34) to (4-36) into (4-24) to (4-26) gives the asymptotic values
of the mean and variance of the acquisition time.

From the possible durations and their conditional probabilities, we obtain

where is the expected delay for the detection of the correct cell given that
the testing begins at the second correct cell. A recursive evaluation gives

Similarly, is determined by the recursive equation

with

Penalty Time

The lock detector that monitors the code synchronization in the lock mode
performs tests to verify the lock condition. The time that elapses before the
system incorrectly leaves the lock mode is called the holding time. It is desirable
to have a large mean holding time and a small mean penalty time, but the
realization of one of these goals tends to impede the realization of the other. As
a simple example, suppose that each test has a fixed duration and that code
synchronization is actually maintained. A single missed detection, which occurs
with probability causes the lock detector to assume a loss of lock and
to initiate a search. Assuming the statistical independence of the lock-mode
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tests, the mean holding time is

This result may also be derived by recognizing that because
once the lock mode is verified, the testing of the same cell is renewed without
any memory of the previous testing. If the locally generated code phase is
incorrect, the penalty time expires unless false alarms, each of which occurs
with probability continue to occur every seconds. A derivation similar
to that of (4-41) yields the mean penalty time for a single-dwell lock detector:

A trade-off between a high and a low exists because increasing tends
to increase

When a single test verifies the lock condition, the synchronization system is
vulnerable to deep fades and pulsed interference. A preferable strategy is for
the lock mode to be maintained until a number of consecutive or cumulative
misses occur during a series of tests. The performance analysis is analogous to
that of serial-search acquisition.

Other Search Strategies

In a Z search, no cell is tested more than once until all cells in the timing
uncertainty have been tested. Both strategies of Figure 4.6 are Z searches. A
characteristic of the Z search is that

where is the number of incorrect cells tested when and, hence,
L = 1. For simplicity, we assume that is even. For the broken-center Z search,
the search begins with cell and

whereas for the uniform search. If the rewinding time is negligible,
then (4-12), (4-13), and (4-43) yield

where
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Figure 4.7: Trajectories of expanding-window search positions: (a) broken-
center and (b) continuous-center search.

is the average number of incorrect cells tested when If C has a uniform
distribution, then v(1) and, hence, are the same for both strategies. If the
distribution of C is symmetrical about a pronounced central peak and
then a uniform search gives Since a broken-center Z search usually
ends almost immediately or after slightly more than tests,

which indicates that for large values of and close to unity, the broken-
center Z search reduces approximately by a factor of 2 relative to its value
for the uniform search.

An expanding-window search attempts to exploit the information in the dis-
tribution of C by continually retesting cells with high a priori probabilities of
being the correct cell. Tests are performed on all cells within a radius from
the center. If the correct cell is not found, then tests are performed on all
cells within an increased radius The radius is increased successively until
the boundaries of the timing uncertainty are reached. The expanding-window
search then becomes a Z search. If the rewinding time is negligible and C is
centrally peaked, then the broken-center search of Figure 4.7(a) is preferable
to the continuous-center search of Figure 4.7(b) because the latter retests cells
before testing all the cells near the center of the timing uncertainty. In an
equiexpanding search, the radii have the form

where N is the number of sweeps before the search becomes a Z search. If the
rewinding time is negligible, then it can be shown [3] that the broken-center
equiexpanding-window search is optimized for by choosing N = 2.
For this optimized search, is moderately reduced relative to its value for the
broken-center Z search.
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Figure 4.8: Trajectories of alternating search positions: (a) uniform search and
(b) nonuniform search.

When and the optimal search, which is called a uniform
alternating search, tests the cells in order of decreasing a priori probability. For
a symmetric, unimodal, centrally peaked distribution of C, this optimal search
has the trajectory depicted in Figure 4.8(a). Once all the cells in the timing
uncertainty have been tested, the search repeats the same pattern. Equations
(4-43) and (4-45) are applicable. If and the distribution of C has
a pronounced central peak, then v(1) is small, and a comparison with (4-47)
indicates that the uniform alternating search has an advantage over the broken-
center expanding-window search when and the rewinding time for any
discontinuous transition is much smaller than However, computations show
that this advantage dissipates as decreases [3], which occurs because all cells
are tested with the same frequency without accounting for the distribution of
C.

In the nonuniform alternating search, illustrated in Figure 4.8(b), a uniform
search is performed until a radius is reached. Then a second uniform search
is performed within a larger radius This process continues until the bound-
aries of the timing uncertainty are reached and the search becomes a uniform
alternating search. Computations show that for a centrally peaked distribution
of C, the nonuniform alternating search can give a significant improvement over
the uniform alternating search if and the radii = 1 ,2 , . . . , are
optimized [3]. However, if the radii are optimized for then as
the nonuniform search becomes inferior to the uniform search.
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Density Function of the Acquisition Time

The density function of which is needed to accurately calculate
and other probabilities, may be decomposed as

where is the conditional density of given that and
Let denote the convolution operation, denote the convolution
of the density with itself, and Using this
notation, we obtain

where and are the densities associated with and
respectively. If one of the decision times is a constant, then the associated

density is a delta function.
The exact evaluation of is difficult [4], but an approximation usually

suffices. Since the acquisition time conditioned on and is the sum
of independent random variables, it is reasonable to approximate by a
truncated Gaussian density with mean

and variance

The truncation is such that only if or
When is large, the infinite series in (4-49) converges rapidly

enough that the can be accurately approximated by its first few terms.

Alternative Analysis

An alternative method of analyzing acquisition relies on transfer functions [5].
Each phase offset of the local code defines a state of the system. Of the total
number of states, are states that correspond to offsets (cells) that equal
or exceed a chip duration. One state is a collective state that corresponds to all
phase offsets that are less than a chip duration and, hence, cause acquisition to
be terminated and code tracking to begin. The serial-search acquisition process
is represented by its circular state diagram, a segment of which is illustrated in
Figure 4.9. The a priori probability distribution gives the
probability that the search begins in state The rewinding time is assumed to
be negligible.

The branch labels between two states are transfer functions that contain
information about the delays that may occur during the transition between the
two states. Let denote the unit-delay variable and let the power of denote the
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Figure 4.9: Circular state diagram for serial-search acquisition.

time delay. A single-dwell system with dwell false-alarm probability and
constant penalty time has transfer function
for all branches that do not originate in collective state because the transition
delay is with probability and with probability For a
multiple-dwell system, is determined by first drawing a subsidiary state
diagram representing intermediate states and transitions that may occur as the
system progresses from one state to the next one in the original circular state
diagram. For example, Figure 4.10 illustrates the subsidiary state diagram
for a consecutive-count double-dwell system with false alarms and
and delays and for the initial test and the verification test, respectively.
Examination of all possible paths between the initial state and the next state
indicates that

Let denote the transfer function between the collective state and the
lock mode. Let denote the transfer function between state and state
1, which represents the failure to recognize code-phase offsets that are less than
a chip duration. These transfer functions may be derived in the same manner
as For example, consider a consecutive-count, double-dwell system with
a collective state that comprises two states. Figure 4.11 depicts the subsidiary
state diagram representing intermediate states and transitions that may occur
as the system progresses from state (with subsidiary states and to either
the lock mode or state 1. Examination of all possible paths yields
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Figure 4.10: Subsidiary state diagram for determination of for
consecutive-count double-dwell system.

For a single-dwell system with a collective state that comprises N states,

where is the dwell time, is the false-alarm probability, and is the
detection probability of state within the collective state. To calculate the
statistics of the acquisition time, we seek the generating function defined as the
polynomial

where is the probability that the acquisition process will terminate in the
lock mode after seconds. If is known, then the mean acquisition time



200 CHAPTER 4. CODE SYNCHRONIZATION

Figure 4.11: Subsidiary state diagram for calculation of and for
consecutive-count double-dwell system with two-state collective state.

is

Therefore, the variance of the acquisition time is

To derive we observe that it may be expressed as

where is the transfer function from an initial state to the lock mode.
Since the circular state diagram of Figure 4.9 may be traversed an indefinite

The second derivative of gives
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number of times during the acquisition process,

Substitution of this equation into (4-63) yields

The generating function may be expressed as the polynomial in (4-59) by means
of polynomial long division.

For the uniform a priori distribution given by (4-17),

Since the progression from one state to another is inevitable until the lock mode
is reached, Since (4-65) and (4-60) yield

where the prime indicates differentiation with respect to As an example,
consider a single-dwell system with a two-state collective state. The evaluation
of (4-67) using (4-56) to (4-58) with N = 2 yields (4-32) with if we set

and define by (4-26).

4.3 Acquisition Correlator
The noncoherent correlator of Figure 4.3 provides the approximate maximiza-
tion of given by (4-9). It is assumed that chip synchronization is
established by one of the standard methods of symbol synchronization. Conse-
quently, the test interval can be defined with boundaries that coincide with chip
boundaries, and we test code phases such that where is an integer.
Let denote the duration of the test interval, where M is a positive integer.
If the Doppler shift is not estimated, may be absorbed into in (4-9). If
the test interval begins with chip of the local spreading sequence, then (2-76)
and (4-9) imply that the decision variable for one test of a specific code phase

is

where
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Figure 4.12: Noncoherent correlator for acquisition system. CMF = chip
matched filter. SSG = spreading sequence generator.

The sequences and can be obtained by an in-phase and quadrature
downconversions followed by chip-matched filters sampled at times
Thus, the acquisition correlator has the form depicted in Figure 4.12. The
decision variable V is applied to a threshold detector to determine whether or
not a test of a particular code phase is passed. If a quaternary data modulation
is used instead of PSK, then the only modification necessary is to assign separate
spreading sequence generators to the two parallel branches of the correlator.

The sequences and can be applied to multiple parallel inner prod-
ucts with different values of simultaneously. This procedure allows a parallel
search of various code phases with a moderate amount of additional hardware
or software. Since each inner product may be computed by either
adding or subtracting each component of or

To analyze the performance of the acquisition correlator under fading con-
ditions, we assume that the received signal is

where is the attenuation due to fading, S is the average power when
is the spreading waveform, is the carrier frequency, is the random carrier
phase, is the delay due to the unknown code phase, and is the interference
plus noise modeled as additive white Gaussian noise. The data modulation
is omitted because either it is not transmitted during acquisition or the test
duration is much smaller than a symbol duration In the latter
case, the probability that a symbol transition occurs during a test is negligible,
and the squaring operations eliminate the symbol value from V. Let
denote the delay associated with the code phase of the local spreading sequence.
The difference between and may be expressed in the form
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where N is an integer and For a rectangular chip waveform, (4-69),
(4-70), and (4-72), and the definition of chip yield

where

The alignment of the received and local spreading sequences is close enough
for acquisition if N = –1 or N = 0. If and then the cell
may be considered incorrect. The equation for is the same as (4-74) except
that replaces and is given by (4-74) with replacing

The first term of in (4-73) contributes self-interference that may cause a
false alarm. The self-interference is small if the autocorrelation of the spread-
ing sequence is sharply peaked. In a network of similar systems, interfering se-
quences are substantially suppressed if the cross-correlations among sequences
are small, as they are if all the sequences are Gold or Kasami sequences (Chapter
6).

In the performance analysis, the spreading sequence is modeled as a
random binary sequence and is modeled as a random variable. Thus, given
the values of and the self-interference varies with respect to its mean value
and, hence, degrades acquisition even when the noise term is negligible. If the
variable part the self-interference is negligible, then (4-73) can be approximated
by

where is the second term in (4-73). Since is zero-mean, white Gaussian
noise, is a zero-mean Gaussian random variable. Since and
is independent of the product is zero-mean and Gaussian. The
independence of the terms in the sum then indicates that is a zero-mean
Gaussian random variable. Similarly, we obtain the approximation

where is a zero-mean, Gaussian random variable. Straightforward calcula-
tions using indicate that and are statistically independent
with the same variance:

To determine the condition under which the self-interference is approximated
by its mean value, we calculate Given and (4-73) yields
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where if N = 0, if N = –1, and
if The first term is much smaller than the second term

if where is the energy per chip. This condition
is satisfied with high probability in most practical systems, especially if
incorporates the power spectral densities due to multiple-access interference
and multipath signals. Accordingly, we proceed with the analysis using the
approximations (4-75) and (4-76). Without these approximations, alternative
approximations and assumptions are necessary or the analysis becomes much
more complicated [6]. A common approximation is that

If then a cell is incorrect and (4-73) with implies that
If the values of and depend on the

step size of the serial search. The step size is the separation in chips between
cells and is denoted by When two consecutive cells are considered
correct. If is increasing, then the cell corresponding to N = –1 occurs
first and is followed by the cell corresponding to N = 0. If    is assumed to be
uniformly distributed over (0,1) and or 0, then (4-73) and the similar
equation for yield the conditional means given and

When the two consecutive cells with the smallest values of are
considered the two correct cells. For all the others, we assume that

The first correct cell corresponds to N = –1 and
whereas the second one corresponds to N = 0 and If is assumed
to be uniformly distributed over the latter intervals, then for both cells, we
obtain

Let denote the decision variable V when the correct cell is tested, and let
denote V when the incorrect cell is tested. Equations (4-68), (4-75), and (4-

76) and the preceding analysis indicate that is the sum of the squares of two
independent, zero-mean Gaussian random variables. The results of Appendix
D then indicate that has a central chi-square distribution with two degrees
of freedom and probability density function

where and and
The false-alarm probability for a test of an incorrect cell is the probability
that where is the threshold. The integration of (4-81) gives the
false-alarm probability:

Similarly, given and is the sum of the squares of two independent
Gaussian random variables with nonzero means. The results of Appendix D
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then indicate that has a noncentral chi-square distribution with two degrees
of freedom and probability density function

where

and

The detection probability for a test of a correct cell is the probability that
The integration of (4-83) and the substitution of (4-84) give the

detection probability

where is the generalized Q-function defined by (D-15),

and is the signal energy per chip when fading is absent and
Combining (4-86) and (4-82) yields

Thus, if is specified, is given by (4-88). The threshold needed to realize
a specified is

which requires an accurate estimate of
In the presence of fast Rayleigh fading, has the Rayleigh probability den-

sity (Appendix D.4):

where so that S remains the average signal power in (4-72). It
is assumed that is approximately constant during a test, but independent
between one test and another. Since (4-86) is conditioned on the detection
probability in the presence of fast fading is

To evaluate this integral, we substitute the integral definition of given
by (D-15), interchange the order of integration in the resulting double integral,
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and then use (D-33) to evaluate one of the integrals. The remaining integration
over an exponential function is elementary. The final result is

For slow Rayleigh fading with a coherence time much larger than the acquisition
time, it is appropriate to use (4-86) in calculating the conditional mean acqui-
sition time and then integrate over the Rayleigh density to obtain the mean
acquisition time.

Let C denote the number of chips in the timing uncertainty. The normalized
mean acquisition time (NMAT) is defined as The normalized standard
deviation (NSD) is defined as

Example 1. As an example of the application of the preceding results,
consider a single-dwell system with a uniform search and a uniform a priori
correct-cell location distribution. Let where M is the number of
chips per test, and where K is the number of chips in the mean
penalty time. It is assumed that there are two independent correct cells with
the common detection probability If (4-32) and (4-26)
yield the NMAT:

where

In a single-dwell system, which is given by (4-82). For step size
for In the absence of fading, (4-88) relates

and whereas (4-92) relates them in the presence of fast Rayleigh fading.
Figure 4.13 shows the NMAT as a function of for fast Rayleigh fading

and no fading. At each value of the values of and M are selected
to minimize the NMAT. The figure indicates the advantage of when

and the advantage of when The large increase in the
NMAT due to fast Rayleigh fading is apparent. From (4-25), it is found that
each plot of the NSD is similar to that of the corresponding NMAT.

Example 2. Consider double-dwell systems with a uniform search, a
uniform a priori correct-cell location distribution, and two independent correct
cells with and The test durations are

and If the NMAT is obtained from (4-24)
and (4-94), where is given by (4-28) for a consecutive-count system and
(4-36) for an up-down system. By replacing with and with the
probabilities and or 2, are related through (4-88) with for
no fading and (4-92) for fast Rayleigh fading.

Figure 4.14 shows the NMAT as a function of              for double-dwell systems
in the presence of fast Rayleigh fading. The step size is which is
found to be advantageous for the parameter values chosen. At each value of

the values of and are selected to minimize the NMAT.
The figure illustrates the advantage of the up-down system in most practical
applications. From (4-25), it is found that each plot of the NSD is similar to
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Figure 4.13: NMAT versus for single-dwell system in presence of fast
Rayleigh fading or no fading. Values of and M are optimized.

that of the corresponding NMAT. A comparison of Figure 4.14 with Figure
4.13 indicates that double-dwell systems are capable of significantly lowering
the NMAT relative to a single-dwell system.

The existence of two consecutive correct cells can be directly exploited in
joint two-cell detection, which can be shown to provide a lower NMAT than the
conventional cell-by-cell detection [7]. In the presence of frequency-selective
fading with a large number of resolvable multipath signals, the NMAT of serial-
search acquisition is usually increased because the increased self-interference is
more significant than the higher number of nonconsecutive correct cells with
correct phases. However, joint two-cell detection is more resistant to multiple-
access interference and more robust against variations in the detection thresh-
old, the power level of the desired signal, and the number of multipath signals.
The advantages of joint two-cell detection over cell-by-cell detection are the
result of the efficient combining of the energy of two adjacent correct-phase
samples.

The detection threshold of (4-89) depends on an estimate of the equiv-
alent noise-power spectral density. An accurate estimate usually requires a
long observation interval. However, in mobile communication systems and in
the presence of jamming, the instantaneous interference power may be rapidly
varying. To cope with this environment, an adaptive threshold may be set by
the instantaneous received power [8]. As a result, the mean acquisition time is
lowered relative to its value for nonadaptive schemes when Rayleigh fading or
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Figure 4.14: NMAT versus for double-dwell systems in presence of fast
Rayleigh fading. Step size is Values of and are
optimized.

pulsed Gaussian noise jamming is present. When a rake receiver (Chapter 5 ) is
used, each finger of the receiver must acquire the timing of a separate multipath
signal. Whether matched filtering or a serial search is used, some mechanism
is needed to ensure that each finger acquires a distinct multipath signal [9].

An alternative to acquisition tests of fixed dwell time or number of detector
samples is sequential detection, which uses only the number necessary for a
reliable decision. Thus, some sample sequences may allow a quick decision,
while others may warrant using a large number of samples in the evaluation of a
single phase of the spreading waveform. The sequential probability ratio test [2],
[3] entails the recalculation of the likelihood ratio after each new detector sample
is produced. This ratio is compared with both upper and lower thresholds to
determine if the test is terminated and no more samples need to be extracted.
If the upper threshold is exceeded, the receiver declares acquisition and the
lock mode is entered. If the likelihood ratio drops below the lower threshold,
the test fails, and another code phase is tested. As long as the likelihood ratio
lies between the two thresholds, a decision is postponed and the ratio continues
to be updated. Although the sequential detector is capable of significantly
reducing the mean acquisition time relative to detectors that use a fixed number
of samples, it has a number of practical limitations. Chief among them is
the computational complexity of the calculation of the likelihood ratio or log-
likelihood ratio.
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4.4. CODE TRACKING

Code Tracking

Coherent code-tracking loops operate at baseband following the coherent re-
moval of the carrier of the received signal. An impediment to their use is
that the input SNR is usually too low for carrier synchronization prior to code
synchronization and the subsequent despreading of the received signal. Further-
more, coherent loops cannot easily accommodate the effects of data modulation.
Noncoherent loops operate directly on the received signals and are unaffected
by the data modulation.

To motivate the design of the noncoherent loop, one may adapt the statistic
(4-9). If the maximum-likelihood estimate is assumed to be within the interior
of its timing uncertainty region and is a differentiable function of
then the estimate that maximizes may be found by setting

A major problem with this approach is that given by (4-9) is not
differentiable if the chip waveform is rectangular. This problem is circumvented
by using a difference equation as an approximation of the derivative. Thus, for
a positive we set

This equation implies that the solution of (4-95) may be approximately obtained
by a device that finds the such that

To derive an alternative to this equation, we assume that no noise is present,
and that the correct timing offset of the received signal is

Substituting (4-2) with into (4-9) and using trigonometry, we obtain

If is modeled as the spreading waveform for a random binary sequence
and the interval [0, T] includes many chips, then the integral is reasonably
approximated by its expected value, which is proportional to the autocorrelation

where the triangular function is defined by (2-14). Substituting this result into
(4-97), we find that the maximum-likelihood estimate is approximately obtained
by a device that finds the such that
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Figure 4.15: Delay-locked loop.

The noncoherent delay-locked loop [10], which is diagrammed in Figure 4.15,
implements an approximate computation of the difference on the left-hand side
of (4-100) and then continually adjusts so that this difference remains near
zero. The estimate is used to produce the synchronized local spreading sequence
that is used for despreading the received direct-sequence signal. The code gen-
erator produces three sequences, one of which is the reference sequence used
for acquisition and demodulation. The other two sequences are advanced and
delayed, respectively, by relative to the reference sequence. The product

is usually equal to the acquisition step size, and thus usually but
other values are plausible. The advanced and delayed sequences are multiplied
by the received direct-sequence signal in separate branches.

For the received direct-sequence signal (4-2), the signal portion of the upper-
branch mixer output is

where and is the delay of the reference sequence relative to
the received sequence. Although is a function of time because of the loop
dynamics, the time dependence is suppressed for notational convenience. Since
each bandpass filter has a bandwidth on the order of where is the
duration of each symbol, is not significantly distorted by the filtering.
Nearly all spectral components except the slowly varying expected value of

are blocked by the upper-branch bandpass filter. Since
this expected value is the autocorrelation of the spreading sequence, the filter
output is

Any double-frequency component produced by the square-law device is ulti-
mately suppressed by the loop filter and thus is ignored. Since the
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data modulation is removed, and the upper-branch output is

Similarly, the output of the lower branch is

The difference between the outputs of the two branches is the error signal:

Since is an even function, the error signal is proportional to the left-hand
side of (4-100).

The substitution of (4-99) and (2-14) into (4-105) yields

where is the discriminator characteristic or S-curve of the tracking loop.
For

For

In both cases,

Figure 4.16 illustrates the discriminator characteristic for The
filtered error signal is applied to the voltage-controlled clock. Changes in the
clock frequency cause the reference sequence to converge toward alignment with
the received spreading sequence. When the reference sequence
is delayed relative to the received sequence. As shown in Figure 4.16, is
positive, so the clock rate is increased, and decreases. The figure indicates
that as Similarly, when we find that as

Thus, the delay-locked loop tracks the received code timing once the
acquisition system has finished the coarse alignment.

The discriminator characteristic of code-tracking loops differs from that of
phase-locked loops in that it is nonzero only within a finite range of Outside
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Figure 4.16: Discriminator characteristic of delay-locked loop for

that range, code tracking cannot be sustained, the synchronization system loses
lock, and a reacquisition search is initiated by the lock detector. Tracking
resumes once the acquisition system reduces to within the range for which the
discriminator characteristic is nonzero.

When short spreading sequences are used in a synchronous direct-sequence
network, the reduced randomness in the multiple-access interference (Chapter
6) may cause increased tracking jitter or even an offset in the discriminator
characteristic [11]. For orthogonal sequences, the interference is zero when
synchronization exists, but becomes large when there is a code-phase error in
the local spreading sequence. In the presence of a tracking error, the delay-
locked-loop arm with the larger offset relative to the correct code phase re-
ceives relatively more noise power than the other arm. This disparity reduces
the slope of the discriminator characteristic and, hence, degrades the tracking
performance. Moreover, because of the nonsymmetric character of the cross-
correlations among the spreading sequences, the discriminator characteristic
may be biased in one direction, which will cause a tracking offset.

The noncoherent tau-dither loop, which is depicted in Figure 4.17, is a lower-
complexity alternative to the noncoherent delay-locked loop. The dither gener-
ator produces the dither signal a square wave that alternates between +1
and –1. This signal controls a switch that alternately passes an advanced or
delayed version of the spreading sequence. In the absence of noise, the output
of the switch can be represented by

where the two factors within brackets are orthogonal functions of time and
alternate between +1 and 0. Only one of the factors is nonzero at any instant.
The received direct-sequence signal is multiplied by filtered, and then
applied to a square-law device. If the bandpass filter has a sufficiently narrow
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Figure 4.17: Tau-dither loop.

bandwidth, then a derivation similar to that of (4-103) indicates that the device
output is

Since and the input to
the loop filter is

which is a rectangular wave if the time variation of is ignored. Since the loop
filter has a narrow bandwidth relative to that of its output is approx-
imately the direct-current component of which is the average value of

Averaging the two terms of (4-112), we obtain the filter output:

The substitution of (4-99) yields the clock input:

where the discriminator characteristic is given by (4-107) to (4-109). Thus, the
tau-dither loop can track the code timing in a manner similar to that of the
delay-locked loop. A detailed analysis indicates that the tau-dither loop pro-
vides less accurate code tracking [2], [3]. However, the tau-dither loop requires
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less hardware than the delay-locked loop and avoids the need to balance the
gains and delays in the two branches of the delay-locked loop.

In the presence of frequency-selective fading, the discriminator characteris-
tics of tracking loops are severely distorted. Much better performance is poten-
tially available from a noncoherent tracking loop with diversity and multipath-
interference cancellation [12], but a large increase in implementation complexity
is required.

4.5 Frequency-Hopping Patterns

The synchronization of the reference frequency-hopping pattern produced by
the receiver synthesizer with the received pattern may be facilitated by pre-
cision clocks in both the transmitter and the receiver, feedback signals from
the receiver to the transmitter, or transmitted pilot signals. However, in most
applications, it is necessary or desirable for the receiver to be capable of obtain-
ing synchronization by processing the received signal. During acquisition, the
reference pattern is synchronized with the received pattern to within a fraction
of a hop duration. The tracking system further reduces the synchronization er-
ror, or at least maintains it within certain bounds. For communication systems
that require a strong capability to reject interference, matched-filter acquisition
and serial-search acquisition are the most effective techniques. The matched
filter provides rapid acquisition of short frequency-hopping patterns, but re-
quires the simultaneous synthesis of multiple frequencies. The matched filter
may also be used in the configuration of Figure 4.2 to detect short patterns
embedded in much longer frequency-hopping patterns. Such a detection can be
used to initialize or supplement serial-search acquisition, which is more reliable
and accommodates long patterns.

Matched-Filter Acquisition

Figure 4.18 shows a programmable matched-filter acquisition system that pro-
vides substantial protection against interference [13]. It is assumed that a single
frequency channel is used during each hop interval that occurs during acqui-
sition. One or more programmable frequency synthesizers produce tones at
frequencies which are offset by a constant frequency from the
consecutive frequencies of the hopping pattern for code acquisition. Each tone
multiplies the received frequency-hopping signal and the result is filtered so that
most of the received energy is blocked, except the energy in a frequency-hopping
pulse at a specific frequency. The threshold detector of branch produces

if its threshold is exceeded, which ideally occurs only if the received sig-
nal hops to a specific frequency. Otherwise, the threshold detector produces

The use of binary detector outputs prevents the system from being
overwhelmed by a few strong interference signals. Input of the compara-
tor is the number of frequencies in the hopping pattern that were received in
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Figure 4.18: Matched-filter acquisition system with protection against interfer-
ence.

succession. This discrete-valued, continuous-time function is

where is the hop duration. These waveforms are illustrated in Figure 4.19(a)
for N = 8. The input to the threshold generator is

Acquisition is declared when where is an adaptive threshold
that is a function of An effective choice is
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Figure 4.19: Ideal acquisition system waveforms: (a) formation of when
N = 8, and (b) comparison of and

where is a positive integer.
In the absence of noise and interference, and during

the hop interval in which as illustrated in Figure 4.19(b). If
of the N frequency channels monitored by the matched filter receive strong,
continuous interference, then and during this hop interval
if and During other intervals,
but Therefore, and the matched filter does not declare
acquisition. False alarms are prevented because provides an estimate of
the number of frequency channels with continuous interference.

When acquisition tone is received, the signal in branch of the matched
filter is

where is the intermediate frequency, the first term is the desired signal with
average power S, the second term represents tone interference with average
power I, is zero-mean, stationary Gaussian noise and interference, and
is the phase shift of the tone interference relative to the desired signal. The
power in is

where is power of the thermal noise and is the power of the statistically
independent noise interference.

Bandpass filters are used instead of filters matched to the acquisition tones
because the appropriate sampling times are unknown. The passbands of the
bandpass filters in the branches are assumed to be spectrally disjoint so that
tone interference entering one branch has negligible effect on the other branches,
and the filter outputs are statistically independent of each other. To prove the
statistical independence of the noise, let and denote the autocorre-
lation and power spectral density, respectively, of the stationary Gaussian noise
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in the received signal. Let and denote the impulse responses and
and the transfer functions of two bandpass filters. Since the same

Gaussian noise process enters both filters, their outputs are jointly Gaussian.
The cross-covariance of the jointly Gaussian, zero-mean filter outputs is

where all the integrals extend over Thus, C = 0, if and
are spectrally disjoint. If the noise is white and, hence, is a constant, then
C = 0 if and are orthogonal. When C = 0 for all pairs of band-
pass filters, the threshold-detector outputs in the N branches are statistically
independent.

Suppose that noise interference is present in a branch, but that tone in-
terference is absent so that I = 0. The stationary Gaussian noise has the
representation (Appendix C.2)

where and are zero-mean Gaussian processes with noise powers equal
to In practice, the matched filter of Figure 4.18 would operate in contin-
uous time so that acquisition might be declared at any moment. However, for
analytical simplicity, the detection and false-alarm probabilities are calculated
under the assumption that there is one sample taken per hop dwell time. From
(4-119) with I = 0 and (4-121), it follows that

where

Since and are statistically independent (Appendix C.2), the joint
probability density function of and at any specific time is

Let R and be implicitly defined by and The joint
density of R and is
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The probability density function of the envelope is ob-
tained by integration over The application of (1-59) gives

where is the modified Bessel function of the first kind and order zero, and
if and if

The detection probability for the threshold detector in the branch is the
probability that the envelope-detector output R exceeds the threshold

The Marcum Q-function is defined as

Applying this definition,

In the absence of noise interference, the detection probability is

If the acquisition tone is absent, but the noise interference is present, the false-
alarm probability is

In the absence of both the acquisition tone and the noise interference, the false-
alarm probability is

In (4-129) to (4-132), the first subscript is 1 when the acquisition tone is present
and 0 otherwise, whereas the second subscript is 1 when interference is present
and 0 otherwise.

Suppose that tone interference is present in a branch. We make the pes-
simistic assumption that this tone has a frequency exactly equal to that of the
acquisition tone, as indicted in (4-118). A trigonometric expansion of the in-
terference term and a derivation similar to that of (4-129) indicates that given
the value of the conditional detection probability is
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If is modeled as a random variable uniformly distributed over then
the detection probability is

where the fact that takes all its possible values over has been used
to shorten the integration interval. If the acquisition tone is absent, but the
tone interference is present, the false-alarm probability is

It is convenient to define the function

where if Given that of the N matched-filter branches receive
interference of equal power, let the index represent the number of interfered
channels with detector outputs above If there are ways

to choose channels out of and ways to choose channels with
detector outputs above from among the channels that are not interfered.
Therefore, the conditional probability that given that channels
receive interference is

where if the acquisition tones are present and if they are not.
Similarly, given that of N acquisition channels receive interference, the con-
ditional probability that is

If there are J interference signals randomly distributed among a hopset of
M frequency channels, then the probability that out of N matched-filter
branches have interference is

The probability that acquisition is declared at a particular sampling time is
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When the acquisition tones are received in succession, the probability of detec-
tion is determined from (4-137) to (4-140). The result is

For simplicity in evaluating the probability of a false alarm, we ignore the
sampling time preceding the peak value of in Figure 4.19 because this
probability is negligible at that time. Since the acquisition tones are absent,
the probability of a false alarm is

If there is no interference so that J = 0, then (4-141) and (4-142) reduce to

The channel threshold is selected to maintain a required when there
is no interference and the values of N, and are given. The value of
is then selected to maximize given the values of N and The best
choice is generally For example, suppose that N = 8,

and the SNR is when an acquisition tone is received. A
numerical evaluation of (4-144) then yields and as the
parameter values that maintain while maximizing in the absence
of interference. The threshold pair is the choice when a
fixed comparator threshold is used instead of the adaptive threshold
of (4-117). If and are sampled once every hop dwell interval, then the
false-alarm rate is

As an example, suppose that noise jamming with total power is uni-
formly distributed over J matched-filter frequency channels so that

is the power in each of these channels. Interference tones are absent and N =8,
M = 128, and To ensure that in the absence of jam-
ming, we assume that and when an adaptive comparator
threshold is used, and that and when a fixed comparator
threshold is used. Since is relatively insensitive to J, its effect is assessed
by examining Figure 4.20 depicts as a function of the jamming-
to-signal ratio. The figure indicates that an adaptive threshold is much more
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Figure 4.20: False-alarm probability for matched-filter acquisition system.

resistant to partial-band jamming than a fixed threshold when is large.
When the worst-case partial-band jamming causes a consider-
ably higher than full-band jamming. It is found that multitone jamming
tends to produce fewer false alarms than noise jamming. Various other perfor-
mance and design issues and the impact of frequency-hopping interference are
addressed in [13].

Serial-Search Acquisition

As illustrated by Figure 4.21, a serial-search acquisition system for frequency-
hopping signals determines acquisition by attempting to downconvert the re-
ceived frequency-hopping pattern to a fixed intermediate frequency, and then
comparing the output of an energy detector (Chapter 7) to a threshold. A
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Figure 4.21: Serial-search acquisition system.

trial alignment of the frequency-hopping pattern synthesized by the receiver
with the received pattern is called a cell. If a cell passes certain tests, acquisi-
tion is declared and the tracking system is activated. If not, the cell is rejected.
A new candidate cell is produced when the reference pattern synthesized by the
receiver is either advanced or delayed relative to the received pattern.

A number of search techniques are illustrated in Figure 4.22, which depicts
successive frequencies in the received pattern and six possible receiver-generated
patterns. Each search technique is implemented as part of a uniform or Z-search
of the timing uncertainty. The small arrows indicate test times at which cells
are rejected, and the large arrows indicate typical times at which acquisition
is declared or subsequent verification testing begins. The step size, which is
the separation in hop durations between cells, is denoted by Techniques (a)
and (b) entail inhibiting the code-generator clock after each unsuccessful test.
Technique (c) is the same as technique (b) but extends the test duration to 3
hops. Technique (d) advances the reference pattern by skipping frequencies
in the pattern after each unsuccessful test. The inhibiting or advancing of
techniques (a) to (d) or an alternation of them continues until acquisition is
declared. The small misalignment technique (e) is effective when there is a
high probability that the reference and received patterns are within hops of
each other, which usually is true immediately after the tracking system loses
lock. The code generator temporarily forces the reference signal to remain at a
frequency for hop intervals extending both before and after the interval in
which the frequency would ordinarily be synthesized. If the misalignment is less
than hops, then acquisition occurs within hop durations. In the figure,

the initial misalignment is one-half hop duration, and it is assumed
that the first time the reference and received frequencies coincide, detection
fails, but the second time results in acquisition. Technique (f) entails waiting
at a fixed synchronization frequency until this frequency is received. This
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Figure 4.22: Search techniques for acquisition.

technique results in a rapid search if the reference frequency can be selected
so that it is soon reached by the received pattern. The reference frequency
is determined from an estimate of the timing uncertainty, the key bits, and
the TOD bits (Chapter 3), but must be periodically shifted by at least the
coherence bandwidth so that neither fading nor interference in any particular
frequency channel prevents acquisition.

When the period of the frequency-hopping pattern is large, special mea-
sures may be required to reduce the timing uncertainty. A reduced hopset
with a short pattern period may be used temporarily to reduce the timing un-
certainty and, hence, the acquisition time. A feedback signal from the receiver
may be used to adjust the timing of the transmitted pattern. In a network,
a separate communication channel or cueing frequency may provide the TOD
to subscribers. After detection of the TOD, a receiver might use the small
misalignment technique for acquisition.

The search control system determines the integration intervals, the thresh-
olds, and the logic of the tests to be conducted before acquisition is declared
and the tracking system is activated. The details of the search control strat-
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egy determine the statistics of the acquisition time. The control strategy is
usually a multiple-dwell strategy that uses an initial test to quickly eliminate
improbable cells. Subsequent tests are used for verification testing of cells that
pass the initial test. The multiple-dwell strategy may be a consecutive-count
strategy, in which a failed test causes a cell to be immediately rejected, or an
up-down strategy, in which a failed test causes a repetition of a previous test.
The up-down strategy is preferable when the interference or noise level is high
[14].

Since acquisition for frequency-hopping signals is analogous to acquisition
for direct-sequence signals, the statistical description of acquisition given in
Section 4.2 is applicable if the chips are interpreted as hops. Only the specific
equations of the detection and false-alarm probabilities are sometimes different.
For example, consider a single-dwell system with a uniform search, a uniform a
priori correct-cell location distribution, two independent correct cells with the
common detection probability and In analogy with (4-93), the
NMAT is

where is the number of hops per test, is the number of hops in the
mean penalty time, is the number of hops in the timing uncertainty, is
the number of cells, and

For step size for
If the detector integration is over several hop intervals, strong interference

or deep fading over a single hop interval can cause a false alarm with high prob-
ability. This problem is mitigated by making a hard decision after integrating
over each hop interval. After N decisions, a test for acquisition is passed or
failed if the comparator threshold has been exceeded or more times out of
N. Let and denote the probabilities that the comparator threshold is
exceeded at the end of a hop interval when the correct cell is tested and inter-
ference is present and absent, respectively. Let denote the probability that
an acquisition test is passed when the correct cell is tested. If the N acquisition
tones in a test are distinct, then a derivation similar to the one for matched
filters yields

where Similarly, the probability that an acquisition test is passed when
an incorrect cell is tested and no acquisition tones are present is

where and are the probabilities that the threshold is exceeded when
an incorrect cell is tested and interference is present and absent, respectively.
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Figure 4.23: Amplitude of integrator output as function of relative pattern
delay.

A suitable choice for is Since the serial-search system of Figure 4.21
has an embedded radiometer, the performance analysis of the radiometer given
in Chapter 7 can be used to obtain expressions for and and

Although a large step size limits the number of incorrect cells that must
be tested before the correct cell is tested, it causes a loss in the average signal
energy in the integrator output of Figure 4.21 when a correct cell is tested. This
issue and the role of the hop dwell time are illustrated by Figure 4.23, which
depicts the idealized output for a single pulse of the received and reference
signals in the absence of noise. Let denote the delay of the reference pattern
relative to the received pattern. Suppose that one tested cell has
where and the next tested cell has following a cell
rejection. The largest amplitude of the integrator output occurs when
where

Assuming that is uniformly distributed over is uniformly
distributed over Therefore,

The correct cell is considered to be the one for which If the output
function approximates the triangular shape depicted in the figure, its amplitude
when is

Therefore, the average signal energy in the integrator output is
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which indicates the loss due to the misalignment of patterns when the correct
cell is tested. For example, if then (4-154) indicates that the average
loss is 1.26 dB when if then the loss is 2.62 dB.

The serial-search acquisition of frequency-hopping signals is faster than the
acquisition of direct-sequence signals because the hop duration is much greater
than a spreading-sequence chip duration for practical systems. Given the same
timing uncertainty, fewer cells have to be searched to acquire frequency-hopping
signals because each step covers a larger portion of the region.

Tracking System

The acquisition system ensures that the receiver-synthesized frequency-hopping
pattern is aligned in time with the received pattern to within a fraction of a hop
duration. The tracking system must provide a fine synchronization by reducing
the residual misalignment after acquisition. Although the delay-locked and tau-
dither loops used for the tracking of direct-sequence signals can be adapted to
frequency-hopping signals [17], the predominant form of tracking in frequency-
hopping systems is provided by the early-late-gate tracking loop [15]. This
loop is shown in Figure 4.24 along with the ideal associated waveforms for
a typical example in which there is a single carrier frequency during a hop
dwell interval. If the data modulation is MFSK, then the outputs of parallel
branches, each with a bandpass filter and envelope detector can be combined
and applied to the early-late gate. In the absence of noise, the envelope detector
produces a positive output only when the received frequency-hopping signal

and the receiver-generated frequency-hopping replica are offset by
the intermediate frequency The gating signal is a square-wave clock
signal with transitions from –1 to +1 that control the frequency transitions of

The early-late gate functions as a signal multiplier. Its output is
the product of the gating signal and the envelope-detector output The
error signal is the time integral of and is a function of the delay of

relative to The error signal can be expressed as the discriminator
characteristic which is a function of the normalized delay error.
For the typical waveforms shown, is positive, and hence so is Therefore,
the voltage-controlled clock (VCC) will increase the transition rate of the gating
signal, which will bring into better time-alignment with

If the tracking system loses lock and the small-misalignment test fails, then
the wait technique of Figure 4.22 can be used to expedite the reacquisition.
After dehopping the received signal to baseband, demodulating, and producing
oversampled information bits, the receiver establishes bit synchronization by
searching for a special sequence of marker bits that match a stored reference
sequence, as is often done for frame synchronization [16]. After this matching
occurs, information is extracted from subsequent bits. The information could
specify the time of occurrence and the spectral location of the next synchro-
nization frequency at which the receiver waits.
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Figure 4.24: Early-late gate tracking: (a) loop, (b) signals, and (c) discriminator
characteristic.
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4.6 Problems
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Use orthonormal basis functions to prove (4-4) and the statistical inde-
pendence of the

Prove that for a random variable Y and a random variable X with density
the relation is not true in general. If

it were, then given by (4-14) and (4-15) could be simplified. Give a
sufficient condition under which this relation is valid.

Consider a uniform search with a uniform a priori distribution for the
location of the correct cell. (a) What is the average number of sweeps
through the timing uncertainty during acquisition? (b) For a large number
of cells, calculate an upper bound on as a function of
for (c) For a large number of cells to be searched, show that the
standard deviation of the acquisition time satisfies

(a) Derive (4-29) and (4-30) by first expressing and as conditional
expectations and then enumerating the possible values of and
and their conditional probabilities, (b) Use a similar procedure to derive
(4-37) to (4-40).

Derive in (4-33) assuming the presence of zero-mean, white Gaussian
noise with two-sided power spectral density Use (4-26) and assume
that To determine begin by writing an expression for the
matched-filter output when a target signal with energy completely fills
the filter.

Consider a lock detector that uses a double-dwell consecutive-count sys-
tem with equal test durations. (a) Use a recursive relation to show that

(b) Use a recursive relation to show
that

Starting with (4-73), derive given by (4-78) for the acquisition
correlator.

Derive (4-92) from (4-91) using the method outlined in the text.

Consider Example 2 of Section 4.3 leading to Figure 4.14. Assume fast
fading and that K = 10,000,

and Plot the NMAT versus for the consecutive-
count and up-down systems to determine graphically what values of
minimize the NMAT.

Derive (4-107) and (4-108).

Compare the NMAT for a frequency-hopping system given by (4-146)
with the NMAT for a direct-sequence system given by (4-93) when the
penalty times and test durations for both systems are equal. Under the
latter condition, it is reasonable to assume that and are roughly
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12.

13.

equal for both systems. With these assumptions, what is the ratio of the
direct-sequence NMAT to the frequency-hopping NMAT?

Reduce (4-148) to a single summation and simplify for the following cases.
a) and b) J = 0,

Derive and for serial-search acquisition of frequency-hopping sig-
nals when a single acquisition tone is used.
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Chapter 5

Fading of Wireless
Communications

5.1 Path Loss, Shadowing, and Fading

Free-space propagation losses of electromagnetic waves vary inversely with the
square of the distance between a transmitter and a receiver. Analysis indicates
that if a signal traverses a direct path and combines in the receiver with a mul-
tipath component that is perfectly reflected from a plane, then the composite
received signal has a power loss proportional to the inverse of the fourth power
of the distance. Thus, it is natural to seek a power-law variation for the average
received power in a specified geographic area as a function of distance. For ter-
restrial wireless communications, measurements averaged over many different
positions of a transmitter and a receiver in a specified geographic area confirm
that the average received power, which is called the area-mean power, does tend
to vary inversely as a power of the transmitter-receiver distance It is found
that the area-mean power is approximately given by

where is the average received power when the distance is and is
the attenuation power law. The parameters and are functions of the car-
rier frequency, antenna heights, terrain characteristics, vegetation, and various
characteristics of the propagation medium. Typically, the parameters vary with
distance, but are constant within a range of distances. A typical value of the
attenuation power law for urban areas and microwave frequencies is The
power law increases with the carrier frequency.

For a specific propagation path, the received local-mean power departs from
the area-mean power due to shadowing, which is the effect of diffractions and
propagation conditions that are path-dependent. Each diffraction due to ob-
structing terrain and each reflection from an obstacle causes the signal power
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to be multiplied by an attenuation factor. Thus, the received signal power is
often the product of many factors, and hence the logarithm of the signal power
is the sum of many factors. If each factor is modeled as a uniformly bounded,
independent random variable that varies from path to path, then the central-
limit theorem implies that the logarithm of the received signal power has an
approximately normal distribution if the number of attenuation factors is large
enough. Extensive empirical data confirms that the received local-mean power
after transmission over a randomly selected propagation path with a fixed dis-
tance is approximately lognormally distributed. Thus, the shadowing model
specifies that the local-mean power has the form

where the shadowing factor is a zero-mean random variable with a normal
distribution. The standard deviation of is denoted by which is expressed
in decibels. From (5-1) and (5-2), it follows that the probability distribution
function of the normalized local-mean power, is

where ln[ ] denotes the natural logarithm, and The standard
deviation increases with carrier frequency and terrain irregularity and often
exceeds 10 dB for terrestrial communications. The value of the shadowing factor
for a propagation path is usually strongly correlated with its value for a nearby
propagation path. For mobile communications, the typical time interval during
which the shadowing factor is nearly constant is a second or more.

Fading, which is endemic in mobile, long-distance, high-frequency, and other
communication channels, causes power fluctuations about the local-mean power.
Fading occurs at much faster rate than shadowing. During an observation
interval in which the shadowing factor is nearly constant, the received signal
power may be expressed as the product

where the factor is due to the fading. Since is fixed, the local-mean
power is

A signal experiences fading when the interaction of multipath components and
time- or frequency-varying channel conditions cause significant fluctuations in
its amplitude at a receiver. Multipath components of a signal are generated
by inhomogeneities in the propagation medium or reflections from obstacles.
These components travel along different paths before being recombined at the
receiver. Because of the different time-varying delays and attenuations en-
countered by the multipath components, the recombined signal is a distorted
version of the original transmitted signal. Fading may be classified as time-
selective, frequency-selective, or both. Time-selective fading is fading caused
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by the movement of the transmitter or receiver or by changes in the propagation
medium. Frequency-selective fading is fading caused by the different delays of
the multipath components, which may affect certain frequencies more than oth-
ers. The following concise development of fading theory[1], [2], [3] emphasizes
basic physical mechanisms.

A bandpass transmitted signal can be expressed as

where denotes its complex envelope, denotes its carrier frequency, and
Re[ ] denotes the real part. Transmission over a time-varying multipath channel
of paths produces a received bandpass signal that consists of the sum
of waveforms. The waveform is the transmitted signal delayed by
time attenuated by a factor that depends on the path loss and
shadowing, and shifted in frequency by the amount due to the Doppler
effect. Assuming that is constant during the path delays, the received
signal may be expressed as

where the received complex envelope is

and its phase is

The Doppler shift arises because of the relative motion between the trans-
mitter and the receiver. In Figure 5.1(a), the receiver is moving at speed
and the angle between the velocity vector and the propagation direction of
an electromagnetic wave is For this geometry, the received frequency is
increased by the Doppler shift

where is the speed of an electromagnetic wave. In Figure 5.1(b), the trans-
mitter is moving at speed and there is a reflecting surface that changes the
arrival angle of the electromagnetic wave at the receiver. If represents the
angle between the velocity vector and the initial direction of the electromagnetic
wave, then (5-10) again gives the Doppler shift.

5.2 Time-Selective Fading
To analyze time-selective fading, it is assumed that for the time
interval of interest and that the differences in the time delays along the various
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Figure 5.1: Examples of the Doppler effect: (a) receiver motion and (b) trans-
mitter motion and reflecting surface.

paths are small compared with the inverse of the signal bandwidth. Therefore,
the received multipath components overlap in time and are called unresolvable
multipath components. If the time origin is chosen to coincide with the aver-
age arrival time of the multipath components at a receiver, then the received
complex envelope of (5-8) may be expressed as

where the equivalent lowpass or equivalent baseband channel response is

The fluctuations in this factor cause signal fading at the receiver and increase the
bandwidth of the received signal. If the transmitted signal is an unmodulated
tone, then and (5-12) represents the complex envelope of the received
signal.

The channel response can be decomposed as

where and

If the range of the delay values exceeds then the sensitivity of to small
variations in the delay makes it plausible to model the phases



5.2. TIME-SELECTIVE FADING 235

1, 2, . . . , N, as random variables that are independent of each other and the
and are uniformly distributed over at a specific time Therefore,

If the amplitude factors are either identically distributed
or uniformly bounded independent random variables at time then according
to the central-limit theorem, the probability distributions of both and

approach Gaussian distributions as N increases. Thus, if N is sufficiently
large, then at a specific time is well modeled as a complex Gaussian random
variable. Since the phases are independent and uniformly distributed, it follows
that

where we define

This equation indicates that is equal to the sum of the local-mean pow-
ers of the multipath components. Equations (5-15) to (5-17) imply that
and are independent, identically distributed, zero-mean Gaussian random
variables.

Let denote the envelope, and the
phase of at a specific time Then

As shown in Appendix D.4, since and are Gaussian and
has a uniform distribution over and has the

Rayleigh probability density function:

where the time-dependence has been suppressed for convenience, and
and From (5-20) or directly from (5-13) and (5-17), it

follows that

The substitution of (5-19) and (5-11) into (5-7) gives

where is the amplitude and the phase of Equations (5-21) and
(5-22) indicate that the instantaneous local-mean power is

When a line-of-sight exists between a transmitter and a receiver, one of the
received multipath components may be much stronger than the others. This
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strong component is called the specular component and the other unresolvable
components are called diffuse or scattered components. As a result, the multi-
plicative channel response of (5-12) becomes

where the summation term is due to the diffuse components, and the first term
is due to the specular component. If N is sufficiently large, then at time
the summation term is well-approximated by a zero-mean, complex Gaussian
random variable. Thus, at a specific time is a complex Gaussian random
variable with a nonzero mean equal to the deterministic first term, and (5-13)
implies that

As shown in Appendix D.3, since and are Gaussian and
the envelope has the Rice probability density function:

where is the modified Bessel function of the first kind and order zero,
and the time-dependence is suppressed for convenience. From (5-25) or directly
from (5-18) and (5-23), it follows that the average envelope power is

The type of fading modeled by (5-23) and (5-25) is called Ricean fading. At a
specific time, the Rice factor is defined as

which is the ratio of the specular power to the diffuse power. In terms of and
the Rice density is

When Ricean fading is the same as Rayleigh fading. When there
is no fading.

A more flexible fading model is created by introducing a new parameter
the probability density function for the envelope is

where the gamma function is defined by (D-12). When the Nak-
agami density becomes the Rayleigh density, and when there is no
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fading. When the Nakagami density becomes the one-sided Gaussian
density. A measure of the severity of the fading is Equating
this ratio for the Rice and Nakagami densities, it is found that when
the Nakagami density closely approximates a Rice density with

Since the Nakagami-m model essentially incorporates the Rayleigh and Rice
models as special cases and provides for many other possibilities, it is not sur-
prising that this model often fits well with empirical data. Integrating over
(5-29), changing the integration variable, and using (D-12), we obtain

Consider a time interval small enough that and
are approximately constants and and are random

variables. Then (5-9) and (5-10) yield

where is the maximum Doppler shift and is a time shift. The
autocorrelation of a wide-sense-stationary complex process is defined as

where the asterisk denotes the complex conjugate. The variation of the autocor-
relation of the equivalent baseband channel response defined by (5-12) provides
a measure of the changing channel characteristics. To interpret the meaning of
(5-33), we substitute (5-13) and decompose the autocorrelation as

Thus, the real part of this autocorrelation is the average of the autocorrelations
of the real and imaginary parts of the imaginary part is proportional to the
difference between two cross-correlations of the real and imaginary parts of
Substituting (5-12) into (5-33), using the independence and uniform distribution
of each and the independence of and and then substituting (5-32), we
obtain

If all the received multipath components have approximately the same power
and the receive antenna is omnidirectional, then (5-18) implies that
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and (5-36) becomes

A communication system such as a mobile that receives a signal from an ele-
vated base station may be surrounded by many scattering objects. An isotropic
scattering model assumes that multipath components of comparable power are
reflected from many different scattering objects and hence arrive from many
different directions. For two-dimensional isotropic scattering, N is large, and
the lie in a plane and have values that are uniformly distributed over

Therefore, the summation in (5-37) can be approximated by an integral;
that is,

This integral has the same form as the integral representation of the
Bessel function of the first kind and order zero. Thus, the autocorrelation of
the channel response for two-dimensional isotropic scattering is

The normalized autocorrelation which is a real-valued function
of is plotted in Figure 5.2. It is observed that its magnitude is less than
0.3 when This observation leads to the definition of the coherence
time or correlation time of the channel as

where is the maximum Doppler shift or Doppler spread. The coherence time
is a measure of the time separation between signal samples sufficient for the
samples to be largely decorrelated. If the coherence time is much longer than
the duration of a channel symbol, then the fading is relatively constant over a
symbol and is called slow fading. Conversely, if the coherence time is on the
order of the duration of a channel symbol or less, then the fading is called fast
fading.

The power spectral density of a complex process is defined as the Fourier
transform of its autocorrelation. From (5-39) and tabulated Fourier transforms,
we obtain the Doppler power spectrum for two-dimensional isotropic scattering:

The normalized Doppler spectrum which is plotted in Figure 5.3
versus is bandlimited by the Doppler spread and tends to infinity as

approaches The Doppler spectrum is the superposition of contributions
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Figure 5.2: Autocorrelation of r(t) for isotropic scattering.

Figure 5.3: Doppler spectrum for isotropic scattering.
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from multipath components, each of which experiences a different Doppler shift
upper bounded by

The received signal power spectrum may be calculated from (5-7), (5-11),
and (5-41). For an unmodulated carrier, and the received signal power
spectrum is

In general, when the scattering is not isotropic, the imaginary part of the auto-
correlation is nonzero, and the amplitude of the real part decreases much
more slowly and less smoothly with increasing than (5-39). Both the real
and imaginary parts often exhibit minor peaks for time shifts exceeding
Thus, the coherence time provides only a rough characterization of the channel
behavior.

Fading Rate and Fade Duration

The fading rate is the rate at which the envelope of a received fading signal
crosses below a specified level. Consider a time interval over which the fading
parameters are constant. For a level isotropic scattering, and Ricean
fading, it can be shown that the fading rate is [1]

where is the Rice factor and

For Rayleigh fading, and (5-43) becomes

Equations (5-43) and (5-45) indicate that the fading rate is proportional to the
Doppler spread Thus, slow fading occurs when the Doppler spread is small,
whereas fast fading occurs when the Doppler spread is large.

Let denote the average envelope fade duration, which is the amount
of time the envelope remains below the specified level The product
is the fraction of the time between fades during which a fade occurs. If the
time-varying envelope is assumed to be a stationary ergodic process, then this
fraction is equal to the probability that the envelope is below or equal
to the level Thus,

If the envelope has the Rice distribution, then integrating (5-28) and using
(5-43), (5-44), and (5-46), we obtain
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Figure 5.4: Two antennas receiving plane wave that results in a signal copy at
each antenna.

where is defined by (D-15). For Rayleigh fading, (5-45), (5-46), and the
integration of (5-20) yields

For both Ricean and Rayleigh fading, the fade duration is inversely proportional
to

Spatial Diversity and Fading

To obtain spatial diversity in a fading environment, the antennas in an array
must be separated enough that there is little correlation between signal replicas
or copies at the antennas. To determine what separation is needed, consider the
reception of a signal at two antennas separated by a distance D, as illustrated
in Figure 5.4. If the signal arrives as an electromagnetic plane wave, then the
signal copy at antenna 1 relative to antenna 2 is delayed by where
is the arrival angle of the plane wave relative to a line perpendicular to the line
joining the two antennas. Let denote the phase of the complex envelope
of multipath component at antenna Consider a time interval small enough
that and each multipath component arrives
from a fixed angle. Thus, if multipath component of a narrowband signal
arrives as a plane wave at angle then the phase of the complex envelope
of the component copy at antenna 2 is related to the phase at antenna 1 by

where is the wavelength of the signal. If the multipath component
propagates over a distance much larger than the separation between the two
antennas, then it is reasonable to assume that the attenuation is identical
at the two antennas. If the range of the delay values exceeds then the
sensitivity of the phases to small delay variations makes it plausible that the
phases are well modeled as independent random
variables that are uniformly distributed over From (5-12), the complex
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envelope of the signal copy at antenna when the signal is a tone is

The cross-correlation between and is defined as

Substituting (5-50) into (5-51), using the independence of each and the
independence of and and the uniform distribution of each
and then substituting (5-49), we obtain

This equation for the cross-correlation as a function of spatial separation clearly
resembles (5-36) for the autocorrelation as a function of time delay. If all the
multipath components have approximately the same power so that

then

Applying the two-dimensional isotropic scattering model, a derivation sim-
ilar to that of (5-39) gives the real-valued cross-correlation

This model indicates that an antenna separation of ensures that
the normalized cross-correlation is less than 0.3. A plot of the
normalized cross-correlation is obtained from Figure 5.2 if the abscissa is inter-
preted as When the scattering is not isotropic or the number of scattering
objects producing multipath components is small, then the real and imaginary
parts of the cross-correlation decrease much more slowly with For ex-
ample, Figure 5.5 shows the real and imaginary parts of the normalized cross-
correlation when the are a nearly continuous band of angles between
and radians so that (5-53) can be approximated by an integral. Figure 5.6
depicts the real and imaginary parts of the normalized cross-correlation when
N = 9 and the are uniformly spaced throughout the first two quadrants:

In the example of Figure 5.5, an antenna
separation of at least is necessary to ensure approximate decorrelation of
the signal copies and obtain spatial diversity. In the example of Figure 5.6, not
even a separation of is adequate to ensure approximate decorrelation.
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Figure 5.5: Normalized cross-correlation for multipath components arriving
between and radians: (a) real part and (b) imaginary part.

5.3 Frequency-Selective Fading

Frequency-selective fading occurs because multipath components combine de-
structively at some frequencies, but constructively at others. The different path
delays cause dispersion of a received pulse in time and cause intersymbol in-
terference between successive symbols. When a multipath channel introduces
neither time variations nor Doppler shifts, (5-8) and (5-9) indicate that the
received complex envelope is

The number of multipath components includes only those components with
power that is a significant fraction, perhaps 0.05 or more, of the power of
the dominant component. The multipath delay spread is defined as the
maximum delay of a significant multipath component relative to the minimum
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Figure 5.6: Normalized cross-correlation for N = 9 multipath components ar-
riving from uniformly spaced angles in the first two quadrants: (a) real part,
and (b) imaginary part.

delay of a component; that is,

If the duration of a received symbol is much larger than then the multi-
path components are usually unresolvable,

and hence is proportional to Since all frequency components
of the received signal fade nearly simultaneously, this type of fading is called
frequency-nonselective or flat fading and occurs if In contrast, a
signal is said to experience frequency-selective fading if because then
the time variation or fading of the spectral components of may be different.
The large delay spread may cause intersymbol interference, which is accommo-
dated by equalization in the receiver. However, if the time delays are sufficiently
different among the multipath components that they are resolvable at the de-
modulator or matched-filter output, then the independently fading components
provide diversity that can be exploited by a rake receiver (Section 5.5).
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It is conceptually useful to define the coherence bandwidth as

Let denote the bandwidth of In general, for practical
modulations, so flat fading occurs if Frequency-selective fading
requires

To illustrate frequency-selective fading, consider the reception of a tone at
frequency with two multipath components so that and in
(5-55). It then follows that the complex envelope has magnitude

where If another tone at frequency is received, then this equa-
tion is valid with substituted for Thus, the two complex envelopes can
differ considerably as and both range over a spectral band with bandwidth
equal to the coherence bandwidth. If then the difference between the
two complex-envelope magnitudes varies from 0 to

Channel Impulse Response

A generalized impulse response may be used to characterize the impact of the
transmission channel on the signal. The equivalent complex-valued baseband im-
pulse response of the channel is the response at time due to an impulse
applied seconds earlier. The complex envelope of the received signal is
the result of the convolution of the complex envelope of the transmitted
signal with the baseband impulse response:

In accordance with (5-8), the impulse response is usually modeled as a complex-
valued stochastic process:

For most practical applications, the wide-sense stationary, uncorrelated scat-
tering model is reasonably accurate. The impulse response is wide-sense sta-
tionary if the correlation between its value at and its value at depends
only on Thus, the autocorrelation of the impulse response is
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Uncorrrelated scattering implies that the gains and phase shifts associated with
two different delays are uncorrelated. Extending this notion, the wide-sense
stationary, uncorrelated scattering model assumes that the autocorrelation has
the form

where is the Dirac delta function. This equation implies that
is the result of integrating the autocorrelation over The multipath

intensity profile or delay power spectrum can be interpreted
as the channel output power due to an impulse applied seconds earlier. The
range of the delay over which the multipath intensity profile has a significant
magnitude is a measure of the multipath delay spread. The multipath intensity
profile has diffuse components if it is a piecewise continuous function and has
specular components if it includes delta functions at specific values of the delay.

A received signal from one source can often be decomposed into the sum of
signals reflected from several clusters of scatterers. Each cluster is the sum of
a number of multipath components with nearly the same delay. In this model,
the impulse response can be expressed as

where is the number of clusters and is the distinct delay associated
with the ith cluster. Each complex process has has the form of (5-23) and
an envelope with a Rayleigh, Rice, or Nakagami probability density function.

The Fourier transform of the impulse response gives the time-varying chan-
nel frequency response:

The autocorrelation of the frequency response for a wide-sense stationary chan-
nel is

For the wide-sense stationary, uncorrelated scattering model, the substitution
of (5-64), (5-61), and (5-62) into (5-65) yields

which is a function only of the difference If then the autocor-
relation of the frequency response is
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which is the Fourier transform of the delay power spectrum. From a funda-
mental characteristic of the Fourier transform, it follows that the coherence
bandwidth of the channel, which is a measure of the range of frequency shift
over which the autocorrelation has a significant value, is given by the recipro-
cal of the multipath delay spread. Thus (5-57) is confirmed for this channel
model.

The Doppler shift is the main limitation on the channel coherence time or
range of values of the difference for which is significant.
Thus, the Doppler power spectrum is defined as

The spectral extent of the Doppler power spectrum is on the order of the max-
imum Doppler shift. Thus, (5-40) is confirmed for this channel model.

5.4 Diversity for Fading Channels

Diversity combiners for fading channels are designed to combine independently
fading copies of the same signal in different branches. The combining is done in
such a way that the combiner output has a power level that varies much more
slowly than that of a single copy. Although useless in improving communications
over the additive-white-Gaussian-noise (AWGN) channel, diversity improves
communications over fading channels because the diversity gain is large enough
to overcome any noncoherent combining loss. Diversity may be provided by
signal redundancy that arises in a number of different ways. Time diversity
is provided by channel coding or by signal copies that differ in time delay.
Frequency diversity may be available when signal copies using different carrier
frequencies experience independent or weakly correlated fading. If each signal
copy is extracted from the output of a separate antenna in an antenna array,
then the diversity is called spatial diversity. Polarization diversity may be
obtained by using two cross-polarized antennas at the same site. Although this
configuration provides compactness, it is not as potentially effective as spatial
diversity because the received horizontal component of an electric field is usually
much weaker than the vertical component.

The three most common types of diversity combining are selective, maximal-
ratio, and equal-gain combining. The last two methods use linear combining
with variable weights for each signal copy. Since they usually must eventually
adjust their weights, maximal-ratio and equal-gain combiners can be viewed as
types of adaptive arrays. They differ from other adaptive antenna arrays in
that they are not designed to cancel interference signals.

Optimal Array

Consider a receiver array of L diversity branches, each of which processes a
different signal copy. Each branch input is translated to baseband, and then
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either the baseband signal is applied to a matched filter and sampled or the
sampled complex envelope is extracted (Appendix C.3). Alternatively, each
branch input is translated to an intermediate frequency, and the sampled ana-
lytic signal is extracted. The subsequent analysis is valid for any of these types
of branch processing. It is simplest to assume that the branch outputs are
sampled complex envelopes. The branch outputs provide the inputs to a linear
combiner. Let denote the discrete-time vector of the L complex-valued
combiner inputs, where the index denotes the sample number. This vector can
be decomposed as

where and are the discrete-time vectors of the desired signal and the
interference plus thermal noise, respectively. Let W denote the weight vector
of a linear combiner applied to the input vector. The combiner output is

where T denotes the transpose of a matrix or vector,

is the output component due to the desired signal, and

is the output component due to the interference plus noise. The components
of both and are modeled as discrete-time jointly wide-sense-stationary
processes.

The correlation matrix of the desired signal is defined as

and the correlation matrix of the interference plus noise is defined as

The desired-signal power at the output is

where the superscript H denotes the conjugate transpose. The interference plus
noise power at the output is

The signal-to-interference-plus-noise ratio (SINR) at the combiner output is
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The definitions of and ensure that these matrices are Hermitian
and nonnegative definite. Consequently, these matrices have complete sets of
orthonormal eigenvectors, and their eigenvalues are real-valued and nonnega-
tive. The noise power is assumed to be positive. Therefore, is positive
definite and has positive eigenvalues. Since can be diagonalized, it can be
expressed as [4].

where is an eigenvalue and is the associated eigenvector.
To derive the weight vector that maximizes the SINR with no restriction on

we define the Hermitian matrix

where the positive square root is used. Direct calculations verify that

and the inverse of A is

The matrix A specifies an invertible transformation of W into the vector

We define the Hermitian matrix

Then (5-77), (5-80), (5-82), and (5-83) indicate that the SINR can be expressed
as

where denotes the Euclidean norm of a vector and Equation
(5-84) is a Rayleigh quotient [4], which is maximized by where u is
the eigenvector of C associated with its largest eigenvalue and is an
arbitrary constant. Thus, the maximum value of is

From (5-82) with it follows that the optimal weight vector that maxi-
mizes the SINR is

The purpose of an adaptive-array algorithm is to adjust the weight vector to
converge to the optimal value, which is given by (5-86) when the maximization
of the SINR is the performance criterion.
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When the discrete-time dependence of is the same for all its components,
(5-86) can be made more explicit. Let denote the discrete-time sampled
complex envelope of the desired signal in a fixed reference branch. It is assumed
henceforth that the desired signal is sufficiently narrowband that the desired-
signal copies in all the branches are nearly aligned in time, and the desired-signal
input vector may be represented as

where the steering vector is

For independent Rayleigh fading in each branch, each phases is modeled as a
random variable with a uniform distribution over and each attenuation

has a Rayleigh distribution function, as explained in Section 1.3.
Example 1. Equation (5-88) can serve as a model for a narrowband

desired signal that arrives at an antenna array as a plane wave and does not
experience fading. Let denote the arrival-time delay of the
desired signal at the output of antenna relative to a fixed reference point in
space. Equations (5-87) and (5-88) are valid with
where is the carrier frequency of the desired signal. The
L, depend on the relative antenna patterns and propagation losses. If they are
all equal, then the common value can be subsumed into It is convenient
to define the origin of a Cartesian coordinate system to coincide with the fixed
reference point. Let denote the coordinates of antenna If a single
plane wave arrives from direction relative to the normal to the array, then

where is the speed of an electromagnetic wave.
The substitution of (5-87) into (5-73) yields

where

After substituting (5-90) into (5-83), it is observed that C may be factored:

where

This factorization explicitly shows that C is a rank-one matrix. Therefore, an
eigenvector of C associated with the only nonzero eigenvalue is
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and the nonzero eigenvalue is

Substituting (5-94) into (5-86), using (5-80), and then merging into the
arbitrary constant, we obtain the Wiener-Hopf equation for the optimal weight
vector :

where is an arbitrary constant. The maximum value of the SINR, obtained
from (5-85), (5-95), (5-93), and (5-80), is

Maximal-Ratio Combining

Suppose that the interference plus noise in a branch is zero-mean and uncorre-
lated with the interference plus noise in any of the other branches in the array.
Then the correlation matrix is diagonal. The diagonal element has the
value

Since is diagonal with diagonal elements the Wiener-Hopf equation
implies that the optimal weight vector that maximizes the SINR is

and (5-97) and (5-88) yield

where each term is the SINR at a branch output. Linear combining that
uses is called maximal-ratio combining (MRC). It is optimal only if the
interference-plus-noise signals in all the diversity branches are uncorrelated. As
discussed subsequently, the maximal-ratio combiner can also be derived as the
maximum-likelihood estimator associated with a multivariate Gaussian density
function. The critical assumption in the derivation is that the noise process in
each array branch is both Gaussian and independent of the noise processes in
the other branches.

In most applications, the interference-plus-noise power in each array branch
is approximately equal, and it is assumed that If this
common value is merged with the constant in (5-96) or (5-99), then the MRC
weight vector is

and the corresponding maximum SINR is



252 CHAPTER 5. FADING OF WIRELESS COMMUNICATIONS

Figure 5.7: Branch of a maximal-ratio combiner with a phase stripper.

Since the weight vector is not a function of the interference parameters, the com-
biner attempts no interference cancellation. The interference signals are ignored
while the combiner does coherent combining of the desired signal. Equations
(5-71), (5-101), (5-87), and (5-88) yield the desired part of the combiner output:

Since is proportional to the MRC equalizes the phases of the signal
copies in the array branches, a process called cophasing. If cophasing can be
done rapidly enough to be practical, then so can coherent demodulation.

If each is modeled as a random variable with an identical
probability distribution function, then (5-102) implies that

which indicates a gain in the mean SINR that is proportional to L. There are
several ways to implement cophasing [5]. Unlike most other cophasing systems,
the phase stripper does not require a pilot signal. Figure 5.7 depicts branch

of a digital version of a maximal-ratio combiner with a phase stripper. It is
assumed that the interference-plus-noise power in each branch is equal so that
only cophasing and amplitude multiplication are required for the MRC. In the
absence of noise, the angle-modulated input signal is assumed to have the form

where is the amplitude, is the angle modulation carried by all the signal
copies in the diversity branches, and is the undesired phase shift in branch
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which is assumed to be constant for at least two consecutive samples. The signal
is produced by a delay and complex conjugation. During steady-state

operation following an initialization process, the reference signal is assumed to
have the form

where is a phase angle .The three signals  and are
multiplied together to produce

which as been stripped of the undesired phase shift This signal is com-
bined with similar signals from the other diversity branches that use the same
reference signal. The input to the decision device is

which indicates that MRC has been obtained by phase equalization, as in (5-
103). After extracting the phase the decision device produces the
demodulated sequence which is an estimate of by some type of phase-
recovery loop [6]. The device also produces the complex exponential

After a delay, the complex exponential provides the reference signal of (5-
106).

Bit Error Probabilities for Coherent Binary Modulations

Suppose that the desired-signal modulation is binary PSK and consider the
reception of a single binary symbol or bit. Each bit is equally likely to be
a 0 or a 1 and is represented by or respectively. Each received
signal copy in a diversity branch experiences independent Rayleigh fading that
is constant during the signal interval. The received signal in branch is

where or –1 depending on the transmitted bit, each is an amplitude,
each is a phase shift, is the carrier frequency, T is the bit duration, and

is the noise. It is assumed that either the interference is absent or, more
generally, that the received interference plus noise in each diversity branch can
be modeled as independent, zero-mean, white Gaussian noise with the same
two-sided power spectral density

Although MRC maximizes the SINR after linear combining, the theory of
maximum-likelihood detection is needed to determine an optimal decision vari-
able that can be compared to a threshold. The initial branch processing before
sampling could entail extraction of the complex envelope, passband matched-
filtering followed by a downconversion to baseband, or, equivalently, a downcon-
version followed by baseband matched-filtering [6]. Since it is slightly simpler,
we assume the latter in this analysis. The same results are obtained if one
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assumes the extraction of the complex envelope and uses the equations of Ap-
pendix C.4.

Using and discarding a negligible integral, it is found
that after the downconversion to baseband, the matched filter in each diversity
branch, which is matched to produces the samples

where a factor of “2” has been inserted for analytical convenience, and the
desired-signal energy per bit in the absence of fading and diversity combining
is

These samples provide sufficient statistics that contain all the relevant informa-
tion in the received signal copies in the L diversity branches.

It is assumed that has a spectrum confined to The zero-mean,
real-valued, white Gaussian noise process has autocorrelation

where is the Dirac delta function. Let denote the complex-valued noise
term in (5-110). Using the spectral limitations of (5-111), and (5-112),
we find that which indicates that the noise term is circularly sym-
metric (cf. Appendix C.4). Therefore, it has independent real and imaginary
components with the same variance. Since this variance
is Given and the branch likelihood function or conditional
probability density function of is

Since the branch samples are statistically independent, the log-likelihood func-
tion for the vector given and

is

The receiver decides in favor of a 0 or a 1 depending on whether
or gives the larger value of the log-likelihood function. Substituting
(5-113) into (5-114) and eliminating irrelevant terms and factors that do not
depend on the value of we find that the maximum-likelihood detector can
base its decision on the single variable
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Figure 5.8: Maximal-ratio combiner for PSK with (a) predetection combining
and (b) postdetection combining. Coherent equal-gain combiner for PSK omits
the factors

which is compared with a threshold equal to zero to determine the bit state. If
we let and use (5-101), we find that the decision variable
may be expressed as Since taking the real part of
serves only to eliminate orthogonal noise, the decision variable U is produced
by maximal-ratio combining.

Since (5-115) is computed in either case, the implementation of the maximum-
likelihood detector may use either maximal-ratio predetection combining before
the demodulation, as illustrated in Figure 5.8(a), or postdetection combining
following the demodulation, as illustrated in Figure 5.8(b). Since the optimal
coherent matched-filter or correlation demodulator performs a linear operation
on the both predetection and postdetection combining provide the same
decision variable, and hence the same performance.

If the transmitted bit is represented by x, then the substitution of 5-110 into
5-115 yields
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where is the zero-mean Gaussian random variable

If the and are given, then the decision variable has a Gaussian distri-
bution with mean

Since the and, hence, the are independent, the variance of U is

The variance of can be evaluated from (5-111), (5-112), and (5-117). It
then follows from (5-119) that

Because of the symmetry, the bit error probability is equal to the conditional
bit error probability given that corresponding to a transmitted 0. A
decision error is made if U < 0. Since the decision variable has a Gaussian con-
ditional distribution and neither E(U) nor depends on the a standard
evaluation indicates that the conditional bit error probability given the is

where the signal-to-noise ratio (SNR) for the bit is

The bit error probability is determined by averaging over the distribu-
tion of which depends on the and embodies the statistics of the fading
channel.

Suppose that independent Rayleigh fading occurs so that each of the
is independent with the identical Rayleigh distribution and
As shown in Appendix D.4, is exponentially distributed. Therefore, is
the sum of L independent, identically and exponentially distributed random
variables. From (D-49), it follows that the probability density function of is

where the average SNR per branch is
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The bit error probability is determined by averaging (5-121) over the density
given by (5-123). Thus,

Direct calculations verify that since L is an integer,

Applying integration by parts to (5-125), using (5-126), (5-127), and Q(0) =
1/2, we obtain

This integral can be evaluated in terms of the gamma function, which is defined
in (D-12). A change of variable in (5-128) yields

Since the bit error probability for no diversity or a single branch
is

Since it follows that

Solving (5-130) to determine as a function of and then using this result and
(5-131) in (5-129) gives

This expression explicitly shows the change in the bit error probability as the
number of diversity branches increases. Equations (5-130) and (5-132) are valid
for QPSK because the latter can be transmitted as two independent binary PSK
waveforms in phase quadrature.
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An alternative expression for which may be obtained by a far more
complicated calculation entailing the use of the properties of the Gauss hyper-
geometric function, is [3], [7].

By using mathematical induction, this equation can be derived from (5-132)
without invoking the hypergeometric function.

From a known identity for the sum of binomial coefficients [8], it follows
that

Since (5-133) and (5-134) imply that

This upper bound becomes tighter as If so that
(5-130) implies that and (5-135) indicates that the bit error probabil-
ity decreases inversely with thereby demonstrating the large performance
improvement provided by diversity.

The advantage of MRC is critically dependent on the assumption of uncor-
related fading in each diversity branch. If there is complete correlation so that
the are all equal and the fading occurs simultaneously in all the diversity
branches, then Therefore, has a chi-square distribution with
2 degrees of freedom and probability density function

where is defined by (5-124) and the superscript denotes correlated fading.
A derivation similar to that of (5-129) yields

When

where is given by (5-130). A comparison of (5-138) with (5-135) shows the
large disparity in performance between a system with completely correlated
fading and one with uncorrelated fading.

Graphs of the bit error probability for a single branch with no fading, L
branches with independent fading and MRC, and L branches with completely
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Figure 5.9: Bit error probability of PSK for no fading, completely correlated
fading, and independent fading.

correlated fading and MRC are shown in Figure 5.9. Equations (5-121), (5-
130), (5-132), and (5-137) are used in generating the graphs. The independent
variable is the average SNR per branch for a bit, which is equal to for MRC
and is equal to for the single branch with no fading. The average
SNR per bit for MRC is The figure demonstrates the advantage of diversity
combining and independent fading.

For MFSK, one of equal-energy orthogonal signals
each representing bits, is transmitted. The maximum-likelihood detector
generates decision variables corresponding to the possible nonbinary sym-
bols. The decoder decides in favor of the symbol associated with the largest of
the decision variables. Matched filters for the orthogonal signals are needed
in every diversity branch. Because of the orthogonality, each filter matched to

has a zero response to at the sampling time. When sym-
bol represented by is received in the presence of white Gaussian noise,
matched-filter of branch produces the sample
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where if and and

It is assumed that each has a spectrum confined to Using these
spectral limitations and (5-112), we find that the noise term in (5-139) is circu-
larly symmetric. Therefore, its real and imaginary components are independent
and have the same variance. From the noise term, this variance is found to be

The conditional probability density function of given the values of
and is

For coherent MFSK, the and the are assumed to be known. Since
the noise in each branch is assumed to be independent, the likelihood function
is the product of densities given by (5-141) for and

Forming the log-likelihood function, observing that
and eliminating irrelevant terms and factors that are independent of we find
that the maximization of the log-likelihood function is equivalent to selecting
the largest of decision variables, one for each of They
are

Consider coherent binary frequency-shift keying (FSK). Because of the sym-
metry of the model, can be calculated by assuming that was trans-
mitted. With this assumption, the two decision variables become

where and are independent, real-valued, Gaussian noise variables given
by

A derivation similar to the one for coherent PSK indicates that (5-132) and
(5-133) are again valid for coherent FSK provided that

if
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which can also be obtained by observing the presence of two independent noise
variables and, hence, substituting in place of in (5-130). Thus, in a fading
environment, PSK retains its usual 3 dB advantage over coherent FSK.

The preceding analysis for independent Rayleigh fading can be extended to
independent Nakagami fading if the parameter is a positive integer. From (5-
29) and elementary probability, it follows that the probability density function
of each random variable is

where is defined by (5-124). As indicated in Appendix D.2, the characteristic
function of is

If in (5-122) is the sum of L independent, identically-distributed random
variables, then it has the characteristic function

The inverse of this function yields the probability density function

The form of this expression is the same as that in (5-123) except that L and
are replaced by and respectively. Consequently, the derivation

following (5-123) is valid once the replacements are made, and

where

These results can be approximately related to Ricean fading by using (5-30).
Figure 5.10 displays the bit error probability for Nakagami fading with
PSK, and L = 1, 2, 3, and 4 diversity branches.

Equal-Gain Combining

Coherent equal-gain combining (EGC) performs cophasing, but does not correct
for unequal values of where Thus, when a
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Figure 5.10: Bit error probability of PSK for Nakagami fading with

narrowband desired signal experiences fading, instead of (5-99) and (5-88), the
EGC weight vector is

where is the phase shift of the desired signal in branch When MRC is
optimal and the values of the are unequal, EGC is suboptimal, but
requires much less information about the channel. If the interference plus noise
in each array branch is zero-mean and uncorrelated with the other branches
and then is diagonal, and (5-77), (5-88),
and (5-90) with give the output SINR

It can be verified by applying the Schwarz inequality for inner products that this
SINR is less than or equal to given by (5-102). Figure 5.8 displays EGC
with predetection and postdetection combining if the factors are omitted.

In a Rayleigh-fading environment, each has a Rayleigh
probability distribution function. If the desired signal in each array branch
is uncorrelated with the other branches and has identical average power, then
using (D-36), we obtain
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These equations and (5-155) give

which exceeds times given by (5-104) for MRC. Thus, the loss
associated with using EGC instead of MRC is on the order of 1 dB.

Example 2. In some environments, MRC is identical to EGC but distinctly
suboptimal. Consider narrowband desired and interference signals that do not
experience fading and arrive as plane waves. The array antennas are sufficiently
close that the steering vector of the desired signal and the steering vector

of the interference signal can be represented by

The correlation matrix for the interference plus noise is

where and are the noise and interference powers, respectively, in each ar-
ray branch. This equation shows explicitly that the interference in one branch
is correlated with the interference in the other branches. A direct matrix mul-
tiplication using verifies that

where is the interference-to-noise ratio in each array branch. After
merging with the constant in (5-96), it is found that the optimal weight
vector is

where is the normalized inner product

The corresponding maximum SINR, which is calculated by substituting (5-159),
(5-162), and (5-164) into (5-97), is

where is the SNR in each branch. Equations (5-159), (5-160), and
(5-164) indicate that and if L = 1. Equation (5-165) indicates
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Figure 5.11: Ratio of the maximum SINR to the maximal-ratio-combiner SINR.

that decreases as increases if and is nearly directly proportional
to L if

Since the values of the are all equal, both MRC and EGC use the
weight vector of (5-154) with which gives

Substituting (5-90), (5-159)–(5-161), and (5-164) into (5-77) gives the
SINR for MRC and EGC:

Both and equal the peak value, when They both equal
when which occurs when both the desired and inter-

ference signals arrive from the same direction or L = 1. Using calculus, it is
determined that the maximum value of which occurs when
is

This ratio approaches for large values of Thus, an adaptive ar-
ray based on the maximization of the SINR has the potential to significantly
outperform MRC or EGC if under the conditions of the nonfading
environment assumed. Figure 5.11 displays as a function of for
various values of

When accurate phase estimation is unavailable so that neither cophasing
nor coherent demodulation is possible, then postdetection combining following
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Figure 5.12: Postdetection combining with frequency discriminator.

Figure 5.13: Equal-gain combiner for DPSK with postdetection combining.

noncoherent demodulation can provide a significant performance improvement
over a system with no diversity. For FSK or minimum-shift keying, postde-
tection combining with a frequency discriminator is illustrated in Figure 5.12.
Each intermediate frequency (IF) signal is sampled, converted to a discrete-
time complex baseband signal, and then demodulated by a digital frequency
discriminator [9]. The square of the magnitude or possibly the magnitude of
the discrete-time complex baseband signal is used to weight the output of each
branch. If the noise power in each branch is approximately the same and much
smaller then the desired-signal power, then this weighting is a good approxi-
mation of the weighting used in MRC, but it is suboptimal since cophasing is
absent.

An alternative is postdetection EGC. However, when the desired-signal
power is very low in a branch, then that branch contributes only noise to the
EGC output. This problem is eliminated if each branch has a threshold device
that blocks the output of that branch if the desired-signal power falls below the
threshold.

A block diagram of a DPSK receiver with postdetection EGC is depicted
in Figure 5.13. For equally likely binary symbols, the error probability is the
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same regardless of whether two consecutive symbols are the same or different.
Assuming that they are the same and that the fading is constant over two
symbols, the EGC decision statistic is

where and are independent, complex-valued, Gaussian noise variables
arising from two consecutive symbol intervals. A derivation [3] indicates that
if the are independent but have identical Rayleigh distributions, then

is given by (5-132), (5-133), and (5-135) with the single-branch bit error
probability

where is given by (5-124). Equation (5-169) can be directly derived by ob-
serving that the conditional bit error probability for DPSK with no diversity is

and then integrating the equation over the density (5-123) with L =
1. A comparison of (5-169) with (5-146) indicates that DPSK with EGC and
coherent FSK with MRC give nearly the same performance in a Rayleigh-fading
environment if

To derive a noncoherent MFSK receiver from the maximum-likelihood cri-
terion, we assume that the and the in (5-139) are random variables.
We expand the argument of the exponential function in (5-141), assume that
is uniformly distributed over and integrate over the density of The
integral may be evaluated by expressing in polar form, using (D-30), and
observing that the integral is over one period of a periodic integrand. Thus, we
obtain the conditional density function

Assuming that has the Rayleigh probability density function given by
(5-20) with the density may be evaluated by using the
identity (D-33). The likelihood function is the product of densities for

and Forming the log-likelihood function and
eliminating irrelevant terms and factors that are independent of we find that
the maximization of the log-likelihood function is equivalent to selecting the
largest of the decision variables

where

If it is assumed that all the are equal, then we obtain the Rayleigh metric:
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Figure 5.14: Equal-gain combiner for noncoherent MFSK with postdetection
combining.

This metric implies a noncoherent MFSK receiver with postdetection square-law
EGC, which is illustrated in Figure 5.14. Each branch contains filters matched
to the equal-energy orthogonal signals If the are
unequal, then the Rayleigh metric is inferior to the maximum-likelihood metric.
However,when is large, the corresponding terms in the two metrics are nearly
equal; when is small, the corresponding terms in the two metrics tend to be
insignificant. Thus, there is little penalty in using the Rayleigh metric, as is
confirmed by numerical evaluations [11].

Consider noncoherent binary FSK. Because of the symmetry of the signals,
can be calculated by assuming that was transmitted. Given that

was transmitted, the two decision variables at the combiner output are

where and are the independent, complex-valued, zero-mean, Gaussian
noise variables defined by
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and and are the real and imaginary parts of respectively.
Since each in (5-176) is a zero-mean, white Gaussian noise process

with the same two-sided power spectral density (5-112), (5-176), and
the spectral limitations of each imply that that is, is
circularly symmetric. By calculating we obtain

The circular symmetry implies that and are uncorrelated, zero-mean,
jointly Gaussian random variables and, hence, are independent of each other.
Similarly, it can be verified by using the independence of and

and the orthogonality of and that all 4L random variables in
the sets and are statistically independent of each other. When
independent, identically distributed, Rayleigh fading occurs in each branch,

and are zero-mean, independent, Gaussian random variables
with the same variance equal to as shown
in Section D.4. Therefore, both and have central chi-square distributions
with 2L degrees of freedom. From (D-18), the density function of is

where (5-177) and (5-124) give

Since an erroneous decision is made if

Using (5-127) inside the brackets and integrating, we obtain

Changing variables, applying (D-12), and simplifying gives (5-133), where the
bit error probability for L = 1 is
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Figure 5.15: Bit error probability for MRC with PSK and coherent FSK and
for EGC with DPSK and noncoherent FSK.

and is given by (5-124). Thus, is once again given by (5-132). Equations
(5-183) and (5-169) indicate that 3 dB more power is needed for noncoherent
FSK to provide the same performance as DPSK. As discussed subsequently
in Chapter 6, the performance of DPSK is approximately equaled by using
minimum-shift keying and the configuration shown in Figure 5.12.

Equation (5-132) is valid for MRC and PSK or coherent FSK and also for
EGC and DPSK or noncoherent FSK. Once the bit error probability in the
absence of diversity combining, is determined, the bit error probability for
diversity combining in the presence of independent Rayleigh fading, can
be calculated from (5-132). A plot of versus for different values of L
is displayed in Figure 5.15. This figure illustrates the diminishing returns ob-
tained as L increases. A plot of versus the SNR per branch for one bit,
is displayed in Figure 5.16 for MRC with PSK and EGC with DPSK and non-
coherent FSK. The plot for MRC with coherent FSK is nearly the same as that
for EGC with DPSK. Since (5-135) is valid for all these modulations, we find
that is asymptotically proportional to with only the proportionality
constant differing among the modulation types.

For noncoherent orthogonal signals such as MFSK with it
can be shown that the symbol error probability decreases slightly as
increases [3], [7]. The price for this modest improvement is an increase is
transmission bandwidth.
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Figure 5.16: Bit error probability for MRC with PSK and for EGC with DPSK
and noncoherent FSK.

Selection Diversity

A selection-diversity system or predetection selection-combining system selects
the diversity branch that has the largest SNR and forwards the signal in this
branch for further processing. In a fading environment, selection diversity is
sensible only if the selection rate is much faster than the fading rate. If the noise
and interference levels in all the branches are nearly the same, then the total
signal-plus-noise power in each branch rather than the SNR can be measured to
enable the selection process, thereby allowing a major simplification. Selection
diversity does not provide a performance as good as maximal-ratio combin-
ing or equal-gain combining when the interference plus noise in each branch
is uncorrelated with that in the other branches. However, selection diversity
requires only a single demodulator, and when noises or interference signals are
correlated, then selection diversity may become more competitive.

If the noise in each diversity branch is zero-mean and then
the SNR in branch is If each of the has a Rayleigh
distribution and then the SNR in each branch has the
same expected value

The results of Appendix D.4 for the square of a Rayleigh-distributed random
variable indicate that each SNR has the exponential probability density function
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The corresponding probability distribution function is

The branch with the largest SNR is selected. The probability that the SNR of
the selected branch is less than or equal to is equal to the probability that
all the branch SNR’s are simultaneously less than or equal to Therefore, the
probability distribution function of the SNR of the selected branch is

The corresponding probability density function is

The average SNR obtained by selection diversity is calculated by integrating
the SNR over the density given by (5-188). The result is

The second equality results from a change of variable and the substitution of the
binomial expansion. The third equality results from a term-by-term integration
using (D-12) and an algebraic simplification. Substituting (5-184) and using a
known series identity [8], we obtain

Thus, the average SNR for selection diversity with is less than that for
MRC and the EGC, as indicated by (5-104) and (5-158), respectively. Approx-
imating the summation in (5-190) by an integral, it is observed that the ratio
of the average SNR for MRC to that for selection diversity is approximately
L/ln L for
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Suppose that the modulation is PSK and optimal coherent demodulation
follows the selection process. From (5-113), it follows that the conditional bit
error probability is again given by the right-hand side of (5-121) with

If the have identical Rayleigh distribution functions, then a derivation
similar to the one leading to (5-188) indicates that the density function of is
given by (5-188) with in place of where is defined by (5-124). Therefore,
using the binomial expansion, the bit error probability is

The last integral can be evaluated in the same manner as the one in (5-125).
After regrouping factors, the result is

This equation is valid for QPSK since it can be implemented as two parallel
binary PSK waveforms.

For coherent FSK, the conditional bit error probability is
Therefore, it is found that

Again, 3 dB more power is needed to provide to the same performance as PSK.
When DPSK is the data modulation, the conditional bit error probability

is Thus, selection diversity provides the bit error probability

The beta function is defined as

If is a positive integer then the substitution of the binomial expansion of
and the evaluation of the resulting integral yields
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Using to change the integration variable in (5-195) and then
using (5-196) gives

For noncoherent MFSK, the conditional symbol error probability given the
is obtained from (1-84):

Therefore, a derivation similar to that of (5-198) yields the symbol error prob-
ability

For binary FSK, the bit error probability is

which exhibits the usual 3 dB disadvantage compared with DPSK.
Asymptotic forms of (5-198) and (5-201) may be obtained by substituting

To prove this identity, let in the integrand of the gamma function defined
in (D-12). Express the product as a double integral, change to polar
coordinates, integrate over the radius to obtain a result proportional to
and then change the variable in the remaining integral to obtain

For DPSK, the substitution of (5-202) and (5-169) into (5-198) and the use
of give

For noncoherent FSK, a similar derivation using (5-183) and (5-201) yields the
same upper bound, which is tight when The upper bound on
for DPSK and noncoherent FSK with EGC is given by (5-135). Comparing the
latter with (5-203) indicates the disadvantage of selection diversity relative to
EGC when  and

Figure 5.17 shows as a function of the average SNR per branch, as-
suming selection diversity with PSK, DPSK, and noncoherent FSK. A compar-
ison of Figures 5.17 and 5.16 indicates the reduced gain provided by selection
diversity relative to MRC and EGC.

A fundamental limitation of selection diversity is made evident by the plane-
wave example in which the signal and interference steering vectors are given by
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Figure 5.17: Bit error probability for selection diversity with PSK, DPSK, and
noncoherent FSK.

(5-159) and (5-160). In this example, the SNR’s are equal in all the diversity
branches. Consequently, selection diversity can give no better performance
than no diversity combining or the use of a single branch. In contrast, (5-166)
indicates that EGC can improve the SINR significantly.

Other types of selection diversity besides predetection selection combining
are sometimes of interest. Postdetection selection combining entails the se-
lection of the diversity branch with the largest signal plus noise power after
detection. It outperforms predetection selection combining in general but re-
quires as many matched filters as diversity branches. Thus, its complexity is
not much less than that required for EGC. Switch-and-stay combining(SSC)
or switched combining entails processing the output of a particular diversity
branch as long as its quality measure remains above a fixed threshold. When it
does not, the receiver selects another branch output and continues processing
this output until the quality measure drops below the threshold. In prede-
tection SSC, the quality measure is the instantaneous SNR of the connected
branch. Since only one SNR is measured, predetection SSC is less complex
than selection combining but suffers a performance loss. In postdetection SSC,
the quality measure is the same output quantity used for data detection. The
optimal threshold depends on the average SNR per branch. Postdetection SSC
provides a lower bit error rate than predetection SSC, and the improvement
increases with both the average SNR and less severe fading [11].
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5.5 Rake Receiver

In a fading environment, the principal means for a direct-sequence system to
obtain the benefits of diversity combining is by using a rake receiver. A rake
receiver provides path diversity by coherently combining resolvable multipath
components that are often present during frequency-selective fading. This re-
ceiver is the standard type for direct-sequence systems used in mobile commu-
nication networks.

Consider a multipath channel with frequency-selective fading slow enough
that its time variations are negligible over a signaling interval. To harness
the energy in all the multipath components, a receiver should decide which
signal was transmitted among M candidates, only af-
ter processing all the received multipath components of the signal. Thus, the
receiver selects among the M baseband signals or complex envelopes

where T is the duration of the transmitted signal, is the multipath delay
spread, L is the number of multipath components, is the delay of component

and the channel parameter is a complex number representing the attenu-
ation and phase shift of component An idealized sketch of the output of a
baseband matched filter that receives three multipath components of the signal
to which it is matched is shown in Figure 5.18. If a signal has bandwidth W,

Figure 5.18: Response of matched filter to input with three resolvable multipath
components.

then the duration of the matched-filter response to this signal is on the order
of 1 /W. Multipath components that produce distinguishable matched-filter
output pulses are said to be resolvable. Thus, three multipath components are
resolvable if their relative delays are greater than 1 /W, as depicted in the fig-
ure. A necessary condition for at least two resolvable multipath components is
that duration 1/W is less than the delay spread From (5-57) it follows that

is required, which implies that frequency-selective fading and resolv-
able multipath components are associated with wideband signals. There are at
most resolvable components, where denotes the largest integer
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in As observed in the figure, intersymbol interference at the sampling times
is not significant if is less than the symbol duration

For the following analysis, it is assumed that the M possible signals are or-
thogonal to each other and that the data symbols are independent of each other
so that the maximum-likelihood receiver makes symbol-by-symbol decisions [3],
[6]. This receiver uses a separate baseband matched filter or correlator for each
possible desired signal including its multipath components. Thus, if is
the symbol waveform, then the matched filter is
matched to the signal in (5-204) with the symbol duration. Each
matched-filter output sampled at provides a decision variable. A
derivation similar to that of (5-142) indicates that the decision variable is

where is the received signal, including the noise, after downconversion to
baseband. A receiver implementation based on this equation would require a
separate transversal filter or delay line and a matched filter for each possible
waveform An alternative form that requires only a single transversal filter
and M matched filters is derived by changing variables in (5-205) and using the
fact that is zero outside the interval The result is

For frequency-selective fading and resolvable multipath components, a sim-
plifying assumption is that each delay is an integer multiple of 1/W. Accord-
ingly, L is increased to equal the maximum number of resolvable components,
and we set and where is
the maximum delay. As a result, some of the may be equal to zero. The
decision variables become

A receiver based on these decision variables, which is called a rake receiver, is
diagrammed in Figure 5.19. Since is designated as the output of the final
tap, the sampling occurs at Each tap output contains at most one
multipath component of

The rake receiver requires that the channel parameters be known or
estimated. An estimation might be done by applying each tap output to M
parallel matched filters after a one-symbol delay. The previous symbol deci-
sion is used to select one matched-filter output for each tap output. The L
matched-filter outputs are lowpass-filtered to provide estimates of the channel
parameters. The estimates must be updated at a rate exceeding the fade rate
of (5-43) or (5-45).
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Figure 5.19: Rake receiver for M orthogonal pulses. MF denotes a matched
filter.

An alternative configuration to that of Figure 5.19 uses a separate transver-
sal filter for each decision variable and has the corresponding matched filter in
the front, as shown in Figure 5.20(a). The matched-filter or correlator output is
applied to parallel fingers, the outputs of which are recombined and sampled
to produce the decision variable. The number of fingers    where is
equal to the number the resolvable components that have significant power. The
matched filter produces a number of output pulses in response to the multipath
components, as illustrated in Figure 5.18. Each finger delays and weights one of
these pulses by the appropriate amount so that all the finger output pulses are
aligned in time and can be constructively combined after weighting, as shown in
Figure 5.20(b). Digital devices can be used because the sampling immediately
follows the matched filtering.

The delay of each significant multipath component may be estimated by
using envelope detectors and threshold devices. Let denote the time required
to estimate the relative delay of a multipath component, and let denote the
relative radial velocity of a receiver relative to a transmitter. Then is the
change in delay that occurs during the estimation procedure, where is the
speed of an electromagnetic wave. This change must be much less than the
duration of a multipath output pulse shown in Figure 5.18 if the delay estimate
is to be useful. Thus, with interpreted as the maximum speed of a mobile in
a mobile communications network,

is required of the multipath-delay estimation.
Suppose that is a direct-sequence signal with chip duration

If the processing gain is large, the spreading sequence has a small auto-
correlation when the relative delay is or more, and
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Figure 5.20: Rake receiver: (a) basic configuration for generating a decision
variable and (b) a single finger.

When the data modulation is binary antipodal or PSK, only a single sym-
bol waveform and its associated decision variable are needed. After
downconversion to baseband, the received signal is

where is given by (5-204) and is zero-mean white Gaussian noise.
Let and set and in (5-
204). Substituting (5-210) and (5-204) into (5-207) with and then
using (5-209), we again obtain (5-116). Thus, the rake receiver produces MRC,
and the conditional bit error probability given the is provided by (5-121).
However, for a rake receiver, each of the is associated with a different
multipath component, and hence each has a different value in general.
Therefore, the derivation of must be modified.

Equation (5-122) may be expressed as

If each has a Rayleigh distribution then each has the exponential proba-
bility density function (Appendix D.4)
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where the average SNR for a bit in branch is

If each multipath component fades independently so that each of the is
statistically independent, then is the sum of independent, exponentially dis-
tributed random variables. The results of Appendix D.5 indicate that the prob-
ability density function of is

where

The bit error probability is determined by averaging the conditional bit error
probability over the density given by (5-214). A derivation
similar to that leading to (5-129) yields

The number of fingers in an ideal rake receiver equals the number of sig-
nificant resolvable multipath components, which is constantly changing in a
mobile communications receiver. Rather than attempting to implement all the
required fingers that may sometimes be required, a more practical alternative is
to implement a fixed number of fingers independent of the number of multipath
components. Generalized selection diversity entails selecting the strongest
resolvable components among the L available ones and then applying MRC or
EGG of these components, thereby discarding the components with
the lowest SNRs. Analysis [2] indicates that diminishing returns are obtained
as increases, but for a fixed value of the performance improves as L
increases.

An increase in the number of resolved components L is potentially benefi-
cial if it is caused by natural changes in the physical environment that generate
additional multipath components. However, an increase in L due to an increase
in the bandwidth W is not always beneficial [12]. Although new components
provide additional diversity and may exhibit the more favorable Ricean fading
rather than Rayleigh fading, the average power per multipath component de-
creases because some composite components fragment into more numerous but
weaker components. Hence, the estimation of the channel parameters becomes
more difficult, and the fading of some multipath components may be highly
correlated rather than independent.

The estimation of the channel parameters needed in a rake receiver becomes
more difficult as the fading rate increases. When the estimation errors are
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Figure 5.21: Rake receiver that uses equal-gain combiner to avoid channel-
parameter estimation.

large, it may be preferable to use a rake receiver that avoids channel-parameter
estimation by abandoning MRC and using noncoherent postdetection EGG.
The form of this rake receiver for binary signals is depicted in Figure 5.21.
Each tap output of the transversal filter provides an input to the equal-gain
combiner, which may have the form of Figure 5.13 or Figure 5.14.

For two orthogonal signals that satisfy (5-209) and the rake receiver of Fig-
ures 5.21 and 5.14, the decision variables are given by (5-174) and (5-175).
Since has a central chi-square distribution with 2L degrees of freedom, the
probability density function of is given by (5-178) and (5-179). Equation
(5-174) can be expressed as

Each phase is assumed to be statistically independent and uniformly dis-
tributed over Since each has a Rayleigh distribution, and

have zero-mean, independent, Gaussian distributions. Therefore, as
indicated in Appendix D.4, each term of has an exponential distribution
with mean

where is defined by (5-213). Since the statistical independence of the
and implies the statistical independence of the terms of the probability
density function of for distinct values of the is given by (D-45) and (D-
46) with N = L. Since an erroneous decision is made if
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Integrating by parts to eliminate the inner integral, changing the remaining
integration variable, applying (D-12), and simplifying yields the bit error proba-
bility for orthogonal signals and a rake receiver with noncoherent postdetection
EGC:

where

An alternative derivation of (5-220) using the direct-conversion receiver mod-
eled in Appendix C.3 is given in [13]. Equation (5-220) is more compact and
considerably easier to evaluate than the classical formula [3], which is derived
in a different way.

Another way to avoid channel-parameter estimation is to use DPSK and
the diversity receiver of Figure 5.13 in Figure 5.21. The classical analysis [3]
verifies that is given by (5-220) and (5-221) with replaced by

For dual rake combining with orthogonal signals, (5-220) reduces to

If then

This result illustrates the performance degradation that results when a rake
combiner uses an input that provides no desired-signal component, which may
occur when EGC is used rather than MRC. In the absence of a desired-signal
component, this input contributes only noise to the combiner. For large values
of the extraneous noise causes a loss of almost 1 dB.

If an adaptive array produces a directional beam to reject interference or
enhance the desired signal, it also reduces the delay spread of the multipath
components of the desired signal because components arriving from angles out-
side the beam are greatly attenuated. As a result, the potential benefit of a rake
receiver diminishes. Another procedure is to assign a separate set of adaptive
weights to each significant multipath component. Consequently, the adaptive
array can form separate array patterns, each of which enhances a particular
multipath component while nulling other components. The set of enhanced
components are then applied to the rake receiver [14].

5.6 Error-Control Codes
If the channel symbols are interleaved to a depth beyond the coherence time of
the channel, then the symbols fade independently. As a result, an error-control
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code provides a form of time diversity for direct-sequence systems. Interleav-
ing over many hop intervals enables an error-control code to provide a form
of frequency diversity for frequency-hopping systems with frequency channels
separated by more than the coherence bandwidth of the channel.

Consider an linear block code with soft-decision decoding, where is
the number of code symbols and is the number of information symbols. Let
y denote the vector of noisy output samples
produced by a demodulator that receives a sequence of symbols and samples
them at the symbol rate. Let denote the codeword vector with symbols

Let denote the likelihood function, which is the
conditional probability density function of y given that was transmitted.
Let denote the alphabet size of the code symbols. As explained in Chapter
1, if the demodulator outputs are statistically independent, then the likelihood
function is the product of conditional probability density functions, and the
log-likelihood function or maximum-likelihood metric for each of the possible
codewords is

where is the conditional probability density function of given the
value of In the subsequent analysis, it is always assumed that perfect symbol
interleaving or sufficiently fast fading ensures the statistical independence of the
demodulator outputs so that (5-224) is applicable.

The subsequent analysis for binary PSK is applicable to direct-sequence
signals if it is assumed that the despread interference and noise are well ap-
proximated by white Gaussian noise. With this assumption, the analysis may
be applied by substituting the equivalent noise-power spectral density, in
place of in the subsequent results.

For binary PSK over a fading channel in which the fading is constant over
a symbol interval, the received signal representing symbol of codeword is

where is a random variable that includes the effects of the fading,
when binary symbol is a 1 and when binary symbol is a 0, and
is the symbol waveform. The noise process is independent, zero-mean,
white Gaussian noise with autocorrelation given by (5-112). When codeword

is received in the presence of white Gaussian noise, it is downconverted, and
then the matched-filter or correlator, which is matched to produces the
samples
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where denotes the symbol duration and the symbol energy is

Since is the sole basis function for the signal space, these samples provide
sufficient statistics; that is, they contain all the relevant information in the
received signal [3], [6].

The spectrum of is assumed to be confined to Using this
assumption, (5-227), and (5-112), we find that the Gaussian noise term in (5-
226) is circularly symmetric and, hence, has independent real and imaginary
components with the same variance, which is calculated to be Therefore,
the conditional probability density function of given the values of and

is,

Substituting this equation into (5-224) and then eliminating irrelevant terms
and factors that do not depend on the codeword we obtain the maximum-
likelihood metric for PSK:

which serve as decision variables and require knowledge of the and

For a linear block code, the error probabilities may be calculated by as-
suming that the all-zero codeword denoted by was transmitted. The
comparison of the metrics U(1) and depends only on the terms
that differ, where is the weight of codeword The two-codeword error prob-
ability is equal to the probability that If each of the is
independent with the identical Rayleigh distribution and

the average SNR per binary code symbol is

where is the information-bit energy, is the code rate, and is the average
SNR per bit. A derivation similar to the one leading to (5-132) indicates that
the two-codeword error probability is

where the symbol error probability is
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The same equations are valid for both PSK and QPSK because the latter can
be transmitted as two independent binary PSK waveforms in phase quadrature.
A derivation analogous to that of (5-135) indicates that

For orthogonal symbol waveforms matched
filters are needed. The observation vector is where each

is an row vector of output samples from
matched-filter which is matched to Suppose that symbol of codeword

uses Because the symbol waveforms are orthogonal, when codeword
is received in the presence of white Gaussian noise, matched-filter produces
the samples

where if and otherwise. The symbol energy for all the
waveforms is

Since each symbol waveform represents bits, the average SNR per code
symbol is

which reduces to (5-230) when If the spectra of the are confined
to then (5-235) and (5-112) imply that the Gaussian noise term in
(5-234) is circularly symmetric and, hence, its real and imaginary components
are independent and have the same variance, which is calculated to be
Therefore, the conditional probability density function of given the values
of and is

The orthogonality of the the independence of the white noise from
symbol to symbol, and (5-112) imply the conditional independence of the

For coherent MFSK, the and the are assumed to be known, and
the likelihood function is the product of densities given by (5-237) for

and Forming the log-likelihood function and eliminating
irrelevant terms that are independent of we obtain the maximum-likelihood
metric for coherent MFSK:
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where is the sampled output of the filter matched to the signal
representing symbol of codeword For independent, identically distributed
Rayleigh fading of each codeword symbol, a derivation similar to the one for
PSK indicates that the two-codeword error probability is again given by
(5-231) provided that

where is given by (5-236). A comparison of (5-232) and (5-239) indicates
that for large values of and the same block code, PSK and QPSK have a 3
dB advantage over coherent binary FSK in a fading environment.

The preceding analysis can be extended to Nakagami fading if the fading
parameter is a positive integer. It is found that the preceding equations for
the error probabilities remain valid except that in (5-231) is replaced by md
and is given by the right-hand sides of (5-152) or (5-153) with

When fast fading makes it impossible to obtain accurate estimates of the
and noncoherent MFSK is a suitable modulation. Expanding the

argument of the exponential function in (5-237), assuming that is uniformly
distributed over expressing in polar form, observing that the integral
over is over one period of the integrand, and using the identity (D-30), we
obtain the conditional probability density function of given and

Assuming that each is statistically independent and has the same Rayleigh
probability density function given by (5-20), can be evaluated by using
the identity (D-33). Calculating the log-likelihood function and eliminating
irrelevant terms and factors, we obtain the Rayleigh metric for noncoherent
MFSK:

where denotes the envelope produced by the filter matched to the
transmitted signal for symbol of codeword Assuming that the all-zero
codeword was transmitted, a derivation similar to the one preceding (5-183)
again verifies (5-231) with

where is given by (5-236). A comparison of (5-232) and (5-242) indicates
that for large values of and the same block code, PSK and QPSK have an
approximate 6 dB advantage over noncoherent binary FSK in a fading environ-
ment. Thus, the fading accentuates the advantage that exists for the AWGN
channel.
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As indicated in (1-49), an upper bound on the information-symbol error
probability for soft-decision decoding is given by

and the information-bit error probability is given by (1-27). A comparison
of (5-132) with (5-231) and the first term on the right-hand side of (5-243)
indicates that a binary block code with maximum-likelihood decoding provides
an equivalent diversity equal to if is low enough that the first term
in (5-243) dominates. For hard-decision decoding, the symbol error probability

is given by (5-232) for coherent PSK, (5-239) for coherent MFSK, (5-242)
for noncoherent MFSK, or (5-169) for DPSK. For loosely packed codes, is
approximated by (1-26) whereas it is approximated by (1-25) for tightly packed
codes.

Figure 5.22 illustrates for an extended Golay (24,12) code with L
= 1 and for MRC with L = 1, 4, 5, and 6 diversity branches. A Rayleigh
fading channel and binary PSK are assumed. The extended Golay (24,12) code
is tightly packed with 12 information bits, and The
values of in (5-243) are listed in Table 1.3. The MRC graphs assume that
a single bit is transmitted. The SNR per code symbol where
is the average SNR per bit and branch. The figure indicates the benefits of
coding particularly when the desired is low. At the (24,12)
code with hard decisions provides on 11 dB advantage over uncoded PSK; with
soft decisions, the advantage becomes 16 dB. The advantage of soft-decision
decoding relative to hard-decision decoding increases to more than 10 dB at

a vast gain over the approximately 2 dB advantage of soft-decision
decoding for the AWGN channel. At the Golay (24,12) code with
soft decisions outperforms MRC with L = 5 and is nearing the performance of
MRC with L = 6. However, since the equivalent diversity
will not reach L = 8 even for very low For noncoherent binary FSK, all the
graphs in the figure are shifted approximately 6 dB to the right when

Since the soft-decision decoding of long block codes is usually impractical,
convolutional codes are more likely to give a good performance over a fading
channel. The metrics are basically the same as they are for block codes with
the same modulation, but they are evaluated over path segments that diverge
from the correct path through the trellis and then merge with it subsequently.
The linearity of binary convolutional codes ensures that all-zero path can be
assumed to be the correct one when calculating the decoding error probability.
Let denote the Hamming distance of an incorrect path from the correct all-zero
path. If perfect symbol interleaving is used, then the probability of error in the
pairwise comparison of two paths with an unmerged segment is which is
given by (5-231). As shown in Chapter 1, the probability of an information-bit
error in soft-decision decoding is upper bounded by
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Figure 5.22: Information-bit error probability for extended Golay (24,12) code
with soft and hard decisions, coherent PSK modulation, and Rayleigh fading,
and for maximal-ratio combining with L = 1, 4, 5, and 6.

where is the number of information-bit errors over all paths with unmerged
segments at Hamming distance is the number of information bits per trellis
branch, and is the minimum free distance, which is the minimum Hamming
distance between any two convolutional codewords. This upper bound ap-
proaches as so the equivalent diversity is if and

are small.
In general, increases with the constraint length of the convolutional code.

However, if each encoder output bit is repeated times, then the minimum
distance of the convolutional code increases to without a change in the
constraint length, but at the cost of a bandwidth expansion by the factor
From (5-244), we infer that for the code with repeated bits,

where refers to the original code.
Figure 5.23 illustrates as a function of for the Rayleigh-fading channel

and binary convolutional codes with different values of the constraint length
K, the code rate and the number of repetitions Relations (5-245) and
(5-231) with are used, and the are taken from the listings for
seven terms in Tables 1.4 and 1.5. The figure indicates that an increase in the
constraint length provides a much greater performance improvement for the
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Figure 5.23: Information-bit error probability for Rayleigh fading, coherent
PSK, and binary convolutional codes with various values of and

Rayleigh-fading channel than the increase does for the AWGN channel [16].
For a fixed constraint length, the rate-1/4 codes give a better performance than
the rate-1/2 codes with which require the same bandwidth but are less
complex to implement. The latter two codes require twice the bandwidth of
the rate-1/2 code with no repetitions.

The issues are similar for trellis-coded modulation (Chapter 1), which pro-
vides a coding gain without a bandwidth expansion. However, if parallel state
transitions occur in the trellis, then which implies that the code pro-
vides no diversity protection against fading. Thus, for fading communications,
a conventional trellis code with distinct transitions from each state to all other
states must be selected. Since Rayleigh fading causes large amplitude varia-
tions, multiphase PSK is usually a better choice than multilevel quadrature
amplitude modulation (QAM) for the symbol modulation. However, the op-
timum trellis decoder uses coherent detection and requires an estimate of the
channel attenuation.

Whether a block, convolutional, or trellis code is used, the results of this
section indicate that the minimum Hamming distance rather than the minimum
Euclidean distance is the critical parameter in designing an effective code for
the Rayleigh fading channel.

Turbo codes or serially concatenated codes with iterative decoding based on
the maximum a posteriori criterion can provide excellent performance. How-
ever, the system must be able to accommodate considerable decoding delay and
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Figure 5.24: Information-bit error probability for Rayleigh fading, coherent
PSK, soft decisions, and concatenated codes comprising an inner binary convo-
lutional code with K = 7 and and various Reed-Solomon outer
codes.

computational complexity. Even without iterative decoding, a serially concate-
nated code with an outer Reed-Solomon code and an inner binary convolutional
code (Chapter 1) can be effective against Rayleigh fading. In the worst case,
each output bit error of the inner decoder causes a separate symbol error at
the input to the Reed-Solomon decoder. Therefore, an upper bound on is
given by (1-128) and (1-127). For coherent PSK modulation with soft-decision
decoding, is given by (5-231) and (5-232), and is given by (5-230). The
concatenated code has a code rate where is the inner-code rate and

is the outer-code rate.
Figure 5.24 depicts examples of the upper bound on as a function for

Rayleigh fading, coherent PSK, soft decisions, an inner binary convolutional
code with K = 7, and and various Reed-Solomon
outer codes. The required bandwidth is where is the uncoded PSK
bandwidth. Thus, the codes of the figure require a bandwidth less than

Diversity and Spread Spectrum

Some form of diversity is crucial in compensating for the effects of fading.
Spread-spectrum systems exploit the different types of diversity that are avail-
able. A direct-sequence receiver exploits time diversity through the small num-
ber of branches or demodulators in its rake receiver. These demodulators must
be synchronized to the path delays of the multipath components. The effec-



290 CHAPTER 5. FADING OF WIRELESS COMMUNICATIONS

tiveness of the rake receiver depends on the concentration of strong diffuse and
specular components in the vicinity of resolvable path delays, which becomes
more likely as the chip rate increases. A large Doppler spread is beneficial to
a direct-sequence system because it decreases the channel coherence time. If
the coherence time is less than the interleaving depth, the performance of the
error-control decoder is enhanced. Equation (5-10) indicates that the Doppler
spread increases with the carrier frequency and the speed of the receiver relative
to the transmitter.

Frequency-hopping systems rely on frequency diversity. Interleaving of the
code symbols over many dwell intervals provides a large level of diversity to slow
frequency-hopping systems operating over a frequency-selective fading channel.
These systems are usually insensitive to variations in the Doppler spread of the
channel because any additional diversity due to improved time-selective fading
is insignificant. The relative performance of comparable frequency-hopping and
direct-sequence systems ultimately depends primarily on the size of the Doppler
spread and the degree to which most of the power in the received signal is
concentrated in a small number of resolvable multipath components [15]. A
large Doppler spread and strong specular multipath components tend to favor
direct-sequence systems.

5.7 Problems
1.

2.

3.

4.

5.

Give an alternative derivation of (5-41). First, observe that the total
received Doppler power in the spectral band cor-
responds to arrival angles determined by If the received
power arrives uniformly spread over all angles then

where is the power density arriving from
angle

Assume that a propagation channel has the impulse response given by
(5-63) with and Each is a wide-sense sta-
tionary process and uncorrelated scattering occurs. Derive expressions
for and Show that the multipath intensity profile
indicates specular components.

Following the guidance in the text, derive the maximum-likelihood deci-
sion variable (5-115) and its variance (5-120) for PSK over the Rayleigh
fading channel.

Consider the maximum-likelihood detection of coherent MFSK for the
Rayleigh fading channel. The independent noise in each diversity branch
has power spectral density Find the decision
variables and show that they are given by (5-142) when the are all
equal.

Consider the maximum-likelihood detection of noncoherent MFSK for the
Rayleigh fading channel. The independent noise in each diversity branch
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has power spectral density Find the decision
variables and show that they are given by (5-171) when the are all
equal.

6.

7.

8.

9.

Suppose that diversity L is achieved by first dividing the symbol energy
into L equal parts so that the SNR per branch in (5-124) is reduced by
the factor L. For the four modulations of Figure 5.15 and by
what factor does increase relative to its value when the energy is
not divided?

For noncoherent orthogonal signals such as those with MFSK, use
the union bound to derive an upper bound on the symbol error probability
as a function of and the diversity L.

For dual rake combining, PSK, MRC, and Rayleigh fading, find as
both and Find for dual rake combining, noncoherent
orthogonal signals, EGC, and Rayleigh fading as both and
What advantage does PSK have?

Three multipath components arrive at a direct-sequence receiver moving
at 30 m/s relative to the transmitter. The second and third multipath
components travel over paths 200 m and 250 m longer than the first com-
ponent. If the chip rate is equal to the bandwidth of the received signal,
what is the minimum chip rate required to resolve all components? How
much time can the receiver allocate to the estimation of the component
delays?

10. Consider a system that uses PSK or MFSK, an (n, k) block code, and the
maximum-likelihood metric in the presence of Rayleigh fading. Show by
successive applications of various bounds that the word error probability
for soft-decision decoding satisfies

where is the alphabet size and is the minimum distance between
codewords.
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Chapter 6

Code-Division Multiple
Access

Multiple access is the ability of many users to communicate with each other
while sharing a common transmission medium. Wireless multiple-access com-
munications are facilitated if the transmitted signals are orthogonal or separable
in some sense. Signals may be separated in time (time-division multiple access
or TDMA), frequency (frequency-division multiple access or FDMA), or code
(code-division multiple access or CDMA). CDMA is realized by using spread-
spectrum modulation while transmitting signals from multiple users in the same
frequency band at the same time. All signals use the entire allocated spectrum,
but the spreading sequences or frequency-hoppong patterns differ. Informa-
tion theory indicates that in an isolated cell, CDMA systems achieve the same
spectral efficiency as TDMA or FDMA systems only if optimal multiuser detec-
tion is used. However, even with single-user detection, CDMA is advantageous
for cellular networks because it eliminates the need for frequency and timeslot
coordination among cells and allows carrier-frequency reuse in adjacent cells.
Frequency planning is vastly simplified. A major CDMA advantage exists in
networks accommodating voice communications. A voice-activity detector ac-
tivates the transmitter only when the user is talking. Since typically fewer
than 40% of the users are talking at any given time, the number of telephone
users can be increased while maintaining a specified average interference power.
Another major CDMA advantage is the ease with which it can be combined
with multibeamed antenna arrays that are either adaptive or have fixed pat-
terns covering cell sectors. There is no practical means of reassigning time
slots in TDMA systems or frequencies in FDMA systems to increase capacity
by exploiting intermittent voice signals or multibeamed arrays, and reassign-
ments to accommodate variable data rates are almost always impractical. These
general advantages and its resistance to jamming, interception, and multipath
interference make CDMA the choice for most mobile communication networks.
The two principal types of spread-spectrum CDMA are direct-sequence CDMA
(DS/CDMA) and frequency-hopping CDMA (FH/CDMA).
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6.1 Spreading Sequences for DS/CDMA

Consider a DS/CDMA network with K users in which every receiver has the
form of Figure 2.14. The multiple-access interference that enters a receiver
synchronized to a desired signal is modeled as

where K – 1 is the number of interfering direct-sequence signals, and is
the average power, is the code-symbol modulation, is the spreading
waveform, is the relative delay, and is the phase shift of interference signal

including the effect of carrier time delay. The spreading waveform of the
desired signal is

where Each spreading waveform of an interference signal has the
form

where The chip waveforms are assumed to be identical through-
out the network and have unit energy:

In a DS/CDMA network, the spreading sequences are often called signature se-
quences. As shown in Chapter 2, the interference component of the demodulator
output due to a received symbol is

where

Substituting (6-1) into (6-6) and (6-5) and then using (6-2), we obtain

where a double-frequency term is neglected.
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Orthogonal Sequences

Suppose that the communication signals are synchronous so that all data sym-
bols have duration symbol and chip transitions are aligned at the receiver
input, and short spreading sequences with period N = G extend over each
data symbol. Then and is constant over
the integration interval The cross-correlation between and is
defined as

Thus, for synchronous communications, (6-7) may be expressed as

where

Substituting (6-3) and (6-2) into (6-8) and then using (6-4) and we
obtain

where the right-hand side is the periodic cross-correlation between the sequences
and Let a and denote the binary sequences with components

respectively, that map into the binary antipodal sequences

with components and Then a derivation
similar to that in (2-34) gives

where denotes the number of agreements in the corresponding bits of a and
and denotes the number of disagreements. The sequences are orthogonal

if If the spreading sequence a is orthogonal to all the spreading
sequences then and the multiple-access interference

is suppressed at the receiver. A large number of multiple-access interference
signals can be suppressed in a network if each such signal has its chip transitions
aligned and the spreading sequences are mutually orthogonal.

Two binary sequences, each of length two, are orthogonal if each sequence
is described by one of the rows of the 2 × 2 matrix

because A = D = 1. A set of sequences, each of length is obtained by
using the rows of the matrix
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where is the complement of obtained by replacing each 1 and 0 by
0 and 1, respectively, and is defined by (6-13). Any pair of rows in differ
in exactly columns, thereby ensuring orthogonality of the corresponding
sequences. The matrix which is called a Hadamard matrix, can
be used to generate orthogonal spreading sequences for synchronous direct-
sequence communications. The orthogonal spreading sequences generated from
a Hadamard matrix are called Walsh sequences.

In CDMA networks for multimedia applications, the data rates for various
services and users often differ. If the transmitted signal bandwidth is the same
for all signals, then so is the chip rate. For synchronous communications, it is
desirable to use spreading sequences that are orthogonal to each other despite
differences in the processing gains, which are often called spreading factors in
CDMA networks. Starting with a set of Walsh sequences, a tree-structured set
of orthogonal Walsh sequences called the orthogonal variable-spreading-factor
codes can be generated recursively for this purpose. Let denote the
row vector representing the nth sequence with spreading factor N, where

and for some positive integer The set of N sequences with
N chips is derived by concatenating sequences from the set of N/2 sequences
with N/2 chips:

For example, is produced by concatenating and thereby
doubling the number of chips per data symbol to 16. A sequence used in
the recursive generation of a longer sequence is called a mother code of the
longer sequence. Equation (6-15) indicates that the sequences with N chips are
orthogonal to each other, and each is orthogonal to concatenations of all
sequences and their complements except for its mother
codes. For example, is not orthogonal to or Synchronous
signals with a judicious selection of orthogonal variable-spreading-factor codes
enable the receiver to completely suppress multiple-access interference.

As an alternative to the Walsh sequences, consider the set of maxi-
mal sequences generated by a primitive polynomial of degree and the
different initial states of the shift register. Equation (2-34) implies that by ap-
pending a 0 at the end of each period of each sequence, we obtain a set of
orthogonal sequences of period Without the appending of symbols, a set of
nearly orthogonal sequences for a synchronous network may be generated from
different time displacements of a single maximal sequence because its autocor-
relation, which is given by (2-35), determines the cross-correlations among the
sequences of the set. The low values of the autocorrelation for nonzero delay
causes the rejection of multipath signals. In contrast, the Walsh sequences do
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not have such favorable autocorrelation functions.

Sequences with Small Cross-Correlations

The symbol transitions of asynchronous multiple-access signals at a receiver are
not simultaneous, usually because of changing path-length differences among
the various communication links. Since the spreading sequences are shifted rel-
ative to each other, sets of periodic sequences with small cross-correlations for
any relative shifts are desirable to limit the effect of multiple-access interfer-
ence. Maximal sequences, which have the longest periods of sequences gener-
ated by a linear feedback shift register of fixed length, are often inadequate.
Let and denote binary sequences with
components in GF(2). The sequences a and b are mapped into antipodal se-
quences p and q, respectively, with components in {–1,+1} by means of the
transformation

The periodic cross-correlation of periodic binary sequences a and b with the
same period N is defined as the periodic cross-correlation of the antipodal
sequences p and q, which is defined as

A calculation similar to that in (2-34) yields the periodic cross-correlation

where denotes the number of agreements in the corresponding components of
a and the shift sequence and denotes
the number of disagreements.

In the presence of asynchronous multiple-access interference for which
the interference component of the correlator output is given by (6-7). If we

assume that the data modulation is absent so that we may set in
(6-7), then it is observed that interference signal produces a term in that
is proportional to given by (6-8). Let where is a
nonnegative integer and A derivation similar to the one leading to
(2-40) gives

where is the periodic cross-correlation of the sequence p and and
is given by (6-18). Thus, ensuring that the periodic cross-correlations are al-
ways small is a critical necessary condition for the success of asynchronous
multiple-access communications. Although the data modulation may be absent
during acquisition, it will be present during data transmission, and may
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change polarity during an integration interval. Thus, the effect of asynchronous
multiple-access interference will exceed that predicted from (6-19).

For a set S of M periodic antipodal sequences of length N, let denote
the peak magnitude of the cross-correlations or autocorrelations:

Theorem. A set S of M periodic antipodal sequences of length N has

Proof: Consider an extended set of M N sequences
that comprises the N distinct shifted sequences derived from each of the se-
quences in S. The cross-correlation of sequences and in is

and

Define the double summation

Separating the M N terms for which and then bounding the remaining
M N (M N – 1) terms yields

Substituting (6-22) into (6-24), interchanging summations, and omitting the
terms for which we obtain

Combining this inequality with (6-25) gives (6-21).
The lower bound in (6-21) is known as the Welch bound. It approaches

for large values of M and N. Only small subsets of maximal sequences
can be found with close to this lower bound. The same is true for Walsh
sequences.



6.1. SPREADING SEQUENCES FOR DS/CDMA 299

Large sets of sequences with approaching the Welch bound can be
obtained by combining maximal sequences with sampled versions of these se-
quences. If is a positive integer, the new binary sequence b formed by taking
every bit of binary sequence a is known as a decimation of a by and
the components of the two sequences are related by Let
denote the greatest common divisor of and If the original sequence a has
a period N and the new sequence b is not identically zero, then b has period

If then the decimation is called a proper decima-
tion. Following a proper decimation, the bits of b do not repeat themselves
until every bit of a has been sampled. Therefore, b and a have the same period
N, and it can be shown that if a is maximal, then b is a maximal sequence
[1]. A preferred pair of maximal sequences with period are a pair with
a periodic cross-correlation that takes only the three values
and where

and denotes the integer part of the real number The Gold sequences are
a large set of sequences with period that may be generated by the
modulo-2 addition of preferred pairs when is odd or modulo-4 [1].
One sequence of the preferred pair is a decimation by of the other sequence.
The positive integer is either or where is a
positive integer such that when is odd and when

modulo-4.
Since the cross-correlation between any two Gold sequences in a set can take

only three values, the peak magnitude of the periodic cross-correlation between
any two Gold sequences of period is

For large values of for Gold sequences exceeds the Welch bound by a
factor of for odd and a factor of 2 for even.

One form of a Gold sequence generator is shown in Figure 6.1. If each
maximal sequence generator has stages, different Gold sequences in a set are
generated by selecting the initial state of one maximal sequence generator and
then shifting the initial state of the other generator. Since any shift from 0 to

results in a different Gold sequence, different Gold sequences can
be produced by the system of Figure 6.1. Gold sequences identical to maximal
sequences are produced by setting the state of one of the maximal sequence
generators to zero. Altogether, there are different Gold sequences, each
with a period of in the set.

An example of a set of Gold sequences is the set generated by the preferred
pair specified by the primitive characteristic polynomials

Since there are 129 Gold sequences of period 127 in this set, and (6-28)
gives Equation (2-66) indicates that there are only 18 maximal
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Figure 6.1: Gold sequence generator.

sequences with For this set of 18 sequences, calculations [1] indicate
that If is desired for a set of maximal sequences
with then one finds that the set has only 6 sequences. This result
illustrates the much greater utility of Gold sequences in CDMA networks with
many subscribers.

Consider a Gold sequence generated by using the characteristic functions
and of degree The generating function for the Gold sequence is

where and have the form specified by the numerator of (2-60).
Since the degrees of both and are less than the degree of the
numerator of must be less than Since the product has
the form of a characteristic function of degree given by (2-56), this product
defines the feedback coefficients of a single linear feedback shift register with
stages that can generate the Gold sequences. The initial state of the register
for any particular sequence can be determined by equating each coefficient in
the numerator of (6-30) with the corresponding coefficient in (2-60) and then
solving linear equations.

A small set of Kasami sequences comprises sequences with period
if is even [1]. To generate a set, a maximal sequence a with period

is decimated by to form a binary sequence b with period
The modulo-2 addition of a and any cyclic shift of

b from 0 to provides a Kasami sequence. By including sequence a,
we obtain a set of Kasami sequences with period The periodic
cross-correlation between any two Kasami sequences in a set can only take the
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values where

The peak magnitude of the periodic cross-correlation between any two Kasami
sequences is

For and the use of in the Welch
bound gives Since

Since N is an odd integer, in (6-18) must be an odd integer. Therefore,
the definition of and (6-18) indicate that must be an odd integer.
Inequality (6-33) then implies that for and even values
of

A comparison of this result with (6-32) indicates that the Kasami sequences are
optimal in the sense that has the minimum value for any set of sequences
of the same size and period.

As an example, let There are 60 maximal sequences, 1025 Gold se-
quences, and 32 Kasami sequences with period 1023. The peak cross-correlations
are 0.37, 0.06, and 0.03, respectively.

A large set of Kasami sequences comprises sequences if
modulo-4 and sequences if modulo-4 [1] The sequences
have period To generate a set, a maximal sequence a with period

is decimated by to form a binary sequence b and
then decimated by to form another binary sequence c. The
modulo-2 addition of a, a cyclic shift of b, and a cyclic shift of c provides a
Kasami sequence with period N. The periodic cross-correlations between any
two Kasami sequences in a set can only take the values

A large set of Kasami sequences includes both
a small set of Kasami sequences and a set of Gold sequences as subsets. Since

the value of for a large set is the same as that for Gold
sequences (6-28). This value is suboptimal, but the large size of these sets
makes them an attractive option for asynchronous CDMA networks.

Symbol Error Probability

Let denote the vector of the two symbols of asynchronous
multiple-access interference signal that are received during the detection of a
symbol of the desired signal. A straightforward evaluation of (6-7) gives
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where the continuous-time partial cross-correlation functions are

For rectangular chip waveforms and spreading sequences of period N, straight-
forward calculations yield

where and the aperiodic cross-correlation function is defined by

and for These equations indicate that the aperiodic cross-
correlations are more important than the related periodic cross-correlations
defined by (6-17) in determining the interference level and, hence, the sym-
bol error probability. Without careful selection of the sequences, the aperiodic
cross-correlations may be much larger than the periodic cross-correlation. If all
the spreading sequences are short with N = G, and the power levels of all re-
ceived signals are equal, then the symbol error probability can be approximated
and bounded [2], [3], but the process is complicated. An alternative approach
is to model the spreading sequences as random binary sequences, as is done for
long sequences.

In a network with multiple-access interference, code acquisition depends
on both the periodic and aperiodic cross-correlations. In the absence of data
modulations, in (4-73) has additional terms, each of which is proportional
to the periodic cross-correlation between the desired signal and an interference
signal. When data modulations are present, some or all of these terms entail
aperiodic cross-correlations.

Complex-Valued Quaternary Sequences

Quaternary direct-sequence system may use pairs of short binary sequences,
such as Gold or Kasami sequences, to exploit the favorable periodic autocorre-
lation and cross-correlation functions. However, Gold sequences do not attain
the Welch bound, and Kasami sequences that do are limited in number. To sup-
port many users and to facilitate the unambiguous synchronization to particular
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signals in a CDMA network, one might consider complex-valued quaternary se-
quences that are not derived from pairs of standard binary sequences but have
better periodic correlation functions.

For PSK modulation, sequence symbols are powers of the complex
root of unity, which is

where The complex spreading or signature sequence p of period N
has symbols given by

where is an arbitrary phase chosen for convenience. If is specified by the
exponent and is specified by the exponent then the periodic cross-
correlation between sequences p and q is defined as

The maximum magnitude defined by (6-20) must satisfy the Welch bound
of (6-21). For a positive integer a family of M = N + 2 quaternary
or sequences, each of period with that asymptotically
approaches the Welch bound has been identified [4]. In contrast, a small set of
binary Kasami sequences has only sequences

The sequences in a family are determined by the characteristic polynomial,
which is defined as

where coefficients and The output sequence satisfies the
linear recurrence relation of (2-20). For example, the characteristic polynomial

has and generates a family with period N = 7. A
feedback shift register that implements the sequence of the family is depicted in
Figure 6.2(a), where all operations are modulo-4. The generation of a particular
sequence is illustrated in Figure 6.2(b). Different sequences may be generated
by loading the shift register with any nonzero initial contents and then cycling
the shift register through its full period Since the shift register
has nonzero states, there are cyclically
distinct members of the family. Each family member may be generated by
loading the shift register with any nonzero triple that is not a state occurring
during the generation of another family member.

By setting in (6-42), a complex-valued data symbol in the family
may be represented by where and are antipodal symbols with
values If a complex-valued chip of the spreading sequence is
then the complex multiplication of the data and spreading sequences produces
a complex-valued sequence with each chip of the form
The implementation of thisproduct is shown in Figure 6.3, in which real-valued
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Figure 6.2: (a) Feedback shift register for a quaternary sequence and (b) con-
tents after successive shifts.

inputs and produce the two real-valued outputs and The
equation gives a compact complex-variable representation of the real
variable equations:

Each chip modulates the in-phase carrier, and each chip modulates the
quadrature carrier. The transmitted signal may be represented as

where denotes the real part of A is the amplitude, and and
are waveforms modulated by the data and spreading sequences.

A representation of the receiver in terms of complex variables is illustrated
in Figure 6.4. If two cross-correlation terms are negligible, and
the actual implementation can be done by the architectures of Figures 6.17
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Figure 6.3: Product of quaternary data and spreading sequences.

Figure 6.4: Receiver for direct-sequence system with complex quaternary
spreading sequences. CMF is chip-matched filter.

and 6.19 except that the final multiplications in the two branches are replaced
by a complex multiplication. Thus, is extracted by separate in-phase and
quadrature demodulation. Since the complex quaternary symbols have unity
magnitude, the despreading entails the complex multiplication of by to pro-
duce along with the residual interference and noise. As illustrated in
Figure 6.4, the summation of G multiplications produces the decision variable,
where G is the number of chips per bit.

Although some complex-valued quaternary sequences have more favorable
periodic autocorrelations and cross-correlations than pairs of standard binary
sequences, they do not provide significantly smaller error probabilities in multiple-
access systems [5]. The reason is that system performance is determined by the
complex aperiodic functions. However, complex sequences have the potential
to provide better acquisition performance than the Gold or Kasami sequences
because of their superior periodic autocorrelations.

Complex-valued quaternary sequences ensure balanced power in the in-phase
and quadrature branches of the transmitter, which limits the peak-to-average
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power fluctuations. Let represent a complex-valued data
signal. Suppose that different bit rates or quality-of-service requirements make
it desirable for and to have unequal amplitudes. Multiplication by a
complex-valued spreading waveform produces

If the symbols of and are zero-mean, antipodal, and
independent, and a constant, then

This result indicates that the power in the in-phase and quadrature
components after the spreading are equal despite any disparity between and

6.2 Systems with Random Spreading Sequences

If all the spreading sequences in a network of asynchronous CDMA systems
have a common period equal to the data-symbol duration, then by the proper
selection of the sequences and their relative phases, one can obtain a system
performance better than that theoretically attainable with random sequences.
However, the number of suitable sequences is too small for many applications,
and long sequences that extend over many data symbols provide more system
security. Furthermore, long sequences ensure that successive data symbols are
covered by different sequences, thereby limiting the time duration of an un-
favorable cross-correlation due to multiple-access interference. Even if short
sequences are used, the random-sequence model gives fairly accurate perfor-
mance predictions.

Direct-Sequence Systems with PSK

Consider the direct-sequence receiver of Figure 2.14 when the modulation is
PSK and multiple-access interference is present. If the spreading sequence of the
desired signal is modeled as a random binary sequence and the chip waveform
confined to then the input V to the decision device is given by (2-84)
and has mean value

The interference component is given by (6-5), (6-6), and (6-1). Since the data
modulation in an interference signal is modeled as a random binary se-
quence, it can be subsumed into given by (6-3) with no loss of generality.
Since is determined by an independent, random spreading sequence, only
time delays are significant and, thus, we can assume that
in (6-1) without loss of generality.

Since is confined to and the substitution of (6-1) and
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(6-3) into (6-6) yields

The partial autocorrelation for the chip waveform is defined as

Substitution into (6-48) and appropriate changes of variables in the integrals
yield

For rectangular chips in the spreading waveform,

Consequently,

For sinusoidal chips in the spreading waveform,

Substituting this equation into (6-49), using a trigonometric identity, and per-
forming the integrations, we obtain

Since both and contain the same random variable it does not
appear at first that the terms in (6-50) are statistically independent even when

and are given. The following
lemma [6] resolves this issue.

Lemma. Suppose that and are statistically independent, random
binary sequences. Let and denote arbitrary constants. Then and

are statistically independent random variables when
Proof: Let denote the joint probability that

and where From the theorem of
total probability, it follows that
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From the independence of and and the fact that they are random
binary sequences, we obtain a simplification for and

Since equals +1 or –1 with equal probability,
and thus

A similar calculation gives

Therefore,

which satisfies the definition of statistical independence of and
The same relation is trivial to establish for or

The lemma indicates that when and are given, the terms in (6-5) are
statistically independent. Since the conditional variance is

The independence of the K spreading sequences, the independence of successive
terms in each random binary sequence, and (6-50) imply that the conditional
variance of is independent of and, therefore,

Since the terms of in (6-5) are independent, zero-mean random variables
that are uniformly bounded and as the central limit the-
orem implies that converges in distribution to a Gaussian random
variable with mean 0 and variance 1. Thus, when and are given, the condi-
tional distribution of is approximately Gaussian when G is large. Since the
noise component in (2-84) has a Gaussian distribution and is independent
of has an approximate Gaussian distribution with mean given
by (6-47), and
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A straightforward derivation using the Gaussian distribution of the decision
statistic V indicates that the conditional symbol error probability given and

is

where is the energy per symbol in and the equivalent-noise power
spectral density is defined as

For a rectangular chip waveform, this equation simplifies to

Numerical evaluations [6] give strong evidence that the error in (6-57) due
to the Gaussian approximation is negligible if For an asynchronous
network, it is assumed that the time delays are independent and uniformly
distributed over and that the phase angles are
uniformly distributed over Therefore, the symbol error probability is

where the fact that takes all its possible values over has been used
to shorten the integration intervals. The absence of sequence parameters ensures
that the amount of computation required for (6-60) is much less than the amount
required to compute when the spreading sequence is short. Nevertheless,
the computational requirements are large enough that it is highly desirable to
find an accurate approximation that entails less computation. The conditional
symbol error probability given is defined as

A closed-form approximation to greatly simplifies the computation of
which reduces to

To approximate we first obtain upper and lower bounds on it.
For either rectangular or sinusoidal chip waveforms, elementary calculus

establishes that
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Using this upper bound successively in (6-58), (6-57), and (6-61), and perform-
ing the trivial integrations that result, we obtain

where

To apply Jensen’s inequality (2-144), the successive integrals in (6-60) are
interpreted as the evaluation of expected values. Consider the random variable

Since is uniformly distributed over straightforward calculations using
(6-52) and (6-54) give

where

The function (6-57) has the form given by (2-145). Equations (6-58), (6-63),
and yield a sufficient condition for convexity:

Application of Jensen’s inequality successively to each component of in (6-61)
yields

where

If is negligible, then (6-71) and (6-65) give Thus, a good
approximation is provided by
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Figure 6.5: Symbol error probability of direct-sequence system with PSK in
presence of single multiple-access interference signal and

where

If is negligible, then Therefore, in terms of the
value of needed to ensure a given the error in using approximation (6-
72) instead of (6-61) is bounded by in decibels, which equals 0.88
dB for rectangular chip waveforms and 1.16 dB for sinusoidal chip waveforms.
In practice, the error is expected to be only a few tenths of a decibel because

and coincides with neither the upper nor the lower bound.
As an example, suppose that rectangular chip waveforms are used,

and K = 2. Figure 6.5 illustrates four different evaluations of
as a function of the despread signal-to-interference ratio,
which is the signal-to-interference ratio after taking into account the beneficial
results from the despreading in the receiver. The accurate approximation is
computed from (6-57) and (6-60), the upper bound from (6-64) and (6-62), the
lower bound from (6-70) and (6-62), and the simple approximation from (6-72)
and (6-62). The figure shows that the accurate approximation moves from the
lower bound toward the simple approximation as the symbol error probability
decreases. For the simple approximation is less than 0.3 dB in error
relative to the accurate approximation.

Figure 6.6 compares the symbol error probabilities for K = 2 to K = 4,
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Figure 6.6: Symbol error probability of direct-sequence system with PSK in
presence of K – 1 equal-power multiple-access interference signals and

rectangular chip waveforms and The simple approximation is
used for and the abscissa shows GS/I where I is the interference power of
each equal-power interfering signal. The figure shows that increases with K,
but the shift in is mitigated somewhat because the interference signals tend
to partially cancel each other.

The preceding bounding methods can be extended to the bounds on
by observing that and setting during the successive
applications of Jensen’s inequality, which is applicable if (6-69) is satisfied.
After evaluating (6-65), we obtain

where

A simple approximation is provided by
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Figure 6.7: Symbol error probability of direct-sequence system with PSK in
presence of 3 equal-power multiple-access interference signals and

If is specified, then the error in the required caused by using (6-76)
instead of (6-60) is bounded by 10 in decibels. Thus, the error is
bounded by 2.39 dB for rectangular chip waveforms and 2.66 dB for sinusoidal
ones.

The lower bound in (6-74) gives the same result as that often called the
standard Gaussian approximation, in which in (6-5) is assumed to be ap-
proximately Gaussian, each in (6-50) is assumed to be uniformly distributed
over and each is assumed to be uniformly distributed over
This approximation, gives an optimistic result for that can be as much as
4.77 dB in error for rectangular chip waveforms according to (6-74). The sub-
stantial improvement in accuracy provided by (6-72) or (6-57) is due to the
application of the Gaussian approximation only after conditioning on given
values of and The accurate approximation given by (6-57) is a version of
what is often called the improved Gaussian approximation.

Figure 6.7 illustrates the symbol error probability for 3 interferers, each
with power I, rectangular chip waveforms, and as a function of
GS/I. The graphs show the standard Gaussian approximation of (6-74), the
simple approximation of (6-76), and the upper and lower bounds given by (6-64),
(6-70), and (6-62). The large error in the standard Gaussian approximation is
evident. The simple approximation is reasonably accurate if

For synchronous networks, (6-57) and (6-58) can be simplified because the
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are all zero. For either rectangular or sinusoidal chip waveforms, we obtain

where

A comparison with (6-64) and (6-65) indicates that for a synchronous net-
work equals or exceeds for a similar asynchronous network when random
spreading sequences are used. This phenomenon is due to the increased band-
width of a despread asynchronous interference signal, which allows increased
filtering in the receiver.

The accurate approximation of (6-57) follows from the standard central limit
theorem, which is justified by the lemma. This lemma depends on the restriction
of the chip waveform to the interval If the chip waveform extends beyond
this interval but is time-limited, as is necessary for implementation with digi-
tal hardware, then an extension of the central limit theorem for
sequences can be used to derive an improved Gaussian approximation [7]. Alter-
natives to the analysis in this section and the next one abound in the literature,
but they are not as amenable to comparisons among systems.

Quadriphase Direct-Sequence Systems

Consider a network of quadriphase direct-sequence systems, each of which uses
dual QPSK and random spreading sequences. Each direct-sequence signal is
given by (2-123) with The multiple-access interference is

where and both have the form of (6-3) and incorporate the data
modulation. The decision variables are given by (2-124) and (2-126) with

A straightforward calculation using (6-6) indicates that

The statistical independence of the two sequences, the preceding lemma, and
analogous results for in (2-127) yield the variances of the interference terms
of the decision variables:
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The noise variances and the means are given by (2-130) and (2-129). Since all
variances and means are independent of the Gaussian approximation yields
a that is independent of

where

Since a similar analysis for direct-sequence systems with balanced QPSK yields
(6-83) again, both quadriphase systems perform equally well against multiple-
access interference.

Application of the previous bounding and approximation methods to (10-79)
yields

where the total interference power is defined by (6-75). A sufficient condition
for the validity of the lower bound is

A simple approximation that limits the error in the required for a specified
to 10 is

This approximation introduces errors bounded by 0.88 dB and 1.16 dB for
rectangular and sinusoidal chip waveforms, respectively. In (6-84) and (6-86),
only the total interference power is relevant, not how it is distributed among
the individual interference signals.

Figure 6.8 illustrates for a quadriphase direct-sequence system in the
presence of 3 interferers, each with power I, rectangular chip waveforms, and

The graphs represent the accurate approximation of (6-82), the
simple approximation of (6-86), and the bounds of (6-84) as functions of GS/I.
A comparison of Figures 6.8 and 6.7 indicates the advantage of a quadriphase
system.

For synchronous networks with either rectangular or sinusoidal chip wave-
forms, we set the equal to zero in (6-82) and obtain
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Figure 6.8: Symbol error probability of quadriphase direct-sequence system in
presence of 3 equal-power multiple-access interference signals and

Since this equation coincides with the upper bound in (6-84), we conclude that
asynchronous networks accommodate more multiple-access interference than
similar synchronous networks using quadriphase direct-sequence signals with
random spreading sequences. To compare asynchronous quadriphase direct-
sequence systems with asynchronous systems using binary PSK, we find a lower
bound on for direct-sequence systems with PSK. Substituting (6-57) into (6-
60) and applying Jensen’s inequality successively to the integrations over

K – 1, we find that a lower bound on is given by the right-hand side
of (6-82) if (6-85) is satisfied. This result implies that asynchronous quadriphase
direct-sequence systems are more resistant to multiple-access interference than
asynchronous direct-sequence systems with binary PSK.

The equations for allow the evaluation of the information-bit error prob-
ability for error-correcting codes with hard-decision decoders. To facilitate
the analysis of soft-decision decoding, two assumptions are necessary. Assume
that K is large enough that the multiple-access interference after despreading is
approximately Guassian rather than conditionally Gaussian. Since the equiv-
alent noise is a zero-mean process, the equivalent-noise power spectral density

can be obtained by averaging over the distributions of and
For asynchronous communications, (6-83) and (6-87) yield

This equation is also valid for synchronous communications if we set
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Thus, for a binary convolutional code with rate constraint length K, and
minimum free distance is upper-bounded by (1-112) with

The network capacity is the number of equal-power users in a network of
identical systems that can be accommodated while achieving a specified
For equal-power users, Let denote the value of
necessary for a specific error-control code to achieve the specified Equation
(6-88) implies that the network capacity is

where is the integer part of  is the processing gain,
and the requirement is necessary to ensure that the specified can be
achieved for some value of K. Since in general, the factor reflects
the increased gain due to the random distributions of interference phases and
delays. If they are not random but then and the number of
users accommodated is reduced. Thus, synchronous CDMA systems require
orthogonal spreading sequences.

As an example, consider a network with systems that resemble those used
for the synchronous downlinks of an IS-95 CDMA network. We assume the
absence of fading and calculate the network capacity for power-controlled users
within a single cell. The data modulation is balanced QPSK. G = 64, and

The error-control code is a rate-1/2 binary convolutional code with
constraint length 9. If or better is desired, the performance curve
of Figure 1.8 for the convolutional code indicates that and
thus is required. Equation (6-90) then indicates that the network
capacity is K = 51 if dB and K = 57 if

6.3 Wideband Direct-Sequence Systems

A direct-sequence system is called wideband if it uses a spectral band with a
bandwidth that exceeds the coherence bandwidth of a frequency-selective fading
channel. The two most commonly proposed types of wideband direct-sequence
systems are single-carrier and multicarrier systems. A single-carrier system
uses a single carrier frequency to transmit signals. A multicarrier system parti-
tions the available spectral band among multiple direct-sequence signals, each
of which has a distinct carrier frequency. The main attractions of the multi-
carrier system are its potential ability to operate over disjoint, noncontiguous
spectral regions and its ability to avoid transmissions in spectral regions with
strong interference or where the multicarrier signal might interfere with other
signals. These features have counterparts in frequency-hopping systems.

A single-carrier system provides diversity by using a rake receiver that com-
bines several multipath signals. A multicarrier system provides diversity by
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the maximal-ratio combining of the parallel correlator outputs, each of which is
associated with a different carrier. Bit error probabilities are determined subse-
quently for ideal multicarrier and single-carrier systems with lossless diversity
combining in the presence of white Gaussian noise and Rayleigh fading.

Multicarrier Direct-Sequence System

A typical multicarrier system divides a spectral band of bandwidth W into L
frequency channels or subchannels, each of bandwidth W/L. The carrier asso-
ciated with a subchannel is called a subcarrier. In one type of system, which is
diagrammed in Figure 6.9, this bandwidth is approximately equal to the coher-
ence bandwidth because a larger one would allow frequency-selective fading in
each subchannel, while a smaller one would allow correlated fading among the
subcarriers [8], [9]. It is assumed that the spacing between adjacent subcarriers
is where Equation (5-57) indicates that the coherence bandwidth
is approximately where is the delay spread. Thus, is re-
quired to ensure that each subcarrier signal is subject to independent fading.
If the bandwidth of a subcarrier signal is on the order of then
is required for the subcarrier signals to experience no significant frequency se-
lectivity. The two preceding inequalities imply that is required. If
the chip waveforms are rectangular and or then the subcarrier
frequencies are orthogonal, which can be verified by a calculation similar to that
leading to (3-59). Although the orthogonality prevents self-interference among
the subcarrier signals, its effectiveness is reduced by multipath components and
Doppler shifts. One may use bandlimited subcarrier signals to minimize the
self-interference without requiring orthogonality. If and the chip wave-
forms are rectangular, then the spectral mainlobes of the subcarrier signals have
no overlap. Furthermore, a spacing of limits the significant multiple-access
interference in a subchannel to subcarrier signals from other users that have the
same subcarrier frequency.

In the transmitter, the product of the data modulation and
the spreading waveform simultaneously modulates L subcarriers, each of
which has its frequency in the center of one of the L spectral regions, as illus-
trated in Figure 6.9(a). The receiver has L parallel demodulators, one for each
subcarrier, the outputs of which are suitably combined, as indicated in Figure
6.9(b). The total signal power is divided equally among the L subcarriers. The
chip rate and, hence, the processing gain for each subcarrier of a multicarrier
direct-sequence system is reduced by the factor L. However, if strong interfer-
ence exists in a subchannel, the gain used in maximal-ratio combining is small.
Alternatively, the associated subcarrier can be omitted and the saved power
redistributed among the remaining subcarriers. Error-control codes and inter-
leaving can be used to provide both time diversity and coding gain. Since the
spectral regions are defined so that the fading in each of them is independent and
frequency nonselective, rake combining is not possible, but the frequency diver-
sity provided by the regions can be exploited in a diversity combiner. Whether
or not the diversity gain exceeds that of a single-carrier system using the entire
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Figure 6.9: Multicarrier direct-sequence system: (a) transmitter and (b) re-
ceiver.

spectral band and rake combining depends on the multipath intensity profile of
the single-carrier system.

Consider a multicarrier system that uses binary PSK to modulate each sub-
carrier. Each received signal copy with a different subcarrier frequency expe-
riences independent Rayleigh fading that is constant during a symbol interval.
The received signal for a symbol in branch is

where or –1 depending on the transmitted symbol, each is a fading
amplitude, each is a phase shift, is the subcarrier frequency, is the
symbol duration, and is the noise. Assume that the received interference
plus noise in each diversity branch can be modeled as independent, zero-mean,
white Gaussian noise with the same equivalent two-sided power spectral density
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Ideal lossless power splitting among the L subcarriers is assumed. Let
denote the received symbol energy per subcarrier in the absence

of fading, where is the total received energy per symbol. Assume that the
spectral division among the subcarriers prevents significant interference among
them in the receiver. For coherent detection and maximal-ratio combining, the
analysis of Section 5.4 is directly applicable. The conditional bit or symbol
error probability given the is

where

The symbol error probability is determined by averaging over the dis-
tribution of which depends on the and embodies the statistics of the
fading channel. If each of the is independent with the identical Rayleigh
distribution and then the average signal-to-noise ratio (SNR)
per branch is

As shown in Section 5.4, the symbol error probability for a single subcarrier is

The symbol error probability for L subcarriers is

This expression explicitly shows the change in the symbol error probability as
the number of diversity branches increases; it is valid for QPSK because the
latter can be transmitted as two independent binary PSK waveforms in phase
quadrature.

Figure 6.10 plots for multicarrier systems as a function of
the average symbol SNR. The diminishing returns as the diversity level L in-
creases is apparent. If the required bit error probability is or more, than
increasing L beyond L = 32 is not likely to be useful because of the hardware
requirements and the losses entailed in the power division in the transmitter.

To evaluate for a network of K multicarrier direct-sequence systems, we
assume that the mutual interference among the L subcarriers of a single signal is
negligible and that K is large enough that the multiple-access interference after
despreading is approximately Gaussian. It is assumed that only subcarriers at
the same frequency cause significant interference in a subchannel. For QPSK
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Figure 6.10: Symbol error probability for multicarrier systems with L carriers.

modulation, the power division among the subcarrier signals implies that (6-88)
must be replaced by

where is given by (6-68) for asynchronous communications and for syn-
chronous communications, and is the chip duration in each branch or sub-
channel of the multicarrier system. The division by L is due to the equipartition
of the interference power among the L subcarriers. Let
denote the overall processing gain of the system. For equal-power users subject
to the same fading statistics, (6-97) implies that the
network capacity is

where and is the required necessary for a specific
error-control code to achieve the specified

Single-Carrier Direct-Sequence System

Consider a direct-sequence signal that has a random spreading sequence and is
accompanied by multipath components in addition to the direct-path signal. If
the multipath components are delayed by more than one chip, then the inde-
pendence of the chips ensures that the multipath interference is suppressed by
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at least the processing gain. However, since multipath signals carry informa-
tion, they are a potential resource to be exploited rather than merely rejected.
A rake receiver (Section 5.5) provides path diversity by coherently combining
the resolvable multipath components present during frequency-selective fading,
which occurs when the chip rate of the spreading sequence exceeds the coherence
bandwidth.

Consider a multipath channel with frequency-selective fading slow enough
that its time variations are negligible over a signaling interval. When the data
modulation is binary PSK, only a single symbol waveform and its associated
decision variable are needed. Assume the presence of zero-mean, white Gaussian
noise with two-sided power spectral density As indicated in Section 5.5,
if then for a rake receiver with perfect tap weights, the conditional
bit or symbol error probability given the is provided by (6-92). However,
for a rake receiver, each of the is associated with a different multipath
component, and hence each has a different value in general. Since there
is only a single carrier, we may set in (6-93), which may be expressed as

The average SNR for a symbol in branch is

If each multipath component experiences independent Rayleigh fading so that
each of the is statistically independent, then the analysis of Section 5.5
gives the symbol error probability:

where

Since only white Gaussian noise is present, the processing gain of the system is
irrelevant under this model.

The processing of a multipath component requires channel estimation. When
a practical channel estimator is used, measurements indicate that only four or
fewer components are likely to have a sufficient signal-to-interference ratio to
be useful in the rake combining [10]. To assess the potential performance of the
rake receiver, it is assumed that the largest multipath component has
and that components are received and processed. The other three or
fewer minor multipath components have relative average symbol SNRs speci-
fied by the multipath intensity vector
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Figure 6.11: Symbol error probability for single-carrier systems and
multipath components with different multipath intensity vectors.

Figure 6.11 plots the symbol error probability as a function of
the average symbol SNR of the main component, for multipath intensity vec-
tors occurring in mobile CDMA networks. Typically, three significant multi-
path components are available. Expressing the components in decibels, the
multipath intensity vector (–4, –8, –12) dB represents the minor multipath in-
tensities typical of a rural environment. The vector (–2, –3, –6) dB represents
a typical urban environment. This figure and other numerical data establish
two basic features of single-carrier systems with rake receivers.

1. System performance improves as the total energy in the minor multipath
components increases.

2. When the total energy in the minor multipath components is fixed, the
system performance improves as the number of resolved multipath compo-
nents L increases and as the energy becomes uniformly distributed among
these components.

For QPSK modulation and multiple-access interference, is given by (6-
88). It follows that the system capacity is given by (6-90), where

and is the required necessary for a specific error-
control code to achieve the specified

A comparison of Figures 6.10 and 6.11 indicates that a multicarrier system
with diversity L = 32 outperforms single-carrier systems with diversity L = 4 if

is sufficiently large. However, this value of is much larger than is required



324 CHAPTER 6. CODE-DIVISION MULTIPLE ACCESS

in practical systems. To make a more realistic comparison, we assume that
an error-correcting code with ideal channel-symbol interleaving is used. For a
loosely packed, binary block code and hard-decision decoding with a bounded-
distance decoder, the information-bit error probability is (Chapter 1)

where is the code length, is the number of symbol errors that the decoder
can correct, and is the channel-symbol error probability. The signal energy
per channel symbol is where is the code rate, is the
number of information bits per codeword, and is the energy per information
bit. We may evaluate by using the expressions for with
where is the average bit SNR.

As an example, we assume that a BCH (63, 36) code with
and is used. Figure 6.12 plots for a multicarrier system with L = 32 and
single-carrier systems with and
which are typical for rural and urban environments, respectively. If
is required, then the multicarrier system is slightly advantageous in a rural
environment, but rake combining provides a roughly 1.9 dB advantage in an
urban environment characterized by For the multicarrier system,

and, hence, are required. Suppose that
and The chip waveform is rectangular so Then (6-98)
indicates that the network capacity is 35. For an urban single-carrier system,

and, hence, are required. Then (6-90) indicates that
the network capacity is 55, which illustrates the potential power of ideal rake
combining to overcome the detrimental effects of fading. A more powerful code,
such as a concatenated or turbo code would give rake combining a performance
advantage even in a rural environment.

The preceding results imply that in a benign environment, devoid of partial-
band interference, a multicarrier system suffers a potential performance loss
relative to the less costly single-carrier system. The underlying reason is that the
rake receiver of the single-carrier system harnesses energy that would otherwise
be unavailable. In contrast, the multicarrier receiver recovers energy that has
been redistributed among the L carriers but is available to the single-carrier
system even without rake combining. Despite its potential disadvantage in a
benign urban environment, a multicarrier system will often be preferable to a
single-carrier system because of its substantially superior performance against
partial-band interference [8], [9].

Multicarrier DS/CDMA System

Various multicarrier direct-sequence systems that accommodate multiple-access
interference have been proposed [11] for CDMA networks. The multicarrier
DS/CDMA system is a candidate for both the uplinks and downlinks of fourth-
generation cellular CDMA networks. One version of its transmitter is shown in
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Figure 6.12: Information-bit error probability for multicarrier system with
L = 32 and for single-carrier systems with typical rural and urban multipath
intensity vectors. Error-control code is BCH (63, 36).

Figure 6.13. This system uses a serial-to-parallel converter to convert a stream
of data symbols into multiple parallel substreams. Thus, the multicarrier mod-
ulation reduces the data-symbol rate and, hence, the multipath interference of
the direct-sequence signal in each subchannel. The receiver is similar in form to
that of Figure 6.9(b) except that the combiner is replaced by a parallel-to-serial
converter. If the subcarriers are separated by then the interchannel inter-
ference and multiple-access interference from subcarrier signals are minimized.
The efficient processing of orthogonal frequency-division multiplexing (OFDM)
may be implemented by sampling each subchannel signal after the spreading by

and then applying the set of L samples in parallel to an OFDM processor
[12]. The cost of this efficiency is a high peak-to-average power ratio for the
transmitted signal. In contrast to the system of Figure 6.12, the multicarrier
DS/CDMA system of Figure 6.13 cannot exploit frequency diversity because
each subcarrier is modulated by a different data symbol. However, the process-
ing gain of each subchannel signal is increased by the factor L, which can be
exploited in the suppression of multiple-access interference. Rake combining
might be possible in the subchannels if For synchronous communi-
cations, such as those transmitted by a base station in a cellular network, the
spreading sequences of the network users may be drawn from a set of orthogonal
Walsh sequences. For asynchronous communications, Gold or Kasami sequences
are preferable because of their superior cross-correlation characteristics.

Another multicarrier direct-sequence system applies the spread signal
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Figure 6.13: Multicarrier DS/CDMA transmitter.

to a serial-to-parallel converter, which produces G parallel data-modulated
chips, where G is the number of chips per data symbol. Each of these G chips
modulates a different subcarrier. Thus, the spreading occurs in the frequency
domain. This system provides the same degree of diversity gain as the system
of Figure 6.9, but the latter is less expensive if L < G and provides nearly the
same performance if

Frequency hopping may be added to almost any communication system to
strengthen it against interference or fading. Thus, the set of carriers used in a
multicarrier DS/CDMA system or the subcarriers of an OFDM system may be
hopped in a variety of ways[11].

6.4 Cellular Networks and Power Control

In a cellular network, a geographic region is partitioned into cells, as illustrated
in Figure 6.14. A base station that includes a transmitter and receiver is lo-
cated at the center of each cell. Ideally, the cells have equal hexagonal areas.
Each mobile (user or subscriber) in the network transmits omnidirectionally
and communicates with the base station from which it receives the largest av-
erage power. Typically, most of the mobiles in a cell communicate with the
base station at the center of the cell, and only a few communicate with more
distant ones. The base stations act as switching centers for the mobiles and
communicate among themselves by wirelines in most applications. Cellular net-
works with DS/CDMA allow universal frequency reuse in that the same carrier
frequency and spectral band is shared by all the cells. Distinctions among the
direct-sequence signals are possible because each signal is assigned a unique
spreading sequence.

Cells may be divided into sectors by using several directional sector antennas
or arrays at the base stations. Only mobiles in the directions covered by a sector
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Figure 6.14: Geometry of cellular network with base station at center of each
hexagon. Two concentric tiers of cells surrounding a central cell are shown.

antenna can cause multiple-access interference on the reverse link or uplink from
a mobile to its associated sector antenna. Only a sector antenna serving a cell
sector oriented toward a mobile can cause multiple-access interference on the
forward link or downlink from the mobile’s associated sector antenna to the
mobile. Thus, the numbers of interfering signals on both the uplink and the
downlink are reduced approximately by a factor equal to the number of sectors.

To facilitate the identification of a base station controlling communications
with a mobile, each spreading sequence for a downlink is formed as the product
or concatenation of two sequences often called the scrambling and channeliza-
tion codes. A scrambling code is a sequence that identifies a particular base
station when the code is acquired by mobiles associated with the base station
and its cell or sector. A long sequence is preferable to minimize the possibility
of a prolonged outage due to an unfavorable cross-correlation. If the set of
base stations use the Global Positioning System or some other common timing
source, then each scrambling code may be a known phase shift of a common
long pseudonoise sequence. If a common timing source is not used, then at the
cost of increased acquisition time or complexity, the scrambling codes may com-
prise a set of long Gold sequences that approximate random binary sequences.
A channelization code is designed to allow each mobile receiver to extract its
messages while blocking messages intended for other mobiles within the same
cell or sector. Walsh or other orthogonal sequences are suitable as channeliza-
tion codes for synchronous downlinks. For the uplinks, channelization codes are
not strictly necessary, and the scrambling codes that identify the mobiles may
be drawn from a set of long Gold sequences.

The principal difficulty of DS/CDMA is called the near-far problem. If all
mobiles transmit at the same power level, then the received power at a base
station is higher for transmitters near the receiving antenna. There is a near-far
problem because transmitters that are far from the receiving antenna may be
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at a substantial power disadvantage, and the spread-spectrum processing gain
may not be enough to allow satisfactory reception of their signals. A similar
problem may also result from large differences in received power levels due to
differences in the shadowing experienced by signals traversing different paths
or due to independent fading.

In cellular communication networks, the near-far problem is critical only
on the uplink because on the downlink, the base station transmits orthogonal
signals synchronously to each mobile associated with it. For cellular networks,
the usual solution to the near-far problem of uplinks is power control, whereby
all mobiles regulate their power levels. By this means, power control potentially
ensures that the power arriving at a common receiving antenna is almost the
same for all transmitters. Since solving the near-far problem is essential to the
viability of a DS/CDMA network, the accuracy of the power control is a crucial
issue.

In networks with peer-to-peer communications, there is no cellular or hier-
archical structure. Communications between two mobiles are either direct or
are relayed by other mobiles. Since there is no feasible method of power control
to prevent the near-far problem, DS/CDMA systems are not as attractive an
option as FH/CDMA systems in these networks.

An open-loop method of power control in a cellular network causes a mobile
to adjust its transmitted power to be inversely proportional to the received
power of a pilot signal transmitted by the base station. An open-loop method is
used to initiate power control, but its subsequent effectiveness requires that the
propagation losses on the forward and reverse links be nearly the same. Whether
they are or not depends on the duplexing method used to allow simultaneous or
nearly simultaneous transmissions on both links. Frequency-division duplexing
assigns different frequencies to an uplink and its corresponding downlink. Time-
division duplexing assigns closely spaced but distinct time slots to the two links.
When frequency-division duplexing is used, as in the IS-95 and Global System
for Mobile (GSM) standards, the frequency separation is generally wide enough
that the channel transfer functions of the uplink and downlink are different.
This lack of link reciprocity implies that power measurements over the downlink
do not provide reliable information for subsequent uplink transmissions. When
time-division duplexing is used, the received local-mean power levels for the
uplink and the downlink will usually be nearly equal when the transmitted
powers are the same, but the Rayleigh fading may subvert link reciprocity. For
these reasons, a closed-loop method of power control, which is more flexible
than an open-loop method, is desirable. A closed-loop method requires the
base station to transmit power-control information to each mobile based on the
power level received from the mobile or the signal-to-interference ratio.

When closed-loop power control is used, each base station attempts to ei-
ther directly or indirectly track the received power of a desired signal from
a mobile and dynamically transmit a power-control signal [13], [14]. The ef-
fect of increasing the carrier frequency or the mobile speeds is to increase the
fading rate. As the fading rate increases, the tracking ability and, hence, the
power-control accuracy decline. This problem is often dismissed by invoking the
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putative trade-off between the power control and the bit or symbol interleaving.
It is asserted that the large fade durations during slow fading enable effective
power control, whereas the imperfect power control in the presence of fast fad-
ing is compensated by the increased time diversity provided by the interleaving
and channel coding. However, this argument ignores both the potential sever-
ity of the near-far problem and the limits of compensation as the fading rate
increases. If the power control breaks down completely, then close interfering
mobiles can cause frequent error bursts of duration long enough to overwhelm
the ability of the deinterleaver to disperse the errors so that the decoder can
eliminate them. Thus, some degree of power control must be maintained as the
vehicle speeds or the carrier frequency increases. The degree required when the
interleaving is perfect is quantified subsequently.

The following performance analysis of the uplink [15] begins with the deriva-
tion of the intercell interference factor, which is the ratio of the intercell interfer-
ence power to the intracell interference power. The intercell interference arrives
from mobiles associated with different base stations than the one receiving a
desired signal. The intracell interference arrives from mobiles that are associ-
ated with the same base station receiving a desired signal. The performance is
evaluated using two different criteria: the outage and the bit error rate. The
outage criterion has the advantage that it simplifies the analysis and does not
require specification of the data modulation or channel coding. The bit-error-
rate criterion has the advantage that the impact of the channel coding can be
calculated. For both criteria, the fading is flat and no explicit diversity or rake
combining is assumed. Since the interference signals arrive asynchronously, they
cannot be suppressed by using orthogonal spreading sequences.

Intercell Interference of Uplink

To account for the fading and instantaneous power control in a mathematically
tractable way, the shadowing and fading factors in (5-4) are approximated [16]
by a lognormal random variable. Thus, at a particular time it is assumed that
the equivalent shadowing factor implicitly defined by

has a probability density function that is approximately Gaussian. This equa-
tion, the statistical independence of and and the fact that imply
that

where To evaluate these equations when has the
density function of (5-29), we express the expectations as integrals, change the
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integration variables, and apply the identities [17]

where is the psi function given by

when  is a positive integer, and is the Riemann zeta function given by

Let denote the variance of Since the variance of we find
that

The impact of the fading declines with increasing For Rayleigh fading,
= 1 and so and For
which approximates Ricean fading with Rice factor and

where is the distance to base station is the equivalent shadowing factor,
is the area-mean power at and it is assumed that the attenuation

power-law is the same throughout the network. If the power control exerted by

Consider a cellular network in which each base station is located at the center
of a hexagonal area, as illustrated in Figure 6.14. To analyze uplink interference,
it is assumed that the desired signal arrives at base station 0, while the other
base stations are labeled The directions covered by one of three
sectors associated with base station 0 are indicated in the figure. Each mobile in
the network transmits omnidirectionally and is associated with the base station
from which it receives the largest average short-term or instantaneous power.
This base station establishes the uplink power control of the mobile. If a mobile
is associated with base station then (5-1), (5-4), and (6-105) indicate that the
instantaneous power received by base station is
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base station ensures that it receives unit instantaneous power from each mobile
associated with it, then Consequently, and

Assuming a common fading model for all of the (6-106) implies that
they all have the same mean value. The form of (6-115) then indicates that
this common mean value is irrelevant to the statistics of and hence can
be ignored without penalty in the subsequent statistical analysis of The
simplifying approximation is made that the base station with which a mobile is
associated receives more instantaneous power than any other station, and hence

This inequality is exact if the propagation losses on the uplink and
downlink are the same.

The probability distribution function of the interference power at base
station 0 given that the mobile producing the interference is associated with
base station is

where

and P[A] denotes the probability of the event A [18]. Thus, if
0, and if Let

where this probability is conditioned on the equivalent shadowing factor
for the controlling base station, and the polar coordinates of the mobile
relative to base station It is assumed that each of the is statistically inde-
pendent with the common variance Therefore, given and
are statistically independent. Since each of the has a Gaussian probability
density function, (6-115) implies that for

where and is a function of and the
location of base station

The probability and hence the distribution can be determined
by evaluating the expected value of (6-119) with respect to the random variables

and If a mobile is associated with base station then its location is
assumed to be uniformly distributed within a circle of radius surrounding
the base station. Therefore,
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which determines the distribution function in (6-116).
Let denote the total intercell interference relative to the unit desired-

signal power that each base station attempts to maintain by power control. Let
K denote the number of active mobiles associated with a base station or sector
antenna, which may be a random variable because of voice-activity detection
or the movement of mobiles among the cells. Since and are the
same for all mobiles associated with base station a straightforward calculation
yields

In general, and decrease as the attenuation power law increases.
The intercell interference factor, is the ratio of the average
intercell interference power to the average intracell interference power. Table
6.1, calculated in [18], lists versus when cells in four concentric
tiers surrounding a central cell, is five times the distance from a base station
to the corner of its surrounding hexagonal cell, and The dependence of

on the specific fading model is exerted through (6-113), which relates to
and Table 6.1 also lists the variance factor assuming

that var[K] = 0.
The results in Table 6.1 depend on the pessimistic assumption that the

equivalent shadowing factors from a mobile to two different base stations are
independent random variables. Suppose, instead, that each factor is the sum of
a common component and an equal-power independent component that depends
on the receiving base station. Then (6-115) implies that the common component
cancels. As a result, in determining from Table 6.1, the effective value of
is reduced by a factor of relative to what it would be without the common
component.
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Since for Rayleigh fading and Table 6.1 indicates that
increases slowly with the effect of the fading is unimportant or negligible
if which is usually satisfied in practical networks. If it is assumed,
as is tacitly done by many authors, that the power control is based on a long-
term-average power estimate that averages out the fading, then the preceding
equations and Table 6.1 are valid with

Outage Analysis

For a DS/CDMA system, it is assumed that the total power of the multiple-
access interference after the despreading is approximately uniformly distributed
over its bandwidth, which is approximately equal to For instantaneous
power control, the instantaneous SINR is defined to be the ratio
of the received energy per symbol to the equivalent power spectral density
of the interference plus noise. An outage is said to occur if the instantaneous
SINR is less than a specified threshold Z, which may be adjusted to account for
any diversity or rake combining. In this section, the interference is assumed to
arise from K – 1 other active mobiles in a single cell or sector. Let

denote the received energy in a symbol due to interference
signal with power These definitions imply that an outage occurs if

where is the processing gain. Let denote the common desired
energy per symbol for all the signals associated with the base station of a
single cell sector. When instantaneous power control is used, and

K – 1, where and are random variables that
account for imperfections in the power control. Substitution into (6-123) yields
the outage condition

where is the energy-to-noise density ratio of the desired signal
when the power control is perfect, and we define

By analogy with the lognormal spatial variation of the local-mean power, each
of the is modeled as an independent lognormal random variable. Therefore,

where each of the is a zero-mean Gaussian random variable with common
variance The moments of can be derived by direct integration or from
the moment-generating function of We obtain
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If K is a constant, then the mean and the variance of X in (6-125) are

The random variable X is the sum of K – 1 lognormally distributed random
variables. Since the distribution of X cannot be compactly expressed in closed
form when K > 3, two approximate methods are adopted. The first method
is based on the central limit theorem, and the second method is based on
the assumption that is small. Since X is the sum of K – 1 independent,
identically distributed random variables, each with a finite mean and variance,
the central limit theorem implies that the probability distribution function of
X is approximately Gaussian when K is sufficiently large. Consequently, given
the values of K and the conditional probability of outage may be calculated
from (6-124). Using (6-126) and integrating over the Gaussian density function
of we then obtain the conditional probability of outage given the value of
K >> 1:

As and hence approaches a step function.
In the second approximate method, it is assumed that is sufficiently small

and K is sufficiently large that From (6-128), it is observed that a
sufficient condition for this assumption is that

The assumption implies that X is well approximated by the constant given by
(6-128). Since the only remaining random variable in (6-124) is
it follows that

Variations in the Number of Active Mobiles

In the derivations of (6-129) and (6-131), the number of mobiles actively trans-
mitting, K, is held constant. However, it is appropriate to model K as a random
variable because of the movement of mobiles into and out of each sector and
the changing of the cell or sector antenna with which a mobile communicates.
Furthermore, a potentially active mobile may not be transmitting; for voice
communications with voice-activity detection, energy transmission typically is
necessary only roughly 40% of the time. As is shown below, a discrete random
variable K with a Poisson distribution incorporates both of these effects.
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To simplify the analysis, it is assumed that the average number of mobiles
associated with each cell or sector antenna is the same and that the location of
a mobile is uniformly distributed throughout a region. Let denote the prob-
ability that a potentially transmitting mobile is actively transmitting. Then
the probability that an active mobile is associated with a particular cell or sec-
tor antenna is where is the number of mobiles in the region and
is the average number of mobiles per sector. If the mobiles are indepen-
dently located in the region, then the probability of active mobiles being
associated with a sector antenna is given by the binomial distribution

where is assumed to be a constant. This equation can be expressed as

As the initial fraction and
Therefore, approaches

which is the Poisson distribution function. Since the desired mobile is assumed
to be present, it is necessary to calculate the conditional probability that
given that From the definition of a conditional probability and (6-134),
it follows that this probability is

and Using this equation, the probability of outage is

where is given by (6-129) or (6-131).
The intercell interference from mobiles associated with other base stations

introduces an additional average power equal to into a given base
station, where is the intercell interference factor. Accordingly, the impact of
the intercell interference is modeled as equivalent to an average of additional
mobiles in a sector [19]. When intercell interference is taken into account, the
equations of Section 3.7 for a single cell or sector are modified. The parameter
is replaced by and becomes the equivalent number of mobiles defined
as
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Figure 6.15: Probability of no outage for instantaneous power control, G/Z =
40, and

Figure 6.15 illustrates the probability of no outage, as a function
of for various values of Both approximate models, which give (6-129) and
(6-131), are used in (6-136) to calculate the graphs. Equations (6-129) and (6-
131) indicate that the outage probability depends on the ratios G/Z and
rather than on G, Z, and separately. The parameter values for Figure 6.15
are G/Z = 40 and which could correspond to Z = 7 dB, G = 23
dB, and The closeness of the results for the two models indicates
that when both models give accurate outage probabilities and the
effect of power-control errors in the interference signals is unimportant. As an
example of the application of the figure, suppose that the attenuation power
law is and is desired. Table
6.1 gives The figure indicates that is needed. If due
to voice-activity detection, the average number of mobiles per sector that can
be accommodated is For data communications, the network capacity
is lower. For example, if then the average number of mobiles per sector
that can be accommodated is 14.1.

Local-Mean Power Control

When the instantaneous signal power cannot be tracked because of the fast
multipath fading, one might consider measuring the local-mean power, which
is a long-term-average power obtained by averaging out the fading component.
This measurement enables the system to implement local-mean power control.
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Two different analyses of the effects of local-mean power control are presented.
In the first analysis, which explores the potential effectiveness of local-mean

power control, all received signals experience Rayleigh fading and the local-
mean power control is perfect. Therefore, the received energy levels are propor-
tional to the squares of Rayleigh-distributed random variables and, hence, are
exponentially distributed, as shown in Appendix D.4. Thus, and

where each is an independent random
variable with the exponential probability density function:

and is the desired value of the average energy per symbol after averaging
over the fading. The probability distribution function of the sum of K – 1
independent random variables, each with the exponential density of (6-138), is
given by (D-50). Therefore, X in (6-125) has the distribution

Conditioning on the value of using (6-139) to evaluate the probability of the
outage condition (6-124), and then removing the conditioning by using (6-138)
yields

where

Replacing by its binomial expansion, we obtain a double summation of
integrals that can be evaluated using the gamma function defined by (D-12).
After simplification, we obtain

Interchanging the two sums and changing their limits accordingly, the inner
sum is over a geometric series. Evaluating it, we obtain the final result:

The probability of outage is determined by substitution into (6-136). When
only the term in (6-143) is nonzero. Substitution into (6-136)

and evaluation of the sum yields
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Figure 6.16: Probability of no outage for perfect local-mean power control,
G/Z = 40, and

For perfect local-mean power control and Rayleigh fading, (6-138) gives
and Therefore, a sufficient condition for is

that If this condition is satisfied, then X is well approximated
by which is equivalent to ignoring the fading of the multiple-
access interference signals. With this approximation, the only remaining ran-
dom variable in (6-124) is exponentially distributed, and hence the conditional
probability of outage given K is

Substituting this equation into (6-136) and evaluating the sum, we obtain the
approximation

Figure 6.16 illustrates the probability of no outage as a function of for G/Z
= 40 and two values of using either the approximation(6-146) or the more
precise (6-144), (6-143), and (6-136). It is observed that neglecting the fading
of the interference signals and using the approximation makes little difference in
the results. The effect of is considerable. A comparison of Figures
6.15 and 6.14 indicates that when Rayleigh fading occurs, even perfect local-
mean power control is not as useful as imperfect instantaneous power control
unless is very large.
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Since accurate power measurements require a certain amount of time, whether
a power-control scheme is instantaneous, local mean, or something intermedi-
ate depends on the fading rate. To reduce the fading rate so that the power
control is instantaneous and accurate, one might minimize the carrier frequency
or limit the size of cells if these options are available.

The second analysis of the effects of local-mean power control uses the pre-
ceding results to develop a simple approximation to alternative performance
calculations [19], [20]. This analysis has the advantages that the fading statis-
tics do not have to be explicitly defined and the effect of imperfect local-mean
power control is easily calculated. Let denote the local-mean energy per
symbol, which is defined as the average energy per symbol after averaging over
the fading. Similarly, let denote the total local-mean interference power in
the receiver, and let denote the local-mean received energy per symbol due
to interference signal The local-mean SINR is defined to be
For this analysis, a local-mean outage is said to occur if the local-mean SINR
is less than a specified threshold which may be adjusted to account for the
fading statistics and any diversity or rake combining. When the local-mean
power control is imperfect, and
where and are lognormally distributed random variables with the common
variance A derivation similar to that leading to (6-131) indicates that if
(6-130) is satisfied, then

and is calculated by using (6-136) and (6-137). The intercell interference
factor can be determined by setting since the fading statistics do not
affect the local-mean SINR. For adequate network performance in practical ap-
plications, must be set much higher than the threshold Z in (6-131) because
the local-mean SINR changes much more slowly than the instantaneous SINR.

The following example is used to compare the results of evaluating (6-136),
(6-137), and (6-147) with the results obtained in a far more elaborate analysis
[20]. Consider a cellular network with three sectors,
and due to the voice activity. Table 6.1 gives A spectral
band of bandwidth W = 1.25 MHz is occupied by the DS/CDMA signals. The
symbol rate is so that the processing gain is G = 156.5. The
local-mean SNR before the despreading is –1 dB and                     after the
despreading. Figure 6.17 shows the local-mean outage probability versus the
average number of mobiles per cell, which is triple the average number of
mobiles per sector. The results of [20] for outage probabilities of
and are indicated by the open circles. The proximity of these points to the
graphs indicates that the simple equations (6-136), (6-137), and (6-147) closely
approximate the local-mean outage probability.
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Figure 6.17: Local-mean outage probability for
G = 156.5, and with Other theoretical results
are indicated by the open circles.

Bit-Error-Probability Analysis

Uplink capacity is the number of mobiles per cell that can be accommodated
over the uplink at a specified information-bit error rate. Assuming a conven-
tional correlation receiver and typical conditions for cellular communications,
the subsequent results indicate that when imperfect power control causes the
standard deviation of the received power from each mobile to increase beyond
2 dB, the uplink capacity rapidly collapses. When the instantaneous signal
level cannot be tracked, one might consider measuring the local-mean power.
Accurate local-mean power control eliminates the near-far problem and shad-
owing effects, but not the effects of the fading. In the subsequent analysis, it is
confirmed that tracking the local-mean power is less useful than attempting to
track the instantaneous signal level even if the latter results in large errors.

Consider a CDMA cell or sector with K active mobiles. The direct-sequence
signals use QPSK modulation. Equation (6-86) indicates that the conditional
symbol error probability given and is approximately given by

It is assumed that the distribution of and and the values of and
are such that (6-85), which is used in the derivation of (6-86), is satisfied
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with high probability in the subsequent analysis. We consider three models
for power control: perfect instantaneous power control (perfect ipc), imperfect
instantaneous power control (imperfect ipc) with lognormally distributed errors,
and perfect local-mean power control (perfect lmpc).

If the power control is instantaneous and perfect, then
and Equation (6-148) implies that the

conditional symbol error probability given K is

where is the energy-to-noise-density ratio when the power control
is perfect. If the power control is imperfect with lognormally distributed errors,
then

and (6-125) to (6-128) are applicable. If (6-130) is satisfied, then
and X is well-approximated by Since and has a Gaussian
density, (6-148) and an integration over this density yield

Suppose that instead of the instantaneous signal power, the local-mean
power averaged over the fast fading is tracked. If this tracking provides perfect
power control of the local-mean power at a specific level, then a received signal
still exhibits fast fading relative to this level. If the fast fading has a Rayleigh
distribution but the fading level is constant over a symbol interval, then the
received energy per symbol is where has the exponential prob-
ability density function given by (6-138). Therefore, (6-148) implies that the
conditional symbol error probability given is

where the integral is evaluated in the same way as (5-125). The total interfer-
ence energy is given by (6-150) and (6-125), where each is an independent,
exponentially distributed random variable with mean equal to unity. There-
fore, has a gamma probability density function given by (D-49) with
N = K – 1, and for _ the conditional symbol error probability given K is



342 CHAPTER 6. CODE-DIVISION MULTIPLE ACCESS

Perfect symbol interleaving is defined as interleaving that causes independent
symbol errors in a codeword. Assuming that fast fading enables perfect sym-
bol interleaving, the information-bit error probability for hard-decision
decoding can be calculated by substituting (6-149), (6-151), or (6-153) into (1-
25), (1-26), and (1-27) or into (6-104)for a loosely packed binary code. If is
the code rate of a binary code and is the energy per bit that is available
when the channel symbols are uncoded, then in (6-149), (6-151),
and (6-153). As was done previously, the impact of the intercell interference is
modeled by replacing K with in the preceding equations, where is
obtained from Table 6.1. Averaging over K by using (6-135), we obtain

where the equivalent number of mobiles is given by (6-137).
Suppose that the fading is slow enough that the interleaving is ineffective

and, hence, the error in the instantaneous power control is fixed over a codeword
duration. Then an approximation similar to that preceding (6-151) implies that
the information-bit error probability for hard-decision decoding of a block code
given K is

where is given by (6-104) with replaced by

Equations (6-154) to (6-156) give the information-bit error probability for slow
fading.

Graphs of the information-bit error probability versus for instantaneous
power control, G = 128, a rectangular chip waveform with
and various values of in decibels are illustrated in Figure 6.18. The block
code is the binary BCH (63,30) code, for which and Equations
(6-155) and (6-156) are used for slow fading, and (6-149), (6-151), and (6-
104) are used for fast fading. When the fading is slow and the interleaving is
ineffective, the coding is, as expected, less effective than when the fading is fast
and the interleaving is perfect, provided that remains the same. However,

increases with the fading rate, as shown subsequently. The figure indicates
that when there is a severe uplink capacity loss for slow fading
and a substantial one for fast fading. The results for other block codes are
qualitatively similar.

The use of spatial diversity or, in the presence of frequency-selective fading,
a rake receiver will improve the performance of a DS/CDMA system during
both slow and fast fading, but the improvement is much greater when the fad-
ing is slow. As the fading rate increases, the accuracy of the estimation of
the channel parameters used in the rake or diversity combiner becomes more
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Figure 6.18: Information-bit error probability for instantaneous power control
and perfect local-mean power control, G = 128, and the BCH
(63,30) code with various values of in decibels.

difficult. When the channel-parameter estimation errors are too large to be
accommodated, the coherent maximal-ratio combiner must be replaced by the
suboptimal noncoherent equal-gain combiner, which does not require the esti-
mation of channel parameters.

In Figure 6.18, the information-bit error probability is depicted for perfect
local-mean power control with the same parameter values and coding as for
instantaneous power control. It is assumed that fast fading permits perfect
interleaving so that (6-153) and (6-104) are applicable. The figure confirms
that tracking of the local-mean power level is an inferior strategy for obtaining
a large capacity compared with tracking of the instantaneous power level unless
the inaccuracy of the latter is substantial. Another problem with local-mean
power control is that it requires time that may be unavailable for sporadic data.

Apart from power control, instantaneous power measurements can be used
to facilitate adaptive coding or adaptive transmit diversity. Both of these tech-
niques require timely information about the impact of the fading, and this
information is inherent in the instantaneous power measurements.

Impact of Doppler Spread on Power-Control Accuracy

When the received instantaneous power of the desired signal from a mobile is
tracked, there are four principal error components. They are the quantization
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error due to the stepping of the transmitted power level, the error introduced
in the decoding of the power-control information at the mobile, the error in the
power measurement at the base station, and the error caused by the processing
and propagation delay. Let and denote the standard deviations
of these errors, respectively, expressed in decibels relative to the received power.
Usually, and are much larger than and [13]. The processing and
propagation delay is a source of error because the multipath propagation con-
ditions change during the execution of the closed-loop power-control algorithm.

Assuming that the error sources are independent, the variance of the power-
control error can be decomposed as

If is to be less than 2 dB and is typically more than 1.5 dB [13], then
even if and are small, is required. Let denote the maximum
speed of a mobile in the network, the carrier frequency of its direct-sequence
transmitted signal, and the speed of an electromagnetic wave. It is assumed
that this signal has a bandwidth that is only a few percent of so that the
effect of the bandwidth is negligible. The maximum Doppler shift or Doppler
spread is

which is proportional to the fading rate. To obtain requires
nearly constant values of the channel attenuation during the processing and
propagation delay. Thus, this delay must be much less than the coherence time,
which is approximately equal to as indicated in (5-40). Examination of
attenuation graphs for representative multipath scenarios indicates that this
delay must be less than where or less if is to be
attained. The propagation delay for closed-loop power control is where

is the distance between the mobile and the base station. Therefore, the
processing delay must satisfy

Since must be positive, this inequality and (6-158) imply that
is only possible if Thus, if the carrier frequency or maximum
vehicle speed is too high, then the propagation delay alone makes it impossible
for the system to attain the required throughout the network. If

and then (6-159) and (6-158) give
The IS-95 system, which must accommodate similar parameter

values, uses
Let denote the measured power level of a received signal in decibels;

thus, is an estimate of where is the average received signal
power from a mobile and the logarithm is to the base 10. Let denote the
variance of an estimate of the natural logarithm of It follows that the
variance of is
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It is assumed that power variations in a received signal at the base station
are negligible during the measurement interval which is a large component
of the processing delay Errors in the power measurement occur because
of the presence of multiple-access interference and white Gaussian noise. A
lower bound on can be determined by assuming that the power control
is effective enough that the received powers from the mobiles in the cell or
sector are approximately equal. The multiple-access interference is modeled as
a Gaussian process that increases the one-sided noise power spectral density
from to

where is the common signal power of each mobile at the base station and B
is the bandwidth of the receiver.

The received signal from a mobile that is to be power-controlled has the
form where has unity power. Thus,

The received signal can be expressed as

where The Cramer-Rao bound [21] provides a lower bound on the
variance of any unbiased estimate or measurement of This bound and
(6-163) give

Evaluating (6-164) and using (6-160) and (6-161), we obtain

Let denote the part of the processing delay in excess of the
measurement interval. Substituting (6-157) and (6-159) into (6-165), we obtain

This lower bound indicates that increases with and, hence, the fading
rate when the power estimation is ideal.

Inequality (6-166) indicates that an increase in the Doppler spread can be
offset by an increase in the bandwidth B. This observation clarifies why third-
generation cellular CDMA systems such as WCDMA or cdma 2000 exhibit no
more sensitivity to power-control errors than the IS-95 system despite the sub-
stantial increase in the fading rate due to the increased carrier frequency. The
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physical reason is that an expansion of the bandwidth of the direct-sequence
signals allows enough interference suppression to more than compensate for the
increased Doppler spread. Furthermore, the potential effect of power-control er-
rors on third-generation CDMA systems is mitigated by the use of convolutional
and turbo codes more powerful than the IS-95 codes.

Consider a network of CDMA systems that do not expand the bandwidth
when the Doppler spread changes, but adjust so that (6-159) provides a tight
bound. Ideal power estimation is assumed so that the lower bound in (6-166)
approximates If the other parameters are unchanged as the Doppler spread
changes from to then is only affected by the Doppler factor defined
as

An example of the impact of the Doppler factor is illustrated in Figure 6.19,
which shows the upper bounds on for instantaneous power control and the
BCH (63,30) code. The network experiences slow fading and a Doppler spread

The Doppler factor is D = 1. When the Doppler factor is
D = 2, 3, or 4, perhaps because of increased vehicular speeds, the network is
assumed to experience fast fading. The parameter values are

G = 128, and
The calculations use (6-166), (6-151), (6-104), and (6-154) to (6-156). In

this example, causes a significant performance degradation despite the
improved time diversity during the fast fading.

When fast fading causes large power-control errors, a DS/CDMA network
exhibits a significant performance degradation, notwithstanding the exploita-
tion of time diversity by interleaving and channel coding. Adopting long-term-
average instead of instantaneous power control will not cure the problem. A
better approach is to increase the bandwidth of the direct-sequence signals. If
the bandwidth cannot be increased enough, then the Doppler spread might be
reduced by minimizing the carrier frequency of the direct-sequence signals. An-
other strategy is to limit the size of cells so that the network must cope with the
more benign Ricean fading rather than Rayleigh fading, which is more likely to
cause large power-control errors.

It follows from (6-165) and that a specified can be attained
if

where is the number of interfering active mobiles per unit
bandwidth in the cell or sector. Inequalities (6-168) and (6-159) restrict the
range of feasible values for Combining (6-158), (6-159), and (6-168) and
assuming that K is large enough that we conclude that to attain

for vehicles at speed or less, an approximate upper bound on the
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Figure 6.19: Information-bit error probability for slow fading and fast fading
with different Doppler factors D. Instantaneous power control and the BCH
(63,30) code are used.

uplink capacity per unit bandwidth in a cell or sector is given by

For typical parameter values, this upper bound is approximately inversely pro-
portional to both the carrier frequency  and the maximum vehicle speed

Figure 6.20 illustrates the upper bound on the uplink capacity per megahertz
as a function of frequency for

and representative values of and Table 6.1 gives
The figure indicates the limitations on due to power control as the carrier
frequency increases if and the other parameters remain fixed. If exceeds
the upper bound, then the network performance will be severely degraded. The
uplink capacity can be maintained by expanding the bandwidth.

Downlink Power Control and Outage

Along with all the signals transmitted to mobiles associated with it, a base
station transmits a pilot signal over the downlinks. A mobile, which is usually
associated with the base station from which it receives the largest pilot signal,
uses the pilot to identify a base station or sector, to initiate uplink power control,
to estimate the attenuation, phase shift, and delay of each significant multipath
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Figure 6.20: Upper bound on uplink capacity per megahertz for
and

component, and to assess the power-allocation requirement of the mobile.
A base station synchronously combines and transmits the pilot and all the

signals destined for mobiles associated with it. Consequently, all the signals fade
together, and the use of orthogonal spreading sequences will prevent intracell
interference and, hence, a near-far problem on a downlink, although there will
be interference caused by asynchronously arriving multipath components. The
orthogonal sequences can be generated from the rows of a Hadamard matrix.
The orthogonality, the energy-saving sharing of the same pilot at all covered
mobiles, and the coherent demodulation of all transmitted signals are major
advantages of the downlinks. However, interference signals from other base
stations arrive at a mobile asynchronously and fade independently, thereby
significantly degrading performance.

Although there is no near-far problem on the downlinks, power control is
still desirable to enhance the received power during severe fading or when a
mobile is near a cell edge. However, this power enhancement increases inter-
cell interference. Downlink power control entails power allocation by the base
station in a manner that meets the requirements of the individual mobiles as-
sociated with it. Let denote the total power received by mobile from base
station If this mobile is associated with base station 0, then the SINR at the
mobile is
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where is the total number of base stations that produce significant power
at mobiles in a cell or sector, is the fraction of the base-station power that is
assigned to mobiles rather than to the pilot, and is the fraction of the total
power for mobiles in a cell or sector that is allocated to mobile Typically,
one might set which entails a 1-dB loss due to the pilot. Let R denote
the SINR required by network mobiles for acceptable performance. Inverting
(6-170), it is found that R is achieved by all mobiles in a cell or sector if

An outage occurs if the demands of all K mobiles in a cell or sector cannot be
met simultaneously. Thus, no outage occurs if (6-171) is satisfied and

where is the voice-activity indicator such that with probability and
with probability If the left-hand side of (6-172) is strictly less than

unity, then the transmitted power produced by base station 0 can be safely
lowered to reduce the interference in other cells or sectors. Combining (6-171)
and (6-172), a necessary condition for no outage is

The assignment of mobile to base station 0 implies the constraint that
except possibly during a soft handoff. A com-

plete performance analysis with this constraint is difficult. Simulation results
[19] indicate that the downlink capacity potentially exceeds the uplink capacity
if the orthogonal signaling is not undermined by excessive multipath.

6.5 Multiuser Detectors

The conventional single-user direct-sequence receiver of Figure 2.14 is optimal
against multiple-access interference only if the spreading sequences of all the
interfering signals and the desired signal are orthogonal. Orthogonality is possi-
ble in a synchronous communication network, but in an asynchronous network,
it is not possible to find sequences that remain orthogonal for all relative delays.
Thus, the conventional single-user receiver, which only requires knowledge of
the spreading sequence of the desired signal, is suboptimal against asynchronous
multiple-access interference. The price of the suboptimality might be minor if
the spreading sequences are carefully chosen and the noise is relatively high,
especially if an error-control code and a sector antenna or adaptive array are
used. If a potential near-far problem exists, power control may be used to limit
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its impact. However, power control is imperfect, entails a substantial overhead
cost, and is not feasible for peer-to-peer communication networks. Even if the
power control is perfect, the remaining interference causes a nonzero error floor,
which is a minimum bit error probability that exists when the thermal noise is
zero. Thus, an alternative to the conventional receiver is desirable.

A multiuser detector is a receiver that exploits the deterministic structure
of multiple-access interference or uses joint processing of a set of multiple-
access signals. An optimum multiuser detector almost completely eliminates
the multiple-access interference and, hence, the near-far problem, thereby ren-
dering power control unnecessary, but such a detector is prohibitively complex
to implement, especially when long spreading sequences are used. A more
practical multiuser detector alleviates but does not eliminate the power-control
requirements of a cellular network on its uplinks. Even if a multiuser detec-
tor rejects intracell interference from mobiles within a cell, it cannot reject
intercell interference, which arrives from mobiles associated with different base
stations than the one receiving a desired signal. Since intercell interference is
typically more than one-third of the total interference on an uplink, even ideal
multiuser detection will increase network capacity by a factor less than three.
Multipath components can be accommodated as separate interference signals
or rake combining may precede the multiuser detection. Though suboptimal
compared with ideal multiuser detection, multiuser interference cancellers bear
a much more moderate implementation burden and still provide considerable
interference suppression. However, it appears that accurate power control is still
needed at least for initial synchronization and to avoid overloading the front
end of the receiver. Third-generation CDMA systems use adaptive interference
cancellation but retain a closed-loop power-control subsystem.

Optimum Detectors

Consider a DS/CDMA network with K users, each of which uses PSK to trans-
mit a block of N binary symbols. A jointly optimum detector makes collective
symbol decisions for K received signals based on the maximum a posteriori
(MAP) criterion. The individually optimum detector selects the most proba-
ble set of symbols of a single desired signal from one user based on the MAP
criterion, thereby providing the minimum symbol error probability. In nearly
all applications, jointly optimum decisions would be preferable because of their
lower complexity and because both types of decisions will agree with very high
probability unless the symbol error probability is very high. Assuming equally
likely symbols are transmitted, the jointly optimum MAP detector is the same
as the jointly optimum maximum-likelihood detector, which is henceforth re-
ferred to as the optimum detector.

For synchronous communications in the presence of white Gaussian noise,
the symbols are aligned in time, and the detection of each symbol of the desired
signal is independent of the other symbols. Thus, the optimum detector can
be determined by considering a single symbol interval Let
denote the symbol transmitted by user The customary (highly idealized)
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assumption is that a perfect carrier synchronization enables the receiver to
remove a common carrier frequency and phase. Thus, the composite baseband
received signal is

where is the received symbol amplitude from user is the unit-energy
spreading waveform of user and is the baseband Gaussian noise.
If it is assumed that each of the K signals has a common carrier frequency but
a distinct phase relative to the phase of the receiver-generated synchronization
signal, then each in (6-174) is replaced by where is the relative
phase of the signal from mobile

Assuming that all possible values of the symbol vector are
equally likely, the optimum detector is the maximum-likelihood detector [22],
[23], which selects the value of d that minimizes the log-likelihood function

subject to the constraint that The vector of the cross correla-
tions between and the spreading sequences is denoted by
where

Let A denote the K × K diagonal matrix with diagonal components
Let R denote the K × K correlation matrix with elements

where  and because the spreading waveforms are normalized
to unit energy. Expanding (6-175), dropping an integral that is irrelevant to
the selection of d, and then substituting (6-176) and (6-177), we find that
the maximum-likelihood detector selects the value of d that maximizes the
correlation metric

subject to the constraint that or
This equation implies that the optimum detector uses a filter bank of K

parallel correlators. Correlator computes given by (6-176) and can be
implemented as the single-user detector of Figure 6.15. Equation (6-178) also
indicates that the K spreading sequences must be known so that R can be
calculated, and the K signal amplitudes must be estimated. Short spreading
sequences are necessary or R must change with each symbol. The optimum
detector is capable of making joint symbol decisions for all K signals or merely
the symbol decisions for a single signal.

MULTIUSER DETECTORS

or



352 CHAPTER 6.  CODE-DIVISION MULTIPLE ACCESS

As an example, consider synchronous communications with K = 2 and
After the elimination of terms irrelevant to the selection, (6-178) im-

plies that the optimum detector evaluates
for the four pairs with and The pair that maximizes C provides
the decisions for and

For asynchronous communications over the AWGN channel, the derivation
of the maximum-likelihood detector is analogous but more complicated [22],
[23]. A major difference is that a desired symbol overlaps two consecutive sym-
bols from each interference signal. The optimum detector uses a filter bank of
K parallel correlators, but N symbols from each correlator must be processed
to make decisions about N K binary symbols. The vector d is N K × 1 with
the first N elements representing the symbols of signal 1, the second N ele-
ments representing the symbols of signal 2, etc. The detector must estimate
the transmission delays of all K multiple-access signals, and the N K × N K
correlation matrix R has components that are partial cross correlations among
the signals. In principle, the detector must compute correlation metrics
and then select K symbol sequences, each of length N, corresponding to the
largest correlation metric. The Viterbi algorithm simplifies computations by
exploiting the fact that each received symbol overlaps at most 2(K – 1) other
symbols. Nevertheless, the computational complexity increases exponentially
with K.

In view of both the computational requirements and the parameters that
must be estimated, it is highly unlikely that the optimum multiuser detector
will have practical applications. Subsequently, alternative suboptimal multiuser
detectors are considered. All of them follow carrier removal with a filter bank
of correlators.

Decorrelating detector

The decorrelating detector may be derived by maximizing the correlation metric
of (6-178) without any constraint on d. For this purpose, the gradient of
with respect to the real-valued vector x is defined as the column
vector with components From this definition, it
follows that for column vectors x and y

If A is an symmetric matrix, then expressing in component form
and using the chain rule yields

Applying (6-179) and (6-180) to the correlation metric, we find that
implies that C is maximized by where

provided that R is invertible. Since each component of the vector is a
positive multiple of the corresponding component of there is no need to
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Figure 6.21: Architecture of decorrelating detector and MMSE detecter. Filter
bank comprises parallel correlators.

solve for A suitable estimate of the transmitted bits is

where each component of the vector sgn(x) is the signum function of the cor-
responding component of the vector x. The signum function is defined as

and The decorrelating detector, which
implements (6-182), has the form diagrammed in Figure 6.21. For asynchro-
nous communications, each of the K correlators in the filter bank produces N
bits. The accumulator constructs the NK-dimensional vector and the linear
transformer computes The decision devices evaluate (6-182) to produce

A second derivation of the decorrelating detector assumes that the detector
has the filter bank as its first stage. If (6-174) gives the input, then the output
of this stage is

where n is the NK-dimensional noise vector. This equation indicates that the
coupling among components of d, which causes the correlation among compo-
nents of is due solely to the presence of the matrix R. The effect of this
matrix is removed by computing

If (6-182) is used to determine the NK transmitted bits, the multiple-access
interference is completely decorrelated from

A third derivation assumes the presence of the filter bank. If zero-mean,
white Gaussian noise with two-sided power spectral density enters each
correlator, then a straightforward calculation indicates that the NK × NK

MULTIUSER DETECTORS
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covariance matrix of is

The probability density function of given Ad is

The maximum-likelihood estimate of Ad is the estimate that maximizes (6-
186) or, equivalently, minimizes the log-likelihood function

Using (6-179) and (6-180), we again obtain the estimate given by (6-181), which
leads to given by (6-182).

Although the decorrelating detector eliminates the multiple-access interfer-
ence, it increases the noise by changing n to From (6-185), and the
symmetric character of R, it follows that the covariance matrix of the noise
vector entering the decision devices is

The variance of the noise that accompanies one of the symbols of user is
Therefore, the symbol error probability is

where is the symbol energy. The symbol error probability for single-
user detection by user in the absence of multiple access interference is

Thus, the presence of multiple-access interference requires an increase of energy
by the factor when the decorrelating detector is used if a specified
is to be maintained.

As an example, consider synchronous communications with K = 2 and
The correlation matrix and its inverse are

Equation (6-182) indicates that the symbol estimates are
and Since
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If the required energy increase or shift in each     curve is less than
1.25 dB.

To demonstrate analytically the advantage of the decorrelating detector,
consider synchronous communications and a receiver with a filter bank of K
conventional detectors. Each conventional detector is a single-user matched
filter. If perfect carrier synchronization removes a common phase shift of all
the signals and produces the baseband received signal of (6-174), then (6-176)
implies, that the output of detector is

The set of K symbols is estimated by

By symmetry, we can assume that in the evaluation of the symbol error
probability. Let denote the (K – 1)-dimensional vector of all the
Conditioning on and calculating that we find that the
conditional symbol error probability for user is

where

If all symbol sets are equally likely, then the symbol error probability for user
is

where is the choice of the vector which can take values.
For K = 2 with and (6-195) to (6-197)

yield the symbol error probability for user 1:
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The symbol error probability for user 2 is given by (6-198) with the roles of
and interchanged. The second term in (6-198) is usually negligible compared
with the first one if Thus, if

then a comparison of (6-198) with (6-192) indicates that decorrelating detector
usually outperforms the conventional detector. However, if is sufficiently
small, then the conventional detector gives a lower than the decorrelating
detector.

In a more realistic model of the decorrelating and conventional detectors,
the received signal in Figure 6.21 is passband. Correlator uses a synchronized
carrier to remove carrier at the common frequency Since each carrier has
a distinct phase the elements of the correlation matrix are

if For synchronous communications with K = 2, (6-192) and (6-198)
with then represent the conditional symbol error probability
given the value of Averaging over is necessary to obtain
and

Compared with the optimum detector, the decorrelating detector offers
greatly reduced, but still formidable, computational requirements. There is no
need to estimate the signal amplitudes, but the transmission delays of asynchro-
nous signals must still be estimated. The inversion of the correlation matrix
R in real time is not possible for asynchronous signals with practical values
of NK. Suboptimal partitioning and short spreading sequences are generally
necessary and degrade the theoretical performance given by (6-189).

Minimum-Mean-Square-Error Detector

The minimum-mean-square-error (MMSE) detector is the receiver that results
from a linear transformation of by the K × K matrix L such that the metric

is minimized. Let denote the solution of the equation

Let denote the trace of the matrix B . Since for a vector
x,
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Substitution of this equation into (6-201) and the application of (6-202) yields

which proves that minimizes M. If the data symbols are independent and
equally likely to be +1 or –1, then where I is the identity matrix.
Using this result, (6-183), (6-185), E[n] = 0, and the independence of d and n,
we obtain

Substitution of these equations into (6-202) yields

provided that the inverses exist. Since A and, hence, are diagonal matrices
with positive diagonal components if all -signals are active, (6-206) may be
simplified to the linear transformation matrix

without any change in the MMSE estimate of the transmitted symbols:

The MMSE detector has the structure of Figure 6.21.
The MMSE and decorrelating detectors have almost the same computational

requirements, and they both have equalizer counterparts, but they differ in
several ways. The MMSE detector is near-far resistant, but does not obliterate
the multiple-access interference and, hence, does not completely eliminate the
near-far problem. However, it does not accentuate the noise to the degree
that the decorrelating detector does. As and the MMSE
estimate approaches the decorrelating detector estimate. As increases, the
MMSE estimate approaches that of the conventional detector given by (6-194),
and the symbol error probability generally tends to be lower than that provided
by the decorrelating detector. A disadvantage of the MMSE detector is that
the signal amplitudes must be estimated so that A in (6-207) can be computed.

For either the MMSE or decorrelating linear detectors to be practical, it
is necessary for the spreading sequences to be short. Short sequences ensure
that the correlation matrix R is approximately constant for significant time
durations if the communication channel and the amplitudes of the interference
signals are slowly varying. The price of short sequences is a security loss and the
occasional but sometimes persistent performance loss due to a particular set of
relative signal delays. Even with short spreading sequences, adaptive versions
of the MMSE detector are much more practical than the nonadaptive versions
of either linear detector.



of the symbol streams transmitted by the K users. The input
may be the sampled outputs of a chip-matched filter for PSK modulation or the
complex-valued samples derived from a quadrature demodulator for quaternary
modulation. Detector-generator produces a replica of the signal transmitted
by user Its basic structure is depicted in Figure 6.23. The correlator, which
comprises a multiplier and summer as in Figure 6.15, despreads signal The
channel estimate is a stream of complex numbers that are applied to the cor-
relator output to remove the effects of the propagation channel. The decision
device produces the estimated symbols transmitted by user These symbols
are remodulated and modified to account for the effects of the channel. After
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An adaptive multiuser detector [23] is one that does not require explicit
knowledge of either the spreading sequences or the timing of the multiple-access
interference signals. The receiver samples the output of a wideband filter at the
chip rate. The use of short spreading sequences affords the opportunity for
the adaptive detector to essentially learn the sequence cross-correlations and
thereby to suppress the interference. The learning is accomplished by process-
ing a known training sequence of symbols for the desired signal during a train-
ing phase. This operational phase is followed by a decision-directed phase that
continues the adaptation by feeding back symbol decisions. Adaptive detectors
potentially can achieve much better performance than conventional ones at least
if the transmission channel is time-invariant, but coping with fast fading and
interference changes requires elaborate modifications. A blind adaptive detector
[24] is one that does not require training sequences. These detectors are desir-
able for applications such as system recovery but entail some performance loss
and complexity increase relative to other adaptive detectors. Long sequences
do not possess the cyclostationarity that makes possible many of the advanced
signal processing techniques used for blind multiuser detection and adaptive
channel estimation.

Interference Cancellers

An interference canceller is a multiuser detector that explicitly estimates the
interference signals and then subtracts them from the received signal to pro-
duce the desired signal. Interference cancellers may be classified as successive
interference cancellers in which the subtractions are done sequentially, parallel
interference cancellers in which the subtractions are done simultaneously, or
hybrids of these types. Only the basic structures and features of the successive
and parallel cancellers are presented subsequently. A large number of alterna-
tive versions, some of them hybrids, adaptive, or blind, have been proposed in
the literature [23]. Some type of interference canceller is by far the most prac-
tical multiuser detector for an asynchronous DS/CDMA network, especially if
long spreading sequences are planned [25].

Successive Interference Canceller

Figure 6.22 is a functional block diagram of a successive interference canceller,
which uses nonlinear replica generations and subtractions to produce estimates
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Figure 6.22: Successive interference canceller with K detector-generators to
produce signal estimates for subtraction.

Figure 6.23: Structure of detector-generator for signal

a respreading, the replica of signal is generated and sent to the correspond-
ing subtracter. The input or output of the decision device may produce the
estimated symbol stream, depending on whether the decoder uses soft or hard
decisions. The channel estimator uses known pilot or training symbols to deter-
mine the effect of the channel. Hard decisions are used in the replica generation,
but may not be appropriate if the channel estimate is inaccurate because a sym-
bol error doubles the amplitude of the interference that enters the next stage
of the canceller of Figure 6.22. The enhanced interference adversely affects
subsequent symbol estimates and replicas.

The outputs of a set of K correlators and level detectors are applied to a
device that orders the K received signals according to their power levels. This
ordering determines the placement of the detector-generators in Figure 6.22.
Detector-generator corresponds to the        strongest signal.

The first canceller stage eliminates the strongest signal, thereby immediately
alleviating the near-far problem while exploiting the superior detectability of the
strongest signal. The first difference signal is applied to the detector-generator
for the second strongest received signal, etc. The amount of interference re-
moval from a signal tends to increase from the strongest received signal to the
weakest one. The delay introduced, the impact of cancellation errors, and the
implementation complexity may limit the number of canceller stages to fewer
than K, and a set of conventional detectors may be needed to estimate some
of the symbol streams. At a low SNR, inaccurate cancellations may cause the
canceller to lose its advantage over the conventional detector. The successive
interference canceller of Figure 6.22 requires known spreading sequences and
timing of all signals.
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Figure 6.24: Second canceller of multistage canceller using successive interfer-
ence cancellers.

A multistage interference canceller comprising more than one successive in-
terference canceller potentially improves performance by repeated cancellations
if the delay and complexity can be accommodated. The second canceller or
stage of a multistage canceller is illustrated in Figure 6.24. The input is the
residual of canceller 1, which is shown in Figure 6.22. Replica 1 of canceller 1
is added to the input and then an improved replica of signal 1 is subtracted.
Subsequently, other replicas from canceller 1 are added and corresponding im-
proved replicas are subtracted. The symbol streams are produced by the final
canceller. Rake combining of multipath components may be incorporated into
a multistage or single-stage canceller to improve performance in a fading envi-
ronment [26].

Parallel Interference Canceller

A parallel interference canceller detects, generates, and then subtracts all multiple-
access interference signals simultaneously, thereby avoiding the delay inherent
in successive interference cancellers. A parallel interference canceller for two
signals is diagrammed in Figure 6.25. Each detector-generator pair may be
implemented as shown in Figure 6.23. Each of the final detectors includes a
digital matched filter and a decision device that produce soft or hard decisions,
which are applied to the decoder. Since all signals are processed in the same
manner and the initial detections influence the final ones, the parallel inter-
ference canceller is not as effective in suppressing the near-far problem as the
successive interference canceller unless the CDMA network uses power control.
Power control also relieves the timing synchronization requirements. A better
suppression of the near-far problem is provided by the multistage parallel inter-
ference canceller, in which each stage is similar but has an improved input that
results in an improved output. Figure 6.26 shows the multistage canceller for
two signals. Each stage has the form of Figure 6.25 without the final detectors.

Multiuser Detector for Frequency Hopping

Multiuser detection is more challenging for frequency-hopping systems than for
direct-sequence systems, but it is possible in principle. The hopping patterns
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Figure 6.25: Parallel interference canceller for two signals.

Figure 6.26: Multistage parallel interference canceller for two signals. D=delay.

of all users to be detected must be known. In an asynchronous frequency-
hopping network, the hop transition times serve as identifying parameters for
the network users and must be known by a receiver, which uses them to de-
termine when collisions will occur. The multiuser detector comprises a set of
single-user turbo decoders and an iterative decoding algorithm that exploits a
collaboration between the decoders and the demodulator [27]. If the number
of signals colliding during an interval is too large, then the symbols during that
interval are erased. The detector decodes the user’s signal with the smallest
number of erasures among the undecoded signals during a particular iteration.
Likelihood ratios associated with the symbols of a decoded codeword are fed
back to the demodulator to enable an improved demodulation of those unerased
symbols occurring during a collision with the decoded signal. Simulation results
indicate that an excellent performance may be possible, but the computational
complexity is high, and an implementation is impractical for most networks.
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6.6 Frequency-Hopping Multiple Access

Two major advantages of frequency hopping are that it can be implemented
over a much larger frequency band than it is possible to implement direct-
sequence spreading, and that the band can be divided into noncontiguous seg-
ments. Another major advantage is that frequency hopping provides resistance
to multiple-access interference, while not requiring power control to prevent
the near-far problem. Since direct-sequence systems cannot escape the near-far
problem by hopping, accurate power control is crucial but becomes much less
effective as the fading rate increases. These advantages of frequency hopping
will be decisive in many applications. For example, the Bluetooth system and
combat net radios use frequency hopping to avoid the near-far problem.

Frequency-hopping systems are usually part of a frequency-hopping code-
division multiple-access (FH/CDMA) network in which all systems share the
same M frequency channels. In a synchronous FH/CDMA network, the systems
coordinate their frequency transitions and hopping patterns. Consequently, as
many as M frequency-hopping signals can be simultaneously accommodated
by the network with insignificant multiple-access interference at any of the
active receivers. Network coordination is much simpler to implement than for
a DS/CDMA network because the timing alignments must be within a small
fraction of a hop duration instead of a small fraction of a spreading-sequence
chip. Multipath signals and errors in range estimates can be accommodated
at some cost in the energy per information bit by increasing the switching
time between frequency-hopping pulses. However, some type of centralized or
cellular architecture is required, and such an architecture is often unavailable.

Asynchronous FH/CDMA Networks

An asynchronous FH/CDMA network has systems that transmit and receive
autonomously and asynchronously. When two or more frequency-hopping sig-
nals using the same frequency channel are received simultaneously, they are
said to collide. Since the probability of a collision in an asynchronous network
is decreased by increasing the number of frequency channels in the hopset, it
is highly desirable to choose a data modulation that has a compact spectrum.
Good candidates are FH/CPFSK systems that use a frequency discriminator
for demodulation. As explained in Chapter 3, binary CPFSK with
and bandwidth such that provides excellent potential performance
if the spectral splatter and intersymbol interference generated by this modu-
lation are negligible. However, for approximately the same degree of spectral
splatter and intersymbol interference as MSK with the bandwidth
must be increased so that which reduces the number of frequency
channels M in a fixed hopping band. This much reduction in M is enough to
completely offset the intrinsic performance advantage of binary CPFSK with

Thus, the choice between the latter and MSK or GMSK will depend on
the details of the impact of the spectral splatter and intersymbol interference.

Let represent the duty factor, which is defined as the probability that
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an interferer using the same frequency channel will degrade the reception of a
symbol. Thus, is the product of the probability that an interferer is
transmitting and the probability that a significant portion of the interferer’s
transmitted waveform occurs during the symbol interval. The probability
is upper bounded and well approximated by the probability that there is any
overlap in time of the interference and the symbol interval. For synchronous
frequency hopping, Since it follows from elementary proba-
bility that for asynchronous frequency hopping, For voice
communications with voice-activity detection, is a typical value.

For asynchronous frequency hopping, the fact that ensures that
each potentially interfering frequency-hopping signal transmits power in at most
one frequency channel during the reception of one symbol of a desired signal.
Therefore, assuming that an interferer may transmit in any frequency chan-
nel with equal probability, the probability that a potentially interfering signal
collides with the desired signal during a symbol interval is

When a collision occurs, the symbol is said to be hit by the interfering signal.
For MFSK, M is given by (3-71).

Consider an FH/CDMA network of K asynchronous systems with negligible
spectral splatter and intersymbol interference. The code symbols are interleaved
so that each code symbol of a codeword is transmitted in a separate dwell
interval. Test symbols are used to determine erasures of all the symbols in a
dwell interval (Chapter 3). The test symbols are split into separate sets of

test symbols at each end of a dwell interval [28]. Thus, if a code symbol
is hit by one or more of the K – 1 interfering signals, then at least one set of the
test symbols in that same dwell interval is also hit. For analytical simplicity,
we make the following assumptions:

1. If at least one of the two test symbols at the opposite ends of a dwell
interval is hit, then an erasure is always made. Thus, if a code symbol is
hit, an erasure is always made.

2. If a code symbol is not hit, then this condition has a negligible influence
on the probability that one of the two end test symbols is hit.

3. The probability that both end test symbols are hit is negligible.

These assumptions are approximately valid if and the K-1
interfering signals have approximately the same or more power than the desired
signal. The first assumption implies that the probability of the erasure of a code
symbol is

where is the erasure probability given that no hit of the code symbol oc-
curred. Observe that if neither of the end test symbols is hit, then no test
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symbol is hit. Therefore, the assumptions imply that

where the first term is the probability that one of the two end test symbols is
hit, and the term in braces is the probability that although no test symbols
are hit, an erasure occurs because at least one of the detected test symbols is
incorrect. For MFSK modulation, each channel symbol is a code symbol and
the energy per symbol is where is the number of bits in
a q-ary symbol, r is the code rate, and is the energy per bit. Under the first
assumption, the code-symbol error probability is

where is given by (3-64) in the absence of fading and by (3-66) in the
presence of Ricean fading.

Suppose that each q-ary code symbol is mapped into channel symbols
with and chosen to be an integer. The channel symbols are
interleaved over dwell intervals to ensure independence of symbol errors
when the fading in each dwell interval, if present, is independent. Since all

channel symbols must be received correctly for there to be no code-
symbol error and the channel-symbol errors are independent, (1-32) implies
that

where is given by (3-67) for binary modulations with no fading and by (3-
68) when the channel symbols experience independent Ricean fading. Equation
(3-78) gives for errors-and-erasures decoding.

Let W denote the bandwidth of the hopping band and denote the band-
width of binary FSK in the absence of coding. For MFSK channel symbols,
(3-71) indicates that the number of disjoint frequency channels available for
frequency hopping is

which decreases with the channel-symbol alphabet size. The fundamental ad-
vantage of MSK is the reduced bandwidth per frequency channel. The number
of available frequency channels is

since
Figure 6.27 illustrates versus K-1 for FH/MFSK and FH/MSK  sys-

tems that use a Reed-Solomon (64, 24) code with errors-and-erasures decoding
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Figure 6.27: Performance of FH/MFSK and FH/MSK systems with Reed-
Solomon (64, 24) code, various alphabet sizes, erasures,

and no fading. for binary modulations; for 4-ary FSK; and
for 8-ary FSK.

against asynchronous multiple-access interference in the absence of fading. The
graphs are computed from (6-210) through (6-215) with M given by the lower
bound in (6-215) for MSK. In all cases, and It is assumed
that is sufficiently large that there is no expansion of required bandwidths,
as illustrated in Table 3.1. The 8-ary MFSK channel symbols have and

the 4-ary MFSK channel symbols have and and the
binary channel symbols have and If is sufficiently
large, the substantial benefits obtained from using binary or quaternary MFSK
channel symbols and the further benefit from using MSK are apparent in the
figure. These increases in the number of other users that can be accommodated
must be weighed against the disadvantage of binary channel symbols in the
presence of partial-band interference, as shown in Section 3.3. The figure illus-
trates that as drops from 17 dB to 14 dB, the FH/FSK and FH/MSK
systems degrade substantially while the nonbinary FH/MFSK systems degrade
imperceptibly. This result is due to the larger symbol energy of nonbinary
MFSK.

The results in the figure do not depend on primarily because
If one makes the unrealistic assumption that then symbols are
hit by an interfering signal with probability d/M, and the frequency transition
of the interfering signal causes one symbol to be hit with probability 2d/M.
Thus, which does exhibit a dependence on
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To obtain good performance against both partial-band interference and
multiple-access interference, a turbo code and binary channel symbols are needed.
However, even if is known, perhaps through power control, the turbo decoder
computation must be modified to account for the fluctuations from symbol-
to-symbol in the interference-plus-noise variance caused by multiple-access in-
terference [29]. When DPSK is the modulation, a suitable modification uses
(1-145).

If a turbo code is not feasible, then a Reed-Solomon code with errors-and-
erasures decoding is a good choice. However, for low to moderate thermal-noise
levels, a trade-off is necessary in the choice of the modulation. If one is pri-
marily interested in avoiding multiple-access interference, then binary channel
symbols are desirable. If stronger protection against partial-band interference
but weaker protection against multiple-access interference is needed, then non-
binary channel symbols are preferable.

The results in Figure 6.27 are based on the practical assumption of a fixed
bandwidth W. If this bandwidth constraint is dropped and W is optimized
to produce the maximum network throughput for each channel-symbol alpha-
bet size, then it is found that 4-ary or 8-ary channel symbols produce higher
throughputs than FSK in a frequency-hopping network [30].

Mobile Peer-to-Peer and Cellular Networks

Mobile FH/CDMA systems [31] are suitable for both peer-to-peer and cellular
communication networks. Mobile peer-to-peer communications are used in mo-
bile communication networks that possess no supporting infrastructure, fixed
or mobile; each user has identical signal processing capability. Peer-to-peer
communications have both commercial applications and important military ap-
plications, the latter primarily because of their robustness in the presence of
node losses. Power control and, hence, current DS/CDMA are not viable for
peer-to-peer communications because of the lack of a centralized architecture.
Current plans to use multiuser detection in direct-sequence CDMA systems still
require power control, which is highly desirable for the synchronization.

A unified evaluation of the potential performance of both mobile peer-to-
peer and sectorized FH/CDMA systems is provided by analysis and simulation.
The propagation path losses are modeled as the result of power-law losses, shad-
owing, and fading. In Chapter 5, it is shown that the probability distribution
function of the normalized local-mean power is

where is the average received power when the distance is
is the attenuation power law, and is the standard deviation in

decibels. The fading causes a power fluctuation about the local-mean power.
One method of combining antenna outputs is predetection combining, which

requires the estimation of the signal and interference-plus-noise power levels at
each antenna for maximal-ratio combining or selection diversity and requires
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the cophasing of the L antenna outputs for maximal-ratio or coherent equal-
gain combining. Since the relative phases and power levels of the signals at the
L antennas change after every hop, it is almost always impractical to implement
predetection combining. As a much more practical alternative, a receiver can
combine the demodulated outputs rather than the signals from the L antennas.
This postdetection combining eliminates the cophasing and does not require the
time alignment of L signals in practical applications because any misalignment
is much smaller than a symbol duration. The estimation of power levels can be
eliminated by the use of a fixed combining rule, such as equal-gain or square-law
combining.

In the receiver of a frequency-hopping system, each antenna output is de-
hopped and filtered. The interference plus noise in each dehopped signal is
approximated by independent bandlimited white Gaussian noise, with equiva-
lent power given by

where is the thermal noise power, K – 1 is the number of active frequency-
hopping interference signals , and is the local-mean interference power re-
ceived from source The Gaussian model is reasonable for large numbers of
interference signals that generally fade independently and experience different
Doppler shifts. The total interference power is approximately uniform (white)
over the receiver passband following dehopping if The L diver-
sity antennas are assumed to be close enough to each other that the power-law
losses and shadowing are nearly the same, and thus the local-mean power from a
source is the same at each antenna. Each active interfering mobile may actually
represent a cluster of mobiles. In this cluster, some discipline such as carrier-
sense multiple access is used to ensure that there is at most one transmitted
signal at any time.

The desired signal is assumed to experience frequency-nonselective Rayleigh
fading. The Rayleigh fading model is appropriate under the pessimistic assump-
tion that the propagation paths are often obstructed, and thus, the power of
the direct line-of-sight signal is small compared with the reflected signal power.
Frequency-nonselective fading occurs if Rayleigh fading may be neg-
ligible if mobile speeds are very low, which would occur if each mobile consisted
of a person walking. Shadowing would still occur but would be slowly varying
over time.

Spectrally compact CPFSK or GMSK signals do not have enough frequency
shift to be demodulated by classical noncoherent demodulators with parallel
matched filters and envelope detectors, but can be demodulated by a frequency
discriminator. We consider binary MSK with discriminator demodulation. For
postdetection diversity, the outputs of L discriminators are weighted and com-
bined. The weighting is by the square of the envelope at the input to each
discriminator. When the desired signal undergoes independent Rayleigh fading
at each antenna and the channel parameters remain constant for at least one
symbol duration, a calculation using the results of [32] yields the symbol error
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probability:

where and is the local-mean power of the desired
signal. A comparison of this equation with (5-135) and (5-169) when
so that verifies that MSK with discriminator demodulation and square-
law postdetection combining provides nearly the same as ideal DPSK. The
slowly varying shadowing in practical networks ensures that is almost al-
ways nearly constant over an interleaved codeword or constraint length. The
information-bit error rate following hard-decision decoding can be calculated
from with the equations of Chapter 1. The theoretical loss due to using
postdetection rather than predetection combining is less than a decibel [32].

Peer-to-Peer Networks

Consider a peer-to-peer network of independent, identical, frequency-hopping
systems that have L omnidirectional antennas, generate the same output power,
share the same carriers and frequency channels, and are nearly stationary in
location over a single symbol duration. The antennas are separated from each
other by several wavelengths, so that the fading of both the desired signal and
the interfering signals at one antenna is independent of the fading at the other
antennas. A few wavelengths are adequate because mobiles, in contrast to
base stations, tend to receive superpositions of reflected waves arriving from
many random angles. Because of practical physical constraints, spatial diver-
sity will ordinarily be effective only if the carrier frequencies exceed roughly 1
GHz. Polarization diversity and other forms of adaptive array processing are
alternatives.

Since for peer-to-peer communications it is assumed that an interfering mo-
bile may transmit in any frequency channel with equal probability, the probabil-
ity that power from an interferer enters the transmission channel of the desired
signal is

It is assumed that M is sufficiently large that we may neglect the fact that a
channel at one of the ends of the hopping band has only one adjacent channel
instead of two. Consequently, the probability that the power from an interferer
enters one of the two adjacent channels of the desired signal is

The probability that the power enters neither the transmission channel nor
the adjacent channels is These equations make it apparent that
the performance of a frequency-hopping system depends primarily on the ratio

This ratio is called the equivalent number of channels because any
decrease in the duty factor has the same impact as an increase in the number
of frequency channels; what matters most for performance is this ratio.
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Figure 6.28: Geometry of a peer-to-peer communication network.

In the simulation, the locations of the mobiles are assumed to be uniformly
distributed in a circular region surrounding a specific mobile receiver, as il-
lustrated in Figure 6.28. Therefore, the radial distance of a mobile from the
receiver has the probability distribution function

where R is the radius of the circle. The distance of the desired mobile is
randomly selected according to this distribution with where is
the maximum communication range and corresponds to a received area-mean
signal power equal to The distance of each interfering mobile is randomly
selected according to this distribution with The selected distance of
the desired mobile is substituted into (6-216) as the value of and then (6-
216) is used to randomly select the local-mean power of the desired signal at the
receiver. The probabilities given by (6-219) and (6-220) are used to determine
if an interfering mobile produces power in the transmission channel or in one of
the adjacent channels of the desired signal. If the power enters the transmission
channel, then the power level is randomly selected according to (6-216) with
the distance of the mobile substituted. If the power enters one of the adjacent
channels, then the potential local-mean power level is first randomly selected
via (6-216) and then multiplied by the adjacent-splatter ratio (Chapter 3) to
determine the net interference power that appears in (6-217). The effects of

and are determined solely by the minimum area-mean SNR, which occurs
at the maximum range of the desired signal and is equal to



370 CHAPTER 6. CODE-DIVISION MULTIPLE ACCESS

Once the local-mean power levels and the noise power are calculated, the
symbol error probability is calculated with (6-217) and (6-218) subject to the
constraint that Each simulation experiment was repeated for 10,000
trials, with different randomly selected mobile locations in each trial. The
performance measure is the spatial reliability, which is defined as the fraction
of trials for which is less than a specified performance threshold E. The
appropriate value of the threshold depends on the desired information-bit error
probability and the error-control code. The spatial reliability is essentially the
probability that an outage does not occur.

Figures 6.29 to 6.31 depict the results of three simulation experiments for
peer-to-peer networks. The figures plot the spatial reliability as a function of
K -1 for various values of L, assuming Rayleigh fading, MSK, and (6-218) with
the constraint that The parameter values are
E = 0.01, and The value of results
from assuming contiguous frequency channels with center frequencies separated
by B. The units of and are immaterial to the calculation of the spatial
diversity.

Figure 6.29 provides a baseline with which the other figures may be com-
pared. For this figure, the assumptions are that and the minimum
area-mean SNR = 20 dB. The number of equivalent frequency channels
could model voice communications with M = 90 channels and alter-
natively, it could model continuous data communications with M = 225 and

The figure illustrates the dramatic performance improvement provided
by dual spatial diversity when Rayleigh fading occurs. Further increases in
diversity yield diminishing returns. One can assess the impact of the spectral
splatter in this example by setting and observing the change in the
spatial reliability. The change is small, and nearly imperceptible if K < 25.

Figure 6.30 illustrates the effect of increasing the number of equivalent chan-
nels to Let the capacity of the network be defined as the maximum
number of interfering mobiles for which the spatial reliability exceeds 0.95. Fig-
ures 6.28 and 6.29 and other simulation results indicate that for the parameter
values selected, the capacity C for dual spatial diversity is approximately pro-
portional to specifically, for If E is
increased to 0.02, the capacity for dual spatial diversity increases by approxi-
mately 20 percent.

Figure 6.31 illustrates the sensitivity of the network to an increase in the
minimum area-mean SNR, which may be due to a change in or For
no spatial diversity or dual diversity, a substantial performance improvement
occurs when the minimum area-mean SNR = 25 dB. Other simulation results
indicate that a decrease in the minimum area-mean SNR below 20 dB severely
degrades performance.

Since (6-218) relates to the local-mean SINR, the spatial reliability
has an alternative and equivalent definition as the fraction of trials for which
the SINR exceeds a specified threshold Thus, the graphs labeled L = 1, 2,
3, and 4 in Figures 6.29 to 6.31 (and later in Figures 6.33 to 6.36) correspond
to 10.0 dB, 7.7 dB, and 6.5 dB, respectively.
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Figure 6.29: Spatial reliability for and minimum area-mean SNR =
20 dB.

Figure 6.30: Spatial reliability for and minimum area-mean SNR =
20 dB.
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Figure 6.31: Spatial reliability for and minimum area-mean SNR =
25 dB.

The performance of FH/CDMA communications in a mobile peer-to-peer
network is greatly improved by the use of spatial diversity, which usually re-
quires carrier frequencies in excess of 1 GHz. A crucial parameter is the number
of equivalent frequency channels, which can be increased not only by an increase
in the number of frequency channels, but also by a decrease in the duty factor
of the network mobiles. The data modulation method that is most suitable
appears to be MSK or some other form of CPM such as GMSK (Chapter 3).
For these modulations, and the scenario modeled, the spectral splat-
ter from adjacent channels, is not an important factor if the number of active
interferers is much smaller than the number of equivalent channels.

Cellular Networks

In a cellular network, each base station assigns separate directional sector an-
tennas or separate outputs of a phased array to cover disjoint angular sectors
in both the transmitting and receiving modes. Typically, there are three sec-
tors, and radians are in each angular sector. The mobile antennas are
assumed to be omnidirectional. Ideal sector antennas have uniform gain over
the covered sector and negligible sidelobes. With these antennas, only mobiles
in the covered sector can cause multiple-access interference on an uplink from
a mobile to a base station, and the number of interfering signals on the link is
reduced by a factor approximately equal to the number of sectors. Only the
antenna serving a cell sector oriented toward a mobile can cause multiple-access
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interference on a downlink from the controlling base station to a mobile. There-
fore, the number of interfering signals is reduced approximately by a factor on
both the uplinks and downlinks. Practical sector antennas have patterns with
sidelobes that extend into adjacent sectors, but the performance degradation
due to overlapping sectors is significant only for a small percentage of mobile
locations. Ideal sector antennas are assumed in the subsequent simulation.

Spatial diversity may be obtained through the deployment of L antennas
in each mobile and L antenna elements for each sector antenna of each base
station. The antennas are separated from each other enough that the fading of
both the desired signal and the interfering signals at one antenna is independent
of the fading at the other antennas. A few wavelengths are adequate for a mobile
because it tends to receive superpositions of reflected waves arriving from many
random angles. Many wavelengths separation may be necessary for a base
station located at a high position, and polarization diversity may sometimes be
a more practical means of obtaining diversity.

In a cellular network, the frequency-hopping patterns can be chosen so that
at any given instant in time, the frequencies of the mobiles within a cell sector
are all different and, hence, the received signals are all orthogonal if the mobile
transmissions are properly synchronized. Exact synchronization on a downlink
is possible because a common timing is available. The advancing or retarding of
the transmit times of the mobiles enables the arrival times at the base station
of the uplink signals to be synchronized. The switching time or guard time
between frequency-hopping pulses must be large enough to ensure that neither a
small synchronization error nor multipath signals can subvert the orthogonality.
The appropriate transmit times of a mobile can be determined from position
information provided by the Global Positioning System and the known location
of the base station. Alternatively, the transmit times can be determined from
arrival-time measurements at the base station that are sent to the mobile. These
measurements may be based on the adaptive thresholding [33] of the leading
and/or trailing edges of a sequence of frequency-hopping pulses.

Let denote the number of mobiles assigned to a cell sector. To ensure
orthogonality of received signals within a cell sector, a simple procedure is
to generate a periodic frequency-hopping pattern that does not repeat until all
the carrier frequencies in a hopset of size have been used. Mobile
is assigned this pattern with a delay of hop durations, where

If the patterns associated with different sectors are all drawn from a
set of one-coincidence sequences [34], then any two signals from different cells
or sectors will collide in frequency at a base station at most once during the
period of the hopping patterns. However, the use of one-coincidence sequences
throughout a network requires frequency planning, which may be too costly in
some applications.

It is possible to ensure not only the orthogonality of signals in a sector
but also that the received carrier frequencies in any two patterns are separated
by at least where is a positive integer, so that the spectral splatter is
greatly reduced or negligible. Let M – 1 label the hopset
frequencies in ascending order. Suppose that a frequency-hopping pattern is
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generated that does not repeat until all the carrier frequencies in a hopset of
size have been used. When mobile 1 hops to frequency mobile
hops to frequency modulo M. Frequency-hopping signals that
use frequencies determined by this procedure are called separated orthogonal
signals. Choosing will generally be adequate because spectral splatter
from channels that are not adjacent will be nearly always insignificant if a
spectrally compact data modulation is used.

FH/CDMA networks largely avoid the near-far problem by continually chang-
ing the carrier frequencies so that frequency collisions become brief, unusual
events. Thus, power control in a FH/CDMA network is unnecessary, and all
mobiles may transmit at the same power level. When power control is used,
it tends to benefit signals from mobiles far from an associated sector antenna,
while degrading signals from mobiles close to it. Simulation results [35] indicate
that even perfect power control typically increases system capacity by only a
small amount. There are good reasons to forego this slight potential advantage
and not use power control. The required overhead may be excessive. If geolo-
cation of mobiles is done by using measurements at two or more base stations,
then the power control may result in significantly less signal power arriving at
one or more base stations and the consequent loss of geolocation accuracy.

Consider communications between a base station and a mobile assigned
to sector A of a particular cell, as illustrated in Figure 6.32 for a hexagonal
grid of cells. Because of orthogonality, no other signal in sector A will use
the same carrier frequency at the same time and thereby cause interference in
the transmission channel (current frequency channel) of either the uplink or
downlink. Consider another sector covered by the sector antenna of sector A;
an example is sector B. Assuming that an interfering signal may independently
use any frequency in the network hopset with equal probability, the probability
that a mobile in the covered sector produces interference in the transmission
channel of the uplink and degrades a particular symbol is

This equation also gives the probability that a sector antenna serving another
sector that is oriented toward the desired mobile degrades a symbol by pro-
ducing interference in the transmission channel of the downlink. Because of
orthogonality within each sector, no more than one signal from a sector will
produce interference in the transmission channel of either link. A sector with
mobiles that may interfere with communications over an uplink or a sector
with an antenna that may produce interference over a downlink is called an
interfering sector.

It is assumed that M is sufficiently large that we may neglect the fact that
a channel at one of the ends of the hopping band has only one adjacent channel
within the band instead of two. Let if a signal from an interfering sector
uses the transmission channel of communicators in sector A; let if it
does not. The probability that is The interference
signals from a sector that do not enter the transmission channel are assumed
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Figure 6.32: Hexagonal grid of cells. Communicators are in sector A. Sector B
is an interfering sector.

to be randomly distributed among the M – 1 frequency channels excluding the
transmission channel. There are ways to choose the channels with

interference signals. There are ways to choose one of the two adjacent
channels to have an interference signal and ways to choose

channels with interference signals out of the M – 3 channels excluding
both the transmission channel and the adjacent channels. The probability that
an adjacent channel with an interference signal actually receives interference
power is Similarly, there is one way to choose both adjacent channels with
interference signals and ways to choose channels with
interference signals out of M – 3 channels. The probability that exactly one of
the two adjacent channels with interference signals actually receives interference
power is Because of the sector synchronization, either all of the
signals from a sector overlap a desired symbol with probability or none of
them do. Therefore, the probability that a symbol is degraded by interference
in exactly one of the adjacent channels of the communicators is

Similarly, the probability that a symbol is degraded by interference in both
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adjacent channels is

For adjacent-channel interference from within sector A, and are given
by the same equations with to reflect the fact that one of the mobiles
is the communicating mobile.

Suppose that separated orthogonal frequency-hopping patterns with
are used. There is no adjacent-channel interference from sector A. If a signal
from an interfering sector B uses the transmission channel so that
an event with probability then the carrier separation of the signals
generated in sector B ensures that there is no adjacent-channel interference
from sector B. Suppose that no signal from sector B uses the transmission
channel so that Interference in exactly one adjacent channel results if
the transmission channel of the desired signal in sector A, which may be any of

channels, is located next to one of the two end channels of a set of
separated channels being used in sector B, neglecting hopset end effects. It also
results if the transmission channel is located between two separated channels, of
which only one is currently being used in sector B, again neglecting hopset end
effects. Therefore, the probability that a symbol is degraded by interference in
exactly one of the adjacent channels of the communicators is

Interference in both adjacent channels results if the transmission channel is
located between two separated channels of sector B and both are being used,
neglecting hopset end effects. Therefore, the probability that a symbol is de-
graded by interference in both adjacent channels is

If then
In the simulation, the spatial configuration consists of a hexagonal grid of

cells with base stations at their centers. Each cell has a radius from its center
to a corner. A central cell is surrounded by an inner concentric tier of 6 cells
and an outer concentric tier of 12 cells, as depicted in Figure 6.32. Other tiers
are assumed to generate insignificant interference in the central cell. An equal
number of mobiles, each transmitting at the same power level, is located in each
sector and served by that sector’s antenna. This assumption is pessimistic since
slightly improved performance may be possible if a mobile is served by the sector
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antenna providing a signal with the least attenuation, and if hysteresis effects
during handoffs are not too severe. Each signal transmitted by a sector antenna
is allocated the same power. The set of frequency-hopping patterns used in each
sector is assumed to be selected independently of the other sectors. Since the
parameter in (6-216) is equal to the maximum communication range, is
the minimum received area-mean power of a desired signal. The location of
each mobile within a sector is assumed to be uniformly distributed.

In each simulation trial for communications in sector A of the central cell,
the location of the desired mobile is randomly selected according to the uniform
distribution. The selected distance of the desired mobile is substituted into (6-
216) as the value of and then (6-216) is used to randomly select the local-mean
power of the desired signal at the receiver. Each transmitting and receiving
beam produced by a sector antenna is assumed to have a constant gain over its
sector and zero gain elsewhere.

For an uplink of sector A, interference is assumed to arrive from mobiles
within sector A, mobiles in the 6 sectors of the two cells in the inner tier that
were covered by the beam of sector A, and mobiles in the 11 complete sectors
and 2 half-sectors of the five cells in the outer tier completely or partially covered
by the beam. The 2 half-sectors are approximated by an additional complete
sector in the outer tier. Equations (6-222) to (6-226) are used to determine if
a sector contains mobiles that produce power in the transmission channel or in
one or both of the adjacent channels. If the sector does, then the locations of
the three or fewer interfering mobiles are randomly selected according to the
uniform distribution, and their distances from the central cell’s base station are
computed.

For a downlink of sector A, interference is assumed to arrive from the facing
sector antenna of each cell in the two surrounding tiers. Equations (6-222)
to (6-226) are used to determine if a signal generated by an interfering sector
antenna produces power in the transmission channel or the adjacent channels
of the desired signal. If so, then the distance between the sector antenna and
the desired mobile is computed. The angular location of the desired mobile is
randomly selected from a uniform distribution over the radians spanning
sector A.

If the power from an interferer enters the transmission channel, then the
power level is randomly selected according to (6-216), with the appropriate dis-
tance substituted. If the power enters an adjacent channel, then the potential
local-mean power level is first randomly selected via (6-216) and then multiplied
by to determine the net interference power that appears in (6-217). The
shadowing parameter is assumed to be the same for all signals originating
from all cells. The effects of and are determined solely by the min-
imum area-mean SNR. Since only ratios affect the performance, the numerical
value of in the simulation is immaterial and is set equal to unity.

Once the local-mean power levels and the noise power are calculated, the
symbol error probability is calculated with (6-217) and (6-218) subject to the
constraint that Each simulation experiment was repeated for 20,000
trials, with different randomly selected mobile locations in each trial. The
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Figure 6.33: Spatial reliability for uplinks, separated orthogonal hopping, M =
100, and minimum area-mean SNR = 30 dB.

performance measure is the spatial reliability, which is a function of the SINR.
The appropriate value of the threshold E depends on the desired information-bit
error probability and the error-control code.

Figures 6.33 to 6.36 depict the results of four simulation experiments for the
uplinks of a cellular network. The figures plot spatial reliability as a function
of for various values of L, assuming MSK, three sectors, and that

and The value of
results from assuming contiguous frequency channels with the center frequencies
separated by the bandwidth of a frequency channel.

Figure 6.33 provides a baseline with which other figures may be compared.
For this figure, separated orthogonal frequency hopping with M = 100,
and minimum area-mean SNR = 30 dB are assumed. The figure illustrates
the dramatic performance improvement provided by dual spatial diversity when
Rayleigh fading occurs. Further increases in diversity yield diminishing returns.
One can assess the impact of the spectral splatter in this example by setting

and observing the change in spatial reliability. The change is insignifi-
cant because by far the most potentially damaging splatter arises from mobiles
in the same sector as the desired mobile, and the separated orthogonality has
eliminated it.

Figure 6.34 shows the effect of using orthogonal rather than separated or-
thogonal frequency hopping. The performance loss is significant in this example
and becomes more pronounced as M decreases. When separated orthogonal fre-
quency hopping is used and the spectral splatter is negligible, then the spatial
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Figure 6.34: Spatial reliability for uplinks, orthogonal hopping, M = 100, and
minimum area-mean SNR = 30 dB.

reliability depends primarily on the equivalent number of channels.
In Figure 6.33,

Figure 6.35 illustrates the effect of increasing M to 200, and hence increasing
to 500. The uplink capacity of a cellular network is defined as the

maximum number of interfering mobiles per cell for which the spatial reliability
exceeds 0.95. Figures 6.33 and 6.35 and other simulation results indicate that for
three sectors per cell, dual diversity, and the other parameter values selected, the
uplink capacity is for This equation is sensitive
to parameter variations. If the shadowing standard deviation is lowered to
6 dB, it is found that increases by roughly 57 percent. Alternatively, if the
threshold E is raised to 0.04, corresponding to SINR = 7 dB, it is found that

increases by roughly 59 percent.
Figure 6.36 illustrates the sensitivity of the network to a decrease in the

minimum area-mean SNR, which may be due to a change in either or
A substantial performance loss occurs when the minimum area-mean SNR is
reduced to 20 dB, particularly for no spatial diversity or dual diversity. Other
simulation results indicate that an increase in the minimum area-mean SNR
beyond 30 dB barely improves performance.

The downlinks of a cellular network are considered in Figure 6.37, where
the models and parameter values are otherwise the same as in Figure 6.33. The
performance is worse for the downlinks of Figure 6.37 than for the uplinks of
Figure 6.33 because of the relative proximity of some of the interfering sector
antennas to the desired mobile. The downlink capacity which is defined



380 CHAPTER 6. CODE-DIVISION MULTIPLE ACCESS

Figure 6.35: Spatial reliability for uplinks, separated orthogonal hopping, M =
100, and minimum area-mean SNR = 20 dB.

Figure 6.36: Spatial reliability for uplinks, separated orthogonal hopping, M =
200, and minimum area-mean SNR = 30 dB.
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Figure 6.37: Spatial reliability for downlinks, separated orthogonal hopping, M
= 100, and minimum area-mean SNR = 30 dB.

analogously to the uplink capacity, is for A
more realistic comparison of the downlinks and uplinks must take into account
the differences between the high-power amplifiers and low-noise amplifiers in
the base station and those in the mobiles. Assuming a net 10 dB advantage in
the minimum area-mean SNR for the downlinks, Figures 6.35 and 6.36 provide
a performance comparison of the two links. The performance of the downlinks
is still slightly worse if and The difference in performance is
further increased if physical constraints in the mobiles limit the downlinks to L
= 1 or 2 while L = 4 for the uplinks.

Compared with direct-sequence systems, frequency-hopping systems have
a bandwidth advantage in that frequency hopping over a large, possibly non-
contiguous, spectral band is as practical as direct-sequence spreading over a
much smaller, necessarily contiguous, spectral band. Even deprived of its
bandwidth advantage, as well as power control and the use of one-coincidence
codes, FH/CDMA can provide nearly the same multiple-access capacity over
the uplinks as DS/CDMA subject to realistic power-control imperfections. For
a numerical example, consider a cellular network with three sectors, shadowing
standard deviation and due to the voice activity.
A contiguous spectral band of bandwidth W = 1.25 MHz is occupied by the
CDMA signals. The symbol rate is so that the processing gain
is 156.5 for DS/CDMA, and the number of frequency channels for FH/CDMA
with is M = 156. For DS/CDMA, it is assumed that is the
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received power at the base station from all associated mobiles when the power
control is perfect and that the SNR before the despreading is -1 dB. Therefore,
the SNR is 20.94 dB after the despreading. For FH/CDMA without power
control, the minimum area-mean SNR is assumed to be 20.94 dB. The uplink
capacity is calculated as the number of mobiles per cell that can be ac-
commodated while maintaining an SINR above a specified threshold Z with 95
percent probability. For FH/CDMA with dual diversity and Z = 10 dB, it is
found that For DS/CDMA with dual diversity and coherent phase-
shift keying, a comparison of (6-218) with (5-135) and (5-130) indicates that a
comparable performance can be obtained when the SINR is roughly 3 dB less.
Thus, the threshold for DS/CDMA is set at Z = 7 dB. Using (6-131) with Z =
7 dB, it is found that when the power-control error has

For coherent demodulation of a signal that hops over a wide band to be a
practical possibility in a fading environment, either a pilot signal must be avail-
able, turbo or other iterative decoding must be feasible, or the dwell time must
be large enough that a small portion of it can be dedicated to carrier synchro-
nization. In the latter case, the degradation due to the dedicated portion and
the occasional failure to achieve carrier synchronization for a frequency-hopping
pulse must be less than the potential gain due to the coherent demodulation,
which is large. If ideal coherent demodulation is assumed in the preceding ex-
ample so that Z = 7 dB, then it is found that an increase of 80
percent. This uplink capacity is approximately obtained by DS/CDMA with Z
= 7 dB when an impractically low value.

For a specified sectorization, diversity, and waveform, the capacity of a cellu-
lar FH/CDMA network is approximately proportional to the equivalent number
of frequency channels. Thus, a desired capacity can be attained by choosing
a sufficiently large number of frequency channels. A major advantage of fre-
quency hopping is that these channels do not have to be spectrally contiguous
but can be scattered throughout a large spectral band. Another advantage is
that power control is not required. Its absence allows a substantial reduction
of system complexity and overhead cost and facilitates geolocation. Sector-
ization, orthogonality, and dual diversity are invaluable, but higher levels of
diversity offer sharply decreasing gains. If spectral splatter is a problem, sep-
arated orthogonal signaling can be used to eliminate it. The overall limit on
the capacity of a FH/CDMA network appears to be set more by the downlinks
than the uplinks.

6.7 Problems

1. A Gold sequence is constructed from a maximal sequence with charac-
teristic polynomial The second sequence is obtained by
decimation of the maximal sequence by (a) Find one period of
each of the two sequences. Is the second sequence maximal? (b) List the
7 cross-correlation values of this pair of sequences. Show that they are a
preferred pair.
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2. The characteristic polynomials for generating Gold sequences of length
7 are: and (a) What is the
generating function for the maximal Gold sequence generated by
and initial contents 1 00 ? (b) What is the generating function for the
maximal Gold sequence generated by and initial contents 100 ? (c)
What is the general expression for the generating function of an arbitrary
nonmaximal Gold sequence? (d) What is the generating function for
the Gold sequence generated by adding the sequences in (a) and (b)? (e)
What is the value at of the periodic cross correlation between the
sequences in (a) and (b)?

3. A small set of Kasami sequences is formed by starting with the maximal
sequence generated by the characteristic polynomial
After decimation by a second sequence with characteristic polynomial

is found. (a) What is the value of How many sequences
are in the set? What is the period of each sequence? What is the peak
magnitude of the periodic cross-correlation? Draw a block diagram of the
generator of the small Kasami set. (b) Prove whether or not the second
sequence is maximal.

4. The small set of the preceding problem is extended to a large set of Kasami
sequences by a decimation of the original maximal sequence by A third
sequence with characteristic polynomial is
found, (a) What is the value of How many sequences are in the large
set? What is the period of each sequence? What is the peak magnitude
of the periodic cross-correlation? Draw a block diagram of the generator
of the large Kasami set. (b) Prove whether or not the third sequence is
maximal.

5.

6.

7.

8.

9.

For the feedback shift register of Figure 6.2 with initial contents of 002,
list the successive contents during one period of the output sequence.

Derive (6-63) for both rectangular and sinusoidal chip waveforms.

Use bounding and approximation methods to establish (6-84).

Using the methods outlined in the text, derive (6-142) and then (6-143).

Using the methods outlined in the text, derive (6-145) and then (6-146).

10. Consider the decorrelating detector for two synchronous users, (a) Evalu-
ate the two sampled correlator outputs when the received signal is (6-174).
(b) Use the linear transformation matrix to construct a detailed block di-
agram of the receiver. Write equations for the symbol estimates. (c)
Evaluate the noise covariance matrix at the input and at the output of
the linear transformer.

11. Consider the conventional detector for two synchronous users. (a) Eval-
uate as for the three cases: and

(b) For find the noise level that minimizes
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12. Consider the MMSE receiver for two synchronous users. (a) Evaluate the
linear transformation matrix. (b) Construct a detailed block diagram of
the receiver. Write equations for the symbol estimates.

13. Consider an FH/CDMA network with two mobiles that communicate with
a base station. The modulation is ideal DPSK, the receiver uses EGC,
and both the environmental noise and the spectral splatter are negligible.
The propagation conditions are such that one signal arriving at the base
station is 10 dB stronger than the other one during a time interval without
power control. Use (5-133) and (5-169) with L = 1 and L = 2 to assess the
relative merits of introducing power control in the presence of Rayleigh
fading. Assume that that there are many symbols per dwell
interval, and that an acceptable average channel-symbol error probability
is 0.02.
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Chapter 7

Detection of
Spread-Spectrum Signals

This chapter presents a statistical analysis of the unauthorized detection of
spread-spectrum signals. The basic assumption is that the spreading sequence
or the frequency-hopping pattern is unknown and cannot be accurately esti-
mated by the detector. Thus, the detector cannot mimic the intended receiver.

7.1 Detection of Direct-Sequence Signals

The results of Section 2.3 indicate that the maximum magnitude of the power
spectral density of a direct-sequence signal with a random spreading sequence is

where is the symbol energy and G is the processing gain. A
spectrum analyzer usually cannot detect a signal with a power spectral density
below that of the background noise, which has spectral density Thus, a
received is an approximate necessary, but not sufficient, condition
for a spectrum analyzer to detect a direct-sequence signal. If
detection may still be probable by other means. If not, the direct-sequence
signal is said to have a low probability of interception.

Ideal Detection

Detection theory leads to various detection receivers depending on precisely
what is assumed to be known about the signal to be detected. We make the
idealized assumptions that the chip timing of the spreading waveform is known
and that whenever the signal is present, it is present during the entire observa-
tion interval. The spreading sequence is modeled as a random binary sequence,
which implies that a time shift of the sequence by a chip duration corresponds
to the same stochastic process. Thus, to account for uncertainty in the chip
timing, one might partition a chip interval of known duration among several
parallel detectors each of which implements a different chip timing.



388 CHAPTER 7. DETECTION OF SPREAD-SPECTRUM SIGNALS

Consider the detection of a direct-sequence signal with PSK modulation:

where S is the average signal power, is the known carrier frequency, and is
the carrier phase assumed to be constant over the observation interval

The spreading waveform which subsumes the random data modulation,
is given by (2-76) with the modeled as a random binary sequence. To
determine whether a signal is present based on the observation of the
received signal, classical detection theory requires that one choose between the
hypothesis that the signal is present and the hypothesis that the signal
is absent. Over the observation interval, the received signal under the two
hypotheses is

where is zero-mean, white Gaussian noise with two-sided power spectral
density

The coefficients in the expansion of the observed waveform in terms of
orthonormal basis functions constitute the received vector
Let denote the vector of parameter values that characterize the signal to be
detected. The average likelihood ratio [1], which is compared with a threshold
for a detection decision, is

where is the conditional density function of r given hypothesis and
the value of is the conditional density function of r given hypothesis

and is the expectation over the random vector The coefficients in
the expansion of the Gaussian process in terms of the orthonorrnal basis
functions are uncorrelated and, hence, statistically independent. Since each
coefficient is Gaussian with variance

where the are the coefficients of the signal. Substituting these equations
into (7-3) yields

Expansions in the orthonormal basis functions indicate that if the
average likelihood ratio may be expressed in terms of the signal waveforms as
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where is the energy in the signal waveform over the observation interval of
duration T.

If N is the number of chips, each of duration received in the observation
interval, then there are equally likely patterns of the spreading sequence.
For coherent detection, we set in (7-1), substitute it into (7-7), and then
evaluate the expectation to obtain

where is chip of pattern and

These equations indicate how is to be calculated by the ideal coherent
detector. The factor is irrelevant in the sense that it can be merged
with the threshold level with which the average likelihood ratio is compared.

For the more realistic noncoherent detection of a direct-sequence signal,
the received carrier phase is assumed to be uniformly distributed over
Substituting (7-1) into (7-7), using a trigonometric expansion, dropping the ir-
relevant factor that can be merged with the threshold level, and then evaluating
the expectation over the random spreading sequence, we obtain

where

and denotes the expectation with respect to
The modified Bessel function of the first kind and order zero is given by

Since the cosine is a periodic function and the integration is over the same
period, we may replace with for any in (7-13). A trigonometric
expansion with and then yields
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Using this relation and the uniform distribution of the average likelihood
ratio of (7-10) becomes

where

These equations define the optimum noncoherent detector for a direct-sequence
signal. The presence of the desired signal is declared if (7-15) exceeds a threshold
level.

The implementation of either the coherent or noncoherent optimum detector
would be very complicated, and the complexity would grow exponentially with
N, the number of chips in the observation interval. Calculations [2] indicate
that the ideal coherent and noncoherent detectors typically provide 3 dB and 1.5
dB advantages, respectively, over the far more practical wideband radiometer,
which is analyzed subsequently. The use of four or two wideband radiometers,
respectively, can compensate for these advantages with less complexity than the
optimum detectors. Furthermore, implementation losses and imperfections in
the optimum detectors are likely to be significant.

Radiometer

Among the many alternatives [3] to the optimum detector, the radiometer is
notable in that it requires virtually no detailed information about the signals
to be detected other than their rough spectral location. Not even whether the
modulation is binary or quaternary is required. Suppose that the signal to be
detected is approximated by a zero-mean, white Gaussian process. Consider
two hypotheses that both assume the presence of a zero-mean, bandlimited
white Gaussian process over an observation interval Under
only noise is present, and the one-sided power spectral density over the signal
band is while under both signal and noise are present, and the power
spectral density is over this band. Using orthonormal basis functions as
in the derivation of (7-4) and (7-5) and ignoring the effects of the bandlimiting,
we find that the conditional densities are approximated by

Calculating the likelihood ratio, taking the logarithm, and merging constants
with the threshold, we find that the decision rule is to compare
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to a threshold. If we let and use the properties of orthonormal basis
functions, then we find that the test statistic is

where the assumption of bandlimited processes is necessary to ensure the finite-
ness of the statistic. A device that implements this test statistic is called an
energy detector or radiometer. Although it was derived for a bandlimited white
Gaussian signal, the radiometer is a reasonable configuration for determining
the presence of unknown deterministic signals.

A radiometer may have one of the three equivalent forms shown in Figure
7.1. Consider the system of Figure 7.1 (a), which gives a direct realization of (7-
19). The bandpass filter is assumed to be an ideal rectangular filter that passes
the deterministic desired signal with negligible distortion while limiting the
noise. The filter has center frequency bandwidth W, and produces the
output

where is bandlimited white Gaussian noise with a two-sided power spectral
density equal to Squaring and integrating taking the expected value,
and observing that is a zero-mean process, we obtain

which indicates that the radiometer output is an unbiased estimate of the total
energy after the filtering.

A bandlimited deterministic signal can be represented as (Appendix C.1)

Since the spectrum of is confined within the filter passband, and
have frequency components confined to the band The Gaussian
noise emerging from the bandpass filter can be represented in terms of quadra-
ture components as (Appendix C.2)

where and have flat power spectral densities, each equal to over
Substituting (7-23) and (7-22) into (7-20), squaring and integrating

and assuming that and we obtain

A straightforward calculation verifies that the baseband radiometer of Figure
7.1(b) also produces this test statistic.



392 CHAPTER 7. DETECTION OF SPREAD-SPECTRUM SIGNALS

Figure 7.1: Radiometers: (a) passband, (b) baseband with integration, and (c)
baseband with sampling at rate 1/W and summation.

The sampling theorems for deterministic and stochastic processes (Appendix
C.3) provide expansions of and that facilitate a statistical
performance analysis. For example,

where Since the Fourier transform of the sinc function
is a rectangular function, using Parseval’s theorem from Fourier analysis and
evaluating the resulting integral yields the approximations:

We define where denotes the integer part of Substituting
expansions similar to (7-25) into (7-24) and then using the preceding approxi-

The rapid decline of sinc for implies that
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mations, we obtain

where it is always assumed that The error introduced by (7-28) at
and the error introduced by (7-26) at are both nearly 1/2W. For

other values of the errors caused by the approximations are much less than
1/2W and decrease as TW increases. Equation (7-29) becomes an increasingly
accurate approximation of (7-24) as increases. A test statistic proportional to
(7-29) can be derived for the baseband radiometer of Figure 7.1(c) and the sam-
pling rate 1/W without invoking the sampling theorems and the accompanying
approximations.

Since is a zero-mean Gaussian process and has a power spectral den-
sity that is symmetrical about and are zero-mean, independent
Gaussian processes (Appendix C.2). Thus, and are zero-
mean, independent Gaussian random variables. Equation (C-40) implies that
the power spectral densities of and are

The associated autocorrelation functions are

which indicates that is statistically independent of
and similarly for and Therefore, (7-29) becomes

where the and the are statistically independent Gaussian random
variables with unit variances and means

Thus, has a noncentral chi-squared distribution (Appendix D.1)
with degrees of freedom and a noncentral parameter
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The probability density function of is

where is the modified Bessel function of the first kind and order defined
by (D-11), and and Using the series
expansion in of the Bessel function and then setting in (7-36), we
obtain the probability density function for Z in the absence of the signal:

where is the gamma function defined by (D-12). The direct application of
the statistics of Gaussian variables to (7-32) yields

Equation (7-38) approaches the exact result of (7-21) as TW increases.
Let denote the threshold level to which V is compared. A false alarm

occurs if when the signal is absent. Application of (7-37) yields the
probability of a false alarm:

where the incomplete gamma function is defined as

and Integrating (7-40) by parts times yields the series

Since correct detection occurs if when the signal is present, (7-36)
indicates that the probability of detection is

The generalized Marcum Q-function is defined as
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where is a nonnegative integer, and and are nonnegative real numbers.
A change of variables in (7-43) and the substitution of (7-35) yield

The threshold is usually set to a value that ensures a specified To
derive an easily computed closed-form expression for in terms of we first
approximate (7-40). When and the central limit theorem
for the sum of independent, identically distributed random variables with finite
means and variances indicates that the distribution of V given by (7-32) is
approximately Gaussian. Using (7-38) and (7-39) with and the Gaussian
distribution, we obtain

Inverting this equation, we obtain in terms of and Accordingly, if
the estimate of is and is specified, then the threshold should be

where denotes the inverse of the function Q( ). In the absence of a
signal, (7-21) indicates that Thus, can be estimated
by averaging sampled radiometer outputs when it is known that no signal is
present.

In some applications, one might wish to specify the false alarm rate, which is
the expected number of false alarms per unit time, rather than If successive
observation intervals do not overlap each other except possibly at end points,
then the false alarm rate is

For TW > 100, the generalized Marcum Q-function in (7-45) is difficult to
compute and to invert. If V is approximated by a Gaussian random variable,
then (7-38) and (7-39) imply that

Figure 7.2 depicts versus for radiometers with and
Equations (7-47) and (7-49) are used to calculate and respectively.

The figure illustrates the increased energy required to maintain a specified as
TW increases. The figure also illustrates the impact of the imperfect estimation
of when and When the estimation uncertainty is
enough that the required value of for a specified is
increased considerably.
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Figure 7.2: Probability of detection versus for wideband radiometer with
and various values of TW. Solid curves are the dashed

curve is for

The sensitivity of the radiometer to errors in when TW is large, which
has been observed experimentally [3], is due to the fact that E[V] contains a bias
term equal to and var(V) contains a term equal to as indicated
by (7-38) and (7-39). Setting high enough that is certain ensures
that will be large enough that the required is achieved regardless of the
exact value of It is important that is as close to unity as possible to
avoid degrading when TW is large. Consequently, the radiometer output
due to noise alone, which provides should be observed often enough that

closely tracks the changes in that might result from small changes in the
circuitry or the environmental noise.

When is specified, the value of necessary to achieve a specified
value of may be obtained by inverting (7-45), which is computationally
difficult but can be closely approximated by inverting (7-49). Assuming that

and we obtain the necessary value:

According to (7-47), the condition is satisfied if and
The substitution of (7-47) into (7-50) and a rearrangement of terms
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Figure 7.3: Energy-to-noise-density ratio versus TW for wideband radiometer
with and various values of and

yields

where

As TW increases, the significance of the third term in (7-51) decreases, while
that of the second term increases if Figure 7.3 shows versus TW
for and various values of and

If the signal duration is then the detected signal power is
Equation (7-51) indicates that the detected power necessary to achieve specified
values of and either or F is

This equation indicates that increasing the observation interval T decreases the
required power only if Although a single radiometer is incapable of de-



398 CHAPTER 7. DETECTION OF SPREAD-SPECTRUM SIGNALS

termining whether one or more than one signal has been detected, narrowband
interference can be rejected by the methods of Section 2.7.

7.2 Detection of Frequency-Hopping Signals

An interception receiver intended for the detection of frequency-hopping signals
may be designed according to the principles of classical detection theory or
according to more intuitive ideas. The former approach is useful in setting
limits on what is possible, but the latter approach is more practical and flexible
and less dependent on knowledge of the characteristics of the frequency-hopping
signals.

Ideal Detection

To enable a tractable analysis, the idealized assumptions are made that the
hopset is known and that the hop epoch timing, which includes the hop-
transition times is known. Consider slow frequency-hopping signals with CPM
(FH/CPM), which includes continuous-phase MFSK. The signal over the
hop interval is

where S is the average signal power, is the carrier frequency associated with
the hop, is the CPM component that depends on the data sequence

and is the phase associated with the hop. The parameters
and the components of are modeled as random variables. The derivation
of the average likelihood ratio (7-7) is still valid, but the vector has different
parameters as components.

The M carrier frequencies in the hopset are assumed to be equally likely
over a given hop and statistically independent from hop to hop for hops.
Dividing the integration interval in (7-7) into parts, averaging over the M
frequencies, and dropping the irrelevant factor 1/M, we obtain

where the condition in the argument of indicates that the carrier frequency
over the hop is the expectation is over the remaining random parameters

and and is the energy per hop. The decomposition in (7-56) indicates
that the general structure of the detector has the form illustrated in Figure 7.4.
The average likelihood ratio of (7-56) is compared with a threshold to determine
whether a signal is present. The threshold may be set to ensure the tolerable
false-alarm probability when the signal is absent. Assuming that is
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Figure 7.4: General structure of optimum detector for frequency-hopping signal
with hops and M frequency channels.

the same for every hop and carrier frequency, we may drop the irrelevant factor
in (7-57), which only affects the threshold level.

Each of the data sequences that can occur during a hop is assumed to be
equally likely. For coherent detection of FH/CPM [5], we set in (7-55),
substitute it into (7-57), and then evaluate the expectation to obtain

where irrelevant factors have been dropped. This equation indicates how
in Figure 7.4 is to be calculated for each hop and each frequency channel
corresponding to carrier frequency Equations (7-56) and (7-58) define the
optimum coherent detector for any slow frequency-hopping signal with CPM.

For noncoherent detection of FH/CPM [4], the received carrier phase is
assumed to be uniformly distributed over during a given hop and statis-
tically independent from hop to hop. Substituting (7-55) into (7-57), averaging
over the random phase in addition to the sequence statistics, and dropping
irrelevant factors yields

where

and

Equations (7-56), (7-59), (7-60), and (7-61) define the optimum noncoherent
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Figure 7.5: Optimum noncoherent detector for slow frequency hopping with
CPM: (a) basic structure of frequency channel for hop with parallel cells for

candidate data sequences, and (b) cell for data sequence

detector for any slow frequency-hopping signal with CPM. The means of pro-
ducing (7-59) is diagrammed in Figure 7.5.

A major contributor to the huge computational complexity of the optimum
detectors is the fact that with data symbols per hop and an alphabet size

there may be data sequences per hop. Consequently, the com-
putational burden grows exponentially with However, if it is known that
the data modulation is CPFSK with a modulation index where is a
positive integer, the computational burden has a linear dependence on
Even then, the optimum detectors are extremely complex when the number of
frequency channels is large.

The preceding theory may be adapted to the detection of fast frequency-
hopping signals with MFSK as the data modulation. Since there is one hop per
MFSK channel symbol, the information is embedded in the sequence of carrier
frequencies. Thus, we may set and in (7-58) and (7-59).
For coherent detection, (7-58) reduces to

Equations (7-56) and (7-62) define the optimum coherent detector for a fast
frequency-hopping signal with MFSK. For noncoherent detection, (7-59), (7-60),
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and (7-61) reduce to

Equations (7-56), (7-63), and (7-64) define the optimum noncoherent detector
for a fast frequency-hopping signal with MFSK. Performance analyses for the
detectors of fast frequency-hopping signals are given in [5].

Instead of basing detector design on the average likelihood ratio, one might
apply a composite hypothesis test in which the presence of the signal is detected
while simultaneously one or more of the unknown parameters under hypothe-
sis are estimated. To simultaneously detect the signal and determine the
frequency-hopping pattern, (7-56) is replaced by the generalized likelihood ratio:

where the equations and subsystems for remain the same. Equation
(7-65) indicates that a maximum-likelihood estimate of is made for each
hop. Thus, an optimum test to determine the frequency channel occupied
by the frequency-hopping signal is conducted during each hop. Although the
detection performance is suboptimal when the generalized likelihood ratio is
used to design a detector, this detector provides an important signal feature
and is slightly easier to implement and analyze [4], [5].

Wideband Radiometer

Among the many alternatives to the optimum detector, two of the most useful
are the wideband radiometer and the channelized radiometer. The wideband
radiometer is notable in that it requires virtually no detailed information about
the parameters of the frequency-hopping signals to be detected other than their
rough spectral location. The price paid for this robustness is much worse per-
formance than more sophisticated detectors that exploit additional information
about the signal [4]. The channelized radiometer is designed to explicitly ex-
ploit the spectral characteristics of frequency-hopping signals. In its optimal
form, the channelized radiometer gives a performance nearly as good as that of
the ideal detector. In its suboptimal form, the channelized radiometer trades
performance for practicality and the easing of the required a priori information
about the signal to be detected.

Channelized Radiometer

A channelized radiometer comprises K parallel radiometers, each of which has
the form of Figure 7.1 and monitors a disjoint portion of the hopping band of a
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Figure 7.6: Channelized radiometer.

frequency-hopping signal, as depicted in Figure 7.6. The largest of the sampled
radiometer outputs is compared to a threshold stored in a comparator. If
the threshold is exceeded, the comparator sends a 1 to the summer; otherwise
it sends a 0. If the hop dwell epochs are at least approximately known, the
channelized radiometer may improve its detection reliability by adding the 1’s
produced by N consecutive comparator outputs corresponding to multiple fre-
quency hops of the signal to be detected. A signal is declared to be present if the
sum V equals or exceeds the integer which serves as a second threshold. The
two thresholds are are jointly optimized for the best system performance.

Ideally, K = M, the number of frequency channels in a hopset, but many
fewer radiometers may be a practical or economic necessity; if so, each ra-
diometer may monitor frequency channels, where Because
of insertion losses and the degradation caused by a power divider, it is unlikely
that many more than 30 parallel radiometers are practical. An advantage of
each radiometer covering many frequency channels is the reduced sensitivity to
imprecise knowledge of the spectral boundaries of frequency channels. Since it
is highly desirable to implement the parallel radiometers with similar circuitry,
their bandwidths are assumed to be identical henceforth.

To prevent steady interference in a single radiometer from causing false
alarms, the channelized radiometer must be able to recognize when one of its
constituent radiometers produces an output above the threshold for too many
consecutive samples. The channelized system may then delete that constituent
radiometer’s output from the detection algorithm or it may reassign the ra-
diometer to another spectral location.

In the subsequent analysis of the channelized radiometer of Figure 7.6, the
observation interval of the parallel radiometers, which is equal to the sampling
interval, is assumed to equal the hop duration The effective observation
time of the channelized radiometer, should be less than the mini-
mum expected message duration to avoid processing extraneous noise. Let
denote the probability that a particular radiometer output at the sampling time
exceeds the comparator threshold when no signal is present. This probability
is given by the right-hand side of (7-42). Therefore, a derivation similar to that
of (7-47) indicates that if the sampling times are aligned with the frequency
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transitions, then the threshold necessary to achieve a specified is

where B is the bandwidth of each of the frequency channels encompassed
by a radiometer passband. The probability that at least one of the K parallel
radiometer outputs exceeds is

assuming that the channel noises are statistically independent because the ra-
diometer passbands are disjoint. The probability of a false alarm of the chan-
nelized radiometer is the probability that the output V equals or exceeds a
threshold

To solve this equation for in terms of we observe that the incomplete
beta function is defined as

where is the beta function and In terms of this function,
(7-68) becomes

The inverse of the incomplete beta function, which we denote by may
be easily computed by Newton’s method or approximations [6]. Therefore, if

(7-66), (7-67), and (7-70) may be combined to determine the
approximate threshold necessary to achieve a specified

where it is assumed that does not vary across the hopping band and, hence,
there is one and one for all the parallel radiometers.

The number of sampling intervals during which the signal is present is
where is the intercepted signal duration. For simplicity, it is assumed

that is an integer. Furthermore, we assume that at most a single radiometer
receives significant signal energy during each sampling interval. Let denote
the probability that a particular radiometer output exceeds the threshold when
a signal is present in that radiometer. Derivations similar to those of (7-45)
and (7-49) 38.88 imply that
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where and is the energy per hop dwell time. Let denote
the probability that the threshold is exceeded by the sampled maximum of
the parallel radiometer outputs. It is assumed that when a signal is present it
occupies any one of M frequency channels with equal probability and that all
radiometer passbands are within the hopping band. Consequently, the signal
has probability of being in the passband of a particular radiometer and
probability of being in the passband of some radiometer. Since a
detection may be declared in response to a radiometer that does not receive the
signal,

where the second term vanishes if the radiometer passbands cover the hopping
band so that The probability of detection associated with the
observation interval when the signal is actually present during of the
hop intervals is

If at least the minimum duration of a frequency-hopping signal is known, the
overestimation of N might be avoided so that The detection proba-
bility then becomes

A suitable, but not optimal, choice for the second threshold is when
the full hopping band is monitored by the channelized radiometer. In general,
numerical results indicate that

is a good choice for partial-band monitoring.
If detection decisions are made in terms of fixed observation intervals of

duration and successive intervals do not overlap except possibly at
end points, then the false alarm rate defined in (7-48) is an appropriate design
parameter. This type of detection is called block detection, and the false-alarm
rate is

To prevent the risk of major misalignment of the observation interval with the
time the signal is being transmitted, either block detection must be supple-
mented with hardware for arrival-time estimation or the duration of successive
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observation intervals should be less than roughly half the anticipated signal
duration.

A different approach to mitigating the effect of a misalignment, called binary
moving-window detection, is for the observation interval to be constructed by
dropping the first sampling interval of the preceding observation interval and
adding a new sampling interval. A false alarm is considered to be a detection
declaration at the end of the new interval when no signal is actually present.
Thus, a false alarm occurs only if the comparator input for an added sampling
interval exceeds the threshold, the comparator input for the discarded sampling
interval did not, and the count for the preceding observation interval was
Therefore, the probability of a false alarm is

where

It follows that the false-alarm rate is

Since the right-hand side of this equation is proportional to the first term of
the series in (7-68),

This inequality indicates that the false alarm rate is nearly times as large for
moving-window detection as it is for block detection. Thus, moving-window
detection usually requires a higher comparator threshold for the same false-
alarm rate and, hence, more signal power to detect a frequency-hopping signal.
However, moving-window detection with inherently limits the
misalignment between the occurrence of the intercepted signal and some obser-
vation interval. If the signal occurs during two successive obsevation intervals,
then for one of the observation intervals, the misalignment is not more than

As an example, it is assumed that there are M = 2400 frequency channels,
the signal duration is known, and there is no misalignment so that
Block detection is used so that (7-77) is applicable,
and Figure 7.7 plots versus for the channelized radiometer
with full hopping-band coverage so that and several values of
K and N. The figure also shows the results for a wideband radiometer with

and N = 150 or 750. It is observed that
the channelized radiometer with K = 30 is much better than the wideband
radiometer when N = 150, but loses its advantage for when N =
750. The substantial advantage of the channelized radiometer with K = M and

is apparent. As N increases, the channelized radiometer can retain its
advantage over the wideband radiometer by increasing K accordingly.
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Figure 7.7: Probability of detection versus for channelized and wideband
radiometers with full coverage,
and

Figure 7.8: Probability of detection for channelized radiometer with different
percentages of coverage,

and
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In Figure 7.8, and K = 30, but and are variable.
The fraction of the hopping band monitored by the channelized radiometer is
denoted by the monitored fraction It is observed that when

there is only a small performance loss for the channelized
radiometer despite the fact that The relative insensitivity of
the channelized radiometer to small errors in is a major advantage over the
wideband radiometer. The figure illustrates the following trade-off when K and
M are fixed: as decreases, fewer frequency channels are monitored, but less
noise enters a radiometer. The net result is beneficial when is reduced to 20
percent. However, the figure indicates that for percent or 5 percent, the
hopping-band coverage becomes inadequate to enable a greater than 0.995
and 0.96, respectively, regardless of Thus, there is a minimum fraction
of the hopping band that must be monitored to ensure a specified

As (7-72) indicates that Therefore, (7-73) implies
that Suppose that is raised to a sufficiently high
level that and, hence, If detection is to be accomplished for
the minimum monitored fraction, then is the best choice for the second
threshold. For and yields

Since (7-82) implies that even if the realization of a
specified requires the minimum monitored fraction

Thus, if and then Many other aspects
of the channelized radiometer, including the effects of timing misalignments,
are examined in [6].

7.3 Problems
1. If the form and the parameters of a signal to be detected are known,

optimum detection in white Gaussian noise can be accomplished by
an ideal matched filter or correlator. Let denote the received sig-
nal and T denote the observation interval. (a) Write an expression for
the sampled output of an ideal matched filter. (b) This output is com-
pared to a threshold to determine whether the target signal is present.
Suppose that it is present and coincides with an observation interval. As-
suming that is zero-mean and has two-sided power spectral density

and that the signal energy is what are the mean and the vari-
ance of (c) What is the probability of detection What is the
probability of false alarm Express in terms of (d) What is
the value of necessary to ensure specified values of and

2. An unbiased estimate of may be obtained from the wideband radiome-
ter output when the target signal is absent. How long must the obser-
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vation interval be if it is required that 3 standard deviations of the
estimate do not exceed

3.

4.

5.

6.

7.

The receiver operating characteristic (ROC) is a traditional plot depicting
versus for various values of TW or The ROC may be calcu-

lated from (7-49) and (7-46). Plot the ROC for the wideband radiometer
with and no noise-measurement error. Let TW = 104 and
105.

Derive (7-50) using the method described in the text.

Find conditions under which (7-51) indicates that a negative energy is
required. What is the physical implication of this result?

Show that the first two terms in (7-54) give the intercepted power neces-
sary to achieve and the specified value of either or F.

Consider a channelized radiometer that is to detect a frequency-hopping
signal with N = 1 hop. (a) Find in terms of (b) If

and is small, derive the required for
specified values of and
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Appendix A

Inequalities

A.1 Jensen’s Inequality

A function defined on an open interval I is convex if

for in I and Suppose that has a continuous, nondecreasing
derivative on I. The inequality is valid if or 1. If and

Simplifying this result, we obtain (A-1). If a similar analysis again
yields (A-1). Thus, if has a continuous, nondecreasing derivative on I, it
is convex.

Lemma. If is a convex function on the open interval I, then

for all in I, where is the left derivative of
Proof: If then substituting into (A-1)

gives

which yields
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If and then (A-1) implies that

which yields

Inequality (A-3) indicates that the ratio decreases monoton-
ically as from above and (A-4) implies that this ratio has a lower bound.
Therefore, the right derivative exists on I. If then (A-1)
with implies that

which yields

This inequality indicates that the ratio increases monotoni-
cally as from below and (A-4) implies that this ratio has an upper bound.
Therefore, the left derivative exists on I, and (A-4) yields

Taking the limits as and in (A-3) and (A-5), respectively, and
then using (A-6), we find that (A-2) is valid for all in I.

Jensen’s inequality. If X is a random variable with a finite expected
value E[X ], and is a convex function on an open interval containing the
range of X, then

Proof: Set  and in (A-2), which gives
Taking the expected values of the random variables on

both sides of this inequality gives Jensen’s inequality.

A.2 Chebyshev’s Inequality

Consider a random variable X with distribution Let denote
the expected value of X and P[A] denote the probability of event A. From
elementary probability it follows that
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Therefore,

Let denote the variance of X. If then (A-8) becomes
Chebyshev’s inequality:

As an application, let Then Chebyshev’s inequality indicates that
Therefore, the probability that a random variable is

within three standard deviations of its mean value is at least 8/9.
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Appendix B

Adaptive Filters

The input and weight vectors of an adaptive filter are

where T denotes the transpose and the components of the vectors may be real
or complex. The filter output is the scalar

The derivation of the optimal filter weights depends on the specification of a
performance criterion or estimation procedure. A number of different estimators
of the desired signal can be implemented by linear filters that produce (B-2).
Unconstrained estimators that depend only on the second-order moments of x
can be derived by using performance criteria based on the mean square error
or the signal-to-noise ratio of the filter output. Similar estimators result from
using the maximum-a-posteriori or the maximum-likelihood criteria, but the
standard application of these criteria includes the restrictive assumption that
any interference in x has a Gaussian distribution.

The difference between the desired response and the filter output is the
error signal:

The most widely used method of estimating the desired signal is based on the
minimization of the expected value of the squared error magnitude, which is
proportional to the mean power in the error signal. Let H denote the conjugate
transpose and an asterisk denote the conjugate. We obtain

where
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is the N × N Hermitian correlation matrix of x and

is the N × 1 cross-correlation vector. If we assume that when
then must be positive definite.

In terms of its real part and its imaginary part a complex weight
vector is defined as

The gradient of with respect to the real-valued vector x is
defined as the column vector with components Let

and denote the N × 1 gradient vectors with respect to and
respectively. The complex gradient with respect to W is defined as

Let and denote the components of and
respectively. Letr denote a real-valued function of W and W*.

Regarding W and W* as independent variables, we assume that is an analytic
function of each when W* is held constant and an analytic function of each

when W is held constant. We define as the gradient with respect to
W*. Since

The chain rule of calculus then implies that

Thus,

This result allows a major simplification in calculations.
Since and (B-4) yield

Since and imply that a necessary condition
for the optimal weight is obtained by setting Thus, if is
positive definite and hence nonsingular, the necessary condition provides the
Wiener-Hopf equation for the optimal weight vector:

To prove the optimality, we substitute into (B-4) to obtain the mean
square error
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Equations (B-4), (B-13), and (B-14) imply that

Since is positive definite, this equation shows that the Wiener-Hopf equa-
tion provides a unique optimal weight vector and that (B-14) gives the minimum
mean square error.

Since the computational difficulty of inverting the correlation matrix is con-
siderable when the number of weights is large, and insofar as time-varying signal
statistics may require frequent computations, adaptive algorithms not entailing
matrix inversion have been developed. Suppose that a performance measure,
P(W), is defined so that it has a minimum value when the weight vector has its
optimal value. In the method of steepest descent, the weight vector is changed
along the direction of the negative gradient of the performance measure. This
direction gives the largest decrease in P(W). If the signals and weights are
complex, separate steepest-descent equations can be written for the real and
imaginary parts of the weight vector. Combining these equations, we obtain

where the adaptation constant controls the rate of convergence and the sta-
bility. For complex signals and weights, a suitable performance measure is

The application of (B-12) and (B-16) leads to the steepest-
descent algorithm:

This ideal algorithm produces a deterministic sequence of weights and does
not require a matrix inversion, but it requires the knowledge of and
However, the possible presence of interference means that is unknown. In
the absence of information about the direction of the desired signal, is also
unknown.

The least-mean-square (LMS) algorithm is obtained when is estimated
by is estimated by and (B-3) is applied in (B-17).
The LMS algorithm is

For a fixed value of the product is an unbiased estimate of
According to this algorithm, the next weight vector is obtained by

adding to the present weight vector the input vector scaled by the amount of
error. It can be shown that, for an appropriate value of the mean of the weight
vector converges to the optimal value given by the Wiener-Hopf equation.
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Appendix C

Signal Characteristics

C.1 Bandpass Signals

The Hilbert transform provides the basis for signal representations that facilitate
the analysis of bandpass signals and systems. The Hilbert transform of a real-
valued function is

Since its integrand has a singularity, the integral is defined as its Cauchy prin-
cipal value:

provided that the limit exists. Since (C-1) has the form of the convolution of
with results from passing through a linear filter with an

impulse response equal to The transfer function of the filter is given by
the Fourier transform

where This integral can be rigorously evaluated by using contour
integration. Alternatively, we observe that since is an odd function,

where is the signum function defined by
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Let and let Equations (C-l) and (C-4) and
the convolution theorem imply that

Because results from passing through two successive filters, each
with transfer function

provided that G(0) = 0.
Equation (C-6) indicates that taking the Hilbert transform corresponds to

introducing a phase sift of radians for all positive frequencies and radians
for all negative frequencies. Consequently,

These relations can be formally verified by taking the Fourier transform of the
left-hand side of (C-8) or (C-9), applying (C-6), and then taking the inverse
Fourier transform of the result. If for and the same
method yields

A bandpass signal is one with a Fourier transform that is negligible except
for where and is the center
frequency. If the bandpass signal is often called a narrowband signal.
A complex-valued signal with a Fourier transform that is nonzero only for
is called an analytic signal.

Consider a bandpass signal with Fourier transform The ana-
lytic signal associated with is defined to be the signal with Fourier
transform

which is zero for and is confined to the band when
The inverse Fourier transform of (C-12) and (C-6) imply that

The complex envelope of is defined by

where is the center frequency if is a bandpass signal. Since the Fourier
transform of is which occupies the band the complex
envelope is a baseband signal that may be regarded as an equivalent lowpass
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representation of Equations (C-13) and (C-14) imply that may be
expressed in terms of its complex envelope as

The complex envelope can be decomposed as

where and are real-valued functions. Therefore, (C-15) yields

Since the two sinusoidal carriers are in phase quadrature, and are
called the in-phase and quadrature components of respectively. These
components are lowpass signals confined to

Applying Parseval’s identity from Fourier analysis and then (C-6), we obtain

Therefore,

where denotes the energy of the bandpass signal

C.2 Stationary Stochastic Processes

Consider a stochastic process that is a zero-mean, wide-sense stationary
process with autocorrelation

where denotes the expected value of The Hilbert transform of this
process is the stochastic process defined by

where it is assumed that the Cauchy principal value of the integral exists for
almost every sample function of This equation indicates that is a
zero-mean stochastic process. The zero-mean processes and are jointly
wide-sense stationary if their correlation and cross-correlation functions are not
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functions of A straightforward calculation using (C-21) and (C-20) gives the
cross correlation

A similar derivation using (C-7) yields the autocorrelation

Equations (C-20), (C-22), and (C-23) indicate that and are jointly
wide-sense stationary.

The analytic signal associated with is the zero-mean process defined by

The autocorrelation of the analytic signal is defined as

where thee asterisk denotes the complex conjugate. Using (C-20) and (C-22)

which establishes the wide-sense stationarity of the analytic signal.
Since (C-20) indicates that is an even function, (C-22) yields

which indicates that and are uncorrelated. Equations (C-23), (C-26),
and (C-27) yield

The complex envelope of or the equivalent lowpass representation of
is the zero-mean stochastic process defined by

where is an arbitrary frequency usually chosen as the center or carrier fre-
quency of The complex envelope can be decomposed as

where and are real-valued, zero-mean stochastic processes.
Equations (C-29) and (C-30) imply that

Substituting (C-24) and (C-30) into (C-29) we find that

to (C-25), we obtain
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The autocorrelations of and are defined by

and

Using (C-32) and (C-33) and then (C-20), (C-23), and (C-24) and trigonometric
identities, we obtain

which shows explicitly that if is wide-sense stationary, then and
are wide-sense stationary with the same autocorrelation function. The variances
of and are all equal because

A derivation similar to that of (C-36) gives the cross correlation

Equations (C-36) and (C-38) indicate that and are jointly wide-sense
stationary. Equations (C-28) and (C-38) give

which implies that and are uncorrelated.
Equation (C-21) indicates that is generated by a linear operation on

Therefore, if is a zero-mean Gaussian process, and are
zero-mean jointly Gaussian processes. Equations (C-32) and (C-33) then imply
that and are zero-mean jointly Gaussian processes. Since they are
uncorrelated, and are statistically independent, zero-mean Gaussian
processes.

The power spectral density of a signal is the Fourier transform of its auto-
correlation. Let and denote the power spectral densities of

and respectively. We assume that occupies the band
and that Taking the Fourier

transform of (C-36), using (C-6), and simplifying, we obtain

Thus, if is a passband process with one-sided bandwidth W, then and
are baseband processes with one-sided bandwidths W/2. This property

and the statistical independence of and when is Gaussian make
(C-31) a very useful representation of

Similarly, the cross-spectral density of and can be derived by
taking the Fourier transform of (C-38) and using (C-6). After simplification,
the result is



422 APPENDIX C. SIGNAL CHARACTERISTICS

If is locally symmetric about then

Since a power spectral density is a real-valued, even function,
Equation (C-42) then yields for

Therefore, (C-41) gives which implies that

for all Thus, and are uncorrelated for all and if is a zero-
mean Gaussian process, then and are statistically independent
for all

The autocorrelation of the complex envelope is defined by

where the 1/2 is inserted so that

which follows from (C-28) and (C-29). Substituting (C-30) into (C-44) and
using (C-36) and (C-38), we obtain

The power spectral density of which we denote by can be derived
from (C-46), (C-41), and (C-40). If occupies the band

and then

Equations (C-36) and (C-38) yield

Equations (C-48) and (C-46) imply that

We expand the right-hand side of this equation by using the fact that
Taking the Fourier transform and observing that is a real-

valued function, we obtain

If is locally symmetric about then (C-47) and (C-42) imply that
and (C-50) becomes
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Power Spectral Densities of Communication Signals

Many useful communication signals are modeled as having the form

where is an independent random variable that is uniformly distributed over
The modulations have the form

where is a sequence of independent, identically distributed random vari-
ables, with probability 1/2 and with probability 1/2,
is a pulse waveform, T is the pulse duration, is the relative pulse offset, and

is an independent random variable that is uniformly distributed over the
interval (0, T) and reflects the arbitrariness of the origin of the coordinate sys-
tem. Since is independent of when it follows that

Therefore, the autocorrelation of is

Expressing the expected value as an integral over the range of and changing
variables, we obtain

This equation indicates that and are wide-sense stationary processes
with the same autocorrelation.

If the sequences and are statistically independent, then the
autocorrelation of is

where and are the autocorrelations of and respec-
tively. This equation indicates that is wide-sense stationary. If the sample
functions of and have Fourier transforms that vanish for
then (C-10), (C-11), (C-24), and (C-29) indicate that the complex envelope of

is
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Equation (C-44) and the independence of and imply that the auto-
correlation of is

The power spectral density of is the Fourier transform of From
(C-58) and (C-55), we obtain the density

where is the Fourier transform of
In a quadriphase-shift-keying (QPSK) signal, and are usually

modeled as independent random binary sequences with pulse duration
where is a bit duration. The component amplitude is where
is the energy per bit. If is rectangular with unit amplitude over
then (C-59) yields the power spectral density for QPSK:

which is the same as the density for PSK. For a binary minimum-shift-keying
(MSK) signal with the same component amplitude,

Therefore, the power spectral density for MSK is

C.3 Sampling Theorems

Consider the Fourier transform of an absolutely integrable function
The periodic extension of is defined as

where W is the period of and it is assumed that the series converges
uniformly. Suppose that has a piecewise continuous derivative so that it
can be represented as a uniformly convergent complex Fourier series:

where the Fourier coefficient is given by
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Substituting (C-63) into (C-65) and interchanging the order of the summation
and the integration, which is justified because of the uniform convergence, we
obtain

We change variables and observe the to obtain

Since is absolutely integrable, the last integral is the inverse Fourier trans-
form of evaluated at and

Substituting (C-68) into (C-64) yields one version of the Poisson sum formula:

where the series converges uniformly. If we define T = 1/W, then the right-
hand side of (C-69) is proportional to the discrete-time Fourier transform of the
sequence

Suppose that the Fourier transform vanishes outside a frequency band:

It follows that

Since for (C-71) and (C-69) and the interchange of a
summation and integration yield

Evaluating this integral and defining sinc we obtain the sam-
pling theorem for deterministic signals:

where the samples are separated by T = 1/W.
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Consider a wide-sense stationary stochastic process with autocorrela-
tion and power spectral density which is the Fourier transform of

then it follows from the sampling theorem that

For an arbitrary constant the Fourier transform of is
which is zero for Therefore, (C-75) can be applied to

which gives

We define the stochastic process

The mean square difference between and is

Since the repeated use of (C-76) yields

which states that the mean square difference between and approaches
zero. With equality interpreted in the sense of this limit, the sampling theorem
for stationary stochastic process is

C.4 Direct-Conversion Receiver

Receivers often extract the complex envelope of the desired signal before apply-
ing it to a matched filter. The main components in a direct-conversion receiver

If
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are shown in Figure C.1(a). The spectra of the received signal the input to
the baseband filter and the complex envelope
are depicted in Figure C.1(b). Let denote the impulse response of the
filter. The output of the filter is

Using (C-15) and the fact that where denotes the
complex conjugate of we obtain

The second term is the Fourier transform of evaluated at frequency
Assuming that and have transforms confined to

their product has a transform confined to and the second term in
(C-82) vanishes. If the Fourier transform of is a constant over the passband
of then (C-82) implies that is proportional to as desired. Figure
C.1(c) shows the direct-conversion receiver for real-valued signals.

The direct-conversion receiver alters the character of the noise enter-
ing it. Suppose that is a zero-mean, white Gaussian noise process with
autocorrelation

where denotes the Dirac delta function, and is the two-sided noise-
power spectral density. The complex-valued noise at the output of Figure C.1 (a)
is

Since it is a linear function of is zero-mean and its real and imagi-
nary parts are jointly Gaussian. The autocorrelation of a wide-sense stationary,
complex-valued process is defined as

Substituting (C-84), interchanging the expectation and integration operations,
using (C-83) to evaluate one of the integrals, and then changing variables, we
obtain

If the filter is an ideal bandpass filter with Fourier transform
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Figure C.1: Envelope extraction: (a) direct-conversion receiver, (b) associated
spectra, and (c) implementation with real-valued signals.
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then evaluating the Fourier transform of both sides of (C-86) gives

Thus, if the subsequent filters have narrower bandwidths than W or if
then the autocorrelation of z(t) may be approximated by

This approximation permits major analytical simplifications. Equations (C-84)
and (C-83) imply that

Reasoning similar to that following (C-82) leads to

A complex-valued stochastic process that satisfies (C-91) is called a cir-
cularly symmetric process. Let and denote the real and imaginary
parts of respectively. Setting in (C-91) and (C-85), and then using
(C-86), Parseval’s identity, and (C-87), we obtain

Thus, and are zero-mean, independent Gaussian processes with the
same variance.
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Appendix D

Probability Distributions

D.1 Chi-Square Distribution
Consider the random variable

where the are independent Gaussian random variables with means
and common variance The random variable Z is said to have a noncen-
tral chi-square distribution with N degrees of freedom and a noncentral
parameter

To derive the probability density function of Z, we first note that each
has the density function

From elementary probability, the density of is

where and Substituting (D-3) into (D-4),
expanding the exponentials, and simplifying, we obtain the density

The characteristic function of a random variable X is defined as
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where and is the density of X. Since is the conjugate
Fourier transform of

From Laplace or Fourier transform tables, it is found that the characteristic
function of is

The characteristic function of a sum of independent random variables is equal
to the product of the individual characteristic functions. Because Z is the sum
of the the characteristic function of Z is

where we have used (D-2). From (D-9), (D-7), and Laplace or Fourier transform
tables, we obtain the probability density function of noncentral random
variable with N degrees of freedom and a noncentral parameter

where is the modified Bessel function of the first kind and order This
function may be represented by

where the gamma function is defined as

The probability distribution function of a noncentral random variable is

If N is even so that N/2 is an integer, then and a change of variables
in (D-13) yield
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where the generalized Marcum Q-function is defined as

and is an integer. Since it follows that is
an integral with finite limits that can be numerically integrated. However,
the numerical computation of the generalized Q-function is simplified if it is
expressed in alternative forms [2]. The mean, variance, and moments of Z can
be easily obtained by using (D-1) and the properties of independent Gaussian
random variables. The mean and variance of Z are

where is the common variance of the
From (D-9), it follows that the sum of two independent noncentral ran-

dom variables with and degrees of freedom, noncentral parameters
and respectively, and the same parameter is a noncentral random
variable with degrees of freedom and noncentral parameter

D.2 Central Chi-Square Distribution
To determine the probability density function of Z when the have zero
means, we substitute (D-11) into (D-10) and then take the limit as We
obtain

Alternatively, this equation results if we substitute into the characteristic
function (D-9) and then use (D-7). Equation (D-18) is the probability density
function of a central random variable with N degrees of freedom. The
probability distribution function is

If N is even so that N/2 is an integer, then integrating this equation by parts
N/2 – 1 times yields

By direct integration using (D-18) and (D-12) or from (D-16) and (D-17), it is
found that the mean and variance of Z are
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D.3 Rice Distribution
Consider the random variable

where and are independent Gaussian random variables with means
and respectively, and a common variance The probability distribution
function of R must satisfy where is a random
variable with two degrees of freedom. Therefore, (D-14) with N = 2 implies
that

where This function is called the Rice probability distribution
function. The Rice probability density function, which may be obtained by
differentiation of (D-24), is

The moments of even order can be derived from (D-23) and the moments of the
independent Gaussian random variables. The second moment is

In general, moments of the Rice distribution are given by an integration over
the density in (D-25). Substituting (D-11) into the integrand, interchanging
the summation and integration, changing the integration variable, and using
(D-12), we obtain a series that is recognized as a special case of the confluent
hypergeometric function. Thus,

where the confluent hypergeometric function is defined as

The Rice density function often arises in the context of a transformation
of variables. Let and represent independent Gaussian random variables
with common variance and means and zero, respectively. Let R and
be implicitly defined by and Then (D-23) and

describes a transformation of variables. A straightforward
calculation yields the joint density function of R and
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The density function of the envelope R is obtained by integration over Since
the modified Bessel function of the first kind and order zero satisfies

this density function reduces to the Rice density function (D-25). The density
function of the angle is obtained by integrating (D-29) over Completing
the square of the argument in (D-29), changing variables, and defining

where erfc( ) is the complementary error function, we obtain

Since (D-29) cannot be written as the product of (D-25) and (D-32), the random
variables R and are not independent.

Since the density function of (D-25) must integrate to unity, we find that

where and are positive constants. This equation is useful in calculations
involving the Rice density function.

D.4 Rayleigh Distribution
A Rayleigh-distributed random variable is defined by (D-23) when and
are independent Gaussian random variables with zero means and a common
variance Since where Z is a central random variable
with two degrees of freedom, (D-20) with N = 2 implies that the Rayleigh
probability distribution function is

The Rayleigh probability density function, which may be obtained by differen-
tiation of (D-34), is

By a change of variables in the defining integral, any moment of R can be
expressed in terms of the gamma function defined in (D-12). Therefore,
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Certain properties of the gamma function are needed to simplify (D-36).
An integration by parts of (D-12) indicates that A direct
integration yields Therefore, when is an integer,
Changing the integration variable by substituting in (D-12), it is found
that

Using these properties of the gamma function, we obtain the mean and the
variance of a Rayleigh-distributed random variable:

Since and have zero means, the joint probability density function of
the random variables and is given by (D-29)
with Therefore,

Integration over yields (A-35), and integration over yields the uniform prob-
ability density function:

Since (D-39) equals the product of (D-35) and (D-40), the random variables R
and are independent. In terms of these random variables, and

A straightforward calculation using the independence and densi-
ties of R and verifies that and are zero-mean, independent, Gaussian
random variables with common variance Since the square of a Rayleigh-
distributed random variable may be expressed as where and

are zero-mean, independent, Gaussian random variables with common vari-
ance has the distribution of a central chi-square random variable with 2
degrees of freedom. Therefore, (D-18) with N = 2 indicates that the square of
a Rayleigh-distributed random variable has an exponential probability density
function with mean

D.5 Exponentially Distributed Random Variables
Consider the random variable

where the are independent, exponentially distributed random variables
with unequal positive means The exponential probability density func-
tion of is
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A straightforward calculation yields the characteristic function

Since Z is the sum of independent random variables, (D-43) implies that its
characteristic function is

To derive the probability density function of Z, (D-7) is applied after first
expanding the right-hand side of (D-44) in a partial-fraction expansion. The
result is

where

and A direct integration and algebra yields the probability
distribution function

Equations (D-45) and (D-12) give

When the are equal so that then
Therefore, the probability density function of Z is

which is a special case of the gamma density function. Successive integration
by parts yields

From (D-49) and (D-12), the mean and variance of Z are found to be
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Chip waveform, 56
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Code rate, 4
Code tracking, 183, 209–214, 226

delay-locked loop, 210–212
early-late-gate loop, 226
tau-dither loop, 212–214

Code-aided methods, 125
Code-division multiple access(CDMA)

definition, 293
Code-shift keying(CSK), 106–108
Coding gain, 16
Coherence bandwidth, 245
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Coherence time, 238
Complementary error function, 12
Complex envelope, 418
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Concatenated code, 40–42
Confluent hypergeometric function,
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Constraint length, 28
Continuous-phase modulation

continuous-phase frequency-shift
keying(CPFSK), 144

Continuous-phase modulation(CPM),
143–150

Gaussian MSK(GMSK), 145
minimum-shift keying(MSK), 144

Convex function, 409
Convolutional code, 27–37

catastrophic, 32
costraint length, 28
generating function, 36
generators, 29
linear, 28
minimum free distance, 30
punctured, 34
sequential decoding, 30
state, 29
systematic, 28
trellis diagram, 29
Viterbi decoder, 30

Convolver, 103
Cross-correlation

aperiodic, 302
continuous-time partial, 302
parameter, 148
periodic, 297

Cycle swallower, 175

Decimation, 299
Decision-directed demodulator, 112
Decoder

bounded-distance, 2
complete, 2
erasing, 6
incomplete, 2
reproducing, 6

sequential, 30
Viterbi, 30

Decoding
errors-and-erasures, 13
hard-decision, 6
soft-decision, 12

Dehopping, 131
Delay spread, 243
Despreading, 57
Deviation ratio, 143
Differential phase-shift keying(DPSK),

108, 146–148
Direct-conversion receiver, 426–429
Diversity, 247

frequency, 247
path, 275
polarization, 247
spatial, 373
time, 247

Divider, 171–173
dual-modulus, 172

Doppler
factor, 346
shift, 233
spectrum, 238, 247
spread, 238

Double-dwell system, 191–193
Double-mix-divide system, 166
Downlink, 327
Downlink capacity, 379
DS/CDMA, 294–361
Duplexing, 328
Duty factor, 362
Dwell interval, 131

Energy detector, see Radiometer
Equal-gain combining, 261–269
Erasure, 12
Error probability

channel-symbol, 6
decoded-symbol, 9
decoding failure, 7
information-bit, 8
information-symbol, 8, 9
undetected, 7
word, 6
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Error rate
decoded-symbol, 9
information-symbol, 9

Euler function, 73

Fading, 232–245
fast, 238
slow, 238

Fading rate, 240–241
False alarm, 394

rate, 395
Fast frequency hopping, 132
Feedback shift register, 60
FH/CDMA, 362–382
Fourth-generation cellular systems,
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Fractional power, 144
Frequency channel, 129
Frequency discriminator, 149
Frequency synthesizer, 166–176

digital, 167–170
direct, 166–167
fractional-N, 175–176
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Galois field, 62
Gamma function, 432
Gaussian approximation

improved, 313
standard, 313

Gaussian interference, 83–86
Global System for Mobile(GSM), 146,

328
Gold sequence, 299–300

Hadamard matrix, 296
Hamming bound, 3
Hamming distance, 1
Hard-decision decoding, 6–12
Hilbert transform, 417
Hop duration, 129
Hop interval, 129
Hop rate, 129
Hopping band,129
Hopset, 129

Hybrid systems, 151–152

Ideal detection, 387–390, 398–401
Incomplete beta function, 403
Incomplete gamma function, 394
Intercell interference factor, 332
Interference canceller, 358–361

multistage, 360
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successive, 358

Interleaving, 39–40
block, 39
convolutional, 40
helical, 40
odd-even separation, 44
pseudorandom, 40
S-random, 40

IS-95, 317, 328, 344, 345
Isotropic scattering, 238

Jensen’s inequality, 409–410

Kalman-Bucy filter, 119, 121
Kasami sequence, 300–301
Key, 77, 131

Least-mean-square(LMS) algorithm,
115, 415

Likelihood function, 13
Linear span, 131
Local-mean power, 231
Lock detector, 193
Lognormal distribution, 232
Low probability of interception, 387

MAP algorithm, 45
Marcum Q-function, 218

generalized, 394
Matched filter, 100–112

bandpass, 101
convolver, 103
SAW transversal filter, 102

Matched-filter acquisition, 184–185,
192, 214–221

Maximal sequence, 65–74
preferred pair, 299

Maximal-ratio combining, 251–261
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Message privacy, 56
Metric, 13, 18–24

AGC, 96
correlation, 351
maximum-likelihood, 95
Rayleigh, 20, 285
self-normalization, 140
variable-gain, 137
white-noise, 97

Minimum distance, 2
Minimum free distance, 30
Modified Bessel function, 20, 432
Moment generating function, 25
Mother code, 296
Moving-window detection, 405
MSK, see continuous-phase modu-

lation
Multicarrier direct-sequence system,

318–321
Multicarrier DS/CDMA system, 324–

325
Multipath, 232

diffuse components, 236
intensity profile, 246
intensity vector, 322
resolvable components, 244, 275
specular components, 236
unresolvable components, 234

Multiple access, 293
Multiple frequency-shift keying(MFSK),

21–24, 134–142
Multiuser detector, 349–361

adaptive, 358
decorrelating, 352–356
for frequency hopping, 360
interference canceller, 358–360
minimum mean-square error(MMSE),

356–358
optimum, 350–352

Nakagami density, 236
Narrowband interference, 113–125
Near-far problem, 327
Network capacity, 317
Noncoherent combining loss, 136
Noncoherent correlator, 183

Nonlinear filter, 119–125
Nonlinear generator, 75–77

OFDM, see orthogonal frequency-
division multiplexing

One-coincidence sequence, 373
Optimal array, 247–251
Orthogonal frequency-division mul-

tiplexing(OFDM), 325
Orthogonal variable-spreading-factor

codes, 296
Outage, 333
Output threshold test, 157

Packing density, 10
Partial-band interference, 152–160
Peer-to-peer communications, 328
Peer-to-peer network, 366–372
Penalty time, 189, 193–194
Periodic autocorrelation, 65–69
Phase stripper, 252
Poisson sum formula, 425
Polynomial, 70–74

characteristic, 70
generating function, 70
irreducible, 71
primitive, 72

Power control, 328–329, 336–339, 343–
349

closed-loop, 328
open-loop, 328

Power spectral density, 421, 423–
424

Probability densities, see Probabil-
ity distributions

Probability distributions, 431–437
central chi-square, 433
chi-square, 431
exponential, 436
lognormal, 232
noncentral chi-square, 431
Rayleigh, 435
Rice, 434

Processing gain, 56, 77
overall, 321

Product code, 49
Pseudonoise sequence, 68
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Psi function, 330
Pulsed interference, 91–99

q-ary symmetric channel, 11
Quaternary system, 86–91

balanced, 88
dual, 86

Radiometer, 97, 390–398, 401–407
Rake receiver, 275–281, 322–324

fingers, 277
Random binary sequence, 58–60

autocorrelation, 60
Ratio threshold test, 158
Rayleigh distribution, 435–436
Rayleigh metric, 20, 266, 285
Recirculation loop, 109–111
Reed-Solomon code, 154–160
Rewinding time, 188
Rice distribution, 434–435
Ricean fading, 236
Riemann zeta function, 330

Sampling theorems, 424–426
SAW elastic convolver, 103–105
SAW transversal filter, 102
Scrambling code, 327
Search strategy

broken-center Z, 187
equiexpanding, 195
expanding-window, 195
nonuniform alternating, 196
uniform, 187
uniform alternating, 196
Z, 194

Selection diversity, 270–274
generalized, 279

Self-interference, 203
Separated orthogonal signals, 374
Serial-search acquisition, 185–208, 221–

226
Shadowing, 231

factor, 232
Shift-register sequence, 60–77

linear, 60
maximal, 65

Side information, 136, 156 Turbo code, 42–52, 161–165
Triangular function, 60

161
Trellis-coded modulation, 37–38, 51,
Transmission security, 131

119
Transform-domain processor, 117–
Tone interference, 80–83

117
Time-domain adaptive filter, 114–
Time of day (TOD), 131

350
Third-generation cellular systems, 345,
Test symbols, 156

Switching time, 131
Switch-and-stay combining, 274
Step size, 186

method, 415
Steepest descent
Spreading waveform, 56, 58–77

short, 74
long , 74
linear complexity, 75

Spreading sequence, 56, 58–77
Spreading factor, 296
Spectral splatter, 142
Spectral notching, 131
Spatial reliability, 370
Spatial diversity, 241–245

algorithm
Soft-in soft-out algorithm, see SISO

141
Soft-decision decoding, 12–16, 136–
Slow frequency hopping, 133

SOVA, 47
max-log-MAP, 47
log-MAP, 47

SISO algorithm, 47
Singleton bound, 5
Single-dwell system, 192

321–324
Single-carrier direct-sequence system,
Sinc function, 392
Signum function, 417
Signature sequences, 294
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BCH, 48
block, 48
channel reliability factor, 47
convolutional, 44
error floor, 45
extrinsic information, 46
product, 50
serially concatenated, 49
system latency, 45
trellis-coded modulation, 51

Uncorrelated scattering, 245
Union bound, 15
Uplink, 327
Uplink capacity, 340, 379

Walsh sequence, 296
Weight

distribution, 5
Hamming, 5
information-weight spectrum, 31
total information, 93

Welch bound, 298
Wideband direct-sequence system,

317–326
Wiener-Hopf equation, 115, 251, 414




