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Chapter 1 

Signals and Signal  Spaces 

The goal of this  chapter is to give a brief overview of methods for char- 
acterizing signals and for describing their  properties. We  will start with  a 
discussion of signal spaces such as Hilbert spaces, normed and  metric spaces. 
Then,  the energy density and correlation function of deterministic signals will 
be discussed. The remainder of this  chapter is dedicated to random signals, 
which are encountered in almost all areas of signal processing. Here, basic 
concepts  such as stationarity,  autocorrelation,  and power spectral  density will 
be discussed. 

1 .l Signal Spaces 

1.1.1 Energy and Power Signals 

Let  us consider a  deterministic  continuous-time  signalz(t), which  may be real 
or  complex-valued. If the energy of the signal defined  by 

is finite, we call it  an energy  signal. If the energy is infinite, but  the mean 
power 
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is finite, we call z(t)  a power  signal. Most signals encountered  in  technical 
applications belong to these  two classes. 

A second important classification of signals is their  assignment to  the signal 
spaces L,(a, b ) ,  where a and b are  the interval  limits  within which the signal 
is considered. By L,(a, b)  with 1 5 p < m we understand that class of signals 
z for which the integral I” lX(t)lP dt 

to be evaluated  in the Lebesgue  sense  is finite. If the interval  limits a and b 
are expanded to infinity, we also  write Lp(m)  or LP@). According to this 
classification, energy signals defined on the real  axis are elements of the space 
L2 (R). 

1.1.2 Normed  Spaces 

When  considering  normed  signal  spaces, we understand signals as  vectors that 
are elements of a linear  vector  space X .  The norm of a vector X can somehow 
be  understood  as the length of X. The  notation of the norm is 1 1 ~ 1 1 .  

Norms must  satisfy the following three axioms, where a is an  arbitrary 
real  or complex-valued scalar,  and 0 is the null vector: 

Norms for Continuous-Time Signals. The most common norms for 
continuous-time signals are  the L, norms: 

(1.6) 

For p + m, the norm (1.6) becomes llxllL, = ess sup Iz(t)l. 
astsb 

For p = 2 we obtain  the well-known Euclidean norm: 

Thus,  the signal  energy  according to (1.1) can also be expressed in the form 
00 

X E L2(IR). (1.8) 
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Norms for Discrete-Time Signals. The spaces lp(nl,  n2) are  the discrete- 
time equivalent to  the spaces Lp(a ,  b ) .  They  are  normed  as follows: 

(1.9) 

For p + CO, (1.9) becomes l l z l l e o o  = sup;Lnl Ix(n)I. 
For p = 2 we obtain 

Thus,  the energy of a discrete-time  signal z (n) ,  n E Z can  be expressed as: 

n=-cc 

1.1.3 Metric  Spaces 

A function that assigns a real  number to two elements X and y of a  non-empty 
set X is called a  metric  on X if it satisfies the following  axioms: 

(i)  d(x, y) 2 0, d(x, y) = 0 if and only if X = y,  (1.12) 

(ii) d(X,Y) = d(Y,X), (1.13) 
(iii) d(x, z )  I d(x, y) + d(y, z) .  (1.14) 

The  metric  d(x, y) can  be  understood  as the distance between X and y. 

A normed  space is also a metric  space.  Here, the metric  induced by the 
norm is the norm of the difference vector: 

Proof (norm + metric). For d ( z ,  g) = 112 - 2 / 1 1  the validity of (1.12) imme- 
diately follows  from (1.3).  With a = -1, (1.5)  leads to 1 1 2  - 2 / 1 1  = 119 - zlI, 
and (1.13) is also satisfied. For  two vectors z = a - b and y = b - c the 
following  holds according to (1.4): 

Thus, d(a, c)  I d(a, b) + d(b,  c ) ,  which means that also (1.14) is satisfied. 0 
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An example is the Eucladean  metric induced by the Euclidean  norm: 

Accordingly, the 
stated: 

1/2 

I 4 t )  - Y,,,l2dt] , 2, Y E L z ( a ,  b ) .  (1.16) 

following distance  between discrete-time signals can  be 

Nevertheless, we also find metrics which are not associated with  a  norm. 
An example is the Hamming  distance 

n 

d(X,Y)  = C K X k  + Y k )  mod 21, 
k=l 

which states  the number of positions where two  binary  code words X = 
[Q, 22,. . . ,X,] and y = [ y l ,  y ~ ,  . . . , yn] with xi, yi E (0, l} differ (the space of 
the code words  is not a linear vector space). 

Note. The normed spaces L, and l ,  are so-called Banach  spaces, which 
means that they  are normed linear spaces which are complete  with  regard to 
their  metric d(z ,  y) = 1 1 2  - y 1 1 .  A space is complete if any  Cauchy  sequence of 
the elements of the space converges within the space. That is, if 1 1 2 ,  - z,ll + 
0 as n and m + m, while the limit of X, for n + 00 lies  in the space. 

1.1.4 Inner Product Spaces 

The signal spaces most frequently considered are  the spaces L2(a ,  b )  and 
&(nl, n2); for these spaces inner products  can  be  stated. An inner product 
assigns a complex  number to two signals z ( t )  and y ( t ) ,  or z(n) and y ( n ) ,  
respectively. The  notation is (X, y). An inner product  must satisfy the 
following axioms: 

(i) k , Y >  = ( Y A *  (1.18) 
( 4  (aa:+Py,z) = Q ( X , . Z ) + P ( Y , 4  (1.19) 

(iii) ( 2 , ~ )  2 0, ( 2 , ~ )  = 0 if and only if X = 0.  (1.20) 

Here, a and ,B are  scalars with a,@ E (E, and 0 is the null vector. 
Examples of inner products  are 

(1.21) 
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and 

5 

The inner product (1.22) may also be  written  as 

where the vectors are  understood as column vectors:' 

More general definitions of inner products include weighting functions or 
weighting matrices. An inner product of two continuous-time signals z( t )  and 
y ( t )  including weighting  can  be defined as 

where g ( t )  is a real weighting function with g ( t )  > 0, a 5 t 5 b. 

The general definition of inner products of discrete-time signals is 

where G is a real-valued, Hermitian, positive definite weighting matrix.  This 
means that GH = GT = G, and all eigenvalues Xi  of G must  be larger than 
zero. As can easily be verified, the inner products (1.25) and (1.26) meet 
conditions (1.18) - (1.20). 

The  mathematical rules for inner products basically correspond to those 
for ordinary  products of scalars. However, the order in which the vectors occur 
must  be observed: (1.18) shows that changing the order leads to a  conjugation 
of the  result. 

As equation (1.19) indicates,  a scalar prefactor of the left argument may 
directly precede the inner product: (az, y) = a (2, y). If  we want a prefactor 

lThe superscript T denotes  transposition.  The  elements of a and g may  be  real  or 
complex-valued. A superscript H ,  as  in (1.23), means  transposition  and  complex  conjug& 
tion. A vector aH is also  referred to as  the Herrnitian of a. If a  vector is to be  conjugated 
but  not to be  transposed, we write a* such that aH = [ = * l T .  
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of the  right  argument to precede the inner product,  it must  be  conjugated, 
since (1.18) and (1.19) lead to 

Due to (1.18), an inner product ( 2 , ~ )  is always real: ( 2 , ~ )  = !I&{(%, z)}. 

By defining an inner product we obtain  a norm  and also a  metric.  The 
norm  induced by the inner product is 

We will prove this in the following along  with the Schwarz  inequality, which 
states 

I b , Y >  I I l 1 4  I lY l l .  (1.29) 

Equality in (1.29)  is  given only if X and y are linearly dependent,  that is, if 
one vector is a multiple of the  other. 

Proof (inner product + nom).  From (1.20) it follows immediately that 
(1.3)  is satisfied. For the norm of az ,  we conclude  from (1.18) and (1.19) 

llazll = ( a z , a z y  = [ la12 (2,z) ]1/2 = la1 (2,2)1/2 = la1 l l z l l .  

Thus, (1.5)  is also proved. 

Now the expression 1 1 2  + will be considered. We have 

Assuming the Schwarz inequality is correct, we conclude 

1 1 2  + Y1I2 I 1 1 4 1 2  + 2 l l 4 l  I lYll + 11YIl2 = ( 1 1 4  + llYl l)2* 

This shows that also (1.4) holds. 0 

Proof of the  Schwarz  inequality. The validity of the equality sign in the 
Schwarz inequality (1.29)  for linearly dependent vectors can easily be proved 
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by substituting z = a y  or y = az,  a E C, into (1.29) and  rearranging  the 
expression obtained, observing  (1.28). For example, for X = a y  we have 

In  order to prove the Schwarz inequality for linearly independent vectors, 
some vector z = z + a y  will be considered. On the basis of (1.18) - (1.20) we 
have 

0 I ( G . 4  

= (z + a y ,  X + a y )  

= ( z , z + a y ) + ( a y , z + a y )  

= ( ~ , ~ ) + a * ( ~ , Y ) + a ( Y , ~ ) + a a * ( Y , Y ) .  

(1.30) 

This also holds for the special a (assumption: y # 0) 

and we get 

The second and  the  fourth  term cancel, 

(1.32) 

Comparing (1.32) with (1.28) and (1.29) confirms the Schwarz inequality. 0 

Equation (1.28) shows that  the inner products given in (1.21) and (1.22) 
lead to  the norms (1.7) and  (1.10). 

Finally, let us remark that a linear space  with an inner product which  is 
complete with respect to  the induced  metric is called a Hilbert  space. 
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1.2 Energy  Density  and  Correlation 

1.2.1 Continuous-Time Signals 

Let  us reconsider (1.1): 

E, = S__lz(t)l2 dt .  
00 

According to Parseval’s theorem, we may also write 

E, = - 

(1.33) 

(1.34) 

where X(W) is the Fourier transform of ~ ( t ) . ~  The  quantity Iz(t)I2 in (1.33) 
represents the  distribution of signal energy  with respect to time t ;  accordingly, 
IX(w)I2 in (1.34) can  be viewed as  the  distribution of energy  with respect to 
frequency W. Therefore IX(w)I2 is called the energy  density  spectrum of z ( t ) .  
We use the following notation 

= IX(w)I2. (1.35) 

The energy density spectrum S,“,(w) can also be  regarded as  the Fourier 
transform of the so-called autocorrelation function 

cc 
r,”,(r) = z* ( t )  z(t + r )  dt = X*(-r) * X(.). (1.36) 

J -cc 

We have cc 
S,”,(W) = l c c r f z ( ~ )  e-jwT dr .  (1.37) 

The correspondence is denoted as S,”,(w) t) r,”,(r). 
The  autocorrelation function is a measure  indicating  the similarity between 

an energy signal z(t)  and  its time-shifted variant zr ( t )  = z ( t  + r) .  This  can 
be seen from 

d ( 2 , 2 A 2  = 1 1 2  - 4 2 

= (2,4 - (2,G) - ( G ,  2) + ( G ,  2,) 
= 2 1 1 2 1 1 2  - 2 % { ( G ,  2)) 

= 2 1 1 2 1 1 2  - 2 %{?fx(r)}.  

(1.38) 

With increasing correlation the  distance decreases. 

21n this  section, we freely use the  properties of the Fourier transform. For  more  detail 
on the Fourier  transform and Parseval’s theorem, see Section 2.2. 
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Similarly, the cross  correlation function 

cc 
r,",(r) = [ y(t + r )  z*(t)  d t  

J -00 

and  the corresponding cross  energy density spectrum 

F c c  

S,",(W) = r,E,(r) C j W T  d r ,  I-, 

(1.39) 

(1.40) 

(1.41) 

are  introduced, where .Fy(.) may  be viewed as a measure of the similarity 
between the two signals z ( t )  and y T ( t )  = y(t + 7). 

1.2.2 Discrete-Time Signals 

All  previous considerations are applicable to discrete-time signals z (n)  as well. 
The signals z(n) may be real or complex-valued.  As in the continuous-time 
case, we start  the discussion with the energy of the signal: 

00 

(1.42) 

According to Parseval's  relation for the discrete-time Fourier transform, we 
may  alternatively  compute E, from X(ejw):3 

(1.43) 

The  term IX(ejW)12 in (1.43) is called the energy density spectrum of the 
discrete-time signal. We use the notation 

S,E,(ejw) = IX(ejW)12. (1.44) 

The energy  density  spectrum S,",(ej") is the discrete-time Fourier transform 
of the autocorrelation  sequence 

00 

?-:,(m) = c z*(n) z(n + m). (1.45) 

3See Section 4.2 for  more detail on the discrete-time Fourier transform. 
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We have 
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M c 
5 

m=-cc 
(1.46) 

r,E,(m) = G I T S F z ( e j w )  1 "  ejwm dw. 

Note that  the energy density may also be viewed as  the  product X ( z ) X ( z ) ,  
evaluated  on the  unit circle ( z  = e j w ) ,  where X ( z )  is the  z-transform of z(n).  

The definition of the cross  correlation  sequence is 

cc 

r,E,(m) = c y(n+m) z*(n). (1.47) 
n=-cc 

For the corresponding cross  energy  density  spectrum the following holds: 

cc 

m=-m 

that is 

(1.48) 

(1.49) 

1.3 Random  Signals 

Random signals are encountered in all areas of signal processing. For example, 
they  appear  as  disturbances in the transmission of signals. Even the  trans- 
mitted  and consequently also the received signals in telecommunications are 
of random  nature, because only random signals carry information. In  pattern 
recognition, the  patterns  that  are  to be distinguished are modeled as  random 
processes. In speech, audio,  and  image coding, the signals to be  compressed 
are modeled as such. 

First of all,  one distinguishes between random  variables and random 
processes. A random variable is obtained by assigning a real or  complex 
number to each  feature mi from a feature set M .  The  features (or events) 
occur  randomly.  Note that  the  features themselves  may also be  non-numeric. 

If one assigns a function iz(t)  to each  feature mi, then  the  totality of all 
possible functions is called a stochastic  process. The  features occur  randomly 
whereas the assignment mi + i z ( t )  is deterministic. A function i z ( t )  is  called 
the realization of the  stochastic process z ( t ) .  See Figure 1.1 for an  illustration. 
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t "  
3 \ 1 

(b) 

Figure 1.1. Random  variables (a) and random  processes (b). 

1.3.1 Properties of Random  Variables 

The  properties of a real  random  variable X are thoroughly  characterized by 
its cumulative  distribution function F,(a) and also by its probability  density 
function (pdf) p,(.). The  distribution  states the probability P with which 
the value of the random  variable X is smaller than or equal to a given  value 
a: 

F,(a) = P ( x  a).  (1.50) 

Here, the axioms of probability hold, which state  that 

lim F,(a) = 0, lim F,(a) = 1, F,(al) 5 F,(a2) for a1 5 a2. 
a+--00 a+w 

(1.51) 
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Given the distribution, we obtain  the pdf  by differentiation: 

(1.52) 

Since the distribution is a non-decreasing function, we have 

Joint Probability Density. The  joint probability  density p,,,,, ([l, &) of 
two  random  variables 21 and 22 is given  by 

PZ1,22(tl,t22) =pz,(t1) PZZ1X1(t221t1), (1.54) 

where pz,lzl (52 I&) is a  conditional  probability  density  (density of 2 2  provided 
x1 has  taken  on the value 51). If the variables 2 1  and 22 are  statistically 
independent of one another, (1.54) reduces to 

P m , m  ([l, t2) = p,, (t1) p,, (&). (1.55) 

The pdf of a complex random  variable is defined as  the  joint density of its 
real and  imaginary  part: 

Moments. The  properties of a  random  variable  are  often  described by its 
moments 

m?) = E {Ixl"} . (1.57) 

Herein, E {-} denotes the expected value (statistical  average). An expected 
value E {g(z)}, where g(x)  is an  arbitrary function of the random variable x, 
can  be  calculated from the density as 

E {dxt.)} = Icc g(<) PX(5) d t .  (1.58) 

m z  = E { x }  = l c c t  P z ( 5 )  d t .  (1.59) 

-CQ 

For g(x) = x we obtain  the mean value (first moment): 
CQ 

For g(%) = we obtain  the average power  (second moment): 
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The variance (second  central  moment) is calculated with g(x) = Ix - mx12 as 
cc 

d = E { Ix - mXl2} = 15 - m,I2 P,(<) d5. (1.61) 
-cc 

The following holds: 
2 2  U, = S, - m,. 2 (1.62) 

Characteristic Function. The  characteristic function of a  random variable 

(1.63) 

which means that,  apart from the sign of the  argument, it is the Fourier 
transform of the pdf. According to  the moment  theorem of the Fourier 
transform (see Section 2.2), the moments of the  random variable can also 
be  computed  from the  characteristic function as 

(1.64) 

1.3.2 Random Processes 

The  starting point for the following considerations is a stochastic process x ( t ) ,  
from which the  random variables xtl , x t z ,  . . . , xi, with xtk = x(tk) are  taken at 
times tl < t z  < . . . < t,, n E Z. The  properties of these  random variables are 
characterized by their  joint pdf pz t1 ,Z t2  ,..., z tn  (a1, a ~ ,  . . . ,an). Then  a second 
set of random variables is taken  from  the process x ( t ) ,  applying  a  time shift T: 
xtl+T, xtz+T,. . . , ~ t , + ~  with xtk+r  = x(tk + T). If the  joint densities of both 
sets  are equal for all time shifts T and all n, that is, if  we have 

then we speak of a strictly stationary process, otherwise we call the process 
non-stationary. 

Autocorrelation and  Autocovariance  Functions of Non-Stationary 
Processes. The  autocorrelation function of a general random process is 
defined as a  second-order  moment: 

(1.66) 
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where z1 = z(t1) and 2 2  = x*(tz). 
Basically, the  autocorrelation function indicates how similar the process is 

at times tl and t2, since for the expected  Euclidean  distance we have 

The autocovariance function of a random process is  defined as 

(1.67) 

where mtk denotes the expected value at time tk; i.e. 

m t k  = E { Z ( t k ) }  ‘ (1.68) 

Wide-Sense Stationary Processes. There  are processes whose mean value 
is constant  and whose autocorrelation function is a function of tl - t2. Such 
processes are referred to as “wide-sense stationary”, even if they  are non- 
stationary according to  the above definition. 

Cyclo-Stationary Process. If a process is non-stationary  according to  the 
definition stated above, but if the  properties  repeat periodically, then we speak 
of a cyclo-stationary  process. 

Autocorrelation and  Autocovariance  Functions of Wide-Sense Sta- 
tionary Processes. In  the following we assume wide-sense stationarity, so 
that  the first and second  moments are independent of the respective time. 
Because of the  stationarity we must  assume that  the process realizations 
are  not absolutely integrable,  and that their Fourier transforms  do  not  exist. 
Since in the field of telecommunications  one also encounters  complex-valued 
processes when describing real bandpass processes in the complex  baseband, 
we shall  continue by looking at complex-valued processes. For  wide-sense 
stationary processes the autocorrelation function (acf)  depends only on the 
time shift between the respective times;  it is  given  by 

T,,(T) = E { z * ( t )   z ( t  + T)} . (1.69) 

For 2 1  = z ( t  + T) and 2 2  = z* ( t ) ,  the expected value E { e }  can  be  written as 

Tzz(.) = E { X 1  z2} = (1.70) 
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The maximum of the  autocorrelation function is located at r = 0, where its 
value equals the mean  square value: 

Furthermore we have r,,(-r) = riz  (7). 

When subtracting  the mean 

prior computing the  autocorrelation  function, we get the autocovariance 
function 

c,,(r) = E {[x*( t )  - 4 1  [x(t  + .) - m,]) 
(1.73) 

Power  Spectral  Density. The power  spectral density, or power density 
spectrum, describes the  distribution of power with respect to frequency. It 
is  defined as the Fourier transform of the  autocorrelation function: 

CQ 

S,,(w) = ~ m r , , ( r )  e-jwT d r  (1.74) 

$ 
(1.75) 

This definition is based  on the Wiener-Khintchine theorem, which states  that 
the physically meaningful power spectral density given  by 

with 
X T ( W )  t) z ( t )  rect(-), 

t 
T 

and 
rect(t) = 1, for It1 0.5 

0, otherwise 

is identical to  the power spectral density given in (1.74). 
Taking (1.75) for T = 0, we obtain 

S; = rZZ(0)  = L J SZZ(w) dw. 
27r -CQ 

(1.76) 

(1.77) 
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Cross Correlation and  Cross  Power Spectral Density. The cross 
correlation between two wide-sense stationary  random processes z ( t )  and y ( t )  
is defined as 

Txy (7) = E {X* ( t )  Y (t + 7) } . (1.78) 

The Fourier  transform of rXy(7) is the cross  power  spectral  density, denoted 
as Szy ( W ) .  Thus, we have the correspondence 

(1.79) 

Discrete-Time Signals. The following definitions for discrete-time signals 
basically correspond to those for continuous-time  signals; the correlation and 
covariance functions, however,  become correlation and covariance  sequences. 
For the autocorrelation  sequence we have 

rxx(m)  = E {x*(n) x ( n  + m ) } .  (1.80) 

The autocovariance  sequence is defined as 

(1.82) 

The discrete-time Fourier transform of the autocorrelation sequence is the 
power  spectral  density (Wiener-Khintchine theorem). We have 

M 

m=-cc 

(1.83) 

(1.84) 
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The definition of the cross  correlation  sequence is 

m=--00 

A cross  covariance  sequence can  be defined as 

Correlation Matrices. Auto  and cross  correlation  matrices are frequently 
required. We use the following definitions 

R,, = E { x x H } ,  

R z y  = E { Y X H } ,  
(1.89) 

where 
X = [z(n),  z(n + l), . . . , z(n + NZ - 1 ) I T ,  

Y = [ y ( n ) , y ( n  + l), . . . ,Y(n + Ny - IllT. 
(1.90) 

The  terms x x H  and gxH are dyadic  products. 
For the sake of completeness  it shall be  noted that  the  autocorrelation 

matrix R,, of a  stationary process z(n) has  the following Toeplitz  structure: 

. (1.91) 
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Here, the  property 
r,, (-4 = c, (4 7 (1.92) 

which  is concluded  from (1.80)  by taking  stationarity  into consideration, has 
been used. 

If two processes x(n) and y(n) are pairwise stationary, we have 

.zy(-i) = . f ,( i) ,  (1.93) 

and  the cross correlation matrix R,, = E { y X"} has  the following structure: 

Auto  and cross-covuriunce  matrices can  be defined in an analog way  by 
replacing the  entries rzy(m) through czy(m). 

Ergodic Processes. Usually, the  autocorrelation function is calculated 
according to (1.70) by taking  the ensemble average. An exception to this 
rule is the ergodic  process, where the ensemble  average  can  be replaced by a 
temporal average. For the  autocorrelation function of an ergodic continuous- 
time process we have 

(1.95) 

where iz(t) is an  arbitrary realization of the  stochastic process. Accordingly, 
we get 

(1.96) 

for discrete-time signals. 

Continuous-Time White Noise Process. A wide-sense stationary 
continuous-time noise process x ( t )  is said to be  white if its power spectral 
density is a constant: 

S z z ( W )  = CJ . 2 (1.97) 
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The  autocorrelation function of the process is a  Dirac  impulse  with weight 
2 : 

rzz(7) = uz d(7) .  (1.98) 

Since the power of such a process is infinite it is not realizable. However, 
the white noise process is a convenient model process which  is often used  for 
describing properties of real-world systems. 

Continuous-Time Gaussian White Noise Process. We consider a real- 
valued wide-sense stationary  stochastic process ~ ( t )  and  try  to represent it 
on the interval [-a, a] via a series expansion4  with an  arbitrary real-valued 
orthonormal basis cpi(t) for L2 (-a, a). The basis satisfies 

If the coefficients of the series expansion given  by 

ai = 1; cpi(t) X ( t )  dt  

are Gaussian  random variables with 

E { a ? }  = cT2 vi 
we call x ( t )  a  Gaussian  white noise process. 

Bandlimited White Noise Process. A bandlimited  white noise process is 
a  white noise process whose  power spectral density is constant  within  a  certain 
frequency  band and zero outside this  band. See Figure 1.2 for an  illustration. 

t 
-%lax umax 0 

Figure 1.2. Bandlimited white noise process. 

Discrete-Time White Noise Process. A discrete-time white noise process 
has  the power spectral density 

SZZ(&) = cTz (1.99) 

4Series  expansions are discussed  in  detail  in  Chapter 3. 
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and  the  autocorrelation sequence 

T Z d r n )  = fJ dmo. 2 (1.100) 

1.3.3 Transmission of Stochastic Processes through 
Linear Systems 

Continuous-Time Processes. We assume  a linear time-invariant system 
with the impulse  response h(t), which  is excited by a stationary process ~ ( t ) .  
The cross correlation function between the  input process ~ ( t )  and  the  output 
process y ( t )  is  given  by 

cm 
- 

- L E { ~ * ( t )  x (~+T--X)}  h(X)dX (1.101) 

= T Z Z ( T )  * h(.). 

The cross power spectral density is obtained by taking  the Fourier trans- 
form of (1.101): 

SZY(W) = SZZ(W)  H ( w ) .  (1.102) 

Calculating the  autocorrelation function of the  output signal is done as 
follows: 

= / / E { x * ( ~ - Q ! )  z ( t + ~ - P ) }  h*(a)h(P)dadP 

= /rZZ(. - X) /h*(a)h(a + X) dadX 

(1.103) 
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Thus, we obtain  the following relationship: 

Taking the Fourier transform of (1.104), we obtain  the power spectral 
density of the  output signal: 

Sy,(w) = Szz(w) IH(w) I2 .  (1.105) 

We observe that  the phase of H ( w )  has no influence on Syy(w). Consequently, 
only the  magnitude frequency response of H ( w )  can  be  determined from 
S Z Z  ( W )  and S y y ( 4 .  

Discrete-Time Processes. The  results for continuous-time signals and 
systems  can be directly applied to  the discrete-time case, where a system 
with impulse response h(n) is excited by a process z (n) ,  yielding the  output 
process y(n).  The cross correlation sequence between input  and  output is 

% y ( m )  = r z z ( m )  * h(m). 

The cross  power spectral density becomes 

(1.106) 

Szy(ejw) = Szz(ej")  H(ej"). (1.107) 

For the autocorrelation sequence and  the power spectral density at  the  output 
we get 

(1.108) 

s,,(ej") = szz(eju) IH(eju)l" (1.109) 

As before, the phase of H(ej'")  has  no influence on S,,(ej"). 

Here we cease  discussion of the transmission of stochastic processes 
through linear systems, but we will return  to  this topic in Section 5 of 
Chapter 2, where we will study  the representation of stationary bandpass 
processes  by means of their complex  envelope. 
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Chapter 2 

Integral 

Signal Represent at ions 

The  integral  transform is one of the most important tools in signal theory. 
The best known example is the Fourier transform,  but  there  are  many 
other  transforms of interest.  In  the following, W will first discuss the basic 
concepts of integral  transforms.  Then we will study  the Fourier, Hartley, and 
Hilbert transforms. Finally, we will focus on real bandpass processes and  their 
representation by means of their  complex envelope. 

2.1 Integral  Transforms 

The basic idea of an integral  representation is to describe a signal ~ ( t )  via its 
density $(S) with respect to  an  arbitrary kernel p(t, S): 

$(S) p(t, S) ds, t E T.  (2.1) 

Analogous to  the reciprocal basis in discrete signal representations (see 
Section 3.3) a reciproal  kernel O(s,t) may be  found  such that  the  density 
P(s) can  be calculated in the form 

* ( S )  = ~ ( t )  e ( s , t )  d t ,  S E S. S, 
22 
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Contrary to discrete representations, we do  not  demand that  the kernels cp(t, S )  

and @(S, t )  be  integrable  with respect to t .  
From (2.2) and (2.1), we obtain 

In  order to  state  the condition for the validity of (2.3) in a relatively 
simple  form the so-called Dirac impulse d(t) is required. By this we mean 
a generalized function with the  property 

cc 
~ ( t )  = d(t - T )  X(.) dT, X E &(R). 

The Dirac  impulse  can  be viewed as the limit of a family of functions g a ( t )  
that  has  the following property for all signals ~ ( t )  continuous at the origin: 

L (2.4) 

An example is the Gaussian function 

Considering the Fourier transform of the Gaussian  function,  that is 
cc 

GCY(u) = l c c g a ( t )  ,-jut dt 

W 2  - -_ - e 201 , 
we find that  it  approximates  the  constant one for a + 0, that is  G,(w) M 

1, W E R. For the Dirac  impulse the correspondence d( t )  t) 1 is introduced 
so that (2.4) can  be  expressed as X(W) = 1 X(W) in the frequency  domain. 

Equations (2.3) and (2.4) show that  the kernel and  the reciprocal kernel 

S, e(s,  T) p(t, S) ds = d ( t  - T ) .  (2.8) 

must satisfy 

By substituting (2.1) into (2.2) we obtain 

2(s) = S, L 2 ( a )  cp(t,a) d a  e ( s , t )  dt 
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which implies that 

r 

I T  
p(t, c) O(s, t )  d t  = S(s - 0). (2.10) 

Equations (2.8) and (2.10) correspond to  the relationship (cpi,8j) = S i j  for 
the discrete case (see Chapter 3). 

Self-Reciprocal Kernels. A special category is that of self-reciprocal 
kernels. They  correspond to orthonormal  bases in the discrete case and satisfy 

p(t, = e*(s, t ) .  (2.11) 

Transforms that contain a self-reciprocal kernel are also called unitary, 
because  they yield 11511 = 1 1 ~ 1 1 .  
The Discrete Representation as a Special Case. The discrete represen- 
tation via series expansion, which  is discussed in detail in the next chapter, 
can  be  regarded as a special case of the  integral  representation.  In  order to 
explain this  relationship, let us consider the discrete set 

pi(t) = p(t, si ) ,  i = 1 , 2 , 3 , .  . . . (2.12) 

For signals ~ ( t )  E span {p(t, si); i = 1 , 2 , .  . .} we may  write 

i i 

Insertion  into (2.2) yields 

*(S) = L Z ( t ) O ( s ,  t )  d t  

(2.13) 

(2.14) 

The comparison  with (2.10) shows that in the case of a discrete representation 
the density ?(S) concentrates  on  the values si: 

*(S) = CQi &(S - Si). 
1. 

(2.15) 
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Parseval’s Relation. Let the signals z ( t )  and y(t) be  square  integrable, 
z, y E L2 (T ) .  For the densities let 

? ( S )  = l z ( t )  O(s, t )  d t ,  

where O(s, t )  is a self-reciprocal kernel satisfying 

S, O(s, t )  @ * ( S ,  7) d s  = @ ( S ,  t )  ( ~ ( 7 ,  S )  d s  S, 
= 6 ( t  - 7). 

Now the inner products 

(X7 U) = / z ( t )  Y * ( t )  d t  
T 

are  introduced.  Substituting (2.16) into (2.18) yields 

(2,fj) = / / / X(.) O(s,r) y * ( t )  O*(s, t )  d r   d t   d s .  
S T T  

Because of (2.17),  (2.19) becomes 

@,G) = l x ( r )  l y * ( t )  6 ( t  - r )  d t   d r  

= l X(.) y * ( r )   d r .  

From (2.20) and (2.18) we conclude that 

( $ 7  6) = (2, !A * 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Equation (2.21) is  known as Parseval’s  relation. For y ( t )  = z ( t )  we obtain 

(&,g) = (x7x)  + 11211 = l lx l l  (2.22) 
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2.2 The Fourier Transform 

We assume a real or  complex-valued,  continuous-time signal z ( t )  which  is 
absolutely integrable (z E Ll(IR)). For such signals the Fourier transform 

X ( w )  = L m z ( t )  ,-jut dt 
00 

(2.23) 

exists. Here, W = 2 n  f ,  and f is the frequency in Hertz. 
The Fourier transform X ( w )  of a signal X E Ll(IR) has  the following 

properties: 

1. X E ~ o o ( I R )  with I I X  lloo I 11~111. 

2. X is continuous. 

3. If the derivative z'(t) exists and if it is absolutely integrable,  then 
00 

~ ' ( t )  Cjwt  d t  = j w  X (W) .  (2.24) 

4. For W + m and W + -m we have X ( w )  + 0. 

If X ( w )  is absolutely integrable, z ( t )  can  be  reconstructed  from X ( w )  via 
the inverse Fourier transform 

z(t)  = X ( w )  ejWt dw 
00 

2 n  --oc) 

(2.25) 

for all t where z ( t )  is continuous. 
The kernel used  is 

1 '  
2 n  

cp(t, W )  = -eJWt, T = (-m, m), (2.26) 

and for the reciprocal kernel we have' 

O(W,  t )  = ,-jut, S = (-m, m). (2.27) 

In  the following we will  use the  notation z ( t )  t) X ( w )  in order to indicate 
a Fourier transform  pair. 

We will  now  briefly recall the most important  properties of the Fourier 
transform. Most proofs are easily obtained  from  the definition of the Fourier 
transform itself. More elaborate discussions can  be  found in [114, 221. 

l A  self-reciprocal kernel is  obtained  either  in  the form cp(t,w) = exp(jwt)/& or by 
integrating over frequency f ,  not over W = 2xf: cp(t, f )  = exp(j2xft). 
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Linearity. It directly follows from (2.23) that 

a z ( t )  + P y ( t )  t) a X ( w )  + P Y ( w ) .  (2.28) 

Symmetry. Let z ( t )  t) X ( w )  be a Fourier transform  pair. Then 

X ( t )  t) 27rz(-w). (2.29) 

Scaling. For any  real a,  we have 

Shifting. For any  real t o ,  we have 

z(t  - t o )  t) e-jwto X ( w ) .  

e j w o t z ( t )  t) X ( w  - WO). 

Accordingly, 

(2.30) 

(2.31) 

(2.32) 

Modulation. For any  real WO,  we have 

1 1 
2  2 

coswot z ( t )  t) - X ( w  - WO) + - X ( w  + W O ) .  (2.33) 

Conjugation. The correspondence for conjugate  functions is 

z*(t)  t) X * ( - W ) .  (2.34) 

Thus,  the Fourier transform of real signals z ( t )  = X* ( t )  is symmetric: X *  ( W )  = 
X ( - W ) .  

Derivatives. The generalization of (2.24) is 

d" 
dt" 
- z ( t )  t) ( jw)"  X ( w ) .  (2.35) 

Accordingly, 
d" 

dw " (-jt)" z ( t )  t) - X @ ) .  (2.36) 

Convolution. A convolution in the  time domain  results  in a multiplication 
in  the frequency domain. 
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z(t)  y(t) t) - X ( w )  * Y ( w ) .  
1 

27r 

Moments. The  nth moment of z ( t )  given  by 

cc 
tn ~ ( t )  d t ,  n = 0,1,2. 

and  the  nth derivative of X ( w )  at  the origin are  related as 

(2.38) 

(2.39) 

(2.40) 

Parseval’s Relation. According to Parseval’s relation, inner products of 
two signals can  be calculated in the  time as well as  the frequency  domain. For 
signals z(t)  and y ( t )  and  their Fourier transforms X ( w )  and Y ( w ) ,  respectively, 
we have 

cc  cc L ~ ( t )  y*(t) d t  = X ( w )   Y * ( w )   d w .  (2.41) 
27r -W 

This  property is easily obtained  from (2.21) by using the fact that  the scaled 
kernel (27r)-iejwt is self-reciprocal. 

Using the  notation of inner products, Parseval’s relation may also be 
written  as 

1 
(2 ’9)  = # ’ V .  (2.42) 

From (2.41) with z ( t )  = y(t) we see that  the signal energy  can  be 
calculated in the  time  and frequency  domains: 

(2.43) 

This relationship is  known as Parseval’s  theorem. In vector notation  it  can  be 
written  as 

1 
27r 

(2’2) = - ( X ’ X ) .  (2.44) 
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2.3 The Hartley  Transform 

In 1942 Hartley proposed a real-valued transform closely related to  the Fourier 
transform [67]. It maps a real-valued signal into a real-valued frequency 
function using only real  arithmetic.  The kernel of the Hartley  transform is 
the so-called cosine-and-sine (cas)  function, given  by 

cas w t  = cos w t  + sin  wt. (2.45) 

This kernel can  be seen as a real-valued  version of d w t  = cos w t  + j sin wt,  the 
kernel of the Fourier transform. The forward and inverse Hartley  transforms 
are given  by 

XH(W) = l m x ( t )  caswt  dt (2.46) 
m 

and 
x(t) = I] XH(W) caswt dw, 

2lr -m 
(2.47) 

where both  the signal x(t)  and  the transform XH(W) are real-valued. 

In  the  literature, one also finds a more symmetric version based on the self- 
reciprocal kernel (27r-+ cas wt.  However, we use the non-symmetric form in 
order to  simplify the relationship between the Hartley  and Fourier transforms. 

The Relationship between the Hartley and  Fourier  Transforms. Let 
us consider the even and  odd  parts of the Hartley  transform, given  by 

The Fourier transform  may be  written  as 

X(w) = l c c x ( t )  e-jwt dt 
cc 

cc  cc 
x(t) coswt dt - j 

= X & ( W )  - jX&(W) 

- - XH(W) + X f f ( - W )  XH(W) - X f f ( - W )  

2 - j  2 

(2.50) 
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%{X(W)} = X%w) ,  

S {X(W)}  = -X&(w).  
(2.51) 

The  Hartley  transform  can  be  written in terms of the Fourier transform 
as 

X&) = %{X(w)}  - S { X ( w ) } .  (2.52) 

Due to their close relationship the  Hartley  and Fourier transforms  share 
many  properties. However,  some properties  are entirely different. In  the 
following we summarize the most important ones. 

Linearity. It directly follows from the definition of the  Hartley  transform 
that 

az( t )  +PY(t) * a X H ( w )  + P Y H ( W ) .  (2.53) 

Scaling. For any real a, we have 

(2.54) 

Proof. 

Time Inversion. From (2.54) with a = -1 we get 

z(-t) t) Xff(-w).  (2.55) 

Shifting. For any real t o ,  we have 

z(t  - t o )  t) coswto X H ( W )  + sinwto X H ( - W ) .  (2.56) 

Proof. We may  write 
cc  cc L L z(t - t o )  caswt dt = z(J) cas ( W [ [  + to ] )  dJ. 

Expanding  the  integral on the  right-hand side using the  property 

cas (a + p) = [cos a + sinal  cosp +   COS^ - sinal  sinp 

yields (2.56). 0 
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Modulation. For any real WO,  we have 

1 1 
2 2 

coswot z ( t )  t) - X H ( W  - WO) + - + W O ) .  (2.57) 

Proof. Using the  property 

1 1 
cosa  casP = - cas (a  - P )  + 5 cas (a  + P ) ,  

2 
we get 

00 

1, x(t) coswot caswt  dt 

x(t) cas ( [W - welt) dt + z(t)  cas ( [W +wo]t)  dt 

1 1 
2 2 

= - X &  - WO) + - X& + W O ) .  

Derivatives. For the  nth derivative of a signal x(t)  the correspondence is 

~ z ( t )  t) W" [cos ( y )  X H ( W )  - sin ( y )  X H ( - W ) ] .  (2.58) 
d" 
dtn 

Proof. Let y ( t )  = g x ( t ) .  The Fourier transform is Y ( w )  = ( jw)"  x ( w ) .  
By writing jn as jn = cos( y) + j sin( ?), we get 

Y ( w )  = W" [cos (y) + j sin ( y ) ]  ~ ( w )  

= W" [cos (y) % { X ( w ) }  - sin (y) S { X ( W ) } ]  

+ j  wn [cos (y) S { X ( W ) }  + sin (y) % { x ( w ) } ]  

For the  Hartley  transform,  this means 

yH(w)  = wn [cos(?) x&((w) -sin(?) x ; ( w )  

+ cos (y) x ; ( w )  + sin (y) x&(w,]. 
Rearranging  this expression, based  on (2.48) and (2.49), yields (2.58). 0 
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Convolution. We consider a convolution in time of two signals z ( t )  and 
y(t). The  Hartley  transforms  are XH(W) and  YH(w), respectively. The corre- 
spondence is 

The expression becomes less complex for signals with  certain  symmetries. 
For example, if z(t)  has  even  symmetry, then z ( t )  * y(t) t) XH(W) YH(w). 
If z(t)  is odd,  then z(t)  * y(t) XH(W) YH(-w). 

Pro0 f .  

cc 
[z(t) * y ( t ) ]  caswt dt = z (r )  y(t - r )  d r  caswt dt 1 

cc 
= I c c z ( r )  [ - r )  caswt dt d r  

- z (r )  [ c o s w ~ Y ~ ( w )  + sinwTYH(-w) ] dr.  

cc 1 
cc 

- L 
To derive the  last line, we made use of the shift theorem. Using (2.48) and 
(2.49) we finally get (2.59). 0 

Multiplication. The correspondence for a multiplication in time is 

Proof. In  the Fourier domain, we have 
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For the Hartley  transform this means 

X g w )  * Y i ( w )  - X & ( w )  * Y i ( w )  + X;;(w)  * Y i ( w )  + X g w )  * Y i ( w ) .  

Writing this expression in terms of X H ( W )  and YH(w) yields (2.60). 0 

Parseval's Relation. For signals x ( t )  and y(t) and  their Hartley  transforms 
X H ( W )  and YH(w),  respectively, we have 

cc  cc L x ( t )  y(t) dt = ' 1  X H ( W )  YH(w) dw. (2.61) 

Similarly, the signal energy can be calculated in the  time  and in the frequency 
domains: 

27r -cc 

E, = I c c x z ( t )  d t  
cc 

(2.62) 

These  properties are easily obtained from the  results in Section 2.1 by using 
the  fact  that  the kernel (27r-5 cas wt  is  self-reciprocal. 

Energy Density and Phase. In  practice,  one of the reasons to  compute the 
Fourier transform of a signal x ( t )  is to  derive the energy density S,",(w) = 
IX(w)I2 and  the phase LX(w) .  In  terms of the Hartley  transform the energy 
density becomes 

S,",(4 = I W w I l Z  + I ~ { X ( w ) ) l Z  

- - X $ @ )  + X&+) 
2 

The phase  can  be written  as 

(2.63) 

(2.64) 
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2.4 The Hilbert Transform 

2.4.1 Definition 

Choosing the kernel 

p(t - S) = ~ 7r(t - S )  ’ 
-1 

(2.65) 

we obtain  the Hilbert transform. For the reciprocal kernel O(s - t )  we use the 
notation i ( s  - t )  throughout  the following discussion. It is 

1 
h(s  - t )  = ~ = p(t - S ) .  (2.66) 

7r(s - t )  

With i(s) denoting the Hilbert transform of z ( t )  we obtain  the following 
transform pair: 

x ( t )  

Here, the  integration  has to 
value: 

cc 

= 1 ?(S)- ds 
7r -cc t - s  

-1 

$ (2.67) 
03 

dt. 

be carried out according to  the Cauchy principal 

The Fourier transforms of p(t) and i ( t )  are: 

@ ( W )  = j sgn(w)  with @ ( O )  = 0, (2.69) 

B(w) = - j  sgn(w)  with B(0) = 0. (2.70) 

In  the  spectral domain we then have: 

X ( W )  = @ ( W )  X ( w )  = j sgn(w) X ( w )  (2.71) 

X ( w )  = B(w) X ( W )  = - j  sgn(w) ~ ( w ) .  (2.72) 

We observe that  the  spectrum of the Hilbert transform $(S) equals the 
spectrum of z( t ) ,  except for the prefactor - j  sgn(w).  Furthermore, we see 
that, because of @ ( O )  = k(0) = 0, the  transform pair (2.67) is  valid  only 
for signals z(t)  with zero mean value. The Hilbert transform of a signal with 
non-zero  mean has zero mean. 
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2.4.2 Some Properties of the Hilbert  Transform 

1. Since the kernel of the Hilbert transform is self-reciprocal we have 

2. A real-valued signal z ( t )  is orthogonal to  its Hilbert transform 2( t ) :  

(X,&) = 0. (2.74) 

We prove this by making use of Parseval’s relation: 

27r(z,2) = ( X ’ X )  

cc 
- 
- L X ( w )  [ - j  sgn(w)]* X * ( w )  dw (2.75) 

CQ 

= j I X ( W ) ~ ~  sgn(w) dw 
J -cc 

= 0. 

3. From (2.67) and (2.70) we conclude that applying the Hilbert transform 
twice leads to a sign change of the signal, provided that  the signal has 
zero mean value. 

2.5 Representation of Bandpass Signals 

A bandpass signal is understood as a signal whose spectrum  concentrates in 
a region f [ w o  - B,  WO + B] where WO 2 B > 0. See Figure 2.1 for an example 
of a bandpass  spectrum. 

’ IxBP(W>l 

* 
- 0 0  0 0  0 

Figure 2.1. Example of a bandpass spectrum. 



36 Chapter 2. Integral  Signal  Representations 

2.5.1 Analytic Signal  and  Complex  Envelope 

The Hilbert transform allows  us to transfer a real bandpass  signal xBP(t)  into 
a complex  lowpass  signal zLP(t). For that  purpose, we first form the so-called 
analytic  signal xkP ( t ) ,  first introduced in [61]: 

xzp(t) = XBP(t) + j ZBP(t). (2.76) 

Here, 2BP(t) is the Hilbert transform of xBP(t). 
The Fourier transform of the  analytic signal is 

2 XBp(w) for W > 0, 

x ~ ~ ( w )  = xBP(w) + j JiBP(w) = x B P ( w )  for W = 0, (2.77) 

for W < 0. l 0  

This means that  the  analytic signal has  spectral  components for positive 
frequencies only. 

In a second step,  the complex-valued  analytic signal can  be shifted into 
the  baseband: 

ZLP(t) = xc,+,(t) e-jwot. (2.78) 

Here, the frequency WO is assumed to be  the center frequency of the  bandpass 
spectrum,  as shown in Figure 2.1. Figure 2.2 illustrates  the  procedure of 
obtaining  the complex envelope. We observe that it is not  necessary to realize 
an ideal Hilbert transform  with  system function B ( w )  = - j  sgn(w) in order 
to carry  out  this  transform. 

The signal xLP(t) is called the complex  envelope of the  bandpass signal 
xBp(t). The reason for this naming  convention is outlined below. 

In  order to recover a real bandpass signal zBP(t) from its complex  envelope 
xLp ( t ) ,  we make use of the  fact  that 

for 

(2.80) 
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\ ' /  I WO W 

I 0 0  W 

Figure 2.2. Producing the complex  envelope of a  real  bandpass  signal. 

Another form of representing zBP(t) is obtained by describing the complex 
envelope with  polar  coordinates: 

(2.81) 

wit h 

IZLP ( t )  I = . \ / 2 1 2 ( t )  + 212 ( t ) ,  v(t) 
u(t)  

tane(t) = -. (2.82) 

From (2.79) we then conclude for the bandpass signal: 

ZBP(t)  = IZLP(t)l cos(uot + e(t)). (2.83) 

We see that IxLP(t)l  can  be  interpreted  as the envelope of the  bandpass signal 
(see Figure 2.3). Accordingly, zLP(t) is called the complex envelope, and  the 
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Figure 2.3. Bandpass signal and envelope. 

analytic signal is called the pre-envelope. The real part u(t)  is referred to as 
the in-phase  component, and  the imaginary part w ( t )  is  called the quadrature 
component. 

Equation (2.83) shows that bandpass signals can in general be  regarded 
as  amplitude  and  phase  modulated signals. For O ( t )  = 80 we have  a  pure 
amplitude  modulation. 

It should  be  mentioned that  the  spectrum of a  complex  envelope is always 
limited to -WO at the lower bound: 

XLP(w) 0 for W < -WO. (2.84) 

This  property  immediately  results  from  the  fact that  an  analytic signal 
contains  only positive frequencies. 

Application in  Communications. In  communications we often start with 
a lowpass  complex  envelope zLP(t) and wish to  transmit  it  as a real bandpass 
signal zBP(t). Here, the real bandpass signal zBP(t) is produced  from zLp ( t )  
according to (2.79). In  the receiver, zLp ( t )  is finally reconstructed as described 
above. However, one important requirement  must  be met, which  will be 
discussed below. 

The real bandpass signal 

zBp(t) = u(t)  coswot (2.85) 

is considered. Here, u(t)  is a given real lowpass signal. In  order to reconstruct 
u(t)  from zBP(t), we have to add  the imaginary signal ju(t)sinwot  to  the 
bandpass signal: 

z ( p ) ( t )  := u(t) [coswot + j sin wot] = u(t)  ejwot. (2.86) 

Through subsequent  modulation we recover the original lowpass signal: 

u(t)  = .(P) ( t )  e-jwot. (2.87) 
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- W 0  I WO W 

Figure 2.4. Complex  envelope for the case that condition (2.88) is  violated. 

The problem, however, is to generate u(t)  sinwot from u(t)  coswot in the 
receiver. We  now assume that u(t)  ejwOt is analytic, which means that 

U ( w )  0 for w < - W O .  (2.88) 

As can easily be verified, under  condition (2.88) the Hilbert  transform of the 
bandpass  signal is  given  by 

2( t )  = u(t)  sinwot. (2.89) 

Thus, under  condition (2.88) the required  signal z(p)(t)  equals the analytic 
signal ziP(t), and  the complex  envelope zLp ( t )  is identical to  the given u(t) .  
The complex  envelope describes the bandpass  signal unambiguously, that is, 
zBP(t) can always be reconstructed from zLP(t); the reverse, however, is only 
possible if condition (2.88) is met.  This is illustrated  in  Figure 2.4. 

Bandpass Filtering and Generating the Complex Envelope. In  prac- 
tice,  generating  a complex  envelope usually involves the  task of filtering the 
real  bandpass  signal zBP(t) out of a more  broadband  signal z ( t ) .  This  means 
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that zBP(t) = z( t ) *g( t )  has to be  computed, where g ( t )  is the impulse  response 
of a real bandpass. 

The  analytic  bandpass g+@) associated with g ( t )  has  the system function 

G+(w) = G ( w )  [l + j B(w)]. (2.90) 

Using the  analytic  bandpass,  the  analytic signal can  be calculated as 

(2.91) 

For the complex envelope, we have 

If we finally describe the  analytic  bandpass by means of the complex 
envelope of the real bandpass 

(2.93) 

this leads to 
XL, ( W )  = X (W + W O )  GLP ( W ) .  (2.94) 

We find that XLP(w) is also obtained by modulating  the real bandpass signal 
with e-jwot and by  lowpass filtering the resulting signal. See Figure 2.5 for 
an  illustration. 

The equivalent lowpass GLP(w) usually has a complex  impulse response. 
Only if the  symmetry condition GLP(u) = GE,(-w) is satisfied, the result is 
a real lowpass, and  the realization effort  is reduced.  This  requirement  means 
that IG(w)I must  have even symmetry  around WO and  the phase  response 
of G ( w )  must  be  anti-symmetric. In  this case we also speak of a symmetric 
bandpass. 

Realization of Bandpass Filters by Means of Equivalent  Lowpass 
Filters. We consider a signal y(t) = z ( t )  * g @ ) ,  where z ( t ) ,  y(t), and g ( t )  are 
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Lowpass 

Figure 2.5. Generating the complex  envelope of a  real  bandpass  signal. 

real-valued. The signal z ( t )  is  now described by means of its complex  envelope 
with respect to  an  arbitrary positive center frequency W O :  

z ( t )  = ?J3{ZLP(t) e jwo t } .  

For the  spectrum we have 
1 1 
2 2 

X ( W )  = - X,, (W - WO) + - X;, (-W - WO). 

Correspondingly, the system  function of the filter can be  written  as 

1 1 
2 2 

G(w) = - G,, (W - W O )  + - G:, (-W - W O ) .  

For the  spectrum of the  output signal we have 

Y ( w )  = X ( W )  G ( w )  

= : XL, (W - W O )  G,, (W - W O )  

+$ X;,(-W - W O )  G:,(-w - W O )  

+ : XL, (W - W O )  G:, (-W - W O )  

+: X;,(-W-WO) G L P ( w - w o ) .  

(2.95) 

(2.96) 

(2.97) 

(2.98) 

The  last two terms vanish since G,, ( W )  = 0 for W < -WO and X,, ( W )  = 0 for 
W < -WO: 

Y ( w )  = a xw(~ - W O )  - W O )  

+a X;, (-W - W O )  G:, ( --W - W O )  (2.99) 

= ; Y,,(W - W O )  + ; Y,*,(-W - W O ) .  



42 

Altogether this yields 
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This means that a real convolution in the  bandpass domain  can  be  replaced 
by a complex  convolution in the lowpass domain: 

1 
Y ( t )  = z(t)  * g ( t )  + YLP ( t )  = 5 ZLP ( t )  * QLP (t) .  (2.101) 

Note that  the prefactor 1 /2  must  be  taken into  account.  This prefactor did not 
appear in the combination of bandpass filtering and  generating  the  complex 
envelope discussed above. As before, a real filter gLP(t) is obtained if G(w) is 
symmetric  with respect to  WO. 

Inner Products. We consider the inner product of two analytic signals 

z+(t) = ~ ( t )  + j 2( t )  and  y+(t) = y(t) + j c ( t ) ,  

where z(t)  and y(t) are real-valued. We have 

(X+, Y+> = (X, Y) + (%C) + j ( 2 ,  Y) + j ( X , C )  . (2.102) 

Observing (2.73), we get for the real part 

%{(X+, Y + > l  = 2 (2, Y) * (2.103) 

If we describe ~ ( t )  and y(t) by means of their  complex  envelope  with respect 
to  the same center frequency, we get 

(2.104) 

For the  implementation of correlation operations  this  means  that correlations 
of deterministic  bandpass signals can  be  computed in the  bandpass domain 
as well as in the equivalent lowpass domain. 

Group  and Phase Delay. The  group  and phase  delay of a system C(w) 
are defined as 

and 

where 
C ( W )  = I C ( W ) I  &+). 

(2.105) 

(2.106) 

(2.107) 
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In  order to explain this, let us assume that C(W) is a  narrowband  bandpass 
with B << WO. The system function of the associated analytic  bandpass may 
be  written as 

Because of B << W O ,  CLp ( W )  may be  approximated as 

(2.109) 
For the complex  envelope CLP(w) = C,,(W + W O )  it follows that 

CLP(w) M IC(w0)l e - j W O T p ( W o )  e-jwTg(wO), W 5 B/2, (2.110) 

with T~ and T~ according to (2.105) and (2.106). If  we  now look at  the  input- 
output relation (2.100) we get 

1 
2 

yLP ( W )  M - ~ ~ ( w o )  I e-jwoTp(wo) e--jwTg(wo) XLP@). (2.111) 

Hence, in the  time domain 

which means that  the  narrowband system C(W) provides a phase shift by 
T ~ ( W O )  and a time delay by T~ (WO) .  

2.5.2 Stationary  Bandpass Processes 

In  communications we must  assume that noise interferes with  bandpass signals 
that  are  to be transmitted. Therefore the question arises of which statistical 
properties  the complex  envelope of a stationary  bandpass process has. We 
assume a real-valued, zero mean, wide-sense stationary  bandpass process z ( t ) .  
The  autocorrelation function of the process is  given  by 

T,, (T) = T,, (-T) = E { ~ ( t )   ~ ( t  + T)} . (2.113) 

Now  we consider the transformed process 2 ( t ) .  For the power spectral 
density of the transformed process, ,522 ( W ) ,  we conclude  from (1.105): 

1 for W # O  o for W=O 
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where i ( t )  t) I?(w). Thus,  the process 2( t )  has the same power spectral 
density, and consequently the same  autocorrelation  function,  as the process 
z(t):  

Tjrjr (T) = Tzz (7). (2.115) 

For the cross power spectral  densities Szj: ( W )  and 272% ( W )  we get according 
to (1.102): 

SZ&) = fi(4 & % ( W ) ,  

S j r Z ( W )  = f i * ( W )   & % ( W ) .  

(2.116) 

Hence, for the cross correlation  functions: 

T Z & ( T )  = + Z Z ( T ) ,  

&(T) = Tz?(-T)  = t z z ( - T )  = -tzz(.). 
(2.117) 

Now  we form the analytic process z+(t): 

X+@) = z ( t )  + j q t ) .  (2.118) 

For the autocorrelation  function we have 

T,+,+ (T) = E {[z( t )  + j 2( t ) ]*  [z(t + T) + j q t  + T ) ] }  

= Tzz (T) + j Tzjr (.l - j T B ,  + rjrjr (.l (2.119) 

= 2 Tzz(.) + 2 j  P,,(.). 

This  means that  the autocorrelation  function of the analytic process  is an 
analytic  signal itself. The power spectral  density is 

{ ; SZZ((w) for W > 0, 

for W < 0. 
S,+,+(W) = (2.120) 

Finally, we consider the complex  process zLP(t) derived  from the analytic 
process 

zLp ( t )  = z+(t) e-jwot 

= u(t)  + j  w ( t ) .  
(2.121) 

For the real part u(t)  we have 

u(t)  = %{[z(t) + j $(t)]  e-jwot} 

= z(t)  coswot+P(t)  sin& (2.122) 

= + [z+(t) e-jwot + [X+ (t) ]* ejwot], 
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(2.123) 

In (2.123) two complex exponential  functions  dependent  on t are included 
whose prefactors  reduce to zero: 

E{[Z+(t)]* [z+(t+T)]*}* = E{z+( t )  z+(t+.r)) 

= E { ( z ( t )  + j q t ) )  (z(t  + T) + j 2(t + T))} 

(2.125) 

= T,, (T) cos WOT + F,, (T) sin WOT 

In a similar way  we obtain 

for the autocorrelation  function of the imaginary part of the complex envelope. 
The cross correlation  function between the real and  the imaginary part is  given 
by 

Tuv (.l = --Tvu(.) 
(2.127) 

From (2.125) - (2.127) we conclude that  the autocorrelation  function of 
the complex  envelope equals the modulated  autocorrelation  function of the 
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analytic signal: 

Correspondingly, we get for the power spectral density: 

4 &,(W + W O )  for W + WO > 0, 
for W + WO < 0. 

(2.129) 

We notice that  the complex  envelope is a wide-sense stationary process 
with specific properties: 

0 The  autocorrelation function of the real part equals that of the imagi- 
nary  part. 

e The cross correlation function between the real and imaginary part is 
antisymmetric  with respect to r. In  particular, we have 

Tuv(O) = rvu(0) = 0. 

In  the special case of a symmetric  bandpass process, we have 

(W> = SzLPzLP ( - W ) *  (2.130) 

Hence, we see that  the autocorrelation function of xLP(t) is real-valued. It 
also means that  the cross correlation between the real and  imaginary part 
vanishes: 

TU,(T) = 0, v r. (2.131) 
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Chapter 3 

Discrete 
Signal Representations 

In  this  chapter we discuss the  fundamental  concepts of discrete signal repre- 
sentations. Such representations  are also known as discrete transforms, series 
expansions, or  block transforms.  Examples of widely  used discrete transforms 
are given in the next chapter. Moreover,  optimal discrete representations will 
be discussed in Chapter 5. The  term “discrete” refers to  the fact  that  the 
signals are represented  by discrete values,  whereas the signals themselves 
may  be continuous-time. If the signals that  are  to be  transformed consist 
of a finite set of values, one also speaks of block transforms. Discrete signal 
representations  are of crucial importance in signal processing. They give a 
certain insight into  the  properties of signals, and  they allow easy  handling of 
continuous  and discrete-time signals on  digital signal processors. 

3.1 Introduction 

We consider a real or complex-valued,  continuous or discrete-time signal X, 
assuming that z can  be  represented in the form 

n 

i=l 

47 
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The signal X is an element of the signal space X spanned by {pl,. . . ,p,}. 
The signal space itself is the  set of all vectors which can  be  represented by 
linear combination of { p l , .  . . , p,}. For this,  the  notation 

will be used henceforth. The vectors pi, i = 1,. . . , n may  be linearly depen- 
dent  or linearly independent of each other. If they  are linearly independent, 
we call them a basis for X .  

The coefficients ai, i = 1, . . . , n can  be  arranged  as a vector 

which  is referred to as  the representation of X with respect to  the basis 
{cpl,. . . >P,>. 

One often is interested in finding the best approximation of a given signal 
X by a signal 2 which has  the series expansion 

i=l 

This problem will be discussed in Sections 3.2 and 3.3 in greater  detail. For 
the present we will  confine ourselves to discussing some general concepts of 
decomposing signal spaces. We start by assuming a decomposition of X into 

where 

Signal x1 is an element of the linear subspace' X1 = span { p l , .  . . ,p,} and 
2 2  is an element of the linear subspace X2 = span {pm+l, . . . , p,}. The space 
X is called the sum of the  subspaces X1 and X2. If the decomposition of X E X 

lDefinition of a linear  subspace: let M be a  non-empty  set of elements of the vector 
space X .  Then M is a  linear  subspace of X ,  if M itself is a  linear  space. This means that 
all  linear  combinations of the elements of M must  be  elements of M .  Hence, X itself is a 
linear  subspace. 
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into X I  E X1 and xz E X2 is unique,2 we speak of a direct  decomposition of 
X into  the subspaces X1 and X Z ,  and X is  called the direct sum of X1 and 
X,. The  notation for the direct sum is 

X = X1 ex2. (3.8) 

A direct sum is obtained if the vectors that span X1 are linearly independent 
of the vectors that  span X,. 

If a space X is the direct sum of two  subspaces X1 and X2 and x1 E X1 
and xz E X2 are  orthogonal to one another for all signals X E X ,  that is if 
(x1,xz) = 0 V X E X ,  then X is the orthogonal sum of the subspaces X1 and 
X,. For this we write 

I 
X = X 1  e x2. (3.9) 

3.2 Orthogonal Series Expansions 

3.2.1 Calculation of Coefficients 

We consider a signal X that can  be  represented in the form 
n 

X = C"i ui, 
i= 1 

where the vectors ui satisfy the orthonormality  condition 

(3.10) 

( U i ,  U j )  = sij. (3.11) 

Here, 6ij is the Kronecker  symbol 

- { 1 
for i = j ,  

'' - 0 otherwise. 
(3.12) 

For all signals X in (3.10) we have X E X with X = span (u1 ,  u2,. . . , un}. 
Because of (3.11), u1, u2,. . . , un form an orthonormal  basis for X .  Each vector 
ui, i = 1, . . . , n spans a one-dimensional  subspace,  and X is the  orthogonal 
sum of these subspaces. 

The question of  how the coefficients ai can  be calculated if X and  the 
orthonormal basis (u1 ,  . . . , U,} are given  is easily answered. By taking  the 
inner product of (3.10) with uj, j = 1,. . . ,n and using (3.11) we obtain 

" j  = ( X & ) ,  j = 1,. . . ,n. (3.13) 
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Figure 3.1. Orthogonal  projection. 

3.2.2 Orthogonal Projection 

In (3.10) we assumed that X can  be  represented by means of n coefficients 
a1 , al,  . . . , a,. Possibly, n is infinitely large, so that for practical applications 
we are  interested in finding the best approximation 

m 

(3.14) 
i= 1 

in the sense of 
1 1  

d ( z , f )  = 1 1 %  - 211 = (z - f,z - f)z = min. (3.15) 

The solution to this problem is3 = (z, ui),  which means that 
m 

(3.16) 
i d  

This result has  a  simple  geometrical interpretation in terms of an orthogonal 
projection. Each basis vector ui spans  a  subspace that is orthogonal to  the 
subspaces  spanned by uj,  j # i, which means that  the signal space X is 
decomposed as follows: 

I 
X = M m $ M k  (3.17) 

with 
z = f + + ,  x E X ,   X E M m ,   + E M : .  (3.18) 

The subspace M A  is orthogonal to Mm, and + = z - f is orthogonal to f 
(notation: +l&). Because of +l63 we call D the  orthogonal projection of z 
onto M,. Figure 3.1 gives an  illustration. 

As can easily be verified, we have the following relationship between the 
norms of X, X and + 

1 1 4 1 2  = llf112 + ll+112. (3.19) 

3The proof is given in  Section 3.3.2 for general,  non-orthogonal  bases. 



3.2. Orthogonal  Series  Expansions 51 

3.2.3 The Gram-Schmidt Orthonormalization 
Procedure 

Given a basis {vi; i = 1,. . . , n}, we can  construct  an  orthonormal basis 
{ui; i = 1, . . . , n} for the space  span {vi; i = 1, . . . , n}  by using the following 
scheme: 

(3.20) 

This  method is  known as the Gram-Schmidt  procedure. It is easily seen that 
the result is not unique. A re-ordering of the vectors pi before the application 
of the Gram-Schmidt  procedure  results in a different basis. 

3.2.4 Parseval’s Relation 

Parseval’s  relation states  that  the inner product of two vectors equals the 
inner product of their  representations  with respect to an  orthonormal basis. 
Given 

n 
X = x a i  ui 

i= 1 

(3.21) 

and 

(3.22) 

we have 
(3.23) 
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with 
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(3.24) 

This is  verified  by substituting (3.21) into (3.23) and by making use of the 
fact that  the basis is orthogonal: 

(3.25) 

For z = y we get from (3.23) 

l lzl l = l l a l l  . (3.26) 

It is important to notice that  the inner product of the  representations is 
defined as (a, P )  = p H a ,  whereas the inner product of the signals may  have 
a different definition. The inner product of the signals may  even  involve a 
weighting matrix  or weighting  function. 

3.2.5 Complete Orthonormal Sets 

It can  be shown that  the space Lz(a,  b )  is complete. Thus, any signal 
z(t)  E Lz(a,b) can  be  approximated  with  arbitrary accuracy by means of 
an  orthogonal  projection 

n 

$(t> = c (2, V i )  cpi(t), (3.27) 
i= 1 

where n is  chosen  sufficiently large and  the basis vectors cpi(t) are  taken  from 
a complete  orthonormal  set. 

According to (3.19) and (3.23) we have for the  approximation  error: 
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From (3.28) we conclude 
n 

(3.29) 
i= 1 

(3.29) is called the Bessel  inequality. It ensures that  the squared  sum of the 
coefficients (X, vi) exists. 

An orthonormal  set is said to  be complete if no  additional non-zero 
orthogonal  vector  exists which can  be  added to  the  set. 

When an orthonormal  set is complete, the approximation  error  tends 
towards zero with n + CO. The Bessel inequality (3.29) then becomes the 
completeness  relation 

cc c I ( X , ( P i )  l2 = 1lXIl2 v E Lz(a,b) .  (3.30) 
,=l 

Here,  Parseval's  relation states 

(3.31) 

(3.32) 

3.2.6 Examples of Complete Orthonormal Sets 

Fourier  Series. One of the best-known discrete  transforms is the Fourier 
series  expansion. The basis functions are  the complex exponentials 

(3.33) 

which  form a  complete  orthonormal set.  The interval considered  is T = [-l, l]. 
The weighting function is g ( t )  = 1. Note that any  finite  interval  can  be  mapped 
onto the interval T = [-l,  +l] . 
Legendre Polynomials. The Legendre  polynomials Pn(t), n = 0 , 1 , .  . . are 
defined as 

Pn(t) = -- l P ( t 2  - 1)n 
2"n! dtn 

and  can  alternatively  be  computed  according to  the recursion formula 

1 
n 

Pn(t) = -[(2n - 1)t Pn-l(t) - (n - 1) Pn-z(t)]. 

(3.34) 

(3.35) 
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The first four functions are 

A set pn(t), n = 0 ,1 ,2 , .  . . which  is orthonormal  on  the interval [-l, l] 
with  weighting function g ( t )  = 1 is obtained by 

(3.36) 

Chebyshev Polynomials. The Chebyshev  polynomials are defined as 

Tn(t) = cos(n arccos t ), n 2 0, -1 5 t 5 1, (3.37) 

and  can  be  computed  according to  the recursion 

Tn(t) = 2t Tn-l(t) - Tn-2(t). (3.38) 

The first four polynomials are 

To(t) = 1 7  

Tl(t) = t ,  
T2(t) = 2t2 - 1, 

T3(t) = 4t3 - 3t. 

Using the normalization 

~ o ( t )  for n = o 

m ~ , ( t )  for n > o 
Vn( t )  = (3.39) 

we get a set which  is orthonormal  on  the interval [-l7 +l] with  weighting 
function g ( t )  = (1 - 

Laguerre Polynomials. The Laguerre polynomials 

dn 
dt 

~ , ( t )  = et-(tne-t), n = 0 ,1 ,2 , .  . . (3.40) 
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can  be calculated by means of the recursion 

L,(t) = (2n - 1 - t )  L,_l(t) - (n - 1)2 Ln-2(t).  (3.41) 

The normalization 

1 
n! 

(Pn(t) = -L,(t) n = 0 , 1 , 2 , .  . . (3.42) 

yields a  set which  is orthonormal  on  the interval [0, m] with  weighting function 
g ( t )  = e c t .  The first four basis vectors are 

An alternative is to generate  the set 

,-tP 
$n(t)  = T L " ( t ) ,  71. = 0 , 1 , 2 , .  . . , (3.43) 

which  is orthonormal  with weight one  on the interval [0, m]. As  will be shown 
below, the polynomials $"(t), n = 0 , 1 , 2 , .  . . can  be  generated by a  network. 
For this, let 

e-Pt 
fn(t) = $"(2Pt) = - + W ) .  (3.44) 

The Laplace  transform is  given  by 

(3.45) 

Thus, a function fn(t) is obtained  from  a  network  with  the  transfer 
function F,(s), which  is excited by an impulse. The network  can  be realized 
as a  cascade of a first-order lowpass and n first-order allpass filters. 

Hermite Polynomials. The Hermite  polynomials are defined as 

A recursive computation is possible in the form 

Hk(t)  = 2t Hk-l(t)  - 2(k - 1) Hk-z(t). 

(3.46) 

(3.47) 
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With  the weighting function g ( t )  = ePt2  the polynomials 

q 5 k ( t )  = (2k I c !  &)p &(t),  k = 0 , 1 , 2 , .  . . (3.48) 

form an orthonormal basis for L2 (R). Correspondingly, the  Hermite  functions 

c p k ( t )  = (2' /c! Hb(t), k = 0 , 1 , 2 , .  . . , (3.49) 

form an orthonormal basis with weight one. The functions (Pk(t) are also ob- 
tained by applying  the Gram-Schmidt  procedure to  the basis {tb eCt2I2; k = 
0,1,. . .} [57]. 

Walsh Functions. Walsh functions  take  on  the values 1 and -1. Orthogo- 
nality is achieved by appropriate zero crossings. The first two functions are 
given  by 

cpo(t) = ( 1  for O 5 t 5 I ,  

(3.50) 

Further functions can  be  computed by means of the recursion 

f o r O < t < ;  
- 1) for i < t 5 1 

(2b)  f o r 0 5 t < i  
(2 t  - 1) for i < t 5 1 

m = 1,2,  ..., 
Ic = 1 , .  . . ,2-1 

cpm+l(t) = 

(3.51) 
Figure 3.2 shows the first six Walsh functions; they  are  named  according to 
their number of zero crossings. 

3.3 General  Series Expansions 

If possible, one would  choose an  orthonormal basis for signal represen- 
tation. However, in practice,  a given basis is often not  orthonormal. For 
example, in data transmission  a transmitted signal may have the form 
z(t)  = Cm d(m) s( t  - mT), where d(m)  is the  data  and  s(t) is an impulse 
response that satisfies s(t)s(t - mT)dt = S,O. If  we  now assume that  z(t) is 
transmitted  through a non-ideal channel  with  impulse  response h(t),  then we 
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have  a signal r ( t )  = C,  d ( m ) g ( t  - mT) with g ( t )  = s ( t )  *h@) on the receiver 
side. This new basis { g ( t  - mT); m E Z} is no longer orthogonal, so that  the 
question arises of  how to recover the  data if r ( t )  and g ( t )  are given. 

3.3.1 Calculating the Representation 

In  the following, signals 2 E X with X = span {pl , .  . . ,p,} will be consid- 
ered. We assume that  the n vectors {pl , .  . . , p,} are linearly independent so 
that all X E X can  be  represented  uniquely as 

(3.52) 
i= 1 

As will be  shown, the  representation 
T a = [al , .  . . ,a,] (3.53) 

with respect to a given basis {pl,. . . , p,} can  be  computed by solving a 
linear set of equations  and also via the so-called reciprocal basis. The set of 
equations is obtained by multiplying  (inner product)  both sides of (3.52) with 
pj, j = 1,. . . ,n: 

n 

( " , ' p j ) = ~ a i ( c p i , c p j ) ,  j = L . . . , n .  (3.54) 
i=l 

In  matrix  notation  this is 
+ a = p  (3.55) 
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Figure 3.3. Reciprocal  basis (The basis  is 'p1= [0, 1IT, ' pz=  [2, 1IT; the correspond- 
ing  reciprocal  basis  is &= [-0.5, l] , &= [0.5, OIT). T 

9 is  known as  the Grammian  matrix.  Due to (vi,  vk) = (vk, vi)* it  has 
the  property 9 = aH. 

The disadvantage of the  method considered  above is that for calculating 
the  representation (y. of a new X we first have to calculate P before (3.55) can 
be solved. Much more  interesting is the  computation of the  representation 
a by means of the reciprocal  basis {ei; i = 1 ,2 ,3 . .  .n} ,  which satisfies the 
condition 

(cpi,ej) = sij , i , j  = 1 , .  . . ,n, (3.57) 

which  is  known as  the biorthogonality  condition; Figure 3.3 illustrates (3.57) 
in the two-dimensional plane. 

Multiplying both sides of (3.52) with O j ,  j = 1 , .  . . ,n leads to 

n 

(x,ej) = Cai (vi,ej) = ai, j = 1 , .  . . ,n,  (3.58) 
i=l - 

6ij 

which means that, when using the reciprocal basis, we directly obtain  the 
representation by forming inner products 
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A vector X can  be  represented as 

and also as 

(3.60) 

(3.61) 

Parseval’s relation holds only  for orthonormal bases. However, also for 
general bases  a relationship between the inner product of signals and  their 
representations  can  be established. For this, one of the signals is represented 
by means of the basis {vl,. . . , (P,} and a second signal by means of the 
corresponding reciprocal basis {&, . . . , On}.  For the inner product of two 
signals 

n 

X = c (X, (Pi )  Oi (3.62) 
i= 1 

and 

we get 

(X7Y) = 

(3.63) 

(3.64) 

In  the  last  step,  the  property (pi, O k )  = Sik was used. 

Calculation of the Reciprocal Basis. Since pk, k = 1, .  . . ,n as well as 
8j ,  j = 1,. . . ,n are bases for X ,  the vectors 8 j ,  j = 1,. . . , n can  be  written 
as linear combinations of (P~,  k = 1,. . . , n with the yet unknown coefficients 
yjk: 

n 

ej  = E r j k  pk, j = l , . . . , n .  (3.65) 
k=l 



60 Chapter 3. Discrete  Signal  Representations 

Multiplying this  equation  with p i ,  i = 1 , .  . . ,n and using (3.57) leads to 

i , j  = 1 , .  . . ,n. (3.66) 

Wit  h 

(3.67) 

and 

T 9 =  

equation (3.66) can  be  written as 

rGT = I ,  

(3.68) 

(3.69) 

so that 
r = ( 9 ~ ) ~ ~ .  (3.70) 

The reciprocal basis is obtained  from (3.65),  (3.67) and (3.70). 

3.3.2 Orthogonal Projection 

We consider the  approximation of X E X by X E Mm, where Mm C X .  For 
the signal spaces let X = span {vl , .  . . ,vn} and Mm = span {vl , .  . . , v,} 
with m < n. 

As we will see, the  best  approximation in the sense of 

is obtained for 

(3.71) 

(3.72) 
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where {ei; i = 1 , .  . . ,m}  is the reciprocal basis to {vi; i = 1 , .  . . ,m} .  Note 
that  the reciprocal basis satisfies 

Mm = span {vl, . . . , v,} = span {el, . . . ,e,} . (3.73) 

Requiring  only (pi, ej )  = & j ,  i, j = 0,1 ,  . . . , m is not sufficient  for 8j to form 
the reciprocal basis. 

First we consider the expression (2 ,  e j )  with 2 according to (3.72). Because 
of (v,, ej )  = Si j  we obtain 

(X, ei)  v i  , ej = (X, e j )  , j = 1 , .  . . ,m. (3.74) ) i= 1 

Hence, 
(z -2 ,0 j )=0 ,  j = 1 ,  ..., m. (3.75) 

Equation (3.75) shows that 
r ) = x - x  (3.76) 

is orthogonal to all 8 j ,  j = 1 , .  . . , m. From (3.73) and (3.75) we conclude that 
r )  is orthogonal to all vectors in M,: 

q 1% for all 5 E Mm. (3.77) 

This also means that X is decomposed  into an  orthogonal sum 

X = Mm @ M:. 
I 

(3.78) 

For the vectors we have 

x = 2 + q ,  2 E M m ,  q E M A ,  X E X .  (3.79) 

The  approximation 2 according to (3.72) is the orthogonal  projection of X E X 
onto M,. 

In  order to show that 2 according to (3.72) is the best approximation to 
X, we consider the  distance between X and  an  arbitrary vector 5 E Mm and 
perform some algebraic manipulations: 

d 2 ( X , 0 )  = 112 - all2 
= l l (z - 2) - (a - 2)112 
= ((X - 2 )  - (a - g), (z - 2) - (a - 2 ) )  

= ( x - 2 , x - 2 )  - ( x - 2 , 5 - 2 )  - (9-2,x-2) + (a-2,a-k). 
(3.80) 
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Because of (5 - 2 )  E M ,  and (3.75), the second and  third  terms in (3.80) 
are zero, such that 

The minimum is achieved for 5 = P ,  so that (3.72) clearly yields the best 
approximation. 

A relationship between the norms of X,& and v is obtained  from 

Because of (3.79) the second and  the  third  term in the  last row are zero, and 

1 1 4 1 2  = 1 1 4 2  + llv1I2 (3.83) 

remains. 

3.3.3 Orthogonal Projection of n-Tuples 

The solutions to  the projection  problem  considered so far hold  for all vectors, 
including n-tuples, of course. However,  for n-tuples  the projection can con- 
cisely be  described  with  matrices, and we have a large number of methods at 
hand for solving the problem. 

In  the following, we consider the projection of X = [XI,. . . ,X,] E C, T 

onto  subspaces M ,  = span {b l ,  . . . , b,}, where m < n and bi E C,. With 

B = [bl ,  . . . , b,] n X m matrix (3.84) 

and 
a = [ul, . . . , u,lT m X 1 vector (3.85) 

the  approximation is  given  by 

x = B a .  (3.86) 

Furthermore,  the  orthogonal projection can  be described by a Hermitian 
matrix P as 

X = P x .  (3.87) 
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Inner  Product without Weighting. To compute  the reciprocal basis 0 = 
[e,, . . . ,e,] the relationships (3.70),  (3.56) and (3.65) are used, which can  be 
written  as 

rT = +-l, 

a = BHB, (3.88) 

o = BrT. 
For the reciprocal basis we then get 

o = B [BHBI-'. (3.89) 

Observing that  the inverse of a Hermitian matrix is Hermitian itself, the 
representation is calculated according to (3.59) as 

a = OH% = [ B H B ] - l B H z .  (3.90) 

With (3.86) the  orthogonal projection is 

2 = BIBHB]- lBHz.  (3.91) 

If B contains  an  orthonormal basis, we have B H B  = I, and  the projection 
problem is simplified. 

Note that  the  representation according to (3.90) is the solution of the 
equation 

[B%] a = B 2 ,  
H (3.92) 

which  is  known as the normal equation. 

Inner  Product with Weighting. For an inner product  with a weighting 
matrix G ,  equations (3.70),  (3.56) and (3.65) give 

rT = @ - l ,  

+ = B ~ G B ,  

0 = B P .  

Thus, we obtain 

0 = B [BHGB]- l ,  

a = OHGx = [BHGB]-lBHGx, 

63 = BIBHGB]-lBHGx. 

(3.93) 

(3.94) 

(3.95) 

(3.96) 
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Alternatively, G can  be  split  into a product G = H H H ,  and  the problem 

can  be  transformed  via 
z = Ha: 

V = H B  

into  the equivalent problem 

(3.97) 

(3.98) 

(3.99) 

The indices of the norms in (3.97) and (3.99) stand for the weighting matrices 
involved. Thus,  the projection  problem  with weighting can  be  transformed 
into one  without weighting. Splitting G into G = H H H  can for instance  be 
achieved  by applying the Cholesky  decomposition G = LLH or by a singular 
value decomposition. Both  methods  can  be  applied  in  all cases since G must 
be Hermitian and positive definite in  order to be  a valid weighting matrix. 

Note. The  computation of the reciprocal basis involves the inversion of the 
Grammian  matrix. If the Grammian  matrix is poorly  conditioned,  numerical 
problems  may  occur.  Robust  methods of handling such cases are  the  QR 
decomposition and  the Moore-Penrose  pseudoinverse,  which  will be discussed 
in the next  section. 

3.4 Mathematical Tools 

3.4.1 The QR Decomposition 

The  methods for solving the projection  problem considered so far  require 
an inversion of the Grammian  matrix.  The inversion does not pose a major 
problem so long as  the vectors that span the subspace in question are 
linearly  independent. However, because of finite-precision arithmetic, a poorly 
conditioned  Grammian matrix may lead to considerable  errors, even if the 
vectors are linearly  independent. 

A numerically robust  solution of 

= min ! 

a = a  
(3.100) 
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is obtained by carrying  out  a QR decomposition of B: 

B = Q R .  

Here, Q is a unitary  matrix,  and R has  the following form: 

(3.101) 

(3.102) 

The QR decomposition can, for instance,  be  computed by using House- 
holder  reflections or Givens  rotations; see Sections 3.4.4 and 3.4.5. 

In  the following we will  show  how (3.100) can  be solved via &R decompo- 
sition. Substituting (3.101) in (3.100) yields 

(3.103) 

For (3.103) we can also write 

IIQHQRa - QHzll = IIRa - QHzll = min, (3.104) 
l 

la = a  

because a multiplication with a unitary  matrix does  not  change the norm of 
a vector. Using the  abbreviation y = Q H x ,  we get 

llRa - YII = 

With 

. .  
rmm 

Y1 

Ym 

Ym+l 

Yn 

(3.105) 

, f = [ yj;] 
(3.106) 

(3.107) 
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The  norm reaches its minimum if a = a is the solution of 

X a=.%. (3.108) 

Note that X is an  upper  triangular  matrix, so that a is easily computed by 
using  Gaussian elimination. For the norm of the  error we have: 

3.4.2 The Moore-Penrose Pseudoinverse 

We consider the criterion 

(3.109) 

(3.110) 

The solutions (3.90) and (3.91), 

a = [BHBI-l BHX, (3.111) 

5 = B [ B H B ] - l   B H x ,  (3.112) 

can  only  be applied if [BHB] exists, that is, if the columns of B are linearly 
independent. However, an  orthogonal projection can also be carried out if 
B contains linearly dependent vectors. A general solution to  the projection 
problem is obtained by introducing a matrix B+ via the following four 
equations 

B+B = (B+B)H (3.113) 

BB+ = ( B B + ) ~  

BB'B = B 

B+BB+ = B+. 

(3.114) 

(3.115) 

(3.116) 

There is only  one B+ that satisfies (3.113) - (3.116). This  matrix is  called the 
Moore-Penrose  pseudoinverse [3]. The expressions B+B and BB+ describe 
orthogonal  projections, since under conditions (3.113) - (3.116) we have 

[X - BB+xIH  BB+x = 0,  
(3.117) 

[a - B+Ba]HB+Ba = 0. 
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Assuming that B is an n X m matrix which either  has  rank k = m or 
k = n, we have 

B+ = [BHB]- l   BH,  5 = m ,  

B+ = B H   [ B B H ] - l ,  5 = n, (3.118) 

B+ can for instance  be  computed via the singular  value  decomposition 

B = U X V H .  (3.119) 

U and V are  unitary. For m < n, X has  the following form: 

(3.120) 

The non-zero values C T ~  are called the singular values of B .  They satisfy 
C T ~  > 0. With 

the pseudoinverse B+ is  given  by 

B+ = VX+UH.  (3.122) 

It can easily be shown that  the requirements (3.113) - (3.116) with B+ 
according to (3.122) are satisfied, so that (3.111) and (3.112) can  be  replaced 
by 

a = B+x, (3.123) 

2 = BB+X. (3.124) 

Note that (3.123) is not necessarily the only solution to  the problem 
(3.110). We will return to this topic in the next section. 
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By taking  the  products B H B  and BBH we obtain  equations for calculat- 
ing the singular value decomposition. With B according to (3.119) we have 

BHB = V ~ ~ U H U ~ V H  = v [xHx] V H ,  

B B ~  =uxvHvxHuH = U xx uH. 
(3.125) 

[ "1 
That is, the  squares of the singular values of B are  the eigenvalues of 
B H B  and at the  same  time of BB". Matrix V contains  the  orthonormal 
eigenvectors of B H B .  Correspondingly, U contains  the eigenvectors of B B H .  
Further  methods of calculating the pseudoinverse are discussed in [3]. 

Note. The pseudoinverse  may  be  written as 

B+ = [BHB]+  B". (3.126) 

This  property  can  be applied to continuous  functions, and with rT = ++ 
instead of rT = +-l we can  compute  a set of functions e,@), which  is dual 
to a given set cpi(t); see (3.65) - (3.70). 

3.4.3 The Nullspace 

Let  us consider the problem 
B a = X ,  (3.127) 

where X = B B+x is the  orthogonal projection of an  arbitrary X onto  the 
column  subspace of B .  It is easily observed that  the solution to (3.127) also is 
the solution to (3.110). Depending  on B we either  have  a  unique solution a,  
or we have an infinite number of solutions. Finding all solutions is intimately 
related to finding the nullspace of matrix B .  

The nullspace of a matrix B consists of all vectors a such that B a = 0.  
It is denoted by N ( B ) .  In  order to describe N ( B ) ,  let us assume that B 
is an n X m matrix  that  has  rank T .  If T = m then N ( B )  is only the null 
vector, and a = B+$ = B+x is the unique solution to (3.127) and  thus also 
to (3.110). If T < m then N ( B )  is of dimension m - T ,  which means that 
N ( B )  is spanned by m - T linearly independent vectors. These vectors can  be 
chosen to form an  orthonormal basis for the nullspace. If we define a  matrix 
N of size m X (m - T )  whose column  subspace is the nullspace of B then 

B N = O .  (3.128) 

The  set of all solutions to (3.127) is then given  by 

a = h +  N p ,  where zi = B+X = B+x. (3.129) 
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In (3.129) p is an  arbitrary vector of length m - T .  In some applications  it is 
useful to exploit the free design parameters  in p in order to find a solution 
a that optimizes an additional  criterion. However, in most cases one will  use 
the solution 2i given  by the pseudoinverse, because this is the solution  with 
minimum  Euclidean  norm.  In  order to see this, let us determine the squared 
norm of a: 

2 
l la l lez = aHa 

= [B+x + NpIH [B+x + Np] 

= x ~ ( B + ) ~ B + z  + P ~ N ~ B + Z  + z ~ ( B + ) ~ N P  + P ~ N ~ N P .  
(3.130) 

The second and  third  terms vanish,  because BN = 0 implies that NHB+ = 
0. Thus, we get the vector a of shortest  length for p = 0, that is for a = 6. 

The  matrix N that contains the basis for the nullspace is easily found 
from the singular value  decomposition 

B = U X V H .  (3.131) 

Let B have rank T and let the T nonzero  singular values be  the elements 
[X]1,1,. . . , [X]T,T of matrix X. Then  an  orthonormal  matrix N is  given  by the 
last m - T columns of V. 

3.4.4 The Householder Transform 

Householder  transforms allow a simple and numerically robust way  of per- 
forming QR decompositions, and  thus of solving normal  equations.  The QR 
decomposition  is carried out  step by step by reflecting vectors at hyperplanes. 

In  order to explain the basic  idea of the Householder transforms we 
consider two  vectors X, W E (En, and we look at  the projection of X onto 
a one-dimensional subspace W = span {W}: 

P,x=w - wHx. 
WHW 

Here, (En is decomposed into  the  orthogonal  sum 

The Householder transform is given  by 

(3.132) 

(3.133) 

(3.134) H,x = X  - 2 P,x. 
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- =I W 
-Pwx 

Figure 3.4. Householder  reflection. 

W pw X 

It is also known as Householder  reflection, because  it is the reflection of X at 
the  hyperplane W I ,  as depicted in Figure 3.4. 

With P ,  according to (3.132) we get 

2 
W H W  

H , = I - -  W wH (3.135) 

for the Householder  matrix H,.  

From (3.135) the following property of Householder  matrices  can  be 
concluded: 

H ~ H ,  = H , H ,  

= [ I  - & W W H ]  [ I  - & W W H ]  
(3.136) 

= I .  

Hence H ,  is unitary  and  Hermitian.  Furthermore we have 

det{H,} = -1.  (3.137) 

In  order to make  practical use of the Householder  transform, we consider 
a vector X and  try  to find that vector W for  which only the  ith component of 
H,x is non-zero. We use the following approach: 

w = x + a e i ,  (3.138) 

where 
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e: = [o, . . . , 0 ,  1,O,. . . ,0] . 
f ith element 

71 

(3.139) 

For H,x we get 

- - z - 2 - W  W H O  

(3.140) 
= x - 2% [x + a  ei] 

= ( 1 - 2 G )   x - 2 a  w H x  ei. 

In  order to achieve that only the  ith component of H,x is non-zero, the 
expression in  parentheses in (3.140) must vanish: 

WHX 1 1 x 1 1 2  + a*xi 
1-2-  = l - 2  = 0, (3.141) 

llxll + axg + a*xi + la12 WHW 

where xi is the  ith component of x. As can easily be verified, (3.141) is satisfied 
for 

(3.142) 

In  order to avoid W M 0 in the case of X M Dei for some E R we choose the 
positive sign in (3.142) and  obtain 

xi 
W = X + - llxll ei. (3.143) 

1 %  I 
By substituting  this solution  into (3.140) we finally get 

(3.144) 

Applying the Householder transform to  the QR Decomposition. We 
consider the problem 

l l ~ v  - bll L min (3.145) 

with 

A =  E ( I F m ,  n > m (3.146) 
an, i l l  . . . 

anm 
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and  try  to tackle the problem by applying the &R decomposition. First, we 
choose z1 to be the first  column of A 

Multiplying A with the Householder matrix 

where w1 is chosen as 

yields a matrix where only r11 is non-zero  in the first column: 

(3.147) 

(3.148) 

(3.149) 

Then, we choose 

H 2  = I - 2 7  w2wf 
W2 W2 

and  obtain 
rii r12 r13 . . . rlrn 
0 V22 

H 2 H l A =  [ 0 
r& * * *  

0 an3 (3) . . . anm (‘3) 

After  maximally m steps we get 

H r n - * * H 2 H l A = R ,  (3.151) 

where only the upper  right-hand  triangular  matrix of R is non-zero. This 
means that we have  carried out  the &R decomposition. 

Note. If one of the values a::) becomes zero, wi is chosen as wi = zi+llzill ei. 
If IJzilJ = 0, the columns  must  be  exchanged. 
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3.4.5 Givens Rotations 

Besides  Householder reflections, rotations  constitute a further possibility of 
performing QR decompositions. We first consider the  rotation of a real-valued 
vector X by an angle $ through  multiplication of X with an  orthonormal 
rotation  matrix G .  For 

and 

we get 
2’ = G X  = r cos(a - $) 

r sin(a - $) 1 ’ 

(3.152) 

(3.153) 

(3.154) 

We observe that for $ = Q! a  vector X’ is obtained whose  second component 
is zero. This special rotation  matrix is 

G = [  -S c “1 c (3.155) 

with 
c = COS(Q!) = X1 

@Tg 

Jm* 
(3.156) 

S = sin(a) = X2 

For the  rotated vector we have 

x ‘ = G x =  [ : l = [  JW 1 .  (3.157) 

As can easily be verified, for complex-valued vectors we can  apply the 
rotation  matrix 

G = [ : *  :] 

in  order to obtain X’ = [r,0lT. Note that G according to (3. 
G ~ G  = I .  

We  now consider a vector 

X = [XI, . . . , xi-1, xi, Xi+l, . . . , xj-1, xj, Xj+l, . . . , X,] T 

(3.158) 

(3.159) 

58) is unitary, 

(3.160) 
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and want to achieve a vector 

2' = [XI,. . . , X i - l ,  T ,  X i + l , .  . . , Xj-l,O, Xj+l,. . . ,X,] T (3.161) 

with 
r = Jm (3.162) 

by carrying  out a rotation.  The  rotation is applied to  the elements xi and xj 
only. We have 

with 

G =  
4 i  

+.i 

(3.163) 

(3.164) 

A QR decomposition of a  matrix can  be carried out by repeated application 
of the  rotations described above. 
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Chapter 4 

Examples of 
Discrete  Transforms 

In  this  chapter we discuss the most important fixed discrete transforms. We 
start with the  z-transform, which  is a  fundamental  tool for describing the 
input/output relationships in linear time-invariant (LTI) systems. Then we 
discuss several variants of Fourier series expansions, namely the discrete-time 
Fourier  transform,  the discrete Fourier  transform  (DFT),  and  the fast Fourier 
transform (FFT).  The remainder of this  chapter is dedicated to other discrete 
transforms  that  are of importance in digital signal processing, such  as  the 
discrete cosine transform,  the discrete sine transform,  the discrete Hartley 
transform,  and  the discrete Hadamard  and  Walsh-Hadamard  transform. 

4.1 The ,+Transform 

The  z-transform of a discrete-time signal z(n) is  defined as 

n=-CQ 

Note that  the  time index n is discrete, whereas z is a  continuous  parameter. 
Moreover, z is complex, even if z(n) is real. Further  note that for z = ejw the 
z-transform (4.1) is equal to  the discrete-time Fourier transform. 

75 
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In general, convergence of the  sum in (4.1) depends  on the sequence z (n)  
and  the value z .  For most  sequences we only  have convergence  in a certain 
region of the  z-plane, called the region of Convergence (ROC). The ROC can 
be  determined by finding the values r for  which 

cc c Iz(n) < m. 
n=-cc 

Proof. With z = r ej4 we have 

I 

n=-cc 

M 

n=-cc 

Thus, IX(z)I is finite if z(n)r-" is absolutely summable. 0 

The inverse z-transform is  given  by 

z(n) = 1 f X(z)z"- 'dz .  
32n c (4.4) 

The  integration  has to be carried out counter-clockwise on a closed contour 
C in the complex  plane, which  encloses the origin and lies in the region of 
convergence of X (2). 

Proof of (4.4). We multiply both sides of (4.1) with zk-' and  integrate 
over a closed contour in a counter-clockwise manner: 
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Invoking the Cauchy  integral  theorem 

finally  yields (4.4). 0 

Reconstruction  formulae simpler than (4.4) can  be  found for rational X ( z ) ,  
that is  for 

X ( z )  = 
bo + b1z-l + bzz-’ . . . 
a0 + a l z - l+  azz-’ . . .‘ 

Methods  based  on the residue theorem,  on  partial fraction expansion,  and  on 
a direct expansion of X ( z )  into  a power series in z-l are known.  For more 
detail, see e.g. [80, 1131. 

The simplest example is the  z-transform of the discrete impulse: 

S(n) = 
1, n=O 
0, otherwise. 

We have 
cc 

S(n) t) c S(n) z-n = 1. 
n=-cc 

For a delayed discrete impulse it follows that 

In  the following, the most important  properties of the  z-transform will be 
briefly recalled. Proofs which  follow directly from the definition equation of 
the  z-transform  are  omitted. 

Linearity 

W(.) = az(n) + p y ( n )  t) V ( z )  = a X ( z )  + PY(z ) .  (4.9) 

Convolution 

W(.) = z(n) * y ( n )  t) V ( z )  = X ( z )  Y(2) .  (4.10) 
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Pro0 f. 
0 0 - 0 0  

k = - m  m=--00 

= X ( z )  Y ( z ) .  

Shifting 
.(n - no) c n o  X ( z ) .  (4.11) 

This  result is obtained by expressing w(n) as W(.) = z(n)*S(n-no) and  using 
the convolution  property  above. 

Scaling/Modulation. For any real or complex a # 0, we have 

an .(n) t) X . (3 
This includes a = eJw such that 

Time Inversion 

Derivatives 

Pro0 f. 

X(-.) t) X (;) . 

00 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

= c nz(n)  2-" 
n=-cc 

3: 
nx(n) .  
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Conjugation. Given the correspondence z(n) t) X ( z ) ,  we have 

.*(n) H X * ( z * ) .  (4.16) 

= ( g .(n) [ P ] *  
n=-cc 

cc 

Paraconjugation. Given the correspondence X(.) t) X ( z ) ,  we have 

X*(+) t) X ( z ) ,  where X ( z )  = [X(z ) ]*  I l a l = l .  (4.17) 

That  is, X ( z )  is derived  from X ( z )  by complex conjugation  on the unit circle. 

Proof. 

X ( z )  = [ - p ( i r ) z - ~ ]  * 114=1 

= C.*(ir)zk 
k 

= C .* (-n)z-" 
n 

$ 
X * ( - n ) .  

(4.18) 

For real  signals z(n), it follows that 

.(-n) t) X ( z )  = X(z-1) .  (4.19) 

Multiplication with cos on and sin on. If z(n) t) X ( z ) ,  then 

coswn X(.) t) - [ X ( e j w z )  + x ( e - j W z ) ]  
1 
2 

(4.20) 

and 
sinwn X(.) t) - [X(e jwz )  - x ( e - j W z ) ]  . j (4.21) 

2 
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This follows directly  from (4.13) by expressing  coswn and  sinwn via Euler's 
formulae cos a = +[ej" + e-j"] and sin a = i [e ja  - e-j"]. 

Multiplication in the Time Domain. Let z(n) and y(n) be real-valued 
sequences. Then 

~ ( n )  = ~ ( n )  y(n) t) V ( Z )  = (4.22) 

where C is a closed contour that lies within the region of convergence of both 
X ( z )  and Y ( k ) .  

Proof. We insert (4.4) into 
00 

V ( z )  = c .(n) y(n) . K n .  (4.23) 
n=-m 

This yields 

Using the same  arguments, we may write for complex-valued  sequences 

W(.) = X(.) y*(n) t) V ( 2 )  = - X(v )Y*  
1 f (5) v-' dv. (4.25) 

2Tl c 

4.2 The Discrete-Time Fourier  Transform 

The discrete-time Fourier transform of a sequence X(.) is defined as 
00 

X(ej') = C e-jwn. (4.26) 

Due to  the  2~-periodicity of the complex exponential, X(ej") is periodic: 
X ( e j w )  = X(e j ( ,  + 2.rr)). If X(.) is obtained by regular  sampling of a 

n=-m 



4.2. The Discrete-Time Fourier Transform 81 

continuous-time signal zct( t )  such that z (n)  = z,t(nT), where T is the 
sampling  period, W can  be  understood  as  the  normalized  frequency W = 27r f T .  

(4.27) 

Convolution 

(4.28) 

Multiplication in the Time Domain 

z(n)y(n) w - X ( e j w )   * Y ( e j w )  = - X ( e j ( w - V ) ) Y ( e j V ) d v .  (4.29) 
1 

27r  27r S" 
Reconstruction. If the sequence z(n) is absolutely summable (X E 
l 1  (-m, m)), it  can  be  reconstructed  from X ( e j w )  via 

z(n) = - X ( e j w )  ejwn dw. 
27r S" -r 

(4.30) 

The expression (4.30) is nothing  but  the inverse z-transform,  evaluated  on  the 
unit circle. 

Parseval's  Theorem. As in the case of continuous-time signals, the signal 
energy  can  be calculated in the  time  and frequency  domains. If a signal z(n) 
is absolutely and  square  summable (X E l 1  (-m, m) n &(-m,  m)), then 

(4.31) 

Note that  the expression (4.26) may  be  understood as a series expansion 
of the 27r-periodic spectrum X(ej" ) ,  where the values z(n) are  the coefficients 
of the series expansion. 
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4.3 The  Discrete Fourier  Transform (DFT) 

The  transform pair of the discrete Fourier transform (DFT) is  defined as 

N-l 

X ( k )  = c .(n)w;k 

5 
n = O  

1 N-l 
.(n) = c x ( k ) w i n k )  

k=O 

(4.32) 

(4.33) 

Due to  the periodicity of the basis functions,  the  DFT can  be seen as the 
discrete-time Fourier transform of a periodic signal with  period N .  

the above relationships can also be  expressed as 

1 
N 

x = w x  t) x = - W H X .  

We see that W is orthogonal,  but  not  orthonormal. 
The  DFT can  be  normalized as follows: 

(4.35) 

(4.36) 

a = +  x t ) x = 9 a ,  H (4.37) 

where 
1 9 = -WH. a (4.38) 

The columns of 9, 
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then form an  orthonormal basis as  usual. 

We  now briefly recall the most important properties of the  DFT. For an 
elaborate discussion of applications of the  DFT  in digital  signal processing 
the reader is referred to [113]. 

Shifting. A circular  time shift by p yields 

xp(n)  = ~ ( ( n  + p)  mod N) 

t 
N-l 

X,(m) = c x ( (n  + p)  mod N)WGm 
n=O 

N-l 

(4.39) 

i=O 

= W,""X(m). 

Accordingly, 

N-l 

Wp X(.) t) c x ( ~ ) W $ ~ + ~ )  = X ( ( m  + Ic) mod N).  (4.40) 
n=O 

Multiplication  and  Circular  Convolution. For the inverse discrete 
Fourier transform  (IDFT) of 

we have 

(4.41) 

That  is, a  multiplication in the frequency domain  means a circular convolution 
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in the  time domain. Accordingly, 

N-l  

~ ( n )  m(n) t) c X l ( n )   X z ( ( m  - n)  modN). (4.42) 
n = O  

Complex Conjugation. Conjugation in the  time or frequency  domains 
yields 

2*(n) X * ( N  - n) (4.43) 

2* ( N  - n) X *  (n). (4.44) 
and 

Relationship between the DFT and the KLT. The  DFT is related to 
the KLT due to  the fact that  it diagonalizes  any  circulant  matrix 

(4.45) 

In  order to show the diagonalization effect of the  DFT, we consider a  linear 
time-invariant  system  (FIR  filter)  with  impulse  response h(n),  0 5 n 5 N - 1 
which is excited by the periodic  signal WN"/fl. The  output signal y(n) is 
given  by 

(4.46) 
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Comparing (4.47) with (4.45) and (4.37) yields the relationship 

H ( k ) p ,  = H p , ,  k=O, 1,. . . ,N- l .  (4.48) 

Thus,  the eigenvalues Xk = H ( k )  of H are derived  from the  DFT of the first 
column of H .  The vectors p,, k = 0,1, . . . , N - 1 are  the eigenvectors of H .  
We have 

aHHa = diag{H(O), H(1), . . . , H ( N  - l)}. (4.49) 

4.4 The Fast Fourier Transform 

For a complex-valued input  signal ~ ( n )  of length N the implementation of 
the  DFT  matrix W requires N 2  complex multiplications. The idea  behind 
the fast Fourier transform (FFT) is to factorize W into a product of sparse 
matrices that altogether  require  a lower implementation cost than  the direct 
DFT.  Thus,  the FFT is a  fast  implementation of the  DFT  rather  than a 
different transform  with different properties. 

Several concepts for the factorization of W have  been proposed  in the 
literature. We  will  mainly focus on the case where the  DFT  length is a power 
of two. In  particular, we will discuss the radix-2 FFTs,  the radix-4 FFT, and 
the split-radix FFT. Section 4.4.5 gives a brief overview of FFT algorithms 
for cases where N is not  a power of two. 

We  will only discuss the forward DFT. For the inverse DFT a similar 
algorithm  can  be  found. 

4.4.1 Radix-2  Decimation-in-Time FFT 

Let  us  consider an N-point DFT where N is a power of two, i.e. N = 2K for 
some K E N. The first step towards a fast  implementation is to decompose 
the time  signal X(.) into  its even and  odd numbered  components 
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The  DFT  can  be  written  as 
N - l  

n=O 

%-l 8-1 
= c ZL(n)W?k + c .(.)W, (2n+l )k  

n=O n=O 

%-l  +l 

= c ~ ( n ) W $ ,  + W; ~ u ( ~ ) W $ ~ ,  k = 0,1, ..., N - 1. 
n=O n=O 

(4.51) 
In the last  step  the properties W z k  = W,!$2 and W, (2n+l)k = W; 
were used. The  next  step is to write (4.51) for k = 0,1, . . . , $ - 1 as 

X ( S )  = U ( S )  + WiV(Ic), 5 = O,l , .  . ., - 1 
2 

(4.52) 

with 
-- T 1  N 

2 
V ( k )  = c u(n)W$,, 5 = 0,1, .  . ., - - 1 

V ( k )  = co(n)W;72,  5 = 0,1, .  . ., - - 1. 

n=O 
(4.53) 

-- T 1  N 
2 

n=O 

Due to  the periodicity of the  DFT  the values X ( L )  for Ic  = $, .. . , N - 1 are 
given  by 

N  N  N 
2 2 2 

X ( k )  = U(Ic - -) + W& V(Ic - -), Ic = -, . . . , N - 1. (4.54) 

Thus, we have  decomposed an  N-point  DFT  into two $-point DFTs  and 
some extra  operations for combining the two DFT  outputs. 

Figure 4.1 illustrates the implementation of an  N-point  DFT via  two $- 
point DFTs. It is easily verified that  the decomposition of the  DFT results  in 
a reduction of the number of multiplications: the two DFTs require 2(N/2 )2  
multiplications, and  the prefactors W& require  another N multiplications. 
Thus,  the overall complexity is $ + N ,  instead of N 2  for the direct DFT. 
The prefactors W&, which are used for the combination of the two DFTs,  are 
called twaddle factors. 

Since N is considered to  be a power of two, the same decomposition 
principle can  be used for the smaller DFTs  and  the complexity can  be  further 
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reduced. To be explicit, we decompose the sequences u(n) and w(n) into  their 
even and  odd  numbered parts: 

a(n) = u(2n) = x(4n) 

b(n )  = u(2n+ 1) = x(4n + 2) 

C(.) = w(2n) = 2(4n + 1) 
(4.55) 

d(n) = v(2n+ 1) = 2(4n + 3 ) .  

Observing that = W&k we get for the $-point DFTs U ( k )  and V(L)  

{ 

I 
A(k)  + W&k B ( k ) ,  k = O , l ,  . . . ,--  1 

N 
4 

4 2 

U ( L )  = 
N 1  

C(L) + W;k D@), k = O , l ,  . . . , - -  N 1  

C ( k - $ + W & 9 ( k - - ) ,  k = -  ,.", - - l .  

(4.56) 
A ( L - T ) + W j $ ' " B ( k - N )  4 7  L = -  , . . . ,--  

and 

V ( k )  = 4 
N N N N 

4 4 2 

(4.57) 

The decomposition  procedure  can  be  continued  until  two-point DFTs  are 
reached. 

It  turns  out  that all stages of the  FFT  are composed of so-called butterfly 
graphs as shown in Figure 4.2. The two structures in Figure 4.2 are equivalent, 
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(4 01) 

Figure 4.2. Equivalent  butterfly  graphs. 

but  the one in Figure 4.2(b) saves us one  complex multiplication. The complete 
flow graph for an 8-point FFT based  on the  butterfly in Figure  4.2(b) is 
depicted in Figure 4.3. As we see, the  output values appear in their  natural 
order,  but  the  input values appear in permuted  order.  This is the case for 
all N .  The  order of the  input values  is  known as the bit reversed  order. This 
order  can  be derived from the  natural one as follows. First, one represents the 
numbers 0 ,1 , .  . . , N - 1 in binary  form.  Then  the  order of bits is reversed and 
the decimal equivalent is taken. For example, n = 3 is represented by [011] 
when an 8-point FFT is considered. This yields [l101 in reversed order,  and 
the decimal equivalent is 6. Thus, 4 6 )  has to be  connected to  input node 3. 

Since the  butterfly  operations within  each stage of the  FFT  are indepen- 
dent of one another,  the  computation of the  FFT can  be carried out in place. 
This means that  the pair of output values of a butterfly is written over the 
input. After this  has been  done for all butterflies of a given processing stage, 
one  can  proceed to  the next  stage.  Thus,  only  a  memory of size N + 1 is 
required for computing  an  N-point  FFT. 

The  computational  complexity of the  FFT is as follows. Each stage 
of the FFT requires N/2 complex multiplications and N additions.  The 
number of stages is  log, N .  This yields a total number of i N  log, N complex 
multiplications and N log, N additions. However, since the 2-point DFTs do 
not require multiplications, and since the 4-point DFTs involve multiplications 
with 1, -l,j, and - j  only, the  actual number of full complex multiplications 
is  even  lower than  iNlog, N .  

4.4.2 Radix-2  Decimation-in-Frequency FFT 

A  second  variant of the radix-2 FFT is the decimation-in-frequency algorithm. 
In  order to derive this  algorithm, we split the  input sequence  into the first 
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-1 -1  -1 

Figure 4.3. Flow graph for an 8-point  decimation-in-time FFT. 

and second  halves and write the  DFT  as 
N - l  

n=O 

N / 2 - l  

(4.58) 
n=O 

N f 2 - 1  

= c [U(.) + (-l)”(.)] W$) 
n=O 

where 
U(.) = X(.) N , n = 0 , 1 )  . . . )  - - l .  (4.59) 

2 v(.) = z(n + N / 2 )  

In (4.58) we have  used the fact that W:’2 = -1. For the even and  odd 
numbered DFT points we get 

N - l  

X ( 2 k )  = c [U(.) + v(.)] WZh (4.60) 
n=O 

and 
N - l  

X (2k  + 1) = c [U(.) - v(.)] W; WZk .  (4.61) 
n=O 

Because of W F k  = W$2, the even numbered DFT points X ( 2 k )  turn  out 
to be the  DFT of the half-length sequence U(.) + W(.). The  odd numbered 
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40) 

4 1 )  

42) 

d 3 )  

44) 

45) 

46) 

47)  
-1 -1 -1 

Figure 4.4. Flow graph  for an 8-point  decimation-in-frequency FFT. 

DFT points  X(2k + 1) are  the  DFT of [u(n) - w(n)] W;. Thus,  as  with  the 
decimation-in-time  algorithm, the  N-point  DFT is  decomposed into two N/2- 
point  DFTs. Using the principle repeatedly  results in an FFT algorithm where 
the  input values appear  in  their  natural  order,  but where the  output values 
appear  in  bit reversed order.  The complexity  is the same as for the decimation- 
in-time FFT. Figure 4.4  shows the complete flow graph of the decimation-in- 
frequency FFT for the case N = 8. The comparison of Figures  4.3 and 4.4 
shows that  the two  graphs  can  be viewed as  transposed versions of one another. 

4.4.3 Radix-4 FFT 

The radix-4 decimation-in-frequency FFT is derived  by writing the  DFT as 

N-l 

X ( k )  = c .(n)w;k 
n=O 
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Splitting X(k) into four subsequences X(4k + m) yields 

z (n  + .e-)WG" w$4. 
N 
4 1 (4.63) 

Thus, we have  replaced the  computation of an  N-point  DFT by four N/4- 
point DFTs. One of these four DFTs requires no multiplication at all,  and  the 
others require one  complex multiplication per  point.  Compared to  the radix- 
2 FFT  this means  3 X (N/4)  instead of N/2 multiplications for the twiddle 
factors. However, the radix-4 algorithm requires only N/4-point  DFTs,  and 
it requires only  half as many stages as a radix-2 one. Therefore, the overall 
number of multiplications is  lower  for the radix-4 case. 

4.4.4 Split-Radix FFT 

The  split-radix FFT [46], which  is a  mixture of the radix-2 and radix-4 
algorithm, requires the lowest number of operations of all currently known 
FFT algorithms.  It is also easily programmed  on  a  computer. The radix-2 
approach is  used to compute  the even numbered frequencies, and  the radix- 
4  approach is  used to compute  two  length-(N/4)  subsequences of the  odd 
numbered frequencies. For this, X(k) is split into  the following three  subsets: 

N/2-1 n 7  

X(2k) = c [X(.) + z ( n  + ;)l W$, 
n=O 

(4.64) 

N/4-1 

X(4k + 1) = c [ [X(.) - z(n + -)] N 
2 

n=O 

N/4-1 

X(4k + 3) = c [ [X(.) - z(n + -)] N 
2 

n=O 

N  N 
4 

+j[z(n  + -) - z(n + 34)1] W$'W$,. (4.66) 

The  terms [X(.) - z ( n  + $)] and [z(n + :) - z ( n  + y)] in (4.65) and (4.66) 
are  the  natural  pairs to  the  terms in (4.64).  Thus,  a  split-radix  butterfly 
can  be  drawn as shown in Figure 4.5. As with the previous  approaches,  the 
decomposition principle can  be used repeatedly. It  turns  out  that  the  split- 
radix  approach requires less multiplications than  a  pure radix-2 or radix- 
4 FFT, because fewer  full complex multiplications occur. The  split-radix 
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0 use for X(4k+l) 

0 use for X(4k+3) 

Figure 4.5. Butterfly  for a split-radix FFT. 

concept  can  be generalized to other radices [152], and special forms are 
available for real and real-symmetric data [45, 1381. 

4.4.5 Further FFT Algorithms 

There  are a number of algorithms available for the case where the  DFT  length 
is not necessarily a power of two. The best known one is the Cooley-Tukey F F T  
[31],  which requires that  the  DFT-length is a composite  number N = P&, 
where P and  Q  are integers. The  DFT can then  be  written as 

P-1 Q-l 

X ( k P +  m) = c c z(iQ + j )  W, (iQ+j)(kP+m) 

(4.67) 

j=O i=O 

for k = 0, 1,. . . , P - 1 and m = 0, 1 , .  . . , Q - 1.  The inner sum in the second 
line of (4.67) turns  out  to  be a P-point  DFT,  and  the  outer  sum is a Q-point 
DFT.  Thus,  the  N-point  DFT is decomposed  into P Q-point and  Q  P-point 
DFTs, plus the twiddle  factors in the middle of the second  line  in (4.67). As 
can easily be verified, the complexity is  lower than for the direct N-point 
DFT. If P and/or  Q  are composite themselves, the  approach can  be iterated, 
and  the complexity  can  be further reduced. Note that  the radix-2 approach 
occurs as a special case where P = 2 and  Q = N/2. 

If the  DFT-length can  be factored into N = P Q  where P and  Q  are 
relatively prime  (have  no common divisor other  than 1) a powerful algorithm 
known as  the Good-Thomas F F T  can  be used. The basic idea dates back 
to papers by Good [64] and  Thomas [143]. The  algorithm  has been  further 
developed in [88, 164, 20,  1421. The efficiency of the Good-Thomas FFT 
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results from the fact that for relatively  prime P and Q the twiddle  factors 
(they  are always present in the Cooley-Tukey FFT) can  be avoided. The  input 
data  can  be  arranged  in a two-dimensional array,  and the transform  can  be 
implemented as a true two-dimensional transform.  The mapping is based  on 
the Chinese remainder  theorem [g]. 

FFTs where N is a prime  number  can be realized via  circular convolution 
[120, 101. In  order to give an idea of  how this is done, we  follow the approach 
in [l01 and write the  DFT as 

N-l  N-l 

X ( k )  = c x(n)W;k = W;; c [x(n)W&] W,, -(k-n)' (4.68) 
n=O  n=O 

The  sum on the right side can  be identified as a  circular convolution of the 
sequences x(n)Wp$, and W;;', that is 

X ( n )  = W;; [ x(n)W& * W'$]. (4.69) 

Efficiency is achieved  by implementing the circular convolution via fast 
convolution based  on the FFT, see e.g. [117]. 

Powerful FFT algorithms are most  often  associated  with  signal  lengths 
that  are powers of two.  However, prime  factor  algorithms such as  the Wino- 
grad FFT [l641 are often  competitive, if not  superior, to  the power-of-two 
approaches. Thus, when  designing an  algorithm where the  DFT is involved, 
one should not  be  bound to certain block lengths,  because for almost  any 
length  an  appropriate FFT algorithm  can  be  found. 

4.5 Discrete Cosine Transforms 

We distinguish the following four  types of discrete  cosine  transforms (DCTs) 
[122]: 

DCT-I: 

c:(")=&% cos($) ,   k ,n=0,1,  ..., N .  (4.70) 

DCT-11: 

c:'(.) = &yk COS ( ) , k , n  =0,1 ,  ..., N -  1. (4.71) 
k ( n  + +)T 
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DCT-111: 

cL"(n) = 6 yn cos ( ( I c  '2)"") , 5, n = 0 ,1 , .  . . , N - 1. (4.72) 

DCT-IV: 

cLV(n) = p - N cos ( (5+t ,c .+i)") ,  N k , n = 0 , 1 ,  ..., N - l .  (4.73) 

The  constants yj in (4.70) - (4.72) are given  by 

for j = 0 or j = N ,  
Tj = 

1 otherwise. 
(4.74) 

The coefficients ck(n) are  the elements of the orthonormal basis vectors 

ck(n) = [ck(o) ,ck( l ) ,  . . . l T .  

In  order to point out clearly how (4.70) - (4.73) are  to  be  understood, let us 
consider the forward and inverse DCT-11: 

N-l 

and 
N-l 

Especially the DCT-I1 is of major  importance  in  signal coding because it 
is close to  the KLT for first-order  autoregressive processes with  a  correlation 
coefficient that is close to one.' To illustrate  this, we consider the inverse of 
the correlation matrix of an AR(1)  process, which is given  by 

lSee  Section 5.3 for the definition of an AR process. 
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(4.77) 

with P = p/( l  + p’)). The basis vectors of the DCT-I1 are  the eigenvectors of 
tridiagonal  symmetric  matrices of the form 

-( l-  a) -a 

Q =  -a .. 

- 

-a 1 -a 

1 -a 
- -a (1-a)- 

(4.78) 

We see that Q approaches R;: for p + 1. Since the eigenvectors of R,, 
are equal to those of R;: the DCT-I1  approaches the KLT for p + 1.  This 
means that  the DCT-I1  has good decorrelation  properties when the process 
which  is to  be transformed  has high correlation ( p  + 1). This is the case for 
most images,  which explains why most  image coding standards (e.g. JPEG, 
MPEG [79, 157, 108, 561) are based  on the DCT-11. Compared to  the KLT, 
the DCT-I1  has the advantage that fast  implementations  based  on the FFT 
algorithm exist [122]. 

Application in Image Coding. In  most standards for transform coding of 
images, the two-dimensional cosine transform is used [79,157,108,56]. Figure 
4.6  gives an example. First,  the two-dimensional signal is  decomposed into 
non-overlapping blocks. Each of these blocks is then  transformed  separately. 
This  operation  can  be  written  as YNXN = UT X N ~ N  U ,  where X N ~ N  is 
such a signal block and U is the DCT-I1  transform  matrix whose  columns 
contain the basis vectors of the DCT-11. Instead of the original X ,  the 
representation Y is quantized and coded. From the quantized  representation 
Y ’  = Q(Y) an approximation of the original is finally reconstructed.  In 
Figure 4.6 we see that most of the energy of the transformed  signal is 
concentrated in the  top left sub-image. Such a concentration of signal  energy 
in  a few coefficients is the key to efficient  compression. If we were to simply 
transmit  the  top left sub-image and neglect the others, we already could 
achieve drastic compression, while the reconstructed  signal would still be 
relatively close to  the original. 
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I 

Figure 4.6. Transform  coding of images; (a) original,  divided  into N X N blocks; 
(b) transformed  image  after  rearranging the pixels. 

4.6 Discrete  Sine  Transforms 

The discrete  sine  transforms (DSTs) are classified as follows  [122]: 
DST-I: 

s : ( n ) = g  sin($), k , n = 1 , 2  ,..., N - l .  (4.79) 

DST-11: 

N 
, k , n  = 0,1, ..., N-l .  (4.80) 

DST-111: 

N 
, k , n = 0 , 1 ,  ..., N - l .  

(4.81) 
DST-IV: 

siv(.) = J" - N sin * ( ( k + f ) ( n + i ) a ) ,  N k , n = 0 , 1 ,  ..., N - l .  (4.82) 

The  constants ^/j in (4.79) - (4.81) are 

for j = o or j = N ,  
^/j = 

1 otherwise. 
(4.83) 
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To be explicit, the forward and  the inverse DST-I1 are given  by 
N-l 

x;'(~c) = C z(n) sf'cn) 
n=O 

(4.84) 
N-l 

= y k + l g  C x(n) sin ( ( k  + 1) N (n  + ;IT) , 
n=O 

and 
N-l 

z(n) = C x;'(~c) sf'cn) 
k=O 

(4.85) 

- - g y x ; ~ ( l c )  yk+1 sin ( ( k  + 1) N (n  + t,.) 
k=O 

The DST-I1 is related to  the KLT by the fact that  the KLT for an  AR(1) 
process with correlation coefficient y + -1 approaches the DST-11. Thus,  the 
DST-I1  has  good  compaction  properties for processes with negative correlation 
of adjacent  samples. 

4.7 The Discrete  Hartley  Transform 

The  Hartley  transform  as discussed in Section 2.3 received little  attention  until 
its discrete version, the discrete  Hartley transform (DHT), was introduced in 
the early 1980s  by Wang [158, 159, 1601 and Bracewell [13, 14, 151.  Like 
other discrete transforms  such  as  the  DFT  or  the  DCT,  the  DHT  can  be 
implemented efficiently through a factorization of the  transform  matrix.  This 
results in fast  algorithms that  are closely related to  the  FFT, and in fact,  the 
fast Hartley transform (FHT) can  be  computed via the  FFT,  and vice versa, 
the  FFT can  be  implemented via the  FHT [161, 14, 1391.  For example, in 
[l391 a split-radix  approach for the  FHT  has been  proposed. 

The forward  and inverse discrete Hartley  transform pair is  given by 

N-l 

X H ( I C )  = C z(n) cas - 
27rnlc 

N 
n=O 

(4.86) 

1 N-l 
z(n) = C x H ( L )  cas - 

21rnlc 
N 7  

k=O 
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where cas 4 = cos 4 + sin 4. The signal z ( t )  is considered to be real-valued, so 
that also the  transform is real-valued. As with the  DFT,  the sequence X H ( S )  
is periodic with  period N .  

Note that  apart from the prefactor 1/N the DHT is self-inverse, which 
means that  the  same  computer  program or hardware  can  be used  for the 
forward and inverse transform.  This is not the case for the  DFT, where a 
real-valued signal is transformed  into  a  complex  spectrum. 

We may interpret  the basis sequences cas (27rnklN) as sample values of the 
basis functions cas wkt with wk = 27rk/N. The basis function with the highest 
frequency then occurs for k = N/2.  The  kth  and  the ( N  - k)th frequency are 
the same. 

The relationships between the  DHT  and  the  DFT  are easily derived. Using 
the  fact  that 

ej4 = - 1 - j  
+ ’ cas 4 + - cas ( -4 )  (4.87) 
2  2 

and  the periodicity in N ,  we get 

L (4.88) 

where X ( k )  denotes the  DFT.  The  DHT can  be  expressed in terms of the 
DFT  as 

X H ( 5 )  = ?J?{X(k)) - S ( X ( 5 ) ) .  (4.89) 

The  properties of the  DHT can easily be derived from the definition 
(4.86). Like in the continuous-time case, most of them  are very similar to  the 
properties of the Fourier transform. We  will briefly discuss the most important 
ones. The proofs are essentially the same as for the continuous-time case and 
are  omitted here. 

Time Inversion. From (4.86) we see that 

z (N  - n) t) X H ( N  - n). (4.90) 

Shifting. A circular time shift by p yields 

z( (n + p)  mod N )  
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Circular  Convolution. The correspondence for a circular convolution of 
two time  sequences ~ ( n )  and y(n) is 

(4.92) 

Multiplication. The correspondence for products z(n)y(n) is 

where the convolutions have to be carried out in a circular manner. For 
example an expression ZH ( k )  = XH (L) * YH ( - k )  means 

Remarks. The question of whether the  DFT or the DHT  should  be used 
in an application very  much depends  on the  application itself. As mentioned 
earlier, fast algorithms exist for both  transforms,  and  one  fast  transform  can 
be used  in order to implement the  other  transform in an efficient  way.  For 
both  the  FFT  and  the  FHT  the complexity is Nlog, N .  An advantage of 
the DHT is the  fact  that  the  DHT is self-inverse, so that only  one software 
routine  or  hardware device is  needed  for the forward  and inverse FHT. For 
the forward  and inverse FFT of a real signal, two  different routines or devices 
are required. The DHT is  somehow conceptually simpler than  the  DFT if the 
input signal is real,  but all operations  can  be carried out with the  FFT and 
the  FHT with the same complexity. 
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4.8 The Hadamard  and Walsh-Hadamard 
Transforms 

The basis vectors of the discrete  Hadamard and  the discrete  Walsh-Hadamard 
transforms consist of the values fa; just like the Walsh functions discussed 
in Section 3.2.6. Both  transforms  are  unitary. Basically they differ only in the 
order of the basis vectors. 

We have 
y = H x ,  

X = H y ,  
(4.95) 

where X denotes the signal, y the  representation,  and H the  transform  matrix 
of the  Hadamard  transform. H is symmetric  and self-inverse: 

HT = H = H-l. (4.96) 

The  transform  matrix of the  2x2-Hadamard  transform is  given  by 

(4.97) 

From this, all transform  matrices H(n) of size2 n = 2k,  k E IN can  be calcu- 
lated recursively [133]: 

(4.98) 

The Walsh-Hadamard  transform is obtained by taking  the  Hadamard 
transform  and  rearranging  the basis vectors according to  the number of zero 
crossings [66].  Somehow, this yields an order of the basis vectors with respect 
to their  spectral  properties. 

2There exist Hadamard  matrices whose  dimension is not a power of two. 
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Chapter 5 

Transforms  and Filters 

for Stochastic Processes 

In  this  chapter, we consider the  optimal processing of random signals. We 
start with  transforms  that  have  optimal  approximation  properties, in the 
least-squares sense, for continuous and discrete-time signals, respectively. 
Then we discuss the relationships between discrete transforms,  optimal linear 
estimators,  and  optimal linear filters. 

5.1 The Continuous-Time Karhunen-Lo'eve 
Transform 

Among all linear transforms,  the Karhunen-Lo bve transform (KLT) is the 
one which best approximates a stochastic process in the least squares sense. 
Furthermore,  the KLT is a signal expansion  with  uncorrelated coefficients. 
These  properties  make  it  interesting for many signal processing applications 
such as coding and  pattern recognition. The  transform can  be  formulated for 
continuous-time and discrete-time processes. In  this section, we sketch  the 
continuous-time case [81], [l49 ].The discrete-time case will be discussed in 
the next section in greater  detail. 

Consider  a real-valued continuous-time  random process z ( t ) ,  a < t < b. 

101 
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We may not  assume that every sample  function of the random process lies in 
Lz(a,b)  and  can  be represented  exactly  via a series  expansion.  Therefore, a 
weaker condition is formulated, which states  that we are looking for a series 
expansion that represents the  stochastic process in the mean:’ 

N 

The “unknown”  orthonormal  basis {vi@); i = 1,2, .  . .} has to be derived 
from the properties of the stochastic  process. For this, we require that  the 
coefficients 

b 

2i = (z, Pi) = l Z ( t )  Pi(t) dt (5.2) 

of the series  expansion are uncorrelated.  This  can be expressed as 

= x j  & j .  
! 

The kernel of the integral  representation  in  (5.3) is the autocorrelation 
function 

T,,(t, U )  = E { 4 t )  4.)) * (5.4) 

We see that (5.3) is satisfied if 

Comparing (5.5) with the  orthonormality  relation Si j  = S, cpi(t) c p j ( t )  dt,  we 
realize that 

b 

ll.i.m=limit  in the mean[38]. 



5.2. The Discrete Karhunen-Lobe  Transform 103 

must  hold in order to satisfy (5.5).  Thus,  the solutions c p j ( t ) ,  j = 1,2 , .  . . 
of the  integral  equation (5.6) form the desired orthonormal basis. These 
functions are also called eigenfunctions of the  integral  operator in (5.6).  The 
values Xj ,  j = 1,2 , .  . . are  the eigenvalues. If the kernel ~,,(t,  U )  is positive 
definite, that is, if S J T , , ( ~ , U ) Z ( ~ ) Z ( U )  d t  du > 0 for all ~ ( t )  E La(a,b),  then 
the eigenfunctions form a complete  orthonormal basis for L ~ ( u ,  b) .  Further 
properties  and  particular solutions of the  integral  equation  are for instance 
discussed in  [149]. 

Signals can  be  approximated by carrying  out  the  summation in (5.1) only 
for i = 1,2 , .  . . , M with finite M .  The mean  approximation  error  produced 
thereby is the  sum of those eigenvalues X j  whose corresponding eigenfunctions 
are not used  for the  representation.  Thus, we obtain  an  approximation with 
minimal  mean  square  error if those eigenfunctions are used  which correspond 
to  the largest eigenvalues. 

In  practice, solving an  integral  equation represents a major  problem. 
Therefore the continuous-time KLT is of minor  interest  with  regard to prac- 
tical applications. However, theoretically, that is,  without solving the  integral 
equation,  this  transform is an enormous help. We can describe stochastic 
processes by means of uncorrelated coefficients,  solve estimation  or recognition 
problems for vectors with  uncorrelated  components and  then  interpret  the 
results for the continuous-time case. 

5.2 The Discrete  Karhunen-Lohe  Transform 

We consider a real-valued zero-mean  random process 

X =  [ ? l ,  X E I R , .  

Xn 

The  restriction to zero-mean processes means  no loss of generality, since any 
process 2: with  mean m, can  be translated  into a zero-mean process X by 

x = z - m 2 .  (5.8) 

With  an  orthonormal basis U = ( ~ 1 , .  . . , U,}, the process can  be  written 
as 

x = u a ,  (5.9) 

where the  representation 
a = [al , .  . . ,a,] T (5.10) 
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is  given  by 
a = u  X. T (5.11) 

As for the continuous-time case, we derive the KLT by demanding uncorre- 
lated coefficients: 

E {aiaj} = X j  S i j ,  i , j  = 1 , .  . . ,n. (5.12) 

The  scalars Xj ,  j = 1 , .  . . , n are unknown real numbers  with X j  2 0. From 
(5.9) and (5.12) we obtain 

E {urx  x T u j }  = X j  S i j ,  i , j  = 1 , .  . . , n. (5.13) 

Wit  h 
R,, = E {.X.'} 

this  can  be  written  as 

(5.14) 

UT R,, uj = X j  Si, , i, j = 1 , .  . . , n. (5.15) 

We observe that because of uTuj = S i j ,  equation (5.15) is satisfied if the 
vectors uj, j = 1, . . . , n are solutions to  the eigenvalue problem 

R,, uj = Xjuj, j = 1 , .  . . , n. (5.16) 

Since R,, is a covariance matrix,  the eigenvalue problem  has the following 
properties: 

1. Only real eigenvalues X i  exist. 

2. A covariance matrix is positive definite or positive semidefinite, that is, 
for all eigenvalues we have Xi  2 0. 

3. Eigenvectors that belong to different eigenvalues are  orthogonal to one 
another. 

4. If multiple eigenvalues occur,  their eigenvectors are linearly independent 
and can  be chosen to be  orthogonal to one another. 

Thus, we see that n orthogonal eigenvectors always  exist. By normalizing 
the eigenvectors, we obtain  the  orthonormal basis of the Karhunen-LoBve 
transform. 

Complex-Valued Processes. For  complex-valued processes X E (En7 

condition (5.12) becomes 
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This yields the eigenvalue problem 

R,, uj = X j u j ,  j = 1 , .  . . ,n 

with the covariance matrix 

R,, = E {zz"} . 

Again, the eigenvalues are real and non-negative. The eigenvectors are  orthog- 
onal to one  another  such  that U = [ul,.  . . ,U,] is unitary. 

From the uncorrelatedness of the complex coefficients we cannot con- 
clude that their real and  imaginary parts  are also uncorrelated; that is, 
E {!J%{ai} 9{aj}}  = 0, i, j = 1, . . . , n is not implied. 

Best Approximation Property of the KLT. We henceforth  assume that 
the eigenvalues are  sorted such that X 1  2 . . . 2 X,. From (5.12) we get for 
the variances of the coefficients: 

E { Jail2} = x i ,  i = 1 ,  ..., R.. (5.17) 

For the mean-square  error of an  approximation 

m 
D = Cai u i ,  m < n, 

i=l 

we obtain 

(5.18) 

(5.19) 

= 5 xi. 
i=m+l 

It becomes obvious that  an  approximation with  those eigenvectors u1, . . . , um, 
which belong to  the largest eigenvectors leads to a minimal  error. 

In  order to show that  the KLT indeed yields the smallest possible error 
among all orthonormal linear transforms, we look at the maximization of 
C z l  E {Jai l }  under  the condition J J u i J J  = 1.  With ai = U ~ Z  this means 
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Figure 5.1. Contour lines of the pdf  of a process z = [zl, zZIT. 

where yi are Lagrange  multipliers.  Setting the gradient to zero yields 

R X X U i  = yiui, (5.21) 

which is nothing  but  the eigenvalue problem (5.16) with yi = Xi. 

Figure 5.1 gives a geometric interpretation of the properties of the KLT. 
We see that u1 points  towards the largest  deviation from the center of gravity 
m. 

Minimal Geometric Mean Property of the KLT. For any positive 
definite matrix X = Xi j ,  i, j = 1, . . . , n the following inequality holds [7]: 

(5.22) 

Equality is given if X is diagonal. Since the KLT leads to a diagonal 
covariance matrix of the representation,  this means that  the KLT leads to 
random variables with a minimal geometric mean of the variances. From this, 
again,  optimal  properties  in signal coding can  be concluded [76]. 

The KLT of White  Noise Processes. For the special case that R,, is 
the covariance matrix of a white noise process with 

R,, = o2 I 

we have 
X 1 = X 2 =  . . .=  X n = 0 2 .  

Thus,  the KLT is not  unique  in  this case. Equation (5.19) shows that a white 
noise process can  be  optimally  approximated  with  any  orthonormal basis. 
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Relationships between Covariance Matrices. In  the following we will 
briefly list some relationships between  covariance matrices. With 

A1 

A = E { a a H } =  [ ... 0 1 ,  (5.23) 

we can write (5.15) as 
A = UHR,,U. 

Observing U H  = U-' , W e  obtain 

(5.24) 

R,, = U A U H .  (5.25) 

Assuming that all eigenvalues are larger than zero, A-1 is  given  by 

Finally, for R;: we obtain 

R;: = UKIUH. (5.27) 

Application Example. In  pattern recognition it is important to classify 
signals by means of a few  concise features.  The signals considered in this 
example are  taken  from inductive loops embedded in the pavement of a 
highway in order to measure the change of inductivity while  vehicles pass over 
them.  The goal  is to discriminate different types of vehicle (car,  truck,  bus, 
etc.).  In  the following, we will consider the two groups car and  truck. After 
appropriate pre-processing (normalization of speed, length,  and  amplitude) we 
obtain  the measured signals shown in Figure 5.2, which are typical examples 
of the two classes. The  stochastic processes considered are z1 (car)  and z2 

(truck).  The realizations are  denoted  as izl, i z ~ ,  i = 1 . . . N .  
In a first step, zero-mean processes are  generated: 

The mean values can  be  estimated by 

(5.28) 

. N  

(5.29) 
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Figure 5.2. Examples of sample functions; (a) typical signal contours; (b) two 
sample functions and their approximations. 

and 
- N  

(5.30) 

Observing the a priori probabilities of the two classes, p1 and p2,  a process 

2 = P l Z l +  P 2 2 2  (5.31) 

can  be defined. The covariance matrix R,, can  be  estimated as 

P1 
N N 

R,, = E { x x ~ }  M - C i x l  ixT + - C ix2  ix;,  P2 

N + 1 ,  a= 1 N + 1 ,  a= 1 
(5.32) 

where i x l  and ix2 are realizations of the zero-mean processes x1 and 2 2 ,  

respectively. 
The first ten eigenvalues computed  from  a training  set  are: 

X1 

968  2551  3139  5036  5262  10230  15790  20559  55460  212923 

X10 X9 X8 X7 X6 X5  X4 X3 X2 

We see that by using  only a few eigenvectors a good  approximation  can 
be expected. To give an example,  Figure 5.2 shows two signals and  their 
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approximations 

109 

(5.33) 

with the basis { u l , u 2 , u 3 , ~ 4 } .  

In general, the  optimality  and usefulness of extracted  features for discrim- 
ination is highly dependent  on the  algorithm  that is  used to carry  out  the 
discrimination. Thus,  the  feature  extraction  method described in this example 
is not  meant to be  optimal for all applications. However, it shows how a high 
proportion of information about a process can  be  stored  within  a few features. 
For more  details  on classification algorithms and  further  transforms for feature 
extraction, see [59, 44, 167, 581. 

5.3 The KLT of Real-Valued AR(1) Processes 

An autoregressiwe process of order p (AR(p) process) is generated by exciting 
a recursive filter of order p with a zero-mean, stationary white noise process. 
The filter has  the system function 

1 H ( z )  = P > P ( P )  # 0. (5.34) 
1 - c p ( i )  z-i 

i=l 

Thus,  an  AR(p) process X(.) is described by the difference equation 

V 

X(.) = W(.) + C p ( i )  X(. - i), (5.35) 
i=l 

where W(.) is white noise. The  AR(1) process with difference equation 

X(.) = W(.) + p X(. - 1) (5.36) 

is often used as  a simple  model. It is also known as a first-order Markow 
process. From (5.36) we obtain by recursion: 

X(.) = c p i  W(. - i). (5.37) 
i=O 

For determining the variance of the process X(.), we use the  properties 

mw = E { w ( n ) }  = 0 + m, = E { z ( n ) }  = 0 (5.38) 
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and 
?-,,(m) = E {w(n)w(n + m)}  = 0 2 s m o ,  (5.39) 

where SmO is the Kronecker  delta.  Supposing IpI < 1, we get 

i=O 

U 2  

1 - p2’ 
- - 

For the  autocorrelation  sequence we obtain 

i=O 

We see that  the autocorrelation  sequence is infinitely long. However, 
henceforth  only the values rzz(-N + l), .... T,,(N - 1) shall be considered. 
Because of the  stationarity of the  input process, the covariance matrix of the 
AR(1) process is a Toeplitz matrix.  It is  given  by 

o2 

1 - p2 
R,, = - (5.42) 

The eigenvectors of R,, form the basis of the KLT. For real signals and 
even N ,  the eigenvalues Xk, Ic = 0,. . . .  N - 1 and  the eigenvectors were 
analytically derived by Ray  and  Driver [123]. The eigenvalues are 

1 

Xk = 
I .... 

1 - 2 p cos(ak) + p2 ’ k = O ,  N-1 ,  (5.43) 
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where a k ,  5 = 0, .  . . , N - 1 denotes the real positive roots of 

tan(Nak) = - 
(1 - p’) sin(ak) 

(5.44) 
cos(ak) - 2p + p COS(Qk). 

The components of the eigenvectors u k ,  k = 0 , .  . . , N - 1 are given  by 

5.4 Whitening Transforms 

In  this section we are concerned with the problem of transforming a colored 
noise process into a white noise process. That is, the coefficients of the 
representation should not only be  uncorrelated (as for the  KLT),  they should 
also have the same variance. Such transforms, known as whitening transforms, 
are mainly applied in signal detection  and pattern recognition, because they 
lead to  a convenient process representation  with  additive  white noise. 

Let n be a process with covariance matrix 

Rnn = E { n n H }  # a21. (5.46) 

We wish to  find a linear transform T which  yields an equivalent process 

i i = T n  (5.47) 

wit h 
E { i i i i H }  = E {TnnHTH} = TR,,TH = I .  (5.48) 

We already see that  the transform  cannot be unique since  by multiplying an 
already  computed matrix T with an  arbitrary  unitary  matrix, property (5.48) 
is preserved. 

The covariance matrix can  be decomposed as follows (KLT): 

R,, = UAUH = UXEHUH. (5.49) 

For A and X we have 
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Possible transforms  are 
T = zP1UH 

or 

T = U T I U H .  

This  can easily be verified  by substituting (5.50) into (5.48): 

Alternatively, we can  apply  the Cholesky decomposition 

R,, = L L H ,  

where L is a lower triangular  matrix.  The  whitening  transform is 

T = L-l .  

For the covariance matrix we again have 

E {+inH) = T R , , T ~  = L - ~ L L H L H - '  = I .  

In signal analysis,  one often encounters signals of the form 

r = s + n ,  

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

where S is a known signal and n is an  additive colored  noise processes. The 
whitening  transforms  transfer (5.56) into  an equivalent model 

F = I + k  (5.57) 

with 

F = T r ,  

I = Ts ,  

ii = Tn, 

(5.58) 

where n is a white noise process of variance IS: = 1. 



5.5.  Linear Estimation 113 

5.5 Linear Estimation 

In  estimation  the goal is to determine a set of parameters  as precisely 
as possible from noisy observations. We  will focus on the case where the 
estimators  are  linear,  that is, the  estimates for the  parameters  are computed 
as linear combinations of the observations. This  problem is  closely related to 
the problem of computing  the coefficients of a series expansion of a signal, as 
described in Chapter 3. 

Linear  methods  do  not require precise knowledge of the noise statistics; 
only  moments up to  the second order  are  taken  into  account.  Therefore  they 
are  optimal only under the  linearity  constraint,  and, in general, non-linear 
estimators  with  better  properties may  be found. However, linear estimators 
constitute  the globally optimal solution as far as Gaussian processes are 
concerned [ 1491. 

5.5.1 Least-Squares Estimation 

We consider the model 

r = S a + n ,  (5.59) 

where r is our observation, a is the  parameter vector in question,  and n is a 
noise process. Matrix S can  be  understood  as a basis matrix  that  relates  the 
parameters to  the clean observation Sa.  

The requirement to have an unbiased  estimate  can  be  written as 

E{u(r) la}  = a, (5.60) 

where a is understood as an  arbitrary non-random  parameter vector. Because 
of the  additive noise, the  estimates u(r) la again  form  a  random process. 

The linear estimation  approach is  given  by 

h(.) = A r .  

If we assume  zero-mean noise n, matrix A must satisfy 

(5.61) 

(5.62) A S = I  
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in  order to ensure  unbiased  estimates.  This is  seen  from 

E{h(r)la} = E{A rla} 

= A E { r l a }  

= A E { S a + n }  

= A S a  

(5.63) 

The generalized  least-squares  estimator is  derived  from the criterion 

! .  = mm, 
CY = &(r) 

(5.64) 

where an  arbitrary weighting matrix G may  be involved in the definition of 
the inner  product that induces the norm in (5.64). Here the observation r is 
considered as a single realization of the stochastic process r .  Making  use of 
the fact that orthogonal  projections yield a  minimal  approximation  error, we 
get 

a(r) = [SHGS]-lSHGr (5.65) 

according to (3.95). Assuming that [SHGS]-l exists, the requirement (5.65) 
to have an unbiased  estimator is satisfied for arbitrary weighting matrices, as 
can easily be verified. 

If we choose G = I ,  we speak of a least-squares  estimator. For  weighting 
matrices G # I ,  we speak of a generalized  least-squares  estimator. However, 
the approach leaves open the question of  how a  suitable G is found. 

5.5.2 The Best Linear Unbiased Estimator (BLUE) 

As will be shown  below,  choosing G = R;:, where 

R,, = E {nnH} (5.66) 

is the correlation matrix of the noise, yields an unbiased estimator  with 
minimal variance. The  estimator, which  is  known as  the best  linear  unbiased 
estimator (BLUE), then is 

A = [SHR;AS]-'SHR;A. (5.67) 

The  estimate is given by 

u(r)  = [ s ~ R ; A s S ] - ~ S ~ R ; A  r .  (5.68) 
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The variances of the individual  estimates  can be found  on the main  diagonal 
of the covariance matrix of the error e = u(r)  - a, given  by 

R,, = [SHRiAS]-'. (5.69) 

Proof of (5.69) and the  optimality of (5.67). First, observe that with 
AS = I we have 

h(r)  --la = A S a + A   n - a  

= A n .  
(5.70) 

Thus, 

R,, = AE { n n H } A H  

= A R , , A ~  
(5.71) 

= [SHR;AS]-'SHR;ARn,R;AS[SHR;AS]-' 
= [SHR;AS]-'. 

In  order to see whether A according to (5.67) is optimal, an estimation 

with 

will be considered. The  ur lbiasedness constraint  requires that 

As==. 

Because of A S = I this means 

D S = O  (null matrix). 

For the covariance matrix of the error E(r) = C(r) - a we obtain 

= AR,,A -H 

= [ A  + D]Rnn[A + DIH 

= ARnnAH + ARnnDH + DRnnAH + DRnnDH. 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 
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With 

(AR,nDH)H = DRn,AH = DRnnR$S[SHRiAS]-' 

= DSISHR;AS]-l v (5.77) 
0 

= o  

(5.76) reduces to 
R22 = ARn,AH + DRnnDH. (5.78) 

We see that Rc2 is the sum of two  non-negative definite expressions so that 
minimal  main  diagonal  elements of Rgc are yielded for D = 0 and  thus for A 
according to (5.67). 0 

In  the case of a white noise process n,  (5.68) reduces to 

S(r) = [ s ~ s ] - ~ s ~ ~ .  (5.79) 

Otherwise the weighting with G = R;; can  be  interpreted  as  an implicit 
whitening of the noise. This  can  be seen  by  using the Cholesky  decomposition 
R,, = LLH and  and by rewriting the model as 

F=Sa+f i ,  (5.80) 

where 
F = L-'r, 3 = L - ~ s ,  f i  = L-ln. (5.81) 

The  transformed process n is a white noise process. The equivalent estimator 
then is 

U(?) = [ S  ~ 1 - l ~  r .  (5.82) 
- H -   - H  I 

5.5.3 Minimum  Mean  Square  Error Estimation 

The  advantage of the linear  estimators considered in the previous section 
is their unbiasedness. If we dispense  with this property,  estimates  with 
smaller  mean  square  error  may be found. We  will start  the discussion on 
the assumptions 

E { r }  = 0, E { a }  = 0. (5.83) 

Again, the linear  estimator is described by a matrix A: 

S(r) = A r .  (5.84) 
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Here, r is somehow dependent  on a,  but  the inner  relationship between r 
and a need not  be known  however. The  matrix A which yields minimal  main 
diagonal  elements of the correlation matrix of the estimation  error e = a - U 

is called the minimum mean  square  error (MMSE) estimator. 
In  order to find the optimal A,  observe that 

R,, = E [ U  - U ]  [U - U ]  { (5.85) 
= E { a a H } - E { U a H } - E { a U H } + E { U U H } .  

Substituting (5.84) into (5.85) yields 

R,, = R,, - AR,, - R,,AH + AR,,AH (5.86) 

with 
R,, = E { a a H } ,  

R,, = R: = E { r a H } ,  

R,, = E { m H } .  

(5.87) 

Assuming the existence of R;:, (5.86) can  be  extended by 

R,, R;: R,, - R,, R;: R,, 

and  be  re-written  as 

R,, = [ A  - R,,RF:] R,, [AH - RF:Ra,] - RTaRF:Ra, + Raa. (5.88) 

Clearly, R,, has positive diagonal  elements. Since  only the first term on the 
right-hand side of (5.88) is dependent  on A,  we have a minimum of the 
diagonal  elements of R,, for 

A = R,, R;:. (5.89) 

The correlation matrix of the estimation  error is then given by 

R e ,  = R a a  - R T a R ; : R a T *  (5.90) 

Orthogonality Principle. In  Chapter 3 we saw that approximations D of 
signals z are  obtained  with  minimal  error if the error D - z is orthogonal to 
D. A similar  relationship holds  between parameter vectors a and  their MMSE 
estimates.  With A according to (5.89) we have 

R,, = A R,,, i.e. E { a r H }  = A E { r r H }  . (5.91) 
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This means that  the following orthogonality relations hold: 

E [S - a] S } = - R&, { H 

= [AR,,  - R,,] A" (5.92) 

= 0. 

With A r  = S the right part of (5.91) can also be  written as 

E { a r H }  = E {Sr"} , (5.93) 

which  yields 
E { [ S  - a] r H }  = 0. (5.94) 

The relationship expressed in (5.94) is referred to as the orthogonality 
principle.  The  orthogonality principle states  that we get an MMSE estimate 
if the  error S(r) - a is uncorrelated to all components of the  input vector r 
used  for computing S(r).  

Singular Correlation Matrix. There  are cases where the correlation 
matrix R,, becomes singular and  the linear estimator  cannot  be  written as 

A = R,, R;:. (5.95) 

A  more general solution, which  involves the replacement of the inverse by the 
pseudoinverse, is 

A = R,, R:,. (5.96) 

In  order to show the  optimality of (5.96),  the  estimator 

A = A + D  (5.97) 

with A according to (5.96) and  an  arbitrary  matrix D is considered. Using 
the  properties of the pseudoinverse, we derive from (5.97) and (5.86): 

R,, = R,, - AR,, - R,,A + AR,,A 
- H   - H  

(5.98) 
= R,, - R,,R:,R,, + D R : , D ~ .  

Since R:, is at least positive semidefinite, we get a  minimum of the diagonal 
elements of R,, for D = 0, and (5.96) constitutes  one of the  optimal solutions. 

Additive Uncorrelated Noise. So far,  nothing  has  been said about possible 
dependencies  between a and  the noise contained in r .  Assuming that 

r = S a + n ,  (5.99) 
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where n is an  additive, uncorrelated noise process, we have 

(5.100) 

and A according to (5.89) becomes 

A = R,,SH  [SR,,SH + R, , ] -1 .  (5.101) 

Alternatively, A can  be  written as 

A = [R;: + SHRLAS]- SHRLA. (5.102) 

This is  verified  by equating (5.101) and (5.102), and by multiplying the 
obtained expression with [R;: +SHR;AS] from the left and with [SR,,SH+ 
R,,] from the  right, respectively: 

1 

[R;: + SHRLAS] R,,SH = SHRLA[SR,,SH +R,, ] .  

The equality of both sides is easily seen. The  matrices  to be inverted in (5.102), 
except R,,, typically have a much smaller dimension than those in (5.101). If 
the noise  is white, R;; can  be  immediately stated,  and (5.102) is advantageous 
in terms of computational cost. 

For R,, we get from  (5.89),  (5.90), (5.100) and (5.102): 

Ree = Raa - ARar 

= R,, - [R;; + S H R ; ; S ] - ~  SHR;;SR,,. 

Multiplying (5.103) with [R;; + SHR;;S] from the left  yields 

(5.103) 

= I ,  

so that  the following expression is finally obtained: 
(5.104) 

Re, = [R,-,' + SHRiAS]-l .  (5.105) 

Equivalent Estimation  Problems. We partition A and a into 

(5.106) 
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such that 
(5.107) 

If we assume that  the processes al ,  a2 and n are  independent of one another, 
the covariance matrix R,, and  its inverse R;: have the form 

and A according to (5.102) can  be  written  as 

where S = [SI,  5'21. Applying the  matrix equation 

€ 3  € - l  + E - 1 3 2 ) - 1 B E - 1  4 - 1 3 2 ) - 1  

2 ) - l  (5.110) 

2) = 3c - &?€-l3 

yields 

with 

Rn1n1 = Rnn + SzRazazSf, (5.113) 

= Rnn + S1Ra1a1Sf. (5.114) 

The inverses R;:nl and R;inz can  be  written as 

= [R;: - RiiS2  (SfRiAS2 + R;:az)- SfRiA] , (5.115) 
1 

R;:nz = [R;: - (SyR;AS1 + R;:al)- 1 SyR;:] .(5.116) 

Equations (5.111) and (5.112) describe  estimations of a1 and a2 in the 

r = S l a l +  nl, (5.117) 
models 
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r = S2a2 +n2 (5.118) 

with 

(5.119) 

Thus, each  parameter to be  estimated  can  be  understood as noise  in the 
estimation of the remaining  parameters. An exception is  given if SFR$S2 = 
0 ,  which means that S1 and S2 are  orthogonal to each  other  with respect to 
the weighting matrix R;:. Then we get 

and 
Re,,, = [SBRLASI + 

and we observe that  the second signal component Sza2 has  no influence on 
the  estimate. 

Nonzero-Mean Processes. One  could  imagine that  the precision of linear 
estimations  with respect to nonzero-mean processes r and a can  be increased 
compared to  the solutions above if an  additional  term  taking  care of the mean 
values of the processes is considered. In  order to describe this more general 
case, let us denote  the mean of the  parameters  as 

= E { a } .  (5.120) 

The  estimate is  now written  as 

iL=Ar+c%+c,  (5.121) 

where c is yet unknown. Using the  shorthand 

b = a - - ,  

b = h - - ,  

M = [c,A] 

(5.121) can  be  rewritten  as: 
b = M x .  

(5.122) 

(5.123) 
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The relationship between b and X is linear as  usual, so that  the optimal M 
can  be given according to (5.89): 

M = R,bR$. (5.124) 

Now let us express R , b  and R;: through correlation  matrices of the processes 
a and T .  From (5.122) and E { b }  = 0 we derive 

with 
R , b  = E { [ U  - s i ]  T " }  

= E { [ a - s i ]  [T -e ]"} ,  
where 

F = E { r } .  

1 F H  

= [ F  RT,] ' 

R,, writes 

Using (5.110) we obtain 

1 + e" [R,, - ee"] -l  e -e" [R,, - FP"] -l 

- [R,, - ee"1-l e [R,, - FP"] -l 
R;: = 

From (5.122) - (5.129) and 

[R,, - Fe"] = E { [T - e] [T - e]"} 

we finally conclude 

U = E { [a - s i ]  [T - e]"} E { [T - e] [T - e]"}-l [T - e] + a. 

(5.125) 

(5.126) 

(5.127) 

(5.128) 

(5.129) 

(5.130) 

(5.131) 

Equation (5.131) can  be  interpreted  as follows: the nonzero-mean processes 
a and r are first modified so as  to become  zero-mean  processes a - si and 
r - e.  For the zero-mean  processes the estimation  problem  can  be solved as 
usual.  Subsequently the mean value si is added in order to obtain  the final 
estimate U. 

Unbiasedness for Random Parameter Vectors. So far the parameter 
vector to be  estimated was assumed to  be  non-random. If we consider a to 
be a random process, various other weaker definitions of unbiasedness are 
possible. 
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The  straightforward  requirement 

is meaningless,  because  it is satisfied for any A as  far as r and a are zero-mean. 

A useful definition of unbiasedness in the case of random  parameters is to 
consider one of the  parameters contained in a (e.g. a k )  as non-random  and to 
regard all other  parameters a l ,  . . . , ak-1, ak+l etc.  as  random variables: 

In  order to  obtain  an  estimator which  is unbiased in the sense of (5.133), the 
equivalences discussed above  may  be applied. Starting with the model 

r = S a + n  

= s k a k  + n ,  
(5.134) 

in which n contains the  additive noise n and  the signal component  produced 
by all random  parameters a j ,  j # k, we can write the unbiased  estimate as 

6, = h, r H (5.135) 

Then, 
A = [hl, hz , .  . . I H  (5.137) 

is an  estimator which  is unbiased in the sense of (5.133). 

The Relationship between MMSE Estimation and the BLUE. If 
R,, = E {aaH}  is unknown, R;: = 0 is substituted  into (5.102), and we 
obtain  the BLUE (cf. (5.67)): 

A = [ S H R i A S ] - l   S H R P 1  nn (5.138) 

In  the previous discussion it  became  obvious that  it is possible to obtain 
unbiased  estimates of some of the  parameters  and  to  estimate  the  others 
with  minimum  mean  square  error.  This result is of special interest if no 
unbiased  estimator  can  be  stated for all parameters  because of a singular 
matrix SHR;AS.  
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5.6 Linear  Optimal Filters 

5.6.1 Wiener Filters 

We consider the problem  depicted in Figure 5.3. By linear filtering of the noisy 
signal r(n)  = z(n) + w(n)  we wish to make y(n) = r (n)  * h(n) as similar as 
possible to a desired signal d ( n ) .  The quality criterion used  for designing the 
optimal causal linear filter h(n) is 

The solution to this  optimization  problem  can easily be  stated by applying 
the  orthogonality principle. Assuming  a causal FIR filter h(n) of length p ,  we 
have 

P - 1  

y(n) = c h(i) r (n  - i). (5.140) 
i=O 

Thus, according to (5.94), the following orthogonality condition must  be 
satisfied by the  optimal filter: 

For stationary processes r(n)  and d ( n )  this yields the discrete form of the 
so-called Wiener-Hopf equation: 

P - 1  c h(i) r,,(j - i) = TT&), j = 0, 1 , .  . . , p  - 1,  (5.142) 
i = O  

with 

(5.143) 

The  optimal filter is found by solving (5.142). 

An application  example is the  estimation of data d(n) from a noisy 
observation r(n)  = Cec(C) d ( n  - l )  + w(n), where C(.) is a  channel  and 
W(.) is  noise.  By using the  optimal filter h(n) designed  according to (5.142) 
the  data is  recovered with  minimal  mean  square error. 



5.6. Linear  Optimal Filters 125 

\ ,  

1 w(n) 

' I 

Noise 44 

Figure 5.3. Designing  linear optimal  filters. 

Variance. For the variance of the error we have 

w- 1 w- 1 

i=O  i=O 
(5.144) 

with 0: = E { ld(n12}. Substituting  the optimal solution (5.142) into (5.144) 
yields 

P-1 

Matrix  Notation. In  matrix  notation (5.142) is 

and 

wit h 

(5.145) 

(5.146) 

(5.147) 

(5.148) 
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From  (5.146) and (5.145) we obtain  the following alternative expressions 
for the minimal variance: 

= C T ~  - r% h 
(5.150) 

Special Cases. The following three cases, where the desired signal is a 
delayed version of the clean input signal ~ ( n ) ,  are of special interest: 

(i) Filtering: d ( n )  = z(n). 

(ii) Interpolation: d ( n )  = z(n + D), D < 0. 

(iii) Prediction: d ( n )  = z(n + D), D > 0. Here the goal is to predict a future 
value. 

For the  three cases mentioned  above the Wiener-Hopf equation is 

P-1 c h(i) rw(j - i) = rm( j  + D), j = 0, 1,. . . , p  - 1. (5.151) 
i = O  

Uncorrelated Noise. If the noise W(.) is uncorrelated to z(n), we have 

and 
rTd(m) = r,,(m + D), 

and  from (5.151) we derive 

(5.153) 

P-1 

ch(i) [rz2(j-i)+rww(j-i)] =r,,(j+D), j =0 ,1 ,  . . . , p -  l. (5.154) 
i = O  

In  matrix  notation we get 

[R,, + R w w l  h = r z z ( D )  

with 

(5.155) 

hT = [h(O), h(l), . . . , h(p - l)] , (5.156) 
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and 

rxx (0) rzz(-l) . . . rzz(--P + 1) 
r x x  (1) r x x  (0) . . .  r x x  (-P + 2) 

r x x ( P  - 1) T z z ( P  - 1) . . . r z z  (0) 

R x x  = . (5.158) 

For the correlation matrix R,, the corresponding definition holds. 
The minimal variance is 

a:min = 0; - T ~ ( D )  h 
(5.159) 

5.6.2 One-Step Linear Prediction 

One-step linear predictors  are used in many  applications  such as speech 
and  image  coding (DPCM,  ADPCM, LPC, ...), in spectral  estimation,  and 
in feature  extraction for speech recognition. Basically, they  may  be  regarded 
as a special case of Wiener-Hopf filtering. 

Figure 5.4. One-step  linear  prediction. 

We consider the system in Figure 5.4. A comparison  with  Figure 5.3 shows 
that  the  optimal  predictor can  be  obtained  from  the Wiener-Hopf equations 
for the special case D = 1 with d(n)  = z(n + l), while no  additive noise  is 
assumed, w(n)  = 0. Note that  the filter U(.) is related to  the Wiener-Hopf 
filter h(n) as U(.) = -h(n - 1).  With 

P 
q n )  = - C.@) z(n - i), (5.160) 

i= 1 

where p is the  length of the  FIR filter a(n), the  error becomes 

e(.) = X(.) -g(.) 

P (5.161) 
= z(n) + C a(i)  z(n - i). 

i= 1 
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Minimizing the error  with  respect to  the filter coefficients yields the equations 

P 

-C .(i) rzz(j - i )  = r,,(j), j = 1,2 , .  . .,P, (5.162) 
i=l 

which are known as  the normal equations of linear  prediction. In  matrix 
notation  they  are 

that is 
R z z a  = - rzz(1)  

aT = [.(l), . . . ,.(p)]. 
with 

According to (5.159) we get for the minimal variance: 

(5.164) 

(5.165) 

Autoregressive  Processes and  the Yule-Walker Equations. We con- 
sider an autoregressive process of order p (AR(p) process). As outlined  in 
Section 5.3, such a process is generated by exciting a stable recursive filter with 
a stationary  white noise process W(.). The system  function of the recursive 
system is supposed to be2 

1 
U ( 2 )  = P 7 .(P) # 0. (5.167) 

1 + c .(i) z-i 
i d  

The  input-output relation of the recursive system may be expressed via the 
difference equation 

P 

z(n) = W(.) - c .(i) z(n - i ) .  (5.168) 
i= 1 

21n order to keep  in  line with  the  notation used in  the  literature,  the coefficients p ( i ) ,  i = 
1, .  . . , p  introduced  in (5.34) are replaced by the coefficients -a ( i ) ,  i = 1,. . . , p .  
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For the autocorrelation sequence of the process z(n) we thus derive 

r z z ( m )  = E {z*(n)z(n + m)}  

P 
= rzw(m)  - c .(i) r z z ( m  - i). 

i=l 

The cross correlation sequence rzw(m)  is 

rzw(m) = E {z*(n)w(n + m)}  
cc 

= c U * ( i )  rww(i + m) 

= 0; U * ( - m ) ,  

i=l - 
U26(i+77A) 

(5.169) 

(5.170) 

where u(n) is the impulse response of the recursive filter. Since U(.) is causal 
(u(n) = 0 for n < 0), we derive 

(5.171) 

By  combining (5.169) and (5.171) we finally get 

- c a ( i )  ?-,,(m - i), m > 0, 

r z z ( m )  = P (5.172) 
0; - c a ( i )  r z z (m  - i), m = 0, 

c, (-m), m < 0. 

P 

i= 1 

i= 1 

The  equations (5.172) are known as the Yule-Walker  equations. In  matrix 
form they  are 

Tzz(0) Tzz(- l )  Tzz(-2) * *  Tzz(--P) 

Tzz (1) Tzz (0) Tzz(-1) 

T z z ( P )   T z z ( P  - 1) T z z ( P  - 1) . . . Tzz(0) 

(5.173) 
As can  be inferred from (5.173), we obtain  the coefficients a( i ) ,  i = 1,. . . , p  
by solving (5.163). By observing the power of the prediction  error we can  also 
determine the power of the input process. From (5.166) and (5.172) we have 

(5.174) 
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Thus, all parameters of an autoregressive process can  be exactly determined 
from the  parameters of a one-step linear predictor. 

Prediction Error Filter. The  output signal of the so-called prediction  error 
filter is the signal e(n)  in Figure 5.4 with the coefficients U(.) according to 
(5.163). Introducing  the coefficient a(0)  = 1, e(n )  is  given  by 

P 

e(n)  = C a ( i )  z(n - i), a(0) = 1.  (5.175) 
i=O 

The system function of the prediction error filter is 
P P 

(5.176) 
i=l i=O 

In  the special case that ~ ( n )  is an autoregressive process, the prediction 
error filter A ( z )  is the inverse system to  the recursive filter U ( z )  t) u(n). 
This also means that  the  output signal of the prediction error filter is a 
white noise process. Hence, the prediction error filter performs a whitening 
transform  and  thus  constitutes  an  alternative to  the  methods considered in 
Section 5.4. If X(.) is not  truly autoregressive, the whitening  transform is 
carried  out at least approximately. 

Minimum Phase Property of the Prediction Error Filter. Our 
investigation of autoregressive processes showed that  the prediction error 
filter A(z )  is inverse to  the recursive filter U ( z ) .  Since a  stable filter does  not 
have poles outside  the  unit circle of the  z-plane,  the corresponding prediction 
error filter cannot  have zeros outside  the  unit circle. Even if X(.) is not an 
autoregressive process, we obtain a minimum  phase prediction error filter, 
because the calculation of A ( z )  only  takes  into  account  the  second-order 
statistics, which do  not  contain  any  phase  information, cf. (1.105). 

5.6.3 Filter Design on the Basis of Finite Data 
Ensembles 

In  the previous sections we assumed stationary processes and considered the 
correlation sequences to be  known. In  practice, however, linear predictors  must 
be  designed  on the basis of a finite number of observations. 

In  order to determine  the  predictor filter a(.) from  measured data 
%(l), 2(2), . . . , z ( N ) ,  we  now describe the prediction error 

P 

i= 1 
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via the following matrix  equation: 

e = X a + x ,  (5.177) 

where a contains  the  predictor coefficients, and X and 2 contain the  input 
data.  The  term X a describes the convolution of the  data with the impulse 
response a ( n ) .  

The criterion 
llell = I I X  a + xll L min (5.178) 

leads to  the following normal  equation: 

X H X a = - X H x .  (5.179) 

Here, the  properties of the  predictor  are dependent  on the definition of X 
and X .  In  the following, two relevant methods will be discussed. 

Autocorrelation Method. The autocorrelation  method is based  on the 
following estimation of the  autocorrelation sequence: 

. N - l m l  

+ p  (m) = - c .*(n) .(n + m). 
l 

N 
n=l 

(5.180) 

As can  be seen, +LtC’(m) is a  biased  estimate of the  true  autocorrelation 
sequence r,,(m), which means that E{+$tC’(m)} # rzz (m) .  Thus,  the 
autocorrelation  method yields a biased estimate of the  parameters of an 
autoregressive process. However, the correlation matrix kzc’ built from 
+k?(rn) has a Toeplitz structure, which enables us to efficiently  solve the 
equation 

R,, 22 (5.181) .. (AC)  = - p c ’  (1) 

by means of the Levinson-Durbin  recursion [89, 471 or the Schur  algorithm 
[130]. Textbooks that cover this topic are, for instance, [84,  99, 1171. 

The  autocorrelation  method  can also be viewed as the solution to  the 
problem (5.178) with 

X =  7 X =  

z(N) . .. ~ ( N - p + l )  
z(N - 1) . . .  z(N-p) 

.(p) ... .(l) 

(5.182) 
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and 

We have 
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and 
?Lf)(l) = X H x .  (5.185) 

Covariance Method. The cowariance method takes  into  account  the pre- 
diction errors in steady  state only  and yields an unbiased  estimate of the 
autocorrelation  matrix.  In  this case X and X are defined as 

x ( N -  1) .. . x ( N - p )  

X =  [ :: :  ;i; ] 
X@) 

and 

(5.186) 

(5.187) 

The  equation to be solved  is 

(C") h R,, a = -+L;")(I), (5.188) 

where 

r x x  +")(l) = X H z .  (5.190) 

Note that kg") is not a Toeplitz matrix, so that solving (5.188) is  much more 
complex than solving (5.181) via the Levinson-Durbin recursion. However, the 
covariance  method  has the  advantage of being unbiased; we have 

E { RE"'} = Rxx.  (5.191) 
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5.7 Estimation of Autocorrelation Sequences 
and  Power Spectral Densities 

5.7.1 Estimation of Autocorrelation Sequences 

In  the following, we will discuss methods for estimating  the  autocorrelation 
sequence of random processes from given sample values z(n), n = 0, .  . . , N - 1. 
We start  the discussion with the  estimate 

N-In- l  

?!,(m) = - c x* (n)  z(n + m), 
l " 

N 
n=O 

(5.192) 

which  is the same as  the  estimate ? i ic ) (m) ,  used  in the  autocorrelation 
method  explained in the  last section. As can easily be verified, the  estimate 
?:,(m) is biased  with  mean 

E {?!,(m)} = e r,,(m). 
N (5.193) 

However,  since 
lim E {?!,(m)} = r,,(m), (5.194) 

the  estimate is asymptotically unbiased. The  triangular window v that 
occurs in (5.193) is  known as  the Bartlett window. 

N+CC 

The variance of the  estimate can  be  approximated as [77] 

l o o  
v 4 e x  (m11 c lr,,(n)12 + rZx(n - m) rzz(n +m) .  (5.195) 

n=-cc 

Thus, as N + m, the variance tends  to zero: 

(5.196) 

Such an  estimate is said to be consistent. However, although consistency is 
given, we cannot  expect  good  estimates for large m as long as N is finite, 
because the bias increases as Iml + N .  

Unbiased Estimate. An unbiased estimate of the  autocorrelation  sequence 
is  given  by 

N-In- l  

(5.197) 
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The variance of the  estimate can  be  approximated as [77] 

N cc 

var[+:, (m)] M c l~,,(n)1~ + rZ,(n - m) r,,(n +m) .  (5.199) 
(N - lmD2 

As N + CO, this gives 

N+cc 
lim var[?&(m)] + 0, (5.200) 

which means that ?,",(m) is a consistent estimate. However, problems arise 
for large m as long as N is finite, because the variance increases for Iml + N. 

5.7.2 Non-Parametric Estimation of Power  Spectral 
Densities 

In  many real-world problems  one is interested in knowledge about  the power 
spectral density of the  data  to be processed. Typically, only a finite set of 
observations X(.) with n = 0 , 1 , .  . . , N-l is available. Since the power spectral 
density is the Fourier transform of the  autocorrelation sequence, and since 
we have  methods for the  estimation of the  autocorrelation sequence, it is a 
logical consequence to look at the Fourier transforms of these  estimates. We 
start with ?:,(m). The Fourier transform of +!,(m) will be  denoted as 

We know that ?!,(m) is a biased  estimate of the  true  autocorrelation sequence 
rzz(m), so that we can  conclude that  the  spectrum P,,(eJ") is a biased 
estimate of the  true power spectral density S,,(eJW). In  order to be explicit, 
let us recall that 

with wB(m) being the  Bartlett window; i.e. 

(5.203) 
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In the spectral  domain, we have 

where W B ( e j w )  is the Fourier transform of w~(m) given by 

(5.204) 

(5.205) 

Thus, E {P,,(ej")} is a smoothed version of the  true power spectral  density 
S,,(ej"), where smoothing is carried out with the Fourier transform of the 
Bartlett window. 

A second  way of computing P,,(eJ") is to compute the Fourier transform 
of X(.) first and  to derive P,,(ej") from X(ej").  By inserting (5.192) into 
(5.201) and  rearranging the expression obtained, we get 

(5.206) 

In the form (5.206) P,,(eJ") is  known as  the periodogram. 

Another way  of deriving an  estimate of the power spectral  density is to 
consider the Fourier transform of the estimate ?:,(m). We use the notation 
Q,,(eJW) for this  type of estimate: 

N-l 

Qzz(e jw)  = c ?:,(m) e-jwm. (5.207) 
m=-(N-l) 
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The expected value is 
N - l  

E {Q,,(ej")} = c ,!{+&(m)} e-jwm 
m=-(N-l)  

N-l  

m=-(N-l)  
M 

m=-m 

where wR(m)  is the  rectangular window 

wR(m)  = { 1, for Iml 5 N - 1 
0, otherwise, 

and WR(e j " )  is its Fourier transform: 

(5.208) 

(5.209) 

(5.210) 

This means that although +&(m) is an unbiased estimate of T,, (m),  the 
quantity Qzz(e jw)  is a biased estimate of S,,(ej"). The reason for this is the 
fact that only a finite number of taps of the  autocorrelation  sequence is  used in 
the  computation of Qss(e jw) .  The mean E { Q s s ( e j w ) }  is a smoothed version 
of S,,(eJW), where  smoothing is carried out with the Fourier transform of the 
rectangular window. 

As N + co both  estimates ?:,(m) and ?&(m) become unbiased. The 
same  holds for P,,(ejw)  and Q,,(ej"), so that  both  estimates of the power 
spectral density are  asymptotically unbiased. The behavior of the variance of 
the  estimates is different. While the  estimates of the  autocorrelation  sequences 
are  consistent,  those of the power spectral density are  not. For example, for 
a Gaussian process X(.) with power spectral density SZz(eJW),  the variance 
of the periodogram becomes 

which  yields 
lim  var [ P,, (ej") 1 = S,", (ej"). (5.212) 

Thus,  the periodogram  does  not give a consistent estimate of S,,(ej"). The 
proof of (5.211)  is straightforward  and is omitted here. 

N+CC 
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Use of the DFT or FFT for  Computing the Periodogram. Since 
the periodogram is computed from the Fourier transform of the finite data 
sequence, it  can  be efficiently evaluated at a discrete  set of frequencies by 
using the  FFT. Given a length-N sequence ~ ( n ) ,  we may  consider a length-N 
DFT, resulting in 

1 N - l  
Pzz(eJWk)  = 12 x(n)  e-jZr'lN I) (5.213) 

with w k  = 27rk/N. In  many  applications, the obtained  number of samples 
of Pzz (e jw)  may be insufficient in order to draw a clear picture of the peri- 
odogram. Moreover, the  DFT length may be inconvenient for computation, 
because  no powerful FFT algorithm is at hand for the given length.  These 
problems  can  be solved  by extending the sequence ~ ( n )  with zeros to  an 
arbitrary  length N' 2 N .  This  procedure is known as zero padding. We obtain 

(5.214) 

with w k  = 27rk/N'. The evaluation of (5.214) is typically  carried out via the 
FFT. 

Bartlett  Method. Various methods have  been proposed for achieving  con- 
sistent  estimates of the power spectral density. The Bartlett method does this 
by  decomposing the sequence X(.) into  disjoint  segments of smaller  length 
and  taking the ensemble average of the spectrum  estimates derived  from the 
smaller segments. With 

~ ( ~ ) ( n )  = z(n + iM), i = 0,1, .  . . , K  - 1, n = 0 , 1 , .  . . , M  - 1,  (5.215) 

we get the K periodograms 

( e j w )  = - M C X ( i )  (n) e-jwn 1::: , i = 0,1, .  . . , K  - 1.  (5.216) 

The  Bartlett  estimate  then is 

(5.217) 
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with W B ~  (eJw)  being the Fourier transform of the  length-M  Bartlett window. 
Assuming a Gaussian process z(n), the variance becomes 

var[P,,(e B j w  11 = - v a r [ ~ , , ( e j ~ ) ]  1 = sin (W M )  
K K 

(5.219) 
Thus,  as N ,  M ,  K + 00, the variance tends  to zero and  the  estimate is 
consistent. For finite N ,  the decomposition of X(.) into K sets  results in 
a reduced variance, but  the bias increases accordingly and  the  spectrum 
resolution decreases. 

Blackman-Tukey Method. Blackman  and Tukey proposed windowing the 
estimated  autocorrelation  sequence prior the Fourier transform [8]. The  ar- 
gument is that windowing  allows us to reduce the influence of the unreliable 
estimates of the  autocorrelation sequence for large m. Denoting the window 
and  its Fourier transform as w(m) and W ( e j w ) ,  respectively, the  estimate can 
be  written  as 

N-l 

P,, BT (e j w  - - C w(m) ?;,(m) e--jwm. (5.220) 
m=-(N-l) 

In  the frequency  domain, this means that 

(5.221) 

The window W(.) should  be chosen such that 

W ( e j w )  > o V W (5.222) 

in order to ensure that PLT(ejw) is positive for all frequencies. 
The expected value of PLT(ejw) is most easily expressed in the form 

N-l 

E {P,, BT (e  j w  ,> = C w ( m )   w B ( m )  r,,(m) e-jwm. (5.223) 
m=-(N-l) 

Provided that w ( m )  is  wide with respect to rzz(m) and narrow  with respect 
to W B ( ~ ) ,  the expected value can  be  approximated  as 

E { p , T ( e j w ) }  = w(0) S,,(ejw). (5.224) 

Thus, in order to achieve an asymptotically  unbiased estimate,  the window 
should satisfy 

w(0)  = 1. (5.225) 
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For a  symmetric window w(m) = W(-m) the variance  can be estimated  as [8] 

This  approximation is based on the assumption that W(ej") is  wide with 
respect to W ~ ( e j " )  and  narrow  with  respect to  the variations of S,,(ej"). 

Welch Method. In the Welch method [l621 the  data is divided  into overlap- 
ping blocks 

z(~)(,) = ~ ( n  + i D ) ,  i = 0 , 1 , .  . . , K  - 1, n = 0 , 1 , .  . . , M  - 1  (5.227) 

with D 5 M .  For D = M we approach the decomposition in the  Bartlett 
method. For D < M we have  more  segments than in the  Bartlett  method. 

Each block  is  windowed prior to computation of the periodogram,  resulting 
in K spectral  estimates 

The factor a is chosen as 

1 M - 1  a = - c w2(m) = - - 1" S&,(ejw) dw, (5.229) 
M 

m = O  M 21r -T 

which means that  the analysis is carried  out  with  a window of normalized 
energy. Taking the average yields the final estimate 

(5.230) 

The expected value becomes 

with 
- M - l   M - l  

In the  spectral domain,  this  can be rewritten as 
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(5.234) 

With increasing N and M ,  SEW(ej(" - ")) becomes narrow  with respect to 
S z Z ( d v )  and  the expected value tends  to 

This shows that  the Welch method is asymptotically unbiased. 
For a Gaussian process, the variance of the  estimate is 

(5.236) 
If no overlap is considered (D = M ) ,  the expression reduces to 

var[P,,(e W j w  ) I  = -var[v$(ejw)1 1 M - ~ : ~ ( e j ~ ) .  1 
K K (5.237) 

For k + 00 the variance approaches zero, which  shows that  the Welch method 
is consistent. 

Various windows with different properties  are known  for the  purpose of 
spectral  estimation.  In  the following, a brief  overview  is given. 

Hanning Window. 

0 .5 -0 .5~0s  , n = 0 , 1 ,  ..., N - l  
w(n) = 0 (5.238) 

otherwise. 

Hamming Window. 

w(n) = 
0.54 - 0.46  cos , n = 0,1, .  . . , N - 1 0 (5.239) 

otherwise. 

Blackman Window. 

w(n) = 
+0.08 cos , n = (),l,.. . , N  - 1 

otherwise. 
(5.240) 
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14 
Time Index 

Figure 5.5. Window  functions. 

Figure 5.5 shows the windows, and Figure 5.6  shows their magnitude 
frequency responses. The  spectrum of the  Bartlett window  is positive for all 
frequencies, which also means that  the bias due to  the  Bartlett window  is 
strictly positive. The  spectra of the Hanning  and  Hamming window have 
relatively large negative side lobes, so that  the estimated power spectral 
density may have a negative bias in the vicinity of large peaks in S,, (ej'"). 
The Blackman window  is a compromise between the  Bartlett  and  the Han- 
ning/Hamming  approaches. 

5.7.3 Parametric Methods in Spectral Estimation 

Parametric methods in spectral estimation have been the subject of intensive 
research,  and  many different methods have been proposed. We will consider 
the simplest case only,  which  is related to  the Yule-Walker equations. A 
comprehensive treatment of this subject would go far beyond the scope of 
this section. 

Recall that in Section 5.6.2 we showed that  the coefficients of a linear one- 
step predictor are identical to  the  parameters describing an autoregressive 
process. Hence the power spectral density may be estimated  as 

(5.241) 

I 
The coefficients b(n) in  (5.241) are  the predictor coefficients determined from 
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I . . . . . . . . .  I 

Normalized  Frequency 
-0.5 0 0.5 

Hamming 
I ' " ' ' ' ' ' ~ I  

Hanning 
I " " " " ' l  

I . . . . . . . . .  l 

Normalized  Frequency 
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I " " " " ~  

I . . . . . . . . .  I 
-0.5 0 

Normalized  Frequency 
0.5 

I . . . . . . . . .  
-0.5 0 
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0.5 

Figure 5.6. Magnitude  frequency  responses of common  window  functions. 

the observed data,  and 13; is the power of the white  input process estimated 
according to (5.174): 

8; = fZZ (0) + (1) h. (5.242) 

If we apply  the  autocorrelation  method to  the estimation of the  predictor 
coefficients G(.), the  estimated  autocorrelation  matrix  has a Toeplitz struc- 
ture,  and  the prediction filter is always  minimum phase, just as when using 
the  true correlation matrix R%%. For the covariance method  this is not the 
case. 

Finally, it  shall  be remarked that besides a forward prediction a  backward 
prediction may also be carried out. By combining both predictors one  can 
obtain  an improved  estimation of the power spectral density compared to 
(5.241). An example is the Burg method [19]. 
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Chapter 6 

Filter Banks 

Filter  banks  are  arrangements of low pass, bandpass,  and highpass filters used 
for the  spectral decomposition and composition of signals. They play an im- 
portant role in  many  modern signal processing applications such as audio  and 
image coding. The reason for their popularity is the fact that  they easily  allow 
the  extraction of spectral components of a signal while providing very  efficient 
implementations. Since most filter banks involve various sampling rates,  they 
are also referred to  as multirate systems. To  give an example,  Figure  6.1 
shows an M-channel filter bank. The  input signal is decomposed into M so- 
called subb and signalsby applying M analysis filters with different passbands. 
Thus, each of the  subband signals carries information  on the  input signal in 
a particular frequency band.  The blocks with arrows pointing downwards in 
Figure  6.1  indicate downsampling (subsampling) by factor N, and  the blocks 
with  arrows  pointing  upwards  indicate  upsampling by N. Subsampling by N 
means that only every Nth  sample is taken.  This operation serves to  reduce 
or eliminate redundancies in the M subband signals. Upsampling by N means 
the insertion of N - 1 consecutive zeros between the samples. This allows us 
to recover the original sampling rate.  The upsamplers are followed by filters 
which replace the inserted zeros with meaningful values. In  the case M = N 
we speak of critical subsampling, because this is the maximum downsampling 
factor for  which perfect reconstruction can be achieved. Perfect reconstruction 
means that  the  output signal is a copy of the  input signal with  no further 
distortion than a time shift and  amplitude scaling. 

143 
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Analysis filter bank 
Subband signals 

Synthesis filter bank 

I i  
Figure 6.1. M-channel  filter  bank. 

From the  mathematical point of view, a filter bank carries out a series 
expansion,  where the  subband signals are  the coefficients, and  the time-shifted 
variants gk: (n - i N ) ,  i E Z, of the synthesis filter impulse  responses gk (n) form 
the basis. The  main difference to  the block transforms is that  the lengths of the 
filter impulse  responses are usually larger than N so that  the basis sequences 
overlap. 

6.1 Basic Multirate Operations 

6.1.1 Decimation and  Interpolation 

In  this section, we derive spectral  interpretations for the decimation  and 
interpolation  operations that occur in every multirate  system. For this, we 
consider the configuration in Figure 6.2. The sequence W(.) results  from 
inserting zeros into ~ ( r n ) .  Because of the different sampling rates we obtain 
the following relationship between Y ( z )  and V ( z ) :  

Y ( P )  = V ( z ) .  (6.1) 

After downsampling and upsampling by N the values w(nN) and u(nN) 
are  still  equal, while all other samples of W(.) are zero. Using the correspon- 
dence 

- e j 2 m h / N  = { 1 for n / N  E Z, 

the relationship between W(.) and U(.) can  be  written as 

N .  2=0 
0 otherwise, 

. N - l  
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Figure 6.2. Typical  components of a filter  bank. 

The  z-transform is given  by 

cc 

V ( z )  = c w(n)zP 
n=-cc 

~ N - l  cc 

. N--1 

= - C U ( W & z ) .  
l 
N 

i=O 

The relationship between Y ( z )  and V ( z )  is concluded  from (6.1) and (6.5): 

With (6.6) and V ( z )  = H ( z ) X ( z )  we have the following relationship 
between Y ( 2 )  and X ( z ) :  

N - l  

From (6.1) and (6.7) we finally conclude 

X ( z )  = G ( z )   Y ( z N )  
. N - l  

= - X G ( z ) H ( W & z ) X ( W & z ) .  
l 

N .  a=O 
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-2.G -R I R 2.G 

h i ( e j 0 )  

... n I I n ... * W 
-2n -R R 2n 

Figure 6.3. Signal spectra for decimation and interpolation  according to  the 
structure in  Figure 6.2 (non-aliased  case). 

' u(ej0) 

...  ... 
1 I 

-2.R -R R 2.G 
* W  

Figure 6.4. Signal  spectra in the aliased  case. 

The  spectra of the signals occurring in Figure 6.2 are  illustrated in Figure 6.3 
for the case of a narrowband lowpass input signal z(n), which does  not lead 
to aliasing effects. This  means that  the  products G(z)(H(W&z)X(W&z)) in 
(6.8) are zero for i # 0. The general case with aliasing occurs when the 
spectra become overlapping. This is  shown in Figure 6.4, where the shaded 
areas  indicate  the aliasing components that occur  due to subsampling. It is 
clear that z(n) can  only  be  recovered  from y(m) if no aliasing occurs. However, 
the aliased case is the  normal  operation mode in multirate filter banks. The 
reason why such filter banks allow perfect reconstruction lies  in the fact that 
they  can  be designed in such a way that  the aliasing components  from all 
parallel branches  compensate at  the  output. 
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Figure 6.5. Type-l polyphase  decomposition for M = 3. 

6.1.2 Polyphase Decomposition 

Consider the decomposition of a sequence X(.) into sub-sequences xi(rn), as 
shown  in Figure 6.5. Interleaving all xi(rn) again yields the original X(.). 
This decomposition is  called a polyphase  decomposition, and  the xi(rn) are 
the polyphase  components of X(.). Several types of polyphase decompositions 
are known, which are briefly  discussed  below. 

Type-l. A type-l polyphase decomposition of a sequence X(.) into it4 
components is  given  by 

M-l 

X ( 2 )  = c 2-e X & M ) ,  
e=o 

where 
& ( z )  t) ze(n) = z(nM + l ) .  (6.10) 

Figure 6.5  shows an example of a type-l decomposition. 

Type-2. The decomposition into type-2 polyphase  components is  given  by 

M-l 
X ( 2 )  = c z-(M-l-l) X ; (.M) 7 (6.11) 

e=o 

where 
x;(2) t) X;(.) = z(nit4 + it4 - 1 - l) .  (6.12) 
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Thus,  the only difference between a type-l  and  a type-2  decomposition lies in 
the indexing: 

X&) = XL-,-&). (6.13) 

Type-3. A type-3  decomposition  reads 

M-l 

X(z) = c ze X&"), 
l=O 

where 
X&) t) z:e(n) = z(nM - e ) .  

The  relation to  the  type-l polyphase  components is 

(6.14) 

(6.15) 

Polyphase  decompositions are frequently used  for both signals and filters. 
In  the  latter case we use the  notation Hik(z )  for the lcth type-l polyphase 
component of filter Hi(z) .  The definitions for type-2  and  type-3  components 
are analogous. 

6.2 Two-Channel Filter Banks 

6.2.1 PR Condition 

Let us consider the two-channel filter bank in Figure 6.6. The signals are 
related  as 

Y 0 ( Z 2 )  = : [ H o b )  X(z) + Ho(-z) X(-z)l, 

Y1(z2) = ; [ H l ( Z )  X ( z )  + H1(-z) X(-z)l, (6.17) 

X ( z )  = [Yo(z2) Go(.) + Y1(z2) Gl(z)] . 
Combining  these  equations yields the  input-output relation 

X ( Z )  = ; [Ho(z) Go(.) + HI(z) Gl(z)]  X(z) 
(6.18) 

++ [Ho(-z) Go(z) + H1(-z) Gl(z)]  X(-z). 

The first term describes the transmission of the signal X ( z )  through  the 
system, while the second term describes the aliasing component at the  output 



6.2. Two-Channel Filter  Banks 149 

Figure 6.6. Two-channel  filter  bank. 

of the filter bank. Perfect reconstruction is  given if the  output signal is nothing 
but a delayed version of the  input signal. That is, the  transfer function for 
the signal component,  denoted as S ( z ) ,  must satisfy 

and  the  transfer function F ( z )  for the aliasing component  must  be zero: 

F ( z )  = Ho(-z) Go(z) + H~(-z) G ~ ( z )  = 0. (6.20) 

If (6.20) is satisfied, the  output signal contains no aliasing, but  amplitude dis- 
tortions may be  present. If both (6.19) and (6.20) are satisfied, the  amplitude 
distortions also vanish. Critically subsampled filter banks that allow perfect 
reconstruction  are also known as biorthogonal filter banks. Several methods 
for satisfying these conditions either exactly or approximately  can  be  found 
in the  literature.  The following sections give a brief  overview. 

6.2.2 Quadrature  Mirror  Filters 

Quadrature  mirror filter banks (QMF  banks)  provide  complete aliasing can- 
cellation at  the  output,  but condition (6.19) is only  approximately satisfied. 
The principle was introduced by Esteban  and  Galand in [52]. In  QMF  banks, 
Ho(z )  is  chosen as  a linear phase lowpass filter, and  the remaining filters are 
constructed as 

Go(.) = Hob) 

Hl(Z) = Ho(-z) (6.21) 

G ~ ( z )  = -H~(z). 
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Figure 6.7. QMF bank in polyphase  structure. 

As can easily be verified, independent of the filter Ho(z) ,  the condition F ( z )  = 
0 is structurally satisfied, so that one  only  has to ensure that S ( z )  = H i ( z )  + 
H:(-z) M 22-4. The  name  QMF is due to  the mirror  image  property 

IHl(,.G -q = IHo(& + q  

with  symmetry  around ~ / 2 .  

QMF  bank  prototypes  with  good  coding  properties  have for instance  been 
designed by Johnston [78]. 

One important  property of the  QMF banks is their efficient implementa- 
tion  due to  the modulated  structure, where the highpass and lowpass filters are 
related  as H l ( z )  = Ho(-z).  For the polyphase  components this means that 
Hlo(z)  = Hoo(z) and H l l ( z )  = -Hol(z).  The resulting efficient polyphase 
realization is depicted in Figure 6.7. 

6.2.3 General  Perfect Reconstruction Two-Channel 
Filter Banks 

A method for the  construction of PR filter banks is to choose 

Is is easily verified that (6.20) is satisfied. Inserting 
into (6.19) yields 

(6.22) 

the above relationships 

Using the  abbreviation 
T ( z )  = Go(2) Ho(z) ,  (6.24) 
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Figure 6.8. Examples of Nyquist filters T ( z ) ;  (a) linear-phase; (b) short  overall 
delay. 

this becomes 
22-4 = T ( z )  + (-1)"l T ( - z ) .  (6.25) 

Note that i [ T ( z )  + T ( - z ) ]  is the  z-transform of a  sequence that only  has 
non-zero even taps, while i [ T ( z )  - T ( - z ) ]  is the  z-transform of a sequence 
that only  has  non-zero  odd taps. Altogether we can  say that in order to satisfy 
(6.25), the system T ( z )  has to satisfy 

n = q  
n = q + 2 1 , l # O  e a  (6.26) 

arbitrary n = q + 21 + 1. 

In  communications, condition (6.26) is  known as  the first  Nyquist  condition. 
Examples of impulse  responses t(n) satisfying the first Nyquist condition are 
depicted in Figure 6.8. The  arbitrary  taps  are  the free  design parameters, 
which  may be chosen in order to achieve good filter properties.  Thus, filters 
can easily be designed  by choosing a filter T ( z )  and factoring it  into Ho(z)  and 
Go(z).  This  can  be  done by computing  the  roots of T ( z )  and dividing them 
into two  groups, which form the zeros of Ho(z)  and Go(z).  The remaining 
filters are  then chosen according to (6.24) in order to yield a PR filter bank. 
This design method is  known as spectral  factorization. 

6.2.4 Matrix  Representations 

Matrix  representations  are a convenient  and  compact way of describing and 
characterizing filter banks.  In the following we will  give a brief  overview of 
the most important matrices and  their relation to  the analysis and synthesis 
filters. 
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Modulation Matrix. The  input-output relations of the two-channel filter 
bank  may  also  be  written  in  matrix  form. For this, we introduce the vectors 

1 

and  the so-called modulation  matrix or alias  component (AC) matrax 

(6.27) 

(6.28) 

(6.29) 

which contains the filters Ho(z)  and H I ( z )  and  their  modulated versions 
Ho(-z)  and Hl(-z ) .  We get 

Polyphase Representation of the Analysis Filter Bank. Let  us 
consider the analysis  filter  bank in Figure 6.9(a). The signals yo(m) and y1 (m) 
may be  written  as 

and 

y1(m) = C h 1 ( n )  x ( 2 m  - n) 
~ 

n (6.33) 
= C h l O ( k )  zo(m - Ic) + C h l l ( k )  z1(m - L), 

k k 
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1 

Figure 6.9. Analysis  filter  bank. (a) direct  implementation; (b) polyphase  realiza- 
tion. 

where we used the following polyphase  components: 

boo@) = h o w ) ,  

hOl(k) = ho(2k + 11, 

hlO(k) = h1(2k), 

hll(k) = + 11, 

SO(k) = 2(2k), 

51(k) = 2(2k - 1). 

The  last rows of (6.32),  and (6.33) respectively, show that  the complete 
analysis filter bank  can  be realized  by operating solely with the polyphase 
components, as depicted in  Figure 6.9(b).  The advantage of the polyphase 
realization compared to  the direct implementation in Figure  6.9(a) is that 
only the required output values are computed.  When looking at  the first 
rows of (6.32) and (6.33) this sounds  trivial, because these  equations are 
easily implemented and  do  not  produce unneeded values. Thus, unlike in 
the  QMF bank case, the polyphase realization does not necessarily lead to 
computational savings compared to  a proper  direct  implementation of the 
analysis equations. However, it allows simple filter design, gives more insight 
into  the properties of a filter bank,  and leads to efficient implementations 
based on lattice  structures; see Sections 6.2.6 and 6.2.7. 

It is  convenient to describe (6.32) and (6.33) in  the z-domain using matrix 
notation: 

2 / P ( Z )  = E ( z )  % ( z ) ,  (6.34) 

(6.35) 

(6.36) 
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Matrix E ( z )  is called the polyphase matrix of the analysis filter bank. As can 
easily be  seen by inspection, it is related to  the modulation  matrix  as follows: 

with 

W = [ ’  1  -1 1 1  ’ 

(6.37) 

(6.38) 

and 

= [ z- l ]  (6.39) 

Here, W is understood  as  the  2x2-DFT  matrix.  In view of the general M -  
channel case, we use the  notation W-’ = ;WH for the inverse. 

Polyphase Representation of the Synthesis Filter Bank. We consider 
the synthesis filter bank in Figure 6.10(a).  The filters Go(z) and Gl(z) can 
be  written in terms of their  type-2  polyphase  components as 

and 
Gl(z) = z-’G:O(Z’) + G:,(Z’). (6.41) 

This gives rise to  the following z-domain matrix  representation: 

The corresponding  polyphase realization is depicted in Figure 6.10. Perfect 
reconstruction  up to  an overall delay of Q = 2mo + 1 samples is achieved if 

R ( z ) E ( z )  = 2-0 I .  (6.43) 

The  PR condition for an even overall delay of Q = 2mo samples is 

(6.44) 
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( 4  (b) 
Figure 6.10. Synthesis filter  bank. (a) direct implementation; (b) polyphase 
realization. 

6.2.5 Paraunitary  Two-Channel Filter Banks 

The inverse of a unitary  matrix is  given  by the Hermitian  transpose. A similar 
property  can  be  stated for polyphase  matrices as follows: 

E-yz) = E ( z ) ,  (6.45) 

where 
k ( z )  = ( E ( z ) y ,  121 = 1, 

E ( z )  k ( z )  = k ( z )  E ( z )  = I .  
such that 

(6.46) 

(6.47) 

Analogous to ordinary  matrices, ( E ( z ) ) ~  stands for transposing  the  matrix 
and  simultaneously  conjugating the elements: 

In  the case of real-valued filter coefficients we have f i i k ( z )  = Hik(z-l), such 
that B ( z )  = ET(zP1) and 

E ( z )  ET(z-1) = ET(z-1) E ( z )  = I .  (6.48) 

Since E ( z )  is dependent  on z ,  and since the  operation (6.46) has to be carried 
out on the  unit circle, and  not at some arbitrary point in the z plane, a  matrix 
E ( z )  satisfying (6.47) is said to be  paraunitary. 

Modulation Matrices. As can  be seen from (6.37) and  (6.47), we have 

H m ( z ) R m ( z )  = R m ( z ) H m ( z )  = 2 I (6.49) 

for the  modulation matrices of paraunitary two-channel filter banks. 

Matched Filter Condition. From (6.49) we may conclude that  the analysis 
and synthesis filters in a  paraunitary two-channel filter bank are  related as 

G ~ ( z )  = f i k ( ~ )  t) gk(n) = hi(-n),  L = 0 , l .  (6.50) 
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This means that  an analysis filter and  its corresponding synthesis filter 
together yield a Nyquist filter (cf. (6.24)) whose impulse  response is equivalent 
to  the autocorrelation  sequence of the filters in question: 

(6.51) 

Here we find parallels to  data transmission, where the receiver input filter is 
matched to  the  output filter of the  transmitter such that  the overall result 
is the  autocorrelation sequence of the filter. This is  known as the matched- 
filter  condition. The reason for choosing this special input filter is that  it 
yields a maximum signal-to-noise ratio if additive  white noise interferes on 
the transmission channel. 

Power-Complementary Filters. From (6.49) we conclude 

2 = Ho(z)fio(z) + Ho(-z)fio(-z), (6.52) 

which  for z = eJ" implies the requirement 

2 = IHO(ej")l2 + IHo(e j ( W  + 4 )  12. (6.53) 

We observe that  the filters Ho(ejW) and Ho(ej(w+")) must  be power- 
complementary to one  another. For constructing  paraunitary filter banks we 
therefore have to find a Nyquist filter T ( z )  which can  be  factored  into 

T(2)  = Ho(z)  f i O ( 2 ) .  (6.54) 

Note that a factorization is possible only if T(ej")  is real and positive. A 
filter that satisfies this condition is said to be valid. Since T ( e J W )  has  symmetry 
around W = 7r/2 such a filter is also called a valid  halfband  filter. This  approach 
was introduced by Smith  and  Barnwell in  [135]. 

Given Prototype. Given an FIR prototype H ( z )  that satisfies condition 
(6.53), the required analysis and synthesis filters can  be derived as 

(6.55) 

Here, L is the number of coefficients of the  prototype. 
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Number of Coefficients. Prototypes for paraunitary two-channel filter 
banks  have even length.  This is  seen  by formulating (6.52) in the  time domain 
and  assuming an  FIR filter with coefficients ho(O), . . . , ho(25): 

2 k  

se0 = c h0(n)h;;(n - 2 4 .  (6.56) 
n=O 

For C = k ,  n = 25, 5 # 0, this yields the requirement 0 = h0(25)h:(O), which 
for ho(0) # 0 can only be satisfied by ho(2k) = 0. This  means that  the filter 
has to have even length. 

Filter Energies. It is easily verified that all filters in a paraunitary filter 
bank have energy one: 

l l ho l l ez  = llhll le, = llgoIle, = l lg l l lez  = 1. 
2 2 2 2 (6.57) 

Non-Linear Phase Property. We  will  show that  paraunitary two-channel 
filter banks are non-linear phase  with  one exception. The following  proof  is 
based  on  Vaidyanathan [145]. We assume that two filters H ( z )  and G ( z )  are 
power-complementary  and linear-phase: 

c2 = H ( z ) f i ( z )  + G ( z ) G ( z )  

B ( z )  = eja z L  ~ ( z ) ,  

G ( z )  = ejp z L  G ( z ) ,  p E R 1 (6.58) 
(linear-phase property). 

We conclude 

(H(z)ejal'  + jG(z)ejp/')  (H(z)ej"/'  - jG(z)ejp/ ')  = c2 z - ~ .  (6.59) 

Both  factors  on  the left are FIR filters, so that 

Adding  and subtracting  both  equations shows that H ( z )  and G ( z )  must  have 
the form 

(6.61) 

in order to be both power-complementary  and linear-phase. In  other  words, 
power-complementary linear-phase filters cannot  have  more  than two  coeffi- 
cients. 
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6.2.6 Paraunitary Filter Banks  in  Lattice  Structure 

Paraunitary filter banks  can  be efficiently implemented in a  lattice  structure 
[53], [147]. For this, we decompose the polyphase matrix E ( z )  as follows: 

Here, the  matrices B k ,  k = 0,.  . . , N - 1 are  rotation matrices: 

and D ( z )  is the delay matrix 

D =  [; zl l l ]  

It can  be shown that such a decomposition is always possible [146]. 

Provided cos,& # 0, k = (),l,. . . , N - 1, we can also write 

with 
N - l  1 

k=O 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

This basically allows  us to reduce the  total number of multiplications. The 
realization of the filter bank by means of the decomposed  polyphase matrix 
is pictured in Figure  6.11(a). Given a k ,  k = 0,. . . , N - 1, we obtain filters of 
length L = 2N.  

Since this  lattice  structure leads to a  paraunitary filter bank for arbitrary 
a k ,  we can  thus achieve perfect reconstruction even if the coefficients must  be 
quantized  due to finite precision. In  addition,  this  structure  may  be used  for 
optimizing the filters. For this, we excite the filter bank  with zeuen(n) = dn0 

and ~ , d d ( n )  = dnl and observe the polyphase  components of Ho(z)  and H l ( z )  
at the  output. 

The polyphase matrix of the synthesis filter bank  has  the following 
factorization: 

R(2) = BTD’(2)BT . . . D‘(z)B:_, (6.67) 

with D’(.) = J D ( z ) J ,  such that D‘(z)D(z)  = zP11.  This  means that all 
rotations  are inverted and  additional delay is introduced.  The  implementation 
is shown in Figure  6.11(b). 
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Figure 6.11. Paraunitary filter  bank  in lattice structure; (a) analysis; (b) synthesis. 

6.2.7 Linear-Phase  Filter  Banks  in  Lattice Structure 

Linear-phase PR two-channel filter banks  can  be  designed and implemented 
in various ways.  Since the filters do  not have to be  power-complementary, we 
have much more design freedom than in the  paraunitary case. For example, 
any  factorization of a  Nyquist filter into  two linear-phase filters is possible. A 
Nyquist filter with P = 6  zeros can for instance  be factored into two linear- 
phase filters each of which has  three zeros, or into one filter with four and 
one filter with two zeros. However, realizing the filters in lattice  structure,  as 
will be discussed in the following,  involves the  restriction  that  the number of 
coefficients must  be even and  equal for all filters. 

The following factorization of E ( z )  is  used  [146]: 

E(2)  = LN-lD(2)LN-2 . . . D(2)LO (6.68) 

with 

It  results in a linear-phase PR filter bank.  The realization of the filter bank 
with the decomposed  polyphase matrix is depicted in Figure 6.12. As in 
the case of paraunitary filter banks in Section 6.2.6, we can achieve PR if 
the coefficients must  be  quantized  because of finite-precision arithmetic.  In 
addition,  the  structure is suitable for optimizing filter banks  with respect to 
given criteria while conditions such as linear-phase and PR  are  structurally 
guaranteed.  The  number of filter coefficients  is L = 2(N + 1)  and  thus even 
in any case. 
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Figure 6.12. Linear-phase  filter  bank  in  lattice structure; (a) analysis; (b) synthesis. 

6.2.8 Lifting Structures 

Lifting structures have  been suggested  in [71, 1411 for the design of biorthog- 
onal wavelets. In  order to explain the discrete-time filter bank concept behind 
lifting, we consider the two-channel filter bank in Figure  6.13(a).  The  structure 
obviously yields perfect reconstruction  with a delay of one sample. Now  we 
incorporate a system A ( z )  and a delay z - ~ ,  a 2 0 in the polyphase  domain 
as shown in  Figure  6.13(b). Clearly, the overall structure still gives PR, while 
the new subband  signal yo(rn) is different from the one  in  Figure  6.13(a).  In 
fact,  the new yo(rn) results  from  filtering X(.) with the filter 

and subsampling. The overall delay has  increased by 2a. In the next  step  in 
Figure 6.13(c), we use a dual lifting step  that allows us to construct  a new 
(longer) filter HI (2) as 

H~(z) = z - ~ ~ - ~  + z-~”B(z’) + z-~A(z’)B(z’). 

Now the overall delay is 2a + 2b + 1 with a, b 2 0. Note that, although we 
may  already have relatively long filters Ho(z) and H l ( z ) ,  the delay may be 
unchanged if  we have  chosen a = b = 0. This  technique allows us to design 
PR filter  banks  with high stopband  attenuation  and low overall delay. Such 
filters are for example very attractive for real-time  communications  systems, 
where the overall delay has to be kept below a given threshold. 
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m 
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Figure 6.13. Two-channel  filter banks  in  lifting  structure. 

Figure 6.14. Lifting  implementation of the 9-7  filters  from  [5]  according to [37]. 
The parameters  are a = -1.586134342, p = -0.05298011854, y = 0.8829110762, 
6 = 0.4435068522, 6 = 1.149604398. 

In general, the filters constructed via lifting are non-linear phase. However, 
the lifting steps can easily be chosen to  yield linear-phase filters. 

Both  lattice  and lifting structures  are very attractive for the implementa- 
tion of filter banks  on  digital signal processors, because coefficient quantization 
does not affect the PR property. Moreover, due to  the joint realization of 
Ho(z) and H l ( z ) ,  the  total number of operations is  lower than for the direct 
polyphase  implementation of the same filters. To give an example, Figure 6.14 
shows the lifting implementation of the 9-7 filters from [ 5 ] ,  which are very 
popular in image compression. 
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An important result is that any  two-channel filter bank  can  be  factored 
into a finite number of lifting steps [37]. The proof  is based  on the Euclidean 
algorithm [g]. The decomposition of a given filter bank into lifting steps is not 
unique, so that many  implementations for the same filter bank  can  be found. 
Unfortunately, one  cannot  say a priori which implementation will perform 
best if the coefficients have to be  quantized to a given number of bits. 

6.3 Tree-Structured Filter Banks 

In  most  applications  one  needs a signal decomposition into more than two, 
say M ,  frequency  bands. A simple way of designing the required filters is to 
build cascades of two-channel filter banks.  Figure 6.15 shows two  examples, 
(a)  a regular tree  structure  and  (b)  an octave-band tree  structure.  Further 
structures  are easily found,  and also signal-adaptive concepts  have  been 
developed,  where the  tree is  chosen such that it is best matched to  the problem. 
In all cases, PR is easily obtained if the two-channel filter banks, which are 
used as  the basic building blocks, provide PR. 

In  order to describe the system functions of cascaded filters with  sampling 
rate changes, we consider the two  systems in Figure 6.16. It is easily seen that 
both systems are equivalent. Their  system function is 

For the system B2(z2) we have 

With  this  result,  the system functions of arbitrary cascades of two-channel 
filter banks  are easily obtained. 

An example of the frequency  responses of non-ideal octave-band filter 
banks in tree  structure is  shown in Figure 6.17.  An effect, which results  from 
the overlap of the lowpass and highpass  frequency responses, is the occurrence 
of relatively large side lobes. 
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Figure 6.15. Tree-structured  filter  banks; (a) regular tree structure; (b) octave- 
band tree structure. 
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Figure 6.16. Equivalent  systems. 
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Figure 6.17. Frequency  responses  in  tree-structured  filter  banks; (a) two-channel 
filter  bank; (b) octave-band  filter  bank. 

6.4 Uniform  M-Channel Filter Banks 

This section addresses uniform M-channel filter banks for  which the sampling 
rate is reduced by N in all subbands.  Figure 6.1 shows such a filter bank,  and 
Figure 6.18 shows some  frequency responses. In  order to obtain general results 
for uniform M-channel filter banks, we start by assuming N 5 M ,  where M 
is the number of subbands. 

6.4.1 Input-Output Relations 

We consider the  multirate filter bank  depicted in Figure 6.1. From equations 
(6.7) and (6.8) we obtain 
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Figure 6.18. Frequency  responses of the analysis  filters  in a uniform  M-channel 
filter  bank; (a) cosine-modulated  filter  bank; (b) DFT filter  bank. 

1 N-l 
Yj(z) = - C H k ( W h z k )  X(W&zk), k = 0 , .   . . , M  - 1, (6.69) 

N 
i = O  

and 
_I M-lN-l  

X ( Z )  = C C Gk(z)Hk(W&z)X(W&z). 
k=O i=o 

(6.70) 

In  order to achieve perfect reconstruction,  suitable filters H k ( z )  and 
GI, ( z ) ,  k = 0, . . . , M - 1, and  parameters N and M must  be chosen. We 
obtain  the PR requirement by first changing the  order of the  summation in 
(6.70): 

1 N-l 
M - ]  

X ( Z )  = - C X(W&Z) C G~(z)H~(W&Z). (6.71) 
i=o k=O 

Equation (6.71) shows that X ( z )  = 2 - 4  X(z) holds if the filters satisfy 

M-l 

C Gk(z)Hk(W&z) = N z - ~  &o, 0 < i < N - 1. (6.72) 
k=O 
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H m ( z )  = 

and 

z m ( z )  = [ X ( Z ) , X ( Z W N ) ,  . . . , X ( z W p ) ] T ,  (6.75) 

the  input-output  relations may also be  written as 

1 
X ( z )  = g T ( z )   H ; ( z )  z,(z). (6.76) 

Thus, PR requires that 

1 
N 
- g T ( z )  H Z ( z )  = 2-9 [1,0,. . . , O ]  . (6.77) 

6.4.2 The  Polyphase  Representation 

In Section 6.2 we explained the polyphase  representation of two-channel filter 
banks.  The generalization to M channels  with  subsampling by N is outlined 
below. The  implementation of such  a filter bank is depicted in Figure 6.19. 

Analysis. The analysis filter bank is described by 

!h(.) = E ( z )  Z P k ) ,  (6.78) 

where 

E(z )  = (6.81) 
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Figure 6.19. Filter  bank  in  polyphase structure. 

Synthesis. Synthesis may be described in a similar way: 

with 

R(z)  = 

Z -1 

Z -1 

(6.82) 

(6.83) 

Perfect Reconstruction. From (6.78) and (6.82) we conclude the  PR 
requirement 

R ( z )  E ( z )  = 2-40 I ,  (6.84) 

which results  in an overall  delay of Mqo + M - 1 samples. The generalization 
to any arbitrary delay of Mqo + r + M - 1 samples is 

where 0 < r < M - 1 [146]. 

FIR Filter Banks. Let us write (6.84) as 

(6.85) 

(6.86) 

and let us assume that all elements of E ( z )  are  FIR. We see that  the elements 
of R ( z )  are also FIR if det{E(z)} is a monomial in z .  The same arguments hold 
for the more general PR condition (6.85). Thus,  FIR solutions for both  the 
analysis and synthesis filters of a PR filter bank  require that  the  determinants 
of the polyphase  matrices are  just delays. 
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6.4.3 Paraunitary  Filter Banks 

The  paraunitary case is characterized by the  fact  that  the  sum of the energies 
of all subband signals is equal to  the energy of the  input signal. This may be 
expressed as llypll = l l z p l l  V xp with llxpll < CO, where x p ( z )  is the polyphase 
vector of a finite-energy input signal and yp(z) = E ( z )  xp(z) is the vector of 
subband signals. It can easily be verified that filter banks  (oversampled  and 
critically sampled)  are  paraunitary if the following condition holds: 

k ( z )  E ( z )  = I .  (6.87) 

This also implies that 

hk(n) = g;(-n) t) HI , ( z )  = G k ( z ) ,  k = 0, .  . . , M  - 1.  (6.88) 

Especially in the critically subsampled case where N = M ,  the impulse 
responses hk(n-mM)  andgk(n-mM), 5 = 0 , .  . . , M-l ,  m E Z, respectively, 
form  orthonormal bases: 

(6.89) 

6.4.4 Design of Critically  Subsampled  M-Channel  FIR 
Filter  Banks 

Analogous to  the  lattice  structures  introduced in Sections 6.2.6 and 6.2.7, we 
consider the following factorization of E ( z ) :  

where 

= [ 0 .ol] * 
IM-l (6.92) 

The  matrices A k ,  k = 0,1, .  . . , K  are  arbitrary non-singular matrices. The 
elements of these  matrices  are  the free design parameters, which can  be chosen 
in order to obtain some desired filter properties. To achieve this, a useful 
objective function has to be defined and  the free parameters have to be  found 
via non-linear optimization. Typically, one  tries to minimize the  stopband 
energy of the filters. 
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The corresponding synthesis polyphase matrix can  be designed as 

R(z)  = AilI'(z)ATII'(z)  ...I'(Z)A;', (6.93) 

(6.94) 

Clearly, both E ( z )  and R ( z )  contain FIR filters. The overall transfer matrix 
is 

R ( z ) E ( z )  = C K I .  (6.95) 

Figure 6.20 illustrates  the implementation of the filter bank according to  the 
above factorizations. A simple parameterization for the matrices AI, that 
guarantees the existence of A i l  is to  use triangular matrices  with ones 
on the main diagonal. The inverses then  are also triangular, so that  the 
implementation cost is  somehow reduced. Examples are given in [146]. 

Paraunitary FIR Filter Banks  based on Rotations. Paraunitary filter 
banks are easily derived from the above scheme  by restricting  the matrices AI, 
to be  unitary. Interestingly, not all matrices have to  be fully parameterized 
rotation matrices  in  order to cover all possible unitary filter banks [41]. The 
matrices Ao, . . . , A K - ~  only have to  belong to  the subset of all possible M X M 
unitary matrices which can  be written  as a sequence of M - 1 Givens rotations 
performed successively on the elements Ic, L + 1 for Ic = 0,1, .  . . , M  - 2. 

- cos&) sin4p) 
- sin 4r) cos 4r) 

- -1 - 

AI, = 1 . . .  1 
COS 4K-l sin 4K-l (k)  (k) 

(k) 

(6.96) 
The  last  matrix AK has  to  be a general rotation  matrix.  Filter design can 
be carried out by  defining an objective  function  and optimizing the  rotation 
angles. 

- 1- - - sin 6 K - 1  (k) cos 6 K - 1 -  

Paraunitary  FIR Filter Banks  based on Reflections. A second  way 
of parameterizing paraunitary filter banks was proposed in [148]. Here, the 
polyphase matrix is written  as follows: 

E ( z )  = VK(Z)VK-l(Z) * * V,(z )U.  (6.97) 

The matrices V I , ( Z )  are reflection-like matrices of the  type 

VI, = I - VI,.: + z-1vI,v:, (6.98) 
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. I  I 

@) 

Figure 6.20. M-channel  filter bank with FIR filters; (a) analysis; (b) synthesis. 

where vk: is an M X 1 vector with l lvkl l  = vTv = 1.  It is easily proven 
that V r ( ~ - ~ ) V k ( z )  = I ,  so that  the  matrices can  indeed  be used  for 
parameterization.  The  matrix U has to be a general unitary  matrix.  The 
parameterization (6.97) directly leads to  an efficient implementation, which 
is similar to  the one discussed in Section 3.4.4 for the implementation of 
Householder reflections: instead of multiplying an  input vector z ( z )  with an 
entire  matrix V k ( z ) ,  one  computes z ( z )  - vk[l - K'] [vTz(z)] in order to 
obtain Vk:(z)z(.z). 

In  addition to  the above  parameterizations, which generally yield non- 
linear phase filters, methods for designing linear-phase paraunitary filter banks 
have also been  developed. For this special class the reader is referred to [137]. 

6.5 DFT Filter Banks 

DFT filter banks  belong to  the class of modulated filter banks,  where all 
filters are derived from  prototypes via modulation.  Modulated filter banks 
have the  great  advantage  that only  suitable  prototypes  must  be  found,  not 
the complete  set of analysis and synthesis filters. One  prototype is required 
for the analysis and one for the synthesis side, and in most cases the same 
prototypes  can  be  used for both sides. Due to  the modulated  structure very 
efficient implementations are possible. 

In  DFT  banks,  the analysis and synthesis filters, Hk:(z) and Gk:(z), are 
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In  order to explain the efficient implementation of DFT  banks, let us 
consider the critically subsampled case. The analysis equation is 

L-l 

%(m) = pk: (.) z(mM - n) 
n=O 
1,-l 

(6.100) 

n=O 

We  now substitute n = i M  + j ,  L = ML,  and rewrite (6.100) as 

Thus,  the  subband signals can  be  computed by filtering the polyphase com- 
ponents of the  input signal with the polyphase  components of the  prototype, 
followed  by an  IDFT  (without pre-factor l /M) .  On the synthesis side, the 
same principle can  be used. The complete analysis/synthesis system, which 
requires extremely low computation effort, is depicted in Figure 6.21. 

For critical  subsampling, as shown  in Figure 6.21, the  PR condition is 
easily found to be 

(6.102) 

This  means that  the polyphase  components of PR FIR  prototypes  are 
restricted to length one, and  the filtering degenerates to pointwise scalar 
multiplication. Thus, critically subsampled DFT filter banks  with PR mainly 
reduce to  the  DFT. 

If oversampling by a  factor p = E Z is considered, the  PR condition 
becomes [33, 861 

(6.103) 
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Clearly, if a filter  bank provides PR in the critically  subsampled case, it  also 
provides PR in the oversampled case, provided the  output signal is  downscaled 
by the oversampling  factor. Thus, (6.102) is  included in  (6.103).  This is most 
easily seen  from  (6.103) for p = 2: 

In  general, (6.103) means an increased design  freedom compared to (6.102). 
This freedom can  be  exploited  in  order to design FIR  prototypes P(,) and 
Q ( z )  with  good filter properties. 

The  prototypes  are typically designed to be lowpass filters. A common 
design criterion is to minimize the  stopband energy and  the  passband ripple: 

S a! (IP(ej")l- 1)zdw + p IP(ej")12 dw L min. (6.104) S passband  stopband 

At this point  it should be mentioned that all PR prototypes for M-channel 
cosine-modulated filter banks, which  will be discussed in the next  section,  also 
serve as  PR prototypes for oversampled 2M-channel DFT filter banks.  On the 
other  hand,  satisfying only (6.103) is not sufficient in the cosine-modulated 
case. Thus, oversampled DFT filter banks offer  more  design  freedom than 
cosine-modulated  ones. 

MDFT Filter Bank. Figure 6.22 shows the  MDFT filter bank  introduced by 
Fliege. Compared to  the simple DFT filter banks  described  above, this filter 
bank is modified in  such  a way that  PR is achieved with  FIR filters [55] ,  [82]. 
The key to   PR is subsampling the filter output signals by M/2, extracting the 
real and imaginary parts,  and using them  to compose the complex subband 
signals yk:(rn), L = 0, .  . . , M - 1. As can  be seen in  Figure 6.22, the extraction 
of the real and imaginary parts  takes place in adjoining  channels  in reverse 
order. 
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X̂ @) 

Figure 6.22. Modified complex  modulated filter  bank with critical  subsampling. 

DFT Polyphase  Filter  Bank with IIR Filters and  Perfect  Recon- 
struction. We consider the  DFT filter bank in Figure 6.21. Husmy and 
Ramstad proposed to construct  the polyphase  components of the  prototype 
as first-order IIR allpass filters [74]: 

Pi(2) = - i = o ,  . . .  ,A4-1 .  (6.105) 
1 ai + z - l  

m 1 + aiz-1’ 

Using the synthesis filters 

then ensures perfect reconstruction. Unfortunately, this leads to a problem 
concerning  stability: if the analysis filters are  stable,  the synthesis filters 
determined  according to (6.106) are  not.  This problem  can  be  avoided by 
filtering the  subband signals “backwards”  using the  stable analysis filters. 
Then,  the desired output signal is formed by another  temporal reversal. This 
is not a feasible strategy if  we work with  one-dimensional signals, but in image 
processing we a priori have finite-length signals so that  this  method can  be 
applied nevertheless. 

The  quality of a filter bank is not  only  dependent  on  whether it recon- 
structs perfectly or not.  The  actual  purpose of the filter bank is to separate 
different frequency  bands, for example in order to provide  a  maximal  coding 
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gain. The  stopband  attenuation of the  prototype P ( z )  composed of IIR 
allpasses is determined by the  parameters ai ,  i = 0, .  . . , M - 1, so that these 
are  the design  parameters. Husrrry and  Ramstad  state a stopband  attenuation 
of 36.4 dB for the  prototype P(,) of an eight-channel filter bank [74]. In view 
of the extremely low computational cost this is an astonishing value. 

6.6 Cosine-Modulated  Filter  Banks 

Cosine-modulated filter banks are very popular  due to their real-valued 
nature  and  their efficient implementation via polyphase structure  and fast 
DCT [116, 127, 94, 121, 87, 100, 110, 129, 681. Cosine-modulated filter 
banks  can  be  designed as pseudo  QMF  banks [127], paraunitary filter banks 
[94, 121, 87, 100, 1031, and also as biorthogonal filter banks allowing low 
reconstruction  delay [110, 129, 68, 83, 861. Perfect reconstruction is easily 
achieved by choosing an  appropriate  prototype. For example, the  MPEG  audio 
standard [l71  is based  on  cosine-modulated filter banks. 

In  the following, we will consider biorthogonal  cosine-modulated filter 
banks  where the analysis filters hk(n), Ic = 0, . . . , M - 1, are derived from 
an  FIR  prototype p ( n )  and  the synthesis filters gk(n) ,  Ic = 0 , .  . . , M - 1, from 
an  FIR  prototype q(n) according to 

h k ( l Z )  = 2p(n)cos[G ( k + i )  (v;) +qh], n=O, . . . ,  L,-1 

gk(n) = 2q(n)cos[$ ( k + i )  - 4 ,  n=O, ..., L , - l .  

The  length of the analysis prototype is L,, and  the  length of the synthesis 
prototype is L,. The variable D denotes the overall delay of the analysis- 
synthesis system. A suitable choice  for q5k is  given  by r$k = (-1)"/4 [87,95]. 

For the sake of brevity, we confine ourselves to even M ,  analysis and 
synthesis prototypes  with lengths L, = 2mM and L, = 2m'M,  m,m' E IN, 
and  an overall delay of D = 2sM + 2M - 1 samples.  Note that  the delay 
can  be chosen independently of the filter length, so that  the design of low- 
delay  banks is included here. The most common case within this framework 
is the one  where the same  prototype is  used  for analysis and synthesis. 
However, in order to demonstrate some of the design freedom, we start with 
a more general approach where  different prototypes  are used  for analysis and 
synthesis. Generalizations to all filter lengths and delays are given in [68]. 
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In  order to derive the conditions that must  be  met by the  prototypes P ( z )  
and  Q(z)  to yield perfect reconstruction, we first decompose  them  into 2M 
polyphase  components.  Note that in the case of DFT filter banks,  only M 
polyphase  components were  used to describe an  M-channel filter bank. We 
use the  type-l decomposition given  by 

m-l 

P~(z) = C p(2lM + j )  z , j = 0 , .  . . , 2 M  - 1. -e (6.107) 

e=o 

6.6.1 Critically  Subsampled Case 

In  the critically subsampled case the analysis polyphase matrix can  be  written 
as [112, 681 

(6.108) 

where 

[ T l ] k , j  = 2cos [G ( k  + ;) ( j  - p) + 4 k ]  , 
(6.109) 

k = O  ,.", M - l ,  j = o  ,.", 2 M - 1 ,  

and 

Po(z2)  = diag [P0(-z2),Pl(-z2),  . . . ,PM-l(-z2)] , 

P1(z2) = diag [PM(-~~),PM+~(-~~), . . . ,P2M-l(-z2)] . 
(6.110) 

Note that  the matrices P0(z2) and P1 ( z 2 )  contain upsampled  and  modulated 
versions of the polyphase filters. 

For the synthesis polyphase matrix we get 

R(z )  = [z-lQ1(z2),  Qo(z2)] TT, (6.111) 

where 

[ T 2 ] k , j  = 2cos [G (L + ;) (2M - 1 - j - p) - 44  , 
(6.112) 

k = O  ,.", M - l ,  j = o  ,.", 2 M - 1 ,  

and 

Qo(z2) = diag [QM-I(-z~),  . . . ,Q1(-z2),Q~(-z2)] , 

Q1(z2) = diag [ Q ~ M - I ( - Z ~ ) ,  . . . , Q M + I ( - Z ~ ) ,  Q M ( - ~ ~ ) ]  . 
(6.113) 
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The perfect reconstruction conditions are  obtained by setting 

Using the  property [87] 

(6.114) 

this yields the conditions 

which have to be  met for k = 0, .  . . , % - 1.  The relationship between qo and 
S is 

qo = 2s + 1. (6.118) 

The condition (6.117) is satisfied for Q k ( z )  = az-PPk(z)  and Q ~ + k ( z )  = 
az-8 P ~ + k ( z )  with arbitrary a,  p, which suggests the use of the same  proto- 
type for both analysis and synthesis. Thus, with Q ( z )  = P ( z ) ,  the remaining 
condition is 

! z-' M 
2 P Z M - l - k ( Z )  Pk(Z) + P M + k ( Z )  PM-l--k(Z) = 2" k = O ,  . . . , - -  1. 
(6.119) 

The  M/2 equations in (6.119) may  be  understood as PR conditions on M/2 
non-subsampled  two-channel filter banks.  The  prototype can for instance  be 
designed by using the  quadratic-constrained least-squares (QCLS) approach, 
which  was proposed by  Nguyen [lll]. Here, we write all constraints given 
by  (6.119)  in quadratic form and optimize the  prototype using  constrained 
numerical  optimization.  The  approach  does  not inherently guarantee PR,  but 
the PR constraints  can  be satisfied with arbitrary accuracy. 

Another  approach, which guarantees PR and also leads to a very  efficient 
implementation of the filter bank, is to design the filters via lifting [129, 831. 
For this, we write  the  PR conditions as 

V ( z ) U ( z )  = I ,  
z-l(-z-z) '  

2M 
(6.120) 
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where 

z - ~ Q ~ M - ~ - ~ ( - z  ) ( - l ) s - lQz~- l - -k-~( -z  ) 2 

(-1)Sz-1Qk+~(-z2)  Qd-z2) l .  
(6.121) 

It is easily verified that (6.120) includes (6.117) and  (6.116),  but (6.120) can 
also be derived straightforwardly  from (6.114) by using the  properties of the 
cosine functions [83]. The filter design is as follows. We start with 

where the  subscript 0 indicates that  this is the  0th  iteration. We have 

z-1 
2M 

V,(z )U, (z )  = ~ I .  (6.123) 

Longer filters with the same  delay are  constructed by introducing  matrices of 
the  type 

A i l ( z )  Ai(z)  = I (6.124) 

L 

in between the  product 

(6.126) 

Note that Ui+l ( z )  and Vi+l ( z )  retain  the  structure given in (6.121). From the 
new matrices  the polyphase  components of the  prototype  are easily extracted. 
The  operation (6.126) can  be  repeated  until  the filters contained in U i ( z )  and 
V i ( z )  have the desired length. Since the overall delay  remains constant,  this 
operation is called zero-delay lifting. 

A second possibility is to introduce  matrices 
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and to construct  the new filters as 

Ui+l(Z) = C i ( Z ) U i ( Z ) ,  
(6.128) 

This  type of lifting is  known as maximum-delay lifting. Again, Ui+l(z) and 
Vi+l(z) have the  structure given in (6.121), and since (6.120) is satisfied, 
PR is structurally  guaranteed.  Thus, filter optimization  can  be carried out by 
optimizing the lifting coefficients in an  unrestricted way. 

Also other lifting schemes can easily be found. The  advantage of the above 
approach is that only  one lifting step with  one lifting coefficient ai or ci is 
needed in order to increase the  length of two  polyphase  components of each 
prototype. 

Implementation Issues. The  straightforward  polyphase  implementation of 
(6.108) is depicted in Figure 6.23. On the analysis side, we see that always 
those  two  systems  are fed with the same input signal which are connected 
in (6.116). In  the synthesis bank,  the  output signals of the corresponding 
synthesis polyphase filters are  added.  This  already suggests the  joint imple- 
mentation of pairs of two filters. However, a  more efficient structure can  be 
obtained by exploiting the periodicies in the  rectangular  matrices 2'1 and 
T 2  and by replacing them with M X M cosine modulation  matrices T 1  and 
T 2  = T ,  = T, [83]: 

- T  --l 

2cos [$F ( k  + +) ( j  - g) + q5k] , j = 0 , .  . . ' 2  - M 1  - 
[ T l I k , j  = 

2 ~ 0 ~ [ $ F ( k + i ) ( M + j - g ) + 4 k ] ,  j = T , . . . , M - l  
(6.129) 

for k = 0,.  . . , M - 1. This  structure is depicted in Figure 6.24. Note that  the 
following signals are needed as  input signals for the cosine transform: 

(6.130) 

Thus, all polyphase filtering operations  can  be carried out via the lifting 
scheme  described  above where four filters are realized jointly. 
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(b) 

Figure 6.23. Cosine-modulated  filter  bank  with  critical  subsampling. (a) analysis; 
(b) synthesis. 

6.6.2 Paraunitary Case 

In  the  paraunitary case with  critical  subsampling we have 

B ( z )  E ( z )  = I M ,  (6.131) 

which leads to  the following constraints  on the  prototype: 

1. The  prototype  has  to be  linear-phase, that is, p ( L  - 1 - n) = p ( n ) .  
2. The same prototype is required for both analysis and synthesis. 
3. The  prototype  has  to satisfy 

1 Pk (z)P/C (.l + h + k  ( Z ) P M + k  = z. (6.132) 
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YM-1 (m) - M-k 

(-1)S-l l i d 
M-l L; 

Figure 6.24. Cosine-modulated  filter  bank  with  critical  subsampling and efficient 
implementation structure. (a)  analysis;  (b)  synthesis. 

The filter design may for instance  be carried out by parameterizing  the 
polyphase  components  using the  lattice  structure shown in Figure 6.25 and 
choosing the  rotation angles so as to minimize an  arbitrary objective function. 
For this  method a good starting point is required,  because we have to optimize 
angles in a cascade of lattices  and  the relationships between the angles and 
the impulse  response are highly nonlinear. Alternatively, the QCLS approach 
[l111 can  be used, which typically is  less sensitive to  the  starting  point. 

As in the biorthogonal case, the polyphase filters can  be realized jointly. 
One  can use the  structure in Figure 6.23 and implement two filters at a 
time via the  lattice in Figure 6.25.  However, the more efficient structure in 
Figure 6.24 can also be used, where four filters are realized via a common 
lattice.  This was  shown in [95]  for special filter lengths. A generalization is 
given in [62]. 
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- 
pk (z) 
A A 

/ \ /  \ 

In [l031 a  method  has  been  proposed that allows the design of discrete- 
coefficient linear-phase prototypes for the  paraunitary case. The design pro- 
cedure is based  on a subspace  approach that allows  us to perform linear 
combinations of PR prototype filters in such  a way that  the resulting filter is 
also a linear-phase PR prototype.  The filter design  is carried out iteratively, 
while the  PR property is guaranteed  throughout  the design process. In  order 
to give  some  design examples,  Table  6.1 shows impulse  responses of 8-band 
prototypes  with integer coefficients and filter length L = 32. Because of 
symmetry, only the first 16  coefficients are  listed.  The frequency  responses 
of the filters #3  and #S are depicted in Figure 6.26. 

Closed Form Solutions. For filter length L = 2M  and L = 4M closed form 
solutions for PR prototypes  are  known.  The special case L = 2M is  known 
as the modulated  lapped  transform (MLT), which  was introduced by Princen 
and  Bradley [116]. In  this case the  PR condition (6.132) reduces to 

1 
Pk + PM+k = , 

which means 
1 

p 2 ( n )  + p 2 ( M  + n) = 2 ~ .  (6.133) 

An example of an impulse  response that satisfies (6.133) is 

1 
P(n) = m sin [ (n+  -)- . (6.134) 

The case L = 4M is  known as the extended  lapped  transform (ELT).  The 
ELT was introduced by Malvar, who suggested the following prototype [95]: 

1 1 1 7 r  
p(n)  = -GZ +- 2m [ 2 2M] 

cos (n + -)- (6.135) 
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(b) 
Figure 6.26. Frequency  responses of 8-channel  prototypes  from  Table 3.1. (a) filter 
#3; (b) filter #6. For  comparison the frequency  response of the ELT prototype is 
depicted  with dotted lines. 

Table 6.1. 
Perfect  reconstruction  prototypes for 8-band filter banks  with integer 

coefficients &(L - 1 - n)  = p ( n ) ) .  

7 
8 

10 
11 
12 
13 
14 

r 1 1 2  

1 2  
1 2  
1 2  

- 
#3 - 
-1 
-1 
0 
0 
0 
0 
2 
2 
4 
4 
6 
6 
7 
7 
8 
8 

- 
#S 

-2190 
-1901 
-1681 
-426 
497 
2542 
3802 
6205 
9678 
13197 
16359 
19398 
22631 
24738 
26394 
27421 

- 

1 
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6.6.3 Oversampled  Cosine-Modulated Filter Banks 

In  the oversampled case with  oversampling by p = E Z, the polyphase 
matrices may be  written  as 

(6.136) 

and 

with 

Pe(z2’) = diag (pelv(-z2’),pe~+1(-z2’), . . . , P e l v + ( ~ - ~ ) ( - z ~ ’ ) } ,  (6.138) 

Qe(z2’) = diag{Qelv+(lv-l)(-z2’), . . . , Q ~ N + I ( - ~ ~ ’ ) ,  Qelv(-z2’)}. 
(6.139) 

The  superscript ( p )  indicates the oversampling  factor.  Requiring 

(.) &) (.) = .-P (6.140) 

for perfect reconstruction yields [86] 

(6.141) 

and 
9+elv(z )  Q~+k+elv(z) - P~+k+elv(z )  Qk+elv(z) L 0 (6.142) 

for L = 0,. . . , N - 1; l = 0,. . . , p  - 1. The delay qp) is related to S as 

qp) = 2ps + 2p - 1,  (6.143) 

and  the overall delay amounts to 

q = N - l + q t ) N .  (6.144) 

As we see, these conditions offer increased design freedom for an increasing 
oversampling rate.  This is further discussed in [86], where solutions based  on 
a nullspace approach  are presented. 
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If we restrict an oversampled  cosine-modulated filter bank to be  parauni- 
tary,  that  is, d p ) ( z )  E(p) ( z )  = I N ,  we get the following constraints  on  the 
prototype P ( z )  [85, 861: 

Interestingly, for p > 1, we still may choose different prototypes P(,) and 
Q ( z )  such that 

with 

Example. We consider a  16-band filter bank  with linear-phase prototype  and 
an overall delay of 255 samples. Figure 6.27 shows a comparison of frequency 
responses for the critically sampled and  the oversampled case. It  turns  out 
that  the  PR prototype for the oversampled filter bank  has  a much higher 
stopband  attenuation.  This  demonstrates  the increased design freedom in the 
oversampled case. 

6.6.4 Pseudo-QMF Banks 

In pseudo-QMF  banks, one  no longer seeks perfect reconstruction,  but nearly 
perfect  reconstruction. Designing a pseudo-QMF  bank is done as follows [127]. 
One ensures that  the aliasing components of adjacent  channels  compensate 
exactly. This requires power complementarity of frequency shifted versions of 
the  prototype,  as  illustrated in Figure 6.28. Furthermore,  one  tries to suppress 
the remaining aliasing components by using filters with very high stopband 
attenuation.  Through filter optimization  the linear distortions  are  kept  as 
small as possible. An  efficient  design method was proposed in [166].  Since 
the  constraints on the  prototype  are less restrictive  than in the  PR case, the 
prototypes typically have a higher stopband  attenuation  than  the PR ones. 
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Figure 6.27. Frequency  responses of 16-channel  prototypes. (a) critical  subsam- 
pling; (b) oversampling  by p = 2. 

0 ' HiM 

Figure 6.28. Design of pseudo-QMF  banks. 
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6.7 Lapped Orthogonal  Transforms 

Lapped  orthogonal  transforms  (LOTs) were introduced in [21] and have  been 
further  studied in [93, 97, 21. Unlike  block transforms,  they  have  overlapping 
basis functions, which better allow us to smooth  out blocking artifacts in 
coding  applications.  LOTs  may also be seen as a special kind of critically 
subsampled paraunitary filter banks. Typically, an overlap of one block  is 
considered, which means that  the basis functions are of length L = 2M when 
the number of channels is M. Longer transforms  have  been designed in [l181 
and  are called generalized lapped  orthogonal  transforms  (GenLOTs). More 
recently, biorthogonal  lapped  transforms have also been  proposed [96, 1441. 

Figure 6.29. Transform matrix of a  lapped  orthogonal  transform. 

Figure 6.29 illustrates  the  structure of the  transform  matrix of a  lapped 
orthogonal  transform. Like in an  M-channel filter bank  with  length-2M filters, 
2M  input samples are combined in order to form  M  transform coefficients. 
We will first consider the  constraints  on  the  M X M  submatrices PO and P I .  
From the condition of orthogonality, 

T ~ T = T T ~ = I  (6.146) 

it follows that 

P,TPo+PTP1=PoPoT+PIPT=IMxM (6.147) 

P; P1 = PO PT = OMxM. (6.148) 
and 

Now let B = PO + P I .  Note that B is orthogonal if PO and P1 satisfy 
the above conditions. Moreover, POP: and P I P :  are  orthogonal projections 
onto  two  subspaces that  are  orthogonal  to one another. Define A = POP: 
and verify that PlPT = I - A. Thus, 

PO = A B ,  P1 = [ I - A ] B .  (6.149) 
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The most general way of constructing  LOTS is to  start with two matrices 
A and B ,  where A is a projection and B is orthogonal.  The desired 
matrices PO and P1 are  then found  from  (6.149).  This  method, however, 
does  not  automatically yield linear-phase filters, which are desired in many 
applications. 

In [98], a fast linear-phase LOT based  on the  DCT was presented, which 
will be briefly explained in the following.  For this, let De and Do be  matrices 
that contain the rows of the  transposed DCT-I1 matrix with even and  odd 
symmetry, respectively. Then, 

is a  LOT  matrix  that  already satisfies the above conditions. J is the counter 
identity  matrix  with  entries Ji,k = & + - l ,  i = 0,1, . . . , N - 1.  In  an 
expression of the form X J ,  it flips the columns of X from left to right. 
Due to  the application of J in (6.150), the first M / 2  rows of Q(') have even 
and  the  last M / 2  rows have  odd  symmetry. A transform  matrix  with  better 
properties (e.g. for coding) can  be  obtained by rotating  the columns of Q(') 
such that 

Q = 2 Q('), (6.151) 

where 2 is unitary. For the fast LOT, 2 is  chosen to contain  only  three  plane 
rotations, which help to improve the performance, but  do not significantly 
increase the complexity. The  matrix Q(o) already  has  a fast implementation 
based  on the  fast  DCT. See Figure 6.30  for an  illustration of the  fast  LOT. 
The angles proposed by Malvar are O1 = 0 . 1 3 ~ ~  O2 = 0 . 1 6 ~ ~  and O3 = 0 . 1 3 ~ .  

0 
1 
2 
3 
4 
5 
6 
l 

Figure 6.30. The  fast  lapped  orthogonal  transform  for M = 8 based  on the DCT 
and three  plane  rotations. 
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6.8 Subband Coding of Images 

Two-dimensional filter  banks for the decomposition of images can  be realized 
as  separable  and  non-separable  filter  banks. For the sake of simplicity, we will 
restrict ourselves to  the separable case. Information  on  non-separable filter 
banks  and  the corresponding  filter design methods is given in [l, 1541. 

In  separable  filter  banks, the rows and columns of the input  signal  (image) 
are filtered successively. The procedure is illustrated in Figure  6.31 for an 
octave-band  decomposition  based on cascades of one-dimensional  two-channel 
filter  banks.  In  Figure 6.32 an example of such an octave-band decompo- 
sition is given. Note that  this decomposition scheme  is also known as  the 
discrete wavelet transform; see Chapter 8. In  Figure  6.32(b) we observe that 
most  information is contained  in the lower subbands. Moreover, local high- 
frequency  information is kept locally within the subbands.  These  properties 
make  such  filter  banks very attractive for image  coding applications.  In  order 
to achieve  high  compression ratios, one quantizes the decomposed image, 
either by scalar  quantization,  or using a technique known as embedded zerotree 
coding [131, 1281; see also  Section 8.9. The codewords describing the quantized 
values are usually further compressed in a lossless way  by arithmetic or 
Huffman coding [76,63].  To  demonstrate the characteristics of subband coding 
with  octave-band  filter  banks,  Figures  6.32(c) and  (d) show  coding results at 
different bit  rates. 

Fl*FI*Fl* LH HH Fl*F LH HH  LH  HH 

vertical 

. . .  

Figure 6.31. Separable  two-dimensional  octave-band  filter  bank. 
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Figure 6.32. Examples of subband  coding; (a) original  image of size  512 X 512; (b) 
ten-band  octave  decomposition;  (c)  coding at 0.2 bits per  pixel;  (d)  coding at 0.1 
bits per  pixel. 

6.9 Processing of Finite-Length  Signals 

The  term “critical  sampling”, used in the previous sections, was  used under 
the assumption of infinitely long signals. This  assumption is justified  with 
sufficient accuracy for audio  and speech coding. However, if  we want to 
decompose an image  by means of a  critically  subsampled filter bank, we see 
that  the number of subband  samples is larger than  the number of input values. 
Figure 6.33 gives an example. If  we simply truncate  the number of subband 
samples to  the number of input values - which  would be  desirable for coding 
- then PR is not possible any longer. Solutions to this problem that yield PR 
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Figure 6.33. Two-channel  decomposition of a finite-length  signal. 

with a minimum  number of subband  samples are discussed in the following. 

Circular Convolution. Assuming that  the  length of the signal to be 
processed is a multiple of the number of channels, the problem  mentioned 
above  can  be solved  by circular convolution. In  this  method,  the  input signal 
is extended periodically prior to decomposition [165], which  yields periodic 
subband signals of which only  one  period  has to be  stored  or  transmitted. 
Figures 6.34(a) and 6.34(c) give an  illustration. Synthesis is performed by 
extending  the  subband signals according to their  symmetry, filtering the 
extended signals, and  extracting  the required part of the  output signal. A 
drawback of circular convolution is the occurrence of discontinuities at the 
signal boundaries, which may lead to annoying  artifacts  after  reconstruction 
from  quantized  subband signals. 

Symmetric Reflection. In  this  method,  the  input signal is extended peri- 
odically by reflection at the  boundaries as indicated in Figures 6.34(b) and 
6.34(d), [136, 16, 23, 61. Again, we get periodic subband signals, but  the period 
is twice as long as with circular convolution. However, only half a period of 
the  subband signals is required if linear-phase filters are used, because  they 
lead to symmetry in the  subbands. By comparing  Figures  6.34(a)  and (b) (or 
6.34(c) and  (d)) we see that symmetric reflection leads to smoother  transitions 
at the  boundaries  than circular convolution does. Thus, when quantizing the 
subband signals, this  has  the effect of less severe boundary  distortions. 

The exact  procedure  depends  on the filter bank in use and on the signal 
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(c) (4 
Figure 6.34. Periodic  extension of the input signal; (a) one-dimensional  circular 
convolution; (b) one-dimensional  symmetric  reflection;  (c)  two-dimensional  circular 
convolution;  (d)  two-dimensional  symmetric  reflection. 

length.  Figure  6.35(a) shows a scheme suitable for the two-band  decomposition 
of an even-length signal with linear-phase odd-length  biorthogonal filters. The 
input signal is denoted as ZO, 21, . . . ,27, and  the filter impulse  responses 
are {A, B ,  C, B ,  A}  for the lowpass and {-a, b, -a} for the highpass. The 
upper row  shows the extended  input signal, where the given input  samples 
are shown  in  solid  boxes. The lowpass and highpass  subband  samples, c, 
and d,, respectively, are computed by taking  the inner products of the 
impulse  responses in the displayed positions with the corresponding part of the 
extended  input signal. We see that only four different lowpass and highpass 
coefficients occur  and  have to be  transmitted. A second  scheme  for the same 
filters which also allows the decomposition of even-length signals into lowpass 
and  highpass  components of half the  length is depicted in Figure  6.35(b).  In 
order to distinguish between both  methods we say that  the  starting position 
in Figure  6.35(a) is  even and  the one in Figure 6.35(b) is odd,  as  indicated 
by the indices of the samples.  Combinations of both schemes can  be used to 
decompose  odd-length signals. Moreover,  these schemes can  be used  for the 
decomposition of 2-D objects  with  arbitrary  shape. We will return  to  this 
topic at  the end of this section. 

Schemes  for the decomposition of even-length signals with  even-length 
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Figure 6.35. Symmetric  reflection for even-length  signals. (a) odd-length  filters, 
segment starting at an even  position; (b) odd-length  filters,  segment starting at 
an odd position; (c )  even-length  filters,  segment starting at an even  position;  (d) 
even-length  filters,  segment starting at an odd  position. 

linear-phase filters are depicted in Figures 6.35(c) and  (d).  The filter impulse 
responses are {A, B ,   B ,  A} for the lowpass and {-a, -b, b, a }  for the highpass. 
Note that a different type of reflection is  used and that we have  other 
symmetries in the  subbands. While the scheme in Figure 6.35(c) results in 
the same  number of lowpass and highpass  samples, the one in Figure  6.35(d) 
yields an  extra lowpass value, while the corresponding  highpass value is zero. 
However, the  additional lowpass samples  can  be turned  into highpass values  by 
subtracting  them from the following  lowpass value and  storing  the differences 
in the highpass  band. 

In  object based  image coding, for instance MPEG-4 [log], it is required to 
carry  out  subband decompositions of arbitrarily  shaped  objects. Figure 6.36 
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Figure 6.36. Shape  adaptive  image  decomposition  using  symmetric  reflection  for 
odd-length  two-channel  filter  banks; (a) arbitrarily  shaped  object and horizontal 
extension  with  pixel  values  as  indicated; (b) lowpass  filter;  (c)  highpass  filter;  (d) 
and (e)  lowpass and highpass  subbands  after  horizontal  filtering; (f) and (g)  lowpass 
and highpass  decompositions of the signal  in (d); (h) and (i) lowpass and highpass 
decompositions of the signal  in  (e). 

shows a scheme  which  is suitable for this  task using  odd-length filters. 
The  arbitrarily  shaped  input signal is  shown in the marked region, and 
the extension for the first horizontal decomposition is found outside this 
region. Figures  6.36(d)  and  (e) show the  shape of the lowpass and  highpass 
band, respectively. Figures 6.36(f)-(i) finally show the  object  shapes  after  the 
vertical decomposition of the signals in Figures 6.36(d) and  (e)  based  on  the 
same reflection scheme. Such  schemes are often called shape  adaptive wavelet 
transforms.  Note that  the overall number of subband  samples is equal to  the 
number of input pixels. Moreover, the scheme  yields a  decomposition where 
the  interior region of an  object is processed as if the  object was of infinite size. 
Thus,  the  actual  object  shape only  influences the  subband samples close to 
the boundaries. The 2-D decomposition is carried out in such  a way that  the 
horizontal decomposition  introduces  minimal  distortion for the next vertical 
one  and vice versa. 
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Figure 6.37. Shape  adaptive  image  decomposition  using  symmetric  reflection  for 
even-length  two-channel  filter  banks;  see the comments to Figure 6.36 for further 
explanation. 

A scheme for the decomposition of arbitrarily  shaped 2-D objects  with 
even-length filters is depicted in Figure 6.37. Note that in this case, the 
lowpass band grows faster  than  the highpass band.  The  shaded regions in 
Figures  6.37(d) and (e) show the  shape of the lowpass and highpass  band  after 
horizontal filtering. The  brighter regions within the  object in Figure  6.37(d) 
indicate  the  extra lowpass  samples. The zero-marked fields in Figure 6.37(e) 
are positions where the highpass  samples are exactly zero. 

If the  faster growing of the lowpass  band is unwanted the  manipulation 
indicated in Figure 6.35(d) can  be applied. Then  the  subbands  obtained with 
even-length filters will have the  same  shape  as  the ones in Figure 6.36. 

In  addition to  the direct use of symmetric reflection, one  can  optimize the 
boundary  processing schemes in order to achieve better coding  properties. 
Methods for this  task have  been  proposed in [70, 69, 101, 27, 102, 39, 401. 
These include the two-band, the more general M-band,  and  the  paraunitary 
case with non-linear phase filters. 
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6.10 Transmult iplexers 

Transmultiplexers are systems that convert time-division multiplexed (TDM) 
signals into frequency-division multiplexed  (FDM) signals and vice versa [151]. 
Essentially, these  systems are filter banks as shown  in Figure 6.38. Contrary 
to  the  subband coding filter banks  considered so far,  the synthesis filter bank 
is applied first and  the analysis filter bank is then used to recover the  subband 
samples yk(m), which may  be  understood as components of a TDM signal. 
At the  output of the synthesis filter bank we have an FDM signal where  each 
data  stream yk(m) covers a different frequency  band. 

The transmission  from  input i to  output k is described by the impulse 
responses 

t i , k  (m) = q i , k  ( m M ) ,  (6.152) 

(6.153) 

In  the noise-free case, perfect reconstruction of the  input  data with a delay of 
m0 samples  can  be  obtained when the following condition holds: 

t i , k ( r n )  = dik S,,,, i , k  = 0,1, .  . . , M  - 1. (6.154) 

Using the  notation of modulation  matrices  these PR conditions may  be  written 
as 

T ( z M )  = H ; ( z )  G, (z )  = M z-,OM I ,  (6.155) 

where the overall transfer  matrix  depends  on z M .  This essentially means that 
any PR subband  coding filter bank yields a PR transmultiplexer if the overall 
delay is a multiple of M .  

Practical problems  with  transmultiplexers  mainly  occur  due to non-ideal 
transmission channels. This  means that intersymbol interference, crosstalk 
between different channels, and  additive noise  need to be  considered in the 
transmultiplexer design. An elaborate discussion of this topic is beyond the 
scope of this section. 

Figure 6.38. Transmultiplexer  filter  bank. 
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Chapter 7 

Short-Time 
Fourier Analysis 

A fundamental  problem  in  signal  analysis is to find the spectral  components 
contained  in a measured  signal z( t )  and/or  to provide information about 
the  time  intervals when certain frequencies occur. An example of what we 
are looking for is a sheet of music,  which clearly assigns time to frequency, 
see Figure 7.1. The classical Fourier analysis only partly solves the problem, 
because it does not allow an assignment of spectral  components to time. 
Therefore  one seeks other  transforms which give insight  into  signal  properties 
in a different way. The  short-time  Fourier  transform is such  a  transform. It 
involves both  time  and frequency and allows a  time-frequency  analysis,  or  in 
other words, a signal  representation  in the time-frequency plane. 

7.1 Continuous-Time Signals 

7.1.1 Definition 

The short-time Fouriertransform (STFT) is the classical method of time- 
frequency  analysis. The concept is very simple. We multiply z ( t ) ,  which  is to 
be analyzed,  with an analysis window y* (t - T) and  then  compute  the Fourier 

196 
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I 
Figure 7.1. Time-frequency  representation. 

Figure 7.2. Short-time  Fourier  transform. 

transform of the windowed signal: 

cc 
F~(T, W )  = z ( t )  y*( t  - T) ,-jut d t .  

J -cc 

The analysis window y*(t  - T) suppresses z ( t )  outside a certain region, 
and  the Fourier transform yields a local spectrum.  Figure 7.2 illustrates  the 
application of the window. Typically, one will  choose a real-valued window, 
which may  be  regarded as the impulse  response of a lowpass. Nevertheless, 
the following derivations will be given  for the general complex-valued case. 

If  we choose the Gaussian function to be  the window, we speak of the 
Gabor transform, because  Gabor  introduced the  short-time Fourier transform 
with this  particular window [61]. 

Shift Properties. As we see from the analysis equation (7.1), a time shift 
z ( t )  + z(t  - t o )  leads to a shift of the  short-time Fourier transform by t o .  
Moreover, a modulation z ( t )  + z ( t )  ejwot leads to a shift of the  short-time 
Fourier transform by WO. As we will  see later,  other  transforms, such as the 
discrete wavelet transform,  do  not necessarily have this property. 
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7.1.2 Time-Frequency Resolution 

Applying the shift and  modulation principle of the Fourier transform we find 
the correspondence 

~ ~ ; , ( t )  := ~ ( t  - r )  ejwt 

(7.2) 
r7;Wk) := S__r(t - 7) e - j ( v  - w ) t  dt = r ( v  - W )  e-j(v - 

From  Parseval's  relation  in the form 

J -03 

we conclude 

That is, windowing in the time  domain  with y*( t  - r )  simultaneously  leads 
to windowing in the spectral  domain  with the window r*(v - W ) .  

Let us assume that y*(t - r )  and r*(v - W )  are  concentrated in the time 
and frequency  intervals 

and 
[W + W O  - A, , W + W O  + A,], 

respectively. Then Fz(r, W )  gives information  on  a  signal z ( t )  and  its  spectrum 
X ( w )  in the time-frequency  window 

[7+ t0  -At  , r + t o  +At]  X [W + W O  - A ,  , W + W O  +A,]. (7.7) 

The position of the time-frequency window is determined by the parameters r 
and W .  The form of the time-frequency window  is independent of r and W ,  so 
that we obtain a uniform resolution  in the time-frequency plane, as indicated 
in  Figure 7.3. 
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Figure 7.3. Time-frequency window of the short-time  Fourier  transform. 

Let  us  now  have a closer look at the size and position of the time-frequency 
window.  Basic requirements for y*(t)  to be called a  time window are  y*(t) E 
L2(R)  and  t  y*(t) E L2(R). Correspondingly, we demand that I'*(w) E L2(R) 
and W F* ( W )  E Lz(R) for I '*(w) being a frequency  window. The center t o  and 
the radius A, of the time window y*(t)  are defined analogous to  the mean 
value and  the  standard deviation of a  random variable: 

Accordingly, the center WO and  the  radius A, of the frequency  window 
r * ( w )  are defined as 

(7.10) 

(7.11) 

The  radius A, may  be viewed as half of the bandwidth of the filter y*(-t). 

In  time-frequency  analysis  one  intends to achieve both high time  and 
frequency resolution if possible. In  other words, one  aims at a time-frequency 
window that is as small  as possible. However, the uncertainty principle applies, 
giving a lower bound for the  area of the window.  Choosing a short  time window 
leads to good time  resolution and, inevitably, to poor frequency resolution. 
On the other  hand, a long time window yields poor  time  resolution, but good 
frequency resolution. 



200 Chapter 7. Short-Time Fourier Analysis 

7.1.3 The Uncertainty Principle 

Let  us consider the  term (AtAw)2, which  is the  square of the  area in the 
time-frequency  plane  being covered  by the window. Without loss of generality 
we may  assume J t  Ir(t)12 dt = 0 and S W  l r (w) I2  dw = 0, because  these 
properties  are easily achieved for any  arbitrary window  by applying a time 
shift and a modulation.  With (7.9) and (7.11) we have 

For the left term in the  numerator of (7.12), we may write 

(7.13) 
J -cc 

with [(t)  = t y ( t ) .  Using the differentiation principle of the Fourier transform, 
the  right  term in the  numerator of (7.12) may be  written  as 

m cc L w2 lP(W)I2 dw = ~mlF{r’(t)} l 2  dw (7.14) 

= %T llY‘ll2 

where y’(t) = $y( t ) .  With (7.13),  (7.14) and 1 1 1 1 1 2  = 27r lly112 we get for 
(7.12) 

1 (AtA,)2 = - ll-Y114 1 1 t 1 1 2  ll-Y‘1I2 (7.15) 

Applying the Schwarz inequality yields 

( A t A J 2  2 &f I (t,-Y’) l 2  

2 &f lR{(t,-Y’)l l 2  (7.16) 

By making  use of the relationship 

1 d  
8 { t y ( t )  y’*(t)} = 5 t Ir(t)12 7 (7.17) 

which can easily be verified, we may  write  the  integral in (7.16) as 

t y ( t )  y’*(t) d t }  = i/_”,t g Ir(t)12 dt.  (7.18) 
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Partial  integration yields 

The  property 
lim t Iy(t)12 = 0, (7.20) 

1tl-w 

which immediately follows from t y ( t )  E La, implies that 

(7.21) 

so that we may  conclude that 

1 
2 4’ (7.22) 

A t A w  2 5’ (7.23) 
that is 

1 

The relation (7.23) is  known as the uncertainty principle. It shows that  the 
size of a time-frequency windows cannot  be  made  arbitrarily  small  and that 
a perfect time-frequency resolution cannot  be achieved. 

In (7.16) we see that equality in (7.23) is only given if t y ( t )  is a multiple 
of y’(t). In  other  words, y(t) must satisfy the differential equation 

t d t )  = c (7.24) 

whose general solution is  given  by 

(7.25) 

Hence, equality in (7.23) is  achieved only if y ( t )  is the Gaussian  function. 
If we relax the conditions on the center of the time-frequency window of 
y ( t ) ,  the general solution with  a  time-frequency window of minimum size  is a 
modulated  and time-shifted Gaussian. 

7.1.4 The Spectrogram 

Since the  short-time Fourier transform is  complex-valued in general, we often 
use the so-called spectrogrum for display purposes  or for further processing 
stages. This is the  squared  magnitude of the  short-time Fourier transform: 
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Figure 7.4. Example of a short-time Fourier  analysis; (a) test signal; (b) ideal 
time-frequency  representation;  (c)  spectrogram. 

Figure 7.4  gives an example of a spectrogram;  the values S, (7, W )  are repre- 
sented by different shades of gray. The  uncertainty of the  STFT in both  time 
and frequency  can  be  seen by comparing the result in Figure 7.4(c) with the 
ideal time-frequency  representation in Figure 7.4(b). 

A second example that shows the  application in speech analysis is pictured 
in Figure 7.5. The regular vertical striations of varying density are  due to  the 
pitch in speech  production.  Each  striation  corresponds to a single pitch period. 
A high pitch is indicated by narrow  spacing of the  striations.  Resonances in 
the vocal tract in voiced speech show up  as  darker regions in the  striations. 
The resonance frequencies are known as the  formant frequencies. We see three 
of them in the voiced section in Figure 7.5. Fricative or  unvoiced sounds are 
shown as  broadband noise. 

7.1.5 Reconstruction 

A reconstruction of z(t)  from FJ(T, W )  is possible in the form 

(7.28) 
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@l t -  

Figure 7.5. Spectrogram of a speech  signal; (a) signal; (b) spectrogram. 

We can verify this by substituting (7.1) into (7.27) and by rewriting the 
expression obtained: 

z ( t )  = L / / / z ( t ’ )  y*(t’ - r )  e-iwt‘ dt’ g ( t  - r )  ejwt d r  dw 
27r 

= /x( t ‘ ) /y*( t ‘  - T) g( t  - T) ejw(t-t’) dw d r  dt‘ 
27r 

= /z ( t ’ ) /y*( t ’  - r )  g( t  - r )  6 ( t  - t ’) dr   d t ’ .  

For  (7.29) to be  satisfied, 
00 

6 ( t  - t’) = y*(t’ - T) g ( t  - T) 6 ( t  - t ’ )  d r  L 
must  hold, which  is true if (7.28) is satisfied. 

(7.29) 

(7.30) 

The  restriction (7.28)  is not very tight, so that  an infinite number of 
windows g ( t )  can  be  found which satisfy (7.28). The disadvantage of (7.27) is 
of course that  the complete  short-time  spectrum  must  be known and must be 
involved in the reconstruction. 
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7.1.6 Reconstruction  via Series Expansion 

Since the  transform (7.1) represents a  one-dimensional signal in the two- 
dimensional plane, the signal representation is redundant. For reconstruction 
purposes this  redundancy  can  be exploited by using  only  certain regions or 
points of the time-frequency plane. Reconstruction  from discrete samples in 
the time-frequency  plane is of special practical  interest. For this we usually 
choose a grid consisting of equidistant  samples  as shown  in Figure 7.6. 

....................... f ...................... 
W . . . . . . . . . . . . . . . . . . . . . .  3 O/ i  ....................... .................... * M  

T t -  

Figure 7.6. Sampling the short-time Fourier  transform. 

Reconstruction is  given by 

0 0 0 0  

The sample values F. (mT,  I ~ u A ) ,  m, Ic E Z of the  short-time Fourier 
transform  are  nothing  but  the coefficients of a series expansion of x ( t ) .  In 
(7.31) we observe that  the set of functions used  for signal reconstruction is 
built from time-shifted and  modulated versions of the same  prototype g@). 
Thus, each of the synthesis functions covers a  distinct  area of the time- 
frequency  plane of fixed  size and  shape.  This  type of series expansion was 
introduced by Gabor [61] and is also called a Gabor expansion. 

Perfect reconstruction  according to (7.31) is possible if the condition 

2T 
- c g( t  - mT) y*( t  - mT - e - )  = de0 V t (7.32) 
wA m=-m 

00 2T 
UA 

is satisfied [72], where de0 is the Kronecker delta. For a given  window y ( t ) ,  
(7.32) represents  a linear set of equations for determining g ( t ) .  However, 
here, as with  Shannon’s  sampling  theorem, a minimal  sampling rate must 
be  guaranteed, since (7.32) can  be satisfied only  for [35, 721 
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Unfortunately, for critical sampling, that is  for T W A  = 27r, and  equal analysis 
and synthesis windows, it is impossible to have both  a good  time  and  a 
good  frequency resolution. If y ( t )  = g ( t )  is a window that allows perfect 
reconstruction  with  critical  sampling,  then  either A, or A, is infinite. This 
relationship is  known as  the Balian-Low theorem  [36]. It shows that  it is 
impossible to construct  an  orthonormal  short-time Fourier basis where the 
window  is differentiable and  has  compact  support. 

7.2 Discrete-Time Signals 

The  short-time Fourier transform of a discrete-time signal x(n) is obtained 
by replacing the  integration in (7.1) by a summation.  It is then given  by 
[4,  119, 321 

Fz(m,ejw) = C x ( n )  r*(n - m ~ )  e-jwn. (7.34) 

Here we assume that  the sampling rate of the signal is higher (by the  factor 
N E W) than  the  rate used  for calculating the  spectrum.  The analysis and 
synthesis windows are  denoted as y* and g, as in Section 7.1; in the following 
they  are meant to be discrete-time. Frequency W is normalized to  the sampling 
frequency. 

n 

In (7.34) we must  observe that  the  short-time  spectrum is a function of the 
discrete parameter m and  the continuous  parameter W .  However, in practice 
one would consider only the discrete frequencies 

wk = 2nIc/M, k = 0, .  . . , M  - 1.  (7.35) 

Then  the discrete values of the  short-time  spectrum can  be given  by 

X ( m ,  Ic) = c X(.) y*(n - mN) W E ,  (7.36) 
n 

where 
X ( m ,  k )  = F:(,, 2 Q )  

and 
W M = e  - j 2 ~ / M  

(7.37) 

(7.38) 

Synthesis. As in (7.31), signal reconstruction from discrete values of the 
spectrum  can  be carried out in the form 

cc M-l 

g(.) = c c X ( m ,  Ic) g(. - mN) WGkn. (7.39) 
m=-m k=O 
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The  reconstruction is especially easy for the case N = 1 (no  subsampling), 
because then all PR conditions are satisfied for g(n) = dnO t) G(eJw)  = 1 
and  any  arbitrary  length-M analysis window ~ ( n )  with $0) = l / M  [4, 1191. 
The analysis and synthesis equations (7.36) and (7.39) then become 

X ( m ,  k )  = c X(.) r*(n - m) WE (7.40) 
n 

and 
M - l  

q n )  = c X ( n , k )  W&? (7.41) 
k=O 

This  reconstruction  method is  known as spectral summation. The validity of 
?(n) = z(n) provided y(0) = 1/M can easily be verified  by combining  these 
expressions. 

Regarding the design of windows  allowing perfect reconstruction in the 
subsampled case, the reader is referred to Chapter 6. As we  will see  below, 
the  STFT may  be  understood  as a DFT filter bank. 

Realizations using Filter Banks. The  short-time Fourier transform, which 
has  been defined as  the Fourier transform of a windowed signal, can  be realized 
with filter banks  as well. The analysis equation (7.36) can  be  interpreted  as 
filtering the  modulated signals z(n)W& with  a filter 

h(n) = r*(-n). (7.42) 

The synthesis equation (7.39) can  be seen as filtering the  short-time  spectrum 
with  subsequent  modulation.  Figure 7.7 shows the realization of the  short- 
time Fourier transform by means of a filter bank.  The windows g(n)  and r(n) 
typically have a lowpass characteristic. 

Alternatively, signal analysis and synthesis can  be carried out by means 
of equivalent bandpass filters. By rewriting (7.36) as 

we see that  the analysis can also be realized by filtering the sequence X(.) 
with the  bandpass filters 

hk(lZ) = y*(-n) WGk", k = 0, .  . . , M  - 1 (7.44) 

and by subsequent  modulation. 
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Figure 7.7. Lowpass  realization of the short-time Fourier transform. 

Rewriting (7.39) as 

cc M - I  
--k(n-mN) (7.45) 

m=-cc k=O 

shows that synthesis can  be  achieved  with  modulated filters as well. To 
accomplish this, first the  short-time  spectrum is modulated,  then filtering 
with the  bandpass filters 

gk(n) = g(n )  wi-kn, L = 0, .  . . , M  - 1, (7.46) 

takes place; see Figure 7.8. 
We realize that  the  short-time Fourier transform  belongs to  the class 

of modulated filter banks.  On  the  other  hand, it  has  been  introduced as a 
transform, which illustrates  the close relationship between filter banks  and 
short-time  transforms. 

The most efficient realization of the  STFT is  achieved  when implementing 
it  as a DFT polyphase filter bank  as outlined in Chapter 6. 

7.3 Spectral  Subtraction based on the STFT 

In  many  real-word  situations  one  encounters signals distorted by additive 
noise. Several methods  are available for reducing the effect of noise in a  more  or 
less optimal way.  For example, in Chapter 5.5 optimal linear filters that yield 
a  maximum signal-to-noise ratio were presented. However, linear methods  are 



208 Chapter 7. Short-Time  Fourier  Analysis 

Figure 7.8. Bandpass  realization of the short-time Fourier transform. 

not necessarily the  optimal ones, especially if a subjective signal quality  with 
respect to human  perception is of importance.  Spectral  subtraction is a non- 
linear method for  noise reduction, which  is  very  well suited for the  restoration 
of speech signals. 

We start with the model 

where we assume that  the additive noise process n(t) is statistically  indepen- 
dent of the signal ~ ( t ) .  Assuming that  the Fourier transform of y ( t )  exists, we 
have 

Y ( w )  = X ( w )  + N ( w )  (7.48) 

in the frequency  domain.  Due to statistical independence  between signal and 
noise, the energy density may  be  written as 

(7.49) 

If we  now assume that E { IN(w)12} is known, the least squares  estimate for 
IX(w)I2 can  be  obtained  as 

l X ( 4 1 2  = IY(w)I2 - E{ IN(w)12)  * (7.50) 

In  spectral  subtraction,  one  only  tries to restore  the  magnitude of the 
spectrum, while the  phase is not  attached.  Thus,  the denoised signal is  given 
in the frequency  domain as 

X ( w )  = IR(w)I L Y ( w ) .  (7.51) 
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Keeping the noisy phase is motivated by the fact that  the phase is of minor 
importance for speech quality. 

So far,  the  time dependence of the  statistical  properties of the signal 
and  the noise process has  not  been considered. Speech signals are highly 
nonstationary,  but  within intervals of about 20 msec, the signal properties 
do  not  change significantly, and  the  assumption of stationarity is  valid on  a 
short-time basis. Therefore, one replaces the above spectra by the  short-time 
spectra computed by the  STFT. Assuming  a discrete implementation,  this 
yields 

Y(m,  k )  = X ( m ,  k )  + N ( m ,  k ) ,  (7.52) 

where m is the  time  and k is the frequency index. Y(m,k) is the  STFT of 
Y (m). 

Instead of subtracting  an average noise spectrum E { IN(w)I2} ,  one  tries 
to keep track of the  actual (time-varying) noise process. This  can for instance 
be  done by estimating  the noise spectrum in the pauses of a  speech signal. 
Equations (7.50) and (7.51) are  then replaced by 

lX(m7k)12 = IY(m,k)12 - p v ( G k ) l 2  (7.53) 

and 
X(m,  k )  = IX(m, k)l L Y(m,  k ) ,  (7.54) 

h 

where IN(m, k)I2 is the  estimated noise spectrum. 
Since it  cannot  be assured that  the  short-time  spectra satisfy IY (m, k )  l 2  - 

IN(m, k)I2 > 0, V m , k ,  one  has to introduce  further modifications such as 
clipping. Several methods for solving this problem  and for  keeping track of 
the time-varying noise have  been  proposed. For more detail,  the reader is 
referred to [12, 50, 51, 60, 491. Finally, note that a closely related technique, 
known as wavelet-based denoising, will be  studied in Section 8.10. 

h 
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Chapter 8 

Wavelet  Transform 

The wavelet  transform was introduced at  the beginning of the 1980s by 
Morlet et al., who  used it  to evaluate seismic data [l05 ],[106]. Since then, 
various  types of wavelet transforms  have been developed, and  many  other 
applications ha  vebeen found. The continuous-time wavelet transform,  also 
called the integral  wavelet  transform (IWT), finds most of its applications  in 
data analysis, where it yields an affine invariant time-frequency representation. 
The most  famous version, however, is the discrete wavelet transform(DWT). 
This  transform  has excellent signal  compaction  properties for many classes 
of real-world signals while being  computationally very efficient. Therefore, it 
has  been  applied to almost  all  technical fields including image compression, 
denoising, numerical  integration,  and  pattern  recognition. 

8.1 The Continuous-Time  Wavelt  Transform 

The wavelet transform W,@, a) of a continuous-time  signal x ( t )  is defined as 

Thus,  the wavelet transform is computed  as the inner  product of x ( t )  and 
translated  and scaled versions of a single function $(t) ,  the so-called wavelet. 

If we consider t)(t) to be a bandpass  impulse  response,  then the wavelet 
analysis  can be  understood  as a bandpass  analysis. By varying the scaling 

210 
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parameter a the center frequency and  the  bandwidth of the  bandpass  are 
influenced. The variation of b simply  means  a translation in time, so that for 
a fixed a the  transform (8.1) can  be seen as a  convolution of z ( t )  with the 
time-reversed and scaled wavelet: 

The prefactor lal-1/2 is introduced in order to ensure that all scaled functions 
l ~ l - ~ / ~ $ * ( t / a )  with a E IR have the same energy. 

Since the analysis function $(t)  is scaled and not  modulated like the kernel 
of the  STFT, a wavelet analysis is often called a time-scale  analysis rather  than 
a  time-frequency analysis. However, both  are  naturally  related to each  other 
by the  bandpass  interpretation. Figure 8.1 shows examples of the kernels of 
the  STFT  and  the wavelet transform. As we can see, a variation of the  time 
delay b and/or of the scaling parameter a has  no effect on the form of the 
transform kernel of the wavelet transform. However, the  time  and frequency 
resolution of the wavelet transform  depends  on a. For  high analysis frequencies 
(small a) we have good  time localization but poor  frequency resolution. On 
the  other  hand, for low analysis frequencies, we have  good  frequency but poor 
time resolution. While the  STFT is a constant  bandwidth analysis, the wavelet 
analysis can  be  understood as a  constant-& or octave analysis. 

When  using a transform in order to get better insight into  the  properties 
of a signal, it should  be  ensured that  the signal can  be perfectly reconstructed 
from its  representation.  Otherwise  the  representation  may  be  completely  or 
partly meaningless. For the wavelet transform  the condition that must  be  met 
in order to ensure perfect reconstruction is 

C, = dw < 00, 

where Q(w)  denotes the Fourier transform of the wavelet. This condition is 
known as  the admissibility  condition for the wavelet $(t). The proof of (8.2) 
will be given  in Section 8.3. 

Obviously, in order to satisfy (8.2) the wavelet must satisfy 

Moreover, lQ(w)I must decrease rapidly for IwI + 0 and for IwI + 00. That is, 
$(t)  must  be a bandpass  impulse response. Since a  bandpass  impulse  response 
looks like a small wave, the  transform is named wavelet transform. 
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Figure 8.1. Comparison of the analysis  kernels of the short-time Fourier  transform 
(top, the real part is  shown) and  the wavelet  transform (bottom, real  wavelet)  for 
high and low  analysis  frequencies. 

Calculation of the Wavelet  Transform  from the Spectrum X ( w ) .  
Using the  abbreviation 

the  integral wavelet transform  introduced by equation (8.1) can also be  written 
as 

a) = (X’ ?h,,> (8.5) 
With  the correspondences X ( w )  t) z ( t )  and Q(w)  t) $(t) ,  and  the  time 
and frequency shift properties of the Fourier transform, we obtain 

By making  use of Parseval’s relation we finally get 
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Equation (8.7) states  that  the wavelet transform  can also be calculated 
by means of an inverse Fourier transform  from  the windowed spectrum 
X ( w )  Q*(aw). 

Time-Frequency Resolution. In  order to describe the time-frequency 
resolution of the wavelet transform we consider the time-frequency window 
associated with the wavelet. The center ( t o ,  W O )  and  the  radii A, and A, of 
the window are calculated according to (7.8) and (7.11). This gives 

and 

(8.10) 

(8.11) 

For the center and  the radii of the scaled function @($) lalQ(aw) we 
have {ado,  +WO}  and {a .At ,  +A,}, respectively. This  means that  the wavelet 
transform W,@, a )  provides information  on  a signal ~ ( t )  and  its  spectrum 
X ( w )  in the time-frequency window 

[ b + a . t o - a . A t ,   b + a . t o + a . A t ]  X [ - - - ,  -+-l ,  WO A, WO A, 
a a a a  (8.12) 

The  area 4 A t A ,  is independent of the  parameters a and b; it is determined 
only by the used  wavelet $(t) .  The  time window narrows when a becomes 
small, and  it widens  when a becomes large. On the  other  hand,  the frequency 
window  becomes  wide  when a becomes small, and  it becomes narrow when a 
becomes large. As mentioned  earlier, a short analysis window leads to good 
time resolution on the one hand,  but on the  other to poor  frequency resolution. 
Accordingly, a long analysis window  yields good  frequency resolution but poor 
time resolution. Figure 8.2 illustrates  the different resolutions of the  short-time 
Fourier transform  and  the wavelet transform. 

Affine  Invariance. Equation (8.1) shows that if the signal is scaled ( z ( t )  + 
z ( t / c ) ) ,  the wavelet representation W,(b,a) is scaled as well; except this, 
W,(b, U )  undergoes  no  other modification. For this reason we also speak of an 
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Figure 8.2. Resolution of the short-time Fourier  transform  (left) and the wavelet 
transform  (right). 

afine invariant transform. Furthermore,  the wavelet transform is translation 
invariant, i.e. a shift of the signal ( x ( t )  + x( t  - t o ) )  leads to a shift of 
the wavelet representation Wz(b ,a )  by t o ,  but W z ( b ,  U )  undergoes  no  other 
modification. 

8.2 Wavelets for Time-Scale  Analysis 

In time-scale signal analysis one  aims at inferring certain signal properties 
from the wavelet transform in a convenient way. Analytic wavelets are es- 
pecially suitable for this purpose. Like an analytic  signal, they contain only 
positive frequencies. In  other words, for the Fourier transform of an  analytic 
wavelet $ ~ b , ~ ( t )  the following  holds: 

%,a(W) = 0 for w 0. (8.13) 

Analytic wavelets have a certain  property, which  will be discussed briefly 
below.  For this consider the real signal z ( t )  = cos(w0t). The  spectrum is 

X ( w )  = 7r [S(w - WO) + S(w + WO)]  t) x ( t )  = cos(w0t). (8.14) 

Substituting X ( w )  according to (8.14) into (8.7) yields 

W&U) = 1. 2 I u ~ ; / ~  (S@ - w0)  + S(W + w0) )  Q*(aw) ejwb dw 
-cc 

(8.15) 

= + la[;  [ q * (awo)  ejuob + ~ * ( - a w o )  e-juob I .  
Hence, for an  analytic wavelet: 

1 
2 

w z ( b , a )  = - la[; ~ * ( a w o )  ej'ob. (8.16) 
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Since only the  argument of the complex  exponential in (8.16) depends  on b, 
the frequency of z ( t )  can  be inferred from the phase of W,(b, a ) .  For this, any 
horizontal line in the time-frequency  plane  can  be considered. The  magnitude 
of W,(b,a) is independent of b, so that  the  amplitude of z ( t )  can  be seen 
independent of time.  This  means that  the  magnitude of W, (b ,  a )  directly 
shows the time-frequency  distribution of signal energy. 

The Scalogram. A scalogram is the  squared  magnitude of the wavelet 
transform: 

Scalograms, like spectrograms,  can  be  represented as images in  which intensity 
is expressed by different shades of gray. Figure  8.3 depicts scalograms for 
~ ( t )  = d ( t ) .  We see that here  analytic wavelets should  be chosen  in order to 
visualize the  distribution of the signal energy in relation to time  and  frequency 
(and scaling, respectively). 

The Morlet  Wavelet. The complex wavelet most frequently used in signal 
analysis is the Morlet wavelet, a modulated  Gaussian function: 

(8.18) 

Note that  the Morlet wavelet satisfies the admissibility condition (8.2) only 
approximately. However,  by  choosing proper  parameters WO and /3 in (8.18) 
one  can  make the wavelet at least “practically” admissible. In  order to show 
this, let us consider the Fourier transform of the wavelet, which,  for W = 0, 
does  not vanish exactly: 

By choosing 
WO 2 2.rrP 

(8.19) 

(8.20) 

we get Q(w)  5 2.7 X 10-9 for W 5 0, which  is  sufficient  for most applications 
[132]. Often WO 2 5/3 is taken to be sufficient [65], which leads to Q(w)  5 
10-5, 5 0. 

Example. The example  considered below  is supposed to give a visual 
impression of a wavelet analysis and  illustrates  the difference from a short-time 
Fourier analysis. The chosen test signal is a discrete-time signal; it contains 
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Imaginary component 

(b) 

Figure 8.3. Scalogram of a delta impulse ( W s ( b , a )  = l$(b/a)I2); (a) real wavelet; 
(b) analytic  wavelet. 

t -  

two periodic parts  and two impulses.' An almost  analytic,  sampled  Morlet 
wavelet  is used. The signal is depicted in Figure 8.4(a). Figures 8.4(b)  and 
8.4(c) show two  corresponding  spectrograms  (short-time Fourier transforms) 
with  Gaussian analysis windows. We see that for a very short analysis window 
the discrimination of the two periodic components is impossible  whereas the 
impulses are  quite visible. A long window facilitates  good discrimination of 
the periodic component, but  the localization of the impulses is poor.  This is 
not the case in the wavelet analysis represented in Figure 8.4(d).  Both  the 
periodic components and  the impulses are clearly visible. Another  property 
of the wavelet analysis, which  is  well illustrated in Figure 8.4(d), is that  it 
clearly indicates non-stationarities of the signal. 

'In Section 8.8 the question of how the wavelet transform of a discrete-time signal can 
be calculated will be examined in more detail. 
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log c 
L 

(4  t -  
Figure 8.4. Examples of short-time Fourier and wavelet  analyses; (a) test signal; 
(b) spectrogram  (short  window);  (c)  spectrogram  (long  window); (d) scalogram. 

8.3 Integral  and  Semi-Discrete  Reconstruction 

In  this section, two variants of continuous wavelet transforms will be consid- 
ered;  they only  differ  in the way reconstruction is handled. Specifically, we 
will  look at integral  reconstruction  from  the  entire  time-frequency  plane  and 
at a semi-discrete reconstruction. 

8.3.1 Integral  Reconstruction 

As will be  shown, the inner product of two signals ~ ( t )  and y(t) is related to 
the inner product of their wavelet transforms as 
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with C, as  in (8.2). 

Given the inner  product (8.21), we obtain a synthesis  equation by  choosing 

y t ( t ' )  = d(t '  - t ) ,  (8.22) 

because then  the following relationship holds: 

m 

(X7Yt) = f ( t ' )  d(t '  - t )  dt' = z ( t ) .  (8.23) 
J -m 

Substituting (8.22) into (8.21) gives 

From this we obtain the reconstruction  formula 

z ( t )  = ' S c Q  /m W z ( b 7 a )  lal-; .JI (T) t - b da db (8.24) c, -cQ  -cQ 

Proof of (8.2) and (8.21). With 

P,(W)  = X(W)  !P*(wa) 

equation (8.7) can  be  written  as 

W z ( b ,   a )  = la13 - P,(w) ejwbdw. 
27r -m 

Using the correspondence P, ( W )  t) p,(b) we obtain 

Similarly, for the wavelet transform of y ( t )  we get 

&,(W) = Y ( w )  Q * ( w ~ )  ~ a ( b ) ,  

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 
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Substituting (8.27) and (8.28) into  the  right  term of (8.21) and  rewriting the 
obtained expression by applying  Parseval's  relation yields 

(8.30) 

By substituting W = vu we can show that  the inner  integral  in the  last line of 
(8.30) is a constant, which only depends  on $(t):  

da = [l dw. (8.31) 
IWI  

Hence (8.30) is 

This completes the proof of (8.2) and (8.21). 0 

8.3.2 Semi-Discrete Dyadic Wavelets 

We speak of semi-discrete dyadic wavelets if every signal z ( t )  E Lz(IR,) can 
be reconstructed from semi-discrete values W, ( b ,  am) ,  where am, m E Z are 
dyadically arranged: 

a,  = 2,. (8.33) 

That is,  the wavelet transform is calculated solely along the lines W,(b, 2,): 

cc 
W,(t1 ,2~)  = 2 - t  z ( t )  $*(2-,(t - b ) )  d t .  (8.34) 
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The center frequencies of the scaled wavelets are 

with WO according to (8.9). The radii of the frequency windows are 

A, 
- = 2-m A,, m E Z. 
a m  

(8.35) 

(8.36) 

In  order to ensure that neighboring  frequency windows 

and 

do  adjoin, we assume 

WO = 3 Au. (8.37) 

This condition can easily be satisfied, because by modulating  a given  wavelet 
&(t) the center frequency  can  be varied  freely.  From (8.33),  (8.35) and (8.37) 
we get for the center frequencies of the scaled wavelets: 

wm = 3 * 2-m A,, m E Z. (8.38) 

Synthesis. Consider the signal analysis and synthesis shown  in Figure 8.5. 
Mathematically, we have the following synthesis approach  using a dual (also 
dyadic) wavelet 4 ( t )  : 

cc cc 
~ ( t )  = c 2-4m W3C(b ,2m)  4(2-"(t - b ) )  db. (8.39) 

m=-m 

In  order to express the required dual wavelet 4(t) by t)(t), (8.39) is rearranged 
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as 

~ ( t )  = E 2-im/-00 W,(b ,  2m)4(2-m(t - b ) )  db 
m=--00 -cc 

= E 2-:m (W“ ( . , 2 rn ) ,4* (2F( t  - . ))) 
m=--00 

For the sum  in the  last row  of (8.40) 

c q*(2mw)  6(2mw) = 1 (8.41) 
m=-cc 

m=-cc 

If two positive  constants A and B with 0 < A 5 B < cc exist  such that 
cc 

A 5 c 1Q(2mw)12 5 B (8.43) 
m=-cc 

we achieve stability.  Therefore, (8.43) is referred to  as a stability  condition. 
A wavelet +(t) which satisfies (8.43) is called a dyadic wavelet. Note that 
because of (8.42), for the  dual dyadic wavelet, we have: 

1 
B -  

cc 1 

m=-cc 

(8.44) 

Thus, for * ( W )  according to (8.42) we have stability, provided that (8.43) is 
satisfied.  Note that  the dual wavelet is not necessarily unique [25]. One may 
find other  duals that also satisfy the  stability condition. 
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2- T**(-t/z") 
Wx(t,2") 

2 - 3 % ~ ( t / ~ )  I 
Figure 8.5. Octave-band  analysis and synthesis  filter  bank. 

Finally it will be  shown that if condition (8.43) holds the admissibility 
condition (8.2) is also satisfied. Dividing (8.43) by W and  integrating  the 
obtained expression over the interval (1,2) yields: 

Wit  h 

we obtain  the following result for the center term in (8.45): 

Thus 

Dividing (8.43)  by -W and  integrating over (-1, -2) gives 

A In2 5 Lcc dw 5 B ln2. 
W 

(8.46) 

(8.47) 

(8.48) 

(8.49) 

Thus  the admissibility condition (8.2) is satisfied in any case, and reconstruc- 
tion according to (8.24) is also possible. 
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8.4 Wavelet Series 

8.4.1 Dyadic Sampling 

In  this section, we consider the reconstruction from discrete values of the 
wavelet transform. The following dyadically arranged sampling  points are 
used: 

a, = 2,, b,, = a, n T = 2,nT, (8.50) 

This yields the values W ,  (b,,, a,) = W, (2,nT, 2,). Figure 8.6 shows the 
sampling  grid. 

Using the abbreviation 

(8.51) 

- - 2 - f  . $(2Trnt - nT),  

we may  write the wavelet analysis as 

The values {W, (2,nT, 2,), m, n E Z} form the representation of z ( t )  with 
respect to  the wavelet $(t)  and  the chosen grid. 

Of course, we cannot  assume that any  set lClmn(t), m, n E Z allows 
reconstruction of all signals z ( t )  E L2(R). For this a dual set t+&,,(t), m, n E Z 
must  exist,  and  both  sets  must  span L2(R). The  dual  set need not necessarily 
be  built from wavelets.  However, we are only interested  in the case where 
qmn(t) is derived as 

t+&,,(t) = 2 - 7  *t+&(2-Y - nT),  m, n E Z (8.53) 

from a dual wavelet t+&(t). If both  sets $mn(t)  and Gmn(t) with m, n E Z span 
the space L2(R), any z ( t )  E L2(R) may  be written  as 

Alternatively, we may  write z ( t )  as 

(8.54) 

(8.55) 
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...................................... ........*... .... m=-2 t . . ... .. . .  .* . .  .*. . .  ... . . * .  . .  . . .  .. . .  .. .... . . .  ... . . . . .  m=-l 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

log ~ 

WO ......."- m = O  
a ... ... ......................................................................................................... m =  1 

m = 2  . . . . . . . . . . . .  . . .  

b -  

Figure 8.6. Dyadic  sampling of t he  wavelet  transform. 

For a given  wavelet $(t) ,  the possibility of perfect reconstruction is depen- 
dent  on  the sampling interval T .  If T is  chosen  very small (oversampling), the 
values W, (2"nT, 2"), m, n E Z are highly redundant,  and reconstruction is 
very  easy. Then  the functions lClrnn(t), m,n E Z are linearly dependent,  and 
an infinite number of dual  sets qrnn(t) exists. The question of whether  a  dual 
set Gmn(t) exists at all can  be  answered by  checking two  frame  bounds' A 
and B.  It can  be shown that  the existence of a  dual set and  the completeness 
are  guaranteed if the  stability condition 

M M  

(8.56) 

with the  frame bounds 0 < A I B < CO is satisfied [35]. In the case of a 
tight  frame, A = B, perfect reconstruction  with Gmn(t) = lClrnn(t) is possible. 
This is also true if the samples W ,  (2"nT, 2") contain redundancy, that is, if 
the functions qmn(t), m, n E Z are linearly dependent.  The  tighter  the frame 
bounds are,  the smaller is the  reconstruction  error if the  reconstruction is 
carried  out according to 

If T is  chosen just large enough that  the samples W ,  (2"nT, 2"), m, n E Z 
contain  no  redundancy at all (critical  sampling),  the functions $mn(t), m, n E 
Z are linearly independent. If (8.56) is also satisfied with 0 < A 5 B < CO, 
the functions tjrnn(t), m, n E Z form a basis for L2 (R). Then  the following 
relation, which  is  known as  the biorthogonality  condition, holds: 

(8.58) 

Wavelets that satisfy (8.58) are called biorthogonal  wavelets. As a special 
case, we have the orthonormal  wavelets. They  are self-reciprocal and satisfy 

2The problem of calculating the frame  bounds will be  discussed at  the end of this section 
in detail. 
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the  orthonormality condition 

( $ m n , $ l k )  = &m1 b n k ,  m,n, 1, IC E Z. (8.59) 

Thus, in the  orthonormal case, the functions q!Imn(t), m, n E Z can  be used 
for both analysis and synthesis. Orthonormal  bases  always have the same 
frame  bounds (tight  frame), because, in that case, (8.56) is a special form of 
Parseval’s relation. 

8.4.2 Better Frequency Resolution - Decomposition of 
Octaves 

An octave-band analysis is often insufficient. Rather, we would prefer to 
decompose  every  octave  into M subbands in order to improve the frequency 
resolution by the  factor M .  

We here consider the case where the same  sampling rate is  used  for all M 
subbands of an octave. This  corresponds to a nesting of M dyadic wavelet 
analyses with the scaled wavelets 

q!I@)(t) = 2A q!I(2Xt), k = 0,1, .  . . , M  - 1. (8.60) 

Figure 8.7 shows the sampling grid of an analysis with three voices per octave. 
Sampling the wavelet transform  can  be  further generalized by choosing the 
sampling grid 

am = a p ,  b,, = am n T ,  m,n E Z (8.61) 

with an  arbitrary a0 > 1. This  corresponds to M nested wavelet analyses with 
the wavelets 

$ ( h ) ( t )  = a,$ $(a,$t)7 IC = 0 ~ 1 , .  . . , M  - 1. (8.62) 

For this general case we will list the formulae for the  frame bounds A and B 
in (8.56) as derived by Daubechies [35]. The conditions for the validity of the 
formulae are:3 

- 

cc 

(8.63) 

(8.64) 

and 

3By “ess inf” and “ess sup” we mean the essential  infimum and  supremum. 
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....................... ....................... ....................... . . . . . . . . . . .  
l o g - .  . . . . . . . . . .  . . . . . . . . . . . .  

b -  

Figure 8.7. Sampling of the wavelet  transform  with  three  voices  per  octave. 

with 

If (8.63) ~ (8.65) are satisfied for all wavelets  defined  in (8.62), the frame 
bounds A and B can  be  estimated  on  the basis of the  quantities 

Provided the sampling interval T is  chosen such that 

we finally have the following estimates for A and B: 

(8.67) 

(8.68) 

(8.69) 

(8.70) 

(8.71) 

(8.72) 
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8.5 The Discrete Wavelet  Transform (DWT) 

In  this section the idea of multiresolution  analysis and  the efficient realization 
of the discrete wavelet transform  based  on  multirate filter banks will be 
addressed. This  framework  has  mainly  been developed  by Meyer,  Mallat  and 
Daubechies for the  orthonormal case [104, 91,  90, 341. Since biorthogonal 
wavelets formally fit into  the same  framework [153, 361, the derivations will 
be given  for the more general biorthogonal case. 

8.5.1 Multiresolution Analysis 

In  the following we assume that  the  sets 

?)mn(t) = 2-f ?)(2-79 - n), 

?jmn(t) = 2-f ? j ( 2 - T  - n), 
m,n E Z (8.73) 

are bases for &(R) satisfying the biorthogonality condition (8.58). Note that 
T = 1 is  chosen  in order to simplify notation. We will mainly consider the 
representation (8.55) and  write  it as 

with 
d,(n) = ~ , f ( 2 " n , 2 " )  = (2, q,,) , m,n E Z. (8.75) 

Since a basis consists of linearly independent  functions, L 2 ( R )  may be 
understood as the direct sum of subspaces 

L2(R) = . . . @ W-1 €B WO @ W1 €B.. . (8.76) 

W, = span {?)(2-"t - n), n E Z} , m E Z. (8.77) 

Each  subspace W, covers a  certain  frequency  band. For the  subband signals 
we obtain from (8.74): 

with 

n=-m 

Every signal z ( t )  E L2(R) can  be  represented as 
00 

(8.78) 

(8.79) 
,=-cc 
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Now  we define the subspaces V,, m E Z as  the direct sum of Vm+l and 
Wm+1: 

V, = Vm+l CE Wrn+l. (8.80) 

Here we may  assume that  the subspaces V, contain lowpass signals and  that 
the  bandwidth of the signals contained in V, reduces  with increasing m. 

From (8.77), (8.76), and (8.80) we derive the following properties: 

(i) We have a nested  sequence of subspaces 

. . . c V,+l c v, c v,-l c . . . (8.81) 

(ii) Scaling of z(t)  by the  factor two ( x ( t )  + x(2 t ) )  makes the scaled signal 
z(2t) an element of the next  larger  subspace  and vice versa: 

(iii) If we form a sequence of functions x,(t) by projection of x ( t )  E L2(R) 
onto  the subspaces V,, this sequence converges towards x ( t ) :  

,+-m 
lim x,(t) = x( t ) ,  z ( t )  E L 2 ( R ) ,  z,(t) E V,. (8.83) 

Thus,  any signal may  be  approximated  with  arbitrary precision. 

Because of the scaling property (8.82) we may assume that  the subspaces 
V, are  spanned by scaled and time-shifted versions of a single function $(t): 

V, = span {+(2-,t - n) ,  n E Z} . (8.84) 

Thus,  the  subband signals z,(t) E V, are expressed as 

00 

zrn(t) = c c,(n) $mn(t)  (8.85) 
n=-m 

with 
$mn(t) = 2-%#j(2-,t - n). (8.86) 

The function +(t) is called a scaling  function. 

Orthonormal Wavelets. If the functions ~,n( t )  = 2-?~(2-"t-n),  m, n E 
Z form an  orthonormal basis for L z ( R ) ,  then L 2 ( R )  is decomposed  into an 
orthogonal  sum of subspaces: 

L 2 ( R )  = . . .$ W-1 $ WO €B W1 €B . . . 1 1 1 1  
(8.87) 
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In  this case (8.80) becomes an  orthogonal  decomposition: 

(8.88) 

If we assume 1 1 q 5 1 1  = 1, then  the functions 

$mn(t) = 2-?4(2-,t - n), m,n E Z, (8.89) 

form  orthonormal  bases for the spaces V,, m E Z. 

Signal Decomposition. From (8.80) we derive 

x, (t) = 2,+1 (t) + Y,+1 (t). (8.90) 

If we assume that one of the signals x,(t), for example zo(t), is known, this 
signal can  be successively decomposed  according to (8.90): 

The signals y1 ( t ) ,  yz(t), . . . contain the high-frequency  components of zo(t), 
z1 ( t ) ,  etc., so that  the decomposition is a successive  lowpass filtering accom- 
panied by separating  bandpass signals. Since the successive  lowpass filtering 
results in an increasing loss of detail  information,  and since these  details  are 
contained in y1 ( t ) ,  y2 ( t ) ,  . . . we also speak of a multiresolution analysis (MRA). 

Assuming a known sequence {co(n)} ,  the sequences {cm(.)} and {d,(n)} 
for m > 0 may also be derived directly according to  the scheme 

In  the next section we will discuss this very  efficient method in greater  detail. 

Example: Haar Wavelets. The Haar function is the simplest example 
of an  orthonormal wavelet: 

1 for 0 5 t < 0.5 

0 otherwise. 
-1 for 0.5 5 t < 1 
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~ , W ) ;  >t , '"I , +W-1) ; >t 
. . . . . . . . . .   . . .   . . .   . . .  . 

Figure 8.8. Haar  wavelet and scaling  function. 

The corresponding scaling function is 

1, for 0 5 t < 1 
0, otherwise. 

The functions +(t - n), n E Z span the subspace WO, and  the functions 
+( i t  - n), n E Z span WI. Furthermore, the functions $(t - n), n E Z span 
V0 and  the functions +( ft - n), n E Z span VI. The  orthogonality  among the 
basis functions + ( 2 - T  - n), m, n E Z and  the  orthogonality of the functions 
tj(2-Y - n), m,n E Z and  +(2-jt - n), j 2 m is obvious, see Figure 8.8. 

Example: Shannon Wavelets. The  Shannon wavelets are impulse re- 
sponses of ideal  bandpass filters: 

sin ;t 3n 
2 +(t) = 7 cos -t. 

In the frequency domain this is 

W J )  = { 1 for n 5 IwI 5 2n, 
0 otherwise. 

(8.91) 

(8.92) 

The scaling function that belongs to  the Shannon wavelet  is the impulse 
response of the ideal lowpass: 

3: 
@ ( W )  = { 1 for 0 5 IwI 5 n, 

0 otherwise. 

(8.93) 

(8.94) 

(8.95) 
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I 
l I 1 -  

-2n 2n 

1 

W 

-n n 

Figure 8.9. Subspaces of Shannon wavelets. 

The coefficients cm(n) ,  m,n E Z in (8.85) can  be  understood  as the sample 
values of the ideally lowpass-filtered signal.  Figure 8.9 illustrates the decom- 
position of the signal  space. 

The  Shannon wavelets  form an orthonormal basis for Lz(lR,). The  ortho- 
gonality between different scales is easily seen,  because the  spectra  do  not 
overlap. For the inner  product of translated versions of +(t) at  the same scale, 
we get 

00 

+(t - m)+*(t - n) = - @(w)@*(w)e-J'(m-n)wdw 
2.rr S" -" 

(8.96) 

by  using Parseval's  relation. The  orthogonality of translated wavelets at  the 
same scale is  shown  using a  similar  derivation. 

A drawback of the Shannon wavelets  is their  infinite support  and  the 
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poor time resolution due to  the slow  decay. On the  other  hand,  the frequency 
resolution is perfect. For the  Haar wavelets, we observed the  opposite behavior. 
They  had perfect time,  but  unsatisfactory  frequency resolution. 

8.5.2 Wavelet Analysis by Multirate Filtering 

Because of V0 = V1 @ W1 the functions $on@) = $(t - n) E VO, n E Z can 
be  written  as linear combinations of the basis functions for the spaces V1 and 
W1. With  the coefficients h o ( 2 l -  n) and hl(2l - n), l, n E Z the  approach is 

4on(t)  = C ho(2 l  - n) $lt(t) + h1 ( 2 ~  - n) $lt(t). (8.97) 
e 

Equation (8.97) is  known as  the decomposition  relation, for  which the following 
notation is  used as well: 

&i 4 ( 2 t  - n) = C h o ( 2 L  - n) $(t - l) + h1(2c - n) $(t - l). (8.98) 
e 

We  now consider a known sequence { co (n ) } ,  and we substitute (8.97) into 
(8.85) for m = 0. We get 

We see that  the sequences {crn+l( l )}  and {d,+l(l)} occur  with half the 
sampling rate of {crn(.)}. Altogether,  the  decomposition (8.100) is equivalent 
to a two-channel filter bank analysis with the analysis filters h0 (n) and h1 (n). 
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U 

Figure 8.10. Analysis  filter  bank for computing the DWT. 

If we assume that q,(t)  is a sufficiently good  approximation of ~ ( t ) ,  and 
if  we know the coefficients co(n),  we are  able  to  compute  the coefficients 
cm+1(n), &+l (n), m > 0, and  thus  the values of the wavelet transform 
using the discrete-time filter bank  depicted in Figure 8.10. This is the most 
efficient  way of computing the DWT of a signal. 

8.5.3 Wavelet Synthesis by Multirate  Filtering 

Let  us consider two sequences gO(n) and  g1(n), which  allow  us to express the 
functions $lo(t) = 2-1/2$(t/2) E V1 and  $lo(t) = 2-1/2$(t/2) E W1 as 
linear combinations of $on( t )  = $(t - n) E VO, n E Z in the form 

or equivalently as 

(8.102) 

Equations (8.101) and  (8.102), respectively, are referred to  as  the two-scale 
relation. For time-shifted functions the two-scale relation is 

(8.103) 



234 Chapter 8. Wavelet  Transform 

From (8.103), (8.78), (8.85) and (8.90) we derive 

The sequences gO(n) and  g1(n) may be  understood  as  the  impulse  responses 
of discrete-time filters, and (8.105) describes a discrete-time two-channel 
synthesis filter bank.  The filter bank is  shown  in Figure 8.11. 

8.5.4 The  Relationship  between  Filters  and Wavelets 

Let  us consider the decomposition relation (8.97), that is 
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Taking the inner product of (8.106) with &(t) and qle(t) yields 

Substituting (8.101) into (8.108) yields 

(8.108) 

(8.109) 

(8.110) 

(8.111) 

(8.112) 
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The conditions (8.112) are  nothing  but  the PR conditions for critically 
subsampled  two-channel filter banks,  formulated in the  time  domain, cf. 
Section 6.2. By z-transform of (8.112) we obtain 

2 = Go(z) Ho(z)  + Go(-z) Ho(-z) ,  

2 = Gl(z) HI(z) + GI(-z) HI(-z), 
0 = Go(z) Hl(z) + Go(-z) Hl(-z), 

0 = Gl(z) Ho(z )  + G1(-z) Ho(-z ) .  

(8.113) 

Orthonormal  Wavelets. If the  sets $mn(t) and ~ m n ( t ) ,  m, n E Z according 
to (8.51) and (8.89) are  orthonormal  bases for V, and W,, m E Z, (8.109) 
becomes 

h o w  - n) = @On, 41,), 
h1W - n) = @On, $1,). 

Substituting  the two-scale relation (8.103) into (8.114) yields 

(8.114) 

Observing (+On, + O k )  = dnk, we derive 

ho(n) = g;(%) Ho(z)  = G o ( z ) ,  

h1(n) = g;(%) t) Hl(2) = Gl(2). 
(8.116) 

Thus  equations (8.112) and (8.113) become 

n 

0 = Cg1(n)  go*(. - 21) 
n 

and 
2 = Go(.) G o ( z )  +Go(-.) Go( -z ) ,  

2 = G l ( z )   G ~ ( z )  + G~(-z)  GI(-z),  

0 = Go(z) G ~ ( z )  + Go(-z) GI(-z), 

0 = Gl(z) G o ( z )  + GI(-z) Go(-z). 

(8.117) 

(8.118) 
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These are  nothing  but  the  requirements for paraunitary two-channel filter 
banks,  as derived in Chapter 6. 

8.6 Wavelets  from Filter Banks 

8.6.1 General Procedure 

In  the previous sections we assumed that  the wavelets and scaling functions 
are given. Due to  the properties of the wavelet transform we were able to show 
the existence of sequences h0 (n) ,  h1 (n) ,  go (n) ,  and g1 (n),  which  allow  us to 
realize the  transform via a  multirate filter bank.  When  constructing wavelets 
and scaling functions one often adopts  the reverse strategy.  One chooses the 
coefficients of a PR two-channel filter bank in such a way that  the wavelets 
and scaling functions associated with  these filters have the desired properties. 

Scaling Function. The  starting point for constructing scaling functions is 
the first part of the two-scale relation (8.102): 

+(t) = c go(n) d5 - n). (8.119) 
n 

In  the following the Fourier transform of equation (8.119) is required, which, 
using 

+(2 t -n )  t) - @(-) e 2 , 1 W -jwn. 

2 2  
(8.120) 

is 

n 

equation (8.121) is 
1 ‘ W  W 

@ ( W )  = - Go(e3T)  Jz 

(8.121) 

(8.122) 

(8.123) 

Since the scaling function +(t) is supposed to be a lowpass impulse response, 
we may  introduce  the  normalization 

If we  now apply (8.119) and (8.123) K times, we obtain 

(8.124) 

(8.125) 
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Now  we let K + 00. If the  product in (8.125) converges  for K + CO to a 
continuous  function, it converges to 

c m *  

@ ( W )  = - Go(ejw/2k) ,  
l 

k=l Jz 
(8.126) 

because we have specified @(O)  = 1. Thus (8.119) allows  us to determine the 
scaling function recursively. When starting with 

1 for 0 5 t < 1, 
0 otherwise, (8.127) 

we obtain  the piecewise constant functions xi(t) by means of the recursion 

%+l ( t )  = -Jz c g o ( n )  xi (2t - n), (8.128) 
n 

which approaches the scaling function for i + CO. 
Figure 8.12 illustrates  the recursive calculation of the scaling function $(t). 

However, the convergence of the  product does  not  guarantee that  the  obtained 
scaling function is smooth.  Figures 8.13 and 8.14 show examples leading to 
smooth  and  fractal scaling functions, respectively. 

Wavelet. If the scaling function $(t) is known, $(t)  can  be calculated by 
using the second part of the two-scale relation (8.102): 

,$(t) = &1(n) Jz $(2t - n). (8.129) 
n 

It is obvious that a smooth $(t) results in a  smooth ,$(t), regardless of the 
coefficients g1(n ) ,  so that all concerns  regarding  smoothness are  related to  the 
lowpass go (n) . 
Summary of Construction Formulae. According to (8.126), the synthesis 
scaling function is related to  the synthesis lowpass as 

O 0 1  
@ ( W )  = n - Go(ejw/2k)  

k=l Jz 
For the synthesis wavelet we get from (8.129) and (8.130) 

!@(W) = - G1(ejwI2) - Go(e 
1 l W ) .  
Jz k=2  Jz 

(8.130) 

(8.131) 
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1 
Figure 8.12. Recursive  calculation of the scaling  function q5(t); the first  two  steps 
of the recursion  are  shown  (coefficients: {gO(n)} = ${a, 1, f}). 

The analysis scaling function $(t) and  the wavelet G(t) are related to  the 
time-reversed and complex conjugated analysis filters h:(-n) and h; (-n) in 
the same way as $(t) and ~ ( t )  are related to  go(.) and g1(n). Thus,  they may 
be given in  the frequency domain as 

(8.132) 

and 
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0 2 4 

0 

0 2 4 

0 E 0 2 t -  4 

1 I 
0 lb 0 2 4 

t -  

Figure 8.13. Recursive  calculation of the scaling  function 4(t)  (coefficients 
{go(n)}  = ${l 3 3 l}). 

2 t  M 
-2 O P L E I  0 2 4 0 2 

t -  
4 

Non-Linear Phase  Property of Orthonormal Wavelets. In  Chapter 6 
we have  shown that  paraunitary two-channel filter banks have non-linear 
phase  filters  in general. This  property is transferred  directly to  the scaling 
functions and wavelets constructed  with  these  filters.  Thus,  orthonormal 
wavelets  have non-linear phase in general.  Exceptions are  the  Haar  and 
Shannon wavelets. 
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8.6.2 Requirements to be Met  by the Coefficients 

We have  already shown that  to construct  biorthogonal  and  orthonormal 
scaling functions and wavelets the coefficients of PR two-channel filter banks 
are required. But, in order to satisfy (8.124), the coefficients must  be scaled 
appropriately.  The correct scaling for the lowpass can  be  found by integrating 
(8.119): 

00 

$(t) dt = L c g o ( n ) / O O  $(2t - n) d(2t).  (8.134) 
f i n  -00 

This yields c go(n) = h. (8.135) 
n 

By integrating  equation (8.129) we obtain 

and  with (8.124) and J$( t )  dt = 0 we conclude 

(8.137) 
n 

This  means that  the highpass filters in the two-channel filter bank  must  have 
zero mean in order to allow the  construction of wavelets. 

8.6.3 Partition of Unity 

In  order to enforce a lowpass characteristic of Go(z), it is  useful to require 

Go(-l) = 0 t) C ( - l ) n g o ( n )  = 0. (8.138) 
n 

As will be shown  in the following, (8.135),  (8.135), and (8.138) result in 

@(27rk) = { l  :;:. (8.139) 

In  the  time  domain,  this  property of the scaling function, which  is  known as 
the  partition of unity, is written 

M c $(t - n) = 1. (8.140) 
n=-m 
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= { f ( ~ k )  k even, 
k odd. 

For Ic = 0 ,1 ,2 ,3 ,4 ,  . . . we obtain 

k = 0 :  @ ( O )  = @ ( O )  = 1, 

k =  1 :  @(27r) = O . @ ( 7 r )  = o ,  
k =  2 :  @(47r) = 1  .@(27r) = o ,  
k = 3 :  @ ( 6 ~ )  = 0 . @ ( 3 ~ )  = 0, 

k = 4 :  @(87~) = 1 .@(4~) = 0, 

(8.141) 

(8.142) 

We may  proceed in a similar way  for the negative indices, and  it  turns  out 
that (8.139) holds. 0 

8.6.4 The Norm of Constructed Scaling  Functions  and 
Wavelets 

When the coefficients gO(n) belong to a  paraunitary filter bank, (8.124) 
directly leads to 

11411 = 1.  (8.143) 
We realize this by forming the inner product of (8.140) with &,(t) and by 
making  use of orthogonality: 

( 4 0 0 : 4 0 0 )  
@(0)=1 

Forming the inner product ($oo, $oo) by using (8.101) yields 

(8.144) 
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which  shows that 

1 1 + , 1 1  = 1 (8.146) 

for the norm of the wavelet $(t). Assuming Q(0) = a leads to 1 1 q 5 1 1  = 1 1 + 1 1  = a. 

In  the biorthogonal case the relationship between the norm of the coeffi- 
cients and  the norm of the scaling function is  much more complicated. 

8.6.5 Moments 

Multiresolution signal decompositions are often carried out  in order to  com- 
press signals, so that  the compaction  properties of such decompositions are 
of crucial importance. Most signals to  be compressed are of a lowpass nature 
and  can be well approximated locally  by  low-order polynomials. Therefore, it 
is  useful to  seek  wavelets with good approximation  properties for  low-order 
polynomials. As  we shall see, the approximation  properties of a multiresolution 
decomposition are intimately  related to  the number of vanishing wavelet 
moments. 

The  kth moment of a wavelet $(t)  is  given  by 

(8.147) 

Using the property (2.40) of the Fourier transform, the moments  can also be 
expressed as 

(8.148) 

Thus, if Q(w) has NQ zeros at W = 0, the wavelet has Nq, vanishing moments, 
that is 

00 

tk  $(t) dt = 0 for k = 0, 1 , .  . . , Nq, - 1. (8.149) 

Clearly, the inner product of an analysis wavelet q(t)  having NG vanishing 
moments  with a signal 

Nq -1 

x(t) = c a k  tk 
k=O 

is zero, and, consequently, all wavelet  coefficients are zero. Thus, polynomial 
signals of order Nq - 1 are solely represented by the lowpass component, that 
is, by the coefficients of the scaling function. 
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The number of vanishing moments is easily controlled when constructing 
wavelets from  filter  banks. In  order to see this, let us recall equation (8.133): 

NG is given  by the number of zeros of Hl(ej")  at W = 0, or, equivalently, 
by the number of zeros of H l ( z )  at z = 1. Note that according to (6.22), 
H1 (z )  is a modulated version of the synthesis lowpass Go(z),  so that we may 
alternatively  say that Nq is given  by the number of zeros of Go(z) at z = -1. 
Similarly, the number of vanishing moments of the synthesis wavelet  is equal 
to  the number of zeros of the analysis lowpass at z = -1. 

The discrete-time  filters  also have  vanishing moments and corresponding 
approximation  properties for discrete-time polynomial signals. For the  kth 
derivative of 

(e j " )  = C h1 (n) e-jwn (8.151) 
n 

we get 

(8.152) 

From this expression we see that if H l ( z )  has Nq zeros at z = 1, then hl(n) 
has NG vanishing moments in the discrete-time sense: 

E n e  hl(n) = o for IC = 0 , 1 , .  . . , N @  - 1.  (8.153) 

This means that sampled polynomial signals of order Nq - 1 are solely 
represented by the lowpass component. 

n 

8.6.6 Regularity 

In  Figures 8.13 and 8.14 we saw that different filters may  have  completely 
different convergence properties. Typically, one prefers smooth  functions r$(t), 
which should possibly have several continuous  derivatives. Daubechies  derived 
a test  that  can check the regularity and  thus  the convergence of the product 
in (8.125) [34]. Assuming that Go(.) has N zeros at z = -1, Go(.) can  be 
written  as 

1 + 2-1 N 

GO(.) = fi (7) S(z) .  (8.154) 

Note that N 2 1 because of (8.137). Further  note that S(l) = 1 because 
of (8.135). Pointwise  convergence of the functions zi(t) defined in (8.128) 
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towards  a  continuous function zoo@) = $(t) is guaranteed if 

sup IS(ej')l < (8.155) 

Clearly, if Go(z) has  no zero at z = -1, then (8.155) cannot  be satisfied 
because S(l) = 1. 

05w527r  

If N is larger than  the minimum  number that is required to satisfy (8.155), 
then  the function $(t) will also have continuous derivatives. Precisely, $(t) is 
m-times  continuously differentiable if 

(8.156) 

Regularity is  only associated with the lowpass filters gO(n) and ho(n), 
respectively. Given a continuous function $(t) ,  the function I+!I(t) according to 
(8.129) will be  continuous for any  sequence g I ( n ) .  

HSlder Regularity. Rioul  introduced  the  concept of Holder regularity, 
which can  be  expressed as follows: if a scaling function is m-times  continuously 
differentiable and  its  mth derivative is  Holder continuous of order a,  
then  its  regularity is T = m + a [125]. The Holder exponent a is the maximum 
a for  which 

I~'" '( t)  - + .)I c 171a vt,. (8.157) 

8.6.7 Wavelets with  Finite  Support 

If go(.) and g 1 ( n )  are FIR filters, then  the resulting scaling functions and 
wavelets  have finite support [34]. The proof  is straightforward.  One merely 
has to consider the  iteration (8.128) with the L coefficients go(O), . . . , g o ( L -  1) 
while assuming that x i ( t )  is restricted to  the interval [0, L - l]: 

L-l  

%+l ( t )  = Jz c g o ( n )  Xi(2t - n). (8.158) 
n=O 

Then, all recursively constructed functions are  restricted to 0 5 2t -n 5 L -  1. 
Since the convergence  is unique, xm(t)  = $(t) is restricted to [0, L - l] for 
any arbitrary zo(t). 

The  fact  that  the  support is  known can  be exploited to calculate the values 
of $(t) at  the times t,, = n2rn.  This,  again, is based  on the two-scale relation 
(8.119): 

$(t) = h c g o ( l )  $(2t - .e). (8.159) 
e 
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Let us assume that  the initial values $(n) are known.  By writing (8.159) as 

4 ( $ )  = -Jz Cgo( t )  $@ - 4, 

$($l = -Jz Cgo( t )  $(g -l), (8.160) 
e 

e 

we realize that we obtain  the  intermediate values at each iteration  step. 
However, so far we only  know the values $(O) = 0 and $(L)  = 0. The  initial 
values required  can  be  determined by exploiting the fact that  the initial values 
remain  unchanged  during the iteration  (8.160).  With 

m = [$P) , .  . . , $ (L  - l)]' (8.161) 

we get 
m = M . m  (8.162) 

according to (8.160), where the L - 1 X L - 1 matrix M is  given  by 

[M]ij := -Jz go(2i - j ) .  (8.163) 

Recalling (8.140) it becomes  obvious that we obtain  the  initial values by 
determining the right eigenvector m of M which  belongs to  the eigenvalue 1. 

Note. We conclude  from (8.135) and (8.138) that  the sum of the even 
coefficients equals the sum of the odd coefficients: 

(8.164) 

Since the columns of M contain  either all even coefficients go(2n)  or all 
odd coefficients go(2n + l), the sum of all elements of the columns of M 
is one. Thus, conditions (8.135) and (8.138) guarantee the existence of a left 
eigenvector [l, 1, . . . , l] with eigenvalue one. 
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and we see that  the eigenvalue 1 exists. The eigenvalue problem we have to 
solve  is  given  by 

8.7 Wavelet  Families 

[ E ]  (8.167) 

Various wavelet families are defined in the  literature. We will only consider 
a few of those  constructed  from filter banks. For further design methods  the 
reader is referred to [36,  1541. 

8.7.1 Design of Biorthogonal  Linear-Phase  Wavelets 

In  this section, we consider the design of linear-phase biorthogonal wavelets 
according to Cohen,  Daubechies  and  Feauveau [28]. We start  the discussion 
with the first equation in (8.113), which  is the PR condition for two-channel 
filter banks  without delay. We consider an overall delay of 7, that is 

Ho(z) Go(z) + Ho(-z) Go(-z) = 2 2 7 .  (8.168) 

On the  unit circle, this means 

H0 W )  Go (e  j'" + Ho(ej( '"  + "1) Go(ej( '"  + "1) = 2 e-j"J7. (8.169) 

In  order to yield linear-phase wavelets, both filter Ho(z) and Go(.) have to be 
linear-phase. Furthermore,  the filters need to satisfy the regularity condition 
as outlined in Section 8.6.6 in order to allow the  construction of continuous 
scaling functions and wavelets. 

When expressing the linear-phase property, two types of symmetry  have 
to be considered, depending  on  whether the filter length is  even or  odd. We 
will outline  these  properties for the filter Ho(z) and  start with  odd-length 
filters. The second filter Go ( z ) ,  which completes a perfect reconstruction  pair, 
has  the same type of symmetry. 

Odd-Length Filters. Odd-length linear-phase filters satisfy 

Ho(e j " )  = e-jwrh H;(COSW), (8.170) 

where the delay ~h is an  integer. Assuming that HA(cosw) has zeros at 
W = X ,  we may write 

H ; ( e j u )  = Jz (cos El2' ~ ( c o s w ) .  
2 

(8.171) 
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It is easily shown that G o ( e J W )  has  the same type of factorization, so that 

Go(ej"')  = e-jWTg h (cos E)" Q(cosw), (8.172) 
2 

where T = ~h + T ~ .  

Even-Length Filters. Symmetric  even-length filters can  be  expressed as 

H o ( e j " )  = e--ju(Th + cos - H; (cos W) ,  (8.173) 
W 

2 

and according to  the above considerations, we may write 

H o ( e j w )  = e-jw(Th + 3) (cos :)2~+1 p cos W 
2 ( 1, (8.174) 

where it is again  assumed that Ho(ejw) has l! zeros at W = 7r. Go(ej") then 
has a factorization of the form 

G o ( e j w )  = h e-j"(Tg + f )  (cos -)2L+1 Q(cosw). (8.175) 
w -  
2 

Filter Construction. Substituting  the  factorizations for Ho(ejw) and 
G o ( e j w )  into (8.169) yields 

(cos - ) 2 k   cos W) + (sin - ) 2 k  M ( -  cosw) = 1 (8.176) 
W  W 

2 2 

with 
M(COS W) = P(COS W) &(COS W)  (8.177) 

and lc = l! + 2 if the filter length is odd  and lc = + l+ 1 if it is even. This 
expression will  now be  reformulated by rewriting M(cosw)  as  a polynomial 
in (1 - cosw)/2 = sin2w/2, so that  M(cosw) := F(sin2w/2). We get 

(cos - ) 2 k  F(sin2 w/2) + (sin - ) 2 k   cos^ w/2) = 1, (8.178) 
W W 

2 2 

or equivalently, 
(1 - X)k F(X)  + Xk F(1 - X) = 1 (8.179) 

with X = sin2w/2. Hence, 

F(X) = (1 - X ) - k  - Xk (1 - X ) - k  F(1 - X). (8.180) 

Using Bezout's  theorem,  one  can show that  this condition is satisfied by a 
unique  polynomial F ( z )  with a degree of at most lc - 1 [28]. Based  on this 
property,  the polynomial F ( z )  of maximum  degree lc - 1 can  be  found by 
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expanding  the  right-hand side of (8.180) into  a  Taylor series where only the 
first k terms  are needed.  This gives 

(8.181) 

The general solution of higher  degree  can  be  written as 

k-l k + n - l  
(8.182) 

n=O 

where R(z)  is an  odd  polynomial.  Based  on this expression, filters can  be 
found by factorizing a given F(sin2w/2)  into  P(cosw)  and  Q(cosw). Given 
P(cosw)  and  Q(cosw) one easily finds Ho(ej") and Go(ej") from (8.170) - 
(8.175). 

Spline Wavelets. Spline wavelets based  on  odd-length filters are  constructed 
by  choosing R(z)  0 and 

(8.183) 

The corresponding analysis filter is 

Even-length filters are given  by 

and 

(8.185) 
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The scaling function 4(t)  constructed  from Go(z) according to (8.183) is a 
B-spline centered  around T ~ ,  and  the one  constructed  from Go(z) according 
to (8.185)  is a B-spline centered around T~ + i. 

Filters with Almost Equal  Length. In  the spline case, the  length of & ( z )  
is typically much higher than  the  length of Go(z).  In  order to design filters 
with  almost  equal  length,  one  groups the zeros of F ( z )  into real zeros and 
pairs of conjugate  complex zeros and rewrites F ( z )  as 

I J 

&'(X) = A ~ ( z  - xi) n ( z z  - 2?Ji{~j} z + Izjl). (8.187) 
i= 1 j=1 

Any regrouping into two polynomials yields a PR filter pair.  This allows  us to 
choose filters with  equal or almost  equal  length. For example, the 9-7 filters 
have  been  found this way [28]; they  are known  for their excellent coding 
performance in wavelet-based  image  compression [155, 1341. 

Examples. Table  8.1 shows  some examples of odd-length filters. While the 
coefficients of the spline filters (5-3 and 9-3) are dyadic  fractions,  those of 
the 9-7 filters constructed  from (8.187) are not even rational.  This  means 
an  implementation  advantage for the spline filters in real-time applications. 
However, the 9-7 filters have superior coding  performance. For illustration, 
Figures 8.15 and 8.16 show the analysis and synthesis scaling functions and 
wavelets generated  from  the 9-3 and 9-7 filters in Table 8.1. 

Table 8.1. 
Linear-phase  odd-length  biorthogonal wavelet filters. 

5-3  9-7  9-3 1 
n 4.go 

6 

8 

- 
4 .  h0 

-1 
2 
6 
2 

-1 

- 16 . go 
1 
2 
1 

16 ' h0 

3 
-6 

-16 
38 
90 
38 

-16 
-6 
3 

go 
-0.06453888265083 
-0.04068941758680 
0.41809227351029 
0.78848561689252 
0.41809227351029 

-0.04068941758680 
-0.06453888265083 

ho 
0.03782845543778 

-0.11062440401143 
0.37740285554759 
0.85269867833384 
0.37740285554759 

-0.02384946495431 

-0.11062440401143 
-0.02384946495431 
0.03782845543778 
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Figure 8.15. Scaling  functions and wavelets constructed  from the 9-3 filters. 
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Figure 8.16. Scaling  functions and wavelets constructed  from the 9-7 filters. 
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8.7.2 The Orthonormal Daubechies Wavelets 

Daubechies  designed a family of orthonormal wavelets with a maximal  number 
of vanishing  moments for a given support [34]. In  order to control the 
regularity, the following factorization of H0 (ejw) is considered: 

(8.188) 

Because of orthonormality,  the PR condition to be  met by the  prototype filter 

with 
~ ( c o s w )  = IP(ejw)12. 

Inserting (8.190) into (8.189) yields 

(8.191) 

(cos2 -)k ~ ( c o s w )  + (sin2 - ) k  ~ ( - c o s w )  = 1.  (8.192) 
W  W 

2 2 

Using the  same  arguments as in the  last section, (8.192) can also be  written 
as 

(cos2 E)' F(sin2 w/2) + (sin2 -1'  cos^ w/2) = 1, (8.193) 
W 

2 2 
or equivalently as 

(1 - X)k F(X)  + Xk F(1 - X) = 1 (8.194) 

with X = sin2 w/2. This is essentially the same condition that occurred in the 
biorthogonal case, but we  now have to satisfy F(sin2 w/2) 2 0 V W, because 
F(sin2 w / 2 )  = IP(eju)12. 

Daubechies  proposed to choose 

where R(z) is an  odd polynomial  such that F ( x )  2 0 for X E [0, l]. The 
family of Daubechies wavelets  is derived for R(x)  0 by spectral  factorization 
of F ( z )  into F ( z )  = P(x)P(x- ' ) .  For this,  the zeros of F ( x )  have to be 
computed  and  grouped  into zeros inside and outside the  unit circle. P(.) then 
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contains  all zeros inside the unit circle. This  factorization  results  in  minimum 
phase scaling functions. For filters & ( z )  with at least eight coefficients, 
more  symmetric  factorizations  are  also possible. The  magnitude frequency 
responses, however, are  the same as for the minimum phase case. 

Figure  8.17 shows  some  Daubechies wavelets, the corresponding scaling 
functions and  the frequency  responses of the filters. We observe that  the 
scaling functions and wavelets  become smoother  with  increasing filter length. 
For comparison, some  Daubechies  wavelets with  maximal  symmetry, known as 
symmlets, and  the corresponding scaling functions are depicted in Figure 8.18. 
The frequency  responses are  the same  as in Figure 8.17. Recall that with  a 
few exceptions (Haar  and  Shannon wavelets), perfect symmetry is impossible. 

8.7.3 Coiflets 

The  orthonormal Daubechies  wavelets  have a  maximum  number of vanishing 
wavelet moments for a given support. Vanishing moments of the scaling 
function have not been considered. The idea  behind the Coiflet wavelets is 
to  trade off some of the vanishing  wavelet moments to  the scaling function. 
This  can  be expressed as 

00 1, for Ic = 0 
0, forIc=1,2 ,..., l - 1  (8.196) 

and 
00 L tk  $(t) dt = 0 for Ic = 0,1, .  . . , l  - 1.  (8.197) 

Note that  the  0th moments of a scaling function is still fixed to one. Further 
note that  the same  parameter l, called the order of the coiflet, is  used for the 
wavelet and  the scaling function. 

The frequency domain  formulations of (8.196) and (8.197) are 

1, for Ic = 0 
0, forIc=1,2 ,..., l - 1  (8.198) 

and 

= O  for I c = O , l ,  ..., l - 1 .  (8.199) 

Condition  (8.198)  means for the filter Ho(ejw) that 
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Figure 8.18. Frequency  responses of the maximally  symmetric  Daubechies  filters 
and the corresponding  scaling  functions  and  wavelets (the indices  indicate  filter 
length; the frequency  responses are equal to those  in  Figure 8.17). 
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for some U(ej").  From (8.199) it follows that HO(ej") can 
the form (8.188) 

255 

also be  written  in 

For  even e, solutions to  this problem  can  be  formulated  as 

(8.201) 

[361 

f(ej"), (8.202) 

where f ( e j " )  has to  be found such that (8.189) is satisfied.  This  results in e/2 
quadratic  equations for C/2 unknowns [36]. 

8.8 The Wavelet  Transform  of Discrete-Time 
Signals 

In the previous sections we assumed  continuous-time signals and wavelets 
throughout.  It could be shown that sample values of the wavelet transform 
can  be  computed by means of a PR filter bank, provided the coefficients c ~ ( n )  
for representing an approximation xo(t) = C, co(n)$(t  - n) are known.  For 
the sequences dm(n) ,  m > 0, successively computed from co(n), we had 

drn(n) = W ,  (2"n, 2") = (X,$",) 

CQ (8.203) 
- - 2 - t  x ( t )  +*(2-"t - n) d t ,  L 

that is, the values dm(n)  were sample values of the wavelet transform of 
a  continuous-time  signal. A considerable  problem is the generation of the 
discrete-time  signal cg (n )  because  in  digital  signal processing the signals to 
be processed are usually obtained by filtering  continuous-time signals with  a 
standard anti-aliasing filter and sampling.  Only if the impulse response h(t)  of 
the prefilter is  chosen such that xo(t) = x( t )*h(t)  E VO, we obtain a "genuine" 
wavelet analysis. 

If  we wish to apply the theory  outlined  above to "ordinary"  discrete-time 
signals x(n) ,  it is helpful to discretize the integral  in (8.203): 

w,(2"n, 2") = 2 - t  c Z(k) ?)*(2-"/c - n). (8.204) 
k 
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Here, the values $ ~ ( 2 - ~ 5  - n),  m > 0, 5, n E Z are  to be  regarded  as  samples 
of a given  wavelet +(t) where the sampling  interval is T = 1. 

Translation  Invariance. We are mainly interested  in dyadically arranged 
values according to (8.204). In  this form the wavelet analysis is not  translation 
invariant  because a delayed input signal z (n  - l) leads to 

wz(2"(n - 2 - y ,  2m) = 2-? Ck z ( k  - l) 7)*(2-rnlc - n)  

= 2 - 7  Xi+) 7)*(2-Y - [n - 2-Tl) .  
(8.205) 

Only if l is a multiple of 2rn, we obtain shifted versions of the same wavelet 
coefficients. However, for many  applications  such as  pattern recognition or 
motion  estimation  in the wavelet domain it is desirable to achieve translation 
invariance. This problem  can be solved  by computing  all values 

w2(n,2rn) = 2 - t  C+) 7)*(2-rn(lc - n)) .  (8.206) 
k 

In  general, this is computationally very  expensive, but when  using the B trous 
algorithm  outlined  in the next  section, the computation is as efficient as  with 
the  DWT. 

8.8.1 The A Trous Algorithm 

A direct  evaluation of (8.204) and (8.206) is  very costly if the values of the 
wavelet transform  must  be  determined for several octaves  because the number 
of filter coefficients roughly doubles  from octave to octave.  Here, the so-called 
ci trous  algorithm allows efficient evaluation  with  respect to computing effort. 
This  algorithm  has been proposed by  Holschneider et  al. [73] and Dutilleux 
[48]. The relationship between the B trous  and  the Mallat  algorithm was 
derived  by Shensa [132]. 

We start with  dyadic  sampling  according to (8.204). The impulse response 
of the filter H l ( z )  is chosen to  be 

h1(n) = 2- i  7)*(-n/2). (8.207) 

With  this filter the  output values of the first stage of the filter bank  in 
Figure 8.19 are equal to those  according to (8.204), we have 

wz(2n,2) = @,(2n,2). 

The basic  idea of the B trous  algorithm is to evaluate  equation (8.204) 
not  exactly, but approximately. For this, we use an interpolation filter as 
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- 

Figure 8.19. Analysis  filter  bank. 

B2 (4 

Figure 8.20. Equivalent  arrangements. 

the analysis lowpass H 0 ( ~ ) . 4  This may for instance  be  a  Lagrange  halfband 
filter, but  in principle any  interpolation filter will do.  In  order to explain this 
approach  in more detail  let us take a look at  the flow graphs shown in Fig- 
ure 8.20, which both have the transfer  function + H1(z2)  [Ho(z)  + Ho(-z)] .  
The  transfer function & ( z )  is 

Bz(z)  = Ho(z)  H1(z2).   (8.208) 

If Ho(z) is an  interpolation  filter, (8.208) can  be  interpreted  as follows: first 
we insert zeros into the impulse  response h1 (n). By  convolving the upsampled 
impulse  response h i ( 2 n )  = hl(n),  h i ( 2 n  + 1) = 0 with the interpolation 
filter the values h i ( 2 n )  remain  unchanged, while the values h i ( 2 n  + 1) 
are  interpolated.  Thus, the even numbered values of the impulse  response 
b2(n) t) B~(z) are equal to  the even numbered  samples of 2-l$* (-n/4). 
The  interpolated  intermediate values are approximately the sample values of 
2- l$*( -n /4)  at  the odd  positions. Thus, we have 

b2(n) M 2-1 $*(-n/4). (8.209) 

Iteration of this  approach yields 

4The  term “A trous” means  “with gaps”, which refers to  the fact that an  interpolation 
lowpass filter is used. 
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For the impulse  responses b,(n) t) &(z)  we get 

The values ul,(2mn,2m) computed  with the filter bank in Figure 8.19 are 
given  by 

G, (2%, 2m)  m W, (2%, 2m). (8.212) 

Thus,  the scheme in Figure 8.19  yields an  approximate wavelet analysis. 

Oversampled  Wavelet Series. Although the coefficients of critically sam- 
pled representations  contain all information  on the analyzed signal, they suffer 
from the drawback that  the analysis is not translation  invariant.  The aim is 
now to compute an approximation of 

Wz(n,2m) = 2 - t  C z ( k )  @*(2-m(Ic - n) )  (8.213) 
k 

by means of the filters bm(n) t) B,(z) according to (8.210): 

&(n, 2m) = 2 - t  C z(k) b,(n - Ic) (8.214) 
k 

While the direct evaluation of these  formulae  means high computational  cost, 
the values 271,(n, 2m) may  be efficiently computed by  use of the filter bank 
in Figure 8.21. The filters H O ( . Z ~ ~ )  and H ~ ( . z ~ ~ ) ,  m > 1, can  be realized in 
polyphase structure.  The number of operations that have to be carried out 
is very  small so that such an evaluation is suitable for real-time applications 
also. 

In many cases the frequency resolution of a  pure  octave-band analysis is 
not sufficient.  An improved resolution can  be  obtained by implementing M 
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octave filter banks in parallel where each  bank covers  only an  Mth  part of the 
octaves. This  concept  has  been discussed in Section 8.4.2  for the continuous- 
time case. The  application to a discrete-time analysis based  on the B trous 
algorithm is straightforward. 

8.8.2 The  Relationship  between  the  Mallat  and A Trous 
Algorithms 

The discussion above  has shown that  the only  formal difference between the 
filters used  in the Mallat and B trous algorithms lies  in the  fact  that in 
the Mallat  algorithm  the  impulse  response of the filter H l ( z )  does not, in 
general, consist of sample values of the continuous-time wavelet. However, 
both concepts  can easily be reconciled. For this, let us consider a PR two- 
channel filter bank, where Ho(z)  is an  interpolation filter and  where H1 ( z )  
satisfies Hl(1) = 0. Based  on the filter bank we can  construct  the associated 
continuous-time scaling functions and wavelets. Since Ho(z)  is supposed to 
be  an  interpolation  filter, we have the following correspondence  between the 
impulse  response of the highpass  filter, hl(n),  and  the sample values of the 
wavelet $(t) ,  which  is iteratively  determined  from ho(n) and  hl(n): 

h1(n) = 2-i $*(-n/2). (8.215) 

For the filters B,(z) defined in (8.210) we have 

bm(n) = 2-? +*(-2-"n), 
m 

(8.216) 

and we derive 
211, (2%,  2m) = W, (2%, P ) .  (8.217) 

This  means that  the B trous  algorithm  computes  the wavelet transform exactly 
if Ho(z)  and Hl(z) belong to a PR two-channel filter bank while Ho(z)  is an 
interpolation filter. Then, all computed wavelet  coefficients W, (2%, 2m), m > 
0, can  be  interpreted as sample values of a  continuous wavelet transform pro- 
vided the  demand for regularity is met: wz(2%, 2m) = W ,  (2%, 2m), m > 0. 

In  order to determine filters that yield perfect wavelet analyses of discrete- 
time signals with 211,(2mlc, 2m) = wz(2%, 2m) we may  proceed as follows: we 
take  an  interpolation filter Ho(z)  and  compute a filter Go(z) such that 
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Note that (8.218) is just  an  underdetermined linear set of equations. From 
Ho(z) and Go(z) we can then calculate the filters H l ( z )  and G1 ( z )  according 
to equation (6.22) and can  construct  the wavelet via iteration.  The solution to 
(8.218) is not unique, so that one  can choose a wavelet  which has  the desired 
properties. 

Example. For the analysis lowpass we use a binary filter with 31 
coefficients as given in (8.181). The  length of the analysis highpass is restricted 
to 63 coefficients. The overall delay of the analysis-synthesis system is  chosen 
such that a linear-phase highpass is yielded. Figures  8.22(a) and  8.22(b) 
show the respective scaling function,  the wavelet, and  the sample values 
4(-n/2) = ho(n) and +(-n/2) = hl(n).  The frequency  responses of Ho(z) 
and H l ( z )  are  pictured in Figure 8.22(c). 

8.8.3 The Discrete-Time Morlet  Wavelet 

The Morlet wavelet  was introduced in Section 8.2. In  order to realize a wavelet 
analysis of discrete-time signals, the wavelet  is sampled in such  a way that 

hl(n) = b l ( n )  = e jwon ,-P2n2/2, (8.219) 

where b l ( n )  is  defined as in (8.210). In  order to obtain  a  “practically” 
admissible and  analytic wavelet we choose 

243 WO 7r/2. (8.220) 

In  the discrete-time case a further problem arises due to  the periodicity of 
the  spectra.  In  order to ensure that we achieve an  analytic wavelet we have 
to demand that 

!@(eJW) = O  for 7r < W 5 27r 

In  order to guarantee  this, at least approximately, the  parameters WO and p 
are chosen such that 

w o < n - 1 / 2 / 3  (8.221) 

is also satisfied [132]. 
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Figure 8.22. Example; (a) scaling  function 4(t)  and the sample  values 4(-nT/2) = 
ho(n); (b) wavelet +(t) and the sample  values +(-nT/2) = hl(n); (c)  frequency 
responses  of the analysis  filters. 
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8.9 DWT-Based  Image  Compression 

Image compression based  on the DWT is essentially equivalent to compression 
based  on  octave-band filter banks  as  outlined in Section 6.8. The  strategy is 
as follows: the image is first decomposed into a  set of subband signals by  using 
a  separable5 2-D filter bank.  Then,  the  subband samples are quantized and 
further  compressed. The filters, however, satisfy  certain  conditions  such as 
regularity and vanishing moments. 

To  give an example of the discrete wavelet transform of a 2-D signal, 

5Non-separable 2-D wavelets and filter banks  are  not  considered  throughout  this  book. 
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Figure 8.23. Separable 2-D discrete wavelet transform; (a) original; (b) DWT. 

Figure 8.23(a) shows an original image and Figure  8.23(b) shows its 2-D 
wavelet transform.  The squares in Figure  8.23(b)  indicate  spatial regions that 
belong to  the same region in Figure 8.23(a).  The arrows  indicate parent-child 
relationships. An important observation  can  be  made  from  Figure 8.23(b), 
which  is true for most natural images: if there is little low-frequency informa- 
tion in a spatial region, then  it is  likely that  there is also little high-frequency 
information in that region. Thus, if a parent pixel  is small, then  it is  likely that 
the belonging children are also small. This relationship can  be exploited in 
order to encode the  subband pixels in an efficient  way. The coding  technique 
is  known as embedded  zerotree wavelet coding [131, 1281. 

We will not  study  the embedded zerotree coding  here in great  detail,  but 
we will  give a rough idea of  how such a coder works.  Most importantly,  the 
quantization of the wavelet  coefficients  is carried out successively, using  a 
bitplane technique. One starts with  a coarse quantization  and refines it in 
every  subsequent step. Whenever  a tree of zeros (pixels quantized to zero 
with respect to a given threshold) is identified, it will be coded as  a so-called 
zerotree by using a single codeword. Starting with coarse quantization ensures 
that a high  number of zerotrees can  be identified at the beginning of the encod- 
ing process. During the refinement process, when the  quantization  step size  is 
successively reduced, the number of zerotrees successively decreases. Overall 
one  gets  an embedded bitstream where the most important information  (in 
terms of signal energy) is coded  first.  The  refinement process can  be  continued 
until  one reaches a desired precision. One of the most  interesting  features of 
this coding  technique is that  the  bitstream can  be truncated at any position, 
resulting in an almost  optimal  rate-distortion  behavior for any  bit  rate. 
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8.10 Wavelet-Based Denoising 

The  aim of denoising is to remove the noise w(n)  from a  signal 

y(n) = z(n) + w(n) .  (8.222) 

For example, w ( n )  may be a Gaussian  white noise process, which  is statisti- 
cally independent of z(n).  One  tries to remove the noise by applying a non- 
linear  operation to  the wavelet representation of y(n). The same  problem  has 
been addressed in Chapter 7.3 in the context of the  STFT, where it was  solved 
via  spectral  subtraction.  In  fact, wavelet-based  denoising  is  closely related to 
spectral  subtraction.  The  main difference between both approaches lies in the 
fact that  the wavelets  used for denoising are real-valued while the  STFT is 
complex. 

(4 (b) 

Figure 8.24. Thresholding  techniques; (a) hard; (b) soft  thresholding. 

The denoising procedure is as follows. First,  the signal y(n) is decomposed 
using an octave-band filter bank,  thus  performing a discrete wavelet transform. 
Then,  the wavelet coefficients are  manipulated in order to remove the noise 
component. Two approaches known as hard and soft thresholding have  been 
proposed for this purpose [43, 421. They use the following non-linearities: 

y(n), Y(n) > -E 

y(n),  y(n) < --E (hard) (8.223) 

07 Iy(n)l I -E 

Y(n) - -E, Y(n) > -E 

+-E, y(n) --E (soft) 

Iy(n)l I -E 

Figure 8.24 illustrates  both  techniques. 

(8.224) 
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Basically, the idea of thresholding is that ~ ( n )  can  be  represented via a few 
wavelet  coefficients,  while the noise has wideband  characteristics  and  spreads 
out  on all coefficients.  For example, this holds true if x (n )  is a lowpass signal, 
while w(n)  is white noise. The  thresholding  procedure  then  sets  the small 
wavelet  coefficients representing w(n)  to zero, while the large coefficients due 
to z(n) are only slightly affected. Thus, provided the threshold E is  chosen 
appropriately,  the signal @(n) reconstructed  from  the  manipulated wavelet 
coefficients  will contain much  less  noise than y(n) does. In  practice,  the 
problem is to choose E ,  because the  amount of noise  is usually not known 
a priori. If E is too small, the noise  will not  be efficiently removed. If it is too 
large,  the signal will be  distorted. 
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Chapter 9 

Non-Linear Tirne- 
Frequency Distributions 

In  Chapters 7 and 8 two  time-frequency  distributions were discussed: the 
spectrogram  and  the  scalogram.  Both  distributions  are  the result of linear 
filtering and subsequent  forming of the  squared  magnitude.  In  this  chapter 
time-frequency  distributions derived in a different manner will be considered. 
Contrary to spectrograms  and  scalograms,  their resolution is not  restricted 
by the  uncertainty principle. Although  these  methods  do  not yield positive 
distributions in all cases, they allow extremely  good insight into signal 
properties  within  certain applications. 

9.1 The Ambiguity  Function 

The goal of the following considerations is to describe the relationship between 
signals and  their  time  as well as frequency-shifted versions. We start by looking 
at time  and  frequency shifts separately. 

Time-Shifted Signals. The  distance d(z ,  2,) between an energy signal z(t)  
and  its time-shifted version z,(t) = z(t + T )  is related to  the autocorrelation 
function T ~ ~ ( T ) .  Here the following holds (cf. (1.38)): 

d(&, .lZ = 2 1 1 4 1 2  - 2 w % T ) } ,  (9-1) 

265 
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where 
CC 

T ~ , ( T )  E = (zT, z) = z*(t) z(t + .r)dt. L (9-2) 
As explained  in  Section 1.2, T ; ~ ( T )  can  also  be  understood as  the inverse 

Fourier transform of the energy  density  spectrum S,",(w) = IX(w)I2: 

In  applications  in which the signal z(t)  is transmitted  and  the  time shift T 
is to be  estimated from the received signal z(t + T ) ,  it is important  that z(t)  
and z(t + T) are  as dissimilar as possible for T # 0. That is, the  transmitted 
signal z(t)  should have an  autocorrelation  function that is as Dirac-shaped as 
possible. In the frequency  domain  this  means that  the energy  density  spectrum 
should  be as  constant  as possible. 

Frequency-Shifted Signals. Frequency-shifted versions of a signal z( t )  
are  often  produced  due to  the Doppler effect. If one  wants to estimate  such 
frequency shifts  in  order to determine the velocity of a moving object,  the dis- 
tance between a signal z(t)  and  its frequency-shifted version zv(t)  = z( t )e jut  
is  of crucial  importance. The distance is given by 

d ( z , z v )  = 2 llz112 - 2 x{(~ ,z>} .  (9.4) 

For the inner  product (zv, z) in (9.4) we  will henceforth use the abbreviation 
,ofz (v). We have 

= z*(t)  z(t) ejutdt 
J-W (9-5) 
W 

= sEz(t) ejVtdt with sEz(t) = lz(t)I2, 
J-CC 

where sEz((t) can  be viewed as  the  temporal energy density.' Comparing (9.5) 
with (9.3) shows a certain  resemblance of the formulae for .Fz(.) and pEz(v), 

'In (9.5) we have an inverse  Fourier  transform  in  which the usual prefactor 1/27r does 
not  occur  because we integrate  over t ,  not  over W .  This  peculiarity  could  be  avoided if Y 
was replaced by -v and (9.5) was  interpreted  as  a  forward  Fourier  transform. However, this 
would lead to  other inconveniences  in the remainder of this  chapter. 
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however, with the  time frequency  domains  being  exchanged. This becomes 
even more obvious if pF,(u) is stated  in  the frequency  domain: 

We see that pF,(u) can  be seen as  the  autocorrelation function of X ( w ) .  

Time and  Frequency-Shifted Signals. Let us consider the signals 

which are  time  and frequency  shifted versions of one another, centered  around 
z( t ) .  With  the  abbreviation 

for the so-called time-frequency  autocorrelation function or ambiguity func- 
tion’ we get 

Thus, the real part of Azz(v,  r) is related to  the distance between both signals. 

In non-abbreviated  form (9.8) is 

Azz(u, T) = S_,z*(t - 7 )  z(t + I) Gut dt. 
W 

2 2 
(9.10) 

Via  Parseval’s  relation we obtain  an expression for computing A,, (U, r) in the 
frequency domain 

X ( w  - -) X*(w + -) ejwT dw. (9.11) 
U U 

2  2 

‘We find different definitions of this  term  in  the  literature.  Some  authors  also  use  it for 
the  term IAZz(u,~)1’ [150]. 
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Example. We consider the Gaussian signal 

(9.12) 

which satisfies 1 1 2  1 1  = 1. Using the correspondence 

we obtain 
A,, (v, T) = e-- ;? e-&u2 (9.14) 

Thus, the ambiguity  function is a two-dimensional  Gaussian  function whose 
center is located at the origin of the  r-v plane. 

Properties of the Ambiguity Function. 

1. A time  shift of the input  signal  leads to a modulation of the ambiguity 
function  with  respect to  the frequency  shift v: 

This  relation  can easily be  derived  from (9.11) by exploiting the fact 
that x ( w )  = e-jwtoX(w).  

2. A modulation of the input  signal  leads to a modulation of the ambiguity 
function  with  respect to I-: 

z(t)  = eJwotz(t) + AEZ(V,T) = d W o T  A,,(~,T). (9.16) 

This is directly  derived from (9.10). 

3. The ambiguity  function  has its maximum at the origin, 

where E, is the signal energy. A modulation and/or  time shift of the 
signal z(t)  leads to a modulation of the ambiguity  function, but  the 
principal  position  in the  r-v plane is not affected. 

Radar Uncertainty Principle. The classical  problem  in radar is to find 
signals z(t)  that allow estimation of time  and  frequency  shifts  with high 
precision. Therefore, when designing an appropriate  signal z(t)  the expression 
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is considered, which contains  information  on the possible resolution of a given 
z ( t )  in the r-v plane. The ideal of having an impulse  located at the origin of 
the r-v plane  cannot  be realized since we have [l501 

m 
IAzz(v,r)I2 d r  dv = IA,,(O,0)I2 = E:. (9.18) 

That  is, if  we achieve that IA,,(v, .)I2 takes  on  the form of an impulse at the 
origin, it necessarily has to grow in other regions of the r-v plane  because of 
the limited maximal value IA,,(O, 0)12 = E:. For this reason, (9.18)  is also 
referred to as  the radar uncertainty principle. 

Cross Ambiguity Function. Finally we want to remark that, analogous 
to  the cross correlation, so-called cross  ambiguity functions are defined: 

W 

A?/Z(V, 7) = 1, z(t + f) y * ( t  - f) ejyt dt 
(9.19) 

X ( W  - ;) Y * ( w  + ;) eJw7 dw. 

9.2 The Wigner Distribution 

9.2.1 Definition  and Properties 

The Wigner  distribution is a tool for time-frequency analysis, which has  gained 
more and more  importance owing to many  extraordinary  characteristics. In 
order to highlight the motivation for the definition of the Wigner  distribution, 
we first look at the ambiguity  function. From A,, (v, r)  we obtain for v = 0 
the  temporal  autocorrelation function 

from which we derive the energy density spectrum by means of the Fourier 
transform: 

(9.21) 
W 

- - lmA, , (O,r )  e-iwT dr .  
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On the  other  hand, we get the  autocorrelation  function pFz (v) of the  spectrum 
X ( w )  from A z z ( v , 7 )  for 7 = 0: 

The  temporal  energy  density &(-L) is the Fourier  transform of &(v): 

(9.23) 

These  relationships  suggest defining a two-dimensional time-frequency  distri- 
bution W z z ( t ,  W )  as  the two-dimensional  Fourier  transform of A,,(v,  7): 

W22 ( t ,  W )  = - A z z ( v , r ) e  e U dr .  (9.24) -jvt - jwr  d 
2n -m -m 

The  time-frequency  distribution W,,( t ,  W )  is known as  the Wigner distribu- 
t i ~ n . ~  

The two-dimensional  Fourier  transform  in (9.24) can  also  be viewed as 
performing two subsequent  one-dimensional  Fourier  transforms  with  respect 
to r and v. The  transform with  respect to v yields the temporal  autocorrelation 
function4 

(9.25) 

(9.26) 

= X ( w  - g)  X * ( w  + 5). 

3Wigner  used W z z ( t , w )  for describing  phenomena of quantum mechanics [163], Ville 
introduced  it for signal  analysis later [156], so that one  also  speaks of the Wigner-Ville 
distribution. 

41f z( t )  was  assumed to  be  a  random process, E { C J ~ ~ ~ ( ~ , T ) }  would be  the  autocorrelation 
function of the process. 



9.2. The  Wigner  Distribution 271 

I Wignerdistribution I 

Temporal autocorrelation Temporal autocorrelation 

Figure 9.1. Relationship  between  ambiguity  function  and  Wigner  distribution. 

The function @,,(U, W) is so to say the temporal  autocorrelation  function of 
X(W). Altogether we obtain 

(9.27) 

with & , ( t , ~ )  according to (9.25) and @,,(Y,w) according to (9.26), in full: 

Figure 9.1 pictures  the relationships mentioned above. 

We speak of W,, (t,  W)  as a distribution  because  it is supposed to reflect 
the  distribution of the signal energy in the time-frequency plane. However, 
the Wigner  distribution  cannot  be  interpreted  pointwise  as a distribution of 
energy  because it  can also take on  negative values. Apart from this  restriction 
it  has all the  properties one would  wish of a time-frequency  distribution. The 
most important of these  properties will be briefly listed. Since the proofs can 
be  directly inferred from  equation (9.28) by exploiting the  characteristics of 
the Fourier transform,  they  are  omitted. 
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Some Properties of the Wigner Distribution: 

1. The Wigner  distribution of an  arbitrary signal z(t)  is always real, 

(9.29) 

2. By integrating over W we obtain  the  temporal energy density 

m 

s,,(t) E =L/ W,,(t,w) dw = lz(t)I2. (9.30) 
2n -m 

3. By integrating over t we obtain  the energy density spectrum 

m 

S,”,(w) = W,,(t,w) d t  = I X ( W ) ~ ~ .  (9.31) 
J -m 

4. Integrating over time  and frequency yields the signal energy: 

W W 

W,,(t,w) dw d t  = (9.32) 

5.  If a signal z(t)  is non-zero in only a certain  time  interval,  then  the 
Wigner  distribution is also restricted to this  time interval: 

z(t)  = 0 for t < tl and/or t > t 2  

U (9.33) 

W,,(t,w) = 0 for t < tl and/or t > t z .  

This  property  immediately follows from (9.28). 

6. If X ( w )  is non-zero  only in a certain  frequency region, then  the Wigner 
distribution is also restricted to this frequency region: 

X ( w )  = 0 for W < w1 and/or W > w2 

U (9.34) 

W,,(t,w) = 0 for W < w1 and/or W > w2. 
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7. A time shift of the signal leads to a time shift of the Wigner  distribution 
(cf. (9.25) and (9.27)): 

Z ( t )  = z(t - t o )  * WEE(t, W )  = W,,(t - t o ,  W ) .  (9.35) 

8. A modulation of the signal leads to a frequency shift of the Wigner 
distribution (cf. (9.26) and (9.27)): 

Z ( t )  = z(t)ejwot + Wgg( t ,w)  = W z z ( t , w  - W O ) .  (9.36) 

9. A simultaneous time shift and  modulation lead to a time  and  frequency 
shift of the Wigner  distribution: 

~ ( t )  = z(t - to)ejwOt ~ E s ( t , w )  = ~ , , ( t  - t o ,  W - W O ) .  (9.37) 

10. Time scaling leads to 

Signal Reconstruction. By an inverse Fourier transform of Wzz(t ,  W )  with 
respect to W we obtain  the function 

7- 
+zz(t,7-) = X * ( t  - -1 4 t  + 5)' 

2(.) = +zz(5,7-) = X*(O) X(.). (9.40) 

7- 

2 
(9.39) 

cf. (9.27). Along the line t = 7-/2 we get 
7- 

This  means that any z(t)  can  be perfectly reconstructed  from  its  Wigner 
distribution  except for the prefactor z*(O). 

Similarly, we obtain for the  spectrum 

X * ( u )  = Qzz(-,U) = X ( 0 )  X*@).  U 

2 
(9.41) 

Moyal's  Formula for Auto-Wigner Distributions. The  squared magni- 
tude of the inner product of two signals z(t)  and y(t) is  given  by the inner 
product of their  Wigner  distributions [107], [H]:  
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9.2.2 Examples 

Signals with Linear  Time-Frequency Dependency. The prime  example 
for demonstrating the excellent properties of the Wigner  distribution  in  time- 
frequency analysis is the so-called chirp  signal, a frequency  modulated (FM) 
signal whose instantaneous  frequency  linearly changes with  time: 

x( t )  = A ,j+Dt2 ejwOt. (9.43) 

We obtain 
W,,(t,w) = 2~ [AI2 S(W - WO - pt). (9.44) 

This  means that  the Wigner  distribution of a linearly  modulated  FM  signal 
shows the exact  instantaneous frequency. 

Gaussian Signal. We consider the signal 

wit h 

The Wigner  distribution W,,(t, W )  is 

W,, (t,  u) = 2 e-at' e-n W ' ,  
1 

and for WZZ (t ,  W )  we get 

(9.45) 

(9.46) 

(9.47) 

wZE((t, W )  = 2 e-"(t - to)' e-a [W - W O ] ' .  
1 

(9.48) 

Hence the Wigner  distribution of a modulated  Gaussian  signal is a two- 
dimensional Gaussian whose center is located at [to,  WO] whereas the ambiguity 
function is a modulated two-dimensional Gaussian  signal whose center is 
located at the origin of the 7-v plane (cf. (9.14),  (9.15) and (9.16)). 

Signals with  Positive Wigner Distribution. Only  signals of the form 

(9.49) 

have a positive Wigner  distribution [30]. The  Gaussian signal and  the chirp 
are to be regarded as special cases. 

For the Wigner  distribution of z ( t )  according to (9.49) we get 

(9.50) 

with W,,(t, W )  2 0 V t ,  W .  
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It can  be  regarded as a two-dimensional  Fourier  transform of the cross 
ambiguity  function AYz(v, 7). As can  easily  be verified, for arbitrary signals 
z ( t )  and y ( t )  we have 

W,, ( 4  W )  = W:, (t,  W ) .  (9.54) 

We  now consider a signal 

and  the corresponding  Wigner  distribution 

= W Z Z ( t , W )  + 2 WW,z( t ,41  + W & , W ) .  

(9.56) 

We see that  the Wigner  distribution of the sum of two signals  does  not 
equal the sum of their  respective  Wigner  distributions. The occurrence of 
cross-terms WVZ(t,u) complicates the  interpretation of the Wigner distri- 
bution of real-world signals. Size and location of the interference terms  are 
discussed in the following examples. 

Moyal's  Formula for Cross Wigner Distributions. For the inner 
product of two cross Wigner distributions we have [l81 

with (X, y) = J z ( t )  y * ( t )  dt.  

Example. We consider the sum of two complex exponentials 

For W,, (t,  W )  we get 

(9.58) 

W z z ( t ,  W )  = A: S(W - w I )  + A$ S(W - w Z )  
(9.59) 

+ 2 A 1 A z  C O S ( ( W ~  - W 1 ) t )  S(W - + ~ 2 ) )  

Figure 9.3 shows W,,(t ,w) and  illustrates the influence of the cross-term 
2 A 1 A 2  C O S ( ( W ~  - W 1 ) t )  S(W - ~ ( w I  + ~ 2 ) ) .  
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Figure 9.3. Wigner distribution of the sum of two sine waves. 

Example. In  this  example  the  sum of two modulated  Gaussian  signals is 
considered: 

4 t )  = 4 t )  + Y ( t >  (9.60) 

with 

z(t) = ,jw1(t - tl) ,-fa(t - 

and 

(9.61) 

(9.62) 

Figures 9.4 and 9.5 show examples of the Wigner distribution. We see that  the 
interference term lies between the two signal  terms, and  the modulation of the 
interference term takes  place  orthogonal to  the line  connecting the two signal 
terms.  This is different for the ambiguity  function,  also shown in  Figure 9.5. 
The center of the signal term is located at the origin, which results  from the 
fact that  the ambiguity  function is a time-frequency  autocorrelation  function. 
The interference terms concentrate  around 
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t t 
(a) (b) 

Figure 9.4. Wigner distribution of the sum of two modulated and time-shifted 
Gaussians; (a) tl = t z ,  w1 # wz; (b) tl # t z ,  w1 = w2. 

t Signal (real part): 

l m Wigner  distribution w z - - - - j - *  

Ambiguity function 

(c) 

Figure 9.5. Wigner distribution and ambiguity function of the sum of  two modu- 
lated and time-shifted Gaussians (tl # t z ,  w1 # wz).  
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9.2.4 Linear Operations 

Multiplication in  the  Time  Domain. We consider the signal 

Z ( t )  = z(t)  h(t) .  (9.63) 

For the Wigner  distribution we get 

W 

- 
- L 

The multiplication of $==(t, T) and $ h h ( t ,  r)  with respect to r can  be  replaced 
by a convolution in the frequency  domain: 

l 
271 WE ( t ,  W )  = - W,, ( t ,  W )  : W h h ( t ,  W )  

That is, a multiplication in the  time domain is equivalent to a convolution of 
the Wigner  distributions W,,(t,w) and W h h ( t ,  W )  with respect to W .  

Convolution  in the  Time  Domain. Convolving z(t)  and h( t ) ,  or equiv- 
alently, multiplying X ( W )  and H ( w ) ,  leads to a convolution of the Wigner 
distributions W,,(t,w) and W h h ( t ,  W )  with respect to t .  For 

Z ( t )  = x ( t )  * h( t )  (9.66) 

(9.67) 

= I W z z ( t ’ , ~ )  W’h(t - t ’ , ~ )  dt’. 

Pseudo-Wigner Distribution. A practical  problem  one  encounters when 
calculating the Wigner  distribution of an  arbitrary signal x ( t )  is that (9.28) 
can  only  be  evaluated for a time-limited z(t) .  Therefore, the concept of 
windowing  is introduced. For this, one usually does  not  apply a single window 
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h(t) to z( t ) ,  as in (9.65), but one centers h(t)  around  the respective time of 
analysis: 

M 

z*(t - 7) x( t  + -) h ( ~ )  e-jwT dT. 
7 

2 2 
(9.68) 

Of course, the time-frequency  distribution  according to (9.68) corresponds 
only approximately to  the Wigner  distribution of the original signal. Therefore 
one  speaks of a pseudo-  Wigner  distribution [26]. 

Using the  notation 

M 

h(r)  &(t, r) e-jwT d r  (9.69) 

it is obvious that  the pseudo-Wigner  distribution  can  be calculated from 
W,, ( t ,  W) as 

WArW)(t, W )  = 2?rWzz(t, W )  * H ( w )  
1 

(9.70) 

with H ( w )  t) h@). This means that  the pseudo-Wigner  distribution is a 
smoothed version of the Wigner  distribution. 

9.3 General  Time-Frequency Distributions 

The previous section showed that  the Wigner  distribution is a perfect time- 
frequency analysis instrument  as  long  as  there is a linear relationship between 
instantaneous  frequency  and  time. For general signals, the Wigner  distribution 
takes on  negative values as well and  cannot  be  interpreted  as a “true” density 
function. A remedy is the  introduction of additional  two-dimensional  smooth- 
ing kernels, which guarantee for instance that  the time-frequency  distribution 
is positive for all signals. Unfortunately, depending  on the  smoothing kernel, 
other desired properties  may get lost. To illustrate  this, we will consider several 
shift-invariant and affine-invariant time-frequency  distributions. 
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9.3.1 Shift-Invariant  Time-Frequency Distributions 

Cohen  introduced a general class of time-frequency  distributions of the form 
~ 9 1  

T Z Z ( t ,  W )  = - /// ej'(u - t ,  g(v, r )  X* (U - -) ~ ( u  + -) e-JWT dv du dr.  
r r .  

2T 2 2 
(9.71) 

This class of distributions is also known as Cohen's class. Since the kernel 
g(v, r )  in (9.71) is independent of t and W ,  all time-frequency  distributions of 
Cohen's class are shift-invariant. That  is, 

By choosing g ( v ,  T) all possible shift-invariant time-frequency  distributions 
can  be  generated.  Depending  on  the  application,  one  can choose a kernel that 
yields the required properties. 

If we carry  out  the  integration over u in (9.71), we get 

T,,(t,w) = - g ( u , r )  AZZ(v,r) eCjyt eCjWT du dr .  ss (9.73) 
271 

This  means that  the time-frequency  distributions of Cohen's class are com- 
puted  as two-dimensional Fourier transforms of two-dimensionally windowed 
ambiguity functions. From (9.73) we derive the Wigner  distribution for 
g(v , r )  = I. For g(v , r )  = h(r)  we obtain  the pseudo-Wigner  distribution. 
The  product 

M(v,  .) = g(v, .) A&, .) (9.74) 

is  known as  the generalized ambiguity  function. 

Multiplying Azz(v , r )  with g(v,r) in (9.73) can also be  expressed as  the 
convolution of W,, (t,  W )  with the Fourier transform of the kernel: 

with 
G(t, W )  = - // g(v, r )  ,-jut e-jWT dv dr.  (9.76) 

1 
2T 
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That  is, all time-frequency  distributions of Cohen’s class can  be  computed 
by means of a convolution of the Wigner  distribution  with a two-dimensional 
impulse  response G(t ,  W ) .  

In general the  purpose of the kernel g(v, T )  is to suppress the interference 
terms of the ambiguity function which are  located far  from the origin of the 
T-Y plane (see Figure 9.5); this  again leads to reduced interference terms 
in the time-frequency  distribution T,,(t,w). Equation (9.75) shows that  the 
reduction of the interference terms involves “smoothing” and  thus  results in 
a  reduction of time-frequency resolution. 

Depending  on the  type of kernel, some of the desired properties of the 
time-frequency  distribution are preserved while others get lost. For example, 
if one  wants to preserve the  characteristic 

(9.77) 

the kernel must satisfy the condition 

g(u,O) = 1. (9.78) 

We realize this by substituting (9.73) into (9.77) and  integrating over dw,  dr ,  
du. Correspondingly, the kernel must satisfy the condition 

in order to preserve the  property 

(9.80) 

A real distribution, that is 

is obtained if the kernel satisfies the condition 

g(Y,T) = g*(-V, - T ) .  (9.82) 

Finally it  shall  be  noted  that  although (9.73) gives a straightforward  inter- 
pretation of Cohen’s class, the  implementation of (9.71) is more  advantageous. 
For this, we first integrate over Y in (9.71). With 

(9.83) 
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Convolution 
40 with r(4,r) 

Fouricr transform 
T, (44 

Figure 9.6. Generation  of  a  general time-frequency distribution of Cohen’s class. 

we obtain 

T,,(t, W )  = // T(U - t ,  r )  z*(u - -) z(u + -) ,-JUT du dr.  (9.84) 7- 7 ’  

2 2 

Figure 9.6 shows the corresponding  implementation. 

9.3.2 Examples of  Shift-Invariant  Time-Frequency 
Distributions 

Spectrogram. The best known example of a shift-invariant  time-frequency 
distribution is the spectrogram,  described  in  detail  in  Chapter 7. An interest- 
ing  relationship between the spectrogram and  the Wigner distribution  can  be 
established [26]. In order to explain this,  the  short-time  Fourier  transform is 
expressed  in the form 

F z ( t , w )  = z(t‘) h*(t - t’) ,-jut‘ dt’. 
CC 

(9.85) 
J-CC 

Then the spectrogram is 

Alternatively,  with the  abbreviation 

X&’) = X@’) h*(t - t’), (9.87) 

S,, ( W )  = l X t ( 4 I 2  . (9.88) 
(9.85) can  be  written as 

Furthermore,  the  energy  density lXt(w)12 can  be  computed from the Wigner 
distribution W,,,, (t’, W )  according to (9.31): 

(9.89) 
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Observing (9.35) and (9.65), we finally obtain from  (9.89): 

Sx(t,w) = 1 27F //Wxx(t',w') W h h ( t  - t',w -W') dt'  dw' 
(9.90) 

1 

= 2 Wzz(t,w) * *  W h h ( t , W ) .  
27F 

Thus  the  spectrogram  results  from  the  convolution of Wzz(t ,  W )  with the 
Wigner  distribution of the impulse  response h@). Therefore, the  spectrogram 
belongs to Cohen's class. The kernel g(v, r )  in (9.73) is the ambiguity function 
of the impulse  response h(t) (cf. (9.75)): 

Although the  spectrogram  has  the  properties (9.81) and (9.72), the resolution 
in the time-frequency  plane is restricted in such a way (uncertainty principle) 
that (9.77) and (9.80) cannot  be satisfied. This becomes immediately  obvious 
when we think of the  spectrogram of a time-limited signal (see also Figure 
9.2). 

Separable Smoothing Kernels. Using separable  smoothing kernels 

d v ,  = G 1  ( 4  Q2 (.l, (9.92) 

means that smoothing  along  the  time  and  frequency axis is carried out 
separately. This becomes obvious in (9.75), which  becomes 

1 
21r 

1 
21r 

Tzz(t, W )  = - G(t, W )  * * wzz(t, W )  

(9.93) 

= - g 1 ( t )  * [ Gz(w) * wzz(t, W )  ] 

where 

G ( ~ , w )  = g 1 ( t )  GZ(W) ,  g 1 ( t )  W GI(w),  G ( w )  gz ( t ) .  (9.94) 

From (9.83) and (9.84) we derive the following formula  for  the time-frequency 
distribution, which can  be  implemented efficiently: 

Txx(t1w) = / [/ Z*(U - 5) Z(U + 5) g l ( u  - t )  du g 2 ( T )  ,-jwT dT. 1 7 7 

(9.95) 
Time-frequency  distributions which are  generated by means of a convolution 
of a Wigner  distribution  with  separable  impulse  responses  can also be  un- 
derstood  as  temporally  smoothed  pseudo-Wigner  distributions.  The window 
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gZ(T) in (9.95) plays the role of h ( ~ )  in (9.68). Temporal  smoothing is achieved 
by filtering with g1 ( t ) .  

An often used  smoothing kernel (especially in speech analysis) is the 
Gaussian 

g ( v , T )  = - e -a2u2/4 e-p2~2/4,  f f ,p  E R, f f ,p  > 0. (9.96) 
2 

Thus we derive the  distribution 

r r 
2 2 

z*(u - -) z(u + -) du dT. 

(9.97) 
For the two-dimensional  impulse  response G(t ,  U )  we have 

with 
g1(t) = ; e 1 $/a2 (9.99) 

and 
Gz(w) = - e 1 - w 2 / p  

P 
(9.100) 

It can  be  shown that for arbitrary signals a positive distribution is obtained 
if [75] 

ffp 2 1.  (9.101) 

For aP = 1, T,, ( t , ~ )  is equivalent to a spectrogram  with  Gaussian 
window.  For crp > 1, T i ~ a u s B ) ( t , ~ )  is  even more  smoothed than a spectrogram. 

Since T,, ( t ,  W )  for aP 2 1 can  be  computed much more easily and more 
efficiently via a spectrogram,  computing  with  the  smoothed  pseudo-Wigner 
distribution is interesting  only for the case 

(Gauss)  

(Gauss) 

f fp  < 1.  (9.102) 

The choice of (Y and p is dependent  on the signal in question. In  order to 
give a hint, consider a signal z( t )  consisting of the  sum of two  modulated 
time-shifted Gaussians. It is obvious that smoothing  should  be carried out 
towards the direction of the  modulation of the cross term (compare  Figures 9.4 
and 9.5). Although the  modulation may  occur in any  direction, we look at 
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Examples of Time-Frequency Distributions of Cohen's Class. In 
the  literature we find many  proposals of shift-invariant time-frequency dis- 
tributions. A survey is presented in [72] for instance.  In  the following, three 
examples will  briefly be  mentioned. 

Rihaczek distribution. The Rihaczek  distribution is  defined as [l241 

T , ( f ) ( t , w )  = x * ( t )   x ( t  + r )  e-jwT d r  S (9.103) 

= x * ( t )  X ( W )  ejwt. 

This  type of distribution is of enticing simplicity, but  it is not real-valued in 
general. 

Choi- Williarns Distribution. For the Choi-Williams distribution  the fol- 
lowing product kernel is  used [24]: 

g(v, = - W ( 4 7 W ,  g > 0. (9.104) 

We see that g(v, 0) = 1 and g(0, r )  = 1 are satisfied so that  the Choi-Williams 
distribution  has  the  properties (9.77) and (9.80). 

The  quantity g in (9.104) may  be  understood  as a free parameter. If 
a  small g is chosen, the kernel concentrates  around  the origin of the r-v 
plane, except for the r and  the v axis. Thus we get a generalized ambiguity 
function M(v,  r )  = g(v, r )  A,,(v, r)  with  reduced interference terms,  and  the 
corresponding  time-frequency  distribution  has  reduced interference terms  as 
well. From (9.71),  (9.83), and (9.84) we get 

T g W )  ( t ,  W )  = e-r2a(U - t12/T2~*(u - -) ~ ( u +  -) e-J'JT du dr.  
7- r '  
2  2 

(9.105) 

Zhao-Atlas-Marks Distribution. Zhao, Atlas and Marks [l681 suggested 
the kernel 

This yields the  distribution 

(9.106) 
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9.3.3 Affine-Invariant  Time-Frequency Distributions 

Affine smoothing is an  alternative to regular smoothing of the Wigner dis- 
tribution (Cohen’s class). A time-frequency  distribution that belongs to  the 
affine class is invariant  with respect to time shift and scaling: 

Any time-frequency  distribution that satisfies (9.108) can  be  computed  from 
the Wigner  distribution by means of an affine transform [54], [126]: 

T,,(t,W) = - K(W(t‘ - ~ ) , w ’ / w )  W z z ( t ‘ , W ’ )  dt’ h‘. 
2n ‘ s s  (9.109) 

This  can  be  understood  as  correlating  the  Wigner  distribution  with kernel K 
along the  time axis. By varying W the kernel is scaled. 

Since (9.108) and (9.72) do  not  exclude  each other,  there exist other  time- 
frequency  distributions besides the Wigner  distribution which belong to  the 
shift-invariant Cohen class as well as to  the affine class. These are, for instance, 
all time-frequency  distributions that originate  from a product kernel, such as 
the Choi-Williams distribution. 

Scalogram. An example of the affine class is the scalogram, that is, the 
squared  magnitude of the wavelet transform of a signal: 

2 

with 

where 

Thus, from (9.112) we derive 

I W , ( ~ , U ) ~ ~  = L / / W $ , $  2n (-,a.‘) t’ - b Wzz(t‘,w‘) dt’ h’. 

(9.110) 

(9.111) 

(9.112) 

(9.113) 

(9.114) 
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The  substitutions b = t and a = wo/w finally yield 

(9.115) 
= - I W $ , $  1 (%(P - t ) ,  :U’) W,,(~’ ,W’)  dt’ h’. 

2n 

The resolution of the scalogram  is, just like that of the  spectrogram, limited 
by the  uncertainty principle. 

9.3.4 Discrete-Time Calculation of Time-Frequency 
Distributions 

If  we wish to calculate the Wigner  distribution or some other time-frequency 
distribution  on a computer we are forced to sample our signal and  the  trans- 
form kernel and to replace all integrals by sums. If the signal and  the kernel are 
bandlimited and if the sampling rate is far  above the Nyquist rate for both 
signal and kernel, we do  not face a substantial problem. However, in some 
cases, such as  the Choi-Williams distribution,  sampling  the kernel already 
poses a problem.  On the  other  hand,  the  test signal may  be discrete-time 
right away, so that discrete-time definitions of time-frequency  distributions 
are required in any case. 

Discrete-Time Wigner Distribution [26]. The discrete-time  Wigner 
distribution is  defined as 

(9.116) 
m 

Here, equation (9.116) is the discrete version of equation (9.28), which, using 
the  substitution r’ = 3-12, can  be  written as 

W 

X* (t - r‘) z ( t  + r’) e-i2wr‘ dr’. (9.117) 

As we know, discrete-time signals have a periodic spectrum, so that one 
could expect the Wigner  distribution of a discrete-time signal to have a 
periodic spectrum also. We have the following property: while the signal z(n) 
has a spectrum X ( e j w )  t) z(n) with  period 2n, the period of the discrete- 
time  Wigner  distribution is only n. Thus, 

W,, (n, ejw> = W,, (n, ejw + ), k E Z .  (9.118) 
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The reason for this is subsampling by the  factor two  with respect to T .  In 
order to avoid aliasing effects in the Wigner  distribution,  one  has to take  care 
that  the bandlimited signal z(t)  is sampled  with the  rate 

f a  2 4 f m a z  (9.119) 

and  not  with f a  2 2 f m a z ,  where 

X ( w )  = 0 for IwI > 27~ f m a z .  (9.120) 

Because of the different periodicity of X ( e j w )  and Wzz(n,ejw) it is not 
possible to transfer all properties of the continuous-time  Wigner  distribution 
to  the discrete-time Wigner  distribution. A detailed discussion of the  topic 
can  be  found in [26], Part 11. 

General Discrete-Time Time-Frequency Distributions. Analogous 
to (9.84) and (9.116), a general discrete-time time-frequency  distribution of 
Cohen’s class is  defined as 

M N  

Tzz(n, k) = 2 c c p( [ ,  m) 2 * ( C  + n - m) 2 ( C  + n + m) e-j47rkmlL. 
m=-Me=-N 

(9.121) 
Here we have  already  taken  into  account that in practical  applications  one 
would only consider discrete frequencies 2 ~ k / L ,  where L is the DFT length. 

Basically we could  imagine the  term p(C,m) in (9.121) to be a 2M + 1 X 

2 N  + 1 matrix which contains  sample values of the function ~(u, 7) in (9.84). 
However,  for kernels that  are  not  bandlimited, sampling  causes a problem. 
For example, for the discrete-time Choi-Williams distribution we therefore 
use the  matrix 

with 
N 

e-uk2/4m2, n = -N, . . . , N ,  m = -M,.  . . , M .  (9.123) 
h=-N 

The normalization C,  p(n, m)  = 1 in (9.122) is necessary in order to preserve 
the  properties [l11 

CT, (FW)(n ,k )  = IX(k)12 = IX($W”)12 (9.124) 
n 
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9.4 The Wigner-Ville Spectrum 

So far  the signals analyzed  have  been  regarded as  deterministic.  Contrary to 
the previous considerations, z( t )  is henceforth defined as a stochastic process. 
We may view the  deterministic analyses considered so far  as referring to single 
sample functions of a stochastic process. In order to gain  information on 
the  stochastic process we define the so-called Wigner-Vdle spectrum as  the 
expected value of the Wigner  distribution: 

with 
~ z z ( t + - , t - - ) = E { 4 z z ( t , r ) } = E { ~ * ( t - ~ ) ~ ( t + - ) }  r r r r (9.127) 

2 2   2 -  

This  means that  the  temporal correlation function (t,  r )  is replaced by its 
expected value, which  is the  autocorrelation function rzz (t + 5,  t - 5) of the 
process z(t) .  

The  properties of the Wigner-Ville spectrum  are basically the same as 
those of the Wigner  distribution.  But by forming the expected value it 
generally contains fewer negative values than  the Wigner  distribution of a 
single sample  function. 

The Wigner-Ville spectrum is of special interest when analyzing non- 
stationary or cyclo-stationary processes because  here the  usual  terms, such 
as power spectral density, do  not give any  information  on the  temporal 
distribution of power or energy. In order to illustrate  this,  the Wigner- 
Ville spectrum will be discussed for various processes in connection  with the 
standard  characterizations. 

Stationary Processes. For stationary processes the  autocorrelation func- 
tion only  depends  on r, and  the Wigner-Ville spectrum becomes the power 
spectral density: 

W 

w,,(t,w) = S,,(w) = (9.128) 

if z(t)  is stationary. 
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Processes with  Finite Energy. If we assume that  the process z(t)  has 
finite energy, an average  energy density spectrum can  be derived from the 
Wigner-Ville spectrum  as 

rca 

For the mean  energy we then have 

E, = E {lm lz(t)I2 d t }  = 1 SW w z z ( t , w )  dw dt. (9.131) 
--m 27r -m 

Non-Stationary Processes with Infinite Energy. For non-stationary 
processes with infinite energy the power spectral density is not defined. 
However, a mean power density is  given  by 

(9.132) 

Cyclo-Stationary Processes. For cyclo-stationary processes it is  sufficient 
to integrate over one  period T in order to derive the mean power density: 

(9.133) 

Example. As a simple  example of a cyclo-stationary process, we consider 
the signal 

W 

z(t)  = c d ( i )  g(t  - iT). (9.134) 
a=-cc 

Here, g ( t )  is the impulse  response of a filter that is excited with  statistically 
independent data d ( i ) ,  i E Z. The process d ( i )  is assumed to be  zero-mean 
and  stationary.  The signal z(t)  can  be viewed as  the complex  envelope of a 
real bandpass signal. 

Now  we consider the  autocorrelation function of the process z(t) .  We 
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obtain 

r,,(t + 7, t )  = E { x * ( t ) x ( t  + T ) }  

W W  

= c c E { d * ( i ) d ( j ) }  g*(t  - iT) g( t  - jT  + T )  

i = - ~  j=-W 
W 

= c$ c g*(t  - iT) g( t  - iT + T ) .  

2 = - W  

(9.135) 
As (9.135) shows, the  autocorrelation function depends  on t and T ,  and in 
general the process ~ ( t )  is not  stationary. Nevertheless, it is cyclo-stationary, 
because the  statistical  properties  repeat periodically: 

r z z ( t + T , t ) = r z z ( t + T + e T , t + e T ) ,  e E Z .  (9.136) 

Typically, one chooses the filter g ( t )  such that  its  autocorrelation function 
r: (T )  satisfies the first Nyquist condition: 

= { 0 otherwise. 
1 for m = 0, (9.137) 

Commonly  used filters are  the so-called raised cosine filters, which are 
designed as follows.  For the energy density S,”,(w) t) r:(t) we take 

1 1 for IwTl/n 5 1 - r ,  

s,”,(w) = :[I + c o s [ g ( w ~ / r  - (1 - r ) ) ] ]  for 1 - r 5 l w ~ ~ / r  5 1 + r ,  

0 for IwTl/n 2 1 + r .  
(9.138) 

Here, r is  known as  the roll-off factor, which can  be chosen in the region 
0 5 r 5 1. For r = 0 we get the ideal lowpass. For P > 0 the energy density 
decreases in cosine form. 

From (9.138) we derive 

(9.139) 

As we see, for r > 0, r g ( t )  is a windowed  version of the impulse  response of 
the ideal lowpass. Because of the  equidistant zeros of the si-function, condition 
(9.137) is satisfied for arbitrary roll-off factors. 
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With 
(9.140) 

the required  impulse  response g ( t )  can  be  derived  from (9.138) by means of 
an inverse Fourier  transform: 

(4rtlT) cos(nt(1 + r)/T) + sin(nt(1- r)/T) 
g ( t )  = nt [l - ( 4 ~ t / T ) ~ ]  

(9.141) 

where 

g(0) = - 1 + P ( -  - 1) , T l (  = 4 ,  
(9.142) 

Figure 9.9 shows three examples of autocorrelation  functions  with  period 
T and  the corresponding Wigner-Ville spectra. We observe that for large 
roll-off factors there  are considerable  fluctuations  in power in the course of a 
period.  When stating  the mean power density  in the classical way according 
to (9.133) these effects are  not visible (cf. Figure 9-10). 

As can  be seen in  Figure 9.9, the fluctuations of power decrease  with 
vanishing roll-off factor.  In the limit,  the ideal lowpass is approached (T = 0), 
and  the process ~ ( t )  becomes wide-sense stationary.  In  order to show this,  the 
autocorrelation  function T,, (t+.r, t )  is written  as  the inverse Fourier  transform 
of a convolution of G*( -w)  and G(w) :  

e'j(W ~ W'). ~ ' jWkT h/ $.Wtd 
W .  

(9.143) 
Here the summation is to be  performed over the complex exponentials only. 
Thus, by using 

we achieve 

(9.144) 

(9.145) 
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r =  1 

0 ‘ 0  

r = 0.5 A 

r = 0.1 /l 

‘T ‘ T  

‘0 

Figure 9.9. Periodic autocorrelation functions and  Wigner-Ville spectra (raised 
cosine  filter  design with various  roll-off factors T ) .  

Integrating over W yields 

T,, (t + 7, t )  = 

(9.146) 

If G ( w )  is bandlimited to x / T ,  only the  term for k = 0 remains, and  the 
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Figure 9.10. Mean autocorrelation functions = so r=,=,(t + 7, t)dt and 
mean power spectral density ( r  = 0.5). 

T 

(9.147) 

This shows that choosing g ( t )  to be  the ideal lowpass with  bandwidth 7r/T 
yields a Nyquist  system in which z(t)  is a wide-sense stationary process. 
However, if  we consider realizable systems we must  assume a cyclo-stationary 
process. 

Stationarity within a realizable framework  can  be  obtained by introducing 
a delay of half a sampling  period for the  imaginary  part of the signal. An 
example of such a modulation  scheme is the well-known  offset phase shift 
keying. The modified signal reads 

W 

d( t )  = c R{d(i)} g( t  - iT) + j9{d(i)} g( t  - iT - T / 2 ) .  (9.148) 
I = -  W 

Assuming that 

(9.149) 
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we have 

1 "  
TZtZ' (t + 7, t )  = 5ui c g*(t - iT)  g(t - iT + 7) 

%=-m 

l o o  T T + 50: c g * ( t - i T - - ) g ( t - i T + T - - )  
2 2 

%=-m 

- l o o  T .T $ c g*(t - i-) g ( t  + 7- - 2-) - 
2  2 

%=-m 
(9.150) 

for the  autocorrelation function. According to (9.146) this  can  be  written  as 

T,',' (t + 7, t )  = 

We see that only the  term for k = 0 remains if G(w) is bandlimited to 2lr/T, 
which  is the case for the raised cosine filters. The  autocorrelation function 
then is 

Tzlzr ( t  + 7, t )  = U d  Z 1  - T g g ( T ) .  E 
T 

(9.152) 

Hence the  autocorrelation function T,I,I (t+7-, t )  and  the mean  autocorrelation 
function are identical. Correspondingly, the Wigner-Ville spectrum equals the 
mean power spectral density. 

If we regard z'(t) as  the complex  envelope of a real bandpass process 
xBP(t), then we cannot  conclude  from the wide-sense stationarity of z'(t) 
the  stationarity of zBp(t): for this to be  true,  the  autocorrelation functions 
T,,,, ( t  + T,  t )  and rzrzr ( t  + T,  t )  would have to be identical and would have 
to be  dependent  only  on 7- (cf. Section 2.5). 
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Preface 
A central goal in signal analysis is to  extract information  from signals that  are 
related to real-world phenomena.  Examples are  the analysis of speech, images, 
and signals in medical  or  geophysical  applications.  One  reason for analyzing 
such signals is to achieve better  understanding of the underlying physical 
phenomena.  Another is to find compact  representations of signals which 
allow compact  storage  or efficient transmission of signals through real-world 
environments. The  methods of analyzing signals are wide spread  and  range 
from classical Fourier analysis to various types of linear time-frequency trans- 
forms  and  model-based and non-linear approaches.  This book concentrates  on 
transforms,  but also gives a brief introduction to linear estimation  theory  and 
related signal analysis methods.  The  text is self-contained for readers with 
some background in system  theory  and  digital signal processing, as typically 
gained in undergraduate courses in electrical and computer engineering. 

The first five chapters of this book cover the classical concepts of signal 
representation, including integral  and discrete transforms.  Chapter 1 contains 
an  introduction to signals and signal spaces. It explains the basic tools 
for  classifying signals and describing their  properties.  Chapter 2 gives an 
introduction to integral signal representation.  Examples  are  the Fourier, 
Hartley  and Hilbert transforms.  Chapter 3 discusses the concepts  and tools 
for discrete signal representation.  Examples of discrete transforms  are given 
in Chapter 4. Some of the  latter  are  studied comprehensively, while others  are 
only briefly introduced, to a level required in the  later  chapters.  Chapter 5 is 
dedicated to  the processing of stochastic processes using discrete transforms 
and  model-based  approaches. It explains the Karhunen-Lobve transform  and 
the whitening  transform, gives an  introduction to linear estimation  theory 
and  optimal filtering, and discusses methods of estimating  autocorrelation 
sequences and power spectra. 

The final four chapters of this book are dedicated to transforms that 
provide  time-frequency signal representations.  In  Chapter 6, multirate filter 
banks are considered. They  form the discrete-time variant of time-frequency 
transforms.  The  chapter gives an  introduction to  the field and provides an 
overview of filter design methods.  The classical method of time-frequency 
analysis is the  short-time Fourier transform, which  is discussed in Chapter 7. 
This  transform was introduced by Gabor in 1946 and is  used  in many appli- 
cations, especially in the form of spectrograms.  The  most  prominent  example 
of linear transforms  with  time-frequency localization is the wavelet transform. 
This  transform  attracts researchers from  almost  any field of science, because 

xi 
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it  has many useful features: a time-frequency resolution that is matched to 
many real-world phenomena, a multiscale representation,  and a very  efficient 
implementation  based  on  multirate filter banks.  Chapter 8 discusses the 
continuous wavelet transform,  the discrete wavelet transform,  and  the wavelet 
transform of discrete-time signals. Finally, Chapter  9 is dedicated to quadratic 
time-frequency analysis tools like the Wigner  distribution,  the  distributions 
of Cohen’s class, and  the Wigner-Ville spectrum. 

The  history of this book is relatively long. It  started in 1992  when 
I produced the first lecture  notes for courses on signal theory  and linear 
time-frequency analysis at the Hamburg University of Technology, Germany. 
Parts of the  material were included in a thesis (“Habilitationsschrift”) that I 
submitted in 1994. In 1996, the  text was published as a textbook  on Signal 
Theory in German.  This  book  appeared in a series on  Information Technology, 
edited by Prof.  Norbert J. Fliege and published by B.G.  Teubner,  Stuttgart, 
Germany. It was Professor Fliege who encouraged me to write the book, and I 
would  like to  thank him  for that  and for his support  throughout  many years. 
The present book is mainly a translation of the original German. However, I 
have  rearranged  some  parts,  expanded some of the  chapters,  and  shortened 
others in order to obtain a more  homogeneous  and self-contained text. During 
the various stages,  from  the first lecture  notes, over the  German  manuscript  to 
the present book,  many  people  helped me  by proofreading  and  commenting  on 
the  text. Marcus  Benthin,  Georg  Dickmann,  Frank  Filbir,  Sabine  Hohmann, 
Martin Schonle, Frank Seide, Ursula Seifert, and  Jens Wohlers read  portions 
of the  German  manuscript.  Their  feedback significantly enhanced the quality 
of the  manuscript. My sister,  Inge  Mertins-Obbelode, translated  the  text 
from  German  into  English  and also proofread the new material  that was not 
included in the  German book. Tanja  Karp  and  Jorg Kliewer  went through  the 
chapters  on filter banks  and wavelets, respectively, in the English  manuscript 
and made  many helpful suggestions. Ian  Burnett went through a complete 
draft of the present text  and made  many suggestions that helped to improve 
the  presentation. I would  like to  thank  them all. Without  their effort and 
enthusiasm this  project would not  have  been realizable. 

Alfred Mertins 
Wollongong,  December  1998 
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Lifting, 160 

maximum-delay,  178 
zero-delay,  177 

Linear  estimation (see Estimation) 
Linear  optimal filters, 124-132 
Linear  prediction, 126-130 
Linear  subspace, 48 
Linear-phase  wavelets, 247 
LOT (see Lapped  orthogonal  transforms) 

Low-delay filter banks,  174 

Mallat  algorithm, 259 
Markov  process,  first-order, 109 
Matched-filter  condition, 156 
Maximum-delay lifting, 178 
MDFT filter bank, 172 
Metric,  metric  space,  3 
Minimum  mean  square  error  estimation 

(MMSE), 116-123 
MLT (see Modulated  lapped  transform) 

MMSE  estimation (see Minimum  mean 
square  error  estimator) 

Modulated filter banks, 170ff. 
Modulated  lapped  transform,  181 
Modulation  matrix,  152, 154 
Moments, 243, 244 
Moments of a  random  variable,  12 
Moore-Penrose  pseudoinverse,  64, 66-68 
Morlet  wavelet, 215 

discrete-time, 260 
Moyal’s formula  for 

auto-Wigner  distributions, 273 
cross-Wigner distributions, 276 

MPEG, 95, 174, 192 
MRA (see Multiresolution  analysis) 
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Multiresolution  analysis, 227 

Noise reduction, 208 
Non-stationary  process,  13, 292 
Norm,  normed  space, 2, 3 
Normal  equations 

of linear  prediction,  128 
of orthogonal  projection,  63 

Nullspace,  68, 69 
Nyquist  condition,  151, 294 

Octave-band  analysis, 211,  225 
Optimal filters, 124-132 
Orthogonal  projection,  50, 60 
Orthogonal  series  expansions, 49 
Orthogonal  sum of subspaces, 49 
Orthogonality  principle,  117 
Orthonormal basis, 49 
Orthonormal wavelets, 224 
Orthonormality,  49, 225 
Oversampled  cosine-modulated filter 

banks,  183 
Oversampled DFT filter banks,  172 

Paraconjugation, 79 
Parameter  estimation (see Estimation) 

Paraunitary filter banks 
M-channel,  168 
two-channel,  155, 237 

Parseval’s  relation 
for  discrete  representations,  51,  53 
for the Fourier transform, 28 
general, 25 

Parseval’s  theorem,  28,  81 
Partition of unity, 241 
pdf (see Probability  density  function) 
Perfect  reconstruction,  143,  149,  150, 

165,  167 
Periodogram, 135-140 
Phase delay, 42 
Pitch, 202 
Polyphase  decomposition, 147ff. 

type-l, 147 
type-2,  147 
type-3,  148 

Polyphase matrix 
M-channel filter bank, 166 
two-channel filter bank,  154 

Power  signal, 2 
Power spectral  density 

estimation of, 134-142 
for  continuous-time  random  pro- 

cesses,  15 
for  discrete-time  random  processes, 

16 
Power-complementary filters, 156 
PR (see Perfect  reconstruction) 
PR condition 

two-channel filter banks, 148ff. 
Pre-envelope, 38 
Prediction, 126-130 
Prediction  error  filter, 130 
Probability  density  function, 11 
Probability,  axioms of, 11 
Product kernel, 289 
Pseudo-QMF  banks, 184 
Pseudo-Wigner distribution, 279 
Pseudoinverse (see Moore-Penrose  pseu- 

doinverse) 

QCLS (see Quadratic-constrained  least- 

QMF (see Quadrature  mirror filters) 
QR  decomposition,  64,  73 
Quadratic-constrained  least-squares, 176 
Quadrature  component, 38 
Quadrature  mirror filters, 149 

squares) 

Radar  uncertainty principle, 268,  269 
Radix-2 FFT, 85-88,  90 
Radix-4 FFT, 90,  91 
Raised  cosine  filter, 294 
Random  process, 1 O f f .  

cyclo-stationary,  14 
non-stationary,  13 
stationary,  13 
transmission  through  linear  sys- 

tems, 20 
wide-sense  stationary,  14 

Random  variable, 10 
Reciprocal  basis,  58, 59 
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Reciprocal kernel, 22,  23 
Region of convergence (ROC), 76 
Regularity, 244, 245, 247, 252 
Representation, 48 
Rihaczek distribution, 288 
Roll-off factor. 294 

Scaling function, 228, 237 
Scalogram, 215, 265, 289 
Schur algorithm, 131 
Schwarz inequality,  6 
Self-reciprocal kernels, 24 
Series expansions, 47 

general, 56 
orthogonal, 49 

Shannon wavelet, 230, 240 
Shape  adaptive image decomposition, 

193, 194 
Shape  adaptive wavelet transform, 193, 

194 
Shift-invariance, 281 
Short-time Fourier transform, 196ff., 216 

discrete-time  signals, 205 
perfect reconstruction, 204 
realizations using filter banks, 206 
reconstruction, 202 
reconstruction  via series expansion, 

204 
spectral  summation, 206 

Signal estimation, 113 
Signal spaces, lff. 
Signal-to-noise ratio, 207 
Singular value decomposition, 64, 67 
Smoothing kernel, 280 

separable, 284 
Soft thresholding, 263 
Span, 48 
Spectral  estimation, 134-142 
Spectral factorization,  151 
Spectral  subtraction, 207 
Spectral  summation, 206 
Spectrogram, 201, 215, 265, 275, 283 
Speech analysis, 202 
Spline wavelets, 249 
Split-radix FFT, 91, 92 
Split-radix FHT, 97 

Stability  condition, 221, 224 
Stationary process, 13 
STFT (see Short-time Fourier transform) 

Stochastic process (see Random process) 

Subband coding, 188 
Subsampling (see Downsampling) 
Subspace, 48 
Sum of subspaces, 48 
Symmetric bandpass, 40 
Symmetric reflection, 190 
Symmlets, 253 
Synthesis window, 202 

Temporal  autocorrelation  function, 269- 
271 

Terz analysis, 226 
Thresholding 

hard, 263 
soft, 263 

Tight  frame, 225 
Time resolution, 199, 213, 286 
Time-frequency analysis, 196, 211, 269 
Time-frequency autocorrelation func- 

tion, 267 
Time-frequency distributions, 265ff. 

affine-invariant, 289 
Choi-Williams, 288-291 
Cohen’s class, 281ff. 
general, 280 
Rihaczek, 288 
shift-invariant, 281ff. 
Zhao-Atlas-Marks, 288 

Time-frequency localization, 211, 216 
Time-frequency plane, 196, 198 
Time-frequency resolution, 198, 213 
Time-frequency window, 198, 213 
Time-scale analysis, 211, 214 
Toeplitz,  17 
Transform  coding, 95 
Translation  invariance, 214, 256 
Transmultiplexers, 195 
Tridiagonal matrix, 95 
Twiddle  factors,  86, 92 
Two-scale relation, 233, 237 
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Unbiasedness 
for deterministic  parameters, 113 
for random  parameters, 122 
of autocorrelation estimates, 133, 

136 
of spectral  estimates, 136, 138, 140 

Uncertainty  principle, 200,  265 
radar, 268,  269 

Unitary  matrix, 65, 67, 70, 73, 105, 111 
Upsampling, 143, 144 

Vanishing moments, 243,  244 
Variance, 13 

Walsh functions, 56 
Walsh-Hadamard transform, 100 
Wavelet families, 247ff. 
Wavelet series, 223 
Wavelet transform, 210ff. 

analysis by multirate filtering, 232 
B trous  algorithm, 256ff. 
biorthogonal, 224 
construction  formulae, 238 
continuous-time signals, 210 
critical  sampling, 224 
Daubechies wavelets, 252 
denoising, 263 
discrete (DWT), 197, 227ff. 
discrete-time signals, 255 
dual wavelet, 223 
dyadic, 219ff. 
dyadic  sampling, 223ff. 
finite support, 245 
frame bounds, 224 
Haar wavelet, 229 
integral  reconstruction, 217ff. 
linear  phase, 247 
Mallat algorithm, 259 
Morlet wavelet, 260 
orthonormal, 224, 228, 236 
oversampling, 224,  258 
partition of unity, 241 
regularity, 244,  245 
semi-discrete  reconstruction, 217ff. 
series expansion, 223ff. 
Shannon wavelet, 230 

stability condition, 224 
synthesis by multirate filtering, 233 
tight  frame, 225 
time-scale analysis, 214 
translation invariance, 256 

Welch method, 139, 140 
White noise process 

bandlimited, 19 
continuous-time, 18 
discrete-time, 19 

Whitening  transforms, 111, 112, 130 
Wide-sense stationary processes, 14 
Wiener  filters, 124 
Wiener-Hopf equation, 124 
Wiener-Khintchine theorem, 15 
Wigner distribution, 269ff. 

cross, 275 
discrete-time, 290 
linear  operations, 279 
Moyal’s formula, 273, 276 
properties, 272 
pseudo-, 279 

Wigner-Ville spectrum, 292ff. 
Windowed signal, 197 
Windows 

Bartlett window, 133-135, 138, 141 
Blackman window, 140, 141 
Hamming window, 140, 141 
Hanning window, 140, 141 

Yule-Walker equations, 128, 141 

Zero padding, 137 
Zero-delay lifting, 177 
Zhao-Atlas-Marks distribution, 288 
%Transform, 75, 77-80 


