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Series Introduction

Many textbooks have been written on control engineering, describing
new techniques for controlling systems, or new and better ways of
mathematically formulating existing methods to solve the ever-
increasing complex problems faced by practicing engineers. However,
few of these books fully address the applications aspects of control en-
gineering. It is the intention of this new series to redress this situa-
tion.

The series will stress applications issues, and not just the
mathematics of control engineering. It will provide texts that present
not only both new and well-established techniques, but also detailed
examples of the application of these methods to the solution of real-
world problems. The authors will be drawn from both the academic
world and the relevant applications sectors.

There are already many exciting examples of the application of
control techniques in the established fields of electrical, mechanical
(including aerospace), and chemical engineering. We have only to look
around in today's highly automated society to see the use of advanced
robotics techniques in the manufacturing industries; the use of auto-
mated control and navigation systems in air and surface transport
systems; the increasing use of intelligent control systems in the many
artifacts available to the domestic consumer market; and the reliable
supply of water, gas, and electrical power to the domestic consumer
and to industry. However, there are currently many challenging prob-
lems that could benefit from wider exposure to the applicability of con-
trol methodologies, and the systematic systems-oriented basis inher-
ent in the application of control techniques.

This series presents books that draw on expertise from both the
academic world and the applications domains, and will be useful not
only as academically recommended course texts but also as handbooks
for practitioners in many applications domains. Sliding Mode Control
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SERIES INTRODUCTION

in Engineering is another outstanding entry to Dekker's Control Engi-
neering series.

Neil Munro
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Preface

Many physical systems naturally require the use of discontinuous terms in
their dynamics. This is, for instance, the case of mechanical systems with
friction. This fact was recognized and advantageously exploited since the
very beginning of the 20th century for the regulation of a large variety of
dynamical systems. The keystone of this new approach was the theory
of differential equations with discontinuous right-hand sides pioneered by
academic groups of the former Soviet Union.

On this basis, discontinuous feedback control strategies appeared in the
middle of the 20th century under the name of theory of variable-structure
systems. Within this viewpoint, the control inputs typically take values
from a discrete set, such as the extreme limits of a relay, or from a limited
collection of prespecified feedback control functions. The switching logic is
designed in such a way that a contracting property dominates the closed-
loop dynamics of the system thus leading to a stabilization on a switching
manifold, which induces desirable trajectories. Based on these principles,
one of the most popular techniques was created, developed since the 1950s
and popularized by the seminal paper by Utkin (see [30] in chapter 7): the
sliding mode control. The essential feature of this technique is the choice
of a switching surface of the state space according to the desired dynamical
specifications of the closed-loop system. The switching logic, and thus the
control law, are designed so that the state trajectories reach the surface
and remain on it.

The main advantages of this method are:

• its robustness against a large class of perturbations or model uncer-
tainties

• the need for a reduced amount of information in comparison to clas-
sical control techniques

• the possibility of stabilizing some nonlinear systems which are not
stabilizable by continuous state feedback laws

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The first implementations had an important drawback: the actuators
had to cope with the high frequency bang-bang type of control actions
that could produce premature wear, or even breaking. This phenomenon
was the main obstacle to the success of these techniques in the industrial
community. However, this main disadvantage, called chattering, could be
reduced, or even suppressed, using techniques such as nonlinear gains, dy-
namic extensions, or by using more recent strategies, such as higher-order
sliding mode control (see Chapter 3).

Once the constraint sliding function (CSF) was chosen according to
some design specifications (stabilizing dynamics or tracking), then two dif-
ficulties may appear:

Dl) the CSF should be of relative degree one (differentiating once for
this function with respect to time: the control should appear) in order to
provide the existence of a sliding motion; and

D2) the CSF may depend on the whole state (and not only on the
measured outputs).

To circumvent Dl) one may use a new CSF of relative degree one (see
the introduction of Chapter 3 and the choice of the CSF in subsection
13.3.1). Another promising alternative to this difficulty is based on higher-
order sliding mode controller design (see Chapter 3). Concerning D2) when
the CSF depends on other variables than the measured outputs, a natural
solution is provided by observer design. This approach has one advantage
which concerns the natural filtering of the measurements (see Chapter 4
p. 121). But the drawback is that the class of admissible perturbations is
reduced, since the perturbation should match two conditions: one for the
control (see Chapter 1, p. 20) and the other for the observer (see Section
4.5).

We are currently living in an important time for these types of tech-
niques. Now they may become more popular in the industrial community:
they are relatively simple to implement, they show a great robustness, and
they are also applicable to complex problems. Finally, many applications
have been developed (see the Table of Contents):

• Control of electrical motors, DTC

• Observers and signal reconstruction

• Mechanical systems

• Control of robots and manipulators

• Magnetic bearings
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Based on these facts, several active researchers in this field combined
their efforts, thanks to the support of many French institutions1, to present
new trends in sliding mode control.

In order to clearly present new trends, it is necessary to first give an
historical overview of classical sliding mode (Chapter 1).

In the same manner of thinking, it is important to recall and introduce,
from a very clear educational standpoint, a mathematical background for
discontinuous differential equations, which is done in Chapter 2.

Next, a new concept in variable structure systems is introduced in Chap-
ter 3 : the higher-order sliding mode. Such control design is naturally moti-
vated by the limits of classical sliding mode (see Chapter 1) and completely
validated by the mathematical background (see Chapter 2).

On the basis of these chapters, some control domains and methods are
discussed with a sliding mode point of view:

• Chapter 4 deals with observer design for a large class of nonlinear
systems.

• Chapter 5 presents a complementary point of view concerning the
design of dynamical output controllers, instead of observer and state
controllers.

• Chapter 6 presents the link between three of the most popular non-
linear control methods (i.e., sliding mode, passivity, and flatness)
illustrated through power converter examples.

• Chapter 7 is dedicated to stability and stabilization. The domain of
sliding mode motion is particularly investigated and the usefulness of
the regular form is pointed out.

• Chapter 8 recalls some problems due to the discretization of the slid-
ing mode controller. Some solutions are recalled and the usefulness
under sampling of the higher-order sliding mode is highlighted.

• Chapter 9 deals with adaptive control design. Here, some basic fea-
tures of control algorithms derived from a suitable combination of
sliding mode and adaptive control theory are presented.

• Chapters 10 and 11 are dedicated to time delay effects. They deal,
respectively, with relay control systems and with changes of behavior
due to the delay presence.

, GdR Automatique, GRAISyHM, LAIL-UPRESA CNRS 8021, ECE-ENSEA
and Ecole Centrale de Lille.
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• Chapter 12 is dedicated to the control of infinite-dimensional systems.
A disturbance rejection for such systems is particularly presented.

In order to increase interest in the proposed methods, the book ends
with two applicative fields. Chapter 13 is dedicated to robotic applications
and Chapter 14 deals with sliding mode control for induction motors.

Wilfrid PERRUQUETTI
Jean-Pierre BARBOT

FRANCE
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Chapter 1

Introduction: An Overview
of Classical Sliding Mode
Control

A.J. FOSSARD* and T. FLOQUET**
* DERA/CERT/ONERA, Toulouse, France
** EN SEA, Cergy-Pontoise, France

1.1 Introduction and historical account
Sliding mode control has long proved its interests. Among them, rela-
tive simplicity of design, control of independent motion (as long as sliding
conditions are maintained), invariance to process dynamics characteristics
and external perturbations, wide variety of operational modes such as reg-
ulation, trajectory control [14], model following [30] and observation [24].
Although the subject has already been treated in many papers [5, 6, 13, 20],
surveys [3], or books [7, 17, 28], it remains the object of many studies (theo-
retical or related to various applications). The main purpose of this chapter
is to introduce the most basic and elementary concepts such as attractivity,
equivalent control and dynamics in sliding mode, which will be illustrated
by examples and applications.

Sliding mode control is fundamentally a consequence of discontinuous
control. In the early sixties, discontinuous control (at least in its simplest
form of bang-bang control) was a subject of study for mechanics and control
engineers. Just recall, as an example, Hamel's work [15] in France, or Cyp-
kin's [27] and Emelyanov's [9] in the USSR, solving in a rigorous way the
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problem of oscillations appearing in bang-bang control systems. These first
studies, more concerned with analysis and where the phenomena appeared
rather as nuisances to be avoided, turned rapidly to synthesis problems in
various ways. One of them was related to (time) optimal control, another
to linearization and robustness. In the first case, discontinuities in the con-
trol, occurring at given times, resulted from the solution of a variational
problem. In the second, which is of interest here, the use of a discontin-
uous control was an a priori choice. The more or less high frequency of
the commutations used depended on the goal pursued (linearization), as
produced by the beating spoilers used in the early sixties to control the
lift of a wing, conception of corrective nonlinear networks enabling them
to bypass the Bode's law limitations and, of course, generation of sliding
modes. Although both approaches and objectives were at the beginning
quite different, it is interesting to note that they turned out to have much
in common.

In fact, it was when looking for ways to design what we now call ro-
bust control laws that sliding mode was discovered at the beginning of the
sixties. For the needs of military aeronautics, and even before the term of
robustness was used, control engineers were looking for control laws insen-
sitive to the variations of the system to be controlled. The linear networks
used at these time did not bring enough compensation to use high gains re-
quired to get parametric insensitivity: they match the Bode's law according
to which phase and amplitude effects are coupled and antagonist.

At the beginning of 1962, on B. Hamel's idea, studies of nonlinear com-
pensators were initiated, whose aim was to overcome previous limitations.
Typically, these networks, acting on the error signal x of the feedback sys-
tem, were defined by the relation

u = |Fi(x,i,...,)|sgn(F2(a:,i,...,))

where | | denotes the absolute value and F\ and F<2 are appropriate linear
filters. Hence the output was discontinuous but modulated by a function
of x and its derivatives. Under the simplest form, one had, for instance,

u = — \x\ sgn(x + kx) (1-1)

instead of the classical PD corrector.

It is easy to see that, under the approximation of the first harmonic:

• the equivalent gain of such a network (for a sinusoidal input x —
XQ sin ujt) is independent of the amplitude XQ and only depends on
the pulsation a; (as a linear network), hence the denomination of
pseudo linear network;
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• it produces a lead phase without any increase (and even decrease) of
the dynamics amplitude.

For instance, in the previous case, if </?(u;) is the phase of 1 + kp (p
denoting the Laplace operator) at w, the real Re and imaginary parts Im
of the equivalent gain are given by

Re = I — ^ ((p — sin (p cos ip)

Im = ^ sin2 (p

leading to the generalized transfer locus of Figure 1.1 where, for compari-
son, the loci for a simple PD (dotted line) and a classical lead phase network
(thin line) are given. This shows that a lead phase can be obtained (the-
oretically till |), not only without increase of the dynamics rate but also
with a small reduction (from 1 to £).

l + kp

Figure 1.1: Nyquist plots

In fact, it appeared simultaneously in France and in the former USSR,
that these laws presented two different aspects:

• pseudo linear compensation: astute combinations of linear and non-
linear signals, including commutations, can lead to appreciable ad-
vantages while being freed from the disadvantages specific to purely
linear systems;
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• they generate a sliding motion by controlling the evolution of the
system through commutations. This mode is certainly nonoptimal
but exhibits a rather interesting sensitivity.

1.2 An introductory example

By way of illustration, let us take the simple example of a variable inertia
2

§5- [1], as shown in Figure 1.2.

>, X orrni 'T1 —L l?nr iDglllX T^ A/X )
u a2

p2
y

Figure 1.2: Variable inertia

Taking as state variables x\ = x, x2 = x, the system can be put in the
following state space representation

xi = x2

X2 — 0?

where the control law u is designed as in (1.1) and is given by

kx2]u = -

(1.2)

(1.3)

In the following, a — x\ + kx2 = 0 will be called the switching surface.
The term switching illustrates the fact that the control law u commutes
while crossing the line a = 0.

Then, one can easily see that (Figure 1.3):

• the phase plane is divided into four regions;

• in regions I and III (where xi sgn(xi + kx2) > 0), trajectories are
ellipses given by aLx\ + x\ — cst;

• in regions II and IV (where x\ sgn(xi + kx2] < 0), trajectories are
hyperbolas with asymptotes x2 =

the control only commutes on the boundary surface #1 + kx2 = 0;
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• by a suitable choice of fc, all trajectories are directed toward this sur-
face (regardless of which side of the surface they are). Consequently,
once it is reached, a new phenomenon appears: the trajectories are
"sliding" along this surface.

Figure 1.3: Trajectories in the portrait phase

The classical theory of ordinary differential equations however is unable
to explain what occurs here (the solution of the system (1.2) is known to
exist and be unique if u is a Lipschitz function, and so continuous). Con-
sequently, the design of appropriate mathematical tools appears necessary
and alternative approaches and construction of solutions can be found in
Filippov's work [11] and in other's using the theory of differential inclusions
[2]. Those results are not developed here since they are the subject of the
chapter Differential Inclusions and Sliding Mode Control.

To understand more "physically" what is happening, a very simple in-
terpretation can be given just by introducing some kind of imperfections in
the switching devices, for instance a time delay T. Under such an assump-
tion, the motion proceeds along a succession of small arcs (sequentially el-
lipsoi'dal and hyperbolic) between the lines x\ +k x^ = 0 and x\ +k x-z = 0,
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crossing the origin, with

A; =

k =

k-r
1 + a2kr
k-r

I — a2kr

When T tends to zero, the amplitude of these oscillations tends to zero,
whereas the frequency increases indefinitely and the representative point
"slides" along the line x + kx = 0 (Figure 1.4).

kx — 0

Figure 1.4: Trajectories with time delay

Further important remarks must be made:
In the sliding motion, a = 0, which implies that the dynamics is now

defined by
1

x — —x
k

Therefore, the second-order system behaves then like a first-order system,
with time constant k and independent of the inertia a, and the trajectory
will slide along a = 0 to the origin (thus a = 0 is also called the sliding
surface). Note also that, with the discontinuous control, the system is
equivalent to a proportional-derivative feedback associated with an infinite
gain.

As a — 0, x2 + ka?u = 0. On the sliding surface, the motion is conse-
quently the same as if, instead of the discontinuous control, an "equivalent"
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continuous control defined by

had been used. This equivalent control can be considered as the mean value
of the discontinuous control u on the sliding surface, modulated in width
and amplitude. Yet, in sliding motion, the control switches with a high
frequency between the values — |#i| and |xi|. This phenomenon is known
as chattering and is a drawback of sliding modes (see section 1.3.3).

The latter dynamical behavior is called the ideal sliding mode, that is
to say that there exists a finite time te such that for all t > te,

s(x(t)) = 0

Of course, the ideal sliding mode along x + kx = 0 only exists for a time-
continuous system and without delay, which is not the case in real system.
Attention is drawn to the fact that, under sampling, the situation is much
more complicated. The problem is beyond the scope of this introductory
chapter and the interested reader will find developments in subsequent
chapters, for instance Discretization Issues or Sliding Mode Control for
Systems with Time Delay.

This simple example allowed us to enhance some characteristics of the
sliding phenomenon and it has been shown that the sliding mode was ini-
tiated at the first switching. Of course, this is not always the case unless
some precautions are taken. For instance, if the discontinuous control

u = — sgn(xi + £#2)

is used instead of (1.3), the sliding mode only occurs in the layer

as can be seen in Figure 1.5.
This comes from the fact that the switching surface is known to be at-

tractive if the condition ss < 0 is fulfilled. This will be detailed in the
following sections, as well as the dynamics in sliding motion, the notion
of equivalent control, the chattering phenomenon and the robustness pro-
perties of the sliding mode.

1.3 Dynamics in the sliding mode

1.3.1 Linear systems
Let us consider a linear process, eventually a multi-input system, defined
by

x = Ax + Bu (1.5)
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Figure 1.5: Portrait phase and sliding mode domain

where x e Hn , u € B,m and rank 5 = m.
Let us also define the sliding surface as the intersection of m linear

hyperplanes

where C is a full rank (m x n) matrix and let us assume that a sliding
motion occurs on S.

In sliding mode, s = 0 and s = CAx + CBu = 0. Assuming that CB is
invertible (which is reasonable since B is assumed to be full rank and s is a
chosen function), the sliding motion is affected by the so-called equivalent
control

'lCAx

Consequently, the equivalent dynamics, in the sliding phase, is defined by

xe = \I-B(CB)~1C\ Axe = Aexe (1.6)

The physical meaning of the equivalent control can be interpreted as
follows. The discontinuous control u consists of a high frequency component
(uhf) and a low frequency one (us): u — Uhf + us.

Uhf is filtered out by the bandwidth of the system and the sliding motion
is only affected by us, which can be viewed as the output of the low pass
filter

TUS Us — U, T
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This means that ue ~ us and represents the mean value of the discontinuous
control u.

C being full rank, Cx = 0 implies that m states of the system can be
expressed as a linear combination of the remaining (n — m) states. Thus,
in sliding motion, the dynamics of the system evolves on a reduced order
state space (whose dimension is (n — m)).

It is easy to verify that Ae is independent of the control and has at most
(n — m) nonzero eigenvalues, depending on the chosen switching surface,
while the associated eigenvectors belong to ker(C). As B is full rank, there
exists a basis where it is equivalent to the matrix

where B2 is an invertible (m x m) matrix. Let us decompose the state as
x = [xf,x^]T, where xi & JRn~m , x2 6 Hm. Thus, the system (1.5)
becomes

x\ =

X2 — Ai2Xi + A22X2 + B2U

and
C=[d C 2 ]

the (m x m) matrix C2 being assumed invertible (which is the necessary
and sufficient condition for CB to be invertible since det(CJ5) =
Then one can compute Ae as following

Au
n-^n

— W2 ^1^

I
— 1 f~*

L 2 °1

*V21

0
7

Ai2 1

— C2 6*1^22 J

1 I" AU -Ai2C2
lC

\ [ o
1 Ai2

0
7 0

~t— 1 X~t 7"
y o v_/1 J

Under this form, the characteristic polynomial of Ae clearly appears to be

= AmP(A11-A12C2-1Ci)

Thus Ae has at least m null eigenvalues and the sliding dynamics is defined
by

x2 = —C2 C\x\

These last equations are interesting since they show that:
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• designing C is analogous to design a state feedback matrix ensuring
the desired behavior for the reduced order system (An, AH], pro-
vided that the pair (An,A\2] is controllable (which is the case if
and only if the original pair (A,B] is controllable). Then the prob-
lem is a classical one which can be solved by the usual control tech-
niques of direct eigenvalue and eigenvector placement or quadratic
minimization [4], [28];

• the dynamics only depends on the matrix AH, A\-z, and not on A^\,
A^. For a single-input system, this means in particular, that if the
system is written under the canonical controllability form,

/ 0

x =

1

\
0
-a0

0 0 \ 0 \

\
then the sliding dynamics is independent from the parameters a^ of
the system.

Note that this remark can be generalized to multi-input systems. How-
ever, observe that, for this kind of system, the design of the control law is
more complex than in the single-input case as the required sliding motion
must take place at the intersection of the ra switching surfaces. Broadly
speaking, at least three strategies can be considered:

• the first one uses a hierarchical procedure where the system is gradu-
ally brought to the intersection of all the surfaces. Denoting <Si,..., Sm

771

the m linear hyperplanes such that <S = H Si, and starting from an
i=l

arbitrary initial condition, the control MI is designed to induce a slid-
ing mode on the surface «Si, for any control u^, • • • , um. This done, the
second control u-2 (while the system is still sliding on S\ = 0) leads
to Si fl $2 and generates a sliding mode on this surface, and so on
till a sliding motion takes place at the intersection of the m switching
surfaces (Figure 1.6);

• another solution lies in reducing the system in m single-input subsys-
tems such that every surface Si only depends on the ith component
of the discontinuous part of the control.

These first two policies lead to a rather simple procedure. However this
implies a high prompting and wear of the actuators of the system since
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Figure 1.6: A sliding mode motion with two control functions

the control commutes at many more points of the state space than those
constituting the sliding surface S. Situations where one control drives the
state away from the required intersection by imposing a sliding motion on a
subset of surfaces can also occur. A way to face these problems is to make
the sliding motion appear only at the intersection of all the manifolds. The
control is continuous at the crossing of any separate surface and discontin-
uous only at the intersection of all of them. For this, the following control
laws were proposed (see [7]) [called the unit vector approach],

or

u = uP —

u = UP —

pCx

pMx

where the matrix M and N are such that

ker M = ker N = ker C

1.3.2 Nonlinear systems

Let us now consider the following nonlinear system affine in the control:

x = f ( x ) + g ( x ) u ( t ) (1.7)

and a set of ra switching surfaces

S = {x € Hn : s(x) = [si(x), . . . , sm(x)]T = 0} (1.8)

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



An extension of the previous results leads to:

• the associated equivalent control

ds , J ds „, ,

obtained by writing that s(x) = |p [f(x] + g(x)u(t)} = 0;dx

the resulting dynamics, in sliding mode

i \9(xe) f ( X e ]

Note that a must be designed such that ||g(x) is regular.
However, it is clear that, outside specific cases, the determination of the

switching surfaces, in order to get a prescribed dynamics, is not as easy as
in the linear case. One of these specific cases is when the system (1.7) can
be transform into the so-called regular form [18], [19]:

xi = /i(a?i,£2)
xi = /20i, x2) + g z ( x i , x2)u (1.9)

with x\ e K n~m , x-2 € Rm and g-2 regular. Suppose that the control
problem is to stabilize the system at a prescribed point with the following
dynamics

x\ = f ( x i , h ( x i ) )

Defining s(x) = x% — h(x\) and a control u such that a sliding mode occurs
on s = 0 solves the problem, and the resulting sliding motion then evolves
on a reduced order manifold of dimension (n — m) (#2 can be viewed as
the input of the subsystem whose state is x\). This can be illustrated by
the example of the two-arm manipulators which can be found in [25]. Yet,
the transformation of the system into the regular form can induce complex
diffeomorphisms. An alternative is to proceed by pseudo linearization as
in [21].

1.3.3 The chattering phenomenon
An ideal sliding mode does not exist in practice since it would imply that
the control commutes at an infinite frequency. In the presence of switching
imperfections, such as switching time delays and small time constants in the
actuators, the discontinuity in the feedback control produces a particular
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chattering

Sliding surface

Figure 1.7: The chattering phenomenon

dynamic behavior in the vicinity of the surface, which is commonly referred
to as chattering (Figure 1.7).

This phenomenon is a drawback as, even if it is filtered at the output
of the process, it may excite unmodeled high frequency modes, which de-
grades the performance of the system and may even lead to unstability
[16]. Chattering also leads to high wear of moving mechanical parts and
high heat losses in electrical power circuits. That is why many procedures
have been designed to reduce or eliminate this chattering. One of them
consists in a regulation scheme in some neighborhood of the switching sur-
face which, in the simplest case, merely consists of replacing the signum
function by a continuous approximation with a high gain in the boundary
layer: for instance, sigmoid functions (see [23]) or saturation functions as
shown in Figure 1.8. However, although the chattering can be removed,
the robustness of sliding mode is also compromised. Another solution to
cope with chattering is based on the recent theory of higher-order sliding
modes (see Chapter 3).

sat

Figure 1.8: Saturation function sat(s)
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The real motion near the surface can be seen as the superposition of a
"slow" movement, along the surface, and a "fast" one, perpendicular to this
surface (the chattering phenomenon). To put in a prominent position these
two movements, let us consider again our introductive example and let us
approximate, in an ^-neighborhood of the surface, the signum function by
a saturation function whose slope is -. Taking £ as a (small) perturbation
parameter, the behavior in the boundary layer can be described, under the
standard singularly perturbed form, by

X\ — X2

The slow motion is defined by setting e = 0, hence

1

and

s -j
k

with X\Q being the value of x\ at point M\ (see Figure 1.9). As it has been
seen in section 1.2, this corresponds to the dynamics in the sliding motion.

In the time scale ~ , the fast motion is defined by

that is

and the global motion is approximated by

-X2 = X2fi + X2f - X2QS = -TXi0e
 k + (X2Q + -r

k k

which gives the trajectories in Figure 1.9.

1.4 Sliding mode control design

1.4.1 Reachability condition

It has been said that, in the sliding, the motion was independent from the
control. Nonetheless, it is obvious that the control must be designed such
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Figure 1.9: a) Singular perturbed motion e = 0 ; b) Real mo-
tion

that it drives the trajectories to the switching surface and maintains it on
this surface once it has been reached. The local attractivity of the sliding
surface can be expressed by the condition

lim %i(f + gu)<Q and lim ff (/ + gu) > 0
a—>0"i"

or, in a more concise way,
ss < 0

which is called the reachability condition [17].

(1.10)

Example 1 In a way of illustration, let us consider a de-motor modeled
by the following transfer function

1
-U(p)Y(p) =

that is, in a state-space representation:

x\ = X2

X2 = -X2 + u
II — Tiy — •t'l

Let us assume that the sliding surface is designed as

s = X2 + axi = 0, a > 0

(1.11)
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Thus
s = (a-l)x2 + u (1.12)

Using the control law u — —ksgn(s), k > 0, the reachability condition is
satisfied in the domain

A;}

snce
ss -A:) <0

One should note that condition (1.10) is not sufficient to ensure a finite
time convergence to the surface. Indeed, in the latter example, the control

u = (1 — a)x2 — ks

provides s = —ks, but the convergence to s = 0 is only asymptotic since

s(t) = s(0)e-fct

where s(0) is the initial value of s. Condition (1.10) is often replaced by
the so-called r/ -reachability condition

ss<-r,\s\ (1.13)

which ensures a finite time convergence to s = 0, since by integration

\s(t}\ - s(0)| < -rjt

showing that the time required to reach the surface, starting from initial
condition s(0), is bounded by

In a practical way, the control law is generally displayed as u = ue+Ud
where ue is the equivalent control (allowing us to cancel the known terms
on the right hand side of (1.12)) and where Ud is the discontinuous part,
ensuring a finite time convergence to the chosen surface.

The example (1.11) was simulated using the following control law

u = (1 — a}x<2 — fcsgns

where the term (1 — a)x2 represents the equivalent control (since s = 0
implies u + (a — I}x2 — 0)- One can also note that the 77 -reachability
condition is satisfied. Figures 1.10 and 1.12 show obviously that the sliding
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motion takes place after about 1.3 sec. Indeed, after this time, the dynamics
of the system is represented by the reduced order system given by the chosen
surface, i.e.:

x\ = —Q.XI = #2

and the control switches at high frequency. In Figure 1.12 one can see that
the equivalent control, in sliding motion, represents the mean value of the
control u. The portrait phase, in Figure 1.11, illustrates the two steps of the
dynamics behavior: first, a parabolic trajectory before the surface is reached
(which is called the reaching phase) and then the sliding along the designed
line s = 0 (x^ = —ax\) to the origin.

O O.5

Figure 1.10: Evolution of the states versus time x\ (dotted) and x2 (solid)

1.4.2 Robustness properties

An important feature of sliding mode control is its robustness properties
with respect to uncertainties. In the case of invariant and nonperturbed
systems, recall first that the use of a continuous component, equal to ue,
allows the use of a discontinuous component as small as desired. Indeed,
for the sake of simplicity, consider the linear system (1.5) and choose the
following controller

u = ue — k (CB}~ sgn(s)
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0.5 I

Figure 1.11: Portrait phase of the sliding motion
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Figure 1.12: Discontinuous and equivalent control
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with ue = - (CB] l CAx. This implies

ss = sCx = s [CAx + CBue - fcsgn(s)] = -k \s\ < 0

and consequently k might be taken high enough when the trajectory is far
from the switching surface (so that the reaching time is short) and then as
small as desired in order to limit the chattering.

Actually the use of a large enough discontinuous signal is necessary to
complete the reachability condition despite parametric uncertainties and
exogenous perturbations. Still, to be as simple as possible, consider the
system under the canonical controllable form but with parametric uncer-
tainties Aa;

X —

0

0

1 0 0 \

1
0 1

-an_i - Aan_i

0 \

0
1 )\ — a0

where the Aa^ are all supposed to be bounded such that

a~ < |Aai| < oil

Let the switching surface be

s = [CQ ci cn_2 1] x = 0

(corresponding to the sliding dynamics pn~l + cn-2pn~2 + . . . + CQ = 0).
The control law is chosen as follows

u = - kn sgn(s)

The ^-reachability condition, (1.13), can be satisfied by two ways, and
thus despite the uncertainties:

• if constant gains are set as ko = ao, ki = ai — Cj_i, i — 1,. . . , n — 1,
n

one gets ss = — ̂  A aj_iXjS — kn \s\

and thus setting
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is sufficient to satisfy (1.13). The magnitude of the discontinuity in
the control is a function of the state and of the uncertainties on the
process. The control law is easy to design but the discontinuity can
be important (and consequently the chattering).

• another solution relies on using commuting gains. Taking &o — ̂ o +
ao, ki = ki + ai - C j _ i , i — 1 , . . . , n - 1 leads to

and the condition ss < —77 \s can be satisfied by choosing kn — rj as
a small positive scalar and

The structure of the control law is a little more complex but the
amplitude of the discontinuity in the control is reduced.

Sliding modes are also known to be insensitive to exogenous pertur-
bations satisfying the so-called matching condition (originally stated and
proved by Drazenovic in [6]), that is to say that these perturbations act
exactly in the input channels. Considering the perturbed linear system

x = Ax + Bu + A(:r,t)

where A is an unknown but bounded function, the matching condition
means that the sliding mode is insensitive to the uncertain function A
if it is in the range space of the input matrix B: that is, there exists
a known matrix D and an unknown function 5 such that A = DS and
rank[B D] = rank B. Indeed, it is easy to show that, in that case,

(l-B(CB}~lC\ A =

since

and thus the dynamics in sliding motion remains independent of the ex-
ogenous input A (xe = \I - B (CB}~1 C\Ax — Aex).

It is important to note that the system only becomes insensitive to those
perturbations during sliding mode but remains affected by the perturba-
tions during the reaching phase (that is to say before the sliding surface
has been reached).
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1.5 Trajectory and model following

In the previous sections, variable structure control and sliding modes have
been designed for regulation purposes but they can also be used for trajec-
tory and model following.

1.5.1 Trajectory following

Without going into the details, and with the aim of outlining the interest
of sliding mode controls in trajectory following, let us consider a simple
linear single-input system

y(n)

written in the canonical controllable representation

/ 0 1 ••• 0 0

x =

= u

n
\ -a0 • • •

1
n

^ i

ii
-On-l /

( 0 \

V i

where x = [y, y , . . . , y(n-l)]T.
Assume that the control problem is to constrain the output y to follow

a prescribed trajectory yd(t) and set

Defining the sliding surface to be s(t) = C(x — Xd) and designing a
control law leading to a sliding motion on this surface gives x = Xd- It
should be noted, in comparison with the regulation case, that here, the
surface is time-varying and that the dynamics of the response is imposed
by the desired trajectory (and not by the coefficients of the surface).

It should also be noted that this idea can be enlarged to nonlinear
multi-input systems. Consider for instance the system

X\ = 3Xi + X-2 + XiX<2 COS 2^2 +

#2 = X\ — X2 COS X\ + U2

whose outputs are
2/1

X-2
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The control problem is to constrain these outputs to follow trajectories
corresponding to second order responses with respect to step inputs. It is
sufficient to take the sliding surfaces

°i — CjCj T~ Cj , 1 — = 1) ^

with &i = xl — Xid , and to generate controls u^ such that SiSi < 0. Taking

ui = kuei + anXi + ai2X2 + 0:13X1X2 + x\d - k\ sgn BI

gives

Si = (GI + fcn)ei+(3 -I- aii)xi + (l + 012) x\+(cosx-2 + 0:1

so that with ku — — ci, an — —3, 0:12 = —1

•Ml = (COSX2 + 0:13) Xi±2S\ - k\ \Si\

Thus, taking

implies
< 0, Vfci > 0

The control u<2 can be designed similarly such that 52*2 < 0. Then each
output follows the predefined trajectories.

1.5.2 Model following
Variable structure control and sliding mode can also be used for model
following, that is to control the process in such a way that it behaves like
a given model (of the same order). The idea is to force a sliding motion on
the surfaces

O — — J\f>[£fYi *£ ) "~ -t-^e^e ~~: ^

where x and xm are respectively, the process and model state vectors. It
is easy to see that, in sliding motion, the error dynamics is given by

±e = 1 - QAKe

with 6 - B(KeB}~lKe.
Except for the case of perfect matching, which supposes that

rank [B, Bm] — rank [£?, Am - A] — rank B

there exists a steady-state error which can be computed by the equation

[(1 - 9) A]T \ _(-[(!- 6) A]T A^BmUr,
~ 0

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



where [(1 — 0) A]T denotes the matrix constituted by the (n — m) inde-
pendent lines of (1 — 0) A.

In the general case, when the conditions can not be met, one will only
focus on the outputs and integrators to be added on the error ym — y so
that the steady state error is null (Figure 1.13).

u

y-xe+

•>
um

x = Ax + Bu
y = Cx

V
^

K-i

X

b
Xm

ym — ^m-Em

y

£
71

ym
Model

Figure 1.13: Model following

By way of illustration, let us consider the following case of a process
given by the transfer function

v ' S
2 + 4(5s + 4

where p and 6 are parameters which may vary. The control problem is to
follow a model corresponding to

rov ' s2 +1.45 + 1

The following figure shows the results of simulations enhancing the fact
that the model following scheme is able to cope with important parametric
variations. In Figure 1.14, continuous variations of S and p have been
assumed such that 6 = | and p = 2 4- |t (that is to say, for the span time
of 9 seconds, 6 is varying from 0 to 1 and p from 2 to 14).

As far as the problem of model following is concerned, variable structure
control laws using sliding modes can also be found in [12], [29] or [30].
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Figure 1.14: Example of model following

1.6 Conclusion

In this introductory chapter, the basic properties and interests of sliding
modes have been enhanced. Since this technique involves differential equa-
tions with discontinuous right-hand sides, the concept of solution needs to
be redefined and alternative approaches to the classical ordinary differen-
tial equation theory must be developed. One concerns differential inclu-
sions and is presented in Chapter 2. The main benefits of sliding mode
control are the invariance properties and the ability to decouple high di-
mensional problems into sub-tasks of lower dimensionality. However, it has
been shown that imperfections in switching devices and delays were induc-
ing a high-frequency motion called chattering (the states are repeatedly
crossing the surface rather than remaining on it), so that no ideal sliding
mode can occur in practice. Yet, solutions have been developed to reduce
the chattering and so that the trajectories remain in a small neighborhood
of the surface, like the higher-order sliding modes developed in Chapter
3. The continuous case has been considered in this introduction, but the
problems induced by sliding modes under sampling and in the presence of
delays are treated in Chapters 8, 10, 11.

The control problem given here was a regulation one and the illustrative
examples were quite simple. However, sliding modes find their application
in many other area such as observers (Chapter 4), output feedback (Chapter
5) or trajectory following (Chapter 6), and in practical applications such
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as robotics (Chapter 13) and control of induction motors (Chapter 14).
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Chapter 2

Differential Inclusions and
Sliding Mode Control

T. ZOLEZZI
Dipartimento di Matematica, Genova, Italy

2.1 Introduction

A basic problem in the field of variable structure control is the following.
We are given a controlled system of ordinary differential equations with
prescribed initial value

x = f ( t , x , u ) , x ( Q ) = a (2.1)

where the dynamics are denned by a given function

/ : [0, +00) x Q x U -> RN

and the fixed initial condition a € fi which is an open set in MN and U is
a closed set in EM. The M-dimensional control variable

ueU (2.2)

is constrained to belong to the given control region £7; the TV-dimensional
state variable x is required to fulfill a given sliding condition

s[x(t)] = 0 for all t (2.3)

where s : R^ —>• IRP is a fixed mapping which defines the sliding manifold

s(z) = 0 (2.4)
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The overall problem is to select an admissible control law u = u(t,x),
usually in the feedback form, such that through the corresponding state x
issued from a at time 0 sends in finite time the initial position a to some
point x(t*} fulfilling (2.3) and keeps the state vector x ( t ) on the sliding
manifold (2.4) for all t > t* (in a prescribed time interval).

For simplicity we treat the case that s does not depend on time, even if
what follows can be extended to the more general sliding condition

s(t,x) = 0

In these notes we deal only with the mathematical description of the sliding
motion, assuming that a suitable control law has been found which solves
the attainability problem, to reach in finite time the sliding manifold (hence
we assume t* = 0).

At least three methods are known to control the given system in order
to fulfill the state constraint (2.3).

Componentwise sliding control. Let P = M, then a suitably defined
pair of feedback control laws

uf = u ~ i ( t , x } , u ~ — u~(t,x),i = 1,. . . ,M

are used for each component of s to obtain the control law

u*(t,x) = u^(t,x) if Si(x) > 0

u* (t, x) — u~ (t, x) if Si(x) < 0

Here Si(x) denotes the i—th component of the vector s ( x ) . Proper choice
of u^ and of u~ allows us to keep x(t] on the sliding manifold (2.3).

s l ( x ) < 0

Unit control.
Let

f ( t , x, u] = A(t, x) + B(t, x)u
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and denote by Ds the Jacobian matrix of s. Let E(t,x) = Ds(x)B(t,x).
Then, under suitable nonsingularity assumptions, the control law

u(t,x) = -a(t,x)E(t,x)'s(x)/\E(t,xYs(x)\

with a proper choice of the gain a allows us to reach the sliding manifold
(2.3) and to keep the state vector on it.

Sliding mode simplex method. For every £,£, points u i (£ ,x) , . .
in U are found such that the vectors

gi(t,x) = D s ( x ) f [ t , x , U i ( t , x ) }

form a simplex in Rp.

s(x)
92

For every x, s(x) belongs to some cone generated by the edges gi(t, x), i ̂
/i, for the smallest index h. Then the choice of the control law

u*(t,x) - Uh(t,x)

guarantees the sliding mode condition under suitable assumptions about
the shape of the simplex.

2.2 Discontinuous differential equations and
differential inclusions

All the above control methods share the following basic feature: the corre-
sponding control law u* undergoes discontinuities as a function of x. More
precisely, u* is (quite often) a piecewise continuous function of x. By in-
serting u* into (2.1) we are forced to consider states x of the control system
such that

x(t) = f ( t , x ( t ) , u * [ t , x ( t ) ] )

and the corresponding dynamics

<?(*,*) = /[t,zX(i,z)] (2.5)
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is a discontinuous function of x. A basic issue of the mathematical descrip-
tion of the sliding mode control method is then the following. Which is the
meaning of the solution concept of the differential equation

x — g ( t , x ) , x ( Q ) = a (2.6)

with a discontinuous g ( t , •)?

Example 2 There exists (almost everywhere) no solution of the scalar
equation

x = - sgn x,x(Q} = 0 (2.7)

Here sgn x — x/\x\,x ^ 0, sgn (0) = 1.

—sgn a;

1

-1

The previous example shows that, in general, discontinuous initial value
problems (2.6) fail to possess classical (i.e., almost everywhere) solutions.
A generalization of the concept of solution is required. A natural way of
modifying the solution concept to (2.7) is to enlarge the right-hand side at
0, taking into account the behavior of g(x) — — sgn x when x ^ 0. This
leads us to consider the multifunction G : K —> R defined by

G(x) = {g(x}} = {- sgn x}, x + 0; G(0) = [-1,1]

and the initial-value problem for the differential inclusion

(2.8)

which has the constant solution y(t) — 0 for every t. The set-valued func-
tion G agrees with the singleton {g(x}} whenever g is continuous; at 0, G(0)
is obtained by taking the set of all values of g(x) as \x\ is sufficiently small
and > 0, that is { —1,1}, then its convex hull [—1,1] and finally the inter-
section when x\ —> 0 (which here has no effect). In this way we restore
existence without loosing contact with the original equation (2.7).
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A G(x)

-1

Let us remark that the existence behavior of (2.7) is very sensitive to
changes of the initial value.

Example 3 The scalar equation

x — — sgn x, = a (2.9)

has (everywhere) local solutions for each a ^ 0 given by x(t) = a — t, 0 <
t < a or x(t] = t + a,Q <t < —a. If we consider

g(x) — 0, x = 0; g(x] = — sgn x, x ^ 0

then (2.9) has (almost everywhere) global solutions (i.e., on the whole time
interval [0, -foo) for every initial value a, namely x(t) = (a — t)+ if a >
0, x(t) = (a + t)- if a < 0, x(t) - 0 if a = 0.

2.3 Differential inclusions and
Filippov solutions

We consider first initial value problems for differential inclusions and briefly
review some existence theorems.
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We are given a multifunction (set-valued mapping)

C< • O _ , 1B>N
(JT . ii — > M

where Q is an open set of RN , which takes on nonempty values G(x) C RN .
Existence of classical (i.e., almost everywhere) solutions to the initial value
problem

x€G(x),x(Q) = a (2.10)

is related to continuity properties of G, as follows. G is called

• upper semicontinuous at x0 6 Q if for every open set A such that
G(x0) C A, we have G(x] C A for all x sufficiently close to x0;
• lower semicontinuous at x0 e Q, if for every open set A such that
G(x0) fl -A 7^ 0 we have (7(a:) D ^4 / 0 for all x sufficiently close to x0.

Example 4 Consider

Then G\ is upper semicontinuous, not lower semicontinuous at 0. Consider

Then G^ is lower semicontinuous, not upper semicontinuous at 0.

'
1

— *, v /

;

1

X

-1

I Gi(x)

X

-1

A solution to the initial- value problem (2.10) is a function

for some positive T < +00 such that its derivative exists for almost all
t G (0, T) and it is locally integrable, fa ydt = y(b] — y(a] for every pair
a, b in (0,T), and

y(t] e G[y(t)} for almost all t e (0, T) (2.11)
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The conditions imposed on y in the previous definition [except (2.11)]
amount to local absolute continuity of y.

Control problems quite often require examining the behavior over a
prescribed time interval, for example [0, +00) if asymptotic stability is the
main issue. For this reason, global existence theorems are most significant.

Theorem 5 (Existence) Let G be nonempty compact convex valued and
upper semicontinuous. Suppose there exist constants A, B such that

sup {\u\ : u € G(x)} < A\x\ + B for every x

Then problem (2.10) has solutions on [0, +00) for every a G f2.

Example 6 Let G(x] = {- sgn x} if x ^ 0,G(0) = {-1,1}. Then G is
upper semicontinuous, compact valued, convex valued except at 0 (and G
fails to be lower semicontinuous at 0). The initial value problem

zeG(z),z(0) = 0

lacks existence.

G(x}

-I

The previous example shows that convexity of G(x) for every x can-
not be omitted in the existence theorem 5. The previous theorem can be
extended to time-varying right-hand sides

xeG(t,x),x(Q} = a (2.12)

under suitable measurability and growth properties of G.

Theorem 7 (Existence) Let the multifunction

G: [0,+oo) x R ^ ^ E ^

be nonempty closed convex valued and such that G(t, •) is upper semicon-
tinuous for all t, for every x there exists a measurable function h such
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that h(t] 6 G(t,x) for almost all t > 0, and there exist locally integrable
functions b, c such that

sup {\u : u e G(t,x)} < &(£)|a;| + c(t]

for almost all t > 0 and every x. Then (2.12) has solutions on [0, +00).

Both existence theorems 5 and 7 require upper semicontinuity of the
right-hand side. If the right-hand side is lower semicontinuous (a case of
less interest in the next developments) with respect to the state variable,
then an existence theorem similar to theorem 7 holds without requiring
convexity of the values.

We come back to initial-value problems for discontinuous differential
equations

x = g ( t , x ) , x ( 0 ) = a (2.13)

We have seen that the concept of solution to (2.6) needs to be properly
redefined in order to guarantee existence. The basic definition we are going
to review is due to Filippov, as follows. Let

g : [0, +00) x 0 -» RN

be measurable and such that for every A there exists B = B(t) locally
integrable such that almost everywhere

sup {\g(t, x)\ : t + \x\ < A} < B(t)

We associate to g the multifunction G, as follows. Denote by B(x,e] the
ball in R^ of center x and radius e. Consider the set

{g(t, y):ye B(x, e)} = g[t, B(x, e)], t > 0, x G ft

Then let

G(t, x) = r\c\ co {g[t, B(x, e) \ L] : e > 0, meas L = 0} (2.14)

where cl co A denotes the closed convex hull of A, i.e., the intersection of
all closed convex sets containing the set A.

Definition 8 A Filippov solution y to (2.6) is a locally absolutely contin-
uous function y : [0, T) —» R^ such that

y(t)£G[t,y(t)] (2.15)

for almost every t E (0, T).
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Thus the Filippov definition replaces the discontinuous differential equa-
tion (2.6) by the differential inclusion (2.15). The construction of G from g
generalizes what we have seen after example 2. Removing sets of measure
0 from the values taken by g corresponds, roughly speaking, to purposedly
ignoring possible misbehavior of the right-hand side in (2.6) on small sets.
For every t and x,G(t,x) defined by (2.14) turns out to be a nonempty
closed convex set and the multifunction G(t, •) is upper semicontinuous,
moreover if g ( t , •) is continuous at z then G(t,z) = {g(t, z}}. It follows
that, if g ( - , x ) is a measurable function, and g(t, •) is everywhere contin-
uous, then y is a classical solution to (2.6) if and only if y is a Filippov
solution.

For control systems (2.1) with discontinuous feedback control u* =
u*(t,x) we obtain as a particular case the notion of Filippov solutions
to (2.5). Hence

x = f ( t , x ( t } , u * [ t , x ( t ) ] )

if x is a Filippov solution to (2.1) with u — u*,/ is smooth and u*(t, •)
is continuous at x(t}. Quite often in applications, / is a smooth function
and the discontinuous behavior is due to the insertion of the discontinuous
control feedback u* inside /. The properties of the multivalued function G
given by (2.14) allows us to apply the existence theorems for initial value
problems of differential inclusions.

Theorem 9 (Existence) There exist Filippov solutions to (2.1) with u =
w*(£, x) on [0,+00) provided:

• SI = Rw, /(-,#, u) is measurable for every x and u, f ( t , •, •) is contin-
uous for almost every t>Q;

• there exist locally integrable functions 6, c such that

\f(t,x,u)\<b(t)\x\+c(t)

for almost all t > 0, every x and every u G U;

• u* is measurable.

We refer the reader to [2] as far as the physical meaning of Filippov
solutions is involved, showing that this notion has not only a proper math-
ematical meaning but, as documented in [2], also a physical significance,
which is relevant for control applications. (However there are stabilization
problems in nonlinear control via discontinuous feedback in which Filippov
solutions are not adequate, and something different must be used.)

Using directly the Filippov definition based on (2.14) is often rather
complicated. In the following we describe an explicit formula which allows
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us to obtain, in a simple yet useful case in practice, an explicit expression
for the Filippov dynamics. We shall consider scalar control, smooth sliding
manifold of codimension one, and piecewise smooth dynamics.

More precisely, suppose that

s is continuously differentiate, its gradient Ds(x) ^ 0 whenever s(x) = 0,
and the smooth surface 5 defined by (2.4) partitions fi in two disjoint open
sets G~,G+ (with common boundary S). Assume that g given by (2.5) is
bounded and its restriction to both G+ , G~ converges as x — » x0 G S to
limiting values g+(t, x0),g~(t,x0}, respectively, for all x0 e 5. Denote by

SW'SW

the projections of g+,g~ on the unit normal vector N to S at each point,
oriented from G~ to G+. Let y be absolutely continuous in a given time
interval such that, for every t,

Then y is a Filippov solution to (2.6) if and only if for almost every t

where
9~N

or explicitly

' ^ • ^ '
with everything on the right being evaluated at t , y ( t ) . Thus, in this case,
the Filippov dynamics is obtained explicitly as a convex combination of the
vectors g+ ,g~ .

N.
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2.4 Viability and equivalent control

The basic problem we started with, was to find a feedback control law
u* such that the solution to (2.1) corresponding to u* fulfilled the sliding
condition (2.3). The appropriate meaning of state variable corresponding
to the possibly discontinuous feedback u* through (2.1) was obtained via
the Filippov definition discussed in the previous section.

In this section we take into account the state constraint (2.3) and con-
sider a more general version of the resulting problem, to find solutions to
the following problem

x e F(x), x ( t ) e K for all t (2.17)

where the multifunction

and the closed set K C R are fixed (fi being an open set of
In order to avoid technical points we consider only autonomous differen-

tial equations (2.17), i.e., we assume that F does not depend upon t. Our
control problem (2.1), (2.2), (2.3) obtains as a particular case provided
/ = /(#, w), i.e., the given dynamics is time-invariant, by taking

F(x) = f ( x , U} = {/(x, u) : u <= U}, x e 0 (2.18)

which is the set of all admissible velocities (so to speak) of the given control
system, and

K = {zeSl: s(z) = 0} (2.19)

Let us pause to remark that (by a known result), if / is continuous and U
is compact, then the set of all trajectories of the control system

x(t} = f[t,x(t},u(t}],u(t} € U almost everywhere

corresponding to open loop (measurable) control laws u(-), coincides with
the set of all solutions to the differential inclusion

x ( t ) € f ( t , x ( t ) , U )

Even if this result has no relevance for us here, it shows that differential
inclusions can provide a convenient mathematical framework for the study
of certain control problems.

A solution y to the differential inclusion

x e F(x)
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is called viable for K if y fulfils (2.17), i.e., y(t) € K for all t. So we are
interested in those special solutions (if any) of the differential inclusion in
(2.17) which fulfill the sliding condition defined by the constraint set K.
More precisely we are given the initial value a = x(Q) G K and we look for
conditions guaranteeing that there exists at least one viable solution, i.e.,
a solution to (2.17) issued from a at 0.

If F is single-valued, i.e., we are considering a system of ordinary differ-
ential equations x = g ( x ) , it is natural to impose, as a sufficient condition
to viability, that the dynamics be tangent to the set K. This will force a
solution starting on K to remain there forever.

K

Then we are led to consider the tangent cone to K at a given point
x € K,

T(K,x)

which is the set of all points w = limn_>00(xn — x)/tn where the sequence
xn 6 K, xn —> x and the sequence of positive numbers tn —>• 0. If K is a
smooth surface 5 obtained by (2.19), then the tangent cone T(K,x) turns
out to be the tangent space of S at x. We denote by

Ds(x)

the P x N Jacobian matrix of s at x, whose (j, h) element is given by

where Sj is the j-th component of s. We have

Proposition 10 Let K be given by (2.19). Let s e Cl(RN,Rp) be with
Ds(x) of maximum rank if s(x) = 0. Then

T(K, x} = {w e R^ : Ds(x)w = 0}

Now we consider the autonomous control problem

x 6 F ( x ) , x ( Q ) = a, x ( t ) E K (2.20)
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where F is given by (2.18) and K is a given closed set. The differential
inclusion (2.20) models (as a particular case) the control problem. Indeed,
all states from (2.1) (if time-invariant) corresponding to arbitrary control
laws fulfilling (2.2) obey (2.20) for almost all t. Moreover, all Filippov
dynamics x corresponding to discontinuous feedback control laws from U
fulfill (2.20) provided

U is compact, / is continuous, and f ( x , U] is convex for all x e fi.
(2.21)

The main point is the following. The tangency condition we discussed
before turns out to be a necessary and sufficient viability condition, which
shows (in principle) how to control the system in order to fulfill the sliding
condition (2.3).

Theorem 11 (Viability) Suppose that (2.21) is verified and assume that
|/(x, u)\ < a\x\ + b for suitable constants a,b and for every x £ fi,u G U.
Then the following are equivalent

for every a £ K there exists a solution x to (2.20) on [0, +00);

F(x) n T(K, z) ^ 0 for every xeK (2.22)

Let us write down the viability condition (2.22) in the case of interest,
i.e., K is defined by (2.19) and s is as in Proposition 10. Then (2.22) is
true if and only if for every x £ K there exists some point u = u(x) £ U
such that

Ds(x}f(x,u)=Q (2.23)

Condition (2.23) can be obtained formally by differentiating the sliding
condition

s[x(t)] = 0

and working as x were a classical solution of (2.10), which could be false
as we know, since Filippov solutions are not pointwise solutions. Then an
equivalent control u for (2.1), (2.2) and (2.3) (in the time invariant case we
are discussing), is any feedback control law u such that (2.23) holds and the
classical solution to (2.1) corresponding to u verifies the sliding condition
(2.3). This last requirement is automatically true provided s[rc(0)] = 0
since for almost every t

d/dts[x(t)] = Ds[x(t)]f[x(t),u(x(t})] = 0

hence s[z(£)] is constant. If U is compact, / is continuous and in addition
we assume that the mapping
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for every x £ Q is one-to-one on a neighborhood of £7 to Mp and its
range contains 0, then the equivalent control u — u(x) defined by (2.23) is
uniquely defined and is a continuous function of x in i7. Unfortunately it is
not true (even if it is tempting to admit) that the sliding dynamics corre-
sponding to the equivalent control agree with those obtained via Filippov's
concept of solution.

co/(x,t/)

Example 12 The control system is (N = 2)

Xi = 0.80:2 + ux\,x-2 = — O.Txi + 4u3xi

the sliding manifold (P = 1) is defined by

s(x) = Xi + x-2

and the scalar control u e [—1,1]. The discontinuous feedback control we
consider is given by

u*(x] = — sgn (s(x)xi)

which can be shown to guarantee the sliding condition. Thus the control
where s(x) > 0 is given by u+ = — sgn x\, while u~ — sgn x\ is the
control law where s(x) < 0. Here the equivalent control is the constant
u = 0.5 obtained as the unique real root of u + 4-u3 = 1, giving rise to the
dynamics

Xi = 0.2a:i on x\ + x-2 = 0

By applying (2.16) we get the Filippov dynamics

Xi = —O.lxi on x\ + X2 = 0

which is different from that corresponding to the equivalent control.
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u* = 1

u* = -1

u* = -1

X-2

u* = -1

u* = -1

\
u* = 1

x\ + x-2 = 0

However, the sliding dynamics obtained by using the equivalent control
agree with Filippov's dynamics in the particular case of control systems

i o VQ orrin^i in ^-Vio r»/~vnl-Y»/~vl 01 im ol i a

cj J. A u L—

which are affine in the control signal, i.e.,

/(t, x, u) = A(t, x) + B(t, x)u

where A, B are matrices of the appropriate dimensions.

A + BU+

(2.24)

s(x) = 0

Example 13 /// is given by (2.23) with scalar control u,M = P = l,A
and B being measurable with respect to t and continuous with respect to x,
and s is continuously differentiate, then a sufficient condition to existence
and uniqueness of the equivalent control is that

Ds(x)-B(t,x) 7^0

for almost all t and every x. Then the equivalent control is given by

u(t, x) = -Ds(x) • A(t, x}/Ds(x) • B(t, x)

and is again measurable in t and continuous in x. More generally, for
multivariable control systems (2.24) with M = P, a sufficient condition for
the existence and uniqueness of the equivalent control is that the M x M
matrix Ds(x)B(t,x) is everywhere nonsingular. In this case the equivalent
control is

u(t,x) = -[Ds(x}B(t,x)]-lDs(x)A(t,x)

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The equivalence between Filippov and equivalent control states deals
with the following situation (componentwise sliding mode control described
in section 2.1). Let (2.24) hold, M = P, and each Si be continuously dif-
ferentiable, i = 1, . . . , M . Then for each x with s(x) = 0, every sufficiently
small neighborhood of x turns out to be a disjoint union of open regions
GI, . . . , Gq and points of the sliding surface. We are given q = 1M feed-
back control laws U i ( t , x ) , which are measurable in t and continuous in x.
Let y be absolutely continuous in the given time interval [0, T] such that

= 0 for every t.

Theorem 14 (Equivalence) y is a Filippov solution to (2.1) correspond-
ing to the feedback u* defined by u\ on G\, . . . , uq on Gq if and only if
y is a classical solution to (2.1), corresponding to the equivalent control,
provided U is closed convex and Ds(x}B(t,x) is nonsingular for every t
and x close to S .

Proof of a particular case of Theorem 14. Let M = P = I and sup-
pose that the conditions leading to (2.16) are met. Then the dynamics
corresponding to the equivalent control are as in Example 13, namely

y = A - B(Ds • A)/Ds • B

In order to compare this with (2.16) we write w* = u+ if s(x) > 0, u* = u~
if s(x) < 0, and compute

(Ds • g-}g+ - (Ds • g+}g- = [(Ds • A}B - (Ds • B}A](u+ - u~]

thus, by (2.16) , the conclusion.
The practical value of Theorem 14 is obvious. For control systems (2.24)

(under the above conditions), all calculations involving Filippov sliding
mode controls can be correctly performed by formally differentiating the
sliding condition (2.3) and working with states corresponding in the point-
wise (classical) sense to the equivalent control; no discontinuous differential
equation is involved at this stage.

An interesting property of the equivalent control, assuming (2.24) and
suitable smoothness properties, involves the convergence of states, fulfilling
only approximately the sliding condition, to the sliding state corresponding
to the equivalent control, when the boundary layer width tends to disappear
(regularization procedure). This fact will be discussed from a more general
point of view in the next section.

2.5 Robustness and discontinuous control

Feedback control is important, among other reasons, mainly because of its
robustness properties. In this section we briefly summarize a mathematical
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interpretation of a form of robustness which deals with the dynamic behav-
ior of sliding mode control systems under discontinuous feedback, and lies
at the roots of practical control methods.

Given the variable structure control system (2.1), (2.2) and (2.3) we
distinguish between

• real states which are solutions to (2.1) fulfilling only approximately
the sliding condition and

• ideal states which solve (2.1) and fulfill exactly condition (2.3).
The following problem is relevant in this connection. Find conditions

on the variable structure control system (2.1), (2.2) and (2.3) such that the
following two properties hold:

• for every sequence of real states, whenever their initial values converge
to the sliding manifold, then they converge towards a well-defined ideal
state;

• one can approximate any ideal sliding state by real states fulfilling
only approximately the sliding condition as the sliding error tends to zero.

We would like to obtain such robustness properties, no matter what
the reasons are of violating the sliding condition (like disturbances, control
errors, uncertainties, delays, etc.). Taking into account the discussion of
Section 2.4 we assume that s is continuously differentiate and the mapping

D s f ( t , x , - )

takes on the value 0, and is one-to-one on U for all x in some neighborhood
V of the sliding manifold (2.4) and almost every t. We denote by

u(t,x,w)

the unique solution u 6 U of D s ( x } f ( t , x , u ] = w for a given iu, hence the
equivalent control is now w(t,o:,0). Given p > 1,T > 0 and m(t) > 0 such
that JQ [m(t}]pdt is finite, let H denote the set of all parametrized functions
ae(t},€ > 0, such that

< m(t) and sup {| / ae(s)ds|;0 < t <
JQ

Given ae 6 H suppose that xe solves almost everywhere (2.1) with u =
•u[i,x,oe(t)]. Then

d/dts[x£(t)] = Ds[x£(t)]f[t,Xt(t),u£(t)] = a£(t) (2.25)

where ue = u[t, x £ ( t } , a e ( t } } . Integrating (2.25) between 0 and t we get

s[x£(t)] — > 0 uniformly on [0,T] as e — * 0
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The parameter e describes the amount of violation of the sliding condi-
tion (2.3) due to some imperfection (whatever they be). The sliding error
is measured by ae. Let y be a classical solution on [0,T] of (2.1) corre-
sponding to the equivalent control - u ( - , - , 0 ) such that s[y(0)] = 0, hence
s[y(t)} — 0 for all t 6 [0,T] (because of the definition of u). The required
robustness conditions are then satisfied provided the control system fulfills
the following approximability property in (0,T):

for every at in H such that u [ t , x , a e ( t ) } exists for almost every t and
x S F, if we have

s[ze(0)] ->0 as e -+0

then xe(0) —* y(0) implies xe —> y uniformly on [0,T].

Thus we have the following behavior provided (2.1), (2.2) and (2.3) sat-
isfies the approximability property. If the control law we are employing
yields small sliding errors, then reduction of the sliding error at the initial
time implies uniformly small deviations from the desired (sliding) dynam-
ical behavior (described by the equivalent control). Thus all real states
converge to a well defined (uniquely determined) sliding state of the con-
trol system as the disturbances disappear, provided the initial values tend
to the sliding manifold. Therefore approximability holds if and only if we
can uniformly approximate any ideal sliding state by real states, disregard-
ing the particular nature of the disturbances which are responsible for the
sliding errors.

Example 15 The control system is

N = 3,M = P = 2, with control constraint \ui\ < 1, \u-2 < I ; the slid-
ing manifold is given by si(x) — x\,s<2,(x) = x^j the initial condition is
x(0) = 0. Here the equivalent control u = 0 gives rise to the motion
y(t} = 0 for all t. Partition the time interval in 2n equal subintervals
and consider the control laws uin(t) = U2n(t) = — 1 or +1 alternatively.
Then for the corresponding states, as n — > +oo,xin(t) — •> 0, X2n(t) — >• 0,
however x^n(t) = t for every n. Approximability fails (and the sliding state
z(i] = (0,0, t)' does not correspond to the equivalent control). The dynamic
behavior of the system on the sliding manifold is in some sense ambiguous,
and lacks robustness: by reducing the sliding error the corresponding real
states do not converge to y.
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£3

z(t]

X-2

It can be proved that, under suitable smoothness and nonsingularity
conditions, approximability is verified in each of the following cases:

f ( t , x, u) = A(t, x] + B(t, x)u

f(t,x,u) = (x2,x3,...,xN,g)

(2.26)

where g = g(t,xi,X2,... ,XN,U) is strictly monotone with respect to the
scalar control variable u.

Approximability is a theoretical basis to justify on rigorous grounds
several sliding mode control procedures as far as their robustness properties
are involved.

2.6 Numerical treatment
The simplest way to solve numerically the initial value problem

x 0 = a 0 < £ <T

is to look for a suitable extension of the classical Euler method, as follows.
Choose a uniform grid

0 < ti < t2 < . . . < tn = T

with step size h = T/n, n a given positive integer, hence

such thatLet x0 = a and for j = 0, 1, . . . , n — 1 compute any point

e Xj + (T/n)G(tj,Xj)
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Consider the corresponding piecewise affine continuous function

yn(t) = Xj + (n/T}(t - tj}(xj+i - Xj),tj < t < tj+i,j = 0 ,1 , . . . ,n - 1

Then yn can be considered as an approximate solution to (2.12) on [0,T].

Theorem 16 (Convergence) As n —> +00, yn converges uniformly on
[0,T], up to subsequences, to some solution of (2.12) provided G is upper
semicontinuous with nonempty compact convex values and

sup {\z\ : z e G(t,x)} < k\x\ -f h

for every t,x and some constants k, h.

Thus convergence of the Euler method is guaranteed for discontinuous
feedback control systems (under the previous assumptions). More refined
methods, known to have better convergence properties when applied to
smooth differential equations, cannot be guaranteed to converge when ex-
tended more or less directly to apply to, say, (2.15). Indeed, smoothness
properties under which convergence is guaranteed for differential inclusions,
are usually not satisfied for piecewise continuous differential equations. If
applicable, such methods require special care to handle discontinuous dif-
ferential equations. See also Chapter 8 of this book (Discretization Issues,
by J-P. Barbot et al.).

2.7 Mathematical appendix

We collect here a few mathematical definitions which have been used in
these notes.

A bounded subset A of the real numbers has Lebesgue measure zero if
for every E > 0 there exists a countable collection B of disjoint intervals
Bn, n — 1, 2, • • • , such that A c U{Sn : n = 1,2, • • • } and the total length
of B, i.e. Z^^ (length Bn) is < £. Any finite set, the set of points of any
sequence, the set of all decimal numbers in a given bounded interval are
all examples of sets of measure 0 in R. Almost everywhere means except
of a set of measure 0. Hence (Section 2.2) if x is an almost everywhere
solution of the differential equation x = g(t, x) on some bounded interval,
then x ( t ) — g[t,x(t)} for all t except those in a set of measure 0 (which
could be empty of course).

The family of all Lebesgue measurable subsets of RN contains all com-
pact and all open sets, all subsets of sets of measure 0 (which are de-

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



fined similarly as the case N = 1), and it is invariant under comple-
mentation, countable unions and intersections. A given real-valued func-
tion / : R^ —> R is Lebesgue measurable if and only if all sublevel sets
{x € RN : f ( x ) < c] are measurable (for all real c). A vector-valued func-
tion is measurable if and only if its components are. Very roughly speaking,
most of the functions we encounter in the control sciences are indeed mea-
surable.
A function y : [p, q] —> RN is absolutely continuous if and only if y has a
derivative y(t) at almost every point t of the interval [p, g],y is integrable
there and for all pairs of points a, b in [p, q] we have Jaydt = y(b) — y(a).

Hence y(t) = y(p) + f y(s) ds,p < t < q, which allows us to represent the
absolutely continuous function y via its derivative. Of course every contin-
uously differentiable function is absolutely continuous (e.g., any classical
solution of (2.6) with a continuous g).
A set C C ^N is convex if and only if for every pair of points w, v G C we
have that all points cm + (1 — a)v,Q < a < I belong to C as well: i.e., if
u, v are in C then the whole segment with ends u, v belongs to C.

2.8 Bibliographical comments

Section 2.1. A comprehensive treatment of the whole subject of sliding
mode control with several applications can be found in [2]. Basic points of
design of variable structure control are described in [8], see also [13]. The
simplex method was discovered by Bajda-Isozimov (Automation Remote
Control 46, 1985) and further developed by Bartolini-Parodi-Utkin-Zolezzi
(to appear in Mathematical Problems in Engineering).

Sections 2.2, 2.3. The basic definition and the mathematical properties
of Filippov solutions are in [3], see also the treatise [6]. Further definitions
are compared in [7]. In [1] we find an exposition of the basic mathematical
results about differential inclusions, see also [11]. An interesting discussion
about the very beginning of relating the theory of discontinuous differential
equations with control problems is in [9]. The physical meaning of Filippov
solutions is discussed in [2].

Stabilization of control systems via discontinuous control require no-
tions of solution of control systems which are different from Filippov's, see
Clarke-Ledyaev-Sontag in IEEE Trans. Autom. Control 42 (1997), and
Bressan, preprint SISSA (Trieste) n. 144 ( 1998).

Section 2.4. The theory of viability is discussed in [1] (and at a greater
length in [10]). The concept of equivalent control and its physical meaning
can be found in [2]. A survey of several concepts related to viability is in
[5].
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Section 2.5. Approximability was introduced in [4], see Bartolini-Zolezzi
in [13] for further developments.

Section 2.6 See the survey [12], which among other things pre-
sents some computer plots of numerical solutions to a discontinuous
differential equation.
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Chapter 3

Higher-Order Sliding
Modes

L. FRIDMAN* and A. LEVANT**
* Chihuahua Institute of Technology, Chihuahua, Mexico
** Institute for Industrial Mathematics, Beer-Sheva, Israel

3.1 Introduction

One of the most important control problems is control under heavy un-
certainty conditions. While there are a number of sophisticated methods
like adaptation based on identification and observation, or absolute sta-
bility methods, the most obvious way to withstand the uncertainty is to
keep some constraints by "brutal force". Indeed any strictly kept equality
removes one " uncertainty dimension". The most simple way to keep a con-
straint is to react immediately to any deviation of the system stirring it back
to the constraint by a sufficiently energetic effort. Implemented directly,
the approach leads to so-called sliding modes, which become main oper-
ation modes in the variable structure systems (VSS) [55]. Having proved
their high accuracy and robustness with respect to various internal and
external disturbances, they also reveal their main drawback: the so-called
chattering effect, i.e., dangerous high-frequency vibrations of the controlled
system. Such an effect was considered as an obvious intrinsic feature of the
very idea of immediate powerful reaction to the minutest deviation from
the chosen constraint. Another important feature is proportionality of the
maximal deviation from the constraint to the time interval between the
measurements (or to the switching delay).
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To avoid chattering some approaches were proposed [15, 51]. The main
idea was to change the dynamics in a small vicinity of the discontinuity
surface in order to avoid real discontinuity and at the same time to preserve
the main properties of the whole system. However, the ultimate accuracy
and robustness of the sliding mode were partially lost. Recently invented
higher order sliding modes (HOSM) generalize the basic sliding mode idea,
acting on the higher order time derivatives of the system deviation from the
constraint instead of influencing the first deviation derivative as it happens
in standard sliding modes. Along with keeping the main advantages of
the original approach, at the same time they totally remove the chattering
effect and provide for even higher accuracy in realization. A number of
such controllers were described in the literature [16, 34, 35, 38, 3, 5].

HOSM is actually a movement on a discontinuity set of a dynamic sys-
tem understood in Filippov's sense [22]. The sliding order characterizes the
dynamics smoothness degree in the vicinity of the mode. If the task is to
provide for keeping a constraint given by equality of a smooth function s
to zero, the sliding order is a number of continuous total derivatives of s
(including the zero one) in the vicinity of the sliding mode. Hence, the rth
order sliding mode is determined by the equalities

s = s -5 = ... = 5(r-1) = 0 (3.1)

forming an r-dimensional condition on the state of the dynamic system.
The words "rth order sliding" are often abridged to "r-sliding".

The standard sliding mode on which most variable structure systems
(VSS) are based is of the first order (s is discontinuous). While the stan-
dard modes feature finite time convergence, convergence to HOSM may
be asymptotic as well, r-sliding mode realization can provide for up to
the rth order of sliding precision with respect to the measurement interval
[35, 38, 41]. In that sense r-sliding modes play the same role in sliding
mode control theory as Runge-Kutta methods in numerical integration.
Note that such utmost accuracy is observed only for HOSM with finite-
time convergence.

Trivial cases of asymptotically stable HOSM are easily found in many
classic VSSs. For example there is an asymptotically stable 2-sliding mode
with respect to the constraint x = 0 at the origin x = x = 0 (at the
one point only) of a 2-dimensional VSS keeping the constraint x + x = 0
in a standard 1-sliding mode. Asymptotically stable or unstable HOSMs
inevitably appear in VSSs with fast actuators [23, 25, 26, 27, 30]. Stable
HOSM reveals itself in that case by spontaneous disappearance of the chat-
tering effect. Thus, examples of asymptotically stable or unstable sliding
modes of any order are well known [16, 14, 50, 35, 30]. On the contrary,
examples of r-sliding modes attracting in finite time are known for r = I
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(which is trivial), for r = 2 [34, 16, 17, 35, 4, 5] and for r = 3 [30].
Arbitrary order sliding controllers with finite-time convergence were only
recently presented [38, 41]. Any new type of higher-order sliding controller
with finite-time convergence is unique and requires thorough investigation.

The main problem in implementation of HOSMs is increasing informa-
tion demand. Generally speaking, any r-sliding controller keeping s = 0
needs s, s,..., s^r~1^ to be available. The only known exclusion is a so-called
"super-twisting" 2-sliding controller [35, 37], which needs only measure-
ments of s. First differences of s(r~2^ having been used, measurements of
s,5, ...,s(r~2) turned out to be sufficient, which solves the problem only
partially. A recently published robust exact differentiator with finite-time
convergence [37] allows that problem to be solved in a theoretical way. In
practice, however, the differentiation error proves to be proportional to
e^2 \ where k < r is the differentiation order and £ is the maximal mea-
surement error of s. Yet the optimal one is proportional to e(r~fc)/r (s(r)
is supposed to be discontinuous, but bounded [37]). Nevertheless, there is
another way to approach HOSMs.

It was mentioned above that r-sliding mode realization provides for up
to the rth order of sliding precision with respect to the switching delay
T, but the opposite is also true [35]: keeping \s\ = O(TT) implies \s^\ ==•
O(rr~l},i = 0,1,...,r — 1, to be kept, if s^ is bounded. Thus, keeping
\s\ = O(TT] corresponds to approximate r-sliding. An algorithm providing
for fulfillment of such relation in finite time, independent on r, is called rth
order real-sliding algorithm [35]. Few second order real sliding algorithms
[35, 52] differ from 2-sliding controllers with discrete measurements. Almost
all rth order real sliding algorithms known to date require measurements
of 5, s,..., s(r~2) with r > 2. The only known exceptions are two real-sliding
algorithms of the third order [7, 39], which require only measurements of
s.

Definitions of higher order sliding modes (HOSM) and order of sliding
are introduced in Section 3.2 and compared with other known control the-
ory notions in Section 3.3. Stability of relay control systems with higher
sliding orders is discussed in Section 3.4. The behavior of sliding mode
systems with dynamic actuators is analyzed from the sliding-order view-
point in Section 3.5. A number of main 2-sliding controllers with finite time
convergence are listed in Section 3.6. A family of arbitrary-order sliding
controllers with finite time convergence is presented in Section 3.7. The
main notions are illustrated by simulation results.
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3.2 Definitions of higher order sliding modes

Regular sliding mode features few special properties. It is reached in finite
time, which means that a number of trajectories meet at any sliding point.
In other words, the shift operator along the phase trajectory exists, but
is not invertible in time at any sliding point. Other important features
are that the manifold of sliding motions has a nonzero codimension and
that any sliding motion is performed on a system discontinuity surface and
may be understood only as a limit of motions when switching imperfections
vanish and switching frequency tends to infinity. Any generalization of the
sliding mode notion must inherit some of these properties.

First let us recall what Filippov's solutions [21, 22] are of a discontinuous
differential equation

x = v(x)

where x G IRn, v is a locally bounded measurable (Lebesgue) vector func-
tion. In that case, the equation is replaced by an equivalent differential
inclusion

x e V(x]

In the particular case when the vector-field v is continuous almost every-
where, the set-valued function V(x) is the convex closure of the set of all
possible limits of v(y) as y — > x, while {y} are continuity points of v. Any
solution of the equation is denned as an absolutely continuous function
x(t), satisfying the differential inclusion almost everywhere.

The following Definitions are based on [34, 16, 17, 19, 35, 30]. Note that
the word combinations "rth order sliding" and "r-sliding" are equivalent.

3.2.1 Sliding modes on manifolds
Let S be a smooth manifold. Set S itself is called the 1-sliding set with
respect to S. The 2-sliding set is defined as the set of points x G £, where
V(x] lies entirely in tangential space Tx to manifold S at point x (Figure

Definition 17 It is said that there exists a first (or second) order sliding
mode on manifold S in a vicinity of a first (or second) order sliding point
x, if in this vicinity of point x the first (or second) order sliding set is an
integral set, i.e., it consists of Filippov's sense trajectories.

Let «Si = <S. Denote by <$2 the set of 2-sliding points with respect
to manifold <S. Assume that t$2 may itself be considered as a sufficiently
smooth manifold. Then the same construction may be considered with
respect to 82 . Denote by <S3 the corresponding 2-sliding set with respect
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to e>2- £3 is called the ^-sliding set with respect to manifold S. Continuing
the process, we can achieve sliding sets of any order.

Definition 18 It is said that there exists an r-sliding mode on manifold
S in a vicinity of an r-sliding point x G <Sr, if in this vicinity of point x
the r-sliding set Sr is an integral set, i.e., it consists of Filippov's sense
trajectories.

3.2.2 Sliding modes with respect to
constraint functions

Let a constraint be given by an equation s(x) = 0, where s : Rn —> R
is a sufficiently smooth constraint function. It is also supposed that to-
tal time derivatives along the trajectories s, s , s , . . . , s^r~1^ exist and are
single-valued functions of x, which is not trivial for discontinuous dynamic
systems. In other words, this means that discontinuity does not appear in
the first r — I total time derivatives of the constraint function s. Then the
rth order sliding set is determined by the equalities

s = s = S = ... = s(r~l) = 0 (3.2)

Here (3.2) is an r-dimensional condition on the state of the dynamic system.

Definition 19 Let the r-sliding set (3.2) be non-empty and assume that it
is locally an integral set in Filippov's sense (i.e., it consists of Filippov's
trajectories of the discontinuous dynamic system). Then the correspond-
ing motion satisfying (3.2) is called an r-sliding mode with respect to the
constraint function s (Figure 3.1).

To exhibit the relation with the previous Definitions, consider a mani-
fold S given by the equation s(x] = 0. Suppose that s, s, s,..., s^r~2^ are
differentiate functions of x and that

rank{Vs,Vs,...,Vs ( r-2)} = r - l (3.3)

holds locally (here rank V is a notation for the rank of vector set V). Then
Sr is determined by (3.2) and all Si, i — 1,. . . , r — I are smooth manifolds.
If in its turn Sr is required to be a differentiate manifold, then the latter
condition is extended to

rank{Vs,Vs,...,Vs(r-1}} = r (3.4)

Equality (3.4) together with the requirement for the corresponding deriva-
tives of s to be differentiate functions of x will be referred to as the sliding
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Figure 3.1: Second order sliding mode trajectory

regularity condition, whereas condition (3.3) will be called the weak sliding
regularity condition.

With the weak regularity condition satisfied and S given by equation
5 = 0, Definition 19 is equivalent to Definition 18. If regularity condition
(3.4) holds, then new local coordinates may be taken. In these coordinates
the system will take the form

= J/25 2/r-l = Mr

Proposition 20 Let regularity condition (3-4) be fulfilled and r-sliding
manifold (3.2) be non-empty. Then an r-sliding mode with respect to the
constraint function s exists if and only if the intersection of the Filippov
vector-set field with the tangential space to manifold (3.2) is not empty for
any r-sliding point.

Proof. The intersection of the Filippov set of admissible velocities
with the tangential space to the sliding manifold (3.2), mentioned in the
Proposition, induces a differential inclusion on this manifold. This inclu-
sion satisfies all the conditions by Filippov [21, 22] for solution existence.
Therefore manifold (3.2) is an integral one.

Let s now be a smooth vector function, s : Rn —> Mm, s — ( s i , . . . , sm),
and also r — (r\,... ,rTO), where TI are natural numbers.
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Definition 21 Assume that the first r; successive full time derivatives of
Si are smooth functions, and a set given by the equalities

Si — si = s'i = ... = slrl~1' =0, i = 1 , . . . , m

is locally an integral set in Filippov's sense. Then the motion mode existing
on this set is called a sliding mode with vector sliding order r with respect
to the vector constraint function s.

The corresponding sliding regularity condition has the form

rank{Vs i,...,VsJ r i~1) |i = 1,... ,m} = n + . . .+ rm

Definition 21 corresponds to Definition 18 in the case when r\ = ... = rm

and the appropriate weak regularity condition holds.
A sliding mode is called stable if the corresponding integral sliding set

is stable.

Remarks

1. These definitions also include trivial cases of an integral manifold in a
smooth system. To exclude them we may, for example, call a sliding mode
"not trivial" if the corresponding Filippov set of admissible velocities V(x]
consists of more than one vector.
2. The above definitions are easily extended to include non-autonomous
differential equations by introduction of the fictitious equation i = I. Note
that this differs slightly from the Filippov definition considering time and
space coordinates separately.

3.3 Higher order sliding modes in
control systems

Single out two cases: ideal sliding occurring when the constraint is ideally
kept and real sliding taking place when switching imperfections are taken
into account and the constraint is kept only approximately.

3.3.1 Ideal sliding

All the previous considerations are translated literally to the case of a
process controlled

x = f ( t , x , u ) , s = s(t ,x) e R, u = U(t,x) e R
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where x G Mn, t is time, u is control, and / and s are smooth functions.
Control u is determined here by a feedback u — £/(£,#), where U is a
discontinuous function. For simplicity we restrict ourselves to the case
when s and u are scalars. Nevertheless, all statements below may also be
formulated for the case of vector sliding order.

Standard sliding modes satisfy the condition that the set of possible
velocities V does not lie in tangential vector space T to the manifold s = 0,
but intersects with it, and therefore a trajectory exists on the manifold with
the velocity vector lying in T. Such modes are the main operation modes
in variable structure systems [54, 55, 12, 57] and according to the above
definitions they are of the first order. When a switching error is present
the trajectory leaves the manifold at a certain angle. On the other hand, in
the case of second order sliding all possible velocities lie in the tangential
space to the manifold, and even when a switching error is present, the state
trajectory is tangential to the manifold at the time of leaving.

To see connections with some well-known results of control theory, con-
sider at first the case when

x = a(x) + b(x)u, s = s(x) G E, u G R

where a, 6, s are smooth vector functions. Let the system have a relative
degree r with respect to the output variable s [31] which means that Lie
derivatives Lf,s, LbLas,..., L(}L

1
a~

2s equal zero identically in a vicinity of
a given point and L^L1

a~
1s is not zero at the point. The equality of the

relative degree to r means, in a simplified way, that u first appears explic-
itly only in the rth total time derivative of 5. It is known that in that
case s^ = Ll

as for i = 1 , . . . , r — 1, regularity condition (3.4) is satisfied
automatically and also -j^s^ = LbL1

a~
1s ^ 0. There is a direct anal-

ogy between the relative degree notion and the sliding regularity condition.
Loosely speaking, it may be said that the sliding regularity condition (3.4)
means that the "relative degree with respect to discontinuity" is not less
than r. Similarly, the rth order sliding mode notion is analogous to the
zero-dynamics notion [31].

The relative degree notion was originally introduced for the autonomous
case only. Nevertheless, we will apply this notion to the non-autonomous
case as well. As was done above, we will introduce for the purpose a
fictitious variable xn+\ — t, xn+i = 1. It should be mentioned that some
results by Isidori will not be correct in this case, but the facts listed in the
previous paragraph will still be true.

Consider a dynamic system of the form

x = a(t, x) + b(t, x)u, s = s(t, x}, u~ U(t, x] G R
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Theorem 22 Let the system have relative degree r with respect to the out-
put function s at some r -sliding point (to,xo). Let, also, the discontinuous
function U take on values from sets [K, oo) and (—00, —K] on some sets of
non zero measure in any vicinity of any r-sliding point near point (IQ^XQ).
Then it provides, with sufficiently large K, for the existence of r-sliding
mode in some vicinity of point (£o,a?o)- r-sliding motion satisfies the zero-
dynamics equations.

Proof. This Theorem is an immediate consequence of Proposition 20,
nevertheless, we will detail the proof. Consider some new local coordinates
y — (yii • • • i Vn)-, where y\ = s, y% = s, . . . , yr = s^r~l\ In these coordinates
manifold Lr is given by the equalities y\ = y-2 = . . . = yr — 0 and the
dynamics of the system is as follows:

2/1 =1/2, . - . , 2/r-i =Vr
yr = h(t,y) + g(t,y)u, g ( t , y ) /=0 (3.5)

Denote Ueq = — h ( t , y } / g ( t , y ) . It is obvious that with initial conditions
being on the r-th order sliding manifold Sr equivalent control u = Ueq(t, y)
provides for keeping the system within manifold Sr. It is also easy to see
that the substitution of all possible values from [-K, K] for u gives us a
subset of values from Filippov's set of the possible velocities. Let \Ueq\
be less than KQ, then with K > KQ the substitution u = Ueq determines
Filippov's solution of the discontinuous system which proves the Theorem.

The trivial control algorithm u = — Ksign s satisfies Theorem 22. Usu-
ally, however, such a mode will not be stable. It follows from the proof
above that the equivalent control method [54] is applicable to r-sliding
mode and produces equations coinciding with the zero-dynamics equations
for the corresponding system.

The sliding mode order notion [11, 14] seems to be understood in a very
close sense (the authors had no opportunity to acquaint themselves with
the work by Chang). A number of papers approach the higher order sliding
mode technique in a very general way from the differential-algebraic point
of view [48, 49, 50, 43]. In these papers so-called "dynamic sliding modes"
are not distinguished from the algorithms generating them.

Consider that approach. Let the following equality be fulfilled identi-
cally as a consequence of the dynamic system equations [50] :

P(s(r) , . . . , s, s, x, u(k} , . . . , u, u) = 0 (3.6)

Equation (3.6) is supposed to be solvable with respect to s^ and u^k\
Function s may itself depend on u. The rth order sliding mode is considered
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as a steady state s = 0 to be achieved by a controller satisfying (3.6). In
order to achieve for s some stable dynamics

a = s(r~l} + alS
(r-2) + . . . + a r_is = 0

the discontinuous dynamic

a = —signer (3-7)

is provided. For this purpose the corresponding value of s^ is evaluated
from (3.7) and substituted into (3.6). The obtained equation is solved for
u^.

Thus, a dynamic controller is constituted by the obtained differential
equation for u which has a discontinuous right hand side. With this con-
troller successive derivatives s , . . . , s^r~^ will be smooth functions of closed
system state space variables. The steady state of the resulting system will
satisfy at least (3.2) and under some relevant conditions also the regularity
requirement (3.4), and therefore Definition 19 will hold.

Hence, it may be said that the relation between our approach and the
approach by Sira-Ramirez is a classical relation between geometric and
algebraic approaches in mathematics. Note that there are two different
sliding modes in system (3.6) and (3.7): a standard sliding mode of the
first order which is kept on the manifold a = 0, and an asymptotically
stable r-sliding mode with respect to the constraint s = 0 which is kept in
the points of the r-sliding manifold s = s = s = ... = s^r~1^ — 0.

3.3.2 Real sliding and finite time convergence

Recall that the objective is synthesis of such a control u that the constraint
s(t, x] = 0 holds. The quality of the control design is closely related to the
sliding accuracy. In reality, no approach to this design problem provides
for ideal keeping of the prescribed constraint. Therefore, there is a need to
introduce some means in order to provide a capability for comparison of
different controllers.

Any ideal sliding mode should be understood as a limit of motions when
switching imperfections vanish and the switching frequency tends to infinity
(Filippov [21, 22]). Let e be some measure of these switching imperfections.
Then sliding precision of any sliding mode technique may be featured by a
sliding precision asymptotics with E —> 0 [35]:

Definition 23 Let ( t , x ( t , e ) ) be a family of trajectories, indexed by £ 6 RM
;

with common initial condition (to^x(to)), and let t > to (or t 6 [tQ,T]).
Assume that there exists t\ > to (ort\ E [to,T]) such that on every segment
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[£',£"], where t' > t\ (or on [t\ , T}), the function s(t,x(t,e)) tends uniformly
to zero with e tending to zero. In that case we call such a family a real-
sliding family on the constraint s = 0. We call the motion on the interval
[to, ti] a transient process, and the motion on the interval [ti, oo) (or [ti,T])
a steady state process.

Definition 24 A control algorithm, dependent on a parameter e G RM, is
called a real-sliding algorithm on the constraint s — 0 if, with e — » 0, it
forms a real-sliding family for any initial condition.

Definition 25 Let 7(5) be a real-valued function such that 7(2) — -> 0 as
£ — > 0. A real- sliding algorithm on the constraint s = 0 is said to be of order
r (r > 0) with respect to 7(5) if for any compact set of initial conditions
and for any time interval [Ti,T2J there exists a constant C, such that the
steady state process for t G [Ti , T2] satisfies

In the particular case when 7(5) is the smallest time interval of control
smoothness, the words "with respect to 7" may be omitted. This is the
case when real sliding appears as a result of switching discretization.

As follows from [35], with the r-sliding regularity condition satisfied,
in order to get the rth order of real sliding with discrete switching it is
necessary to get at least the rth order in ideal sliding (provided by infi-
nite switching frequency). Thus, the real sliding order does not exceed
the corresponding sliding mode order. The standard sliding modes pro-
vide, therefore, for the first-order real sliding only. The second order of
real sliding was really achieved by discrete switching modifications of the
second-order sliding algorithms [34, 16, 17, 18, 19, 35]. Any arbitrary order
of real sliding can be achieved by discretization of the same order sliding
algorithms from [38, 39, 41] (see Section 3.7).

Real sliding may also be achieved in a way different from the discrete
switching realization of sliding mode. For example, high gain feedback
systems [47] constitute real sliding algorithms of the first order with respect
to A:"1, where A; is a large gain. A special discrete-switching algorithm
providing for the second order real sliding were constructed in [52] . Another
example of a second order real sliding controller is the drift algorithm [18,
35] . A third order real-sliding controller exploiting only measurements of s
was recently presented [7].

It is true that in practice the final sliding accuracy is always achieved
in finite time. Nevertheless, besides the pure theoretical interest there are
also some practical reasons to search for sliding modes attracting in finite
time. Consider a system with an r-sliding mode. Assume that with minimal

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



switching interval r the maximal r-th order of real sliding is provided. That
means that the corresponding sliding precision \s\ ~ rr is kept, if the
r-th order sliding condition holds at the initial moment. Suppose that the
r-sliding mode in the continuous switching system is asymptotically stable
and does not attract the trajectories in finite time. It is reasonable to
conclude in that case that with r —» 0 the transient process time for fixed
general case initial conditions will tend to infinity. If, for example, the
sliding mode were exponentially stable, the transient process time would
be proportional to rln(r~1). Therefore, it is impossible to observe such an
accuracy in practice, if the sliding mode is only asymptotically stable. At
the same time, the time of the transient process will not change drastically
if it was finite from the very beginning. It should be mentioned, also, that
the authors are not aware of a case when a higher real-sliding order is
achieved with infinite-time convergence.

3.4 Higher order sliding stability in
relay systems

In this section we present classical results by Tsypkin [53] (published in
Russian in 1956) and Anosov (1959) [1]. They investigated the stability of
relay control systems of the form

y\ = 2/2, • • - , yi-i = yi
yi = Y%=i ai,jyj + k siSn 2/i (3-8)
yi = ]Cj=i a,itjyj, i = / + 1 , . . . , n

where a^j = const, k / 0, and y\ = y^ = ... = yi = 0 is the Z-th order
sliding set. The main result is as follows:

• for stability of equilibrium point of relay control system (3.8 ) with
second order sliding (Z = 2), three main cases are singled out: expo-
nentially stable, stable, and unstable;

• it is shown that the equilibrium point of the system (3.8) is always
unstable with Z > 3. Consequently, all higher order sliding modes
arriving in the relay control systems are unstable with an order of
sliding more than 2.

Consider the ideas of the proof.
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3.4.1 2-sliding stability in relay systems
Consider a simple example of a second-order dynamic system

yi=V2, m = ay i +by2 + k sign yi (3.9)

The 2-sliding set is given here by y\=yi — 0. At first, let k < 0. Consider
the Lyapunov function

(3.10)

Function E is an energy integral of system (3.9) Computing the derivative
of function E, we achieve

E = 2^2 + g l

It is obvious that for some positive oti < ot2i 01 < fa

<*i\yi\ + Piy% <E< a2\yi\+fay%

Thus, the inequalities —^E < E < —j\E or ^\E < E < ^2E hold for
b < 0 or b > 0, respectively, in a small vicinity of the origin with some
72 > 7i > 0.

Now let k > 0. It is easy to see in that case that the trajectories
cannot leave the set y\ > 0, y2 = y\ > 0 if a > 0. The same is true with
y\ < k/\a\ if a < 0. Starting with an infinitisimally small y\ > 0, y2 > 0,
any trajectory inevitably leaves some fixed origin vicinity.

It allows three main cases to be singled out for investigation of the
stability of the system (3.9).

• Exponentially stable case. Under the conditions

6 < 0 , fc<0 (3.11)

the equilibrium point y\ = 7/2 = 0 is exponentially stable.

• Unstable case. Under the condition

k > 0 or b > 0

the equilibrium point yi = y2 = 0 is unstable.

• Critical case.
k < 0, 6 < 0, bk = 0

With 6 = 0, k < 0 the equilibrium point j/i = 7/2 = 0 is stable.

It is easy to show that if the matrix A consisting of ajj, i,j > 2 is
Hurvitz and conditions 02,2 < 0, k < 0 are true, then the equilibrium point
of system (3.8) is exponentially stable.
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3.4.2 Relay system instability with
sliding order more than 2

Let us illustrate the idea of the proof on an example of a simple third-order
system

2/i = 2/2, 2/2 = 2/3, 2/3 = asi2/i + ^322/2 + a33y3 - fcsignj/i, k > 0 (3.12)

Consider the Lyapunov function1

V = 2/12/3 - ijyl

Thus,
V = -%i| +2/i(a3i2/i +a32y2 +0332/3)

and V" is negative at least in a small neighborhood of origin (0,0,0). That
means that the zero solution of system (3.12) is unstable.

On the other hand, in relay control systems with an order of sliding
more than 2, a stable periodic solution can occur [46, 32].

3.5 Sliding order and dynamic actuators

Let the constraint be given by the equality of some constraint function s
to zero and let the sliding mode s = 0 be provided by a relay control.
Taking into account an actuator conducting a control signal to the pro-
cess controlled, we achieve more complicated dynamics. In that case the
relay control u enters the actuator and continuous output variables of the
actuator z are transmitted to the plant input (Figure 3.2). As a result,
discontinuous switching is hidden now in the higher derivatives of the con-
straint function [55, 23, 24, 25, 26, 27, 9].

3.5.1 Stability of 2-sliding modes in systems
with fast actuators

Condition (3.11) is used in [25, 26, 27, 9] for analysis of sliding mode sys-
tems with fast dynamic actuators. Here is a simple outline of these rea-
sonings. One of the actuator output variables is formally replaced by s
after application of some coordinate transformation. Let the system under
consideration be rewritten in the following form:

fj,z = Az + Bf] + D\x
iri] = Cz + brj + D2x + k sign s (1 i"*}
s — r\
x = F ( z , r j , s , x ]

1This function was suggested by V.I. Utkin in private communications.
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Plant

Relay Controller

Figure 3.2: Control system with actuator

where z <E Em, x € Rn, 77 and s G R.
With (3.11) fulfilled and Re Spec A < 0, system (3.13) has an expo-

nentially stable integral manifold of slow motions which is a subset of the
second-order sliding manifold and given by the equations

z = H(fj.t x) = -A~lDix + s = T = 0.

Function H may be evaluated with any desired precision with respect to
the small parameter /i.

Therefore, according to [25, 26, 27, 9], under the conditions

ReSpecA<0, b < 0, k < 0 (3.14)

the motions in such a system with a fast actuator of relative degree 1
consists of fast oscillations, vanishing exponentially, and slow motions on a
submanifold of the second-order sliding manifold.

Thus, if conditions (3.14) of chattering absence hold, the presence of
a fast actuator of relative degree 1 does not lead to chattering in sliding
mode control systems.

Remark

The stability of the fast actuator and of the second-order sliding mode
in (3.13) still does not guarantee absence of chattering if dimz > 0 and
§j T^ 0, for in that case fast oscillations may still remain in the 2-sliding
mode itself. Indeed, the stability of a fast actuator corresponds to the
stability of the fast actuator matrix
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ReSpec ( ^ f ) <0
\ O u\

Consider the system

^if] = 24^i — 6022 — 9?7 + D^x + k sign s
s = r)
x = F ( z i , z 2 , r j , s , x )

where zi,z2,rj,s are scalars. It is easy to check that the spectrum of the
matrix is { — 1, —2, —3} and condition (3.11) holds for this system. On the
other hand the motions in the second-order sliding mode are described by
the system

IJLZ\ = z\ + Z2 + DIX
/JiZ2 -— ^Z"2 r JLJ2X

The fast motions in this system are unstable and the absence of chattering
in the original system cannot be guaranteed.

Example

Without loss of generality we illustrate the approach by some simple exam-
ples. Consider, for instance, sliding mode usage for the tracking purpose.
Let the process be described by the equation x = u, x,u € K, and the
sliding variable be

s = x-f(t), / : R - > R

so that the problem is to track a signal f ( t ) given in real time, where
I / I ) I / I ) I/I < 0.5. Only values of :r, /, u are available.

The problem is successfully solved by the controller u — —signs,
keeping s = 0 in a 1-sliding mode. In practice, however, there is always

some actuator between the plant and the controller, which inserts some
additional dynamics and removes the discontinuity from the real system.
With respect to Figure 3.2 let the system be described by the equation

x — v

where v E R is an output of some dynamic actuator. Assume that the
actuator has some fast first order dynamics. For example

LJLV — u — v
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The input u of the actuator is the relay control

u = —sign s

where n is a small positive number. The second order sliding manifold
8-2 is given here by the equations

s = x- f ( t ) = 0, s = v - f ( t ) = 0

The equality

shows that the relative degree here equals 2 and, according to Theorem
22, a 2-sliding mode exists, provided \i < I . The motion in this mode is
described by the equivalent control method or by zero- dynamics, which is
the same: from s = s — s = 0 we achieve u = pf(t} + v, v = f ( t ) and
therefore

It is easy to prove that the 2-sliding mode is stable here with yu small
enough. Note that the latter equality describes the equivalent control [54,
55] and is kept actually only in the average, while the former two are kept
accurately in the 2-sliding mode.

Let

f ( t ) = 0.08 sin t + 0.12 cos 0.3* , z(0) = 0, u(0) = 0

The plots of x(t) and f ( t ) with p, = 0.2 are shown in Figure 3.3, whereas
the plot of v(t) is demonstrated in Figure 3.4.

3.5.2 Systems with fast actuators of relative
degree 3 and higher

The equilibrium point of any relay system with relative degree > 3 is always
unstable [1, 53] (Section 3.4.2). That leads to an important conclusion:
even being stable, higher order actuators do not suppress chattering in
the closed-loop relay systems. For investigation of chattering phenomena
in such systems, the averaging technique was used [25, 29]. Higher-order
actuators may give rise to high-frequency periodic solutions. The general
model of sliding mode control systems with fast actuators has the form [10]

x = h(x,s,r), z,u(s}}, s = 77

W = 9z(x, s, 77, z),fj.z = gi [x, s, 77, z, u(s)}) (3.15)
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Figure 3.3: Asymptotically stable second-order sliding mode in a system
with a fast actuator. Tracking: x(t) and

7.630808E-01

-4.040195E-01
O.OOOOOOE+OO 5.988000

Figure 3.4: Asymptotically stable second-order sliding mode in a system
with a fast actuator: actuator output v(t)
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where z € Rm, 77, s e R, x 6 X C Rn, w(s) = signs, and g\,gi,h are
smooth functions of their arguments. Variables s and x may be considered
as the state coordinates of the plant. 77, z are the fast-actuator coordinates,
and fj, being the actuator time constant.

Suppose that following conditions are true:
1. The fast-motion system

ds dr) dz . . . . , .
— =77, — =£2 (2,0,77,2), — =0i z, 0,17,2, u(s) (3.16)ar ar ar

has a T(x)-periodic solution (SQ(T, x), T)Q(T, x), ZQ(T, x)) for any x £ X. Sys-
tem (3.16) generates a point mapping ^(x,rj,z) of the switching surface
s = 0 into itself which has a fixed point (17* (x) , z* (x)} , \I>(z,r7*(z),2*(z)) =
( r f ( x } , z * ( x ) } . Moreover, the Frechet derivative of \£(z, 77, z) with respect
to variables (77,2) calculated at (rj* (x) , z* (x)) is a contractive matrix for
any x G X.

2. The averaged system

1 rTW
= ——l1 (x) Jo

(3.17)

has an unique equilibrium point x = XQ. This equilibrium point is expo-
nentially stable.

Theorem 26 [29]. Under conditions 1 and 2 system (3.15) has an isolated
orbitally asymptotically stable periodic solution with the period /z(T(xo) +
O(/^)) near the closed curve

(XQ, //So(t//Z, XQ), 77o(t//Z, XQ), Zo(t/fl, XQ))

Example

Consider a mathematical model of a control system with actuator and the
overall relative degree 3

x = —x — u, s = 21 (3.18)

fj,zi = 22, i*>z<2 = —1z\ — 3^2 — u (3.19)

Here zi,zz,s,x 6 R, u(s) = signs, // is the actuator time constant. The
fast motions taking place in (3.18),(3.19) are described by the system

= -22! -3z2-u, w = sign^ (3.20)
dr
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Then the solution of system (3.20) for £ > 0 with initial condition £(0) =
0, 2i(0) = 210, 22(0) = 220 is as follows

3 1 1 1
£(r) = 2Zl° ~ 22ioe~T + -zwe~2T + -z20 - z20e~T + -z20e~2r

1 3 2r

ZI(T) = 22i0e-T - 2i0e"2r + 220e~T - 220e~2r - - + e~T - -e"2r

22(r) = 2zwe~2T - 2zwe~T - z20e"r + 2^2oe~2r - e~T + e~2r

Consider the point mapping £(2:1,2:2) °f the domain 2:1 > 0, 2:2 > 0 on the
switching surface £ = 0 into the domain z\ < 0, z2 < 0 with sign£ > 0
made by system (3.20). Then

—(21,22) = (— 1(21, 22), £2(21, 22))

£1(21,22) = 22ie-T-2ie-2T + 22e-T-22e-2T- - + e~T - -e"2T

H2(2i, 22 ) - 22ie"2T - 22ie"T - 22e"T + 222e"2T - e"T + e"2T

where T(2i, 22) is the smallest root of equation

£(T(2!, 22)) = -21 - 22ie-T + 2«ie~2T + ifi ~ ̂ ~T

1 ryrrt 1 O 71 1 _ OT1 ^

+ 222C ~ 2 T + 4 - 6 + 4 E =°
System (3.20) is symmetric with respect to the point £ = 21 = 22 = 0. Thus,
the initial condition (0 ,2^,22) and the semi-period T* = T(z*,Z2) for the
periodic solution of (3.20) are determined by the equations £(2^,22) —
— (2*, z2) and 4(^(21,22)) = 0, and consequently

O .,, ^ ,*, T1* - * - * _ OT1* - L ^ ^ _ T* - L * _ OT^*
-2^-22*6 T +-2*e 2r +-z*-z2e + -z2e

__1T* + - - e~T* 4- -e~2T* - 0
2 + 4 6 + 4 6 "U

22ie-2T* - 22*e~T* - z2e~T* + 222e~2T* - e"T* + e"2T* = -z2 (3.21)

Expressing 2^,23 from the latter two equations of (3.21), we achieve

T*(eT' + e3T* + l + eVT*) _ 5eT* _ 3e3T* + 3 + ^IT* = Q (3 ̂
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Equations (3.22) and (3.21) have positive solution

T* « 2.2755, z\ « 0.3241, z2 « 0.1654

corresponding to the existence of a 2T*-periodic solution in system (3.20).
miThus

dT dT
V i s ' Q_ /

3 _ Op-T , 1--2T
2 ' 2

1 _ p-T , \P-IT
2 C ^ 2C

(2*! + z2 + l}e~T - (z,

and

T= 1e~ - e~ + [e-Clz, + 2z2 + 1) - e'(2Zl + z2

I)]'

-2T= 2e

Calculating the value of Frechet derivative §| at (zl,z%}, using the found
value of T*, achieve

dE( * „ . _ [ -0.4686 -0.1133
£ l*!.^;-''- 03954 00979

L

The eigenvalues of matrix J are —0.3736 and 0.0029. That implies existence
and asymptotic stability of the periodic solution of (3.20). The averaged
equation for system (3.18) and (3.19) is

x = —x

and it has the asymptotically stable equilibrium point x = 0. Hence, system
(3.18) and (3.19) has an orbitally asymptotically stable periodic solution
which lies in the O(/^-neighborhood of the switching surface.
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3.6 2-sliding controllers

We follow here [36, 35, 6].

3.6.1 2-sliding dynamics
Return to the system

x = f ( t , x , u ) , s = s ( t , x ] e R, u = U(t, x) e R (3.23)

where x E Rn, £ is time, u is control, and /, s are smooth functions. The
control task is to keep output s = 0. Differentiating successively the output
variable s, we achieve functions s, s,... Depending on the relative degree [31]
of the system, different cases should be considered

a) relative degree r = 1, i.e., -j^s ^ 0

b) relative degree r > 2, i.e., £s^ = 0 (i = 1 ,2 , . . . , r - 1), £s^r) ^ 0

In case a) the classical VSS approach solves the control problem by
means of 1-sliding mode control, nevertheless 2-sliding mode control can
also be used in order to avoid chattering. For that purpose u will become
an output of some first-order dynamic system [35]. For example, the time
derivative of the plant control u(t) may be considered as the actual control
variable. A discontinuous control u steers the sliding variable s to zero,
keeping s = 0 in a 2-sliding mode, so that the plant control u is continuous
and the chattering is avoided [35, 5]. In case b) the p-sliding mode approach
(with p > r) is the control technique of choice.

Chattering avoidance: the generalized constraint
fulfillment problem

When considering classical VSS the control variable u(t) is a feedback-
designed relay output. The most direct application of 2-sliding mode con-
trol is that of attaining sliding motion on the sliding manifold by means of
a continuous bounded input u(t) being a continuous output of a suitable
first-order dynamic system driven by a proper discontinuous signal. Such
first-order dynamics can be either inherent to the control device or specially
introduced for chattering elimination purposes.

Assume that / and s are respectively Cl and C2 functions, and that the
only available current information consists of the current values of £, w(t),
s(t,x) and, possibly, of the sign of the time derivative of s. Differentiating
the sliding variable s twice, the following relations are derived:

r\ r\

s = —s(t, x) + —s(t, x ) f ( t , x, u} (3.24)
ot ox
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r\ r\ r\

s(t) = -£-s(t, x, u) + -z-s(t, x, u)f(t, x, u) + -£-s(t, x, u)u(t) (3.25)
ot ox ou

The control goal for a 2-sliding mode controller is that of steering s to
zero in finite time by means of control u(t) continuously dependent on time.
In order to state a rigorous control problem, the following conditions are
assumed:

1) Control values belong to the set U — {u : |u| < UM}, where UM > 1 is
a real constant; furthermore the solution of the system is well defined
for all £, provided u(t] is continuous and Vt u(t] e U.

2) There exists HI 6 (0,1) such that for any continuous function u(t)
with |w(i)| > wi, there is ti, such that s(t}u(t) > 0 for each t > ti.
Hence, the control u(t] = — sign(s(to)), where to is the initial value
of time, provides hitting the manifold s = 0 in finite time.

3) Let s(t, x, u) be the total time derivative of the sliding variable s(i, x).
There are positive constants SQ, UQ < 1, Tm, TM such that if \s(t, x)\ <
SQ then

o

0 < T m < — s(t,x,u) <TM ,\lu^U,x^X (3.26)
ou

and the inequality \u\ > UQ entails su > 0.

4) There is a positive constant $ such that within the region \s\ < SQ
the following inequality holds W, x e X, u € U

r\ r\

— s(t,x,u) + —s(t,x,u)f(t,x,u) (3.27)

The above condition 2 means that starting from any point of the state
space it is possible to define a proper control u(t] steering the sliding vari-
able within a set such that the boundedness conditions on the sliding dy-
namics defined by conditions 3 and 4 are satisfied. In particular they state
that the second time derivative of the sliding variable s, evaluated with
fixed values of the control w, is uniformly bounded in a bounded domain.

It follows from the theorem on implicit function that there is a function
ueq(t,x} which can be considered as equivalent control [55], satisfying the
equation s — 0. Once s = 0 is attained, the control u = ueq(t,x) would
provide for the exact constraint fulfillment. Conditions 3 and 4 mean that
\s\ < SQ implies \ueq\ < UQ < 1, and that the velocity of the ueq chang-
ing is bounded. This provides for a possibility to approximate ueq by a
Lipschitzian control.
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The unit upper bound for UQ and u\ is actually a scaling factor. Note
also that linear dependence on control u is not required here. The usual
form of the uncertain systems dealt with by the VSS theory, i.e., systems
affine in u and possibly in x, are a special case of the considered system
and the corresponding constraint fulfillment problem may be reduced to
the considered one [35, 20].

Relative degree two. In case of relative degree two the control problem
statement could be derived from the above by considering the variable u
as a state variable and u as the actual control. Indeed, let the controlled
system be

f ( t , x, u) = a(t, x) + b(t, x ) u ( t ) (3.28)

where a : Rn+1 -> Rn and 6 : Rn+1 -> Rn are sufficiently smooth uncertain
vector functions, [^s(i,x)]6(t,x) = 0. Calculating, we find that

s = < f > ( t , x ) + i ( t , x ) u (3.29)

It is assumed that \(p\ < $, 0 < Fm < 7 < FM, $ > 0
Thus in a small vicinity of the manifold s = 0 the system is described

by (3.28), (3.29) if the relative degree is 2, or by (3.23) and

s = (f>(t,x) + ~f(t,x)u (3.30)

if the relative degree is 1.

3.6.2 Twisting algorithm
Let relative degree be 1. Consider local coordinates y\ = s and 7/2 =
s, then after a proper initialization phase, the second order sliding mode
control problem is equivalent to the finite time stabilization problem for
the uncertain second-order system with )</? < <i>, 0 < Fm < 7 < FM, $ > 0.

1 = yi /3 31)
2 = <p(t,x) 4-7(t,x)u

with 1/2(0 immeasurable but with a possibly known sign, and y>(t,x)
and 7(t,x) uncertain functions with

$ > 0 , | < / > < ^ > , 0 < r m < 7 < F M (3.32)

Being historically the first known 2-sliding controller [34], that algorithm
features twisting around the origin of the 2-sliding plane yiOy? (Figure 3.5).
The trajectories perform an infinite number of rotations while converging
in finite time to the origin. The vibration magnitudes along the axes as
well as the rotation times decrease in geometric progression. The control
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Figure 3.5: Twisting algorithm phase trajectory

derivative value commutes at each axis crossing, which requires availability
of the sign of the sliding-variable time-derivative y-2.

The control algorithm is defined by the following control law [34, 35,
17, 20], in which the condition on \u\ provides for \u\ < I :

—u if \u\ > I
u(i) = { -Vr

TOsign(yi) if yiyz < 0; \u\ < I
if yiy2 > 0; \u\ < 1

(3.33)

The corresponding sufficient conditions for the finite time convergence to
the sliding manifold are [35]

VM>Vr
Vm :
v ^> *•'771 ^ p

(3.34)

TMv
The similar controller

u(t} = if yi2/2 < 0
if y\m > o

is to be used in order to control system (3.28) when the relative degree is
2.

By taking into account the different limit trajectories arising from the
uncertain dynamics of (3.29) and evaluating time intervals between suc-
cessive crossings of the abscissa axis, it is possible to define the following
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upper bound for the convergence time [6]

ttwoo < *M! + Qtw--. - ̂ — \\y\M, I (3-35)
1 - Vtw v

Here y\M is the value of the y\ variable at the first abscissa crossing in the
y \Oy-2 plane, tjwl is the corresponding time instant and

In practice when y% is immeasurable, its sign can be estimated by the
sign of the first difference of the available sliding variable y\ in a time
interval r, i.e., signal*)) is estimated by sign(yi(i) — y\ (t — r)). In that
case the 2-sliding precision with respect to the measurement time interval
is provided, and the size of the boundary layer of the sliding manifold is
A ~ O(r2} [35]. Recall that it is the best possible accuracy asymptotics
with discontinuous y? = s.

3.6.3 Sub-optimal algorithm

That 2-sliding controller was developed as a sub-optimal feedback imple-
mentation of a classical time-optimal control for a double integrator. Let
the relative degree be 2. The auxiliary system is

2/2 =(pt,x + it>xu

The trajectories on the y\Oy^ plane are confined within limit parabolic arcs
which include the origin, so that both twisting and leaping (when y\ and
y<2 do not change sign) behaviors are possible (Figure3.6). Also here the
coordinates of the trajectory intersections with axis y\ decrease in geometric
progression. After an initialization phase the algorithm is defined by the
following control law [4, 5, 6]:

v(t) = -a(t)VMsign(yi(t) - \yiM]
a* */ W*) - 5Z/iMHl/iM - J/i(*)l > 0 (3.37)
I if [ i / i ( t ) - i y i M ] [ j / i M - j / i ( t ) ] < 0

where y\M is the latter singular value of the function y i ( t ) , i.e. the latter
value corresponding to the zero value of y% — y\ . The corresponding suffi-
cient conditions for the finite-time convergence to the sliding manifold are
as follows [4]:

a* e (0,l]n(0,^)v ' J v rM '
T 7 ( $ 4$VM> max * , 4*
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Figure 3.6: Sub-optimal algorithm phase trajectories

Also in that case an upper bound for the convergence time can be deter-
mined [4]

1 /
+ + < +*, 4- Pi + /In, I ("\ "1Q\I0ptx _i LM\ I ^opt •, n \ l i /lMi I \O.dVJ1- 'opt

Here y\M and IMI are defined as for the twisting algorithm, and

^opt

3
'opt

_ na*

The effectiveness of the above algorithm was extended to larger classes
of uncertain systems [6] . It was proved [5] that in case of unit gain function
the control law (3.37) can be simplified by setting a — 1 and choosing
VM > 2$.

The sub-optimal algorithm requires some device in order to detect the
singular values of the available sliding variable y\ = s. In the most practical

can be estimated by checking the sign of the quantity D(t) =case
[y\(t — r] — yi(t}] Vi(t) m which | is the estimation delay. In that case the
control amplitude VM must belong to an interval instead of a half-line:

/ / $ \ \
VM e max — — ,VMl(T,yiM) ,^M2(r;yiM) (3.40)

\ \" L m / J

Here VM\ < ^M2
 are the solutions of the second-order algebraic equation

V + 1 = 0
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In the case of approximated evaluation of y\M the second order real
sliding mode is achieved, and the size of the boundary layer of the sliding
manifold is A ~ O(r2}. It can be minimized by choosing VM as follows [6]:

3Fm -
1 + 3Fm -

An extension of the sub-optimal 2-sliding controller to a class of sampled
data systems such that the gain function in (3.29 ) is constant, i.e., 7(-) = 1,
was recently presented [6].

3.6.4 Super-twisting algorithm
This algorithm has been developed to control systems with relative degree
one in order to avoid chattering in VSC. Also in this case the trajectories on
the 2-sliding plane are characterized by twisting around the origin (Figure
3.7), but the continuous control law u(t} is constituted by two terms. The
first is defined by means of its discontinuous time derivative, while the other
is a continuous function of the available sliding variable.

Figure 3.7: Super-twisting algorithm phase trajectory

The control algorithm is defined by the following control law [35]:

-u if \u\ > 1
-Wsign(yi) if \u\ < 1
-A|s0|psign(yi) if \yi\ > SQ
-X\yi\psign(yi) if |yi| < s0

(3.41)
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and the corresponding sufficient conditions for the finite time convergence
to the sliding manifold are [35]

W>

0 < p < 0.5

That controller may be simplified when controlled systems (3.28) are lin-
early dependent on control, u does not need to be bounded and SQ — oo:

u= -\\s\psign(yi)+ui
iii = — W^sign(yi)

The super-twisting algorithm does not need any information on the time
derivative of the sliding variable. An exponentially stable 2-sliding mode
arrives if the control law (3.41) with p = I is used. The choice p = 0.5
ensures that the maximal possible for 2-sliding realization real-sliding order
2 is achieved. Being extremely robust, that controller is successfully used
for real-time robust exact differentiation [37] ( see further).

3.6.5 Drift algorithm

The idea of the controller is to steer the trajectory to the 2-sliding mode
s — 0 while keeping s relatively small, i.e., to cause "drift" towards the
origin along axis y\. When using the drift algorithm, the phase trajectories
on the 2-sliding plane are characterized by loops with constant sign of the
sliding variable y\ (Figure 3.8). That controller intentionally yields
real 2-sliding and uses sample values of the available signal y\ with
sampling period r. The control algorithm is defined by the following control
law [35, 16, 18] (relative degree is 1):

f — u if \u\ > I
u = < -ymsign(A7/li) */ y^yi, < 0; \u\ < I (3.43)

[ -VMsign(A7/ii) if yiAyi, > 0; \u\ < 1

where Vm and VM are proper positive constants such that Vm < VM and
yA*- is sufficiently large, and l^y\i = yi(ti)—yi(ti—r), t € [£j,£j+i). The cor-
responding sufficient conditions for the convergence to the sliding manifold
are rather cumbersome [18] and are omitted here for the sake of simplicity.
Also here a similar controller corresponds to relative degree 2:

• _ / -Knsign(Ayii) if yiAyi4 < 0
— T r ' / A ^ m f A \ n

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Figure 3.8: Drift algorithm phase trajectories

After substituting y2 for Ayi, a first order sliding mode on y2 = 0 would
be achieved. That implies y\ — const, but since an artificial switching
time delay appears, we ensure a real sliding on y2 with most of the time
spent in the region y\y^ < 0. Therefore, y\ —> 0. The accuracy of the
real sliding on y2 = 0 is proportional to the sampling time interval r\
hence, the duration of the transient process is proportional to r~l. Such an
algorithm does not satisfy the definition of a real sliding algorithm (Section
3.3) requiring the convergence time to be uniformly bounded with respect to
T. Consider a variable sampling time Ti+i[yi(ti)} = ti+\ — £;, i = 0 ,1 ,2 , . . .
with T = max(rM,min(rm, 77(2/1 (£j) |p)) , where 0.5 < p < 1 , TM > rm > 0,
77 > 0. Then with 77, ̂  sufficiently small and Vm sufficiently large, the drift
algorithm constitutes a second-order real sliding algorithm with respect to
T —> 0. That algorithm has no overshoot if the parameters are chosen
properly [18].

3.6.6 Algorithm with a prescribed convergence law

This class of sliding controllers features the possibility of choosing a tran-
sient process trajectory: the switching of u depends on a suitable function
of s. The general formulation of such a class of 2-sliding control algorithms
is as follows:

—u if \u\ > I
-VMsign(y2 - g(yi)} if \u\ < I

(3.44)

Here VM is a positive constant and the continuous function g(y\) is smooth
everywhere but in y\ — 0. A controller for the relative degree 2 is formed
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Figure 3.9: Phase trajectories for the algorithm with prescribed law of
variation of s

in an obvious way:
u = -V-sign [7/2 - 9(yi)]

Function g must be chosen in such a way that all solutions of the equation
7/1 = g(y\) vanish in finite time and the function g' • g be bounded. For
example, the following function can be used

0(2/i) = -Ai|j/i psign(yi), A > 0, 0.5 < p < I

The sufficient condition for the finite time convergence to the sliding
manifold is defined by the following inequality

VM>
sup [£'(7/1)2(7/1)]

(3.45)

and the convergence time depends on the function g [16, 35, 56].
That algorithm needs 7/2 to be available, which is not always the case.

The substitution of the first difference of y\ for 7/2 i-e., sign[A7/ii — Tig(yi)]
instead of sign [ y i - g ( y i } } (t € [ti,ti+i), TI = i j - t j_i) , turns the algorithm
into a real sliding algorithm. The real sliding order equals two if g(-) is
chosen as in the above example with p = 0.5 [35].

Important remark. All the above-listed discretized 2-sliding con-
trollers, except for the super-twisting one, are sensitive to the choice of the
measurement interval T. Indeed, given any measurement error magnitude,
any information of significance of the first difference AT/^ is eliminated
with sufficiently small T, and the algorithm convergence is disturbed. That
problem was shown to be solved [40] by a special feedback determinating
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r as a function of the real-time measured value of y\ . In particular, it was
shown that the feedback r = max(rM , min(rm, 77(3/1 (£i) p)) , 0.5 < p < 1,
TM > Tm > 0, TJ > 0, makes the twisting controller robust with respect
to measurement errors. Moreover, the choice p = 1/2 is proved to be the
best one. It provides for keeping the second-order real-sliding accuracy
s = O(r2) in the absence of measurement errors and for sliding accuracy
proportional to the maximal error magnitude otherwise. Note that the
super-twisting controller is robust due to its own nature and does not need
such auxiliary constructions.

3.6.7 Examples

Practical implementation of 2-sliding controllers is described in [42] . Con-
tinue the example series 3.5.1 and 3.5.2. The process is given by

x = u. x , w e M , s = x-f(t), / : R - > R

so that the problem is to track a signal /(£) given in real time, where
I /U/U/I < 0-5- Only values of x,/, u are available. Following is the
appropriate discretized twisting controller:

u(ti)\ > I
u = < -5signs(ti), s(ti}Asi > 0, \u(ti)\ < 1

-signs(ti), s(ti)Asi < 0, \u(ti)\ < I

Here t{ < t < £;+i. Let function / be chosen as in examples 3.5.1 and 3.5.2:

f ( t ) = 0.08 sin t + 0.12 cos 0.3* , x(0) = 0, u(0) = 0 .

The corresponding simulation results are shown in Figure 3.10 and 3.11.
The discretized super-twisting controller [19, 35, 37] serving the same

goal is the algorithm

^ j"[*;| < I

Its simulation results are shown in Figures 3.12 and 3.13.

3.7 Arbitrary-order sliding controllers

We follow here [38, 39, 41].
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Figure 3.10: Twisting 2-sliding algorithm. Tracking: x(t) and f ( t )
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Figure 3.11: Twisting 2-sliding algorithm. Control u(t)
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Figure 3.12: Super-twisting 2-sliding controller. Tracking: x(t) and
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Figure 3.13: Super-twisting 2-sliding controller. Control u(t).
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3.7.1 The problem statement
Consider a dynamic system of the form

x = a(t,x) + b(t,x)u,s = s(t,x) (3.46)

where x G Mn, a, b, s are smooth functions, u £ R. The relative degree r of
the system is assumed to be constant and known. That means, in a sim-
plified way, that u first appears explicitly only in the r-th total derivative
of s and -^s^ ^ 0 at the given point. The task is to fulfill the constraint
s(t,x) = 0 in finite time and to keep it exactly by discontinuous feedback
control. Since s, s, ..., s^r~1^ are continuous functions of t and x, the corre-
sponding motion will correspond to an r-sliding mode. Introduce new local
coordinates y = ( j / i , . . . , j/n), where yi — s,y2 = s, ...,yr = s^"1). Then

£ = T)(t, s, s, ..., s(r~l\£) + 7(£, s, s, ..., s(r~1}, f )w, £ = (2/r+i, • • • , 2/n)
(3.47)

Let a trivial controller w = — K signs be chosen with K > sup|we9|, weq =
— h ( t , y ) / g ( t , y ) [55]. Then the substitution u — ueq defines a differential
equation on the r-sliding manifold of ( 3.46). Its solution provides for the
r-sliding motion. Usually, however, such a mode is not stable. It is easy
to check that g = LbLr

a~
ls — -^s^ . Obviously, h = LT

as is the rth total
time derivative of s calculated with u = 0. In other words, functions h and
g may be defined in terms of input-output relations. Therefore, dynamic
system (3.46) may be considered as a "black box".

The problem is to find a discontinuous feedback u = U(t,x) causing
finite-time convergence to an r-sliding mode. That controller must gen-
eralize the 1-sliding relay controller u = —K signs. Hence, g ( t , y ) and
h(t,y) in (3.47) are to be bounded, h > 0. Thus, we require that for some
Km,KM,C>Q

< KM: \Lr
as\ < C (3.48)

3.7.2 Controller construction
Let p be a positive number. Denote

Nijr = \S\(r-

Ni,r = (\S\P/r + \S\P/(r~V + ... + |s(i-l)|
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= s

where /?i, ...,/3r_i are positive numbers.

Theorem 27 Let system (3.46) have relative degree r with respect to the
output function s and (3.48) be fulfilled. Then with properly chosen positive
parameters (3\,..., fa_ i controller

u= -asign ^T._i )T.(s,s,...,s ( r"1))J . (3.49)

provides for the appearance of r-sliding mode s = 0 attracting trajectories
in finite time.

The positive parameters fli,...,fa-\ are to be chosen sufficiently large
in the index order. Each choice determines a controller family applicable
to all systems (3.46) of relative degree r. Parameter a > 0 is to be chosen
specifically for any fixed C, Km, KM- The proposed controller is easily gen-
eralized: coefficients of JV;;r may be any positive numbers, etc. Obviously,
a is to be negative with -j^s^ < 0.

Certainly, the number of choices of fa is infinite. Here are a few examples
with fa tested for r < 4, p being the least common multiple of 1,2, ...,r.
The first is the relay controller and the second is listed in Section 3.6.

l.u = —a signs
2.u = — a sign (s + |s|1//2signs),
3.u = -asign(s + 2(|s|3 + |s|2)1/6sign(s + |s|2/3signs),
4.w - -asign{s(3) + 3(s6 + s4 + |s|3)1/12sign[s+

(54 + s|3)i/6sign(s + 0.5|s
 3/4signs)]},

5.u = -asign(s(4) + fa(\s\12 + |s|15 + |s|20+

+/32(|s
12

The idea of the controller is that a 1-sliding mode is established on the
smooth parts of the discontinuity set F of (3.49) (Figure3.14). That sliding
mode is described by the differential equation T/V-I^ = 0 providing in its
turn for the existence of a 1-sliding mode ?/V-i,r — 0- But the primary
sliding mode disappears at the moment when the secondary one is to ap-
pear. The resulting movement takes place in some vicinity of the subset
of F satisfying V;r-2,r — 0, transfers in finite time into some vicinity of the
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s, s ,..., s

Figure 3.14: The idea of r-sliding controller

subset satisfying t/V-3,r — 0 and so on. While the trajectory approaches the
r-sliding set, set F retracts to the origin in the coordinates s, s, ...,s(r~l\
Set F with r = 3 is shown in Figure 3.15.

An interesting controller, so-called "terminal sliding mode controller",
was proposed by [56]. In the 2-dimensional case it coincides with a particu-
lar case of the 2-sliding controller with given convergence law (Section 3.6).
In the r-dimensional case a mode is produced at the origin similar to the
r-sliding mode. The problem is that a closed-loop system with terminal
sliding mode does not satisfy the Filippov conditions [22] for the solution
existence with r > 2. Indeed, the control influence is unbounded in vicini-
ties of a number of hyper-surfaces intersecting at the origin. The corre-
sponding Filippov velocity sets are unbounded as well. Thus, some special
solution definition is to be elaborated, the stability of the corresponding
quasi-sliding mode at the origin and the very existence of solutions are to
be shown.

Controller (3.49) requires the availability of s, s, ...,s^r~1^. The needed
information may be reduced if the measurements are carried out at times
ti with constant step r > Q. Consider the controller

u(t) = -asi
•sign

)x l
')J

(3-50)

Theorem 28 Under conditions of Theorem 27 with discrete measurements
both algorithms (3.49) and (3.50) provide in finite time for some positive
constants QQ, ai, • • - , ar-\ f

or fulfillment of inequalities

--1
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•3.03

,.-3.03

Figure 3.15: The discontinuity set of the 3-sliding controller

That is the best possible accuracy attainable with discontinuous s^. Con-
vergence time may be reduced by changing coefficients (3j. Another way is
to substitute \~^s^ for s^\\ra for a and ar for r in (3.49) and (3.50),
A > 0, causing convergence time to be diminished approximately by A
times.

Implementation of r-sliding controller when the relative degree is less
than r. Introducing successive time derivatives u, w, . . . , u^r~k~1^ as new
auxiliary variables and u^r~k^ as a new control, achieve different modifica-
tions of each r-sliding controller

intended to control systems with relative degrees k — 1,2, ...,r. The
resulting control is (r — k — l)-smooth function of time with k < r, a Lips-
chitz function with k = r — 1 and a bounded " infinite-frequency switching"
function with k = r.

Chattering removal. The same trick removes the chattering effect. For
example, substituting u^r~^ for u in (3.50), receive a local r-sliding con-
troller to be used instead of the relay controller u = —signs and attain rth
order sliding precision with respect to r by means of (r — 2)-smooth control
with Lipschitz (r — 2)th time derivative. It must be modified for global
usage.

Controlling systems nonlinear on control. Consider a system

x = f ( t , x , u )
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nonlinear in the control variable u. Let ^js^^(t,x,u) = 0 for i = 1, ...,r — 1,
-j^s(r\t,x,u} > 0. It is easy to check that

5^
+1) = A;+I

S + I-^A, A.(-) = |(-) + £-(.)f(t,x,u)

The problem is now reduced to that considered above with relative degree
r + 1 by introducing a new auxiliary variable u and a new control v = u.

Discontinuity regularization. The complicated discontinuity structure
of the above-listed controllers may be smoothed by replacing the disconti-
nuities under the sign-function with their finite-slope approximations. As
a result, the transient process becomes smoother. Consider, for example,
the above-listed 3-sliding controller. The function sign(s+ |s|2/3signs) may
be replaced by the function max[—l,min(l, |s|~2/3(s + |s|2/3signs)/£)] for
some sufficiently small e > 0. For e = 0.1 the resulting tested controller is

u = -asign(s + 2(|s|3 + |s|2)^ max[-l,min(l, 10|s|~5~(s + [assigns))])
(3.51)

Controller (3.51) provides for the existence of a standard 1-sliding mode on
the corresponding continuous piece-wise smooth surface.

Theorem 29 Theorems 27 and 28 remain valid for controller (3.51).

Real-time control of output variables

The implementation of the above-listed r-sliding controllers requires real-
time observation of the successive derivatives s, s,..., s^T~^. Thus, theoret-
ically no model of the controlled process needs to be known. Only the
relative degree and 3 constants are needed in order to adjust the controller.
Unfortunately, the problem of successive real-time exact differentiation is
usually considered to be practically unsolvable. Nevertheless, under some
assumptions the real-time exact robust differentiation is possible. Indeed,
let input signal rj(t) be a Lebesgue-measurable locally bounded function
defined on [0,oo) and let it consist of a base signal r]o(t) having a deriva-
tive with Lipschitz's constant C > 0 and a bounded measurable noise N(t).
Then the following system realizes a real-time differentiator [37]:

v = = 1/1- \\v - ??(£)|1/2sign [v - j](t)\, z>i = -//sign [i/ - r/(t)]

where //, A > 0. Here v(t) is the output of the differentiator. Solutions
of the system are understood in the Filippov sense. Parameters may be
chosen in the form n = 1.1C, A = 1.5C1/2, for example (it is only one of
possible choices). That differentiator provides for finite time convergence
to the exact derivative of rjo(t) if N ( t ) = 0. Otherwise, if sup N(t) = e
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it provides for accuracy proportional to Cfl/2£1/2. Therefore, having been
implemented k times successively, that differentiator will provide for kth or-
der differentiation accuracy of the order of e^2 ). Thus, full local real-time
robust control of output variables is possible, using only output variable
measurements and knowledge of the relative degree [41].

When the base signal r]o(t) has (r-l)th derivative with Lipschitz's con-
stant C > 0, the best possible kth order differentiation accuracy is dk Cklr

£ ( r - fc) / r^ where dk > 1 may be estimated (the asymptotics may be im-
proved with additional restrictions on ?7o(£))- Moreover, it is proved that
such a robust exact differentiator really exists [37]. The corresponding dif-
ferentiator has been submitted by A. Levant for possible presentation at
the European Control Conference in Portugal (2001).

Theorem 30 An optimal k-th order differentiator having been applied, r-
sliding controller (3-49) provides locally for the sliding accuracy s^\ <
Ci£^r~"l^r, i = 0,1, ...,r — 1, where e is the maximal possible error of real-
time measurements of s and Q are some positive constants.

Theorem 30 probably determines the best sliding asymptotics attainable
when only s is available.

3.7.3 Examples

Car control

Consider a simple kinematic model of car control [45]

x — v cos </?, y = v sin (p

v
tp = - tan d

6 = u

where x and y are Cartesian coordinates of the rear-axle middle point, ip is
the orientation angle, v is the longitudinal velocity, I is the length between
the two axles, and 6 is the steering angle. The task is to steer the car from
a given initial position to the trajectory y — g ( x ) , while x,y, and </? are
assumed to be measured in real time. Define

s = y-g(x)

Let v — const = lOra/s, / — 5m, g(x) — 10sin0.05x+5, x — y — ip = d = Q
at t = 0. The relative degree of the system is 3 and both 3-sliding controller
No. 3 and its regularized form (3.51) may be applied here. It was taken
a = 20. The corresponding trajectories are the same, but the performance
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Figure 3.16: Car trajectory tracking

S, S, S

Figure 3.17: Regularized 3-sliding controller

is different. The trajectory and function y = g(x) with measurement step
T = 2 • 10~~4 are shown in Figure3.16. Graphs of s, s, s are shown in Figure
3.16 and 3.17 for regularized and not regularized controllers, respectively.

4-sliding control

Consider a model example of a tracking system. Let input z(t) and the
control system satisfy equations

2(4) + 32 + 22 = 0

= u
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s, s, s

Figure 3.18: Standard 3-sliding controller

Figure 3.19: 4-sliding tracking

The task is to track z by x, s = x — z, thus the 4th controller with a = 40
is used. Initial conditions for z and x at time t = 0 are

z(O) - 0, 2(0) = 0, 2(0) = 2, 2(3)(0) - 0

= l,ar(0) = (3)(0) -

A mutual graph of x and z with r — 0.01 is shown in Figure 3.19.
A mutual graph of x^ and z^ with T = 0.001 is shown in Figure

3.20. Mutual graphs of s, s, s, s^ with r = 0.001 are demonstrated in
Figure 3.21. The attained accuracies are \s\ < 1.33 • 10~4 with T = 0.01
and \s\ < 1.49 • 10~12 with r = 0.0001.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



x, z

Figure 3.20: Third derivative tracking

Figure 3.21: Tracking deviation and its three derivatives

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The authors are grateful to A. Stotsky for helpful discussions on VSS
car control.

3.8 Conclusions

• A general review of the current state of the higher order sliding theory,
its main notions and results were presented.

• It was demonstrated that higher order sliding modes are natural phe-
nomena for relay control systems if the relative degree of the system
is more than 1 or a dynamic actuator is present.

• Stability was studied of second order sliding modes in relay systems
with fast stable dynamic actuators of relative degree 1.

• Instability of higher order sliding modes was shown in relay systems
with dynamic actuators of relative degree 2 and more.

• A number of the most popular 2-sliding controllers were listed and
compared.

• A family of arbitrary order sliding controllers with finite time conver-
gence was presented.

• The discrete switching modification of presented sliding controllers
provided for the sliding precision of their order with respect to the
measurement time interval.

• A robust exact differentiator was presented allowing for full control
of output variables using only measurements of their current values.

• A number of simulation examples were presented.

References

[1] D.V. Anosov, "On stability of equilibrium points of relay systems",
Automation, i telemechanica (Automation and Remote Control), Vol.
2, pp. 135-149, 1959.

[2] G. Bartolini, T. Zolezzi, "Control of Nonlinear Variable Structure Sys-
tems", Journal of Math. Analysis and Applications, Vol. 118, No. 1,
pp. 42-62, 1986.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[3] G. Bartolini, A. Ferrara , E. Usai, "Applications of a sub-optimal
discontinuous control algorithm for uncertain second order systems",
Int. J. of Robust and Nonlinear Control, Vol. 7, No.4, pp. 299-310,
1997.

[4] G. Bartolini, M. Coccoli and A. Ferrara, "Vibration damping and
second order sliding modes in the control of a single finger of the
AMADEUS gripper", International J. of Systems Science, Vol. 29,
No. 5, pp. 497-512, 1998.

[5] G. Bartolini, A. Ferrara and E. Usai, "Chattering avoidance by second-
order sliding mode control", IEEE Trans. Automat. Control, Vol. 43,
No. 2, pp. 241-246, 1998.

[6] G. Bartolini, A. Ferrara, A. Levant and E. Usai On second order sliding
mode controllers. Proc.of 5th Int. Workshop on VSS, Longboat Key,
Florida, 1998.

[7] G. Bartolini, A. Levant, A. Pisano, E. Usai, "2-sliding mode with adap-
tation" , Proc. of the 7th IEEE Mediterranean Conference on Control
and Systems, Haifa, Israel, 1999.

[8] J. Z. Ben-Asher, R. Gitizadeh, A. Levant, A. Pridor, I. Yaesh, "2-
sliding mode implementation in aircraft pitch control", Proc. of 5th
European Control Conference, Karlsruhe, Germany, 1999.

[9] S.V. Bogatyrev, Fridman L.M., "Singular correction of the equivalent
control method. Differentialnye uravnenija (Differential equations)",
Vol. 28, No. 6, pp. 740-751, 1992.

[10] A.G. Bondarev, S.A. Bondarev, N.Y. Kostylyeva and V.I. Utkin, "Slid-
ing Modes in Systems with Asymptotic State Observers", Automatica
i telemechanica (Automation and Remote Control), Vol. 46, No. 5, pp.
679-684, 1985.

[11] L.W. Chang, "A MIMO sliding control with a second order sliding
condition", ASME WAM, paper no. 90-WA/DSC-5, Dallas, Texas,
1990.

[12] R.A. DeCarlo, S.H. Zak, G.P. Matthews, "Variable structure control
of nonlinear multivariable systems: a tutorial", Proceedings of the In-
stitute of Electrical and Electronics Engineers, Vol. 76, pp. 212-232,
1988.

[13] S.V. Drakunov, V.I. Utkin, "Sliding mode control in dynamic sys-
tems", Int. J. Control, Vol. 55, No. 4, pp. 1029-1037, 1992.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[14] H. Elmali, N. Olgac, "Robust output tracking control of nonlinear
MIMO systems via sliding mode technique", Automatica, Vol. 28, No.
1, pp. 145-151, 1992.

[15] S.V. Emelyanov, S.K. Korovin, "Applying the principle of control by
deviation to extend the set of possible feedback types", Soviet Physics,
Doklady, Vol. 26, No. 6, pp. 562-564, 1981.

[16] S.V. Emelyanov, S.K. Korovin and L.V. Levantovsky, "Higher order
sliding modes in the binary control systems", Soviet Physics, Doklady,
Vol. 31, No. 4, pp. 291-293, 1986.

[17] S.V. Emelyanov, S.K. Korovin and L.V. Levantovsky, "Second or-
der sliding modes in controlling uncertain systems", Soviet Journal
of Computer and System Science, Vol. 24, No. 4, pp. 63-68, 1986.

[18] S.V. Emelyanov, S.K. Korovin and L.V. Levantovsky, "Drift algorithm
in control of uncertain processes", Problems of Control and Informa-
tion Theory, Vol. 15, No. 6, pp. 425-438, 1986.

[19] S.V. Emelyanov, S.K. Korovin and L.V. Levantovsky, "A new class of
second order sliding algorithms", Mathematical Modeling, Vol. 2, No.
3, pp. 89-100, (in Russian), 1990.

[20] S.V. Emelyanov, S.K. Korovin and A. Levant, "Higher-order sliding
modes in control systems", Differential Equations, Vol. 29, No. 11, pp.
1627-1647, 1993.

[21] A.F. Filippov, "Differential Equations with Discontinuous Right-Hand
Side", Mathematical Sbornik, Vol. 51, No. 1, pp. 99-12 (in Russian),
1960.

[22] A.F. Filippov, "Differential Equations with Discontinuous Right-Hand
Side", Kluwer, Dordrecht, the Netherlands (1988).

[23] L.M. Fridman, "On robustness of sliding mode systems with discon-
tinuous control function", Automatica i Telemechanica (Automation
& Remote Control), Vol. 46, No. 5, pp. 172-175 (in Russian), 1985.

[24] L.M. Fridman, "Singular extension of the definition of discontinuous
systems", Differentiate uravnenija (Differential equations), Vol. 8,
pp. 1461-1463 (in Russian), 1986.

[25] L.M. Fridman, "Singular extension of the definition of discontinuous
systems and stability", Differential equations, Vol. No.26 (1990) (10),
pp. 1307-1312.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[26] L.M. Fridman, "Sliding Mode Control System Decomposition", Pro-
ceedings of the First European Control Conference, Grenoble, Vol. 1,
pp. 13-17,1991.

[27] L.M. Fridman, "Stability of motions in singularly perturbed discontin-
uous control systems", in Prepr. of XII World Congress IFAC, Sydney,
Vol. 4, pp. 367-370, 1993.

[28] L. Fridman, E. Fridman, E. Shustin, "Steady modes in an autonomous
system with break and delay", Differential Equations (Moscow), Vol.
29, No. 8, 1161-1166, 1993.

[29] L.M. Fridman, "The problem of chattering: an averaging approach",
In Young K.D., Ozguner U.(Eds.) Variable Structure Systems, Sliding
Mode and Nonlinear Control, Lecture Notes in Control and Informa-
tion Sciences 247, Springer Verlag, pp. 361-385, 1999.

[30] L. Fridman, A. Levant, "Sliding modes of higher order as a natural
phenomenon in control theory", In Garofalo F., Glielmo L. (Eds.) Ro-
bust Control via Variable Structure and Lyapunov Techniques, Lecture
Notes in Control and Information Sciences 217, Springer Verlag, pp.
107-133, 1996.

[31] A. Isidori, "Nonlinear Control Systems", Second edition, Springer Ver-
lag, New York, 1989.

[32] K.H. Johanson, K.J. Astrom, A. Rantzer, "Fast switches in relay feed-
back systems", Automatica, Vol. 35, pp. 539-552, 1999.

[33] U. Itkis, "Control Systems of Variable Structure", Wiley, New York,
1976.

[34] L.V. Levantovsky, "Second order sliding algorithms: their realization",
In "Dynamics of Heterogeneous Systems", Institute for System Stu-
dies, Moscow, pp. 32-43 (in Russian), 1985.

[35] A. Levant (Levantovsky, L.V.), "Sliding order and sliding accuracy in
sliding mode control", International Journal of Control, Vol. 58, No.
6, pp. 1247-1263, 1993.

[36] A. Levant, "Higher order sliding: collection of design tools", Proc. of
the 4th European Control Conference, Brussels, Belgium, 1997.

[37] A. Levant, "Robust exact differentiation via sliding mode technique",
Automatica, Vol. 34, No. 3, pp. 379-384, 1998.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[38] A. Levant, "Arbitrary-order sliding modes with finite time conver-
gence" , Proc. of the 6th IEEE Mediterranean Conference on Control
and Systems, June 9-11, Alghero, Sardinia, Italy, 1998.

[39] A. Levant, "Controlling output variables via higher order sliding
modes", Proc. of the 5th European Control Conference, Karlsruhe,
Germany, 1999.

[40] A. Levant, "Variable measurement step in 2-sliding control", Kyber-
netika, Vol. 36, No. 1, pp. 77-93, 2000.

[41] A. Levant, "Universal SISO sliding-mode controllers with finite-time
convergence", to appear in IEEE Trans. Automat. Control (2001).

[42] A. Levant, A. Pridor, R. Gitizadeh, I. Yaesh , J. Z. Ben-Asher, "Air-
craft pitch control via second-order sliding technique", AIAA Journal
of Guidance, Control and Dynamics, Vol. 23, No. 4, pp. 586-594, 2000.

[43] X.-Y. Lu, S.K. Spurgeon, "Output feedback stabilization of SISO non-
linear systems via dynamic sliding modes", International Journal of
Control, Vol. 70, No. 5, pp. 735-759, 1998.

[44] Z. Man, A.P. Paplinski, H.R. Wu, "A robust MIMO terminal sliding
mode control for rigid robotic manipulators", IEEE Trans. Automat.
Control, Vol. 39, No. 12, pp. 2464-2468, 1994.

[45] R. Murray, S. Sastry, "Nonholonomic motion planning: steering using
sinusoids", IEEE Trans. Automat. Control, Vol. 38, No. 5, pp. 700-
716, 1993.

[46] Y.I. Neimark, "The point mapping method in the theory of nonlinear
oscillations", Nauka, Moscow (in Russian), 1972.

[47] V.R. Saksena, J. O'Reilly, P.V. Kokotovic, "Singular perturbations
and time-scale methods in control theory", Survey 1976-1983, Auto-
matica, Vol. 20, No. 3, pp. 273-293, 1984.

[48] H. Sira-Ramirez, "On the sliding mode control of nonlinear systems",
Systems & Control Letters, Vol. 19, pp. 303-312, 1992.

[49] H. Sira-Ramirez, "Dynamical sliding mode control strategies in the
regulation of nonlinear chemical processes", International Journal of
Control, Vol. 56, No. 1, pp. 1-21, 1992.

[50] H. Sira-Ramirez, "On the dynamical sliding mode control of nonlinear
systems", International Journal of Control, Vol. 57, No.5, pp. 1039-
1061, 1993.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[51] J.-J. E. Slotine, "Sliding controller design for nonlinear systems", Int.
J. of Control, Vol. 40, No.2, 1984.

[52] W.-C. Su, S. Drakunov, U. Ozguner, "Implementation of variable
structure control for sampled-data systems", Proceedings of IEEE
Workshop on Robust Control via Variable Structure & Lyapunov Tech-
niques, Benevento, Italy, pp. 166-173, 1994.

[53] Y.Z. Tsypkin, "Relay control systems", Cambridge University Press,
Cambridge, 1984.

[54] V.I. Utkin, "Variable structure systems with sliding modes: a survey",
IEEE Transactions on Automatic Control, 22, pp. 212-222, 1977.

[55] V.I. Utkin, "Sliding Modes in Optimization and Control Problems",
Springer Verlag, New York, 1992.

[56] Y. Wu, X. Yu, Z. Man, "Terminal sliding mode control design for
uncertain dynamic systems", Systems & Control Letters, Vol. 34, pp.
281-287, 1998.

[57] A.S.I. Zinober, (editor), "Deterministic Control of Uncertain Sys-
tems", Peter Peregrinus, London, 1990.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 4

Sliding Mode Observers

J-P. BARBOT*, M. DJEMAF, and T. BOUKHOBZA**
- EN SEA, Cergy, France

Universite des Antilles, Kourou, France

4.1 Introduction

Sliding mode techniques have been widely studied and developed for the
control problem and observation in the occidental countries1 since the works
of Utkin [43]. As discussed by many authors [22, 40, 21, 37, 49, 50, 20, 4,
31, 24, 33], this methodology has several drawbacks in control design, adap-
tive control and observation. More particularly, several authors have used
sliding observer for linear and nonlinear systems, and in many applications
such as robotics [41, 12, 13, 28], mobile robots [5], AC motors [16, 17, 18]
and converters [36].

This kind of observer is very useful and was developed for many reasons:
- to work with reduced observation error dynamics
- for the possibility of obtaining a step-by-step design
- for a finite time convergence for all the observables states
- to design, under some conditions, an observer for nonsmooth systems,
and
- robustness under parameter variations is possible, if the condition (dual
of the well-known matching condition) is verified.

1It is important to highlight the paternity and the major contribution of the Russian
school in the sliding mode domain.
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Here, we highlight a few advantages of the sliding observer. One ad-
vantage is the possibility to design an observer for a system with an unde-
termined but bounded specific variable structure, however, throughout this
chapter we choose to focus our attention on widening the class of considered
systems in the design of the observer.

Historically, in nonlinear control theories, the problem of a nonlinear ob-
server design with linearization of the observation error dynamics for a class
of nonlinear systems, called the input injection form, has been investigated
([29, 45, 46]...). Some necessary and sufficient conditions to obtain such a
form are given in [46]. From this form, it is "easy" to design an observer.
Unfortunately, the geometric conditions to obtain this form are very often
too restrictive with respect to the system considered. Thus, in [11] we have
given an extension of the results obtained in [29, 30, 35, 45, 46], for systems
that can be written in an output injection form to systems which can be
written in the form of the output and the output's derivative injection. We
first recall this result and then we deal with a more general case, which is the
triangular observer form [1]. Here, aiming for simplicity, we only present
the case of single output system. The multi-output case may be found in [6],
where the implicit triangular observer form is introduced in order to take
into account the fa'ct that the information quantity given by one output
and its derivatives may change along the state space. Roughly speaking,
in the nonlinear case, in the neighborhood of XQ, information about the
state can be given by the output y\ (one component of the output) and its
derivative, and in another neighborhood of xi, information can be given
by 2/2 (another component of the output) and its derivative. In both forms
considered in this presentation, input derivatives are prohibited. Indeed,
if they are allowed it is possible to use the observer form proposed in [25]
and in that case a sliding observer is also widely used (see for example [34]).

As in other chapters, some recall on high order sliding mode are given
[31], then for the sake of clarity we do not present the high order sliding
observer [7, 3, 7]. Moreover, we deferred some technical proofs to the ap-
pendix.

We find that it is important to end this introduction with the following
warning: in this chapter we omit many interesting aspects, for example, the
observer design without coordinate change [14], high gain [10], and noise
sensibility [47]. The subject is too large and open, to be able to squeeze
it in an introductory presentation. The main purpose of this chapter is
to highlight the utilities and difficulties of sliding mode technique for the
observer design.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



4.2 Preliminary example

In this section, the sliding observer is introduced based on a simple aca-
demic example. Let E be the system:

xi = x-2 (4.1)
X2 = f(xi,X2)

where x £ R2 and y 6 M is the output and the function /(zi, £2) is bounded
( \ f ( x i , X 2 } \ < B] but not necessary smooth, thus (4.1) is a particular case
of variable structure dynamics.

One wants to observe the state x with the additional constraint to obtain
the real value of #2 in finite time. To do this, one uses a classical sliding
mode observer, but completed with a new component 52.

xi = x-2 + \\sgn(x\ — xi) (4.2)
x-2 = /(xi,x2) + Ei\-2sgn(x-2 — x2)

y = xi
x-2 =• x-2 + Ei\isgn(x\ — x\)

where x represents the estimated value of x and E\ = \ \i x\ — x\ else
£"1=0 and sign denote the usual sign function.

From (4.1) and (4.2), the error observation (e = x — x} dynamics are:

ei = e2-\isgn(ei) (4.3)

Considering the nonempty manifold S = {e/e\ = 0} and the Lyapunov
function V — \e\, one proves the attractivity of S as follows. One gets:
V = e\e-2 — \\eisgn(e\), which verifies the inequality V < 0 when AI is
chosen such that AI > |e2|max (where |e|max denotes the maximal value of
e, V t e [0, oo]). As one uses a sgn function and as the Lyapunov function
V is decreasing, one obtains the convergence to the sliding surface S = 0
in finite time to (and moreover, we have |e|max = |e|^ax and |e|^aa, is the
maximal value of e, V i e [0,to])- Thus, for AI > |e2|max? ^i converges to
:TI in finite time and remains equal to x\ for t > to.

Moreover, one also has that e\ = 0 V t > to, so that from (4.3),

e2 = Xisgn(ei) (4.4)

Therefore, the observer output, #2 = X2 + Xisgn(ei) is equal to x% V t > to-

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Remark 31 This is obviously only true without any noise measurement,
but this difficulty may be partially overcome by a sgn function modification
(see [47] for analysis and design of observer with respect to noise) or by
high order sliding mode [31].

Up to now, we proved for the system (4.1) that the observer (4.2) is
suitable to give all the values of the state in finite time.

The condition AI > 1 62] max can only be verified if e2 has stable dynam-
ics, which is fulfilled after to for A2 > 0, where we have

£2 = f(xi,x2) - f(xi,x2) - Ei\2sgn(x2 - x2)

with x2 = x2 and EI = 1 then

e2 = -X2sgn(e2)

Therefore, one gets |e2|max, which is bounded by the way that t0 and
f(xi,x2) are bounded. The observer (4.2) with assumptions AI > |e2|^ax

and A2 > 0 ensures a finite time convergence of (e\, e2) to (0, 0).

Remark 32 The time to can be very short because it is natural to initialize
x\ — x\.

4.3 Output and output derivative injection
form

Following, we recall some classical results on nonlinear observer theory.

4.3.1 Nonlinear observer
First of all, we recall the definition of observability indices.

Definition 33 [29] Let the system

which is observable at XQ if there exists a neighborhood U. of XQ and p-tuple
of integers (/zi, ...,/zp) such that

1 i > 2 > ••• > > 0 and = n-
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2) After suitable reordering of the hi at each x 6 U, the n row vectors

\ L?r (dhi) : i = 1, ...,p; j = 1,..., /^ > are linearly independent.

3) ///i, ...,/p satisfies (i) and after suitable reordering the n row vectors
{L^~l(dhi) : i = l,...,p; j = 1, ...,/*} are linearly independent at
some x 6 U

then (/i,..., lp) > (/^i,..., fj,p) in the lexicographic ordering [(/i > ^i) or (/i =
Hi and 1-2 > 1^2) or... or (/i = /zi, ...,/p = /zp)]. The integers (/zi, ...,/zp) are
ca//ed i/ie observability indices at XQ.

Remark 34 In the nonlinear case, the previous notion of observability
index is local. In the linear case, this notion is global.

As it is shown in [29, 30, 45], an interesting nonlinear systems is the
output injection form without forced terms:

where:

x = Ax +
y = Cx

A =
A!

0
0

0

0

0

0
Ap

(4.6)

s a matrix =

0 0 0

(4.7)

and

Ci

0
0

0

0

0

0
cp

Ci is a line vector € EMi, such that : Ci = (1,0, ...,0).

This is interesting because for such a class, one can design an observer
that allows us to obtain an observation error with stable linear dynamics.

In fact, for the nonlinear observable system:

=
y = MO

(4.8)
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where / and h are smooth functions, necessary and sufficient conditions for
the existence of a diffeomorphism x = $>(£) to transform the system (4.8)
into (4.6) are given in [46].

Theorem 35 [46] There exists a change of coordinates transforming
(4-8) into (4-6) only if there exists a p— tuple of integers (//i, ...,//p), p,\ >
M2 > ••• > Up such that we have the following:

1) If one denotes (with a possible reordering of the hi)

then dim span Q = n in a neighborhood of £° .

2) If one denotes for j = 1, ...,p,

f i • . _ -,J K — i , . . . , [I j

then span Q3 = span Q fl Qj for j — I,..., p.

Theorem 36 [46] There exists a change of coordinates transforming
(4-8) to (4-6) if and only if 1. and 2. in the previous Theorem hold and,
moreover, if there exists vector fields gl, ...,gp satisfying:

L g l L l
f ~ l ( h j ) = Sijdi^, i,j = l,...,p, / = l , . . . , / / j

such that: (ad^_r-,gl,adl,r-,g^\ = 0/or i,j = l,...,p; k = 0, ...,/^i — 1; / =
0, ...,//j - 1.

Thus, it immediately follows:

Corollary 37 The conditions of Theorem 36 are sufficient to construct an
observer that is asymptotically locally stable.

4.3.2 Sliding observer for output and output
derivative nonlinear injection form

In this section, one first constructs an asymptotically stable observer for
the following class of systems called output and output derivative nonlinear
injection form:

±i = AiX + <l>i(y,y)
Vi = Xi,i fo r i = l,...,p (4.9)
Vi = Xi,2
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with

and all AI matrix are of appropriated dimensions. Secondly, one exhibits
the necessary and sufficient conditions under which the system (4.8) may be
rewritten as (4.9). For the sake of simplicity, one introduces the following
notations:

/ \ T
*Li V^z,!} ̂ i^i •"; ^i^Hi )

~ / ~ ~ ~ \ T
JL — I »-6 J , ^2 5 • • •} *~p )

A / / v / s A \ T f 1

where Xi — Xi^ + Ei\i,\sgn(yi — Xi^) and E\ — 1 if (x\,\ — £^1)=
•••=(XI,P — XI,P)=O, else Ei=Q.

Let us construct for the system (4.9) the sliding observer:

-&)
= £i,3 + 02(y, y) + Ei\i^sgn(yi - fa]

(4.10)

for i — 1 T) whprp* ?"/• — IT- o -I-iwi t — JL ^ * • • ^ /-^ w iivyJi \-f* yi — "-"i 2t 1 ^ -yO
From this, one deduces a part of the error's observation dynamic
(yi -Xi,i) and e;,2 = fa - xii2):

Therefore, using the same method as in the previous section one obtains:

Theorem 38 Under the conditions:

1) Ai,i > \e2,i\max for i = 1, ...,p.

AlltheXij i = l,...,p, j = 2,...,Hi aresuchthatsl — (Ai + -^u

is a Hurwitz polynomial. Where u\ = (1,0, ...,0)T and Ai is the
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(Hi — 1) x (fa — 1) matrix defined by

/ 0 1 0

A, is a elR^-1)*^-1) matrix = Q ' - . l

\ 0 0 0

The observer (4-10) gives, infinite time to, the convergence ofy (respec-
tively y) to y (respectively to y), and an asymptotic linear stable observation
error dynamics on the sliding surface fe^i = 0).

Proof The dynamics of the observation error are

6i = AiCi + (f>(y, y) — (j)(y, y) — Aj

for i = l,...,p. It is clear that, after a finite time to, one has y — y, so
0(?/> y) — 4>(y, y) — 0- So that, for V t > to the error dynamics will be on
the reduced manifold (e^i = 0), V i £ {1, ...,p}, and given by

ii = Aiei-Al^j f o r i = l,...,p (4.11)

with &i — (e Z ) 2, 6^3, ..., Ci i M i ) which is linear. If \sl — (A{ + j^-ui)\ is Hur-

witz, this dynamic is asymptotically stable.
One has shown that using a sliding mode observer (4.10), the system

(4.9) may be, under an appropriate choice of Xi;j, observed with a linear
asymptotic stable observation error dynamics (4.11).

In the next proposition, one characterizes the observability indices of

the output y — (y, y) — (h, L/h).

Proposition 39 Considering the system (4-8) with the extended output:
y = (y,y) = (h,Lfh):

y =

the indices of observability become:

one has yi — yj with j — i

one has yi = ijj with j' = i — p

where /ij is the observability indices of the output yi in the system (4-8).
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For the proof see the appendix, page 123.

Remark 40 The necessary and sufficient conditions to obtain output and
output derivative form are the same as those in Theorem 35 for the extended
output y = (y,y).

From the last remark, necessary and sufficient conditions for the ex-
istence of a diffeomorphism transforming (4.8) into (4.12) are given by
applying Theorem 36 to system (4.12) rewritten only in terms of the real
output y.

Theorem 41 There exists a change of coordinates transforming (4-12)
into (4-9) if and only if

1) If one denotes (with a possible reordering of the hi )

Q — < L^~l(dhi) with i = 1, ...,p and j = 1, ...,/^i \

then dim span Q = n in a neighborhood of £°.

2) If one denotes for j = 1, ...,p

Qj =

then for j = 1, ...,p span Qj = span Q fl Qj

3) There exists vector fields gl,g2,...,g2p satisfying:

LaiLlrl(hj) = Si j6i u., with < , , > • • • » / ' »
J MA*!' I / = 1 ... ![•

LSi(hj) = <5i,j+p, with < Z '"•'
^ J — •Li ••••>y

and Lgi(Lf(hj)) = 0, iw£/i < . _^ ''"'
^ J 1 ••••! f

4) Setting :
( k _i i=l,..,P \ r _ i

1 /v — U) • • ) fJ^i ~"~ ^ I

V w , v € A, w 7^ v => [w,?;] = 0

For the proof see the appendix, page 124.

Remark 42 From the proof of Theorem 41, one can see that the Definition
of g1 for i = 1, ...,p is the same as the definition of gl. However, condition
3. is less restrictive than the one given in Theorem 35.
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Example 43 Let us consider the following system:

±1 = x-2 (4.13)

y = xi

which is in output and output derivative nonlinear injection form and can
not be transformed into output injection form. In fact, as defined in Theo-
rem 35, the vector g1 is such that:

0 (4.14)
Lgl(X3 + X?)} = 1

So, gl = (0,0,1)T, ad\_f)g
l = (0,1, -1)T andaa9(_f]g

l = (I,2x2 -

The Lie brackets of these vectors are equal to

a . 1 =0

Consequently, this system does not verify the conditions of Theorem 35.
Looking now at the conditions of Theorem 38, one has for the vectors gl

and g2 :

Lgl (Xl) = Lgl (X2) = 0, Lgl ( X 3 + X\) = 1

= 1, Lg2(X2) = 0

So, g1 = (0,0,1)T, adl
(_f)g

l = (0,1,-1)T, and g2 = (1,0, *)T. Then if
one chooses * = 0 for example, one obtains:

F-l jl -ll f-2 -11 [-2 jl -ll ng , aa/_ r x ( ? = ^ , p J = g , a d f ^ g =0

Thus, this system verifies all the conditions of Theorem 38. Choosing z\ =
x\; z2 = x2] Z3 = x2 + X3, one obtains in the new coordinates the
following system:

Zl = 23 + 02(21,22

Z3 = 03 (21,22)

y = zl
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Remark 44 Every system in the form of (4-6) is obviously on the form
(4-9). One important consequence of the previous remark and the example
is that the conditions of Theorem 35 imply conditions of Theorem 38, but
the converse is false.

In the next section we consider an actuated system but for the sake of
simplicity only in a single input single output (SISO) form.

4.4 Triangular input observer form

Let us consider the following SISO analytic system £

x = f ( x ) + g ( x , u )

y = h(x)

(4.15)

where x € W1 is the state, u 6 R is the input, y € R is the output and /, g, h
are analytical function vectors of appropriate dimensions. Moreover for any
x 6 SlRn the function g(x, 0) is equal to zero and the system (4.15) is assumed
bounded input bounded state in finite time. In order to transform (4.15)
in a triangular input observer form, we modified the classical observation
rank condition:

Condition 45

rank

dh \
dLfh

= n

dLnflh
\ dLfh )

where Lf denotes the classical Lie derivative in / and dh is the classical
one form.

Remark 46 Condition 45 is the classical one for an autonomous system.
In the nonlinear context, we can't refer to the Cayley-Hamilton theorem.

But in the next we assume

Condition 47

rank

/ dh \
dLfh

dLn
f~

lh

= n
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From condition 47 it is known that the codistribution

fT = span{dh, ...,dLlfh} 0 < i < n - 1

is involutive. We also need the following condition

Condition 48 The vector field g verifies for any u 6 R

dL9L}heW Vie {0,...,n-l}

Now we can set the following Theorem :

Theorem 49 System (4-15) may be transformed, by diffeomorphism, in
the neighborhood of x in a triangular input observer form

\ \

Cn

(4.16)

(., w = 0) = 0 for any i 6 {1,..., n}, if and only if conditions 47 ana

48 hold in the neighborhood of x.

For the proof see the appendix, page 125.

4.4.1 Sliding mode observer design for triangular
input observer form

From the work of Drakunov and Utkin [14, 15] and our previous work
[28, 16, 6], we propose the sliding observer for triangular input observer
form

6 + + \isgn(£i -
^

- £2)

(4.17)
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where

6 = & + Ais0ni(fi-£i)

-6)

and the sgni(£) function denotes the usual sgn function but with a low
pass filter of the £ variable [15] and an anti-peaking structure [6]. This
anti-peaking structure follows the idea that we do not inject the observa-
tion error information before reaching the sliding manifold linked with this
information (i.e., signi = Eisign, with Ei = 1 if EI = ... = Ei-\ = 1 and
£1 — £1 =0 else EI = 0). Moreover we reach the manifold one by one. Doing
this we obtain a "high gain" dynamic (i.e., see the equivalence between the
sliding mode and the high gain [32]) of dimension one and consequently
we do not have a peaking phenomena [42]. More precisely sgni(.} is equal
to zero if their exists 0 < j < i — 1 such that £j — £j•, ^ 0 (by definition
£1 = £1), else sgni(.) is equal to the usual sgn(.) function. In the observer
structure, this particular sgn function allows that £$ — & converges to zero
if all the £j — £j with j < i have converged to zero before.

Theorem 50 Considering a bounded input bounded state (BIBS) in finite
time system (4-16) and observer (4-17), for any initial state £(0), £(0) and
any bounded input u, there exists a choice of \i such that the observer state
£ converges in finite time to £.

Proof From (4.16) and (4.17) and considering the initial state condition
such that £i(0) 7^ £i(0) (if this is not the case, we directly move on to the
next step of the proof). Thus we are in the
• first step of our proof and we obtain the following observation error
dynamics e = £ — £.

e\ \
e2

\ \ (/n(0 -

Thus as the input u is bounded the state £ does not go to infinity in finite
time. Moreover if £1 is bounded all the states of the observer are also

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



bounded during step 1. Consequently the observation error state is also
2

bounded. Now, setting V\ = -£, we have

Vi = ei(e2 - Ais0n(ei))

Thus choosing AI >| e2 max the observation error e\ goes to zero in finite
time t\. Moreover, if after t\ the observation error stays equal to zero (i.e.,
AI >| e2 | max) we have e2 — \\sgn(^i — £1) and consequently £2 = £2- Now
we pass to the:
• second step. Here, we ensure that the observation error 62 is bounded
in order to remain on the manifold e,\ = 0. Moreover, we want to reach
the submanifold e\ = 62 = 0. Using the same argument as in [14, 15]
the equivalent vector is obtained in finite time via a low past filtering of
\isgn(£i — £1) which is equal to e2. Thus, as at ii, we have e\ — 0, and
the observation error is now equal to

\

e2

63

en-i

64 + £3(6,6,6,u) -&(£ 1

V tn / \ ( f (£} - f (£i £9 f 'v ' \ \Jn\<^,J J n v s l ) S.2, • • - , snx

e2 e2

Setting V? — -j- + -$-, we obtain

V2 = ei(e2 -

Moreover, if the condition AI >|
and 62 — Aisgn(ei) = 0, thus we find

e2(e3 -

max holds for t > , we have ei = 0

= e2(e3 - \2sgn(e2)}

Consequently 62 goes to zero in finite time t^ > t\ if A2 >| 63 |max. More-
over, from V"2 we obtain that the observation error is strictly decreasing
during the period of time [£i,£2] . This implies that the condition on AI is
verified after t\ if it is verified before t\. Moreover as the input is bounded,
the state £ stays bounded during the period [0, £2] and from the structure
of the observation error the dynamics e is also bounded and consequently
£ is too.

Now let us assume that we are at the step j < n. This step starts
at time tj-i and at i j_i , all the e^ = 0 and all the conditions on A^ are
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verified for k < j. Thus, we proceed to
• step j. The observation error dynamic is equal to

1 \

Cj-l

ij

en

V /

=

Setting Vj = Y!i,

e2 -

_ ej+2

(/n(0-/n(^l,..,^

we deduce from ek = 0 Vi < j that

Consequently e^ goes to zero in finite time
and all A& conditions are verified for k < j.
is bounded and from the observer structure

> tj_i if Xj >\ 6j+i \max

As the input is bounded £
is also bounded during the

period [0,£j]. It follows that ej is bounded and we can find Xj such that
AJ >| Gj+i \max is verified. Moreover, as 6j is decreasing during the period
[ t j - i , t j ] , Xj-i >\ 6j \max is verified during this period and therefore all the
&k remain equal to zero for any k < j.
Now we go to :
• step n. This step starts at the time tn-\ and at this time e^ = 0 for any
k < n. Thus we obtain the following observation error dynamics

\

en-i
\ en

\

Xnsgn(£n - ln

Setting Vn = Y^i=i ^ we deduce from e^ = 0 Vi < n that

Vn = en [-Xnsgn(en)]

So, en go to zero in finite time tn > tn-i for any Xn > 0 and if all the
conditions on the Afc for A; < n are verified after tn-\. Condition on An_i
is always verified because en is decreasing after tn-\ and by induction all
conditions follow.
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4.4.2 Observer matching condition

It is well known from the work [19] that roughly speaking, a condition in
order to reject a perturbation, is that the perturbation act in the same
direction of the control.

In the same manner of thinking, for observer design we obtain the con-
dition in order to observe the state under unknown perturbation. Consider
the linear observable bounded perturbed system:

x = Ax + Bu + Pw (4.18)

and the output equation is y = Cx with y G M, x G En, u G Mm and
w G [-Bw, Bw]

C

0(A,C)=\ : \=n
CAn-2

A condition in order to cancel the perturbation effect on the state obser-
vation is that

C

which is called the observer matching condition.

Remark 51 Necessity is obvious such that the perturbation derivative time
does not act on the state observations.

Sufficiency is clear: considering for example, an observer for triangular
input observer.

Generalizing the previous observer matching condition to the bounded
input bounded state single input single output (BIBS-SISO) local weakly
observable nonlinear perturbed system:

x = f(x)+g(x)u + p(x)w:=F(x,u)+p(x}w (4.19)

y = h(x)

where x G Mn, u G Rm, and the bounded perturbation w G [—Bw, Bw], and
/, g, p are functions vector fields of appropriate dimensions.

We immediately obtain the following sufficient conditions in order to
reject the perturbation effect on the observer.
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Proposition 52 // the system (4-19) without perturbation verifies condi-
tions (47) and Condition 48 of Theorem 49 and the observer matching
condition

dh \
dLph

dL^~2h

p(x) = 0 (4.20)

in the neighborhood o f x , and where the Lie derivative is done with respect to
x and u. Then it is possible to locally design an observer which estimates all
state components and does this in both cases: with and without perturbation.

Proof The proof is a direct consequence of Theorem 49 and sliding mode
triangular observer design.

4.5 Simulations and comments
Let us consider the following system £ which is in the triangular input
observer form

Xi = X-2 ~ X\U

X<2 = X3+X2XiU (4-21)

x3 = — 3a?3 — 8x2 — Xi — x| — u

y = xi

For this system, the observer 4.17 takes the form

x\ — x<2 — x\u + \\sgn(x\ — xi)

2 - £2) (4.22)

x3 = -3x3 - 3x2 - xi - x% - u + A3s#n2(;r3 - £3)

y = xi (4.23)

with x-2 = x2 + ̂ isgni(xi — x\) and £3 = £3 + X^sgn^x^ — £2), and where
functions are designed as noted in Section 4.3.

This approach has been tested by simulation with the following initial
conditions x — (1,0.5,0.5)T and x = (0, 0, 0)T. Moreover, we have chosen
a first-order low pass filter with a cut frequency equal to WQHz and obser-
vation gain AI , A2, and AS respectively equal to 4, 2, and 2. Moreover the
function "sgn" is approximated by a saturation function with a slow rate
equal to 104.
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In Figure 4.1, we see that x\ reaches x\ in finite time ~ 0.25s. In Figure
4.2, we see that x% also reaches x-2 in finite time ~ 0.75s. But x2 will only
reach £2 when x\ will be equal to x\. In Figure 4.3, we see that £3 reaches
£3 in finite time ~ Is.

Figure 4.1: xi(-) and x\ (-.]

Figure 4.2: x^-} and x2 (-.)
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o.e

O.-4

O.2

o

-O-2

-O.4

-o.e

-O.8

Figure 4.3: £3(-) and £3 (-.)

Now, starting from the same initial conditions, we add an output noise
in order to show the behavior of the observer in this case. In [6], following
the work of Yaz and Azemi [47], the author proposed to use a saturation
function with dead zone for observer in the case of the extended injection
form. This reduces the observer sensitivity to the noise, but we were obliged
to change the observer gain as follows AI = A2 = \3 = 4 in order to recover
a time response quite similar to the previous simulation.

In Figures 4.4, 4.5, 4.6 and 4.7, we see that the observer state x reaches
the neighborhood of the system state x in finite time. But we also see that
the noise is not totally suppressed in the observer. We can reduce this
noise with some minor modifications by introducing an asymptotic gain or
a sgn function modified with respect to the noise output knowledge [47],
for example.

Figure 4.4: xi(-} and x\ (-.)
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Figure 4.5: Measured zi(-) and x\ (-.)

Figure 4.6: x% (-) and x-z (-.)

Figure 4.7: £3 (-) and x3 (-.)
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4.6 Conclusion

In this chapter, we introduced a sliding observer that does not depend on
the derivative of u. This is due to the fact that our main application do-
main is the AC motor where the derivative of the input does not exist or
is not easy to obtain. This appears, for example, when we consider the
converter in the observer and control scheme. But, if it exists, and if it
is technologically possible to obtain u, ii, ..., and so on. A very cleaver
observer form was given in [23]. For this form, many observer designs work
well, and in this case, advantages of the sliding mode observer were prin-
cipally the design simplicity and the finite time convergence. In practical
observer design, we always take into account the output noise, thus gen-
erally we replace the sgn function by a modified sgn function or higher
order sliding mode. In the latter, we think that it is important, when it is
possible, as it is proposed in [15], to design an observer without the use of
diffeomorphism, because the observer validity domain is restricted to the
diffeomorphism validity domain.

4.7 Appendix

4.7.1 Proof of Proposition 39

From Definition 33, the indices /^ verify:
* ]Cf=i A^ = ni so from the Definition of //i, one has: ^^ Mi = n.

• A = < LJjT (dhi) : i = 1, ...,p; j = 1, ..., Hi \ are linearly independ

As Lj
f(dhi) = Lj

f~
l(Lf(dhi}} = L3

f~
l(yi}. A will be rewritten as

• Thus, if fj,i verify 3. of Definition 33, it is easy to see that: If /i, ...,/2p

satisfies Y%=i k = n and < L^~l(dyi) : i = 1, ...,2p; j = 1, . . . , / j > are lin-

early independent at some £ € U, then (/i , . . . , /2p) ^ (Aii • • • )A^2p) in the
lexicographic reordering [(/i > /^i) or (li = p,\ and /2 > ^2) or... or (l\ =
/ /I , ...,lp = #2p)]-

Then, the 2p-tuple /ii,-..,/l2p satisfies the three conditions of Definition
33.
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4.7.2 Proof of Theorem 41

First, starting from Theorem 36, where y is substituted by y, one proves
hereafter that conditions 1. and 2. of Theorem 35 (which are required in
Theorem 36) are equivalent to conditions 1. and 2. of Theorem 41. For the

Theorem 36, let us define: Q = \L?rl(dyi) : i = l,...,2p; j = l,....,/^ >

and for =
//7

but

LJf(dhi), then:

So the equivalence of condition 1. is proved. Now, for condition 2., for
Theorem 36 one computes Qj.

• For j = 1, ...,p one has:

and yj — Lf(hj), so

^([Lj-XL/^/iO):

as Lkf(L}(dyi+p)} = Lk^~l \Lf(dyi)}, one immediately has Qj = Qj.

• For j = p + 1,..., 2p one has f/j = /ij, so
QJ = {dhi,dh,2,.., d/ip, L f ( d h i ) , . . , Lf(dhp}} — {dhj} then, as /^ > 2, one
obtains Qj nQ = Qj for j = 1, ...,p.
Thus, the condition 2. of Theorem 41 is equivalent to condition 2. of The-
orem 35.

Secondly, in the same way, one proves the equivalence between condi-
tions 3. and 4. of Theorem 41, and the last conditions of Theorem 36,
where y is substituted by y. Theorem 36 applied to y gives:
There exists a change of coordinates transforming (4.12) into (4.9) if and
only if the previous conditions hold and there exist vector fields y1, y2, •••,g2p

satisfying
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such that
(adk

(_ng\adl
(_f)g

j}=0

for i,j = l,...,2p; k = 0, ...,/z» - 1; / = 0,...,/ij - 1.

(4.24)

Now, one wants to rewrite this condition only as a function of y. There-
fore, the p first vector fields gl are defined such that

i — i,..., fj,i i,

with the Definition of T/J , this is equivalent to the real output y to

L r I — 1-9iLf
r ^ > P -'-) • • • i P iijdi^, . ,

I — 1 , . . . , /ij ,

Now, the p— last vector fields ^l are defined such that

T . . - ; . . i=P+l , - ,2p ,

(4.25)

which can be rewritten as:

(4.26)

Thus, from (4.25) and (4.26), one obtains condition 3. of Theorem 41.
Moreover, from this and (4.24) one immediately finds condition 4. of The-
orem 41 and reciprocally.

4.7.3 Proof of Theorem 49
Sufficiency
If condition 47 holds, then

h \

—1 ;

is a diffeomorphism and transforms system (4.15) in

\ / t i - it \ \\ i £2 + gi (to u) ]
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with gi(£,u = 0) = 0 for any i G {1, ...,n}. Moreover, in the x coordinate,
condition 48 is equal to

dgi e span{dxi,...,dxi] Vz 6 {1,^} (4.27)

this implies that the system is in form 4.16.

Necessity
If there exists a diffeomorphism £ = 0(x) which transforms (4.15) into
(4.16) condition 47 is directly verified by the existence of 0. Moreover as
(4.27) is a necessary condition, this implies that condition 48 is a necessary
condition too.
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Chapter 5

Dynamic Sliding Mode
Control and Output
Feedback

C. EDWARDS and S.K. SPURGEON
University of Leicester, England, United Kingdom

5.1 Introduction

The sliding mode design approach involves two distinct stages. The first
considers the design of a switching function which provides desirable system
performance in the sliding mode. The second consists of designing a control
law which will ensure the sliding mode, and thus the desired performance,
is attained and maintained. The first stage is often termed the existence
problem and the second the reachability problem. Traditionally much of the
work in the area of sliding mode control considered uncertain, often linear,
state-space systems and the solution of both the existence and reachability
problems assumed full state information was available to the control law.
Thus, a switching function would be determined that was a function of the
system states and an associated state -dependent control law would result.

Clearly the assumption of full state availability is restrictive; it may be
impossible or impractical to measure all the states for many processes. One
possible solution is to use an observer to estimate the system states and
sliding mode techniques for such observation have been illustrated in the
previous chapter. The alternative is to consider solutions to the existence
and reachability problems which are dependent on system outputs alone.
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Uncertain linear systems, represented by a nominal (A, B, C] triple, will be
the initial focus of this chapter. A straightforward solution to the problem
of sliding mode control via output feedback will be seen to be possible
if the nominal triple is relative degree one, i.e., the product CB is full
rank, and the transmission zeros of the nominal system are in the left
hand plane, i.e., the triple is minimum phase. As may be expected from
the full state scenario, these transmission zeros will appear as poles of the
dynamics in the sliding mode. In fact, when the number of outputs and
inputs is equal, these transmission zeros will wholly determine the sliding
mode performance in general and the existence problem is trivial. If there
are more measured process outputs than control inputs, then it will be
seen that the solution to the existence problem may be formulated as the
design of a static output feedback controller for a particular sub-system
triple. It is well known that any triple is stabilizable via static output
feedback if it is both controllable and observable and satisfies a certain
inequality which is a function of the system dimensions. This latter result
is often termed the Kimura-Davison Condition. It will be shown that
a sufficient condition to solve the existence problem can be formulated.
This depends on the satisfaction of a similar inequality relating to the
system dimensions and the number of transmission zeros of the original
triple. If this inequality does not hold for the process of interest, then the
existence problem can always be solved by introducing a compensator. This
effectively amounts to augmenting the system with some extra dynamics
that are driven by the outputs of the plant. In this case it will be seen
that the existence problem and the design of the compensator may be
effectively accomplished by solving a particular output feedback problem.
Here the inequality which must be satisfied will be seen to relate to the
dimension of the compensator as well as the dimensionality and number of
transmission zeros of the system. The first is a design variable which will
ensure that a switching function can be found to make the sliding motion
stable. This chapter will go on to present output dependent reachability
conditions that will ensure that the sliding mode is ultimately attractive
and that the designed dynamics are attained.

It has been seen in the above that the use of dynamic feedback is desir-
able to broaden the class of linear systems for which sliding mode controllers
dependent only on system outputs may be designed. A second area where
the use of dynamic feedback yields useful properties is in the sliding mode
control of nonlinear systems. The results described above are only appli-
cable where the process of interest may be modelled by a linear uncertain
system. However, some processes are so nonlinear that such a modelling
assumption is invalid. Many results in the literature in the area of sliding
mode control for nonlinear systems are either based on particular applica-
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tion areas, such as robotics, or assume that the process satisfies often quite
restrictive structural properties, for example feedback linearisability. It will
be seen that the use of a particular canonical form, the Fliess generalized
controller canonical form, enables the existence and reachability problems
to be solved for a relatively broad class of nonlinear systems. It will be
shown that the resulting method has the additional advantage of providing
a natural way of designing dynamic sliding mode controllers, which effec-
tively filter the discontinuous control usually associated with sliding mode
control methods. The method may also be applied to certain processes
which are not stabilizable by continuous feedback alone. The use of slid-
ing mode control methods involving dynamic feedback has proved to yield
useful results.

5.2 Static output feedback of
uncertain systems

Consider an uncertain dynamical system of the form

x(t) = Ax(t) + Bu(i) + f ( t , x, u)

y(t) = Cx(t) (5.1)

where x e Rn, u e Mm and y e Rp with ra < p < n. Assume that the
nominal linear system (A, 5, C) is known, the pair (A, B) is controllable
and the input and output matrices B and C are both of full rank. The
unknown function / : R+ x Rn x Em — »• En, which represents the system
nonlinear ities plus any model uncertainties in the system, is assumed to
satisfy the usual matching condition

,u) (5.2)

where the bounded function £ : R+ x Rn x Rm -»• Rm satisfies

Q!(*,y) (5.3)

for some known function a : R+ x W — > R+ and positive constant ki < I .
The intention is to develop a control law which induces an ideal sliding

motion on the surface

Q} (5.4)

for some selected matrix F € Rmxp. A control law of the form

u(t) = Gy(t) - vy (5.5)
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will be sought where G is a fixed gain matrix and the discontinuous vector

1 0 otherwise

where p ( t , y ) is some positive scalar function of the outputs.
Consider first the choice of hyperplane to ensure a stable reduced-order

motion. To guarantee the existence of a unique equivalent control

ueq(t) = -(FCB)-lFCAx(t),

it is necessary that det(FCB) ^ 0. It is well known that

rank(FCB) < min{rank(F), rank(OB)}

and so in order for FBC to have full rank both F and CB must have rank
m. The matrix F is a design parameter and can be chosen to be of full
rank. A necessary condition therefore for the matrix FBC to be full rank
is that rank(CJ3) = m.

The following canonical form will be the key to the developments that
follow.

Lemma 53 Let (A, B, C} be a linear system with p > m and rank(CB) =
m. Then a change of coordinates exists so that the system triple with respect
to the new coordinates has the following structure:

a) The system matrix can be written as

A = \ Al1 Al2 Where AU e R(n-m)x(n-m)

and the sub-block AH when partitioned has the structure

0 A22

0 A
^22

(5.8)

where A°u 6 Rrxr, A%2 e R(™-P-*-)X(™-P-O andA^ € R(p-™)x(n-P-r)
for some r > 0 and the pair (^22 '^21) ^s completely observable.

b) The input distribution matrix has the form

where B2 G ]Rmxm and is nonsingular.
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c) The output distribution matrix has the form

C=[Q T ] (5.10)

where T £ Rpxp and is orthogonal.

For a proof see [1].
Let

p— m m
4— >• 4— >

[ F! F2 } =FT

where T is the matrix from equation (5.10). As a result

FC = [ Fid F2 } (5.11)

where

C\ := [ 0(p_TO)x(n_p) I(p-m) ] (5.12)

Therefore FOB = F2B2 and the square matrix F2 is nonsingular. By
assumption the uncertainty is matched and therefore the sliding motion is
independent of the uncertainty. In addition, because the canonical form
in Lemma 53 can be viewed as a special case of the regular form normally
used in sliding mode controller design, the reduced-order sliding motion is
governed by a free motion with system matrix

A'u-^An-AuF^FiCi (5.13)

which must therefore be stable. If K <E R™X(P-™) is denned asK = F2~
1Fi

then

As
u = Au-AuKd (5.14)

and the problem of hyperplane design is equivalent to a static output feed-
back problem for the system (Au,Ai2,Ci).

In the case where r > 0, the intention is to construct a new system
(Aii,Bi,Ci) which is both controllable and observable with the property
that

X(AS
U) = A(Af j ) U A(in - B.KC,)

To this end, partition the matrices A\2 and Afy as

[ 4m
JT.1 oi I / f -t f \.i?1 (5.15)A ill I \ /A122
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Where Am G M(n-m-r)xm an(} ̂  ^ R(n-P-r)x(p-m) ftnd form

sub-system represented by the triple (An, A^,^) where

^11 := /to2 /im2 C*l := [ 0(p_m)x(n-p-r) I(p-m)
L -^21 ^22 J

It can be shown that the spectrum of A^ decomposes as

A(An - A12Kd) = A(A^) U A(An - A

and the spectrum of A^ represents the invariant zeros of (A,B,C)[1}. It
follows directly that for a stable sliding motion, the invariant zeros of
the system (A, B, C) must lie in the open left-half plane and the triple
(An, Ai22, Ci) must be stabilizable with respect to output feedback.

It should be noted that the matrix Ai22 is not necessarily full rank.
Suppose rank(Ai22) = m', then it is possible to construct a matrix of
elementary column operations Tm> G ]Rmxm such that

Ai22rm/ = \ BI 0 1 (5.17)
L J ^ /

where BI G R(«-™-r)xm' and js of fmj ram< if #m, _ T^}K and Km> is
partitioned compatibly as

Km> =

then

AH — Ai2?KCi = -All — [ BI 0 J Km'Ci = AH — B\K\C\

and (An, Ai22,Ci) is stabilizable by output feedback if and only if the
triple (An, B\,C\) is stabilizable by output feedback. By using PBH tests
it can be verified that the pair (An, #1) is completely controllable and
the pair (An,Ci) may be shown to be completely observable [1]. If the
Kimura-Davison conditions

m'+p + r>n+l (5.18)

are met, the triple (An, jBi,Ci) is stabilizable.
Having established conditions to guarantee existence of a stable sliding

motion, a controller to guarantee reachability must now be sought. Assume
there exists a KI G ]Rm/x(p-m) such that AH - BiKiCi is stable. Let

K = T^l"1] (5.19)
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where K2 e R("»-"»')x(p-m) and ig arbitrary and the matrix Tm> e Rmxm

is defined in equation (5.17). Then providing any invariant zeros are stable,
it follows that the matrix A\\ — A\iKC\ is stable. Choose

F = F2 [ K Im]TT

where F^ £ fl£mxm is nonsingular and will be defined later. Introduce a
nonsingular state transformation x i— » Tx where

-*(n-m) U
Jl

and C\ is defined in (5.12). In this new coordinate system, the system
triple (A, B, FC] has the property that

A I -^il -**IZ I 7-1 I U

where A H = A H — A^KCi and is therefore stable. Let P be a symmetric
positive definite matrix partitioned conformably with the matrices in (5.21)
so that

9o\
0 }

where the symmetric positive definite sub-block P% is a design matrix and
the symmetric positive definite sub-block PI satisfies the Lyapunov equa-
tion

PiAn + AfiPi = -Qi (5-23)

for some symmetric positive definite matrix Q\. If

F := B2
TP2 (5.24)

then the matrix P satisfies the structural constraint

PB = CTFT (5.25)

For notational convenience let

Q2 := PiAi2 + AjiP2 (5-26)
Qs := P2^22 + AJ2P2 (5.27)

and define

7o := iAmax((F-1)T(Q3 + Qjgr1Q2)P-1) (5.28)
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This scalar is well defined since the matrix on the right is symmetric and
therefore has no complex eigenvalues. It can be shown that the symmetric
matrix £(7) := PAQ + A^P where AQ = A — ̂ BFC is negative definite if
and only if 7 > 7o[l]- A variable structure control law, depending only on
outputs, which will ensure reachability of the sliding mode for appropriate
square systems is thus given by

u(t] = -

where 7 > 7o and vy is the discontinuous vector given by

if Fy ? 0
otherwise

and p(t, y) is the positive scalar function

p ( t , y} = (fci7||Fy \ + a(t, y) + 72) / (1 -

(5.29)

(5.30)

(5.31)

where 72 is a positive design scalar which defines the region in which sliding
takes place. It can be shown [1] that the variable structure control law above
will quadratically stabilize the uncertain system and a Lyapunov function
s

TV(x) := xPx (5.32)

Furthermore an ideal sliding motion is induced on S in finite time.
Numerical example

Consider the nominal linear system

0
0

-1

D C =
I

-2

(5.33)
taken from [4]. By defining appropriate transformation matrices the system
may be expressed in the appropriate canonical form as

A =
-1.5816 0.0192 0.1457

1.4071 0.3845 -1.7080
0.2953 0.3400 0.1971

B =
0
0

-3.9016

and
/-( _ 0.3417

0.9398
-0.9398
0.3417

It can be verified that B2 = -3.9016, the orthogonal matrix

rji 0.3417
0.9398

-0.9398
0.3417
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and the triple (Au,Bi,Ci) is given by

7 [ -1.5816 0.0192 1 ~ [ 0.1457 1 ^ r ,
An = [ 1.4071 0.3845 j BI = [ -1.7080 J & = [ Q 1 \

Here r = 0, hence the original system does not possess any invariant zeros.
Arbitrary placement of the poles of AH — B\K\C\ is not possible since only
a single scalar is available as design freedom. For the single-input single-
output system (An,B\,C\) the variation in the poles of AH — B\K\C\
with respect to K\ can be examined by root locus techniques. In this case
if the gain matrix K = K± = -1.0556, then X(AU - BiKCi) = {-1, -2},
from which

F = F2[ K 1 ] TT

= F2 [ -1.3005 -0.6503 ] (5.34)

where F2 is a nonzero scalar that will be computed later. Transforming the
system into the canonical form using T defined in (5.20) generates

T [ -1.5816 0.1729
11 ~ [ 1.4071 -1.4184

where \(Au) = { — 1, —2} by construction. It can be verified that

0.3368 0.1891
Pl ' 0.1891 0.5401

is a Lyapunov matrix for AH and if P2 = 1, the parameter F2 = —3.9016.
It can be checked that 70 = 0.2452 and substituting for F2 in (5.34) gives

F = [ 5.0741 2.5370 ]

The following closed-loop simulation represents the regulation of the initial
states [1 0 0] to the origin. Figure 5.1 represents a plot of the switch-
ing function versus time. The hyperplane is not globally attractive since at
approximately 0.3 second it is pierced and a sliding motion cannot be main-
tained. Only after approximately 1 sec is sliding established. Figure 5.2
shows the decay of the states to the origin.

In summary, for the case of a non-square system, there exists a matrix
F defining a surface S which provides a stable sliding motion with a unique
equivalent control if and only if

• the rank (CB) = m
• the invariant zeros of (A, B, C) lie in C_
• the triple (An,Bi,Ci) is stabilizable with respect to output feedback.
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Figure 5.1: Switching function versus time
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Figure 5.2: Evolution of system states with respect to time

The invariant zeros are a property of the system under consideration
which must usually be regarded as fixed. The next section will explore how
a dynamic approach can be used to extend the class of uncertain systems
for which output feedback sliding mode controllers can be developed. This
will be achieved by eliminating the stabilizability restriction.

5.3 Output feedback sliding mode
control for uncertain systems via
dynamic compensation

In the analysis above, it was assumed that the triple (Ai\,B\,C\) was
stabilizable with respect to output feedback. This property can be guaran-
teed if the so-called Kimura-Davison conditions hold. If it is not possible
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to synthesize a K\ to stabilize the triple (An, B\, Ci), then it is natural to
explore the effect of introducing a compensator - i.e., a dynamical system
driven by the output of the plant - to introduce extra dynamics to provide
additional degrees of freedom.

Consider the uncertain system from equation (5.1) together with a com-
pensator given by

xc(t) = Hxc(t) + Dy(t) (5.35)

where the matrices H € Rqxq and D € Rqxp are to be determined. Define
a new hyperplane in the augmented state space, formed from the plant and
compensator state spaces, as

Sc = {(x, xc) G Rn+q : Fcxc + FCx = 0} (5.36)

where Fc G Rmxq and F e Rmxp. As in Section 5.2, assume that the
nominal linear system (A, B, C) is in the canonical form of Lemma 53 and
partition the matrix FT, where T is the orthogonal matrix from (5.10), as

p—m m
<-»• <->•

[ F! F2 ] = FT

In an analogous way define DI e R<?x(p-m) and D2 e M9Xm as

[ Dl D2]=DT (5.37)

If the states of the uncertain system in the coordinates of Lemma 53 are
partitioned as

x = l n~m (5.38)
[ X2 J Im V '

then the compensator can be written as

xc(t) = Hxc(t] + DiCiXi(t) + D2x2(t] (5.39)

where C\ is defined in Equation (5.12). Assume that a control action exists
which forces and maintains motion on the hyperplane Sc given in (5.36). As
usual, in order for a unique equivalent control to exist, the square matrix F2

must be invertible. By writing K = F2~
1Fi and defining Kc = F^~1FC then

the system matrix governing the reduced-order sliding motion, obtained by
eliminating the coordinates x2, can be written as

xi(t) = (An - Ai2KCi)xi(t) - Al2Kcxc(t) (5.40)

xc(t) = (Dl - D2K)ClXl(t) + (H - D2Kc)xc(t) (5.41)

From the above equations it is clear that the introduction of the com-
pensator has produced more design freedom. As would be expected, the
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invariant zeros of the uncertain system are still embedded in the dynamics,
since from the definition of the partition of A^ given in (5.15) and from
an appropriately partitioned form of AH — A\2KCi, it follows that

-A12KC

H-D2KC

0 Au - A^KCi -Al22Kt

0 (Di - D2K}Ci H-D2K,

As in the uncompensated case, it is necessary for the eigenvalues of A°± to
have negative real parts. The design problem becomes one of selecting a
compensator, represented by the matrices Di,D2 and H , and a hyperplane
represented by the matrices K and Kc so that the matrix

_ I" An - Al22KCi -A122KCAc'- (Di - D2K}d H - D2KC

is stable. Again if there is rank deficiency in the matrix ^122, then the
problem is over-parameterized. As in Section 5.2, suppose rank(Au2) =
777,' < ra and let Tm/ £ Rmxm be a matrix of elementary column operations
such that

Al22Tm, = [ B! 0 ]

where B\ € ]R(n-m-r)XTn and is of full rank. Define partitions of the
transformed hyperplane matrices as

2

then it follows that

An - Bi/^Ci -B,Kcl
c~~ n- L>2

As before, the matrix given in (5.43) will be written as the result of an out-
put feedback problem for a certain system triple. Unfortunately, a degree
of over-parametrization is still present in (5.43), which for simplicity will
be removed by defining

Di := Dl - D2K and H := H - D2KC (5.44)

This is comparable to the situation which occurred in the uncompensated
case where K2 was found to have no effect on AH — B\KCi. The key
observation is that Equation (5.43) can now be written as

n-BlKlCl -£iA'ci] = \AU O l l B i 0 1 \K, Kcl]\Cl 0
DlCl H \ [ 0 Oj [0 -/,] [Di H
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Thus by defining

A ._ [ ^n 0 1 R ._ [ Bi 0 1 _ [ Ci 0
9 '~ n n q'~ n -r \ q '~ n /"L u U«jXg J L U J9 J L U J9

the parameters Ki,Kci,Di, and # can be obtained from output feedback
pole placement of the triple (AQ, Bq,Cq). In order to use standard out-
put feedback results it is necessary for the triple (Aq,Bq,Cq) to be both
controllable and observable. Prom the definition of (Aq, Bq] it follows that

rank [ zl — Aq Bq ] = rank [ zl — A\\ B\ ] + q

for all z 6 C. As argued earlier, the pair (Au,Bi) is controllable and
therefore from the PBH rank test (Aq,Bq) is controllable. Using the fact
that the pair (An, Ci) is observable, a PBH argument proves that (Aq, Cq)
is observable.

The Kimura-Davison conditions for the triple (Aq,Bq,Cq] amount to
requiring that

m' + q+p>n-r + l (5.45)

Thus for a large enough q, the Kimura-Davison conditions can always be
satisfied and the static output feedback method can be employed.

5.3.1 Dynamic compensation (observer based)
It is well known that numerical solutions to the static output feedback prob-
lem often invoke the use of optimization routines which may not be guaran-
teed to converge. This subsection explores an observer-based methodology
for hyperplane design. Consider the compensator defined in (5.35) then,
as in the previous section (eliminating any invariant zeros), the assignable
dynamics of the sliding motion are given by the system matrix

A —
A " H - D2KC

An alternative method for choosing appropriate compensator variables H , D\
and D2, and the hyperplane matrix gains K and Kc will now be sought.

Consider the fictitious system

(t) = Aux(t) + , }

y(t) = Cix(t) { }

with associated triple (An, ^122,^1)- The structure of

C\ = [ 0(p_m)x(n-p-r) I(p-m) \
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means that the second (p — m)th dimensional component of the 'state' is
known. A reduced order observer would thus only be required to estimate
the first (n — p — r}th dimensional component. If the input distribution
matrix is partitioned conformably so that

A\22l \n-p-r , ,
A (0.48;

^1222 J lp-m

then a reduced-order observer for the fictitious system (5.47) is given by

z = (A°22 + L°A°2l)z + (A^22 + L°A%, - (A%2 + L°A0
2l)L°} y

+ (Ai22i + L°Al222}u (5.49)

where L° e R(n-p-r)x(p-"0 is any gain matrix so that A%2+L°A2l is stable.
Let 1C be any state feedback matrix for the controllable pair (An,^122) so
that AH — Ai22/C is stable, and partition the state feedback matrix so that

n — r—p p—m
<—> <—>

[ 1C 1C } = 1C

The state feedback law can be implemented using the observer states and
the outputs in the form

u = -ICiz - (JC2 - lCiL°}y (5.50)

and the closed-loop system comprising (5.47) and (5.49) is stable. Define

H — A^2 + L°'A2i (5.51)

D2 = -Al221 ~f" -^ -^-1222 (5.53)

K = /C2-/CiL° (5.54)

Kc = ICi (5.55)

then equation (5.49) can be written

z ( t ) - Hz(t) + Diy + D2u (5.56)

where
u = -Kcz(t) - Ky (5.57)

It can easily be verified that the closed-loop system formed from (5.47) and
(5.49) is given by

AH - A^KCi -Ai22Kc 1 \ x(t]
z ( t ) \-[(D,- D*K)Ci H - D2KC ' (5'58)
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and from the separation principle the closed-loop poles are given by

X(H)\jX(An-A122lC)

The system matrix associated with (5.58) is identical to the system matrix
of the reduced-order sliding motion given in (5.42). Therefore the choice
of compensator matrices in (5.51) to (5.53) and the hyperplane matrices
(5.54) and (5.55) give rise to a stable sliding mode.

5.3.2 Control law construction

Having investigated design procedures to determine the compensator and
associated sliding surface, it is necessary to construct a control which will
render the defined sliding mode attractive. Assume that there are r (stable)
invariant zeros and partition the state vector x\ as in (5.38) so that

xu ln-p-r

Ip-m

As a result, the (original) compensator can be written as

xc(t] = Hxc(t) + Dixi2(t) + D2x2(t) (5.59)

Define a new dynamical system by

zr(t) = A°uzr(t) + A°l2xc(t) + (A?2l - A°l2L°)xl2(t) + Al21x2(t) (5.60)

and augment (5.59) with (5.60) to form a new compensator

xc(t) = Hxc(t) + Dy(t) (5.61)

where

A°12 1 ._ (Af2l - A°12L°) Al2l

0 H - D, D2
T

T

Using the partitions (5.7), (5.8), (5.15) and (5.48), the original dynamics
can be written as

xr(t) = A^xr(t) + A°2xn(t) + A?2lx12(t} + A121x2(t) (5.62)

n(0 = A°22xu(t) + A™22x12(t) + Al221x2(t) (5.63)

i2(t) = A^xu(t) + A£x12(t) + Al222x2(t) (5.64)

X2(t) = A2nXr(t) + A2i2Xu(t) + A2i3Xi2(t)+A22X2(t)

(5.65)
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where the lower left sub-block of A from (5.7) has been partitioned so that

r n—p—r p—m

r 7 ," „" i A <5'66)I ^211 ^212 ^213 j = ^21

Define two error states

and

Arr JUr

ec — xc — xn — L

then straightforward algebra reveals

e r ( t ) = A°uer(t) +

and also
ec(t) = Hec(t)

(5.67)

(5.68)

(5.69)

(5.70)

These stable error systems result from the fact that, by construction, the
compensator states xc and zr are observations of xu + L°x\2 and xr, re-
spectively. Define a state matrix

x =

X2

then standard algebra reveals

x(t] = Ax(t) - Aee(t) + B \u(t) + £(t, x, u)}

where

(5.71)

(5.72)

A°u A°12 A?2l-A°l2L°
O H DI
0 A§! A%-A°21L°

^211 -^212 ^213 ~ -^212-^°

0 0
0 0
0 A°2

A211 A2i

D and

and the augmented error state

e = (5.73)
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Note that the triple (A, B, C) can be obtained from the canonical form
(A, B, (7) via a similarity transformation. Thus the original system together
with the compensator can be written as

k(t) = He(t) (5.74)

x(t] = Ax(t}-Aee(t) + B[u(t)+£(t,x,u)} (5.75)

Note also that the sliding surface Sc can be written as

[x <E Rn : Sx = 0}

where
S = F2 [ Omxr Kc K Im } (5.76)

Define a switching function

s(t) = Sx(t) (5.77)

and define a linear feedback component

ui(t) = -A-lSAx(t) + A~l3>Sx(t) (5.78)

where A = SB and $ e £mxm jg a stable design matrix. Let P be the
unique positive definite solution to the Lyapunov equation

P$ + $TP = -/ (5.79)

A control law to induce a sliding motion on the sliding surface <5C is given
by

u(t) = ui(t) - vy (5.80)

where

if .(0*0
1 0 otherwise

and p(-) is the positive scalar function

p(t, y) = (*i || A|| \\ui(t) || + || A||a(«, y) + 72) / [1 - fci«(A)] (5.82)

where 72 is a small positive constant.
By considering a Lyapunov candidate of the form V(s) = sTPs where

s(t) = 5x(t), it may be shown that the control law defined in (5.78) to
(5.82) induces a sliding motion on the sliding surface Sc.

This control law is effectively a state feedback controller since the com-
ponents zr and xc are estimates of the true states xr and x\\ (up to a
coordinate transformation) .
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5.3.3 Design example
Consider the nominal linear system

A =

-2
0
0
1

I 0 0
0 4 1
1 0 0

-6 -9 -2

D c = 0 0 0 1
0 0 1 0

This system is already in the appropriate canonical form and thus

ln L121J
-2

0
0

1 0
0 4
1 0

(5.83)

0

0 Au

In terms of the compensator design, the triple of interest is given by

^122 = [ J ] Ci = [ 0 1 ] (5.84)

It can be shown by direct computation that for K = k

J o

and so the triple (An, ^122, Ci) is not stabilizable by static output feedback
and a compensator-based approach must be employed. It follows from
(5.84) that

^22 122 _

22

and so from Equations (5.51) to (5.53) an appropriate parametrization for
the compensator is

H = L° ° 2= 4 - (L°) = 1

where L° is any negative scalar which will appear as one of the eigenvalues
of (5.42). In the simulation which follows L° — —2.5 and A(^4n —^122^) =
{ — 1, —1.5}. Since the system has an invariant zero at —2, the sliding mo-
tion will have poles at { — 1, — 1.5, — 2}. The pole represented by $ which
governs the range space dynamics has been chosen to be —5. For simplicity
the scaling factor for the sliding surface is ^2 = 1. All the available degrees
of freedom have now been assigned.

Figure 5.3 is a plot of the switching function against time; it can be
seen that sliding occurs after approximately 1 second. Figure 5.4 shows the
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Figure 5.3: Switching function versus time
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Figure 5.4: Evolution of the system states

evolution of the states against time. Initially the states of the compensator
have been set to zero. The states of the system have a nonzero initial
condition which needs to be regulated to zero.

Figures 5.5 and 5.6 show the evolution of the error states ec and er. Ini-
tially ec is nonzero since the state x\\ was given a nonzero initial condition.
As indicated in Equation (5.70), this error system is completely decoupled
and decays away to zero (Figure 5.5).
The error states er, shown in Figure 5.6, although initially zero, are cou-
pled to the state ec as shown in Equation (5.69). However, this also decays
asymptotically to zero in accordance with the theory.
Notice from Figure 5.3 that, although the states initially lie on the slid-
ing surface, a sliding motion is not maintained. This is due to the fact
that the error term e is initially too large. A sliding motion occurs after
approximately 1 second, by which time the error e has decayed sufficiently.
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Figure 5.5: Evolution of the error states ec
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Figure 5.6: Evolution of the errors states er

5.4 Dynamic sliding mode control for
nonlinear systems

Sliding mode control is known to provide an appropriate solution to the
robust control problem. However, the majority of design methodologies,
whether reliant on state or output feedback, have been based around linear
uncertain systems, as described earlier in this chapter, or specific types
of nonlinear systems. The latter may involve particular application areas,
such as robotics [10], or require that relatively stringent conditions are met
by members of the system class: for example the system class may be re-
quired to be feedback linearizable [11]. It is obviously desirable to have a
sliding mode control methodology that will be applicable to a fairly broad
class of nonlinear system representations, exhibit robustness while yielding
appropriate performance, and lend itself to the development of appropriate
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tool boxes for controller design. It will be shown in the remainder of the
chapter that the dynamic sliding mode policies which result from consid-
ering differential input-output (I-O) system representations are sufficiently
general to meet this remit [5, 6, 9].

Dynamic sliding mode control methods assume that all the systems
states, or equivalently, the derivatives of the outputs to some appropriate
order, are available for use by the control law. Thus a state estimator is
necessary for implementation if only measured outputs are available.

The following notation will be used throughout:

NS(XQ) = {x e Rn : \\x-x0\\<6}

where 6 > 0, or simply N& if XQ — 0.
For sliding mode controller design using static feedback, it is necessary

that the system assumes a regular form and that the control variables ap-
pear linearly in the system in order to recover the control parameters from
the chosen sliding condition [13]. In general, this is not practically imple-
mentable for general nonlinear systems with nonlinear control. In order to
develop the sliding mode control method to include dynamic policies, and
hence to ensure it becomes applicable to an extended class of nonlinear
systems, differential I-O system representations will be employed.

For a given system in state-space form that is locally observable,

x = /(x,M) , .
y = Mx,u,*) (5'85)

where x € Rn ,u € Rm, and /(x, u) and /i(x, u) are smooth vector func-
tions, the following locally equivalent differential I-O system exists [14]

(5-86)
(Tin)

yp
where

u = (Ul, . . . , u(0l\ . . . ,um, . . . ,^m))T (5.87)

and
y = (yi,. . . ,i/in i~1) , . . . ,yP , . . . ,^n ' -1))T (5.88)

with HI + . . . + rip = n.

Definition 54 A differential I-O system (5.86) is called proper if

1) p = m;
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2) All ( /?;( . , . , . ) , i = 1 , . . . , ra, are C3 functions;

3) Regularity condition

det (5.89)

is satisfied with y e N$(Q) for all t > 0, some 5 > 0 and generically
for u.

Throughout this chapter it is assumed that all the differential I-O sys-
tems considered are proper.

Whether or not the resulting system is minimum phase will again be
shown to be pertinent to the stability of the closed-loop system.

Definition 55 The zero dynamics, corresponding to (5.86), is defined as

¥>i(0,M = 0
: (5.90)

y?p(0,iM) = 0.

The system (5. 86) is called minimum phase if there exist 5 > 0 and UQ € M'3

where 0 = /3\ + . . . + /3m, such that (5.90) is uniformly asymptotically
(exponentially) stable for an initial condition u(0) £ A^(UQ), where

Otherwise, it is non-minimum phase. Note that, in this case, the "mini-
mum phase-ness" is a property of the chosen control signal.

In order to address robustness, uncertain systems of the following form
may be considered.

: (5.91)

y(pp} - vP(y,u,t) + Ap(y,t)
The uncertainties are Lebesgue measurable and satisfy

| |A i (y , t ) | |<p i | |y | |+/ i , P i > 0 , / < > 0 , i = l , . . . , p (5.92)

The uncertainty may be due to external uncertainties, internal param-
eter uncertainties, measurement noise, system identification error, or in-
deed the elimination procedure used to generate a differential input-output
model from a state space model as in [14].
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It is often convenient to consider the Generalized Controller Canonical
Form (GCCF) representation of (5.86). Without loss of generality, suppose
that n i , . . . ,nmi > 1 and nmi = . . . = nmi+m2 = l,mi + ra2 = m. The
system (5.86) may be expressed in the following GCCF [2]

Xi) _ Xi)
M — S.2

XI) _ XI)
Sni-1 ~ VH

Xm) _ X™)
Snm-l — Snm

C
'(TO) / i. ^ ,\
L = <pm(C,U,*)

where
Xi) _ (X») Ai)\ _ ( i,(ni~l)} i-l mS> — VSl » • • • ) Sni J ~~ Vi/i) • • • ) Ui ;, t — 1, . . . , »t

and

(5-93)

represent the system outputs and their derivatives.
It has been seen that it is necessary to solve existence and reachability

problems in order to determine the sliding mode controller. In the nonlinear
case, the two popular choices of sliding surface are:

(1) Direct sliding surface [8, 6, 9]

, » = , . . . , m
3 = 1

where Y^j=i aj ; •^J'~1 are Hurwitz polynomials with anl = 1. This will
provide a reduced order sliding motion whose dynamics are prescribed
by the roots of the polynomials.

(2) Indirect sliding surface [5]

+<^(C,<M), t = l , . . . ,m (5.95)

where X^j^t aj ^~1 are Hurwitz polynomials with a^+1 = 1. With
this choice, the system (when sliding) becomes equivalent to an nth
order linear system, with dynamics prescribed by the choice of the
Hurwitz polynomial. This may be regarded as an alternative model.
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An appropriate algorithm for robust dynamic sliding mode control is
described below. The system (5.91) may be expressed in the following
generalized controller canonical form

Ci = (2

(5.96)

where

HO _ (XO H0\ _ (7/. ?/
(ni~1h i - 1

S — VSl 5 • • • ) Sn, ; ~~ V^' ' ' ' ' i/i ;, t — 1, . . . ,

and

Step 1: Choose design parameters to define the sliding surface (5.94). For

i = 1, . . . , m, if m > 1, choose (a^\ . . . , aj^.j, 1) and (a^, . . . , ai,_i),
both Hurwitz. This is always possible according to the result in [3]. With-
out loss of generality, suppose HI, . . . , nmi > 1 and nmi+i = . . . = nmi+m2

where mi + m-2 — m-
Step 2: Estimate the uncertainty bound as in (5.92) when the system is
in the GCCF. Choose 00 and 0 where 0 < 0 < 1, 00 + 0 = 1 and define

i=l

where

(5.98)
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Step 3: Define

0 1 0 0

0 0 1 0

0 0 0 1

0

for i = 1, . . . , mi. Let D := diag[D\, . . . ,Dmi] and A := diag[A\, . . . , -AmJ.
Since the A{ are stable, then A is stable, and define P to be the unique
positive definite solution to the Lyapunov equation

ATP + PA = -I

Next choose K e ]RmXTn as a positive definite matrix which satisfies

plmi > 0 (5.99)

Step 4: Differentiating (5.94) with respect to time t along the trajectories
of (5.96) leads to

(5.100)

(5.101)

5'i 1(5-96) = ] o C
j=l

for i = 1, . . . , m. Now set

J=l

where fc0i > IQ := lA2)1/2and

x { *• X>£
i t \ i / \ J 1 1 ^ -

QS1T I T* 1 —— £ " • C/TFTf 1 / T* T* ^ JTO(JjLg\JU } C OCl»6l ) \ X) |»// \ C

£ ( -1, X < -£

Equation (5.100) becomes

s = -Ks - K0sat£(s) + A(C, t) (5.102)

where KQ = diag(kQ\,..., fcom] , sate(s] = [sate(si),..., sate(sm)]T.
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Step 5: From (5.101) the highest order derivatives of the control,
namely [u\ , . . . ,Um ], can be solved out by the implicit function the-
orem as

u(0i] =p i (C ,u , t ) , i = l , . . . , m

if the regularity condition is satisfied. Note that pi(£,u, t) is a continuous
function if Si ^ 0 because (f>i is C1 and 7$ is C° if Si ^ 0. This dynamic
feedback can be realized in canonical form by introducing the pseudo-state
variables as

(5.103)

• (TO) (m)
Z \ / - *y V /

— —

where

~(i) _ ( J*) r^h — (•? / . V i - i/^"1^ ? — 1 mz — \z^ , . . . , Zp. ) — ( u l ^ u l ^ . . . ̂ ui j , i — i, . . . , m ^

and
2-(^ ( 1 ) , . . . ,2 ( m ) ) T . (5.105)

The system in (5.103) together with (5.96) yields a closed-loop system of
dimension X^Li n» + Y^iiLi &i, where fa is the highest order derivative of
Wj.

Step 6: Choose UQ E ffi^ and a 5 > 0 such that, for initial condition
u(0) 6 A^(u0), and

(1) the regularity condition is satisfied;
(2) the zero dynamics (5.90), (or (5.103) when C — 0) are uniformly

asymptotically stable; and
(3) all the initial conditions for (5.96, 5.103) are compatible.
It was shown in [6] that the procedure outlined above will effect uni-

formly ultimately bounded motion of the uncertain system (5.91) if it is
minimum phase.

Remarks
The proof in [6] relies on first showing that the closed-loop subsystem asso-
ciated with the states (, is stable. This is demonstrated by considering the
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system (£, s) obtained from the linear coordinate transformation resulting
from substituting for Qv according to the formula

[which is a rearrangement of (5.94)]. Defining (^ := (Ci , • • • >Cni-i)T ^
follows that

C(i) = AiC + Asi (5.106)

for i = 1, . . . , mi. Using the candidate Lyapunov function

ultimate boundedness of the (£, s) subsystem, with respect to an arbitrary
neighborhood of the origin, can be shown. The overall closed-loop system
is given by (5.106) and (5.102) together with equations of the form

* = »KC,*,M) (5-107)

where the right hand side is such that z — 77(0, 0, 2, t) represents the zero
dynamics. Using the stability properties of the states s and £, stability of
the overall closed-loop system can be shown by using a modification of the
results for 'triangular systems' in [15].

Equation (5.102) can be shown to represent a strong reachability condi-
tion in the sense of [12].

The dynamic sliding mode control method above assumes that all the
system states, or equivalently, the derivatives of the outputs to some appro-
priate order, are available for use by the control law. Thus a state estimator
is necessary for implementation if only measured outputs are available. A
particular high gain observer was shown to be particularly appropriate for
this estimation task [7].

5.4.1 Design example

Consider the following nonlinear model

A = ysm(y} + rand(l) (5.109)

Here A represents the uncertainty and rand(\] is the one dimensional ran-
dom variable from MATLAB. The corresponding zero dynamics are obtained
by setting y^ — y^ = y = 0. This yields

w ^ + w + yuu ( 1 ) (w 2 - l ) = 0 (5.110)
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which is the Van der Pol equation. This is uniformly asymptotically stable
for LI < 0 with [w(0)j + [^^(0)] < 1 as shown by the phase plane portrait
in Figure 5.7 where JJL — — I and u(0) = u(0) = 0.5. The system is thus
minimum phase and the closed-loop dynamic sliding mode control scheme
will be stable for appropriately chosen initial parameters.

0.2 0.3 0.4 0.5
-0.4

-0.2 -0.1 0.6 0.7

Figure 5.7: Phase plane portrait showing the typical evolution of the zero
dynamics

Step 1: Choose the direct sliding surface s = ay -f y^ where a = 2.
Step 2: To estimate the uncertainty bound, choose OQ = 0.25 so that

6 = 0.75. From |A| < |y| + 1, it follows that /0 = 1 and p^ = 3 implies
p = 4.

Step 3: As A = -2, it follows that P = 0.25. Thus

(5.111)

and appropriate choice for k in the reachability condition is k = 5 > 4.25.
Let &o = 1.5 > /o = 1.
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Step 4: The controller is then solved out from s = —ks — kosat£(s) as

UW = -(ks+k0sat£(s)+usm(y(l)}+uy+u+nu(l)(u2-l)}/(l+y2) (5.112)

Simulation results for initial conditions y(0] = 0, y(0) = 0.5 are illus-
trated. The level of uncertainty present is shown in Figure 5.8. The output
response is shown in Figure 5.9. It is seen that the closed-loop system
rejects the uncertainty and effective output regulation is achieved. Fig-
ure 5.10 shows that a sliding mode is attained and maintained. It is seen
from Figure 5.11 that this performance is achieved with out the switched
control action, which is often associated with sliding mode control. The
dynamic control strategy act as a natural filter for the control signal and
its robustness to the prescribed uncertainty results.

o 0.5

Figure 5.8: Evolution of the uncertainty contribution to the dynamics

o 0.5 i

Figure 5.9: Evolution of the system output with respect to time
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Figure 5.10: Evolution of the switching function
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Figure 5.11: Evolution of the control signal with respect to time

5.5 Conclusions

In this chapter design procedures have been presented to synthesize ro-
bust output feedback controllers for linear uncertain systems. The class of
systems to which the results apply has been identified, and includes the
requirement that the nominal linear system is minimum phase. It has been
shown that certain dimensionality requirements must be satisfied if the slid-
ing surface is to be designed using a straightforward static output feedback
pole placement, which is dependent only on a particular subsystem of the
original plant dynamics. This restriction can be overcome using a dynamic
feedback approach. A reduced-order Luenberger observer approach was
shown to yield a convenient methodology for designing the sliding surface
and compensator dynamics in this case. An output dependent controller
which guarantees attainment of a sliding mode by the linear uncertain sys-
tem was presented.

This chapter also addressed the problem of designing sliding mode con-
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trailers for nonlinear systems. A particular canonical form was used to ren-
der the results applicable to a fairly broad class of systems. This method
was shown to produce controllers that are dynamic in nature and thus
avoid the chattering which often characterizes the sliding mode approach.
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Chapter 6

Sliding Modes, Passivity,
and Flatness

H. SIRA-RAMIREZ
CINVESTAV-IPN, Mexico City, Mexico

6.1 Introduction

In this chapter, we present two discontinuous feedback controller design
examples that are solved by a combination of off-line trajectory planning
(OLTP), based on flatness, passivity-based control (PBC) and either pulse
width modulation (PWM), or sliding modes (SM). The examples are pre-
sented in the context of two electrical systems. A permanent magnet (PM)
stepper motor which is a weakly minimum phase multivariable nonlinear
system and a dc-to-dc power converter of the "boost" type, which is a sin-
gle input, non-minimum phase system. Both systems are switched systems,
i.e., their control inputs take values on discrete sets.

The OLTP process for nonlinear differentially flat systems is not only
natural but it is also quite flexible and powerful, as already demonstrated
by many application examples and solid theoretical developments (see the
work of Fliess and his colleagues [3] [4] for interesting details and far reaching
developments). The PM stepper motor and the "boost" converter, treated
in this chapter, are differentially flat (see [6] and [9]).

Stabilization tasks for single input and for multivariable flat systems
can be easily achieved, even in the case of non-minimum phase output
requirements, thanks to the fact that the differential parameterization pro-
vided by flatness, degenerates, under equilibrium conditions, into a static
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parameterization which allows to reconcile the non-minimum phase out-
put controlled maneuver objective with an equivalent objective for the flat
output variable [5].

A more complex problem is that of having a non-minimum phase output
follow a prespecified trajectory that leads to a desired, permanent, oscilla-
tion, as in the case of dc-to-ac power conversion. Part of the difficulty now
arises from the fact that, in some cases, the differential parameterization
is no longer helpful in directly establishing the corresponding signal to be
tracked by the flat output or, alternatively, by a minimum phase output.
The problem may be solved by resorting to an approximating sequence of
finite differential parameterizations of the minimum phase output in terms
of the non-minimum phase output. In the limit, this sequence may be
interpreted to lead to an infinite order flatness. With the aid of digital
computer simulations, we show that for the normalized model of the boost
converter this sequence of parameterizations enjoys a rather fast conver-
gence property and only one or two of its terms are required in order to
obtain a tight solution to the tracking problem.

Section 6.2 presents a PM stepper motor controller design example solv-
ing a stabilization task requiring an equilibrium-to-equilibrium transfer via
trajectory planning, exact linearization, and PWM control. Section 6.3
presents a boost converter design example. The general properties of flat-
ness and passivity of the "boost" converter circuit are established and a
general derivation is provided for a sliding mode solution (based on passiv-
ity and flatness), of a trajectory tracking task for the non-minimum phase
output. The proposed solution is suitable for both the stabilization and tra-
jectory tracking problems. The last section of this chapter presents some
conclusions and suggestions for further research.

6.2 The permanent magnet stepper motor

Consider a nonlinear model of a permanent magnet (PM) stepper motor,
taken from Bodson and Chiasson [1],

dia

~dt
dib
~dt
duj
~dt

1
- L (Va la

= - (vb - Rib -

1 .
j ma

uj cos(Nr8))

= u, (6.1)
dt
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where ia represents the current in phase A of the motor, i\j is the current in
the phase B of the motor, 0 is the angular displacement of the shaft of the
motor, and va and Vb, are the voltage applied on the windings of the phase
A and phase B, respectively. The parameters R and L, the resistance and
self inductances in each of the phase windings, are constant and assumed
to be known. Similarly the number of rotor teeth Nr, the torque constant
of the motor Km, the rotor load inertia J, and the viscous friction B are
assumed known and constant. The load torque perturbation, denoted by
r, is, for analysis purposes, assumed to be zero.

The nature of the control inputs va and Vb is that of switched inputs
respectively taking values in the discrete control sets, Ua = {+Va,— Va}
and Lib = {+VJ,, —V&}, as obtained from a diode-based PWM operated
bridge inverter. However, our design developments treat va and Vb as if
they were continuous valued inputs. The inteprpretation of this procedure
is that the model (6.1) is being regarded as an infinite frequency PWM
average model [8]. We shall consider the obtained feedback control law as
a feedback duty ratio synthesizer and implement the derived control law
through an actual switching law of the PWM type, taking values in Ua and
Ub. Trajectory planning is shown to naturally avoid the possible saturation
of the computed duty ratio functions.

6.2.1 The simpler D-Q nonlinear model of the PM
stepper motor

The, so called D—Q (direct-to-quadrature) transformation gets rid of all the
trigonometric terms appearing in the motor model. This transformation is
given by

id cos(Nrd) sm(Nr9)
- sin(Nr6) cos(Nr6)

cos(Nr6) sm(Nre)
- sm(NrO) cos(Nre)

ib

(6.2)

The current id is the direct current and iq is the quadrature current.
Also, Vd and vq are addressed as the direct and quadrature voltages, respec-
tively and act as the new control inputs to the system.

The transformed system is given by

dij 1 ,

di
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6.2.2 The control problem
The control objective is to drive the system from a given initial equilibrium
value towards a final equilibrium value achieving, as a result, a desired final
value for the position variable 9.

The equilibrium point (id, iq, W, 9) of the transformed system, for a given
constant value of the direct voltage, Vd = Vd, is given by

vq — 0, id = —, iq = 0, cJ = 0, 9 = arbitrary constant

We assume that the equilibrium value of id is not zero. In fact, we
will keep id bounded away from zero throughout the equilibrium transfer
maneuver. As will be shown, this is quite easy to guarantee.

Suppose, for a moment, that the vector relative degree {1,1} outputs
id and iq are held constant at some value ( i d , i q ) — ( id?0). Then the zero
dynamics corresponding to this set of values is given by the linear system

d9 dw
~dt =UJ ' ~dt =~ ^ ( ' '

which exhibits two eigenvalues; one located at the origin, and the other
located in the left half portion of the complex plane, at the point (-B, 0).
The system outputs, (id,iq), are then weakly minimum phase and, accord-
ing to the results of [2], they are passive outputs.

6.2.3 A passivity canonical model of the PM stepper
motor

Consider the following positive definite (Lyapunov) energy storage function

H(id, i,, w, 0) = i [L (tJ + i2
q) + Ju2 + 70

2] (6.5)

The time derivative of the storage function, along the controlled motions
of the system, satisfies

H = -[R(% + i2) + Bu2} + vdid + Vqiq +

(6.6)
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This last expression, plus the weakly minimum phase character of the out-
puts id and iq, reveals that the system is a passive operator between the
modified inputs (tfd,flq) = (vd + 0u/id,vq) and the system outputs (id,iq}.
This justifies the following additional input coordinate transformation,

(6.7)

We write the system, in matrix form, as

" L 0 0 0 "
0 L 0 0
0 0 J 0
0 0 0 7

• did -
dt

dig

dt

dijj

- ~dl -

" - R 0 0 0 "
0 -R 0 0
0 0 -B 0
0 0 0 0

0 NrLu> 0 ~lf~
-NrLu 0 -Km 0

0 Km 0 0

7^ 0 0 0

«d
iq

UJ

9

" 1 0 "
0 1
0 0
0 0

id
iq

u
9 _

[** ]
U J

(6.8)

The obtained model, clearly exhibits the conservative and the dissipative
structure of the system.

6.2.4 A controller based on "energy shaping plus
damping injection"

The "energy shaping plus damping injection" dynamic feedback controller
design method, extensively treated in [7], yields the following dynamical
feedback controller specification,

(6.9)

with 0 and £2 satisfying

jo = #m»;(t)-£Ci + flfl(w-Ci)
id d

with RB and Re positive design constants.

(6.10)
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The transformed control inputs to the system are determined from the
equalities

Vd = $d-J— ; Vq = tfq (6-H)

The feedback controller, in terms of the original inputs i;a, Vb and the phase
currents ia, i&, is obtained from (6.2) and (6.10).

We state the tracking error stabilization properties of the feedback con-
troller (6.9), (6.10), as follows.

Proposition 56 The passivity-based dynamic feedback controller yields a
state vector tracking error dynamics, described by the vector,

which is globally exponentially asymptotically stable to zero.

Proof
Substituting the control input expressions, given in (6.9), into the D-Q
system model (6.3), we obtain, using the following definitions of the state
tracking error variables; e\ = id —

e4 = 0 - Ci >
and £2 = iq — i ( t ) , 63 = u; — Ci and

L 0 0 0
0 L 0 0
0 0 J 0
0 0 0 7

62
£3
e4

0 NrLuj 0 0 "
-NrLuj 0 -Km 0

0 Km 0 0
0 0 0 0

" -R 0 0 0
0 -R 0 0
o o -B-RB o
0 0 0 - R e

1 -

62
es

62
63

(6.12)

Using the modified energy function H(e) — \ (Le\ + Le^ + Je\ + 764),
with 7 being an arbitrary strictly positive constant, one establishes that,
H(e) < aH(e), with a < 0 as a constant dependent on the system param-
eters L, J, R, B, 7, and the design parameters, RB and RQ. The tracking
error vector e is globally exponentially asymptotically stable to zero, i.e.,

•* /j.\ • •* /J.\ /• /3 /" (fc 1 O\

In the absence of load torque perturbations, the desired current i*q(t) is
made to converge to zero and, then, iq also converges to zero. The planned
flat current i*d(t] is made to converge to a nonzero constant. Then, id
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converges to the same value. The outputs id and iq are passive, thus, uj
and Ci converge to zero. The angle 9, and £2, both converge to a constant
to be established. The flatness property allows the final value of 9 to be
completely determined at will, as will be shown in the following section.

6.2.5 Differential flatness of the system

The PM stepper motor is easily seen to be differentially flat, since all vari-
ables in the system can be completely parameterized in terms of differential
functions of the independent variables constituted by the direct current id
and the motor shaft angular position 9. (see [6] and [11] and the references
therein ). The flat outputs, denoted by F = (Fi,F2) = (id,9), yield,

J - B •
Id •* 1 > " •* 2) vJ "2; vq TVT- -^2 i jy- -* 2?

•̂  *• TTl -*^ TT7-

vd = LFi ' ~~

(6.14)

All systems properties, in particular those concerning the ones needed
for passivity-based controller design, are already reflected in the above com-
plete differential parameterization, as it can be easily verified.

6.2.6 A dynamic passivity plus flatness based controller

The passivity-based controller (6.10) requires pre-specified passive outputs
trajectories i*d(t] and i*q(t}. Instead of directly specifying those trajectories,
it was proposed to specify them in terms of the flat outputs, i.e., we take
advantage of the fact that the passive outputs are differentially related
to the flat outputs (which, incidentally, are devoid of zero dynamics). The
(off-line) specification of such flat outputs already determines the rest of the
system variables. The advantage of this approach resides in fact that the
flat outputs are fundamental system outputs devoid of internal dynamics
and correspond to the hidden linear controllability properties of the system.

The passivity-based controller, exploiting the flatness property of the

LJ (3) Z/5 « _ / J ^ J5 ^,
V« = -T^-TO + -r^-T2 + J
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system, is then given by

T-C' , "K~~ i jL-* lm •* vm J ""a

n - w - l ^ / - ^ - . ^ / . ^ x / v ^ -O ^,,
^q =

(6.15)
_Jm m

with Ci and (2 satisfying

76 = 7 T ( * )
*d

6.2.7 Simulation results
We consider a PM stepper motor with the following parameters

R = 8.4 Q L = 0.010 H, Km = 0.05 Vs/rad, J = 3.6 x 10~6 Nms2/rad,

B = 1 x 10~4 Nms/rad, ./Vr = 50 Rb = 0.05f7

It is desired to transfer the angular position 9 from the initial value
of #o = 0 rad, towards the final value 9p = 0.03 rad, following a trajec-
tory specified by means of an interpolating time polynomial of the form
ijj(t,tQ,tf) satisfying

o,t /) = l (6-17)

Thus,
F - e0] (6.18)

One such possible expression, including a particular interpolating polyno-
mial if)(t,to,tf), is given by

tf -t0

) (6.19)
tf-

with

n = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700, r6 = 126
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and t0 = 0.01 s and t/ = 0.02 s.
The flat output variable, id, is also made to follow a similar time trajec-

tory i*d(t], taking the d-current coordinate from the value id(to] = ido = 0.3
A, towards the final value id(tf] = idf = 0.5 A, during the same previous
time interval [£Q>£/] - In other words we specified i*d(t] as

idf - (6.20)

The passivity-based feedback controller, proposed in the previous sec-
tion, is used with the passive output reference trajectories given by

(6.21)

•q\~/ TS \ I ' TS \ >
•L^m J-^-m

The design constants RB, Rtheta ,and 7, are

RB = 0.05, Rg = 1, 7 =

Figure 6.1 shows the simulations of the closed loop performance of the
stepper motor in original a — b coordinates. The load torque was set to
zero in these simulations.

9(t) grad] ib(t) [A]

time [s]

C0<t)

time [s]

va(t) [V]

time [s]

Ut) [A]
vb(t) [V]

time [s]

time [s] time [s]

Figure 6.1: PM Stepper motor closed-loop response to passivity plus flat-
ness based controller (a-b variables)
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In order to account for unmodeled constant load torque perturbations,
entering the angular velocity dynamics as r, we use an outer loop propor-
tional-integral-derivative (PID) controller, feeding back the dynamic con-
troller angular velocity tracking error e(t) = Ci — $*(0- This controller
guarantees that £1 actually tracks 6*(t), in spite of the perturbation load
torque. Since u) is guaranteed to track £1? by the previous arguments, the
net result is that u tracks 0* (t) in spite of the unknown but constant per-
turbations. The integral action of the PID controller corrects the angular
position deviations.

The modified controller is

L—i*d(t) - NTLui*(t)
at y

d_
'dt'

7-C2 Ri*d(t) - kPde + kldr] + kDdc

= 6 (6.22)

[rad]

time [s]

time [s] time [s]

(t)v '

time [s] time [s]

Figure 6.2: PM stepper motor closed-loop response to passivity plus flatness
based controller including perturbation torque

Figure 6.2 shows the performance of the modified passivity-based con-
troller in the presence of constant but unknown load torque perturbations.
We used kPd = kPq = 0.01, kld = klq = 60 and kDd = kDq = 0.001. The
load torque amplitude was taken to be 10~4 N-m.
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6.2.8 A pulse width modulation implementation
The controller design, and the obtained simulation results, may be re-
garded as those corresponding to an average PWM model of a correspond-
ing switched model of the PM stepper motor in which the input voltages,
va and Vb, are assumed to only take values, respectively, on the discrete sets
{—Va, Va} and { — Vb, Vb} with Va and Vb being constant values representing
the maximum available input voltages.

Consider then the average PWM model of the PM stepper motor, ob-
tained by simply substituting the control input voltages va and Vb, respec-
tively, by the expressions

Va = HaVa, Vb = ^bVb (6.23)

with (j,a and ^b acting effectively as the average independent control inputs
to the system, also known as duty ratios (see [8]). These control inputs are
constrained to the open intervals (—1,1). Va and Vb are positive constant
values determined on the basis of specified maximum absolute values of the
actual control input variables va and Vb, respectively.

The average PWM model of the PM stepper motor is then given by

di 1
~ = - \i*aVa -Ria +

^ = ^\jJLbVb-Rib-Kmu>coa(Nre)]

= [-Kmia sm(Nre) + Kmib cos(Nr9) - Bu - r]
CLL u

I = «• ^
The actual switching control inputs va and Vb are specified according to

a "PWM switching policy" , which entitles the sampling of the nonlinear
system states at time instants tk , with a sampling period given by the fixed
positive scalar T. The pulsed control inputs Vd and vq are then decided, at
the beginning of each sampling interval, according to

y«siSn W*fc)l for tk<t<tk+\ Ha(tk) \ T
0 for tk+ \ iia(tk) \T<t<tk + T

tk)] for tk < t
b ~ 0

with the duty ratio values na(tk} and Hb(tk] obtained, in a feedback manner,
as follows,

(6.26)
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with va(tk) and Vb(tk) obtained by sampling the (average) feedback control
laws, obtained in Section 6.3, from the controller design procedure, based
on passivity and flatness. In the simulations, we used a sampling frequency
of 5 KHz and complemented the dynamic feedback controller. The outer
loop PID controller also managed to compensate for the constant errors
arising from the finite frequency PWM sampling process.

I, AjtfnvWVM""™™™

time [si

co(t)
[rad/s]/

A

va(t)

time [s] time [s]

0.020 0.025

time [s] time [s]

Figure 6.3: PM stepper motor closed-loop response to passivity plus flatness
based controller (PWM implementation)

Figure 6.3 presents the actual switched responses of the system accord-
ing to the previously described PWM control policy. In this instance we
used Va = 7 V. and V& — 5 V. For simplicity, in these simulations, the load
torque, r, was set to be zero.
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6.3 The "boost" DC-to-DC power converter

Consider the "boost" converter circuit, shown in Figure 6.4. The system
given by the following bilinear switched model

1 E
jX2 + —

X-2
(6.27)

where u e U is the control input, taking values on the discrete set U —
{0,1}, xi is the inductor current, x2 is the capacitor voltage, and the
parameters R, L, C, and E, are known constants.

1 — u=0 Z2-r1 ̂ Q

Figure 6.4: Normalized "boost" converter

In order to simplify matters, we use, as in Zinober et al [10], a per-unit
normalized model of the above converter. This was achieved by setting the
following state, and time variable, coordinates transformation, z2 = x2/E,

, and r = t/^fLC. This yields,

_d_
dr'
d_

dr'

— —UZ2 + 1

—
Q

where Q is the circuit "quality", given by Q = R^/C/L.

(6.28)
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The "boost" converter is a dc voltage amplifier. This is translated into
the fact that the normalized output capacitor voltage is greater than 1
under its normal "amplifying mode" operating condition. To see this, we
give an heuristic argument. Suppose that we manage to hold 22 ideally
constant, at some value 22 (this will entitle infinite frequency switchings, of
course). The average value of the control input w, sustaining this condition,
would be given by u — p, = ~Z2/(Qz\). Since the actual u only takes values
in the set (0,1}, this average value is necessarily bounded by the interval
[0,1], given that neither of the extreme control values, u = 0, or u = 1,
yields a prespecified constant value for the converter state variable 22 • The
resulting differential equation for z\ is given by z\ — —^/(Qzi) + 1, whose
(unstable) equilibrium value is given by ~z\ — ~z\IQ. The equilibrium value
for \i is then computed as JL = ~zilQz\ = \l~zi. Since JL G [0,1], 22 is
necessarily larger than 1. An equivalent reasoning is achieved, starting
with constant values of the normalized inductor current z\.

6.3.1 Flatness of the "boost" converter
The total stored energy, given in this case by,

F=\(*l + %) (6-29)

qualifies as a flat output, since all system variables can be obtained as
differential functions of such an output. Indeed, derivation with respect to
T, denoted also by means of a "dot", of the expression (6.29), yields

F = z, - % (6.30)
v

From the set of Equations (6.27), (6.30) one can solve (uniquely up to
physical considerations) for the state variables z\ and 22, in terms of F and
F. One obtains

2F (6.31)

These equations point to the fact that the state variables are differen-
tial functions of the flat output F. In the case of switched systems, the
parameterization of the control input by differential functions of the flat
output is to be understood only in an average sense as if representing the
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duty ratio function of a PWM control scheme or an equivalent control. In
this case we obtain,

r\ r o 1

(6.32)

The differential parameterization (6.31) immediately allows for a con-
venient static parameterization of the state equilibria in terms of the flat
output constant values. Indeed, letting F = F be a constant, one obtains

Zl = - + + 2F

—
+IF (6.33)

The parameterization (6.33), immediately leads to the following alter-
native parameterization of the normalized capacitor voltage equilibrium in
terms of the normalized inductor current equilibrium,

z2

z2 = \Tz\Q —^zi = -^ (6.34)

6.3.2 Passivity properties through flatness
The system properties, especially those pertinent to passivity-based control,
can be readily established from the differential parameterization (6.31) and
(6.32).

Let zi = ~z\ be a constant in the first equation of (6.31). We obtain the
following corresponding zero dynamics,

whose trajectories are exponentially asymptotically stable to the equilib-
rium value 1/2(21+22)- This establishes that the output 21, the normalized
inductor current, is a minimum phase output. Since it is also relative degree
one, it is a passive output [2].

Let z-2 = 22 be a constant value. From (6.31), we obtain, after some
algebraic manipulations, that the corresponding zero dynamics is given by
the following implicit first-order differential equation,

(6.36)
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which, in the phase plane (F, F), can be represented by a parabola, opening
to the right, with the vertex located at the point (0.622, ~^\IQ]- Inciden-
tally, the vertex of the parabola is an impasse point since the differential
equation degenerates into an algebraic equation. The equilibrium point for
this differential equation is given by

i / —9 \ 2

F =
2 Q

(6.37)

A phase diagram of Equation (6.36) readily reveals that this equilibrim
point is unstable. The normalized output capacitor voltage z2 is thus a
non-minimum phase output.

The constant input equilibrium state detectability (see Byrnes et al. [2]
for definitions and general results) of the output z\ also readily follows from
the differential parameterization (6.31) and (6.32). This last fact implies
that the system is also stabilizable by means of output feedback (see [2]).

6.3.3 A passivity-based sliding mode controller
The "energy shaping plus damping injection" controller design (see the
recent book by Ortega et al. [7]) is based on the creation of a linear in-the-
state, time-varying, "copy" of the plant, sharing the same control input
as the given system. This reference model of the plant is provided with
appropriate supplementary damping enhancing the corresponding "dissi-
pation structure" . The virtual, or auxiliary, model of the system shares all
the important properties of the original plant (such as passivity of the cor-
responding outputs and flatness over a larger ground field) has the property
of "pulling" the systems state trajectories towards the desired prespecified
trajectories. In our "boost" converter case, such an auxiliary model is given
by

6 = t * i - f (6-38)
v

where Qc is the added damping we impose on the auxiliary inductor current
dynamics.

Notice that the reference model "tracking error" state e\ = z\ — £1,
e2 = z-2 — ̂ 2> satisfies the following controlled dynamics

e2 = uei - —e2 (6.39)
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Along the trajectories of the system (6.39), the time derivative of the
modified energy function V(e) = (1/2) (ef + e|) satisfies

V(e] = -Qce\ - ie* < aV(e) (6.40)

with a = 2 min{Qc, l/Q}.
Thus, as stated, the tracking error state trajectories asymptotically ex-

ponentially converge to zero, independently of the control input. The sys-
tem state trajectories asymptotically track the auxiliary system controlled
trajectories. Thus, regulating the auxiliary system along a given desired
trajectory results, in turn, in an effective regulation of the original plant.
Notice that the auxiliary system initial states are entirely at our disposal.

Let ZI(T) be a desired trajectory for the auxiliary variable 6- A sliding
mode controller that forces the auxiliary state 6 to track the specified
trajectory is given by

-*r(r))) (6.41)

The existence of a sliding mode on the time- varying sliding surface

So = {(6,6) \<r = 6 - *i(r) = 0} (6.42)

is assessed in the following manner.
Suppose that the initial the auxiliary state £i> is set to coincide with

the plant's state z\. Thus, due to linearity of the model reference tracking
error, the error state e = z — £ remains constrained to zero. If such is
not the case, this error, as it was already shown, exponentially decreases
to zero. Suppose now that the quantity 6 ~~ zi(r] is initially negative.
According to (6.41), the control input u is initially set to zero, and it will
remain clamped at this value until 6 reaches the desired trajectory z*(t).
The time derivative of the "sliding surface" coordinate, a — 6 — z\(r}i
throughout this phase is given by

* = l + Qc(*i-6)-*r(r) (6-43)

where the second term is either identically zero, or exponentially approach-
ing zero, as already described. In order to reach the time-varying sliding
surface, from below, i.e., 6 < zi(r}i the time derivative of a needs to be
positive. This is achieved as long as the initial value of 6 is chosen close to,
or equal, that of z\, and the desired trajectory z\(f] has a normalized time
derivative which is absolutely bounded above by 1, i.e. \ z\(r] \< I . Thus,
we should specify the desired trajectory z*(r) and initialize the auxiliary
system state 6 with these conditions in mind.
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If £1 is at certain time r\ above the value of ^i (T), a is positive. Then,
the control input w, according to (6.41), is set to adopt the value 1 and the
time derivative of the sliding surface coordinate a = £1 — z* (r] is given by

<r = -k + Qc(*i-6)-ii*(T) (6.44)

Notice that if we are already above the sliding surface, £2 is necessarily
larger than 1, due to the amplifying feature of the converter, and the track-
ing error (z\ — £1) mav be considered to be negligible or already zero. This
means, under the same previous assumption regarding the absolute value
of the time derivative of the proposed trajectory, | z*(r] \< 1, that a will
be locally negative and the sliding surface So is guaranteed to be reached
from above.

The sliding mode controller (6.41) achieves the convergence of £1 to-
wards the desired trajectory z ^ ( r ) . The equivalent control, defined as the
virtual control action, ue<?(r), responsible for ideally maintaining the evo-
lution of the sliding surface coordinate a at the value zero, and is obtained
from the invariance condition a — 0, wh;.;h it> evaluated at the ideal sliding
condition a — 0,

Ue, = -*f(T) + i + Oc(»i-»;(r)) (6 45)

The ideal sliding dynamics, or remaining dynamics is obtained by substi-
tuting the equivalent control expression (6.45) into the auxiliary capacitor
voltage dynamic (6.38)

6 = c 2j(T) _ (6.46)

Since, z\ also converges towards z*(r), due to the fact that £1 is forced
to follow ZI(T) in finite time and, as we have seen, z\ exponentially asymp-
totically converges towards £1, the equivalent control and the ideal sliding
dynamic asymptotically converge towards values given by the following ex-
pressions

>-
Equations (6.45) and (6.46) can be regarded as a dynamic feedback

equivalent controller, which only requires the feedback of the passive output
z\ from the plant.
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6.3.4 Non-minimum phase output stabilization

The control objective is to perform an equilibrium-to-equilibrium transfer
for the output capacitor voltage, z<i , of the converter. As will be shown, due
to the non-minimum phase character of the output voltage, the correspond-
ing regulation problem is not directly feasible. However, by embedding this
problem into a corresponding equilibrium transfer for the flat output, the
underlying internal stability problem is easily circumvented.

6.3.5 Trajectory planning

Suppose we specify a trajectory z\(r] for the auxiliary, minimum phase
output variable £1 , in full accordance with the desired equilibrium to equi-
librium transfer for the plant capacitor voltage. In other words, we assume
that the capacitor voltage initial equilibrium, 22o, is to be transferred, over
a time period AT = 77 — TO > 0, towards the final equilibrium value z^p.
Due to the non-minimum phase character of z% , this stabilization task needs
to be reformulated in terms of a transfer defined on the corresponding equi-
libria for the minimum phase variable z\. This is achieved by specifying
a suitable trajectory z\(r] for the auxiliary variable £1. If the auxiliary
system state £1 is forced to track the trajectory z\ (r), as it has been previ-
ously demonstrated, the plant state trajectory z\(r] will follow suit. Thus,
we specify

T0,Tf) (6.48)

with if)(T, TQ,T/) being a time polynomial smoothly interpolating between
0 and 1, satisfying

^(TO, r0, r/) = 0 ; V(r/» ro, rf) = I

and use this specification in the sliding mode controller expression (6.41).
This scheme is yields desirable results and good quality of responses, for

any suitably defined reference trajectory ZI(T). However, we claim that the
most natural choice for specifying this trajectory is to do so by resorting
to the flatness property present in the original plant. Instead of directly
specifying the trajectory for the auxiliary variable £1 in terms of z\ (r), we
specify z%(t) through its relation with the flat output, as given by (6.33)

r} + 2F*(r) (6>49)

The described choice has a justification in terms of the simplicity of
off-line trajectory planning tasks, when made in terms of the flat output,
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and the induced response on the non-minimum phase normalized capac-
itor voltage variable 22- The specification of a flat output reference tra-
jectory enjoys a direct differentially parameterized relationship with the
corresponding induced trajectory for ̂  as evidenced by (6.31). This, in a
sense, is a static relationship, devoid of any dynamics, in which all features
of the corresponding desired time response of z^ can be assessed, predicted,
and corrected without solving differential equations. On the other hand,
the specification of z\ undergoes an implicit dynamic relationship with the
corresponding response trajectory of z<i, which needs to invoke not only
the feedback expression for the equivalent control input but it also requires
the solution of a differential equation. As a result, pre-specifying the flat
output is not only more efficient from the design viewpoint but it also al-
lows for simple off-line experimentation and evaluation that results in a
better quality of response for the capacitor voltage variable. In fact, the
typical "undershoot" response of the non-minimum phase variable z% can
be effectively avoided by a reasonable off-line designed specification of the
flat output trajectory. It is not clear how to achieve the same goal with a
direct choice for z*(t).

6.3.6 Simulation results

Figure 6.5 shows the closed-loop responses of the state and input variables
for a desired capacitor voltage equilibrium transfer on a typical dc-to-dc
power converter of the "boost" type, with parameter values given by

L - 0.02 H, C = 1 A*F, R = 200 O, E = 15 V

A sliding mode passivity based controller was designed to increase the
output capacitor voltage from the initial equilibrium value of 30 V, towards
a final desired value of 60 V. The corresponding equilibrium values for the
inductor current are 0.3 A, and 1.2 A, respectively. The flat output must
be transferred from the initial value of 0.00135 towards the final value of
0.0162. In terms of the normalized state variables, the digital simulations
are carried out more efficiently with corresponding simulation values.

Q = \/2, ZIQ = 2v/2, z1F = 8\/2, z^ = 2, z2F = 4,

r = x 104 t
£

The corresponding trajectory for the normalized flat output was de-
signed using the expression (6.48) with the following Bezier polynomial,
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Figure 6.5: Closed-loop response of sliding mode controlled "boost" con-
verter with planned current reference trajectory in terms of the flat output

smoothly interpolating between 0 and 1,

\ 5

AT AT

where AT = r/ — TO, and AT = T — TO where TO = 200 and T/ = 1200,
dimensionless units, which correspond, after the change of time scale, to
ti = 0.028 s and t2 = 0.144 s.

6.3.7 Dc-to-ac power conversion

A discontinuous feedback control law for u was desired, such that the nor-
malized capacitor voltage, z%, tracks a given desired voltage signal z2(r),
which never becomes constant. This signal was assumed to be bounded
and sufficiently differentiable. In fact, we assumed that Z|(T) was smooth,
i.e., infinitely differentiable. Specifically, we were interested in generating a
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normalized output voltage of the form z% (t) — A + (B/2) sin u;rwith A > 0
and <jj > 0 and B being a constant of arbitrary sign.

The non-minimum phase properties of the output capacitor voltage,
joined to the "control acquisition" structure of the converter equations and
the discrete- valued nature of the control input u, made it especially difficult
for the synthesis of a switching feedback control law that results in a stable
ac capacitor voltage reference signal tracking scheme. It should be clear
that the main task to be solved was to obtain a procedure by which an
inductor current reference signal was approximately, or exactly, computed
whose corresponding "remaining dynamics" trajectories are either given by
the desired output capacitor voltage or by some reasonable approximation
to it.

In order to obtain a suitable reference trajectory z\(r] for z\, given that
z-2 is of a particular form z^r], one should proceed to eliminate the flat
output F* from the set of relations

(6.50)

Such an elimination yields a differential relation between z\(r} and
^2 ( r)> i - e -5 one which, necessarily, involves an infinite number of time deriva-
tives of z^r}. We will exploit this elimination idea in order to generate an
approximating sequence of static differential algebraic relationships yield-
ing the normalized input inductor current reference signal z\, exclusively
in terms of the output capacitor voltage reference trajectory z% and a finite
number of its time derivatives. This finite differential parameterization of
z\ in terms of z% will, of course, allow for the indirect sliding mode genera-
tion of a large class of bounded ac output capacitor voltage profiles, which
are sufficiently differentiable.

6.3.8 An iterative procedure for generating a
suitable inductor current reference

In order to simplify the notation we will temporarily suppress the asterisks
and the time argument in the developments of this subsection. Consider
then the set of relations (6.50). Those relations can be alternatively viewed
in the following manner:

F = ~
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Evidently, one may "embed" the set of relations (6.51) as the outcome of
a convergent iterative procedure, aimed at eliminating F, where the value
of z\ — ZI)QO was computed exclusively in terms of a given fixed function z^
and, possibly, an infinite number of its time derivatives. In other words zi,
viewed as the outcome of such an iterative procedure, could be represented,
after convergence, by

*!,«, = T|+^OO (6.52)
v

^oc = i(*ko + *22) (6-53)

Equations (6.52) and (6.53) immediately suggest the consideration of
the following iterative procedure,

z2

Zl,k = -^ + Fk
Ctf

Fk+i = \(*tk + 4) (6-54)

This algorithm sequentially yields an approximation of a static relationship
between z\ and z%, which only involves polynomial expression of zi and of
its time derivatives. The algorithm of course should be "initialized" by an
arbitrary but reasonable trajectory FQ(T) for the flat output F.

Starting from the equilibrium condition, FQ(T) = constant, one obtains
the following sequence of approximating expressions for the normalized
inductor current reference trajectory z\ ,

*, = f =*fi = || + ̂  (6'55)

(6'56)

2 9r3

2 / • \2 ^*2

(6.57)

(2) (fc)
;

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



6.3.9 Simulation results

The generated normalized inductor current reference signals (6.55)-(6.57)
were used in a passivity-based sliding mode control scheme, carried out in
the same manner for the stabilization problem described in Section 6.2.
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til i i \^ 1 J
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-•'/x ^^
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Figure 6.6: Closed-loop response for output capacitor voltage using z* 0 as
the normalized inductor current reference trajectory (normalized u> = 0.02)

A typical "boost" converter was chosen, with circuit parameters L = 20
mH, C = I /zF, R = 50 H, and E = 15 V. For the normalized "boost"
converter dynamics, the dimensionless circuit quality turns out to be Q =
0.3535. We took the following candidates as sliding surfaces <Jk — z\ —
z{ k(r] for k — 0,1, with Z^Q(T) and zl^(r} as given by (6.55)-(6.56),
respectively. As a desired output capacitor voltage signal, we chose z^(r] =
A + B/2 sinur. The constants A > 0, B and u were set so that the sliding
mode existence conditions were satisfied. The parameters of the desired
normalized sinusoidal voltage reference signal, A + (J5/2) sin(wr), were set
to be A = 1.5, B = 0.8, u = 0.02, i.e,

z*(r) = 1.5 + 0.4sin(0.02r)
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which corresponds with an denormalized sinusoidal voltage of the form

&2 (*) = 22.5 + 6 sin(>/2 x 102 t) V

The corresponding time basis for the adopted normalization was ̂  =
0.1414 ms. The underlying sampling process for the simulation used nor-
malized sampling periods of 0.1 time units, which corresponded to an actual
sampling frequency of about 70.71 KHz.

Figure 6.6 shows the closed-loop output voltage response of the pro-
posed sliding mode tracking controller for a sliding surface candidate of the
form ak = z\— z\ k(r), with k = 0. The simulated output voltage response
is shown, for comparison purposes, along with the desired output capac-
itor voltage signal z^(r}. These signals can hardly be distinguished from
each other. Figure 6.6 also shows the trajectory of the off-line generated
inductor current signal, along with the actual inductor current response.
The equivalent control trajectory, also shown along with the denormalized
voltage response, are bounded, after sliding starts, by the closed interval
[0,1]. The simulations corresponding to the sliding surface candidate ob-
tained for k = 1, depicted in Figure 6.7, show that the agreement with the
desired trajectories, obtained for k = 0, were not substantially improved.
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Figure 6.7: Closed-loop response for output capacitor voltage using z\^ as
the normalized inductor current reference trajectory (normalized uj = 0.02)
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6.4 Conclusions

In this chapter we proposed a flatness-based approach for the passivity-
based stabilization and trajectory tracking of two switched electrical sys-
tems. One was weakly minimum phase while the other was a non-minimum
phase system. The approach used a suitable combination of flatness-based
trajectory tracking, passivity, and sliding mode control. The more complex
problem of minimum phase output signal reference tracking, not leading to
equilibrium, but sustaining a desired oscillatory behavior, required a new
approach based on consideration, as reference trajectories candidates, those
emerging from a sequence of finite-order differential parameterizations of
the minimum-phase output in terms of the non-minimum phase output.
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Chapter 7

Stability and Stabilization

W. PERRUQUETTI
Ecole Centrale de Lille, Villeneuve d'Ascq, France

7.1 Introduction
Sliding mode control design techniques are based on a two stage procedure:

• hitting phase (or reaching phase), and the

• sliding phase.

Both of them are concerned with stability/attractivity concepts because:

• in the first step, the condition ensuring the sliding motions is a con-
traction property (at least locally around the sliding manifold),

• in the second one, the choice of the surface (shaping procedure) is
mostly related to some stabilization problem: one has to compute
(or "tune" ) the parameters involved in the shape of the sliding sur-
face such that the sliding motions achieve some convergence and/or
stabilization problem.

To make this explicit, let us consider the following example

z = u

This system "seems" complex, however, if we set

Z-2 = X2
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(note that it defines a global diffeomorphism) , then one obtains

1 = z2

2 = U

and it becomes obvious that if in sliding mode z2 = — zi» then z\ converges
asymptotically to zero (z\ = z2 = —zi) and thus z2 also converges. In this
step of design (the "sliding phase"), the shape of the sliding manifold arises
naturally.

Now, we need to force the system to evolve on the constraint z2 = —z\.
For this, let us define the sliding surface as

S = {z £ R2 : s(z) = 0} (7.3)

s(z) = z2 + Zl (7.4)

Then, according to the equivalent control method [32, 31], we need the
control to satisfy

/ x / u+(z) ifs(z) > 0
U(Z)~ { u~(z) ifs(z) < 0

mm(u+ (z] , u~ (z)} < ueq = —z2 < max[u+(z), u~(z)]

in order to ensure that a sliding mode exists on S. This leads to various
design controls, for example,

l i f S ( z ) < 0

which ensures a finite time convergence to S as soon as the initial conditions
are close enough to the surface and satisfy \z2\ < 1. But, can we provide a
better characterization of the initial conditions leading to a sliding mode?

An alternative to this control is

, v f ~z2 - 1 if s(z) > 0 , ,
u(z) - { i i -t ) ( / n (7-5)( ~Z2 + 1 if S(Z) < 0

which ensures a finite time convergence to <S, whatever the initial con-
ditions. But since the chattering problem remains, can we stabilize the
system while reducing the chattering?

In this chapter, three problems related to the above-mentioned phases
are developed:

• to transform the initial system into an appropriate form which pro-
vides a guide for the choice of the sliding surface: Section 7.3,
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• to determine the set of all admissible initial conditions which are
leading to sliding motions on the sliding domain (the useful part of
the sliding manifold on which a sliding regime can take place) : Section
7.4, and

• stabilization issue reducing the chattering phenomenon: Section 7.5
(see also [1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 17, 24, 28, 29]).

7.2 Notation

In this chapter, MIMO nonlinear systems are considered and are of the
following type:

= f(l] + °(x* (7.6)y = h(x) v '

where x € Rn is the state vector, u 6 Rm is the control vector (ra inputs),
y 6 W is the output vector (p outputs: y — [hi(x), . . . , h p ( x ) ] T } , f : Rn — >•
]Rn, a smooth drift vector field, G(x) = ([#1(2;), . . . ,gm(x)} , is an (n x m}-
matrix and gi : W1 — > Rn are smooth vector fields, with Qij(x) the control
gain of the jth input acting on the ith state space variable. We assume that
/i(0) = 0, in such a way that the problem of driving the outputs to zero is
translated into the problem of driving the state asymptotically to the zero
equilibrium.

Furthermore, the sliding motions are studied for a control defined as
follows:

(x) if S*(X) > 0 (7 7}
( }

with Si = Si(x) defining the manifold of commutation Si(x) = 0 and s(x) 6
Mm .

Throughout the chapter the following notation will be used:

_ o
• »S, <S, d(S), respectively denote the closure, the interior, and the

boundary of the set 5

• p is the Euclidean distance

• jV(«S, 5) = {x G Rn : p(«S, x) < e} is the ^-neighborhood of the set S

• if z eR f c then \z\ = [|zi|,-" , Mf

• Ca(<S,R fc) is the set of a-times continuously differentiable functions
from S into Rfc
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for smooth n- vector fields, /(z), g(x), [20]: [f,g](x) 4 /(x) -
dx g(ff ) , (Lie product or Lie Bracket), generate a vector field as

the Ad operator defined by Ad°fg(x) = g(x), Adl
fg(x) = [f,g](x),

for a smooth real- valued function A(x), [20]:

A ( d\ e\ d\\dx(x} = (d^'-"'d^'"''d^) (7-8)

(the "gradient" of A)

and SIGN(z) are, respectively, real and vector signum func-
tions defined as follows:

(7.9)

SIGN(z) = (signfo), . . . , sign(2z)) , z £ R< (7.10)

When the signum function is not defined at zero, then the above
defined functions will be denoted respectively by sgn and SGN.

7.3 Generalized regular form
In this section, hypotheses are given for the existence of a regular change of
coordinates transforming the initial system into a so-called "regular form" .
The original result was presented in [21] and recalled in [26]. Here it is
enlarged to the following expected regular form:

, 22)
f*(Zl,z2} (7.11)

where the number d may be greater or smaller than the number of input
TTI, where as in [21] d = m. On the basis of such a regular form, we will
investigate our two basic problems cited in the introduction.

7.3.1 Obtention of the regular form
The problem is to find a diffeomorphic state space transformation z = 4>(x)
changing (M) (7.6) into (RF) (7.11). First, if G(x) is not full rank then
one can find a pre-static feedback in order to obtain a new system with full
rank input gain matrix.
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On the rank of the input gain matrix

In [21], the classical case a fundamental hypothesis relies on the rank(G(a:))
which should be maximal (m) : there is as inputs as the rank of the input
gain matrix. The next theorem show how to recover that classical hypoth-
esis using a pre-static state feedback.

Theorem 57 [23, 25] 7/rank(G(:co)) = f , then there is a static feedback

with W nonsingular in a neighborhood N(XQ} of XQ, such that:

\

G(x)W(x) =

X 0

Y . . .
Y

Y

... o

' • • o
Y

Y

Y

0 • •

0

n

n

• 0

n
n

n
j

(7.12)

Note that W(x) is not unique, so it can be used to "balance" the control
on each physical input. This argument is important when, for safety sake,
the process has more physical inputs (m actuators) than necessary free
controls (r). In the following, we consider that rank(Gr(xo)) = m. If it
is not the case (rank(G(xo)) = r < m), using the previous theorem one
can consider the system (M) (7.6) with static feedback (7.12), which is
transformed into:

(M ) =
y = h(x]

(7.13)

where v e Rr is the new control vector and G (x) is an (n x r) matrix of
full rank r.

Results on the existence of a regular form

The given results are local, but when assumption HI) (see theorem state-
ments) holds everywhere in the state space, then the diffeomorphism is
global and so are the results. The following result is an extension of clas-
sical results for nonlinear systems using a differential geometric approach
(see [20]):
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Theorem 58 [23, 25] Let A be a distribution such that

HI) A is nonsingular at XQ (i.e., of constant dimension dim A = d& <n)

H2) A is involutive, which is

Vn e A,Vr2 e A : [n,r2] 6 A (7.14)

H3) span{0i(z),. . . ,0m(z)} C A

Then there exists a neighborhood N(XQ} of XQ and a local diffeomorphism
z — 4>(x] defined on M(XQ}, such that (M) (7.6) is transformed into (RF)
(7.11) with d = d& < n. Moreover, if d& < n, then the conclusion holds
for n > d > d/\.

Note that (RF} is not the classical local decomposition for "controlla-
bility/reachability" (see [20]) because the term z2 = f^(zi-,z<2] depends on
the variable z\.

Remark 59 For single input systems, G = g a smooth vector field and
u € M. If §(XQ} 7^ 0, then the distribution A=spa,n{g(x}} (dim A = d& =
1) is involutive and so the system (M) (7.6) can be transformed into (RF)
(7.11) with d = C?A — 1- This was originally treated in [21J.

Remark 60 Note, that if the candidate distribution A in the previous the-
orem is span (g i (x) , . . . ,gm(x}} , then one obtains the classical result of
[21] (d = d& = m). So, this result is an extension which, as we will see in
the following sections, provides guidance for the design of a sliding mode
controller in the general case: d may be greater or smaller than m.

Algorithm: explicit construction of a candidate
distribution to Theorem 58

The following algorithm allows the construction of a candidate distri-
bution satisfying the assumptions of Theorem 58. Its structure is based on
classical computation of the involutive closure of a distribution (see [20]):
lrst Step: Let AI = span{#i(x),.. . ,gm(x}}. Check the d\ (dim AI = d\)
linearly independent vector fields of AI (denoted n}:

AI = span{ri(x),... ,rd l(x)}

2nd Step: Wi e AI,\/TJ e AI, compute [Ti,Tj] and test whether it belongs
to AI: if not, add these vector fields to the new distribution A2 under
construction.
kth Step: Let

Afc = Afc-i ©span{[ri,Tj] : r{ e A f c _i ,Tj e A f c_i and [TJ,TJ] £ A f c_i}
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thus we have: Afc_i C A& and d&k > d&k_i = dim A^-I.
End Step: Stop when

[T^TJ] € Afc,VTi € A fc,Vrj € Afc

This integer k will be denoted fcend and in the following it is referred to this
finite integer obtained by using this algorithm. Then Afcend+i = Afcend and
Afc = Afcend for k > fcend- The obtained distribution is involutive (Ac):
the Lie bracket does not generate other "free directions" . It is the smallest
involutive distribution containing AI and it is known to be the involutive
closure of AI.

Remark 61 Note that AG, the smallest involutive distribution containing
AI, can be also obtained by

AG = span [Adk
g.gj(x} : i € {l..m} J e {l..m},k e {O..oo}]

AG = span [Adg.gj(x) : i e {l..m}J 6 {l..m} , fc e {Q..kend}]

Let us consider the following system:

= -u + « (7.16)
at

^ = zu - yv (7.17)

The distribution AI = span {^1,^2} with #1 = (1, — l,x)T and #2 = (0, 1,— y)T

is not involutive since [01,02] = (0,0, 1)T, but AG = span{0i,02, [0i>02]}
is the smallest involutive closure of AI and thus we cannot find a diffeo-
morphism for (7.15) such that the inputs act only on two states.

7.3.2 Effect of perturbations on the regular form
Let us consider a perturbed nonlinear system defined as

where p(x) is an additive perturbation. The problem is to see how the
regular form (RF) (7.11) is affected by p(x).

Theorem 62 Let us suppose that

HI) p € AG = span{Ad^igj(x) : i 6 {l..m}, j e {l..m} ,k 6 {O..oo}}
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H2) AG is nonsingular at XQ (i.e., of constant dimension dim AG = d^G <
n)

Then there exists a neighborhood A/"(XQ) of XQ and a local diffeomorphism
z = (j)(x) defined on N(XQ), such that (PM) (7.18) is transformed into

(PRF}~ Z2 = f?(zi,Z2) (7.19)

with d = C?AG •

Remark 63 //Ac = spa,n{gi(x), . . . ,gm(x)} is involutive, then HI) of
the above theorem corresponds to the classical "matching condition" (see
[8]). In that case it is well known that sliding modes are unsensitive to
such perturbations.

A remark about the number of components involved in the sliding
surface

A relation between the existence of sliding motions and the number of
components involved in the sliding surface is given here. Let

s= [ S I ( X ) , . . . , S / ( X ) ] T

a smooth vector filed such that {s = 0} is an (n — ̂ -dimensional smooth
manifold: this is the case if s(0) = 0 and the Jacobi matrix (||) is of full
rank / < n.

Theorem 64 The existence of sliding motions on the surface S = {s(x) =
0} is equivalent to:

rank -G(x) < m (7.20)
ox

r\ f / f) \ ^

//(z) € span] col (~G(x)} ,i = l , . . . , m l (7.21)
v \OX J ^ J

Note that I + rank(G) — n < rank(|^G(x)) < min[/,rank(G)] and thus
I < rank(G), implies (7.20).

Remark 65 Note that for a single input system, (7.20) and (7.21) are
equivalent to the classical condition ^-g(x) ^ 0, for the existence of the
equivalent control (see [30, 32, 26, 27]). Obviously, if the classical condition
"|^G(x) is of full rankm" holds (the matrix is invertible and the equivalent
control is well defined see [30, 32, 26, 27]), then (7.20) and (7.21) hold.
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7.4 Estimation of initial sliding domain
In this section, we assume that a regular form has been performed, with
A = span{pi(x), . . . , pm(x)} , and d = d& = m: the vector s — s(z)
defining the surface <5 = {z e Mn : s(z) = 0} is an m- vector such that
Mz e Rn:

) = m (7.22)
dz\

)GR(zitZ2) (?23)

Thus, the system may be rewritten in the form:

In the example of the introduction, we pointed out that bounded dis-
continuous control law can achieve sliding mode. Thus in this section, we
give sufficient conditions for a domain of the state space to be an initial
domain of sliding motions, that is, a domain for which any initial trajectory
starting in this domain will lead to a sliding motion.

7.4.1 Problem formulation

Definitions

Utkin has pointed out a tight connection between the study of sliding mo-
tions and the stability theory (see [30, 32]).

Definition 66 A domain Ds of dimension (n—m) included in the manifold
S = [z 6 En : s(z) = 0}, is a sliding domain for system (7.24) with the
control law u, if assumption P holds:

Ve > 0, 3<J(e) > 0, s.t. Vz0 € N(DS, 6)

z(t] can only leave N(Ds;e} through N(dDs ; e) (7.25)

This is not the original definition that excludes the case where motions may
occur on Ds for the 2TO continuous system adjacent to the manifold s = 0
(compare with [32] p. 45): in the following work all motions evolving on
the sliding surface are taken into account and not only "sliding motions" .
As pointed out in [32, 22]: P is a stability-like definition and a natural
question arises which is "find the estimation of initial state (XQ) such that
assumption P is true" . This is the motivation of the following notion.
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Definition 67 A domain Di(Ds) of dimension n included in the state
space is the initial domain of sliding motions for system (7.24) w^n

the control law u, if:

1) Ve > 0, let Di(Ds\e] be a neighborhood of Ds such that the solution
reach J^f(Ds;e) and can only leave it through J\f(dDs;e) if and only
i f x 0 G Di(D8\e]

2) = |J
e>0

This is to say, that Di(Ds) is the largest set of initial state XQ such that
assumption P is true.

90 * Dt(Ds]e)

Figure 7.1: Definition 66 and 67

7.4.2 Sliding domain and initial domain
of sliding motion

The following result, based on the existence of two functions, gives sufficient
conditions for the obtention of some estimates of Ds and Di(Ds).
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Theorem 68 [22] Let us suppose that there exists two functions Vi (s) and
Vi(z) satisfying conditions HI) and H2):

HI) V\(z) is aC1(Rm ,R+) radially unbounded Lyapunov function with re-
spect to s (Vi : Rm — > R+, Vi (s) = 0 <=^> s = 0, and lim Vi (s) =

+00), V2(s) is a C1(Rn,R+) function with respect to z such that
T/ • IB""1 _ i TCP1/2 • -IK - > IK-f-

H2) There exists a\ > 0 (finite or infinite) and a:2 > 0 swc/i

n {z 6 En

E(DS) =

z) < ai}

* 2 ) ^ 0

i = 0} ̂  0

" : s(z) = 0} -

i :Si(z)= 0}

: dV2(z}z < 0

.} : dVi(s)s < 0i j i\ / —

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

Vz € a512 - {Ui61..m{«SJ

Vz € 5i2(ai;Q2) -Ui€1.

T/ien:

E(DS] is an estimate of the sliding domain for system (7.24)

C2) 5i2(ai;a:2) is an underestimate of Di(Ds): that is, for every initial
condition ZQ in £12(01 50:2), the solution z(t',to,zo) tends to Ds and
can only leave it through its boundary.

In [22] results were provided for single input systems, hypothesis on
functions V\ and V2 were relaxed so that functions with discontinuous
derivatives could be used.

Theorem 69 Assume that m = I and

„ JfM^m < ft(N) (7.32)
a — >U+ u a.e

such that any solution of system

x = h(x),x>0 (7.33)

/i(0) = 0 (7.34)
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starting in the set {0 < x < ai}, stays in this set and converges asymptot-
ically to zero. Then defining

n : \s(z)\ < (7.35)

and under the same hypothesis as the above theorem for V-2 and 812, 812
leads to a similar conclusion.

For multi-input systems the problem is more complex, but functions like
\x\ may be used under some restrictions.

7.4.3 Application
Let us consider two tanks in cascade (Figure 7.2). The model is

+U2)
(7.36)

where

5 > 0 is the section of the two tanks

• j3i = Si^/2g > 0, Si is the section of the output of the ith tank and g
is the gravitational constant

• x\ and x-2 are the heights in the two tanks, and

• u\ and U2 are the input flows in the two tanks.

II

Figure 7.2: Two interconnected tanks

In the tanks, chemical reactions occur and the goal is to obtain a con-
stant output flow (in each tank) which is equivalent to maintaining xi and
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X2 to desired values, respectively, x\c > 0 and x2c > 0. Note also that the
model has sense if and only if xi > 0 and x? > 0. The "degenerated sliding
surface" is defined by the vector

(7.37)
= (X2 ~ X2c)

which has sense if and only if si > —x\c and s-z > —x^c- The nominal flows
are: u\n = @i^/x\c and u^n — 02^/X2c~ @i\/x\c- Thus, in order to stabilize
the system with respect to bounded perturbations or parameter variations
0#ij/?2)> one can select a bounded control defined by

Ui = uin - kiSgn(Si),Vi e {1,2} (7.38)

Choosing the following function V\ — f (s\ + s^) > 0, one obtains

(7.39)

if |Sl| < ^lo $2 > —#2c>

< 0, and thus

Vi <0, for 5i ^0 , s 2 ^0 (7.40)

Thus using a variant of Theorem 68 [Vi = Vi, o.\ = a2 = ^JL] leads to
Ds = {si = 0, 82 = 0} and is the origin (there is not really a "sliding"
motion but the principle is the same) and Di(Ds] = {(sf + s|) < xic}-
Note, that due to the signum function the system belongs to the class of
variable structure systems and classical Lyapunov theory can not be applied
directly. For the design of the controller one must take into account the
physical limitations on the inputs: 0 < u^ < Ujmax = 2win. Let us introduce
two integrators and saturation functions before the physical inputs, then
the system can be rewritten as

3*2 = -

where sat is a saturation function defined as

•^imax II si —
sat(fc) = { ^ (7.42)

0 if & < 0

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



where Wimax are the maximum admissible inputs of the iih tank. The sliding
surface is then defined by the vector

o i ' * v * \ j * / - V - L IC /

Let us assume that 0 < & < w;max. Then the equivalent control leads to:

satfo)], (7.44)

veq2 = (1 - oc /—)[/32v/x2' - /?ix/x7 - sat(^2)] (7.45)

•sat(£i)] (7.46)

Thus, in order to stabilize the system with respect to bounded perturba-
tions or parameter variations (fa, (3%), we select a bounded control defined
by

Vi = veqi - ki(.}sgn(Si),Vi G {1,2} (7.47)

where k i ( . ) are positive functions. If we choose V\ = \(s\ + s2) > 0, and
the constant "ai — (mmuimax}

2" of Theorem 68, obviously & < Uimax and
i

V\ < 0 (equality only on 5). Choosing V-z — V\ + f ((xi — xlc)
2 + (x2 —

^2c)2) > 0) and the constant "0:2 = (minw^max)2" of Theorem 68, obviously
i

& < wimax and V2 = Vi + 5((a?i - xlc)i! + (x2 - rr2c)i2) using (7.41) and
(7.43) we obtain

Sit - si - S(xi - xic), i = 1,2 (7.48)

- x2c)
2)

(7.49)

Selecting k i ( . ) = 1 + |xj — xic\, one obtains V2 < 0. Thus applying
Theorem 68 we conclude that Ds = {s = 0} fl {^(s2 + s2) < (minwimax)2}

i

and Di(Ds] = {|(sf + s2) + f ((xi - xic)
2 + (x2 - x2c)

2) < (rnhmimax)2}.

The following figures show the simulation with the following numerical
values 5 = l(m2), fa = O.Stm^V1), #> = ^m^s"1), xlc = 0.6(m),
x2c = 0.6(m), uimax — 1.24(m3s"1), and w2max = 1.54(m3s~1), starting
from the initial conditions XIQ = l(m), x2o = 0.3 (m), and £10 = £20 = 0
(no input at time zero).
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output of the two tanks

Figure 7.3: Stabilization of two interconnected tanks

7.5 Stabilization
To stabilize (M) (7.6), it is clear from (RF) (7.11) that one can design a
sliding mode control in the following way:

1) let s = zi — a(z<2) £
a priori known

, where the d-vector valued function a is not

2) design a sliding mode control such that a sliding regime occurs on the
manifold s = 0 of dimension (n — d), and

3) because in sliding regime: zi =
stabilize the origin.

,22], use the function a to

This idea was first used in [21] under the assumption of first d — m, and
secondly G being of rank m and under an integrability condition (which is
always fulfilled when m = 1).

In the following, we will improve the stabilization when d = m (sub-
section 7.5.1) and give a nonlinear discontinuous control that reduces the
chattering phenomenon. And lastly, in subsection 7.5.2, we will see an ex-
ample of how stabilization is possible in the more general case d > m: for
this integrators may be used.

7.5.1 Stabilization in the case d = m
This subsection considers the classical case d = m (see [21]). In the classi-
cal design of the controller, we propose a new design, that allows use more
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general sliding surface: in [21], all trajectories (this means for all initial
conditions) belonging to the surface must converge asymptotically. In our
case, only local asymptotic stability is required. The sliding gain is calcu-
lated in such a way that the motions reach the sliding surface in its stable
part.

Theorem 70 Let us suppose that

HI) kend is finite (or equivalently AG exists: a regular form exists)

H2) m = dim AG

H3) the sliding surface is defined as:

s = zi- a(z2] (7.50)

with a(z2) e C^R^-^jR™), a(02) = Oi G Mm

H4) the origin 02 G R<n-m) of system

Z2 = f?[a(z2),z2} (7.51)

is locally asymptotically stable, and

H5) fR is at least C^R^R*"-™))

Then:

Cl) there exists a gain k(.) providing a local asymptotic stabilization of
the origin with respect to (M) (7.6), by means of the control

u=(GR(z}Yl(-fR(z} + v} (7.52)

v = -fe(.) SGN(S) + ^^-fR(z} (7.53)
OZ2

C2) if 02 G R(n~m) of (7.51), is globally asymptotically stable, then the
origin of (M) (7.6) is globally asymptotically stable under the control
u (7.52) and (7.53) defined with any nonzero constant gain k.

C3) Moreover, if we consider system (7.18) with a perturbation termp(x)
satisfying hypothesis HI) of Theorem 62 and ^pR(x] < KPR, for any
norm on Rm, then the above conclusions are still valid.

Proof : see [25].
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Theorem 71 // hypotheses HI) through H3) of Theorem 70 are fulfilled
and H4) is replaced by H4') there exists a Lyapunov function V2(z2} and a
constant p2 such that the set

is an estimate of the domain of asymptotic stability of the origin 02 G
R(n-m) Of (7.51), then, control u is defined by (7.52) and (7.53) with the
following gain

(.) = *'(*)+=? dV2

dz2
>0 (7.54)

and achieves asymptotic stability of the origin for system (M) (7.6) with
the. following estimate of the domain of asymptotic stability

S(p2) = [ z e V2(z2} < (7.55)

with 0 < a. Moreover, if we consider system (7.18) with a perturbation
termp(x) satisfying hypothesis HI) of Theorem 62 and ^pR(x}^ < TTPR, for
any norm on RTO, then the above conclusions are still valid provided that in
(7.54): k'(z}> sup

Remark 72 //, in addition, lim |̂  = limA/(z) = 0, then "chattering"
%2—>0 %—>0

tends to zero as the motion approaches the origin. This condition is not
very restrictive because, most of the time, Lyapunov functions are locally at
least quadratic. And k'(.) can be set to -^- |̂  for example. Note that

11 1

k'(.) can also be set to any other sigmoi'd function zeroing at the origin: in
/?, 29], the authors replaced the signum function by a saturation function
in order to smooth the discontinuity. The use of sigmoi'd functions achieved
the same result. Let us give a few examples (eft permit to select the band-

width): ^arctan(^), fx^n , tanh(?), etc... These sigmo'id functions

can be composed to any suitable function.

Consider the following nonlinear system

x\ = x2 + HI

x2 = x\ + HI +

£3 = £1X3 + U\ (7.56)
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Distribution A = span{gi,g2} ,91 — (1>1>1) T
5 <?2 = (0,1,0)T, is a two-

dimensional involutive distribution. In order to find 0, one msut find a
basis of A:

7 \ r\ f C/A i C/AdXgl = 0
^ '^==T>

It has solution X(x) = x\ — £3, thus z — 4>(x] = (x\,X2,xi — x^)T , leads to
(using Theorem 58):

zi — z? + ui
Z<2= Zi+Ui+ U2

z3 = z-2 - zi(zi - 23) (7.58)

Here rank(G) = 2, so according to Theorem 70, let u be defined as

u=(GR(z})-l(-f?(z}+v}

= (-Z2 + Vi, Z-2 ~ Zi - Vi + V2)T

= (-X2 + vi,x2 - xi - vi + v2)
T (7.59)

and let s be defined as

S = (Zi - Z3, *2 + ̂ 3)T = (X3,Xi +X2- X3)T (7.60)

Let v i = - Sgn(x3) + X2 - Xi%3 and v^ = — Sgn(xi 4- X2 - £3} -
Then, in sliding regime: 2:3 = —23, thus global asymptotic stability of the
origin of (7.56) is achieved.

7.5.2 Stabilization in the case d > m
The idea is to use an augmented form in order to come back to the first
case. This is explained in the following example.

Let us consider a monocycle (see Figure 7.4) with two controls:

1) the pedaling rolling action (wi) , and

2) and the rotating action (^| = ^2)-

The model is
dx • fa\— = sm(0)ui
at
dij
— = cos(0)ui
at
d0 ,„ „ ^
— =u2 (7.61)
at
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Figure 7.4: Monocycle

Note that (7.61) also models the dynamics of a two-wheel cart (see
[18]). Let gl = (sin(0),cos(0),0)T,#2 = (0,0,1)T. Then according to the
algorithm proposed in Section 7.3, defining

(7.62)AI = span j#i(x) = Ti(z),02(aO = r2(x)|

(a two-dimensional distribution), we have:

r3(x] = [7-1,7*] = (-cos(0),sin(0),0)T i A (7.63)

Let A2 = AI ©span {TS(X)}, this is a three-dimensional involutive distribu-
tion (compute the Lie brackets [TI, TS] and [r2, TS]). Note that dim(A2) = 3
implies that (7.61) is locally accessible. Thus the fact that distribution
AG = A2 implies that the only diffeomorphism transforming (M) (7.6)
into (RF) (7.11) is the identity: this is d = n > m. If we consider an
augmented state:

_

dt
d9—
at

= cos(0)f

dt
(7.64)
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Then, according to the previous results, let s be denned as

* = ( £ 0 )T -P(*,y) (7-65)

The sliding mode controller is designed as follows
j / \ / dpi dpi<!±-( vi\_{ f& w
dt \ Vo ) \ 9p2 ^PS.

\ / \ dx dy

In the sliding regime

dx
— = sin(p2(:r,y))pi(z,y)
at
rfy , /^ t̂? / / \ \ / N f *7 Rf7\— — cos(p2(x,y))pi(x,y) v ' - ° ' J
at

which can be set respectively to the values —ax and —/%/, for any a > 0 and
/3 > 0. Let p i ( x , y ) = —ijj(y)^(ax}2 + (/3y)2, [^(0) = l,i/j(y) = Sgn(y)],

and p-2(x, y) = arctan ( f2 ) be solutions of the following system:

s'm(p2(x,y))pi(x,y) = -ax

Note that the function ^ is fundamental for the exact dynamics assignment
because of the sign "—" in (7.66). Moreover in order to stabilize the origin
of (7.61) to zero we need 9 to tend to zero which is achieved if

lim (arctan (^Q}} = 0 (7.68)
t-+ooV \0y(t)JJ

As x and y tend to zero asymptotically in sliding regime, one must select
the rate of convergence (a) such that x tends faster to zero than y. And,
as in the sliding regime, x(t) — O[exp(—at}} and y(t) = O[exp(—/5t)j, this
leads to the sufficient condition

(-a + 0 ) < 0 (7.69)

So let us select: a = 2 and 0=1. Thus, global asymptotic stability of the
origin of (7.61) is achieved using the control laws defined by:

cos(0)y)^i 1-^fciiivt-'i / y v y / v ~ "*-"-V>'y1" ' ~~"V"/ i>/ /-—^

O<"

ti2 = V2 = — Sgn(s2) + (sin(^)y — cos(#)x) —
y2
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See Gulden and Utkin [18] for an other approach, for which they im-
posed the cart (or monocycle) to approach the origin according to a "Lya-
punov navigation function" (the tracked path is derived from this Lya-
punov function). Note that here, using a different control, we also achieved
the same result for the following "partial" Lyapunov function V(x,y) =
^((ax)2 + (ay)2). The following figure (Figure 7.4) illustrates the stabi-
lization of the origin under the controls (7.70). The simulations were done
using a 4/5 Runge-Kutta algorithm with the following initial conditions:
z(0) = 1.2,j/(0) = 2,0(0) = 0.2 (rd), and £(0) = 0 (no control at time
zero). One can note that the first control u\ is rather smooth (no chat-

x 1

ao 5 10
Time (sees)

2,

3 0

_2

Time (sees)
2,

Time (sees)

5 10 .
Time (sees) Time (sees)

Figure 7.5: Stabilization using (7.70) with k = 1

tering). This is due to the presence of an integrator before the physical
actuator. For the second control U2, there is some chattering which can be
smoothed using different technics (see for example or the above mentioned
sigmoi'd functions). But, we can use a tracking gain as proposed in Theo-

2
rem 71. Using the Lyapunov function ^2(22) — # + \ leads to choose the
following gain:

r + y* (7.71)

This gain replace the gain "1" of the signum function "Sgn(«2)" in (7.70).
thus we obtain the following simulations (Figure 7.5).

7.6 Conclusion
In this chapter, the problem of the estimation of the initial domain of slid-
ing motions was investigated using the Lyapunov approach. The given
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sufficient conditions should be improved by allowing the functions to be
less regular (smooth). The last part concerned the stabilization using the
regular form and nonlinear gain in the signum function, reducing the chat-
tering phenomenon. One can enlarge this approach to design a higher-order
sliding mode control as developed in Chapter 3.
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Figure 7.6: Stabilization using (7.70) with 0. + ^2Sgn(s2;

References
[1] M.A. Aizerman, F.R. Gantmakher, "On certain switching specifics in

nonlinear automatic control systems with a piecewise-smooth charac-
teristics of nonlinear element", Automatika i Telemekhanika, Vol. 8,
No. 11, pp. 1017-1028 (in Russian), 1957.

[2] M.A. Aizerman and E.S. Pyatnitskii, "Fundations of Theory of Discon-
tinuous Systems I", Automation and Remote Control, Vol. 35, No.7,
pp. 1066-1079, 1974.

[3] A.A. Andronov, E.A. Vitt, S.E. Khaiken, "Theory of Oscillators",
Pergamon Press: Oxford, [translated from Russian], 1966.

[4] S. Behtash, "Robust Output Tracking for Non-Linear Systems", Int.
J. Control, Vol. 51, No. 6, pp. 1381-1407, 1990.

[5] T.A. Bezvodinskaya and E.F. Sabaev, "Stability Conditions in the
Large for Variable Structure Systems", Automation and Remote Con-
trol, Vol. 35, No. 10, pp. 1596-1599, 1974.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[6] Y-C. Chen and S. Chang, "Output Tracking Desing of Affine Nonlinear
Plant Via Variable Structure System", IEEE TAG, Vol. 37, No. 11, pp.
1823-1828, 1992.

[7] H.H. Choi and M.J. Chung, "Estimation of the Asymptotic Stability
Region of Uncertain Systems with Bounded Sliding Mode Controllers",
IEEE TAG, Vol. 39, No. 11, pp. 2275-2278, 1994.

[8] B. Drazenovic, "The Invariance Conditions in Vraiable Structure Sys-
tems", Automatica, Vol. 5, No.3, p. 287-295, 1969.

[9] O.M.E. El-Ghezawi, A.S.I. Zinober and S.A. Billings, "Analysis and
Design of Variable Structure Systems using a Geometric Approach",
Int. J. Control, Vol. 38, No. 3, pp. 657-671, 1983.

[10] S.V. Emelyanov, "The use of nonlinear corrective devices of the key
type to improve the behavior of second order control systems", Au-
tomation and Remote Control, Vol. 7, pp. 844-859, 1959.

[11] F. Esfandiari and H.K. Khalil, "Stability Analysis of a Continuous
Implementation of Variable Structure Control", IEEE TAG, Vol. 36,
No. 5, pp. 616-620, 1991.

[12] B. Fernandez R. and J. Karl Hedrick, "Control of Multivariable Non-
Linear Systems by Sliding Mode Method", Int. J. Control, Vol. 46,
No. 3, pp. 1019-1040, 1987.

[13] A.G. Filippov, "Differential Equation with Discontinuous Right
Sides", Mathematic. Sb., Vol. 51, No. 1, pp. 99-128, 1960.

[14] A.G. Filippov, "Application of the Theory of Differential Equations
with Discontinuous Right- Hand Sides to Non-Linear Problems in Au-
tomatic Control", in Proc. 1st IFAC Congres, pp. 923-927, 1961.

[15] A.G. Filippov, "Differential Equations with Second Members Discon-
tinuous on Intersecting Surfaces", Automation and Remote Control,
Vol. 15, No. 10, p.1292-1299, 1980, original paper in Diff. Urav., Vol.
15, No. 10, pp. 1814-1832, 1979.

[16] M. Fliess, "Generalized Controller Canonical Forms for Linear and
Nonlinear Dynamics", IEEE TAG, Vol. 35, No. 9, pp. 994-1000, 1990.

[17] M. Fliess, F.Messager, "Sur la Commande en Regime Glissant", C.R.
Academic des Sciences de Paris, t.313, Serie I, pp. 951-956, 1992.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[18] J. Guldner and V. Utkin, "Stabilization of Non-Holonomic Mobile
Robots using Lyapunov Functions for Navigation and Sliding Mode
Control", Proceedings of the 33rd Conference on Decision and Con-
trol, Lake Buena Vista, FL, pp. 2967-2972, December 1994.

[19] W. Hahn, "Theory and Application of Liapunovs Direct Method",
Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963.

[20] A. Isidori, "Nonlinear Control Systems: An introduction", 2nd edition,
CCES, Springer-Verlag, 1989.

[21] A.G. Lukyanov, V.I. Utkin, "Methods of Reducing Equations for Dy-
namic Systems to a Regular Form", Automation and Remote Control,
Vol. 42, No. 4, pp. 413-420, 1981.

[22] W. Perruquetti, J.P. Richard, P. Borne, "Lyapunov Analysis of Sliding
Motions: Application to Bounded Control", Mathematical Problems in
Engineering, Vol. 3, pp. 1-25, 1996.

[23] W. Perruquetti, J.P. Richard, P. Borne, "A generalized regular form
for multivariable sliding mode control", Mathematical Problems in En-
gineering, Vol. 7, No. 1, p. 15-28, 2001.

[24] W. Perruquetti, S. Hajri, "Sliding Mode Approach for Input/Output
Linearization", in Proc. IFAC CIS97 Belfort, 20-22 May 1997.

[25] W. Perruquetti, J.P. Richard, P. Borne, "A Generalized Regular Form
for Sliding Mode Stabilization of MIMO Systems", Proceedings of the
36ih Conference on Decision and Control, 1997.

[26] H. Sira-Ramirez, "Differential Geometric Methods in Variable-
Structure Control", Int. J. Control, Vol. 48, No. 4, pp. 1359-1390,
1988.

[27] H. Sira-Ramirez, "Sliding Regimes in General Non-Linear Systems: A
Relative Degree Approach", Int. J. Control, Vol. 50, No. 4, pp. 1487-
1506, 1989.

[28] J.J.E. Slotine, "Sliding controller design for non-linear systems", Int.
J. Control, Vol. 40, No. 2, pp. 421-434, 1984.

[29] J.J.E. Slotine and J.A. Coetsee, "Adaptive sliding controller synthesis
for non-linear systems", Int. J. Control, Vol. 43, No. 6, pp. 1631-1651,
1986.

[30] V.I. Utkin, "Variable Structure Systems with Sliding Modes", IEEE
TAG, Vol. AC-22, No. 2, pp. 212-222, 1977.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[31] V.I. Utkin, "Variable Structure Systems: Present and Future", Auto-
matica, pp. 1103-1120, 1982.

[32] V.I. Utkin, "Sliding Modes in Control Optimization", CCES, Springer-
Verlag, 1992.

[33] K-K.D. Young, "Asymptotic Stability of Model Reference Systems
with Variable Structure Control", IEEE TAG, Vol. AC-20, No. 2, pp.
279-281, 1977.

[34] M. Zohdy, M.S. Fadali, and J. Liu, "Variable Structure Control Using
System Decomposition", IEEE TAG, Vol. 37, No. 12, pp. 1514-1520,
1992.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 8

Discretization Issues

J-P. BARBOT* and T. BOUKHOBZA**
* EN SEA, Cergy, France
*** Universite des Antilles, Kourou, France

8.1 Introduction

The classical sliding mode technique based on Fillipov's mathematical the-
ory has as its objective to force the system to evolve on a "sliding surface",
which represents a desired dynamics. This sliding surface is reached after
a finite time using the fact that in the neighborhood of the sliding surface,
the control gain is ideally infinite (when a true sign function is used) and
has an infinite frequency value too.

For several reasons, such as the chattering phenomenon, different ap-
proaches were proposed (Emelyanov and Korovin 1981 [10]). If some dy-
namics is implanted, instead of an ordinary sign function (relay), a new
sliding modes appear. Such modes are called the higher sliding modes
order (Levantovsky 1993 [15], Fridman and Levant 1996 [12]). For these
sliding modes, the system slides on the dynamics a = 0 (cr(x) is the sliding
surface), but it almost verifies that the successive derivatives of a vanish in
a finite time. These enhancements, in comparison to the relay technique,
will help us to define a discrete sliding mode approach based on the higher
sliding mode techniques.

In fact, the practical design of the sliding mode controller is often done
using computers and microcontrollers. After acquiring the output mea-
sures, it computes the control law value, which is maintained constant
during the sampling time. This technique introduces a discrete element in
the sliding control law and sets the well known chattering problem on the

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



state variables. In addition to the discretization of the control input, the
chattering phenomenon is also due to the actuator's physical limitations.

In this chapter, it is important to recall some practical results about
the discrete time sliding mode [1, 7, 13, 14, 19, 21, 23], in order to put in a
prominent position some theoretical difficulties due to the discretization of
the differential inclusions [6]. We lay great stress upon the exponential of
Lie derivative [17, 2] as upon its first approximation, the scheme of Euler.
Later, this will give us a control law of classical discrete-time sliding mode
(under sampling), and this underlying the differences with the continuous
case. At last, we will conclude our remarks showing what brings the high
order sliding mode in the discretization problems [15].

8.2 Mathematical recalls

Let us consider the following system :

x - f ( x , u )

y = h(x] (8.1)

where x G Rn denotes the state vector, u 6 Ep is the control input (for
beginning the integration's period 6 is supposed constant) and / and h are
analytic functions.
Then, the solution of system (8.1) at time t + 6 in function of initial con-
ditions at time £, is written positively as follows :

(8.2)

Where Lf := X^=i fijj^ 1S the usual Lie derivative, |x(t) signifies that all
the function is evaluated at x ( t ) , Id is the identity function and eL/(' 'u^)) :—

£]°10 ^r •£'/(•> u(0) with fjr-^/Y u(t)) = 0 is the usual Lie exponential.

The proof of this result is immediate, by deriving (8.2) and recalling
that for 5 = 0, one obtains e*M-XO) = Id.

From the literal solution (8.2), it can be noted immediately that two
cases of figures could then arise, one e5Lf^'u^Id admits a finite devel-
opment1 (i.e. 3k such that Vj > k LJ

f, .Id = 0) or the other case is to

1We say then that the system is finitely discretisable
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compute all the exponential terms. The latter contingency is not possible
in practice and that is why we have recourse to some approximations. The
most classical among them is the approximation in the first order in 8 called
Euler's discretization scheme:

x(t0 + 6) = x(t0) + Sf(x(t),u(t0)) + 0(82) (8.3)
y(t0 + 8) = y(t0) + SLf(.,u(to)}h]x(to}

where O(82) signifies that all the neglected terms are at least of second
order in 8.

Remark 73 y(to + 8} is often computed according to x(to + 8}. Neverthe-
less, as h is an analytic function, x(to -f 8) approximated at second order
in 8 implies that y(to + 8) is also approximated at the same order.

Now, what about discretization if the input u is a sliding mode control?
Obviously, this leads to a system characterized by a differential inclusion:

x = f ( x , u )

y = h(x) (8.4)

where the function /(x, u) is discontinuous. It is then impossible to use the
Lie exponential derivative2, but can its k—order Euler's sampling algorithm
approaches an exact solution of the differential inclusion system when 8
tends to zero?
Let us consider the interval of time [to, to + a] with a > 0 and choose, to
simplify 3, a constant sampling time 8 such that a is a multiple of 8.
We have then a temporal regular curve {to,to + 8,...,to + mS,... ,to + a}
and a solution curve {x(tQ),x(tQ + 8),... ,x(to + m6),... ,x(tQ + a)}, where
the solutions are calculated as follows:

x(t0 + m8) = x(t0 + (m- 1)8) + Sf(tQ + (m- 1)8, u(x(t0 + (m- 1)8))

and where x(t + (m — 1)8) is the precedent sampling time solution.
The question is then to know if, for 8 —> 0, the Euler's solution approaches,
at least at sampling times, an exact solution of differential inclusion. For
this, let us take an example.

2 We will see afterwards that a development at second order in 2 could be revealed
very useful.

3without loss of generality [6].
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Example 74 Consider the following scalar system

x = —x + u

where the input u is defined by

( 0 if x(t) = e~t
u(t) = < 1 if x(t) > e-*

{ -1 if x(t) < 6-*

with, for initial conditions to — 0, x(0) = 1 and a = 1. The exact solution
is then x ( t ) = e~t while the Euler's solution tends to x ( t ) = <2e~t — 1.

The difficulty of this example comes from the fact that the exact solution
is not attractive. Consequently, for all other initial conditions, the exact
solution moves away from x ( t ) = e~t.

Example 75 Let us take again the previous system:

x = —x + u

where the input u is defined by

if x(t) = e~l

if x(t) > e.~l

if x(t) < e~*

with, for initial conditions, to = 0, x(0) = 1 and a = 1. The exact solution
is x(t] = e~i and the Euler's solution tends also to x(t] — e~l.

In [6], other examples are given, in particular the example for which the
Euler's solution with a temporal regular curve differs from the solutions
obtained with the irregular temporal curves4.

The first question that can be set about the solutions obtained thank to
the Euler's scheme is that of their existence and of their properties, without
for the moment looking at if these solutions are close to the exact one.

Theorem 76 Consider the system (8.4) and let us suppose that, for
all u, the function f(x, u) verifies the following linear growth condition

\\f(x(t\u(t}\\ <K\\x\\ + C V(t,x) 6 [*o,*o + <5] x Kn (8.5)

Then, there exists at least an Euler's solution^ on the interval of time
[to, to + 6] and all the Euler's solutions are Lipschitz and satisfy :

\\x(t)-x(tQ)\\ < (t-t0}eK^-to\K\\x(to}\\+C) \/te[to,t0 + 8] (8.6)
4 We send back readers to this reference for more information.
5 It can be not unique and can depend from the chosen temporal curve,
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The proof of this theorem is done using simple inequality relations.
Now, let us consider the system (8.1) (with an analytic input)

Proposition 77 Let us take the system (8.1) with f verifying the condition
(8.5). Let x(.) be an Euler's solution on the time interval [to, to + 6], T be
an open set 6 containing x(t) for all t £ [£Q> *o + $}, then the trajectory x(.)
is attractive on T, ifVz£T we have :

<f(z,u(z)},(z-p)> < 0 (8.7)

where p is the z projection on the trajectory x ( . } .

The proof of this theorem is done by considering at each time the "worse
case" of distances in comparison with the trajectory x(.).

Remark 78 This condition of attractivity of the solution means that all
initial and computation errors tend to vanish or at least are not amplified.

To conclude this paragraph the condition of attractivity for the case of
system (8.4) is given

Proposition 79 Consider the system (8.4) with f verifying the condition
(8.5), let x ( . ) be an Euler's solution on the time interval [to, to + 6], let T
be an open set containing x(t} for all t G [to, to + <^]> Then the trajectory
x(.} is attractive on T, if\fz € T we have :

</(*,«(*)), ( z - p ) > < 0 (8.8)

where p is the z projection on the x ( . ) trajectory. Moreover x is a Filippov's
solution for the system (8.4).

The proof is identical to the previous one, except that x(.} must be
verify Filippov's theorem conditions 7.

8.3 Classical sliding modes in discrete time

First of all, it is important to compare the continuous time case to the
discrete one (or more exactly under sampling). For this, let us take a
simple example:

6generally a tube. Furthermore, T is an opened sets, such that the projection for
each point would be unique, this imply that there would not be singular point on the
trajectory.

7Or in an equivalent way, due to the form of our system, the "standing" hypothesis
denned in [6] is only required.
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Example 80 (Continuous time case)
Consider the system

x = x + u + di (8.9)

where x G [—C, C] is the state, u the input, di an unknown but bounded
external perturbation such that Vt > 0 |rfi(t)| < D. Stabilization of x at the
origin is ensured by the following sliding mode control law :

u(i) = —Xsign(x)

with A > C + D.
The perturbation rejection and the stabilization are guaranteed by the use
of a high gain and without other knowledge of the bounds on the state and
the perturbation.

Example 81 (Under sampling system case)
Discretizing the system (8.9) leads to

fs

x(k + 1) = e6x(k) + (e5 - l)w(fc) + / es~tdi(t +k5)dt (8.10)
Jo

It immediately appears that the stabilization and the perturbation rejection
do not require a very high amplitude control. This way of proceeding cor-
responds to sample and hold the continuous control, leading to chattering
phenomena8. It is then possible to write

f
u(k] = (1 - e6)-1(e6x(k) + I e^d^t +

Jo
k6)dt)

to obtain a dead beat response (i.e. reach our objective in one step).

Unfortunately, it is known that this type of control is not robust un-
der parametric uncertainties and moreover requires the knowledge of the
perturbation. This kind of control is not therefore the discrete version of
sliding mode. So what is the discrete "version" of sliding mode ?
Classically, in the literature, the proposed methods consist into using the
properties of the system under sampling and to define new invariant man-
ifolds.
Here is just given the simple case of a linear system with limited perturba-
tion but without parametric uncertainties [13, 23] :

(8.11)
8A solution to eliminate the chattering will be given in next paragraph.
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with x e Rn, u € Mm, d € Rp and \\di(t)\\ < C for alH > 0 and A, B
and D are matrix of appropriate dimensions.
Since Drazenovic works [8] 9, it is known that the condition called "match-
ing condition" (i.e. simply the condition for which the input u can instantly
remove the perturbation) is :

Rank[B, D] = Rank[B] (8.12)

But is this condition preserved after the system dicretization ?
One can immediately see that, it is verified in the case of a one dimension of
system (8.9). Now, integrating (8.11) on a constant sampling period equal
to <5, one obtains :

fs
= Adx(k) + Bdu(k) + I eA(5~t] }Ddi(t + k6)dt (8.13)

Jt=o
x(k

with Ad = eAS and Bd = =QeAtBdt. It follows that =QeA

k6) £ span{Bd} depends on the temporal behavior of the perturbation di
10 . Now, restraining the scheme of discretization to a simple Euler's scheme
and that making the hypothesis that di moves slightly during the sampling
period leads to :

x(k + 1) = Aex(k} + Beu(k) + Dedi(k}dt + O(S2) (8.14)

with Ae = Id + 5 A, Be = SB and De = 5D.
Thus, if the condition (8.12) holds one has :

Rank[Be, De] = Rank[Be] (8.15)

The Euler's scheme is employed for the previously mentioned reason and
also if we considered some coupling between the perturbation and the para-
metric uncertainties. However the hypothesis must be kept in mind :
• di is a slow variable,
• 6 is small compared to the time constants of the system.
• u is bounded and small in front of 6~l (in order not to break the homo-
geneity of the limited development).
If all these hypothesis are verified, the sliding mode control can be defined
on the basis of (8.14). Let us firstly define an attractive surface at the sam-
pling times (note that the notion of sliding is here a little bit erroneous,
since the trajectories between two sampling times are not constrained on

9see also [18] for recent extensions on the subject.
10Note that a constant perturbation on the sampling period preserves the "matching

condition'. This hypothesis of constant perturbation during sampling period is always
implicitly done in the classical sliding mode control.
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the manifold. This aspect of the dynamic behavior between two sampling
times is linked to the zero dynamics of sampled nonlinear systems [16, 3]).

s(k) = Sx(k) = 0 V/c> 0 (8.16)

with 5 G Mm x n . Let us suppose that the perturbation is identically zero.
Then :

s(k + 1) = Sx(k + 1) = S(Aex(k) + Beu(k}} = 0

Assuming that SBe is invertible (this can be done by a suitable choice of
5), a discrete equivalent control ueq can be deduced :

ueq(k] = (SBe)-
l(-SAex(k)) (8.17)

After a change of coordinates (see the Generalized Canonical Forms [18])
system (8.13) (with di = 0) becomes

l) = AeUxl(k) +
x2(k+l) = Ae21xi(k) + Ae22x2(k} + Be2u(k) -

Moreover the decomposition n of (8.16) gives us

s(k) = S^^k) + S2x2(k) = 0 (8.19)

The motion on the sliding manifold is then given by (8.18) and (8.19)

xi(k + 1) = AeUxi(k) - AeuSz1 Sixi(k) (8.20)

and S must be chosen so that the x\ dynamics be stable.

Remark 82
• SBe invertible implies S2 invertible.
• In the expression (8.17) appears a term in (SBe}~1 with Be in O(6)
consequently (SBe)~

l is in 6~l . This can bring out an excessive ampli-
tude on the input and destroy the homogeneity of Euler's scheme hence the
introduction of the saturation on u :

&q

with H « 8~l.
• The introduction of these saturations do not guarantee the stability out
of the input's limits.
• In the dynamics (8.20), the eigenvalues have to be inside of a circle of
radius 1 — a52 .

11 (Si, S2) = ST l where T is the matrix of the change of coordinates.
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The previous remarks shown that the discrete sliding mode control dif-
fers fundamentally from the continuous one (cf. small gain). This will be
emphasized again by the method of rejection of the perturbation. In fact,
it is then out of the question to "crush" di. A "predictor" is used, recalling
that di(k+l} — di(k) = 0(8} (i.e. perturbation weakly variable). Moreover
as De = 8D the variation of the perturbation di has a negligible effect in
Euler's scheme. Thus the perturbation term satisfies

Dedi(k) = Dedi(k - 1) = x(k) - Aex(k -1}- Beu(k - 1) (8.22)

And the equivalent control is the equal to :

ueq(k) = (SBe}-l[-SAex(k) - (x(k) - Aex(k - 1) - Beu(k - 1))]

The rest of the control scheme and the method remain identical. The
following chapter deals with if it is possible to improve the approximation
order in the sampling period S.

8.4 Second-order sliding mode
under sampling

It has been showed in the previous section that there exist in the literature
lots of algorithms of second order sliding mode [15, 12, 5, 4]. Here will sim-
ply recall an ideal version of the "Twisting algorithm" (i.e. in continuous
time and without any constraint on the dynamic of actuators). Afterwards,
we will present a discrete (real) version of the "Twisting algorithm" for the
same linear system than before (8.11), but with a scalar input 12.

x = Ax + Bu + Ddi (8.23)

The chosen manifold is the set defined by

5 = {x e R/s(x) = Sx = 0} (8.24)

such that the origin of the system (8.11) is (asymptotically) stable on this
manifold.
The necessary hypothesis to realize the "Twisting algorithm" are :
Hypothesis 1:
There exist some constants SQ> KM, Km, Co such that for all x, t £ Mn x M
satisfying | s (£ ,x ) ) \ < SQ, the system (8.11) verifies, in relation to the con-
straint surface s = 0 the following inequalities

12The nonlinear case is easily deduced by considering the worst case. On the other
hand, the multi input case raises lots of problems.
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• 0 < Km < SB < KM

• \SA(Ax + Bu + Ddi) + SDdi\ < C0

Definition 83 Consider the system (8.23) and the sliding (constraint)
manifold (8.24). The control law

u =
if \u\ > 1

if ss > 0, \u\ < 1 (8.25)
—Oimsign(s) if ss < 0, |w| < 1

with OLM and am verifying the following inequalities:

«m > if- (8.26)
®M > J^ H xm

m

is called the second-order "Twisting algorithm".

Remark 84 In the algorithm, the constraints on \u\ are taken be equal
to 1 in order to simplify our statement. In the general case, u = —u if
\u\ > Cst, ensures the second condition of hypothesis 1.

Theorem 85 [15] Under Hypothesis 1 and the conditions (8.26), the "twist-
ing algorithm" is an ideal second order sliding mode algorithm for the sys-
tem (8.23).

Remark 86 One recall that a second order sliding mode corresponds to
s = s = 0 and this without having recourse to the Filippov's solutions [11].

Proof:
• If |w| > 1, u tends to zero whatever the value of s and s, so that there
exists a finite time t\ such that \u\ < 1. In accordance with the Russian
literature, the region \u\ < 1 (or |s| < SQ) is called the "linear" domain.
Now, let us study the second derivative of the constraint surface.

s = SA(Ax + Bu + Ddi) + SBu + SDdi

or in a more synthetic way :

s = C(x, u, di, di) + SBii

with by hypothesis for \u\ < 1

\C(x, u, di, di}\ < CQ and 0 < Km < SB < KM
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Using the following notations s = xi, s = #2, C = C(x,u, di, di) and

K = SB, we have

Xi = #2

x2 = C + Ku (8.27)

where u is the "twisting algorithm" . Thus, for ss > 0

X2 = C — KdMsign(x\) (8.28)

The perturbation C has a direct effect on the input image vector. Assuming
that Q-M > &m » J^S (8.28) is equivalent to :

#1 = #2

±2 = —KaMsign(xi)

Then, one obtains

I X2(r}dr + xi(0)
Jo

! -K(T)aMdT + x2(ty (8.29)
Jo

As the surfaces x\ = 0 (x2 € R) et #2 = 0 (xi e K) are periodically
crossed13, let us take as initial conditions xi(0) = 0+ and #2(0) = #2(0) >
0.

Thus, as long as the control u has not commuted

t2

xi(t) = -aMK-

x2(t) = -aMKt + x2(0) (8.30)

Equation (8.30) stays unchanged as long as the surface s = 0 is not reached,
that is to say until time £2

*t2 =

and

13This hypothesis is implicitely verified further in the proof because we will see below
that the manifolds s = 0 and s = 0 are crossed periodically.
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Then, for t > £2, s < 0 and s > 0, which gives, according to (8.26)

X2 — —Kamsign(xi) — —Kam

The system reaches the manifold s = 0 in a finite time t3, computed as
followed

*3

+-£2) = -amKt3 (8.32)

so

*3 = , 2 „ r^ (8'33)

and s at time t3 + £2 is equal to

since am < QM, one has

*3 ) |< 1*2(0)1

Thus |o;2 1 is decreasing in geometric progression (it is also the case for
xi), and it can be shown that (8.27) reaches the point x\ = x2 — 0 (or
s = s = 0) in a finite time (too). Indeed

\ i /
\ /

\OiM-K

and since 0 < A ^ ^ < 1, one obtains

1 f l + - J

+ > Z2(0)

Remark 87 The inequalities (8.26) stems from the following conditions
[15]
• SQ > 4^M ensures that s stays in the desired area (s < SQ);

• c*m > j^Q- ensures that \u\ < 1 is sufficient to render attractive the sur-
faces s — 0 and s — 0;

• KmaM — CQ > KMO-JU + CQ ensures that the oscillations are constrained
and consequently do not exceed the considered worst cases.
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8.5 The sampled "twisting algorithm"

The algorithm that is presented here has the advantage that the knowledge
of the manifold derivatives s is not required and only takes into account
the sampled character of the informations and control. This is exaccly
what occurs in pratical applications. The unique drawback is that it is
a real sliding mode algorithm, that is to say, that the sliding surface is
not reached exactly. In spite of all, the sampled "twisting alorithm" gives
a better solution than the one obtained by the classical real algorithm 14.
Here, for the sake of simplify, we consider that the informations and control
are sampled simultaneously, thus we can define a real (sampled) version of
the "Twisting algorithm", in the following manner:

Definition 88 [15] Consider the system (8.23) and the sliding manifold
5 = 0. The control algorithm

{ —u with \u\ > Ii i
—o.Msign(s} with sAs > 0, \u\ < I (8.34)
—a.msign(s) with sAs < 0, \u\ < I

with As = (s(kS] — s((k — 1)<5) and OiM, <^m verifying the conditions (8.26)
is called the real second-order "Twisting algorithm".

From the results of the two previous sections, one can immediately state
the following proposition.

Proposition 89 [15] Under the hypothesis 1 and the conditions (8.26), the
sampled real "twisting algorithm" is, for the system (8.11), a real second
order sliding mode algorithm on the period of sampling 8 (6 playing here
the role of the function j(c}).

Remark 90 In accordance with the literature, a real second order sliding
mode control on 6 is a control such that after a finite time t\,

\s(t)\<O(62} Vt>t!

Proof:
The proof is immediate, seeing that the equations stem from the proof of
the theorem 85, in fact for sAs > 0 and zi(0) = 0+, one gets

t2

xi(t) = -aMK-+x2(0)t

x2(t) = -
14The errors on the surface are of order O(S2) instead of O(8).
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Likewise for sAs < 0 and 0:2(0) = 0~, one gets

= -amK— + zi(0)

x2(t) = -amKt

these equations are chosen according to the s and As signum. We deduce
that after a time t^, x\ is of order O(5)2 and x% of order O(6}. A
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Chapter 9

Adaptive and Sliding
Mode Control

G. BARTOLINI
University of Cagliari, Cagliari, Italy

9.1 Introduction

Adaptive control allows the treatment of uncertain dynamic systems, linear
and nonlinear, the uncertainties of which can be expressed as the product
of an uncertain constant matrix and a vector of known time function

6*X(t)

that is, 0* is an unknown constant matrix and X is a matrix the entries of
which are known functions of the time, where X is defined as the regressor.

This situation is encountered in both identification and control pro-
blems. In particular for the control of dynamic systems, the techniques
that can be applied to systems with uncertainties of this kind rely on two-
step procedures. The first step consists of solving the control problem for
the system where the matrix & is regarded as known. The outcome of this
step consists in a control law characterized by a specific parametrization
that is

The class of problems which can be dealt with are those for which Xu does
not depend on the parameter 6*, but only on the available signal X that
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s

in the sequel u* — Q*UXU.
The second step is to use a control, in the uncertain G* case, which has

the same parametrization of the ideal u but with time varying parameters

u = Qu (t) Xu

This actual control signal can be expressed as

u — Q*uXu + 6U (t) Xu

The uncertain term 6U (t) Xu is usually called prediction error. This signal
plays a fundamental role in the adaptation mechanism where the explicit
identification of 6* is required. The regressor vector Xu is usually con-
stituted by known time functions derived from the available system states
through linear operations like linear filtering and linear combination. In
some cases the Xu components result to be known nonlinear functions of
the state.

It is well known that the adaptive control scheme can be divided into
two categories:

• Direct adaptive control schemes

• Indirect adaptive control schemes

Within the first category are found those control schemes which explicitly
compare system state trajectories with that of a reference model, traducing
the expected ideal behavior of the system, which is active on line during the
control process. The control aim is that of forcing some, suitably defined,
error function to zero despite the parametric uncertainties of the system.
In principle, the attainment of this objective does not require the identifi-
cation of the unknown parameters which, in this case, are the regulator's
parameters.

The second category is based on the so called certainty equivalence
principle which means that the system is identified through an adaptive
procedure which yields, an estimation 6, of the unknown plant parameter,
which, as t —> oo tends to 0* and in the meantime the control law is
modified according to

u = Q: (0) Xu (X] (9.1)

where Q* f 0J means that the controller parameters are chosen at any

instant as the 6(i) parameters were the true system parameters 6*. This
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situation corresponds to the ideal one only if Q(t) = 0* and it is realistic
only if t —> oo. During the transient, the assumed separation between the
identification process and the closed-loop control raises a certain number
of sensible questions:

• Is the identification process relevant to the plant or to one of the
possible closed-loop systems generated (feedback changes system dy-
namics) by the control ul

• Is the overall nonlinear system, identification plus control loops, sta-
ble during the adaptation process?

• Is the ideal controlled plant the only equilibrium point of the proce-
dure or are there other possible limiting behaviors which do not fit
the stated control objectives?

A considerable amount of literature has been devoted to these types of
problems and is out of the scope of this chapter to provide a deep insight
to such a matter. Here we prefer to stress the fact that identification is
an important issue for any control strategy, since identification means the
possibility to predict the future evolution (at least on the basis of the actual
and past system states) and prediction is a prerequisite for dealing with
any form of optimization problem. Therefore even if we do not deal with
certainty equivalence methods in a systematic manner, we consider a good
way to start this chapter would be to describe an identification procedure
for continuous linear systems.

9.2 Identification of continuous linear
systems in I/O form

Consider a linear system described by

n—l n—1

i=0 i=0

where y W and u^ are the ith derivative of y and u respectively. The system
can be written as

with
6* = [-a0 ... - an_i 60 • • • bn-i]
XT = ...(n-Vu...u(n-V
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if ?/") and X were accessible and 6* an unknown, it is possible to build an
estimate y(n}(t] = Q(t)X so that

y(n} (t] - y(n}(t} = 9(t)x = 9(t)x - 9*x

This results in the prediction error. The first step in the identification
procedure consists in generating a prediction error by means of data derived
from the available signals, in particular from u(t) and y ( t ) .

Consider two filters

xu — Xi2 X2i — X22

Let xn = up and #21 = yp be the filtered values of u and y, all the first
nih derivatives, if up and yp are available for measurement. The zero state
equation relating up and yp is

i=0 i=0

where i/)T = ±2n = — Y^=Q dix<2(i+\] + y is available. (9.3) can be rewrit-
ten as

with
9* = [-a0 . . . - an_i 60 ... 6n-i]
vT r (n- 1) (n~l)iXJ = [yF . . . y> >UF...V>F '}

Note that in this case the components of the regressor Xp are available.
The identification procedure is based on the realization of an estimate

y(™> = Q(t)Xp so that the prediction error ep(t) is

ep(t] = y(
F

l) - y(p} - Q(f)xF

The adaptation is chosen to be

eT(t) - &T(t) = -r(t)XFep(t]

where F(t) is chosen according to the least squares with forgetting factor
criteria [11], that is

f (X) = -YTxFxlT + \(t) [rTr -
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= XFXT
F - \(t] [r-1 - i/ko]

which corresponds to the minimization [11] of

-* *<*•>*• ||yF(a) _ e(t)XF(s)\\2ds

The convergence of the parametric error to zero is guaranteed by the fol-
lowing procedure.

Choose a scalar function V (^M) = ^QT~l(t)QT. Its time derivative
is

v(eJt) = -exFep(t) + ±et-l(t)QT

(9.4)

If F l — •£- is positive definite, it is possible to apply Lyapunov stability
L J ^

criterion to state the exponential convergence of 0 to zero.

A sufficient condition for the positive definiteness of F"1 — ̂ M is rep-

resented by the so called Persistent Excitation (PE) condition which can
be written as: there exist a time instant t* and a time interval 6 so that
for t > £*,

rt+5

\ XF(r}Xl(r}dr > a0I
Jt

In [10] and [7], it was proved that such a property can be guaranteed if
the plant input u has at least y spectral lines, with N being the dimension
of the regressor.

A very important property of the adaptation mechanism, based on pre-
diction error, is its robustness with respect to bounded disturbances. As-
sume that the prediction error is available with a bounded disturbance,
that is ep = ep + 77, IT/] < A, an adaptation mechanism

with

r-1 = XXT + A
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is analyzed by means of the Lyapunov function

v

V = -Q(t}XXTQT(t] -

+ A)2 + ~ - xe(t) \r-l(t) - 1] eT(t)
/ 2 L fcoj

This means that ||0(£)|| — » O(A). This fact is a strong motivation to the
use of sliding mode control effect in adaptive control schemes.

9.3 MRAC model reference
adaptive control

Any model reference adaptive control is characterized by the following com-
mon feature :

• The tracking problem can be solved univocally, in the known param-
eter case, by means of a control strategy of the form

where 0£is the vector of the ideal controller parameters and Xu is a
regressor vector of known function or available signals

If the actual system (with uncertain parameters), is controlled by a
control with the same parametrization but with time-varying parameters

u(t) = Qu(t}Xu

then a suitable reference model is put on line in parallel with the controlled
plant. The resulting tracking error equation can be described in general by
a differential equation

ye = Wm(s)QuXu(t)

where s = ^, Gu = Ou(t) — 0*, and Wm(s) represents a transfer function
associated to the model.

Equation errors of this kind with an adaptation mechanism of the type

0u = ©u = ~TXye

have proved to give rise to an asymptotically vanishing error, if Wm(s) is
positive real, that is
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• Re [Wm(s)} > 0 when Re [s] > 0

• Let (A,B,C) be a realization of Wm(s) then there exists positive
definite matrices P and Q such that

C = BTP

9.3.1 MRAC with accessible states

(9'5)

In this section we consider the case of an adaptive control system for linear
plants with measurable states. Consider the linear system

x = Ax + Bu

with A, B uncertain, x e !Rn, u € U C 5R1, and the model

Xm — •A-m-Em ' *3rnU"m

Define the state error as

e = x — xm , ^
e = Ame + [Bu - Bmum - (Am - A) x\ ^Dj

If A, B were known and rank [B] = rank [B\Am — A\Bm] (matching
conditions), the ideal control law

~l

u* = (BBT)~ BT [(Am -A)x + Bmum] =

u* = Q*X
T r i

X1 = [xUm]

would cancel the terms within the brackets of the Equation (9.6) and as a re-
sult the state error converges exponentially to zero, therefore u = Q(t)X =
Q*X — Q(t)X and the state error equation is

e = Ame + BQ(t)X (9.7)

To solve the problem, an artificial output v = D e must be chosen so that
D(sl — Am}~lB is positive real. An adaptation mechanism

§ = G = -GXv

guarantees that lim^oo e(t) — 0.
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Indeed choose

then
V = eTPAe + eTATPe + XTQTBTPe + eTPBQX

from (9.5)
V = -eTQe

this means that V is zero in a subset and therefore Lyapunov stability
criterion cannot be applied. Nevertheless since F(e, 8) is monotone positive
and upper-bounded if V is uniformly continuous, e — > 0 asymptotically from
Barbalat lemma. V is uniformly continuous if V is bounded

V = -eTQAme - eTQBQX

e is bounded, 6 is bounded, X is bounded if arm, um are bounded, and
therefore V is bounded. As a result e(t) — > 0 asymptotically.

For exponential stability it is required that V results in a negative
quadratic form of both e and 6. Exponential stability implies that the
identification problem must also be considered.

If the adaptation gain matrix is time varying

V = -eTQe +
4W

a term which is quadratic in Q(t] appears in the time derivative of the
Lyapunov function. The problem is to identify G(t), which guarantees
that

V < -eTQe -

This problem could be solved in an analogy with the identification problem
by means of a matrix G(t) derived from the least squares with the forgetting
factor approach. But in the case under consideration, the prediction error
Q(t)X is not available, only the tracking error is measurable. This fact
deserves some attention because it is one point in which the combination
with the sliding modes approach makes sense. One possible way to attain
a prediction error in order to use a time varying adaptation gain matrix
(within the adaptive control approach), is the following: consider the error
equation

e = Ame + BQX
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v = D(sl - Am}

where D(sl — Am}~lB is positive real with relative degree one transfer
function. Without affecting the generality of the problem, D(sl — Am}~lB
can be reduced to

s + a P(s)

where P(s) is a strictly Hurwitz polynomial, so that

s + a

Consider rj = v + ©(*)<£ — ̂ +^©(0^1 where <p = —a<f> + X, i.e. ip =

- X b y exploiting t h e fact that

s+a
(9.8)

It results in 77 = Q(t)y>, which is a prediction error. Now 77 = Q(p with
77 available is of the same form of the identification procedure previously
presented. Therefore the following adaptation mechanism can be used.

e =

In this case, under persistent excitation of </?, the application of the same
procedure (used for identification), guarantees that both 77 and Q(t) tend
exponentially to zero.

9.3.2 Adaptive control for SISO plant in I/O
form: an introductory example with relative
degree equal to one

For more general, linear time-invariant systems, for which either matching
conditions are not satisfied or the stae is not completely available, it is
necessary to develop a methodology pursuing the same objective, that is,
on line tracking of a suitably chosen reference model. Given a system with
transfer function

kp(s + b)
y = o — • u

s2 + ais + ao
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that is
y kpbu

and k, 6, ai and ao uncertain, find a control law u(t) so that y asymptoti-
cally tracks the output of a reference model

(9.9)
am0

The first step is to find a control strategy that achieves the same objective
in the case of a plant with known parameters. To this end, consider the
following structure

where D = s + d, FI — /io, F2 = /2is + fzo and u = kium - y\ - 2/2- The
transfer function is

s+b

y =
/10 J ,
s+d ' s'

k(s+b) /"21S+/20
s+d

y r/ i j\ i r I / 9 i i \ i ; / , LW r i r \ ^m ^"-lUJ[(s + d) + /io](s2 + ais + a0) + k(s + b)(f2is + fw)

The pole-zero cancellation involving (5 4- b) requires that the system be at
minimum phase if

k
- ~, d + fw - 6, d — br

K

and

/20 = T am0 -

y = am0
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The differential Equation (9.10) relating y to the model input itm, coincides
with that of model (9.9). This means that there exists a set of parameters
of the control structure fcm, /i2, /2i and /2o which depends on model and
system parameters, which satisfies the control objective.

The two regulators
F f
_L = *w

D s + d

/20 /20 -

D s + d

can be realized in state form

= —dxu + u

x2i = -dx2i + y
yi — (/2o - d/2i)z2i + h\y

The resulting control law is

u = - (/2o -

that is

= [ k i - f u - /21 - (/20 -

and

(9.11)

(9.12)

where 9*T is the regulator parameter vector. X, called the regressor, is
the vector of measurable variables.

As in the previous case, in the adaptive case, the control is chosen as

u = Q(t}X

where X is the same regressor of the nonadaptive case.
This means that filters (9.11) and (9.12) are the same but the coefficients

&i5 /ii) /2i and /2o are to be replaced by time-dependent signals, that is,
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If the reference model is put in parallel to the system it can be proven
(as in the available state case) that the output error is described by the
following differential equation

s -f- b
ey = /cp — — QX — [the transfer function of the model] • QXys2 + amis + am0

with
e = em - e*

In this case, if the model is chosen positive real (passive), the constant gain
matrix adaptation mechanism

is sufficient to attain

§ (t) = QT(t) = -TXe,

lim ev = 0
t-*oo y

The procedure is more complex if the relative degree of the system were
>2 .

It is easy to show that the relative degree of the model cannot be chosen
differently from that of the plant. If, for example, the system were

y = s2 + ais +

then the model should be

Km.-m 9
S + O-lmS +

The procedure to define ey is the same. As a result

kp -QX (9.13)
s2 + aims + a0

The following points must be considered:

• A necessary condition for a transfer function to be positive real is
that the relative degree is one, therefore, in (9.13) the model transfer
function is not positive real.

• A nonpositive real transfer function can be made positive real if it
is multiplied by an anticipatory operator (with a negative relative
degree).
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kp

is positive real as in the previous case.
The operator (s + 6m) is not physically realizable while its inverse

6m) can be realized. Indeed, for any signal v(t)

means
z(t] = -bmz(t) + v(t)

If the following signal is added to ey

with

S + Om 5 + O

there it results in
7 = e + « *

77 =

= [kpQ\ki(t)]

At this point, by using 77 in place of ey and (p = s^h X in place of X, the
adaptative mechanism results
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9.3.3 Generalization to system of relative degree
greater than one

The previous situation can be generalized to higher relative degree [6].
Given a plant

y = kpWp(s)u

and a model with the same relative degree

y-m = Wm(s}um

there exists a controller

u(t) = Q*X

so that
ey = Wm(s}kpeX

If an operator L(s] exists such that Wm(s)L(s) is positive real, by adding
to ey

v(t) = Wm(s)L(s)kl(t)[e(t)L-l(s)X - L-l(s)Q(t)X]

the signal is related to the modified prediction error by:

77 = Wm(s}L(s)kpQlXl + WMLWWt) [Q(t)L~l(s)X - L~l(s)e(t)X]

therefore with

6 (t) = Q(t}T = -TXr]

k i ( t ) = ki(t) = -r[Q(t)L-l(s)X-L-l(s)Q(t)X]r]

rj —>• 0, as t —> oo.
If 77 —> 0 what can be said about eyl Papers and books have been

devoted to this problem. [8]

The result is that the following conjecture is true. When 77 —> 0, O —» 0,
then 6(t) and 6(t) tend to constants. The augmented error v is zero for
0(t) = const therefore

77 -> 0; ey -> rj

Recent development of this approach, the so-called Morse scheme [9],
tries to attain the same result by using a dynamic adaptive mechanism
involving higher-order tuners. The result is a simpler scheme. The analysis
of this scheme is out of the scope of this chapter.
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9.4 Sliding mode and adaptive control
In this section the basic features of sliding mode control, which are suitable
to introduce an approach within the framework of adaptive control, are
considered.

Result 1

Given
x = a(x) + b(x)u
y = u

and given s(x) and u — —H(x)s sign{s} with H(x] so that

s(x) [Ga(x] - Gb(x}H(x}s sign{s}] < -fc2|s(z)|

after a finite time s(x) = 0. By the Filippov [3] solution method as the
equivalent control method, the system is represented by

x = a(x) - b(x) [G(x)b(x}}~1 G(x)a(x
y = -[G(x)b(x)]~lG(x}a(x)-i ̂  V x (9-14)

where — [G(x)b(x)] l G(x)a(x) is the so-called equivalent control.
The representation is robust with respect to nonidealities, causing a

motion close to the sliding manifold s(x) = 0 if the system (9.14) is asymp-
totically stable.

Result 2

Let s*(x) = s(x) + r](t), being r?(£) a signal free to be selected by the
designer. Consider

x(t) = a(x) + b(x}u (9.15)

let
u = — H (x, T)(£)) sign{s*(t)}

so that

a*(f} \Cln('r\ -\- ri(t} — rthH (r ri f} sinn -f <?*(VH < — k2\a*(i-}\]o 16 / Vjru/lX I ]^ I I \ L I \jrUJ.J. t*t') ij^ t'/ ot/yil 1o \v I j _^ "/ ^ \ /

then after a finite time 5 —> 0 and the Filippov representation of the sys-
tem (9.15) is

x(t] — a(x) — b(x) [G(x)b(x)}~ [Ga(x] + r)(t)]
s*(x) =0

which is a reduced order continuous system evolving under the action of
the control r)(i).
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Example 1

±i = x2 + A(£)
X2 = f ( x i , x 2 ) + g(x)u

with s = x<2 + ex i the equivalent system on s = 0 is x\ = —cx\ + A(£) and
no counteraction to A is possible. If

s* = x-2 + ex i = rj(t)

on s*(x, £) = 0, the system is equivalent to

±1 - -cxi + A(i) - rj(t)

Through the choice of r)(i) the disturbance A(i) can be counteracted.
The sliding manifold is chosen so that the reduced system evolving on it
(the so-called zero-dynamics [5]) is characterized by a sufficient degree of
freedom to attain the final control objective, e.g., stabilization disturbance
rejection and counteraction of residual uncertainties.

Result 3
Given a system

x = a (re) + b(x}u

and s(x) = 0, assume that by the action of a control u(t) the system motion
results confined in a boundary layer \s(x)\ < 6. How is it possible to achieve
information relevant to the ideal equivalent control

Leq — — [G(x)b(x)] a(x)

Utkin proved [12] that under reasonable assumptions regarding system dy-
namics that if the control u(t) is filtered by an high-gain linear filter

then

|ti«,(t) - ueq(t}\ < 0(5) + 0(r) + O

which tends to zero if r = O ( V6j and 6 — > 0.

This result is extremely important when the problem of reducing the
control amplitude is dealt with or when, as in the case of the combined
adaptive sliding mode control, the equivalent control is explicitly used in
evaluating the prediction error.
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9.5 Combining sliding mode with
adaptive control

From adaptive control.
e = Ame + BQX

£ = WmQX

rj = WmQX + WmL (BIT1 - L~1QX^ = WmLQL~lX

The same situation arises if a control Ud is introduced at suitable points of
the controller structure by adding Ud + QX in the relevant error equation.
This could be the first link between the sliding mode control approach and
adaptive control.

Every equation can be represented by means of an I/O relationship be-
tween an input QX and an output: v, £, rj respectively. This input /output
is of relative degree 1 .

In pure model-tracking problems, under the assumption that overesti-
mation of the controller parameters of the type

max|O*|
i

it is possible to steer the output errors v, £, r\ to zero in finite time as follows

u = Q(t)X - \2QM ̂  \Xi + h2] sign{v, e, 77}

e = Ame + B \QX - (2OM ̂  N + h?] sign{v]

77 = LWm [eir1* - (2QM Y^ M + h2} sign{r)}]

As a result, v, £ and 77 tend to zero in finite time.
Among the three considered cases, the third one, namely the case of I/O

with relative degree greater than 1, deserves particular attention. While
the attainment of the condition v = 0, £ = 0 are a direct expression of
the control objective, the condition rj = 0 does not imply that the tracking
error is zero.

Indeed r\ = 0 implies that the equivalent control Udeq is equal to — QL~1X
and nothing else:

udeq = -QL~1X
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The true tracking error is £ = WmQX and it is not directly affected by Ud-
A way consists in modifying the adaptive mechanism as follows:

§ = -Fr; + r(t)ud

which in sliding mode is equivalent to

where F(t) is the least square with bounded forgetting gain matrix satisfy-
ing

dr-^t) T

The first term vanishes as 77 = 0. During sliding motion it is possible, as
done previously, to choose a Lyapunov function for the equivalent system

U= -QT

If the regressor </? is persistently exciting, F-1 — ̂ - is positive definite and

therefore 0 — > 0 exponentially. If 0 — > 0 also the tracking error e = Wm0X
tends to zero since Wm is an asymptotical stable I/O relationship.

This way is the most direct manner to couple MRAC with VSS control
requires the persistent excitation of the regressor <£>, which is obtained by
filtering the regressor X. Sastry and Bodson [10] proved that the persistent
excitation depends on the number of spectral lines contained in the model
reference input.

Another way to deal with this problem exploits the second important
property of the sliding mode control approach which is that the practical
availability of the equivalent control at the output of an high-gain filter has
discontinuous control at the input [4],

To clarify this procedure, we consider as a starting point the error equa-
tion

^ = WmQX

with Wm having relative degree r. By multiplying for an operator

then LWm has relative degree 1.
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Adding to £ the signal LWmUd we obtain

A sliding mode on £ implies

udeq = -L

Assume that this signal is available at the output of a filter

udeq = -L~1OX = F^u^t)

Consider a control uid(t) as follows. Let

yi = -ayi + uid(t)

Also consider

1

21 ~UC

ex
ieq - Vi

— i it-, ex

is attained by uid = —kisign{z\}. If z\ = 0

U\A =69 -. - r
(s + a)r~2

and is available at the output of an high-gain filter.
Continuing this procedure,

ex
s + a

ex

.s + a

Ur_ld = +ex
deq -

ur-ide can be used in an adaptive mechanism as a prediction error. This
procedure requires an adaptive mechanism which will take into account the
errors accumulated by the sequence of filtering.

The following example has dealt with the proposed procedure
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1) A plant with an uncertain parameter,

Wp(s} = -Jj-^

2) Reference model

Wm(s] =
s2 + 3s + 2

3) Reference signal

um(t} = 1.5sm(2.5i) — 1.8sm(3.14t) +

4) Monic polynomial

5) Equivalent controls

uideq =

6) Operators

7) Sliding mode filter
1/r 30

s + l/T s + 30

8) Forgetting factor and upperbound matrix

A(t) = 10-3 X0 =

The vector of the ideal controller parameters is

6* = [2, 3, -19.5, 2.5]

Figures 9.1, 9.2 and 9.3 show the simulink scheme and control perfor-
mances.
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Figure 9.1: The simulink scheme
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(a)

Figure 9.2: Tracking error (a) and prediction error (b)
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(a)

(b)

Figure 9.3: Control signal (a) and parameter estimate evolution (b).

Sliding mode requires filtering operations, but does not require the in-
troduction of the complicated augmented error signal

WmL (Q(t)L~lX - L~lQ(t}X)

The robustness of this procedure with respect to the propagation of
the errors introduced by the successive filtering operations is due to the
adaptative mechanism based on the prediction error (PE) as outlined in
the previous section.

It is also possible to counteract disturbances with a direct control of
the amplitude of the residual set by using a procedure described in [13].
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Disturbance can be considered as external signals, as a residual error due to
the sequence of operations described above or even as part of the prediction
error, when for example, due to a lack of PE it is desired to identify some
parameters neglecting the other.

This procedure starts from a prediction error of the type OX + d(t) and
the aim is make | 9 \\< EQ, where e$ is an arbitrarily small positive number.
To this end the scalar v, defined by

v = -av + 9X + d(t) + ua (i) (9.16)

where ua(t] is an auxiliary signal to be defined in the sequel. Our aim is
to force 9(i] to be less than any prespecified small constant.

To this end we prove that a signal

(9.17)

where e and t] are chosen according to

e(t) = -p£(t) + Pav(t) -

ri(t) = -f3r1(t}-(3X(t]

This represents an estimation of d(t) such that

lim \ d ( t ) - d ( t )

(9.18)

(9.19)

where h\ is any small positive constant. Note that d, due to last addendum,
is not available. Indeed choosing

2V = d-d = d-e-3v-

we have

V = (d-e-/3v-f)8-r)8\

= ld-p(d-£-pi>- rj9\\ (d-£-pv-

(9.20)

V < -0V + (9.21)
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This means that

(9.22)

where | d — d \< —. Now we show how it is possible to introduce d in

Equation (9.16). Choose ua(t} = —e(3v so that i — fiav — r\Q and (9.16)
becomes

9X + d(t) -e-

v = -av (9.23)

which can be interpreted as a new error equation with a prediction error
that has a modified regressor and a disturbance which is arbitrarily small.

The second step is that of making available 6(r) + X] + I d — d J , to end

we can introduce ua = — e — (3v 4- Ud and as a result (9.16) becomes

v = -av + 6(r] + X) + (d - d\

choose Ud = —ksign(v]

+ (9.24)

k> d(0) - (9.25)

In finite time v —» 0 and Udeq = —Q(n -4- X) + (d — d J .

We now consider the following adaptative mechanism

where

(9.26)

(9.27)

We shall prove that the estimate 0(t) converges to a residual set arbitrar-
ily small of #*, which is the true unknown value under reduced persistent
excitation condition. Just a single parameter needs to be identified.

Indeed using

V = 7(t)£2 (9.28)
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V = -

1 ' 5 2

/ - \2
1\ 1 ( d - d )
i.W^I + A '
kQ

D2

(9.30)

with (3 a project parameter which, not affecting any physical input of the

plant but only the artificial systems ( V " = • • • , £ = • • • , ? ) = • • • ) , can

be made arbitrarily small. The parameters 8 = -M7 ~ JT ) "K*) can ^e

ensured to be positive by exploiting the natural excitation of the applied
control since only one regressor is involved.

Problems involving nonlinear systems
Consider a nonlinear system with the actuator

x = Ax + Bu
u = f ( x , u ) + g(x}v

From adaptive control we know that there exists a control u* — Q*(x) so
that x = Ax + Bu* tracks a reference model

2-m — •"im^'Tn i -Drn^m

It is possible to define the following sliding manifold

s ( x , t ) =u(t}-@(t}X

which can be forced to be zero in a finite time if the upper bounds of the
uncertainties appearing in the actuator dynamic are available. After that
time, the zero dynamic of the system is characterized by an error equation

e = Ame + BQX v = De

and e -> 0 if 9(t) - -TXe.
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This first combination of sliding mode control and adaptive control can
be generalized to single input system with nonmatching uncertainties of
the type

x\ = £2

(x) + g(x)u

with \f(x)\ < F(x) gi < g(x) < §2, 6* an uncertain constant parameter
vector and $(x) a regressor vector whose components are known nonlinear
functions of the states.

s(x) = xn

&m = [amn_2 ' ' ' -
 am0 |&m] X =

with 5 = 0 the zero dynamic is

Xi = X-2

xn-i = - YZ=o aixi+i + bmum

which can be dealt with by standard adaptive control. This situation can
be generalized to systems in strict parametric or pure parametric form, for
which the back-stepping procedure is applicable. The result is that with the
use of the sliding mode control, a step in this rather cumbersome procedure
can be saved.

9.6 Conclusions
In this chapter some basic features of control algorithms were derived from
the suitable combination of sliding mode and adaptive control theory, we
stressed the importance of extracting the prediction error from the equiv-
alent control in order to cope with the problem of the controlling system
with higher-order relative degree. Hints to the possibility of dealing with
nonlinear systems through a suitable combination of the two approaches
was also presented. The complementarity of the two approaches was based
on the fact that with sliding mode it is possible to force system motion
in a manifold of the state space so that the associated zero dynamics can
be stabilized by adaptive control or equivalent passivity-based nonlinear
algorithms.

These topics are related to the existing literature. The next step in this
direction will be based on the introduction of new, recently developed tools
like terminal control and higher-order sliding modes.
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Chapter 10

Steady Modes in Relay
Systems with Delay

L. FRIDMAN*, E. FRIDMAN**, and E. SHUSTIN**
*Chihuahua Institute of Technology, Chihuahua, Mexico
** Tel Aviv University, Tel Aviv, Israel

10.1 Introduction

This chapter is devoted to relay control systems with a relatively big time
delay in the control element. Relay control systems are widely used due to
the following reasons:

• the relay control law is one of the simplest control algorithms;

• relay controllers are robust;

• there are control systems in which only the sign of variables is ob-
servable ([8, 22]); and

• sliding motions on a discontinuity surface, (a special kind of motions
in discontinuous systems), are quite useful to design an efficient con-
trol.

On the other hand, time delay in control systems is usually present
and must be taken into account. In practice, time delay is caused by the
following:

• Measuring devices have time delay. An example of such a system is
the controller of exhausted gas in the fuel-injector automotive control
systems (see for example [8, 22]).
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• Actuators have a time delay. An example of such a system is the
controller for stabilization of the fingers of an underwater manipulator
[4]-

We distinguish between the two classes of relay control systems with
delay:

• Systems with time delay in the state.

• Systems with time delay in the input.

The usual approach to the systems with delay in the state consists of
two steps ([5, 6]):

(i) definition of the sliding equation; and
(ii) application of the sliding mode technique.
We will concentrate on systems with time delay in the input and describe

in detail what kind of stabilization can be achieved, though the standard
sliding mode technique does not apply here.

The following simple example shows that the time delay in the relay
control law does not allow the realization of an ideal sliding mode and
underlines the meaning of the general results presented in the sequel.

The simplest example of steady modes
The equation

±(t) = -sign [x(t - 1)] (SE)

has a 4-periodic solution

t, for - 1 < t < 1
#>(*) - l 2 - t, for I < t < 3

g0(t + 4k) = 9o(t) fceZ

Since
<?o(£) = —sign[<?o(£ — 1 — 4n)j

We can substitute t for (4n + l)t and obtain

^i-j- b((4n + l)t)]' = -sign [^_i-5-5o((4n + l)t)]

Thus, a 4/(4n + l)-periodic solution to (SE) is

1
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for each integer, n > 1. This means that there exists a countable set of
periodic solutions, or the so-called steady modes (SM).

We will show later that any solution x(t) ^ 0, of (SE) is equivalent
to gn(t + a] for some n > 0, a € E; moreover, a solution gn(t] is stable
for n — 0, and unstable for n > I . These crucial features persist in more
general situations.

Statement of the problem

Consider the equation

x(t) = -sign [x(t - 1)] + F(x(i], t], t > 0 (10.1)

\F(x,t)\<p<l, FeCl(R2) (10.2)

x ( t ) = t p ( t ) , te[-l;0], </?eC[-l,0] (10.3)

Under condition (10.2), for any </? £ C[—1;0], there exists a unique con-
tinuous solution x¥3(t), t € [—l;oo), of the problem (10.1), and (10.3) [21].
We will consider further only such solutions.

The time delay does not allow the realization of an ideal sliding mode,
but implies oscillations, whose stability is determined by one discrete pa-
rameter called oscillation frequency, which is the number of zeroes on the
time interval with length of delay preceding some zero of x^t). The ba-
sic property of the frequency, its monotone decrease, has been observed
in other situations (see [23, 25]). A specific topic for discontinuous delay
equations, infinite frequency oscillations, have been studied in [27, 1, 26, 9].
Some problems of the qualitative behavior of solutions of relay equations
with delay was considered in [20]. The relay control algorithms for systems
with delay have been suggested in [8, 22, 2]. We also show that any mo-
tion of system (10.1) turns into a steady mode, with a motion of constant
frequency, as it happens in the case of usual sliding modes. At the same
time this means that there are no asymptotically decreasing solutions.

All these observations are used in our approach to the following, main
questions on relay controllers with delay:

1. What steady modes are stable?
2. How could relay controllers with delay be used for stabilization of

unstable systems?
3. How could relay controllers with delay be used for stabilization of os-

cillations in a small neighborhood of constraints for stable systems, in which
perturbations accumulate and take the system rather far from constraints?
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Organization of the material
Section 10.2.1 contains one of the main results, Theorem 98, which states
that any solution of Equation (10.1) can be basically characterized by one
discrete parameter, an average oscillation frequency, which is the number
of zeroes on the time interval, preceding some zero of the solution, of length
equal to the delay. A similar result was obtained for the smooth system in
[23]. It was shown that each solution of Equation (10.1) is equivalent to
steady mode, which is a solution with a constant frequency. That means we
have a finite time of input in steady mode. Moreover, in the autonomous
case, there exists a countable set of periodic SM generating all other SM
by translations in t. Another important result consists in a description
of classes of stable and unstable SM (Section 10.2.2). A multidimensional
singularly perturbed relay system with time delay is studied in Section 10.3,
where we prove the existence of slow stable periodic solutions, which is a
generalization of a similar result for system (SE).

The algorithms of stabilization are presented in Section 10.4. After this
section we discuss possible generalization and open problems. The proofs
are presented in Section 10.6.

10.2 Steady modes and stability

10.2.1 Steady modes
The main object of this section is a special characteristic of a solution,
its oscillation frequency. Our main result (Theorem 92) states that, for
any solution, its frequency becomes constant after a period of time. Two
solutions are called equivalent if they coincide after some time period. So,
each solution is equivalent to some steady mode, a solution with a constant
frequency.

Here we formulate and discuss the statements. The proofs are presented
in the Appendix.

Let Zv denote a set of zeros of xv(t). Put Z+ = Z^ n [0; +00)

Lemma 91 For any </? G C[—1;0] the set Z^ is nonempty and unbounded.

Thus, we can define the frequency function v^ : Z+ —> NU{0}U{oo} by

vv(t) = card (Z9 n (t - 1; t)) , te Z+

Theorem 92 For any ip € C[—1;0] the function v9 is nonincreasing, and
thus there exists a limit

N =f lim Vlt
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Lemma 93 If N^ < oo then N^ is even, and C[—1;0] is divided into sets

W00 = {<^eC'[-l;0] : A^ = oo}

Wn = {v>eC[-l;0] : N^ = 2n}, n > 0

Introduce the following subset of C[— 1; 0]:

J"={v?eC[-l;0] : v~l(Q) is finite}

It follows immediately from Theorem 92 that

FC \J Un

0<n<oo

Definition 94 A solution x^t] with v^ = const is called steady mode
(SM).

The set of SM is represented naturally as the union of disjoint sets
Sn = {x^(t) : Vy = 2n}, n > 0, «5>oo = {x<p(t)\v<f> = oo}.

Theorem 95 For any integer n > 0 and real T > 0, there exists g(t} € «Sn

such that
g(T) = 0, g(T)>0 (10.4)

// n — 0 i/ien suc/i 5M zs unique.

In the autonomous case, we give a more precise description of the SM
set as follows

Theorem 96 In the autonomous case for any n > 0, the SM are unique
in the following sense: there are periodic steady modes go, gi • • • gn, • • • such
that

Sn = {9n(t + a) : a e R , n > 0}

and their periods satisfy inequalities

TQ > 2, n~l >rn> (n+ I)"1, n > 1 (10.5)

Remark 97 In fact, in the autonomous case SQQ = 0 if F(0) ^ 0, and
^oo = {0} if F(0) = 0. This was recently proved by Akian, Bliman [1] and
Nussbaum and Shustin [26]. For the non-autonomous case see [9, 27].

As a consequence of the above statements we obtain

Theorem 98 Any solution Xy(t} of the (10.1), (10.3) is equivalent to a
suitable SM.
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10.2.2 Stability

Here we study the stability of solutions of our equation with respect to the
standard metric in the space C[— 1; 0] of initial functions. First we show
that the zero steady frequency is stable, then from this we derive the non-
asymptotic stability of zero- frequency SM in the autonomous case and give
a condition of the closeness to the autonomous case, where the same type of
stability is present. Finally, we establish that SM with positive frequency
are unstable.

Theorem 99 The set UQ has a nonempty interior. Moreover, Int UQ con-
tains the nonempty set

= 0}

— 0 is stable if

Corollary 100 In the autonomous case, all of the solutions
are nonasymptotically stable.

In particular, we get that the function N(tp) —
- O =0.

Theorem 101 //

max
OF(x,t]

dt
dt < oo (10.6)

then all solutions xv(t], (p E UQ, are nonasymptotically stable.

We should underline that there are unstable solutions x^t) with </? € UQ.
For example, let ip e Un, n > 1, then </?(£) = max{0; ?/>(£)} 6 UQ, but
(pT(t] = (p(t] + T0(t) € Un, for any r > 0.

Theorem 102 //

SUP

or

dF_
dx

dF

(10.7)

(10.8)

then all solutions xv(t)and € U Un, are unstable.
l<n<oo

Note that the conditions of Theorems 101 and 102 are fulfilled in the
autonomous case.
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10.3 Singular perturbation in relay systems
with time delay

10.3.1 Existence of stable zero frequency periodic
steady modes for a singularly perturbed
multidimensional system

Here we study a multidimensional generalization of system (SE). Consider
the system

dz ., v ds , . dx . . . .
H-r-=f(z,s,x,u), — =#(2,5, z,w), — =h(z,s,x,u) (10.9)

where z e Rm,s e R,x e Rn,u(s) = sign[s(t - 1)]; /,</,/* € C2(Z),Z C
Mm x R x Rn x [-1,1]; and n is a small parameter.

Ignoring additional dynamics, accepting /^ = 0, and expressing ZQ from
the equation

g(zo,s,x,u(s)) = 0

we obtain from the formula ZQ = y?(s, x, w) that

— = g(ip(s, x, u), s, x, u) = G(s, x, u)

dx
— = h(<p(s, x, u), s, x, u) = H(s, x, u) (10.10)
at

which satisfies the sufficient conditions for the existence of a zero frequency
steady mode.

Suppose that
Cl: The function ZQ = (p(s,x,u), for all (s,z,u) € 5; 5 C R x Rn x

[—1,1], is a uniformly asymptotically stable isolated equilibrium point of
system dz/dr = j(z, s,z, u); moreover, the matrix f(z^x>u) js stable at
all (5, x, u) € 5, and the inequality Re Spec f^^w < — a < 0 holds.

Under condition Cl we design the point mapping of surface s = 0 into
itself determined by system (10.10).

Namely, consider the solution to (10.10) for u — 1:

,7^ + /7r +d-=G(s + , x + , l ) J SL=H(s+,x+,l) (10.10+)

with the initial conditions

5f (0) = 0, 5 + (t) < 0, t € [-1,0); xf (0) =
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Suppose that, for t = 1, the relay control u changes its value from +1 to
— 1 so that the behavior of a solution to (10.10) is described by the system

- = G ( 5 o , * o > - l ) =H(s^x^-l) (10.10-)

Suppose that, for all £ G V, there exists the smallest root of equation
SQ(O(£}) = 0 such that G(0,£^ (#(£)), — 1) < 0 and consequently for t =
$(£) + 1 the control low u changes its value from — 1 to + 1. Then the
behavior of the solution of (10.10) and the behavior of the system for t >
0(£) + 1 is described by system (10.10+) with initial condition

4WO + 1) = *o WO + !)' *o (0(0 + 1) = *o (0(0 + 1)
Suppose also that, for all £ G F, there exists T(£), the smallest root of the
equation s J(T(£)) = 0, such that T(£) > 0(f) + 1 and G(0,x £[T(£)], 1) >
0. Then the point mapping ^(£) : £ — » £j(T(£)) is the point mapping of
the domain V on the surface s = 0 produced by system (10.10).

We now introduce the following assumptions:
C2: System (10.10) has an isolated zero frequency steady mode [SQ(£),

Xo(t)], which has exactly two intersection points with the surface s = 0
such that

7, \-/ ' ~ ~UV U/ ' J± \ U/

C3: The point mapping fy(x) of the surface s = 0 into itself, which
was made by system (10.10), has the stable isolated equilibrium point XQ
corresponding to [so(£),zo(t)j, moreover

< q < I11 dx

C4: The points </?(SQ(I), xo(l), —1) and </?(so(#o+l)> £o(#o+l)51) are sit-
uated in the attractive domains of stable equilibrium points (/?(so(l),xo(l), l)
and if>(so(6o + I),x0(90 + 1), —1), respectively.

Theorem 103 Under conditions C1-C4 system (10.9) has an orbitally
asymptotically stable isolated periodic solution close to ( s o ( t ) , x o ( t ) ) with
a period T(/z) which tends to T as p, —> 0, and the boundary layers close to

Remark 104 An algorithm for the asymptotic representation of a zero
frequency periodic steady mode [34], based on the boundary layer method is
suggested in [17].
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10.3.2 Existence of stable zero frequency steady
modes in systems of arbitrary order

Consider the system

= -zi + u, u(s) = -sign[s(t - 1)]

,...,at at
ds dx

finii\(10.11)

where zi,...,Zk,s,x e R and p, is the small parameter. It is obvious that
system (10.11) is a system with relative degree (fc-f 2) with respect to output
variable s. Let's show that for system (10.11) the conditions of Theorem
103 hold and consequently system (10.11) has an orbitally asymptotically
stable zero frequency steady mode at least for small fj,.

For ^ = 0 system (10.11) has the form

Zl — Z-2 = ... = Zk = U

—7— = XQ, —r— = —Xn + U (10.12)
at dt

Then for the solution of (10.12) with initial conditions

sign[sQ~(£ - 1)] = — 1, u = l for £ 6 [-1,0]

we have

and consequently

For t > l,u = — 1 and, until the switching of sign(u),

In this case the switching moment #(£) is denned by equation s Q (^(0? 0 =

0. Taking into account the symmetry of system (10.12) with respect to the
point s = x = 0, we can conclude that the semi-period of the desired
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periodic solution 90 and the fixed point £0 of the point mapping \&(£) are
described by equation

SQ (0o, Co) =0, ;r^(00, £o) = -fo

Thus,

This system has the solution #0 « 3, 75 and £o ~ 0, 87. Here £o is the fixed
point of point mapping $(£), corresponding to the 20Q— periodic solution
of (10.12) determined by the equations

*o (Uo),z?(Uo)), for -
S t x « f o r l

Moreover,

« 0,0144.

Then the conditions of Theorem 103 hold for system (10.11), there-
fore system (10.11) has an orbitally asymptotically stable periodic zero
frequency steady mode at least for the small /^. This means that for any
k there exists at least one orbitally asymptotically stable zero frequency
periodic steady mode of (k + 2)-th order.

10.4 Design of delay controllers of relay type

10.4.1 Stabilization of the simplest unstable system
Consider the stabilization problem for the simplest unstable system

x = kx, (x e R, k > 0) (US)

by means of a delay relay control law of the form u = — sign [x(t — 7)],
where 7 is time delay. In this case the equation for the control system has
the form

x(i) = -sign [x(t - 7)] + kx (CS)

Let us compute the constant A > 0 for which the system (CS) with initial
function

A, t€[-7,0] (IF)
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has a stable periodic solution for t > 0.
Before the switching moment we have

The function x ( t ) could change its sign if and only if the condition

A-i <0
k

holds. In this case we can rewrite equation for r — , which is the root
of equation X(T) = 0 in form ekr = 1_

1
fc^. From periodicity of x(t) we

have the equation for the switching moment of the control law in the form
X(T + 7) = -A Then

k ' v fc ' ~ '
and consequently A — (ek^ — l}/k. This means that sufficient condition for
existence of the periodic solution has the form

£7 < log 2 (SC)

This implies that for any positive feedback coefficient k we can choose
the time delay 7, for which there exists a zero frequency stable periodic
steady mode of (CS). Moreover the equation (CS) has a countable set of
steady modes in the interior of the strip |a;| < (eklj — l)/k. System (CS)
has unstable solutions x = ±l/fc, and unbounded solutions in the regions
\x\ > l/k.

This means that the Cauchy problem (CS), (10.3) has a bounded so-
lution if for any t e [0,7], ^^^(t)! < 1. This means that if </?(0) > 0,
then

k\xv(t)\ = \ - 1 + (MO) 4- l)ekt\ < I

This implies:

Theorem 105 If condition (CS) holds and |v?(0)| < ^nbr, then the solu-
tion x^t) of (CS) and (10.3) is bounded.

10.4.2 Stable systems with bounded perturbation and
relay controllers with delay

Consider the simplest stable system with bounded perturbations

~ — 1.™ i TT(+ rr\ ( ~. c. TO k- ~~> O^ fPCMX — — K X ~r " (fi X j ) {X t 1&, K .> U^ V ^/
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Here |F(i, x)\ < e is bounded perturbation. Suppose that we can use the
relay control with delay 7 in form u(s) = —A • sign[o:(t — 7)], A > e. The
behavior of the control system is described by equation

x = -kx + F(t, x] - A • sign[x(t - 7)] (CPS)

Then for the amplitude we have the following estimation

e)

It allows us to conclude that the motions in stable systems are in the O(e)
neighborhood from constraints. If we are using the relay control with delay,
the amplitude of oscillation is O((A + 5)7). It is important in the case of
sufficiently small A, e and 7.

10.4.3 Statement of the adaptive control problem
Consider the system

x(t)=F(x,t) + u(t) (10.13)

u(t) = a(t) -signet- 1)]

A real controller operates with an unavoidable time delay. Here we develop
the direct adaptive delay control of relay type u(t] = —a • sign [x(t — 1)]
with a step function a dependent only on the information of the time
interval ( — ! , £ — 1) and provides exponentially decreasing oscillations even
in the presence of disturbances. Here we restrict ourselves to those systems
satisfying [20]

and everywhere below we suppose this equality.
Note that here we lose the restriction (10.2), and solutions may be un-

bounded and inextensible to the infinite interval. On the other hand, there
are SM with sufficiently big frequency and small amplitude. It turns out
that the existence of stable SM with zero frequency implies the existence
of a wide class of bounded solutions. Namely,

Lemma 106 Let
F(Q,t) = Q (10.14)

dF
— ( x , t ) <k< In2,t e E, \x\ < a/k (10.15)

Then all the solutions of equation

x(t) = F(x, t) + a- sign [x(t - I}}
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with initial condition (10.3), where

|x(0)| = |p(0)| < a(2exp(-fc) - l)/fc (10.16)

are extensible to the interval (— l;oo) and satisfy inequalities

M*)|<^(e f c-l) , \*v(t)\<<*ek (10.17)

These solutions hold all properties mentioned in Section 10.2.

In a non-ideal situation we'll use the following simple estimate

Proposition 107 Under the conditions of Lemma 106, let T be a zero of
some solution x(t) of (10.1), and \T* -T\<6. Then

|z(T")| < a(ek6 -

10.4.4 The case of definite systems

Assume F(x,t) holds (10.15), and we have complete information on F(x,t)
and have the observer, which indicates zeroes of x(t) and signs of x(t)
with the delay 1. We design the desired control by means of the following
algorithm.

Let (10.16) hold with some constant a = CXQ. Put a(t) = ao, t > 0, and
consider the equation

x(t) = -a0 • sign[x(t - 1)] + F(x(t), t), t>Q

We fix a time moment t\ + 1, when the observer indicates the first zero t\
of x(t) greater than 1. Using the distribution of zeroes and signs of x(t] on
the segment [0;ti], we extrapolate x(t] on the interval t > t\ and compute
the first zero t% of x(t) greater than t\ + 1. Now in the ideal situation we
can put

a(t) = ai, t> t-2
where ot\ is small positive constant and, according to (10.17), we obtain a
solution x ( t ) close to zero.

Assume we compute £2 with error 5. Let 5 satisfy the condition

From Proposition 107 it follows immediately that property (10.16) at £2
with the constant o; = aop. Now we put a(t) = aop, t>tz and repeat our
algorithm from the beginning. After m steps we get, from (10.17),

pk _ -I T-m-ltk i \

WOI < -

The left side of (10.19) tends to zero for m — > oo.
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10.4.5 The case of indefinite systems
Having the error 60 of the observer and the property (10.15) as the only
information on F(x, t), we must solve a single problem in using the previous
algorithm: to construct a zeroes sequence on an interval (t; oo) having a
zeroes sequence on ( — l ; t — 1).

In the autonomous case Theorem 102 provides (with the probability 1),
turning any bounded solution of the equation

x(t) = -a • sign[x(t - 1)] + F(x(t))

into some zero frequency SM. Assume that by the time moment t^n + 1 our
observer indicated consequent zeroes £Q, £1 , . . • , ^2n such that ti + 1 < <i+i,
i — 0 , . . . , 2n — 1. According to the periodicity of SM (see Theorem 98),
the following zero equals £2/1+1 = ^2n-i + (^2n — to)/n > t-2n + I with error
8 — <5o(l-f2/n). If 6 satisfies (10.18) then, repeating such steps, we stabilize
the zero solution as above.

10.5 Generalizations and open problems

10.5.1 The case when \F(x)\ > 1 for some x
In [29] it was shown that the results of Section 10.2 for system (10.1) hold
for the case when for some x the function F(x] has values out of [—1,1],
but satisfies the following conditions:

where
x+ = inf{x > 0 : F(x) = 1}, xti = inf{x > 0 : F(x) = -1}
x~ = inf{x < 0 : F(x) = 1}, xlx = inf{x < 0 : F(x) = -1}

Systems with different delays are more complicated [3]. This is a very
interesting subject for study.

10.5.2 Systems and steady modes of the second order
Relay control systems with delay of second order are considered in the form

-^ + F(x) - sign[rr(t - 1)], (SONRCSD)
at* at

x ( t ) = ip(t), t e [-1, 0], e = const > 0, i(0) = XQ
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\F(x,t)\ <p< 1, FeCl(R2}

This was considered in [18]. It is shown that if the frequency v of solution
of (SONRCSD) is even, then v does not increase. If the frequency v is odd
it could increase by 1. This allows us to introduce the notion of frequency
for the second-order relay control systems with delay in the form i/> =
\(y + l)/2] (here [•] is the entire part), which is a nonincreasing function.
It is shown that for each solution of (SONRCSD), there exists the limit
value of frequency TV = lim^oo tp. It was proved that in the case when F
is autonomous for any integer T/> > 0 there exists a periodic steady mode.

Second-order linear relay control system with delay

C\ T (\Tuj_ = _^± + kx_ si [x(t _ !)j (SOLRCSD)
at2 at

was considered in [15, 16, 18, 19, 33]. For such system there have been
conditions found providing that

• the frequency tj) is non-increasing;

• there exists a countable set of periodic steady modes for any integer
with nonnegative value of i/>; and

• the zero frequency periodic steady modes are orbitally asymptotically
stable.

The natural sufficient conditions for orbital asymptotic stability of zero
frequency steady modes for (SOLDRCS) was found in [15, 16, 18, 19, 33].
For second-order relay control systems with delay, the problem of instability
of steady modes with nonzero frequency is still open.

10.5.3 Stability and instability of steady modes for
multidimensional case

In [14] the multidimensional relay control systems with delay in form was
considered

s(t] = -sign[*(* -1)] + F[s(t), x(t}} rMrmrsm
x(t) = As(t} + Bx(t), (MDRCSD)

s e R , x eRn , \F(s,x)\ <p<l
It was shown that if B is a stable matrix then, for any even value of
frequency, there exists a periodic steady mode. In [14] the problem of
stability of zero frequency steady modes of (MDRDCS) is reduced to the
problem of contractibility of point mapping of the surface s = 0 into itself
made by the original system. In fact, it is practically impossible to check
this property of (MDRCSD) and the problem of stability is open. As in
the previous case, the problem of instability is open too.
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10.6 Conclusions

1. The notions of frequency and steady modes were introduced. The exis-
tence of steady modes for any even frequency were established.
2. The steady modes possess properties similar to that of sliding modes:

• (i) the set of switches of any steady mode is unbounded, thus a steady
mode is not equivalent to any solution of a continuous part of the
given equation;

• (ii) for any solution there exists a finite time preceding its input into
a steady mode;

• (iii) the shift operator is not invertible; and

• (iv) the properties (i)-(iii) are invariant with respect to bounded per-
turbations which satisfy condition (10.2).

3. Stability criteria for steady modes with zero frequency were established.
4. It was proved that all steady modes with the positive frequency were
unstable under some mild conditions.
5. The existence of a slow stable periodic solution of the multidimensional
singularly perturbed relay system with time delay, which corresponds to
the stable zero frequency steady mode, was proved.
6. A direct, adaptive control of relay type with time delay that extinguished
parasite auto-oscillations in this model was designed.

10.7 Appendix: proofs

Lemma 91 is obvious.
Proof of Theorem 92. If t\ < t^, t\^2 € Z+, then, according to

Rolle's theorem and (10.1), (10.2), there exists f <E (ti - I;t2 - 1) H Zv.
Therefore

card ( Z ^ n ( £ i - l ; £ 2 - l ) ) > card (Z+ n (*i;t2)) +1

thus

z^(*i) - card (Zv n (ti -l;*i)) > card(Z^ n (t2 - 15*2)) = M^)

Proof of Lemma 93. Let i/^t) = N^ < oo, when t > T. Then
Xy(t) changes its sign at every point t 6 Z^ n [T;+oo). Indeed, if t\ <
t-2 are neighboring points from Ztfr\[T+ l;oo) then, according to above
assumption, there is a unique z e (i\ — \\ti — 1) fl Zv, and hence x<p(t)
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changes its sign at z. Let us suppose, for example, that z e Z+ and xv(z)
change its sign at some point from plus to minus. Hence x(z) is negative.
This means that x^(z — 1) is positive. This is possible only in case when
the number of switches is even.

Proof of Theorem 95. In the case N = 0, the desired statement is
obvious. Fix even N > 0. Put

E = {(a0,...,a;v) € RN+l : a0 > 0,.. .a^ > 0, ,a0 H ha^ = l}

Let Zy, D [T; +00) be locally finite, and

T = ti < t-2 < *3 < ...

be all zeroes of x^(t] in [T;+oo). Let us define the operators of "step
forward" and "step back". Assume that vv(tk) = v<p(tk+i] = N. Define the
following vectors of sign changes: a = (ao, . . . , a#), b = ( b o , . . . , bx) € S,
where

0*0 = tk~ tk-l, CLl = tk-l - tk-2,. . . ,a^_i = tk-N+l ~ tk-N

&N = tk-N — (tk — 1)

bo = tk+l - tk, bl =tk - tk-l, . . . , ̂ AT-l = tk-N+2 - tk-N+l

bN = tk-N+l - (tk+1 - 1)

Thus we obtain a correspondence

r:(o,a,e)-»(5,/?,-e)

where a = tk, (3 = t fc+i ,e = sign xv(tk)

Proposition 108 For a fixed e, the correspondence inverse to T, is a
smooth map

M e : S x R-*ZxR

Proof. Denote by x£(to,xo,a), e = ±1, the solution of the Cauchy
problem

dx
— = £ + F(x,tQ + a), x(0) = XQ
da

Define functions T = A£(t,a),£: = ±1, by equations

X-e(t + a,xe(t,Q,a), b) = 0, T = t + a + b (10.20)

It is easy to see that for a fixed to, the function \±(to,a) increases strictly,
and A±(£Q> a) > a if a > 0. Therefore, for a fixed to, we can define positive
functions of b > 0:
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• p£(t0,b) inverse to b — X£(t0,p£)\ and

• a£(t0,b) = b- p£(t0,b).

Thus (a, a) = M£(b, j3] can be defined as

a0 = &i, ai = 62, . . . , a^-2 = &AT-I

a^v_! = 67V + cre(/3 - 60, &o)> aAT = Pe(P - &0, M

a = /3-bQ (10.21)

Thereby Proposition 108 defines the operator of step back with a constant
frequency independently from initial assumption v^tk) = vv(tk+i) = N.

So, given a triple (a, a, e), we can construct a solution of (10.1) for t > a,
and using maps M± we can extend this solution on the interval (—00, a)
with a constant frequency function. Now let us introduce the decreasing
sequence of closed connected sets

n0 = E x R, nn+1 - (M_M+)(IIn),n > 0

The set II = n0 n HI fl 112 fl • • • is an invariant set of operator step back.
The statement of Theorem 95 is equivalent to II fl (E x {a}) ^ 0 for any
a € R. It is obvious that, for any k > 0,

nfc n (s x {13}} ± 0
for (3 both big and small, because the time decrease in one step is absolutely
bounded. Then (10.21) is fulfilled for any k > 0,/3 G J?, because II^, for
k > 0, are connected. Thus, nn(Ex{a}) ^ 0, because n f cn(S x {a}) 7^ 0,
A: > 0, are nonempty compacts.

Proof of Theorem 96. We shall prove that, for any n > 1 and a fixed
T 6 /?, there is a unique gn>T G <Sn with property (10.4). Since M£, defined
by (10.21), does not depend on (3, we get a map Me : E — > S such that

a = Me(6); a, 6 6 E

a0 = 61, Oi — 62, . . . , OAT-2 = &A/--1

aAT-i = 6jv +cre(60),aAr = pe(6o) (10.22)
where N — In and according to the definition of /9e,cre (see Proposition
108) and (10.2)

1-P ^ ' m ^ l ± P !-P ^ / / M ^ 1+p nno^— — < pe(6) < — ~, — ~ ^ ae(b) < ~~ (10.23)

We have to show that the intersection of a decreasing sequence of compacts

(M_oM+) f c(S), fc>0

is one point.
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Proposition 109 For the metric

N

\\a-b\\ =^ ai ~bi\
i=0

the operator
M = (M_ o M+)N2~1 : E —> £

is a contraction with a coefficient 1 — 7, where

'Y = —7 JV

Proof. If a, 6 e E then the vector a — 6 has at least one pair of coordi-
nates with different signs. Let

aj — bj = max{ai — bi} > 0 , a^ — bk = min{a.; — bi} < 0
i i

It is easy to see that

According to (10.22), c = M£(a) - Me(b) can be defined by

co = p'e(0) • (ao ~^o),ci =ai - 61, . . . ,c#-i = ajv_i -6^-1

CN = UN -bN + &'£(6) • (ao - &o)

Thus, the transformation a - b i-> c_ can be described as a multiplication
by a matrix {ctij} (depending on a, 6), where according to (10.23)

N

i:j = l, j = Q,...,N (10.24)
i=0

with
1 — v

m{aij : atj > 0} > — — - (10.25)

A product of matrices of type (10.24) is of the same type. Also it is not
difficult to see that the product of N + 1 matrices of type (10.24) does not
contain zeroes on the principal diagonal and on the next upper diagonal.
Hence the product of the TV2 — 1 matrices of type (10.24) contains the first
string with, by (10.25),
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This implies immediately that

N N
% -V \ > .

i—Q q=Q

- 6,| - 2JV7

q=o

This uniqueness and the autonomy imply the equality gn,T(t) = 9n,o(t — T),
t,T 6 -R, as well as the periodicity of gn,Q. Inequalities (10.5) follow from
the frequency of gn>Q which is equal to In.

Proof of Theorem 98. It is easy to deduce from the proof of Propo-
sition 108 that every solution g(t), t > T, of (10.1) with a constant finite
frequency can be extended on [— l;oo) with the same frequency. That fin-
ishes the proof according to Lemmas 91, 93, and Theorem 95.

Proof of Theorem 99 and Corollary 100. The set UQ is nonempty,
because it contains SQ ^= 0. Now let <p G MQ, and mes(<y2'~1(0)) = 0. Then
x<p(t) — 9o,T(t], t > T, for a relevant T G R. That means

If tp G C[— 1; 0] is close to </?, then ^~1(0) is contained in a sufficiently small
neighborhood of(p~l(Q), and

> 0} o {?/; > 0}), mes({p < 0} o {V> < 0})

are small enough, where AoB denotes (A\B)\J(B\A). Hence Z^,n[0; T+2]
is contained in a sufficiently small neighborhood of Z^nfO; T+2]. Therefore

25

and implies i/j £ UQ. The statement of Corollary 100 follows from this
immediately.

Proof of Theorem 101. Let y € Z^o, and xv(t) = goa(i), t>T. We
have just shown that if i/j is sufficiently close to (p then x^(t) = go/3(t), t >
T, where \/3 — a\ is small enough. Let

a = ti < t-2 < • • • , (3 = t( < t'2 < • • •
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be all zeroes of the functions goa,go/3, respectively, in the interval [T;oo).
It is enough to prove that

Ci-\p-a\<\tk-t'k\<C2'\P-a\t Ci,C2 = const, A; = 1,2,.. .

According to the definition of the functions X±(to,a)

Thus

• M b - t f c ) , \6k-tk\<\t'k-tk\, fc>l
dt

n-l
fa x(0-a)

The desired statement follows from:

Proposition 110 Under condition (10.6), the product

k=l

converges uniformly when

0 f c + i > 0 f c + l , k = 1,2,3,. . . (10.26)

Proof. We will show that the series
oo

s
converges uniformly. Put

= max
X dt

It follows from (10.20) and well-known formulae for the derivatives of so-
lutions with respect to initial data that

rT Qp
— (x-e,t}dt

t+a Ox

a r 0771 rt+a Qp r

— (x-E,t)dt+ —(xe,t)dt-exp
^a ot Jt dt Jt

t+a rt+a Qp

—
dx
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where r — X e ( t , a ) . Thus,

d\e

dt 1 - P
exp — x-

e+i dx

r /.0+1 f.Q+1 Qp \

p,(t)dt + I n(t)dt • exp / —— (x£,i)dt\
+1 Je Je dx J

(10.27)
e+i

According to (10.26), one may admit

/>oo

e » o , / fj,(t)dt < i
Je

Then
fr dF fT dF
/ —(x-e,t)dt= — •(-£ +

Je+i ox Je+l at

e+i — p i — p

1 — p I — p

•(xe,t}dt<log\^- +
l-p

Put q = exp(2p+1/(1 -p)), N = [(I +p)/(l -p)} + 1. Then (10.27) implies

~2

<9t

^±,

-1 H(t)dt

1-p
0

because r < 9+ (l+p)/(I —p) according to (10.2), and that completes the
proof of Theorem 101.

Proof of Theorem 102. We shall use the two following propositions.

Proposition 111 //
1 -L n

(10.28)a<
l+p

and one of (10.7) or (10.8) is fulfilled, then

•(t,d) >q> I , £ = ±1
dX£

da
(10.29)
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Proof. It is not difficult to derive that

dF_
da V1-'"' - * ' v- - v"'-" ~*Vt+a &r (X-

(
T-, \

f •*- ^ E"1 \

1 j.-FF(r (t n /4-n") / 4- n} -+ p I ——(r t}Ht\J. \^ C.J. ^x^^t/j u? t/ (^ ^*/i k i ^ ^y i^ I o V —^' ^/^^ I
Jt+a ^ y

where T = Ae(i,a). Therefore (10.8) implies

[T dF

Jt+a ^

> l—p-(T-t — a)Mt > I -p - aMt > 0

/

T ip\ pT op

— •(-£ + F(x_£, t))~ldt - -^ • (-
+a at Jt+a Ot

1+p . .T - t - a 1+p 1+p
-Af ta-

1 — p 1 — p 1 — p (1 —

and that implies (10.29). Analogously (10.7) implies

= l+£F(xe(t,Q,t + d),t + d)+e —dt-e -^-'x-
Jt+a ^ Jt+a dx

> 1 + £ • F(0, T) - Afx(l + p)(T - t - a) > 1 - p - Mxa > 0
1-p

rto+a Qp
/ ~-(x£,t)dt > -Mxa > -Mx(l+p)/2

Jt0 Ox

and that implies (10.29).

Proposition 112 Under conditions of Theorem 102 the measure of the set
II from the proof of Theorem 95 is zero.
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Proof. First we show that any a = (G,Q, . . . , ajv) = M£(b),6 € E, satisfies
&N < (1 + p)/2. Indeed, we have a/v < a/v-i(l -fp)/(l — p), that implies
the above inequality.

Now from (10.21) the Jacobian \M£\ of the map M£ is equal to

dpe f l

db dat=a,b=bo

according to Proposition 111. Then

|(M_ oM+)' :<g"2 < 1 (10.30)

Fix A € -R and T > A. Then

n n (E x (-00; A]) C |J (M_ o M+)fc(E x [T; T + 1])

where n might be chosen big enough, because T > A arbitrarily. Thus, we
obtain from (10.30)

mes(nn (E x (-00; A])) < ̂ ("-D n^3? 0
q2 - 1

and that completes the proof.
Now we can finish the proof of Theorem 102. Now fix (f> G Un and a

neighborhood V of (/? in C[-l; 0]. The set F is dense in C[—1; 0], evidently.
Put

m = minjfc : F n Wfc n V + 0}

Assume m > 1, and -0 e JF n Um n V. Then there is £ 6 <Sm such that
£,0(t) = ^(t), i > T, ^(T) = 0. Let 2fc be a number of sign changes of i() in
[—1; 0], and a e Sfc C R2k+1 be a vector of sign changes of ?/>, constructed
as in the proof of Theorem 95, as well as b E Sm C H2m+1 be a vector of
sign changes of £ in (T — 1; T). Suppose c e St, d G £s are vectors of sign
changes of £,/,(£) in intervals (tn — l;tn) and (tn+i — l;£n+i), respectively.
If r = s then, according to the proof of Theorem 95, the Equation (10.1)
generates a diffeomorphism of neighborhoods of (c, tn), (d, tn+i) in Er x R.
If r < s then it is possible to deduce, following arguments from the proof
of Theorem 95,

CQ = di, . . . ,C2s_l = C?2s, C2r = A(do,C2s, . - . ,C2 r-2,^n+l)

C2r-l — 1 ~ C0 ~ • • ' — C2r-2 ~ C2r, ^n = *n+l ~ ^0

where A is some smooth function. Thus an inverse image of (d, £n+i) in
a neighborhood of (c,tn) in Er x R has the codimension 2s + 1. That
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implies the measure of an inverse image of II n (Em x R) in S^ x R is zero.
Therefore, after a suitable small variation of (a, 0) in E& x R an image of
(a, 0) in Em x R leaves II, i.e. a limit frequency of the changed solution
is less than 2m, which contradicts the definition of m, and hence to our
assumption m > 0.

Thus, we get that UQ r\F is dense in F, and also in C[— 1; 0], because F
is dense in C[— 1;0]. According to Theorem 99, it means that U^ U (J Uk

k>l
is dense nowhere in C[— 1;0].

Proof of Lemma 106. From (10.15) we deduce that

-<k,x^0 (10.31)
x

In particular, that means if x(t) is a solution of (10.1), then for x(T} >
0,x(t) < uj(t),t > T, where u(t) = ((a + kx(T}}ek(i-T^> - a)/k is the
solution of Cauchy problem

u(t) = a + kw(t), u(T)=x(T)

and, for x(T) < Q,x(t) > u(t),t> T, where u(t) = [(-a + kx(T}]ek^-T^> +
a}/k is the solution of Cauchy problem

w(t) = -a + ku(t), t>T

Those inequalities and (10.31) imply that \F(x,t),t)\ < a when t € [0,1]
and x(0) = </?(0) satisfies (10.16), and that x(t) satisfies (10.17) when t e
[T, T + l],o;(T) = 0, and secondly, x(t) does not leave the strip \x\ <
a(ek - l)/k for t < T.

Proof of Theorem 103. Let us study the point mapping $(z, cc, /Li)
of the switching surface s = 0 into itself induced by the full-order system
(10.9). First we show that under the conditions of Theorem 103 there
exists a neighborhood of the point (<£>(0, XQ, l),0,rro) in the z,x space on
the surface s = 0 mapped into itself.

It follows from the continuous dependence of the solutions to differential
equations on the parameters and initial conditions that there exists U(a),
the closed ball with the center at the point XQ and radius a on the surface
s = 0 in the x space such that for some q' for all x' G U(a)

• the point ^(SQ(!},XQ (!),—!) is situated in the interior of the at-
tractive domain of the equilibrium point <^(s^"(l),x^"(l), 1), where
[s^(t),x^"(£)] is the solution of system (10.10) for u = — 1 with the
initial conditions s^~(0) = 0, x^"(0) = x°,s^"(i) < 0,t € [—1,0);

• there exists the smallest root 6° of the equation SQ(O°) = 0 such that
ds£(Q0)/dt < 0; here (s£(t),x£(t)) is the solution of system (10.10)
for u = 1 with the initial conditions sj(l) = s^(l), ^o"(l) = *o"(l);
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• the point (/?(SQ"(#O + !},XQ(OQ + 1),1) is situated in the interior of
the attractive domain of the equilibrium point <£>(4(#o + 1), XQ(@Q +
i),-i);

• there exists the smallest root T(x°] of the equation SQ(T(X°)) = 0
such that T(x°) > 6+ I,dsQ(T(x°))/dt > 0; here (SQ (£),z^(£)) is
the solution of system (10.10) with u = — 1 and initial conditions
[SQ (00 + l),zo (00 + 1)] = [4(0o + l),4(0o + 1)]; and

• \\dV(x°)/dx\\ < q' < 1.

Consider the set A = co[tp(Q, f/(a), —1)] x U(a) and arbitrary (2;°, a;0) €
A. Then according to Tichonov's theorem [34] and the implicit function
theorem, there exists /^(2°,z°) such that, for all // 6 [0, /j,(z°,x°}},

• there exists the unique solution [z~(t,//),s~(t,/^),:r"~(t,^)] of system
(10.9) for u = —1 on [0, 1] with the initial conditions

2-(0,/i) = z°,s~(0,/z) =0 ,z~(0 ,AO = a;0 ,s~(t ,At) < 0, t £ [-1,0);

• the point z~(t,/z) is situated in the interior of the attractive domain
of the equilibrium point </?[s^"(l),£^"(l), 1]

• there exists the smallest root #(/z, z°,x°) of the following relations

where [2+(t,/^),s+(t,^),a:+(t,//)] is the solution of system (10.9) for
u = I with the initial conditions

the point z+(0(n, z°,x°) + I,//) is situated in the interior of the at-
tractive domain of the equilibrium point <£>(so~(0o + l)>^o"(0o + l ) j ~"^)'

there exists the smallest root T(/4, z°,£°) of the following relations

where [z~(£,^) ,s~( t ,^) ,z~(£, /Lt) ] is the solution of system (10.9) with
u = — 1 and the initial conditions

and
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• at last,
,z°, a:0), /*)) e

MO, U((l + <z>/2), -1), U((l + <7>/2)} C A

This means that the image of the set A by the point mapping

induced by system (10.9) for all jit G [0, n(z°, x°}} is a subset of the interior
of A. Moreover, for all // € [0,//(z0,:c0)],

/x—»0

(10.32)
and

This means that the point mapping $ is continuous on A x [O,//], // > 0,
and at all \JL 6 [0, //] and has a fixed point which corresponds to a periodic
solution of system (10.9) close to [so(t),xo(t)]. Let us show that this periodic
solution is stable and unique. The derivative of the point mapping $ is a
smooth function of the derivatives of the functions 9(^1, x°, z°), T(//, x°, 2°),

1,^) and £+(#(//, x°,z°] + 1,^)5 thus the derivatives of $ exist and they
are continuous.

Let us consider the new variable 77 = z° — y>(Q,x~(T(x°)), —1) and the
auxiliary point mapping

The point (0, x°) is a fixed point of H for IJL = 0. For a sufficiently small
> 0, the point mapping takes the set

into itself.
It follows from (10.32) that the value of E(ij, x°,0) does not depend on

77. Then
0(/i)
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This means that for some qi < 1

Q1"""1

dl <qi < 1

Consequently the point mapping E is a contaction and <I> has a unique
fixed point, thus the desired periodic solution of system (10.9) is unique
and orbitally asymptotically stable.
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Chapter 11

Sliding Mode Control for
Systems with Time Delay

F. GOUAISBAUT, W. PERRUQUETTI, and J.-P. RICHARD
Ecole Centrale de Lille, Villeneuve d'Ascq, France

11.1 Introduction

Sliding mode control has a deep historical background: one of the rea-
sons is that many physical systems naturally present discontinuity in their
dynamics, as mechanical systems with Coulomb friction [49] or electrical
systems with ideal relays. This has led control theorists to begin (mostly
in Eastern countries) with the study of relay-based control systems. This
kind of research was the starting point of the variable structure system the-
ory . In particular, the sliding mode control (SMC) approach [49] provides
an efficient way to tackle challenging robust stabilization problems1 for
finite-dimensional dynamic systems (then, without delay). For instance,
it is known that if a complex system can be stated with a normal form
(see [19, 29]) as equation (11.1), then an appropriate sliding mode strategy

:In variable structure systems, the control commutates between d different values in
order to force the system flow to behave as "a nonsmooth contracting map", which means
the motions converge to the origin with some discontinuity in the time-derivatives of the
state variables. In the development of sliding mode control, which is a particular case of
variable structure system control (d = 2), many authors (see Andronov [5]) introduced
in the switching device some nonlinear terms depending on a small parameter e in order
to obtain real qualitative behavior. Then, one makes e tend to zero in order to derive
results in sliding regime, viewed as an ideal behavior (see [3, 4]). Based on such theory,
many different control schemes have been developed (see [10, 16, 17, 36, 42, 43, 48, 49]).
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can achieve stabilization because the nonlinear terms are "dominated" (see
[7, 46, 47]). We shall refer to such a form in this chapter.

However, SMC should also be considered for systems with aftereffect2.
Time delays are natural phenomena in numerous engineering devices [30,
31] and the modeling phase cannot neglect them when aiming for increased
dynamic performance. Delays still constitute a classical source of control
problems: they are reputed to cause oscillations and to deteriorate the
stability of feedback systems3. Consequently, specific models, analysis and
controllers (see a survey in [44]) must take into account the infinite di-
mensional nature of such systems. Even for linear models, the design of
controllers is not obvious, mainly because applying the existing necessary
and sufficient stability conditions is very tricky.

Concerning robust stabilization of linear time-delay systems with either
constant or time-varying parameter uncertainties, the methods are mainly
based on the time-domain of Krasovskii's approach (the results are then
expressed in terms of Ricatti equations [15, 33] or, equivalently, of LMIs [15,
32]) or on the comparison approach (results in terms of matrix norms and
measures [15, 27]). Both allow one to deal with time-varying delays, whereas
the frequency-domain and complex-plane methods (generally leading to
diophantine polynomial equations) need the delays to be constant. The
resulting control laws are of the continuous (often memoryless) feedback
type.

The results concerning robustness with respect to external disturbances
rely on HOO design (also leading to Ricatti equations and LMIs [35, 38]),
or on generalizations of the structural approaches, such as disturbance de-
coupling using models over rings [11]. In the first case, all results exclude
input delays and many of them even need the stability of the open loop; in
the second case, the corresponding control laws can be more complex and
powerful, but parametric robustness or practical realization still needs to
be studied. Thus, regarding its properties in finite dimension, sliding mode
control appears as an attractive alternative.

Although the SMC has been extended to infinite-dimensional systems
[40, 41], the combination of delay phenomenon with relay actuators makes
the situation much more complex [23] and the concrete results are scarce
[2, 8, 13, 25, 26].

Section 11.2 investigates a case study of sliding mode under such relay-
delay effects. In [21, 22, 23]4, the question of the periods of induced oscil-
lation was studied for first and second order systems. Here, conditions for
the estimation of amplitude of oscillating solutions will be given for more

2This means one must take into account an irreducible influence of the past.
3 In some particular cases, they may improve it (see [1]; also recalled in [44]).
4See also Chapter 10 by Fridman in this book.
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general orders. Moreover, through an example, simulations confirm the
obtained results and suggest that some bifurcations can occur.

In a more general study, the third section develops sliding mode con-
trollers for linear systems with state delay but with instantaneous input
effect5. This very basic idea uses the classical "small values" principle: if
a system without delay is asymptotically stable, then the system stability
is still in force for a sufficiently small delay [24]. This qualitative result,
of course, is to be completed with quantitative computation for admissible
delays. Subsection 11.3.1 provides a straightforward extension of regular
form-based algorithms [36, 43] for the sliding mode control of linear systems
with delay. Along with the result given in [24], subsection 11.3.2 provides
complementary upper bounds of admissible delays (i.e., keeping the sta-
bility property). Subsection 11.3.3 applies these modeling and stability
results to the control, leading to two discontinuous, unit stabilizing con-
trollers. The first controller, with constant gain, may yield some undesired
dynamics caused by some chattering, whereas the second nonlinear-gain
controller reduces this phenomenon. The proposed control laws are shown
to stabilize the system for all values of the delay that do not exceed an
explicitly calculated upper bound. The general design procedure is sum-
marized as follows:

1) The original system is transformed into a regular form (i.e., a two-
subsystem decomposition).

2) The delay is temporarily neglected and a stabilizing feedback gain is
constructed for a subsystem.

3) This gain, in turn, determines a discontinuity sliding manifold that
leads to the sliding mode controller for the overall system with delay. Both
constant-gain and nonlinear-gain controllers are shown to impose useful
robustness properties to the closed-loop system.

Then, in Section 11.4, the results are extended to the problem of linear
systems with input delay. Such a case is often more realistic, since many
actuators or sensors introduce time lags in the feedback loops. Note that a
mixed case involving both instantaneous and delayed inputs could be con-
sidered as well, with some stronger hypothesis. For the sake of conciseness,
it will be omitted as well as the case of multiple delays.

A simulation example concludes the chapter, illustrating the effective-
ness of the proposed method. The sliding mode strategy is straightforward,
easy to implement and of standard complexity since the stabilization prob-
lem has been reduced to two subproblems of lower dimensions: the first
problem is to design a linear manifold of dimension n — m and the second

5such "inner delay" phenomenon appears in several cases as in chemical transforma-
tions (reaction lags), epidemiology (germ incubation time), population dynamics (aver-
age life duration)...
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problem is to synthesize a discontinuous unit controller, which steers all
the trajectories of the closed-loop system to this manifold.

NOTATIONS
Throughout this chapter the following notations are used: the octahedral

norm \\e\\ = Yl \ei\ and the corresponding matrix norm \\A\\ = sup
rri

stand for the vector e = (ei,...,en) e Rn and for the matrix A =
(dij) £ Rn x n , respectively. The vector function sign(s(z)) is denned as
sign(s(z}) = [sign(si(z)), . . . , sign(sr(z))] and diag(\i) stands for the di-
agonal matrix (\ij] € Enxnwith A;J = 0 for i ^ j and A^ = A; for i — j.

11.2 SMC under delay effect: a case study

Let us consider the following system which is in regular form

(11.1)

Then, one can design a classical sliding mode controller achieving the
asymptotic stability of the overall system. A practical question arises, how-
ever linked with robustness purpose: "What are the qualitative behavioral
changes of system (11-1) with a sliding mode control under delay effects?"
For instance, if the output sensors cannot provide instanneous informations
of the state, then in general

y(t) = h[x(t-r)] (11.2)

In the following, we assume that r is a constant delay and that a recon-
struction of x(t — T) is available via y(t): such an estimation is possible
either via a numeric approximation (see [6] for systems without delay) or
via an observer for which separation principle or finite-time convergence is
valid (see [9, 14] for systems without delay).

11.2.1 Problem formulation

In the following, we assume that in (11.1) the gain function g ( t , x ) is con-
stant, equal to g 6 and that

) |<M, (11.3)
6This assumption of g ( t , x ) can be relaxed, as we shall see in Equation (11.24).
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Thus, selecting a linear sliding manifold S described by the equation

n

manifold S : s(x) — Y a j X i , Q>n = 1

with the di coefficients determined in such a way that ao + a\x + ... + xn is
an Hurwitz polynomial. We apply a sliding mode control (if {Vs,g} ̂  0)

«(*) = tieqfc x(f)) - - sign [«(*)] (11.5)

ueq(t,x(t)) = -- aixi+l(t) + f ( t , x ( t ) ) (11.6)
9 \i=l /

so that s = — fcsign(s), where k > 0.
Now, if the applied control is delayed, then (11.5) becomes

u(t) = ueq(t, x(t - T)) - - sign [s(t - r)} (11.7)

One can conjecture that motions of (11.1) with control (11.7) will present
additional oscillations, the amplitude of which will increase with the delay
T, the gain fc, and the speed of change of the control near the sliding surface.

11.2.2 A case study

Attractivity of a neighborhood HQQ of the manifold «S
Let us consider V(x(t)) = |s2 [x(t)], which derivative will be studied in

relation with the convergence of x(t] to the manifold S. The function

n— 1 n—l

+ f(t,x(t))-f[t,x(t-r)}

-ksign[s(t-T)] (11.8)

is Lebesgue-integrable, thus s(t) = s(t — r) + ft_T s(w]dw holds. Now,
using (11.6),

a(t) = pAf-T)(weq) - ksign[s(t - T)] (11.9)

Af~T)(Weq) = {ueq[t,x(t - T}} - ueq[t,x(i)]} (11.10)
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V(x(t}} = ( s ( t - r) + / s(w)dw x
\ Jt-T )

(pA^Veq) - ksign{s[x(t - r)]})

= -k \s(t - r)| + sAf-T)(Weq)S(t - r)

— r)] sign[s(u> — r}}}dw

t-r

t

(11.11)
t-r

Take into account that

t

— r)] si r}]}dw < r (11.12)
t-r

and assume7 that

V(x(t}} < (gMr

It is straightforward to see that

At
(< r )(weq) < Mr. Then (see Remark 114),

gMr < k

r(k2 + g2M2} (11.13)

(11.14)

is a necessary condition: it will be assumed throughout the rest of this
section. Denote by V — v^ the following equilibrium of (11.13):

2 _ r 2 ( f c 2 + f f 2 M 2 ) 2

VCG ~ (k- gMr)2

Under assumption (11.14), notation V = y + v2^ leads to

a

m/2(t-r)

a = k — gMr

(11.15)

(11.16)
7This assumption is verified, for instance, if ifeq(£,x) is at least locally Lipschitz in

its second argument, r is small, and the dynamics are bounded.
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Using a linearized equation leads to ̂  < TT and then,

g2M2) >(k- gMr} > 0 (11.17)

Condition (11.17) ensures the following neighborhood 7£oo of the manifold
<S to be (locally) attractive

n^ = {x e Mn : s 2 ( x ( t ) } < 2^} (11.18)

Estimation of the attractivity domain IQ of T^oo
Throughout, locally means that solutions will reach 7£oo only for initial

values sufficiently closed to it: at the price of stronger conditions, one can
obtain an estimate IQ of the set of initial conditions for which solutions
tend to T^oo • For this, using y(t) = y(t — r) + ft_T y(w)dw leads to

a /*+ 7T~ \ y(w">dw (n-19)
2^ Jt_r

r* fl a/ y(w)dw < I -- — y(w-r)
Jt-r Jt-r 2^oo

+ 7^ry
2(w-T)dw (11.20)

^voo

Following the Lyapunov - Razumikhin's theory [44], we assume that \y(t + s)| <
q \y(t)\ , Vs < 0 for some q > 1. Then,

2 . «-) , . . .

_, (, (2voo + ar)y (t) (11.21)
"*^oo

This leads to the asymptotic stability condition (2^^ — ar) > 0 (with
a > 0), which is

g2M2) >(k- gMr) > 0 (11.22)

and ensures convergence for any initial condition in the domain

O,,, _ ,-VT- ^

x 6 Mn : \82(x) - 2Voo < v2*Voo°T (11.23)
"

Remark 113 Note that condition (11.22) is more restrictive than the pre-
vious one (11.17), since (11. 22)=* (11. 17).
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Remark 114 Even if the gain g(t,x) of system (11.1) is not assumed to
be constant, an inequality similar to (11,13) may be obtained, say

V ( x ( t ) ) <

Thus, dealing with (11.13) seems reasonable.

11.2.3 An example with simulation
Consider

f Xi(t) = X2(t),

\ x2(t) = xi(t)x2(t)+u(t).

Defining s(x) = x2 + 1x\ leads to the classical SMC:

u(t) = -xi(t)x2(t) - 2x2(t) - fcsign[s(t)]

(11.24)

(11.25)

(11.26)

First, if we set k to 10 and suppose that a O.ls time delay exists but
has been neglected in the control design procedure, then one can check
(11.3) for M ~ 30, for the given initial conditions, v^ = ^ « 14.3.
Moreover, as condition (11.22) is valid : \/2(fc2 + g<2M2) > (k-gMr) > 0,
1000>/2 > 7 > 0 (so, from Remark 113, (11.17) is valid), then the previous
results ensure that solutions starting in the set

200
< 193 (11.27)

(as M does not increase!) reach the set

U^ = {x € Mn : s2(z(0) < 28.6} (11.28)

This conclusion is confirmed by the simulation (Figure 11.1).

Figure 11.1: System (11.25) with control (11.26) k = 10, computed without
care of a delay r = 0.1
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It is interesting to note that x\ and x<2 have one oscillation frequency
which leads to a limit cycle (see Figure 11.2). For different values of k and
r the motion converges (see Figure 11.3) into a band around the sliding
surface, corresponding to the neighborhood KOC-

-2

-3

-0.5 0.5 1
x1

1.5 2.5

Figure 11.2: Phase portrait of system (11.25) with control (11.26), k = 10
and delay r = 0.1 with convergence to a simple limit cycle

ioor

luo

100

5 10 0 5 1
Time (sees) Time (sees)

Ann

-10'
5 10 0
Time (sees)

5 10
Time (sees)

Figure 11.3: System (11.25) with control (11.26), k = 1000, delayed by
r = 0.08
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Time (sees)

Figure 11.4: Zoom of Fig. 11.3 showing the 3-oscillation period

-100
-6

Figure 11.5: Phase portrait of system (11.25) with control (11.26), k =
1000, and delay r = 0.08 with convergence to an asymptotic set composed
of 3 loops
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It is useful to stress that as the parameters are varying, bifurcations
occur: for example, with k = 1000 and r — 0.08, x\ and #2 have three
oscillatory frequencies (see Figure 11.4), leading to an asymptotic limit set
with three loops (see Figure 11.5). Note that the parameters k = 10 and
r = 0.1 lead to divergent motions. Lastly, from an engineering point of
view, one would like to derive a sliding mode control that is less sensitive
to time delay effect. For instance control (11.26) with the nonlinear gain
k(i) = 4xi(t)(3xi(t) + x\(i}} and T = 0.1 leads to applied control

u(t) = —xi(t — r}x-2(t — r} — 1x<i(t — r)

-fe(t-r)sign[s(t-r)]

k(t -r} = 4xi(t - r)[3xi(t - r) + x\(t - T}\

(11.29)

(11.30)

(11.31)

and motions converge asymptotically to the origin (see Figure 11.6).

2
<

0

-2c

10

0

-10

-20

1
V

0

V -5

-10

1«

A-/

5 10 '"0 5 1
Time (sees) Time (sees)

fin

40

§ 20

0

.on
"0 5 10 ""0 5 1

Time (sees) Time (sees)

Figure 11.6: System (11.25) with control (11.26) with a nonlinear gain and
delay T = 0.1

This preliminary study has concerned the sensitivity of SMC with re-
spect to time-delay effect. It was shown that, under some conditions (11.17)
or (11.22), motions will reach an asymptotic limit set T^oo given by (11.18)
around the sliding surface. Moreover, we obtained some information about
the set of initial conditions (estimated by JQ), ensuring the motions to reach
and stay in 71^.
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11.3 A SMC design for linear time delay
systems

This section deals with the design of discontinuous controllers for linear
time delay systems of the form

x(t) = Ax(t] + Bx(t -r} + Du(t - h), t> 0, , ,

where x(t) € En; A, B are constant n x n matrices; D is a n x m matrix;
u € Rm is the input vector; r > 0 is a constant delay; and h = 0 or T.

The first result concerns the case (h = 0) involving a memoryless input.
In order to design a stabilizing controller, we first convert system (11.32)
into a regular form with delay and then, provisionally neglecting the time
delay, we design a sliding mode controller, which is stabilizing for sufficiently
small delays as well, provided they belong to a computable set [0, rmax] of
admissible delays.

The second result concerns the extension to the case of systems with
input delay (h = r)8.

11.3.1 Regular form

We assume that
Al) rank(D) = r < m,
A2) (A + B, D] is controllable
The aim of the next three lemmas is to transform the original system

into a well-known, appropriate form for sliding mode control (called regular
form [36]).

Lemma 115 If Al) holds [25], then there exists new inputs v € Mm, u =
Wv, where W € Mmxr3 is nonsingular, such that

DW=(D
N 0 ) (11.33)

with D' € M rx r of full rank, N e R(n-r)xr, and v = (vi, ..., vm}T .

Lemma 116 [25] If Al) holds, then there exists a nonsingular coordi-
nate transformation T 6 Rnxn such that system (11.32), written in the

8Note that enlarging these two cases to multiple delays (thus, different values of delay
on the various inputs) should be possible, but needs some additional computing effort
that will not be included here.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



new variables z(t] = (zi,z2)
T = Tx(t), Zi e ^n~T\ z2 G Mr, takes the

following regular form:

= E [A2iZi(t) + B2iZi(t - r)] + D2vat i=1

nonsingular and v = (vi, ...,fr)
T.

Lemma 117 System (11.34) subject to r = 0 /##/, #mi zs (with

(n-35)
= E2lZl(t) + E22z2(t) + D2v

is such that (Eu,Ei2) is controllable.

11.3.2 Asymptotic stability of systems with
small delays

The aim of this subsection is to provide a time delay with upper bound
Tmax such that the asymptotic stability of system

(11.36)
at

ensures the asymptotic stability of the corresponding delay system

dz(t)
dt

= Az(t) + Bz(t - T) (11.37)

for any re [0,rmax].
If E — A + B is supposed to be asymptotically stable, then for any

symmetric, positive-definite matrix Q e Rnxn, there is symmetric, positive-
definite matrix P solution of the Lyapunov equation

(A + B)TP + P(A + B) = -Q (11.38)

Let Qi be the root square of the matrix Q,

QlQi = Q (11.39)
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Theorem 118 Let system (11.36) be asymptotically stable. Then (11.37)
is asymptotically stable for all r < rmax5 where

1 (11.40)

Proof The system (11.37) is rewritten as

T F* 1
h(t)=\z(t)+ Bz(w)dw\ (11-41)

L Jt-T J

^j$-=Ez(t) (11.42)

Then, considering the Lyapunov - Krasovskii functional

Vl - ah(i)TPh(t] (11.43)

/

t r ft -I

/ zT(v)Qz(v)dv\ dw
-r Uw J

some overvaluations of the time-derivative of V lead to the result (the
complete proof is in [26]).

Remark 119 In ([24] p. 214), another upper bound

2\\PB\\ (\\A\\ + \\B\\]

was given in terms of the smallest and the largest eigenvalues Am;n(P),
•^max(-P) of the real symmetric positive definite matrix solution of (11.38)
in the particular case Q = I.

11.3.3 Sliding mode controller synthesis

This subsection proposes two kinds of controllers stabilizing (11.32). The
first one has a constant gain whereas the second controller has a nonlinear
gain. One of the main drawbacks of the SMC (11.46) with constant gain
g is a possible, undesired chattering phenomenon. The second controller
reduces this phenomenon, but may slow the convergence when far from the
sliding manifold. From a practical point of view, when implementing the
control on a plant, the first control (constant g] should be used far from the
surface, then be switched to the nonlinear gain (11.52) when approaching
the target.
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In the case of a delayed state with memoryless input (h = 0), constant
gain g is designed in Theorem 120 in the unperturbed case, and in Corol-
lary 123 when additive perturbations are considered. The nonlinear gain is
proposed in Theorem 121 in the unperturbed case, and in Corollary 124
for additive perturbations.

Using some additional integrators, the case of delayed inputs will also
be considered in the same way (Theorem 125: constant gain ; Theorem
126: nonlinear gain).

Sliding system for systems with state delay

To begin, introduce the function

(11.45)

where the matrix K 6 R rx^n r) makes the matrix (.En — E\2K] (notation
of Lemma 117) be Hurwitz [this is possible due to the controllability of
(£11, £12)]-

Theorem 120 The control law

2
v = -D^l{^2\A2iZi(t) + B2iZi(t - r)+

i=l

Zi(t] + BuZi(t — r}}} + g sign(s}} (11.46)

with constant gain g > 0, makes the manifold s(z) = 0 attractive in finite
time and positively invariant. The system x(i) = Ax(t}+Bx(t—r}+Du(t—
h},(11.32) with h = 0 and feedback (11.46) is asymptotically stable for all
T € [0, Tmax] with rmax defined by (11.40) from the scheme of Theorem 118
(11.38) and (11.39) applied to E - (En - E12K).

Proof Consider the positive, semi-definite function

V = £^ (11.47)

Differentiating V along the solutions of (11.34) yields

V = sr(t)s(t) (11.48)

) + B2iZi(t - r)+ (11.49)

K(AliZi(t) + BliZi(t - r))} + D2Z) (11.50)

(11.51)
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The latter inequality is known to guarantee the convergence of system tra-
jectories onto the surface s(z) = 0 in finite time. According to Theorem

118, the subsystem - - = (An - Ai2K)zi(t) +(BU - B12K}zi(t - r)
at

is then asymptotically stable for r < rmax.

Define jiow A = (An^- Ai2K], B = (Bu -^B12K), E = A + B,
G = Q~TETPBQ-lBTPEQil, H = Bl2PEQ-lETPBl2, and

i2 + B12)
T Ph(t] + TaHs(t)\\ (11.52)

/•* ~ /•*
(Bzi(w)dw)+ Bl2s[x(w)]dw (11.53)

Jt-r Jt-T

£>0 (11.54)

<*=

Theorem 121 The control law (11.46) with nonlinear gain (11.52) stabi-
lizes asymptotically the system (11.32) with h = 0 for all T 6 [0,Tmax(e:)]

with Tmax (e) = — and for any e > 0.
'

Proof Let P be the real, symmetric, positive definite-matrix solution
of the Lyapunov equation ETP + PE = — Q. Rewrite the system (11.34)
as

= Azi(t) + Bzi(t -r} + Al2s(x] + Bl2s(x(t - r))
at

E (A2izi(t) + B2iZi(t -
i=l
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Consider the following Lyapunov - Krasovskii functional

V5 = -sT(t)s(t),i > 0 (11.56)

VG — VBI + Ve2

V61 = ah(t)TPh(t)

f* - f*
h(t) = zi(t) + I (Bzi(w)dw) + Bi2s(z(w))dw

Jt-T Jt-T

ft /- ft >>

Ve2 = / { I zf(v}Qzi(v}dv>dw
Jt-T (.Jw J

n fl ( /"* 1
V7 = - \ I sT(v)Hs(v)dv \ dw

£ Jt-T (.Jw )

We have
h(i) — Ez\(i) + (Ai2 + JBi2)s(^).

Let us differentiate the equation (11.56) along the solution of (11.34)

Vj>(0 = 7ST(£)s(£) = — (gi}sT(t}sign[s(t)]

V6l(t) = -zl(t)(aQ}Zl(t} + 2a f [zf(t)EPBzi(w)]dw
Jt-T

+ 2a zT(t)ETPBl2s(w)dw
Jt-T

+ 2ahT(t)P(A12 + B12)s(t) (11.57)

V62(t) = - zi(v)TQzi(v)dv + TZi(t)TQzi(t) (11.58)
Jt-T

TV7(t) = -- s(v}THs(v}dv + —s(t)THs(t) (11.59)
£ Jt-T £

Some maj orations give

VQl(t) = L6l(t) + N61(t) (11.60)

~ ~
(zf(t)EPBzi(w))dw (11.61)

/"*
= 2a / zf(t)ETPB12s(w)dw

Jt-T

+ B12)s(t) (11.62)
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ft
N6l(t] < aeTzfWQzifr) + - s(w}THs(w}dw

£ Jt-T

+ '2ahT(t)P(Al2 + Bu)s(t) (11.63)

According to Theorem 118,

L6l(t] + V62(t) < ZT(t)MZl(t}, (11.64)

M = -aQ + T[Q + a2ETPBQ-lBTPE} (11.65)

Thus one obtains,

V(t) <zl

+ —s(t}THs(t}

- (g^sT(t)sign[s(t)} (11.66)

Choosing 7 = -, inequality (11.66) becomes

+ -sT[z(t)]{2a£(Al2 + Bl2fPh(t] + raHs(t) - g sign(s(z

M + aerQ = -aQ + r[Q(l + ae] + c?ET PBQ~1BT PE\ (11.67)

If we choose g so that 11.52 holds and r < rmax(£:) = — , 1 — , then

V(t) < 0 along the trajectories of (11.34). The control (11.46) stabilizes
the system (11.32) for r < rmg,x(£).

Remark 122 Note that Tmax > rmax(e) and rm&x(e) — » rmax when e — > 0.
By choosing a sufficiently small £ > 0, an asymptotic stabilizing controller
can be designed for any r < rmax. Indeed, if ermax <C 1, then Tm&x(e) =
^"rnax \ -*- ^^max / •

Perturbation effect and stabilization

Now consider the system (11.32) submitted to additive perturbations,

x ( t ) = Ax(t) + Bx(t -r) + Du(t] + p(t, x) (11.68)

where p : R x En — » En is a smooth vector field. We assume that
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A3) ||p(t,x)|| < pub + M \\x(t}\\ , where pub and M e M+ ; and
A4) p 6 span{di, ...,dm}, where di (i 6 {l...m}) are column vectors

of D.
Using Lemmas 115 and 116, system (11.68) is equivalent to

dzM 2
—JT- = £ [AiiZi(t) + B2iZi(t - r)} + P2(t, z)

where z\ and z2 are defined as previously and p2 is the perturbation field
expressed in the new basis. Then, p2(t,z} is bounded as follows

\\p2(t, z)\\ < \\T\\ Pub + M \\T\\ Hr-1 1| \\z(t)\\ = p'ub + M' \\z(t)\\ (11.70)

Corollary 123 The control law (11-46)

v = -
i=

K(AuZi(t) + BuZi(t - T}}\ + g sign(s}}

where g > p'ub + M' \\z(t)\\ (from 11.70), makes the manifold s(z) = 0
attractive infinite time and positively invariant. System (11.32) with h = 0
and feedback (11.46) is asymptotically stable for all r 6 [0, rmax] with rmax

defined by (11-40) from the scheme of Theorem 118 (11.38) and (11.39)
applied to E = (En — Ei^K}.

As stated previously, one can switch the constant gain near the sliding
manifold to a nonlinear one.

Corollary 124 // assumptions Al, A2, A3, and A4 hold, the control law
(11.46) with nonlinear gain g

g> \\2a£(Al2 + Bl2)
TPh(t) + TaHs(z(t))\\+P'ub + M' \\z(t)\\ (11.71)

e > 0 (11.72)

I (Bzl(w}dw}+ I Bus(x(w))dw (11.73)
Jt-T Jt-r

a = (11.74)
V Amax(G?)

stabilizes system (11.32) asymptotically with h = 0 for all r e [0,rmax (e}}

with Tmax (e) = — = - and for any e > 0.
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Proof The proof is based on the Lyapunov - Krasovski functional

V = V5 + V6 + V7 (11.75)

where V5, V6, VT are denned in the proof of Theorem 6. A modification
of the computation of V(t)

V5 = ~fsT(z(t})(p(t, z(t}} - g sign[s(z(t})] (11.76)

combined with the previous calculus leads to the result.

Sliding system with state and input delay

We now consider system (11.32) with h = r > 0 and extend the previous
results to the corresponding system:

x(t) = Ax(t) + Bx(t -T) + Du(t - T), t>0
t e [-r,0] (11.77)

Throughout this section we assume that:
A' 2) (A + B, D) is controllable.
We propose to add integrators on each of the m inputs, in such a way

that the system is transformed as follows

- Azi(t) + Bzi(t ~T) + Dz2(t - T)

,
at

This system is in its regular form and the scheme (regular form — * delay
cancellation — > SMC design — > stability study with delay) is the same as
previously noted. Thus the above results can be extended to the case of
systems with input delays.

Theorem 125 // assumption A '2) holds, then the control law

v(t) = -K(Azi(t) + Bzi(t -r) + Dz2(t - T)} - g sign(s) (11.79)

(with g G R+) makes the manifold s(z] = 0 attractive in finite time and
positively invariant. System (11.77) with feedback (11.79) is asymptotically
stable for all r e [0, rmax] with rmax defined by

rmax - ^ ^ == (11.80)

where B =• B — DK, E = A + B, and P, Q are symmetric, positive-definite
matrices verifying the Lyapunov equation ET P + PE = —Q.
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The second theorem of this section developed a second controller with
a nonlinear gain g, for which the chattering was reduced.

Theorem 126 If assumption A '2) holds, the control law (11.79) with non-
linear gain (11.52) stabilizes system (11.77) asymptotically for all r £

[0, Tmax (e)] with rmax (e) = — - and

for any e > 0.

11.3.4 Example: delay in the state

Consider the following model

z(t) = Az(t] + Bz(t -r) + Dv

2.3 0 1
A = I -4.9 3 -3

-1 0 1

0.2 -1 1
B= [ -0.9 -1 0 | D= [ 0 | (11.81)

-0.2 0.1 0

Conditions Al] and A2) hold: rank(D) = 1 and (A + B, D) is controllable.
This system has the regular form: by choosing z = (z\\z-2)T , z\ e R2, and
22 € M, it is decomposed into

-

z2(t) = ( -1 0 )zl(t) + z2(t)

+ (-0.2 Q.l)zi(t-r) + v (11.82)

Letting r = 0, we design a feedback gain K = (1.6, —1) so that the
following subsystem 1

is asymptotically stable. Then we derive the sliding manifold, which leads
to the sliding mode control law

s(z) = z2 + (1.6 -l)zl (11.84)
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Figure 11.7: Stabilization of (11.85) using (11.45) with constant gain g = 1
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On the sliding manifold, the eigenvalues of the reduced system with T = 0
is —0.85± j. The time response of the system is about 0.47.

Applying the control (11.46), and using Theorem 120, system (11.82) is
asymptotically stable for r < rmax. We find the following upper values of
delay

rmax = 0.430 (11.86)

The first control (11.46), with g = 1, gives the following simulation using a
first-order integration scheme of 0.01 step: all initial conditions have been
set to 2 (Figure 11.7). Note that there are oscillations of amplitude 2 in
the control u and the time response is close to the one of the linear system
with T = 0.

Now, when applying control (11.46) to system (11.82), Theorem 6 en-
sures that the closed-loop system is asymptotically stable for r < 0.43. In
order to compare this control with the first one, we select a delay r = 0.1,

g — ^H _|_o.4 \\s(t)\\ and using the control (11.46), we obtain the results
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of Figure 11.8.
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Figure 11.8: Stabilization of (11.89) using (11.45) with nonlinear gain g =

The chattering amplitude of the control with constant gain g = 1

is about 2, whereas using the control with nonlinear gain g = —^-^-
£

+0.4 ||s(t)||, and chattering can be neglected. This shows efficiency of the
nonlinear gain. Nevertheless, note that chattering reappears if the delay
approaches the calculated upper bound rmax = 0.43 (this makes us think
that this calculated bound is near the real one). Indeed, increasing the

delay to r = 0.35 and keeping g =

to the results of Figure 11.9.

+0.4 \\s(t)\\, control (11.46) leads

11.4 Conclusion

The presence of delay within a sliding mode control can induce oscillations
around the design surface. The opening case study pointed out possible
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nonlinear gain g = ILLill +Q.4 ||s(t)|| .

behavioral changes (bifurcations) arising in such relay/delay systems. This
motivated the study of specific SMC design for systems with state and/or
input aftereffect.

Here, the main contribution lays in the analysis of delay/relay motions
(amplitude of the possible oscillations around the sliding manifold and ad-
missible initial conditions9) and the design of a SMC for systems with both
input and state delay. In addition, new stability results were provided in
Theorem 4 [condition (11.40)]. Note that these results allowed consider-
ation of the presence of a delay affecting sensors [observation of x(t — T}
instead of x(t)] or actuators [control u(t — r) instead of u(t)]. Calculable
control laws were provided, together with upper bounds of the delay values,
while preserving asymptotic stability.

The control implementation was rather simple, even if the proofs ap-
peared complex. The control law assured the existence of a Lyapunov -

9More precisely, it was the determination of an attracting neighborhood of the sliding
manifold and estimation of its asymptotic stability domain.
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Krasovskii functional. The chattering phenomenon was avoided by using
nonlinear gains (as in the simulation of Fig. 8).

In the case of input delays, it was remarkable that the inner computation
of the controller algorithm was discontinuous (it may be chattering), but
the actual control u(t) remained smooth because of the input integrators
(z2 variable). Furthermore, a difference with the nondelayed case can be
noted: the feedback is not computed in a space of dimension (n — ra) but
on the entire system (n), which is a bit more complicated.

Let us sum up the several cases and solutions which have been consid-
ered for system (11.32):

• delayed state, memoryless input (h = 0), unperturbed case: design
of a constant gain (Theorem 120) and of a nonlinear one (Theorem
121);

• delayed state, memoryless input (h = Q), additive perturbations: de-
sign of a constant gain (Corollary 123) and a nonlinear one (Corollary
123); and

• delayed input and state (h = T): design of a constant gain (Theorem
125) and of a nonlinear one (Theorem 126).

Some extensions of these results are possible:
1) The present modeling assumptions demand a linear model (even if

the controller is not). Relaxing this constraint seems possible, as well as
introducing parameter uncertainties.

2) The study could be extended to multiple delays (for intance, r ^ h
in 11.32) with some additional computing effort.
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Chapter 12

Sliding Mode Control of
Infinite-Dimensional
Systems

Y. ORLOV
CICESE, Ensenada, Mexico

12.1 Introduction
Many important plants, such as flexible manipulators and structures as well
as heat transfer processes, combustion, and fluid mechanical systems, are
governed by partial differential equations and are often described by models
with a significant degree of uncertainty. The existing results [8, 13] on
feedback control of distributed parameter systems (DPS), operating under
uncertainty, extend the finite-dimensional results [6] for the standard HOC
control problem and may be viewed as a disturbance attenuation problem in
the class of square integrable external disturbances. Relating to H2-design
framework, this approach admits generalization to the class of external
disturbances of impulsive type, whereas the persistent excitation case of
uniformly bounded disturbances, which also often occurs in practice, calls
for a separate investigation. Thus, it is of interest to develop consistent
methods that are capable of utilizing distributed parameter models and
provide the desired system performance in spite of the significant uniformly
bounded model uncertainties.

Sliding mode control of finite-dimensional systems is known to guarantee
a certain degree of robustness with respect to uniformly bounded unmod-

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



eled dynamics. Since the sliding mode equation is control-independent, the
approach based on the deliberate introduction of sliding motions into the
control system splits the control problem into two independent problems
of lower dimensions. We will design, firstly, a discontinuity manifold with
prescribed dynamic properties of the sliding motion and, secondly, a dis-
continuous control that ensures the sliding motion on this manifold. Apart
from decoupling of the original control problem, the sliding mode approach
makes the closed-loop system insensitive with respect to matched distur-
bances. Due to these advantages and simplicity of implementation, sliding
mode controllers are widely used in various applications. An overview
of finite-dimensional sliding mode control theory and applications can be
found in [29].

The first papers [18, 25] on the application of sliding mode control algo-
rithms to DPS corroborated the utility of their use for infinite-dimensional
systems as well and motivated further theoretical investigations [26, 32],
which were confined, however, to semilinear parabolic systems with a fi-
nite horizon. In order to describe sliding modes in these systems, the
sliding mode equation was shown in [26] to be well-posed via relating the
discontinuous control law to the continuous one. The conditions for the
infinite-dimensional sliding mode to exist were obtained in [32] through
finite-dimensional Faedo - Galerkin approximations of the original discon-
tinuous control system.

Later, a set of sliding mode control algorithms was proposed for dis-
tributed parameter plants governed by uncertain partial differential equa-
tions (see [30, 31] and the references quoted therein). All the algorithms,
however, followed the conventional finite-dimensional approach, which im-
plies that each component of a control action undergoes discontinuities
on "its own" surface and as a result a sliding mode is enforced in their
intersection. In general, this component-wise design idea proves to be in-
applicable in infinite-dimensional setting because neither control input nor
sliding manifold are representable in the component form.

In this chapter, mathematical tools for discontinuous infinite-dimensional
systems, viewed over an infinite time interval, and general sliding mode
control algorithms for various DPS, are developed.

The chapter is organized as follows. Section 2 demonstrates some at-
tractive features of discontinuous control systems in a Hilbert space and
motivates the subsequent theoretical development. We present an infinite-
dimensional system driven by a discontinuous control along the disconti-
nuity manifold for an infinite time interval. The discontinuous control law
results from the Lyapunov min-max approach, the origins of which may
be found in [10]. Based on this approach, the control is synthesized to
guarantee that the time-derivative of a Lyapunov function, selected for a
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nominal system, is negative on the trajectories of the perturbed system.
The approach brings us to the control action, referred to as a unit control
[21, 27], the norm of which is equal to 1 everywhere but on the discontinuity
manifold. The closed-loop system enforced by the unit control is shown to
be exponentially stable and robust with respect to matched disturbances.
However, allowing discontinuous feedback leads to a major problem, which
concerns the precise meaning of solution to the state differential equation
with discontinuous right-hand side.

In Section 3, the mathematical tools of discontinuous control systems
in a Hilbert space are developed. In order to describe the system behavior
in the manifold where the control input undergoes discontinuities, a special
regularization-based technique is involved because conventional theorems
on the existence and uniqueness of the solution are inapplicable to differen-
tial equations with discontinuous right-hand side. As usual, regularization
of discontinuous dynamic systems implies that the original system is re-
placed by a related system, the solution of which exists in the conventional
sense. A sliding mode equation is then obtained by making the character-
istics of the new system approach those of the original one.

All types of regularization of finite-dimensional systems, the right-hand
side of which satisfies the Lipschitz condition beyond the discontinuity man-
ifold, were shown in [29] to result in the same sliding mode equation when-
ever this equation was uniquely derived by the equivalent control method.
Recall that according to the equivalent control method, the sliding mode
equation describes the system dynamics under appropriate initial condi-
tions in the discontinuity manifold and suitable continuous control function
maintaining this system within the manifold. In terms of minimum phase
systems [4], this equation would be called a zero dynamics equation and
has also become standard in the literature.

Section 3 extends the equivalent control method to infinite-dimensional
control systems governed by a semilinear differential equation in a Hil-
bert space with the infinitesimal operator, generating a strongly continuous
semigroup. This extension, however, is hindered by major difficulties be-
cause the Lipschitz condition on the right-hand side of the plant equation,
which is quite natural for finite-dimensional systems, is generally invalid
for the infinite-dimensional systems due to unboundedness of the infinites-
imal operator in the plant equation. Relating the discontinuous control
law to the continuous one, the main result stated here legitimates the in-
finite time sliding mode equation for a wide class of infinite-dimensional
semilinear systems.

Section 4 presents synthesis of a discontinuous control law, which im-
poses the desired dynamic properties as well as robustness with respect to
matched disturbances on the closed-loop system. If the undisturbed motion
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of the system contains two components, one of them is stable and another
one belongs to a finite-dimensional subspace, then the control synthesis
is split into two independent synthesis procedures. The first procedure
uses the standard finite-dimensional setting while the second procedure is
carried out within the infinite-dimensional subspace of the exponentially
stable internal dynamics. The latter procedure is developed in Section 2 of
the present work. As an illustration of the capabilities of the procedure, a
scalar unit controller for a minimum phase system of finite relative degree
is constructed.

Section 5 presents the conclusions.

Notation
The notation is fairly standard. For any Hilbert space H, the inner product
and norm are denoted by (• , - )# and || • ||#, respectively. Subscripts of
the norm and inner product are often omitted if any confusion does not
arise. Symbol span [xi}r

i=l stands for the linear space spanned by the
vectors Xi € H, i — l , . . . , r . By L00(a,b;H) we denote the set of H-
valued functions f ( t ) such that ( / ( • ) ,x ) is Lebesgue measurable for all
x E H and ess max t€(0)b) ||/(£) | < oo. For Hilbert spaces H, U, and
L([/, H) denotes the Hilbert space of bounded linear operators from U to
H- L(H) :=L(H,H).

A strongly continuous semigroup on a Hilbert space, generated by the
infinitesimal operator A, is denoted by T^t); A* stands for the adjoint
operator of A. Recall that (see, e.g., [17] for details): a) an operator
family {T(t} € L(H)}t>o forms a strongly continuous semigroup on H if the
identity T(t + r) = T(t}T(r} is satisfied for all t,r>Q and functions T(t)x
are continuous with respect to t > 0 for all x € H; b) the induced operator
norm ||T(t)|| of the semigroup satisfies the inequality (^(t))! < cje^,t > 0
with some growth bound j3 and some u> > 0; and c) if the growth bound (3
is negative then T(t) is exponentially stable.

The domain of A forms the Hilbert space T>(A) with the graph inner
product defined as follows:

(x,y)v(A) = (x,y)H + (Ax,Ay)H, x,y e V(A)

If (3 is the growth bound of the semigroup, then given A > /5, there holds
(A — A/)"1 H — V(A] where / is the identity operator, and the norm of
x G 'D(A) given by \\(A — \!)X\\H is equivalent to the graph norm ||o;||x>(A) °f
T>(A), In particular, ||x||p(^) = || Ax\\H if A generates an exponentially sta-
ble semigroup. It should be noted that V(A) <-> H, i.e. T>(A) C H, V(A]
is dense in H and the inequality \\X\\H < ^olNlz?(A) holds for all x G
and some constant U>Q > 0.
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12.2 Motivation: disturbance rejection in
Hilbert space

We now discuss some attractive capabilities of sliding mode controllers in
addressing infinite-dimensional systems. To begin with, let us consider a
dynamical system

x = e ( x ) , z(0) = x° G H (12.1)

in a real Hilbert space H enforced by the unit control

e(x) = — z/||z||

which undergoes discontinuities in the trivial manifold x = 0. The example,
although extremely simple, illustrates the fact that discontinuous infinite-
dimensional systems can be driven along discontinuity manifolds.

Since the norm ||z|| = \/(z, x) in the Hilbert space is defined via the
inner product ( • , • ) , then

and therefore ||x(t)|| = (||z°|| — t) for t < \\x°\\. Hence, in the infinite-
dimensional system (12.1) starting from the time moment t = ||x0||, there
appears a sliding mode in the discontinuity manifold x = 0. Clearly, the
sliding mode is unambiguously constituted by the manifold equation x = 0
regardless of uniformly bounded additive dynamic nonidealities h(x,t) such
that ||/i(z, £)||H < 1 for all t > 0, x e H, which are rejected by the
unit control (in this case the sign of the time derivative of the Lyapunov
functional along the trajectories of the perturbed system x = e + h remains
negative). However, in general, neither the unit control belongs to the
state space nor the discontinuity manifold is trivial, so that their synthesis
presents a formidable problem.

According to the unit feedback approach, developed in this chapter,
a linear discontinuity manifold ex = 0 in the control space £7, differed
from the state space H, may be constructed in compliance with some
performance criterion, particularly, according to the Lyapunov min-max
approach, whereas a sliding mode in the manifold is enforced by the cor-
responding unit control M(x,t}e(cx) = — M(x,t)cx/ \\cx\\u, possibly with
a nonunit gain M(x,t] ^ I. This design idea is now illustrated for an
uncertain dynamic system governed by a differential equation

x = Ax + /(z, t) + bu(x, t ) , z(0) = x° e V(A) (12.2)

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



where the state x(t) and control signal u(x, t) are abstract functions with
values in Hilbert spaces H and U, respectively; A is the infinitesimal gen-
erator of an exponentially stable semigroup TA(t) on H; and 6 e L(U, H).
The operator function f ( x , t ) with values in H represents the system un-
certainties, whose influence on the control process should be rejected. This
function is assumed to be continuously differentiable in all arguments and
satisfy the matching condition

f ( x , t ) = bh(x,t) (12.3)

where the uncertain function h(x,t) has an a priori-known upper scalar
estimate N(x) £ C1, i.e.,

\\h(x,t)\\u < N(x) for cdlxeH, t>Q (12.4)

In order to apply the afore-mentioned Lyapunov approach to the infinite-
dimensional system (12.2), let us note that the positive definite solution
WA = f™ TA(t)TA(t)dt to the Lyapunov equation WAA + A*WA = -I
assigns the quadratic Lyapunov functional V(x) = (WAX, x} for the nom-
inal system x — Ax. Then, taking into account (12.3) and differentiating
the Lyapunov functional with respect to t along the trajectories of the
perturbed system (12.2), we obtain

dV/dt = (WAx(t),x(t}) + (WAx(t),x(t)) = ~(x,x] +

2(WAx(t),b(u + h)) = -(x,x) + 2(b*WAx(t),u + h) (12.5)

A straightforward application of the Lyapunov min-max approach, which
requires to minimize the right-hand side of (12.5) under the control con-
straint \\u(-) \u < M = const, results in the unit control

Given the state-dependent gain M = N(x), the time derivative of the
Lyapunov functional along the trajectories of the perturbed system (12.2)
driven by the unit control (12.6) becomes negative

dV/dt < ~(x,x] < ---(WAx,x) = ---V(x) (12.7)
I II "^4 II

for all x G H (including the discontinuity manifold!), regardless of the ad-
missible plant perturbations f ( x , t ) . It follows exponential stability of the
closed-loop system. Thus, the unit control (12.6) with the gain M = N(x)
rejects any admissible perturbation f ( x , t ] and imposes desired dynamic
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and robustness properties on the uncertain system (12.2). Along with rel-
ative simplicity of the implementation of unit control signals (cf. that of
[8, 13]), these properties make attractive the use of unit controllers in the
infinite-dimensional case.

Unfortunately, applying the discontinuous control law to the infinite-
dimensional system results in an immediate difficulty: how should one de-
fine the meaning of the solution of the differential equation with discontin-
uous right-hand side? In the subsequent presentation, this fundamental
problem is studied for a wide class of semilinear both stable and unstable
dynamic systems and after that the unit feedback approach is developed
to this class of infinite-dimensional systems.

12.3 Mathematical description of sliding
modes in Hilbert space

It is well-known [5, 11], that a wide class of real-life control problems includ-
ing those, mentioned in the Introduction, may be described by differential
equations in Hilbert spaces. In this section, the preliminary machinery
needed to define the concept of sliding mode in a Hilbert space is pre-
sented. To describe behavior of a discontinuous semilinear system in its
discontinuity manifold a sliding mode equation is introduced. The valid-
ity of the sliding mode equation is shown by means of the regularization
principle.

12.3.1 Semilinear differential equation
We will study infinite-dimensional dynamic systems

x = Ax + f(x,t) + bu(x,t), t > 0, z(0) = x° e T>(A) (12.8)

driven in the Hilbert space H by a discontinuous control action u. From now
on the infinitesimal operator A is assumed to generate a strongly continuous
semigroup T^(t) on H, rather than an exponentially stable semigroup,
whereas f ( x , t ) and 6 are the same as before. All the assumptions made
above guarantee that the unforced initial-value problem (12.8) subject to
u(x,t] = 0 locally have a unique strong solution x(t), which is defined as
follows (see [11, 17] for details).

Definition 127 A continuous function x(t), defined on [0, T), is a strong
solution of the differential equation (12.8) under u = 0 iff limtjo \\x(t) —
%°\\H = 0) and x(t) is continuously differentiate and satisfies the equation
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Thus, our development is confined to the investigation of the strong so-
lution of the initial- value problem, although all the results seem to admit
generalization to the case when the solution of the problem is defined in
a mild sense as a solution to a corresponding integral equation. However,
such a relaxation of the solution concept, which is known [15] to guarantee
the existence and uniqueness of the mild solution to (12.8) under u = 0
even for integrable in t functions /(x,t), is not trivial and is beyond the
scope of this chapter.

We conclude this subsection with examples of differential generators of
strongly continuous semigroups to be used subsequently.

Example 128 The differential operator (see [5] for details)

A = p-l(y}{d[k(y}(d/dy}}/dy - g(y)}

with continuously differentiate everywhere positive functions p(y},k(y),
continuous nonnegative function q(y) and domain

V(A] =

where ̂  + vf ^ 0, i = 0, 1, generates a strongly continuous semigroup
on the Hilbert space £2(6, 1) and has compact resolvent. If q(y) > 0 for all
y E [0, 1] then T^(t) is exponentially stable.

Example 129 The differential operator (see [5] for details)

0 /
A ~ ' A -a(y)

with the same operator A as before and a continuous nonnegative function
ca(y] generates a strongly continuous semigroup T^(t) on the Hilbert space
1/2(0,1) © £2(0,1). If q(y] and a(y) are positive for all y G [0,1], then
T^(t) is exponentially stable.

12.3.2 Discontinuous control input and
sliding mode equation

Throughout the chapter we deal with discontinuous unit-wise control func-
tions ?/(#,£), which are continuously differentiate in all arguments every-
where but a linear discontinuity manifold

ex = 0 (12.9)

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



with c G L(H, S) and S being a Hilbert space. Since arbitrary subspace of
a Hilbert space is complementable [14], then

HI = ker c = {xi e H : cx\ = 0} C H

is complementable as well, i.e., there exists H 2 C H such that

To describe sliding motion in the infinite-dimensional system let us rewrite
equation (12.8) in terms of variables x\(i) £ H\ and x% (t) G H-2 '•

Pi/(xi, X2,£) + P\bu(xi, X2,£) , t > 0

xi(0) - x? (12.10)

x'2 = A2ixi + A22%2 + Pif(xi,xi,t} + P2bu(xi,X2,t), t> 0
(12.11)

Here x\(t}®x?,(t) = x ( t ] , x^Sx^ = x°, Pi is the projector on the subspace
Hi, Aij = PiAj is the operator from Hj to Hi, and A, = A|H.J is the
operator restriction on Hj, i,j = 1,2. Clearly, the discontinuity manifold
(12.9), written through the new coordinates, takes the form x-z — 0.

We will assume the following assumptions

1) the operator P^b from U to H-2 is boundedly invertible, i.e. the oper-
ator (P<2b}~1 from H-2 to U is bounded (the operator G = Pib(P-2b)~l

from H-2 to H\ is then bounded as well);

2) the operator A = A\\— GA^\ generates an exponentially stable semi-
group TA(t] on HI, i.e. \\TA(t)\\ < we~^, u;,/? > 0; and

3) the operator GO = A(7 from H? to #1 is governed by A\i in the sense
that T>(G0) C P(Ai2) and ||G0y|| < Aj||Ai2y|| for all y € T>(G0) and
some k > 0.

According to the equivalent control method, the sliding mode equation

xi = An + [Pi - GP2]f(xi,Q,t) (12.12)

in the discontinuity manifold X2 = 0 is derived by substituting the contin-
uous solution

ueq(x,t) = -(P26)~1[^2i^i +P2/(zi,0,£)]

of the equation X2 = 0 into (12.10) for w(xi,X2,t) . Since the external
disturbance satisfies the matching condition, then [Pi — GP-2\f(x, t) = [Pi —
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P\b(P'2b}~lP'2\bh(x,i) — 0 and hence the sliding mode equation (12.12)
becomes disturbance-independent:

x\ = Ax i (12.13)

The validity of the sliding mode equation (12.13) for the class of infinite-
dimensional systems (12.8) is guaranteed by the following theorem.

Theorem 130 Let the above assumptions l)-3) be satisfied and let, for
all 6 in some interval (0 ,SQ) the discontinuous control function u(x, t) in
system (12.10), and (12.11), be replaced in the 6-vicinity ||z2||x>(A2) < ^
of the manifold x^ = 0 by a signal u5(x,t] such that there exists a unique
globally-defined strong solution xs(t) = [xf(t),X2(t)] of the system under
w(x,£) = us(x,t), which belongs to the boundary layer \\X2(t)\\T>(A2) ^ ^ for

allt>Q. Then

lim ||xf (t) - xi(t)\\ = 0 uniformly in t > 0 (12.14)
6—>0

where xi(t) is the solution of the sliding mode equation (12.13) with the
initial value satisfying the condition ||xf (0) — a?i(0)|| < 6.

The proof of Theorem 130 is given in [21].
In order to describe sliding motions in infinite-dimensional systems,

Theorem 130 utilizes the following regularization scheme. In the £-vicinity
of the discontinuity manifold (12.9) the original system (12.8) is replaced
by a new one, which takes into account all possible imperfections in the
new control us(x,t) (e.g. delay, hysteresis, saturation, etc.) and for which
there exists a globally-defined strong solution. The types of imperfections
are not specified and the entire class of functions u6(x,t) leading the sys-
tem motion in the 5-vicinity of the discontinuity manifold is considered.
Whichever imperfections appear in a real life system, usually they do not
violate the assumptions made on us(x,t). Theorem 130 states that all
types of regularization of the infinite-dimensional system lead to the same
limiting motion as the value of 6 tends to zero. This motion is governed
by the sliding mode equation, which is a result of the equivalent control
method.

Assumption 1, inherited from the finite-dimensional case, ensures unique-
ness of the sliding mode (see [29], p. 16). Assumption 2, caused by the
complexities of the limiting process for an infinite time interval rather than
by the specifics of our problem, complies with the typical requirement for
any automatic control system to be asymptotically stable. Assumption 3
governs the operator GQ by the operator A22 • If these operators were dif-
ferential, then Assumption 3 means that the order of the former is less or
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equivalent to that of the latter. This assumption is intrinsic for infinite-
dimensional systems: if it fails to hold then the sliding mode becomes
ill-posed in the sense that different imperfections may result in different
sliding modes.

Another assumption that requires the external disturbance to satisfy the
matching condition (12.3), can be replaced by the weakened assumption

which means the function [Pi — GP2\f(xi,Q,t) is state-independent. The
following extension of Theorem 130 is introduced to be used subsequently.

Theorem 131 Let along with assumptions l)-3), condition (12.15) (rather
than (12.3)) be satisfied. Then all the regularization of the discontinuous
system (12.8) lead to the same sliding mode equation (12.12).

Hopefully, assumption (12.15) admits further relaxation, which is, how-
ever, beyond the scope of this chapter.

12.4 Unit control synthesis for uncertain
systems with a finite-dimensional
unstable part

According to the synthesis procedure for finite-dimensional systems, pro-
posed in [29], the design of sliding mode controllers consists of two steps.
First, a sliding mode is designed to have the prescribed properties by a
proper choice of a discontinuity manifold. And second, a discontinuous
control is constructed to guarantee existence of the sliding motion along
the manifold. Since the sliding mode equation is control-independent, this
approach leads to decoupling of the original design problem into two in-
dependent problems and enables us to construct a control system which is
insensitive to matched disturbances.

Clearly, the above procedure can be used in the infinite-dimensional set-
ting (12.8) as well: the control problem is split into a selection of a disconti-
nuity manifold (12.9) with the desired zero dynamics (12.13) and design of
a discontinuous control, which ensures the motion of the system along this
manifold. This idea was exemplified in Section 2 by the unit control-based
disturbance rejection in the uncertain system with exponentially stable in-
ternal dynamics. Applicability of the discontinuous unit control law to the
infinite-dimensional system, questioned there, is now resolved by Theorem
130.
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Later, we will give conditions that allow us to reduce the infinite-
dimensional control problem and use well-known synthesis procedures for
finite-dimensional systems. Such a situation appears if the undisturbed mo-
tion of (12.8) under u(x,t) = f ( x , t ) = 0 contains two partial components:
one of them is stable and does not require to be corrected, and another one
belongs to a finite-dimensional subspace.

12.4.1 Disturbance rejection in exponentially
stabilizable systems

The aim of this subsection is to demonstrate how the uncertainties (12.3),
and (12.4) in the exponentially stabilizable system (12.8) with finite- di-
mensional unstable part can be rejected by means of a unit stabilizing
controller.

So, throughout this subsection we assume that the pair {A, b} is ex-
ponentially stabilizable and the spectrum a(A) = &i(A) + &2(A) of the
infinitesimal operator A consists of two parts: one of them, a\ (A) = {A G
cr(A) : Re A > 0}, is finite-dimensional and another one, 02 (A) = {A 6
cr(A) : Re A < 0}, is in the open left half-plane. Recall that the pair
{A, B} is said to be exponentially stabilizable if there exists D (E L(X, U)
such that the operator A+BD generates an exponentially stable semigroup
(we refer to [5] for details).

Let PI and P^ be projectors corresponding to the spectral sets a\ (A), cr2(^
respectively, and Hj = PjH, j = 1,2. Then (see [11, Section 1.5])

1) H — Hi®H<2, HJ are invariant with respect to A, i.e., AHj C //j, j —
1,2; and

2) the operator A\ = A\HI is finite-dimensional, i.e., HI = En;

3) the operator A% — A\H? generates an exponentially stable semigroup
T^2(t) with some negative growth bound —/?, i.e.,

I IT1 (+\\\ << / *o~0t . . \ n (i*) if(\\\Iy{2(l)\\ 5: ^6 , W .> U. ^IZ. IDJ

If the operator A has compact resolvent then its spectrum cr(A) =
{Aj}^ would be discrete, and for any (3 > 0 there would exist a num-
ber / such that <72(A) — (Aj}°^ < —/3, and hence the growth bound of the
semigroup TA^ (i) could be arbitrarily prescribed.

The above properties of the operator A admit representation of system
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(12.10), and (12.11) in the form

x\ = A\XI + Pif(xi,x2,t) + Pibu(xi,x2,t), t > 0

rci(O) = Z? (12.17)
X-2 — A2X2 + Pzf(xi, X2,t) + P2bu(Xi, X2,t), t > 0

2T2(0) = X°2 (12.18)

It should be pointed out that by virtue of PI b G L(U,Rn), the subspace
t/2 = ker P\b — {u G U : P\bu — 0} has the finite codimension /. Hence,
there exists a finite-dimensional subspace U\ = Rm such that

U = Ui® ker Pib

and due to (12.3) the finite-dimensional subsystem (12.17) takes the form

±i = AIXI + Bi[hi(x,t) + ui(x,t)] (12.19)

where the partition

h(x,i) = hi(x,t] + h<2(x,i)

u(x,i) = ui(x,t) + U2(x,t) (12.20)

of the exogenous signals /ii(x,t) € C/i, /i2(x,t) € C/2, ui(x,t) G C/i,U2(x,t) G
f/2 is used; B\ — P\b\ul and the matrix pair {Ai,Bi} is controllable, be-
cause the pair {A, b}, otherwise, it would not be exponentially stabilizable.

The solution to the afore-mentioned rejection problem is based on the
deliberate introduction of sliding modes into the closed-loop system. Fol-
lowing the design procedure for controllable finite-dimensional systems pro-
posed in [29, Chapter 10] we select such a discontinuity manifold

Cxi =0,C eRmxl,detCBl 7^0

that ensures exponential stability

at, t>T (12.21)

of the sliding mode which arises, starting from some time moment T > 0,
in the finite-dimensional system (12.19) under the control law

Ul(x} = -(N(x) + *ill] (12-22)

where a, a;, L are positive constants and a may be as large as desired. For-
mally, in order to specify the matrix C and constant L in an appropriate
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manner, one should represent system (12.19) in the canonical form where
the choice of C and L is straightforward and particularly given in Subsec-
tion 4.B. The sliding motion in (12.19) is then governed by the disturbance-
independent equation

xi = [Ai - B!(CBirlCAi]xi (12.23)

obtained through the equivalent control method by substituting the con-
tinuous solution

uieq(x,t) = -(CBi}~lCAiXi - hi(x,t)

of the equation Cx\ — 0 into (12.19) for u\. Equation (12.18) is respectively
rewritten as follows

x2 = A2x2 - B2i(CBl}-lCAlxl+B2{u2(x,t) + /i2(z,t)], * > T (12.24)

where B2i = P^b\u^ B2 = P2b\U2. Due to (12.16), and (12.21), the un-
forced system (12.23), and (12.24) under the zero exogenous inputs u — f =
0 is exponentially stable, and it remains to employ the results of Section 2 to
reject the external disturbance h<z(x, 1). Putting WAZ — /Q ^/^(O^aCO6^'
we design the second component

(i2-25)

of the control u(x,t) in the unit form (12.16) that imposes the desired
robustness property on the closed-loop system.

If the operator A has compact resolvent then, as mentioned earlier, the
growth bound —f3 of the semigroup TA2(i) and, consequently, the value
of || WQ I)"1 could be specified arbitrarily large in magnitude. Combining
with (12.7), and (12.21), this would guarantee the desired decay rate of
the closed-loop system (12.17), (12.18), (12.22), and (12.25) whenever the
pair {A, 6} is approximately controllable. For convenience of the reader we
recall (see, e.g., [5]):

Definition 132 The pair {A, b} is approximately controllable if and only
if the reachability domain

rt
R = {x:x= / eA(i-r]bu(r}dT, u e 1^(0, oo; C7), t > 0}

Jo

is dense in the state space X .

Summarizing, the following theorem has been proved.
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Theorem 133 Let the unstable part of the unforced dynamics of (12.8)
under u = f = 0 be finite- dimensional and let the pair {A, B} be exponen-
tially stabilizable. Then the uncertain infinite- dimensional system (12.8)
is exponentially stabilizable by the discontinuous unit controller (12.20),
(12.22), and (12.25) which imposes the robustness property with respect to
admissible perturbations (12.3), and (12.4) on th>e closed-loop system. Fur-
thermore, if A has compact resolvent and the pair {A, b} is approximately
controllable, then the decay rate of the closed-loop system may be specified
as large as desired.

Example 134 To exemplify the above result let us consider a distributed
parameter system described by the parabolic partial differential equation

dQ(y, f)/dt = d2Q(y, t)/dy2 + b(y)[u(Q, t) + h(Q, t)} t > 0

) = Q0(y), o < < / < i (12.26)

with Dirichlet boundary conditions

g(0, t) = Q(l, t )=0 , t > 0 (12.27)

Here Qo(y) is a scalar twice continuously differentiate initial distribution,
which satisfies the boundary conditions (12.27); b(y] is a scalar quadrat-
ically integrable function, all Fourier coefficients of which are nonzero;
u(Q, t) is a scalar control function; and h(Q, t} is a scalar unknown dis-
turbance to be rejected, an upper estimate N(Q) G C1, which is known a
priori.

It is required to design a feedback control law that imposes the desired
decay rate —a as well as robustness with respect to matched disturbances
on the closed-loop system.

If along with the operator b of the multiplication by the function b(y] €
1/2(0,1) we introduce the operator A = —32/dy2 of double differentia-
tion with the dense domain T>(A) = {£(?/) e 1*2(0,1) : d2£(y)/dy2 €
1/2(0,1), £(0) = £(1) = 0}, then the boundary-value problem (12.26),
(12.27) can be rewritten as the differential Equation (12.8) in the Hil-
bert space 1^(0, 1). According to Example 128, the operator A generates
a strongly continuous semigroup and has compact resolvent. Furthermore,
the pair {A, b} is approximately controllable by virtue of the assumption on
the function b(y) [5, p. 63]. Hence Theorem 133 is applicable to system
(12.26), and (12.27).

In order to design a unit control-based solution to the stabilization prob-
lem stated above, let us select such a number n > 1 that ?r2(n -f I)2 > a
and decouple the spectrum {-(7r«)2}i^i = {— (7ri)2}"=1 + {-(7ri)2}^n+i of
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A into two parts. Then

A, = diag{-(m)2}£Rnxn, B, = [Plb(-],. . . ,Pnb(-)]T

fl

Plb = 2 / b(y}sin7riydy, i = l , . . . , n
Jo

Xl(t) = [PlQ(;t),...,PnQ(;t)}T £H2

By virtue of the special choice of the row C = (Ci, . . . , Cn) and constant
L in (12.22) the desired decay rate (12.21), and robustness with respect to
the matched disturbances are imposed on the closed-loop system (12.22),
(12.26), and (12.27) in the finite-dimensional subspace H I . Since the in-
ternal dynamics in H2 is of the desired decay rate by construction then, due
to triviality of the subspace U2 the resulting control law (12.20) consists of
the first component (12.22) only. Thus, the unit controller

u(Q] = -

gives a solution to the stated stabilization problem.
We conclude the example with a remark that the closed-loop system

driven by the unit control signal is of the desired decay rate even in the
case when a point-wise action b(y]u(Q] = 6(y — yo}u(Q), yo e (0,1) is
applied. To interpret the state equation in a rigorous manner, one should
involve another "extended" Hilbert space (e.g., a Sobolev space) where mul-
tiplication by the Dirac function is a bounded operator (see [13] for details).

12.4.2 Disturbance rejection in minimum
phase systems

The problems considered in this subsection are to make the output

z(t} = \s,x(t}}, seH (12.28)

of the uncertain system (12.8) tend to zero as closely as desired and to
ascertain conditions that ensure exponential stability of the closed-loop
system. For the sake of simplicity, the development is confined to the
scalar output, however, the extension to the systems with arbitrary finite-
dimensional output is straightforward.

Throughout this subsection we assume that system (12.8), and (12.28)
has a finite relative degree

r :=min{z = 1,2,... : FA^'s ^ 0}
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and s 6 V(A*r}. It follows

zi(t}:=z(i-l\t} = ( A * i - l s , x ( t } } , i = l , 2 , . . . , r

z^(t] = [A*rs,x(t]} + (A*r~'s,f(x(t},t] + bu[x(t},t}) (12.29)

Partitioning the state space as

# = #10 H2, #! = spaniA* s}r
i=l

H-2 = {x e H : (A^'s, x] = 0, i = 1, 2, . . . , r}

and exploiting (12.29), let us represent the original system (12.8), subjected
to the matched disturbance (12.3), in terms of x\(i) = ̂ =lZi(t)A* s 6

z\(t) = z2(t), . . . , zr_i(t) = zr(t)

zr(t) = [A*rs,x(i)] + (6M*r~1s,wi(x,i) + /ii(a:(t),t) (12.30)

x2 = A2iXi + A22x2 + B2i [HI (x, t) + hi (x, t)] +

t) + h2(x,t}} (12.31)

where U = Ui@U2, Ui = span{b*A*r~ls}, U2 = {u e U : (6M*r~1s,u) =
0}, Ui,hi 6 Ui, B2i = P2^|[/i, A2i = ^2^1^,1 = 1,2, andP2 is the projec-
tor on H2. It should be noted that the operator A%i, defined everywhere in
HI (A2i is a densely defined operator on the finite-dimensional space HI
and hence T>(A2i) = HI), is bounded.

The solution to the above problem is based on the deliberate introduc-
tion of sliding modes in the manifold

s,x) = Q (12.32)

where parameters

cr = 1, cr_i = -S^Vi, cr_2 = Si<fc/^i^fc, • • • , ci = (-l)r~1n^~1Vi

are specified in such a manner to place the roots of the characteristic poly-
nomial of the equation

EUciZift) = SLi^-1^) = 0 (12.33)

in the open left-half plane at the desired locations ^, i = l,...,r — 1. We
demonstrate that the discontinuous unit control law

Ul(x) = -M(x)— ̂ ——sign(cx) (12.34)
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with

Kr-1,

drives system (12.8) to the discontinuity manifold (12.32) for a finite time
moment. Indeed, differentiating the functional V(t) = ^[cx(t)}2 along the
trajectories of (12.30) and utilizing (12.4), (12.30), (12.34), and (12.35), we
obtain

V(t] = cx(t}cx(t] =

that gives rise to (12.33) for t e [T,oo), where T - 7 ~ 1 \ ( 0 ) - In order

to reproduce this conclusion, one should note that for all t > 0 arbitrary
solution V(t) to the latter inequality is majored V(t] < Vo(t) by the solution
to the differential equation V0(t) = —2/y^l/Vo(t}, initialized with the same
initial condition V0(0) = V(Q). Since V0(Q) = 0 for all t > T, then V(t)
vanishes after the finite time moment T.

Thus, starting from the time moment T = 7~1\/V(0), in the finite-
dimensional system (12.30), driven by the unit control signal (12.34), there
appears the sliding mode (12.33), which results in the desired decay rate
—a = maxi<i<rRe /^ of the variable xi(t) = T,l=lZi(t)A*1 s G HI:

||zi(t)|| < u\\xi(T)\\e-at , t > T, w = const. (12.36)

In order to derive the sliding mode equation (12.33) one needs to substitute
the continuous solution

Er
i=1azi+i + (A*rs,x)

) - - -- l(x' }

of the equation cx(t] = 0 into (12.30) for u\. By the same substitution,
Equation (12.31) is rewritten as follows:

!
\\b*A* s

where Ax2 = A22x2 -

X<2 = Ax? +

.} , , . N , , >,t) + tl2(X,t)\, t>
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If the operator A generates an exponentially stable semigroup, then due
to (12.36) and boundedness of A2i, the second control component

# / i n O O N(12'38)

similar to (12.25), rejects the external disturbance h,2(x,t) and ensures the
exponential stability of the closed-loop system with the same line of rea-
soning as in Subsection 4. A. In fact, A generates an exponentially stable
semigroup if and only if the input-output system (12.8), and(12.28) is ex-
ponentially minimum phase. In analogy to the finite-dimensional theory
(see, e.g., [4]), we define

Definition 135 Systems (12.8), and (12.28) is said to be exponentially
minimum phase if its zero dynamics, subject to appropriate initial condi-
tions and a suitable control producing output (12.28) identically zero, is
exponentially stable.

So, the following result has been shown.

Theorem 136 Let s e T>(A*r] and let systems (12.8), and (12.28) be
exponentially minimum phase and of the finite relative degree r. Then
the uncertain system (12.8) is exponentially stabilizable by the composition
u(x] — ui(x) + u<z(x) of the unit controllers (12.34), ana (12.38) and the
closed-loop system is robust with respect to external disturbances (12.3),
and (12.4).

Example 137 To exemplify the constructive abilities of the above theo-
rem let us modify Example 134 ana replace the boundary conditions by the
appropriate Neumann boundary conditions

dQ(Q,t)/dy = dQ(l,t)/dy = 0, t > 0 (12.39)

The Fourier coefficients of the function b(y) are no longer assumed to
be nonzero, with the only exception being JQ b(y]dy. The operator A =
—d2/dy2 of double differentiation is now defined inT>(A) — {£(y) G L2(Q, 1)
92£(y)/dy2 € L2(0, 1), d£(Q)/dy = d£(l)/dy = Q} and the boundary-value
problems (12.26), and (12.39) are still represented as the differential Equa-
tion (12.8) in the Hilbert space //2(0, 1).

Specifying the system output (12.28) as follows

z(t}= f Q(y,t}dy (12.40)
Jo

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



one can check that the input-output systems (12.26), (12.39), and (12.40)
satisfy all the assumptions of Theorem 133. Indeed, s = 1 c,id hence
s € T>(A1} for the self-adjoint operator A and arbitrary integer I. Further-
more, differentiating (12.40) with respect to t along the solutions oj (12.26),
and employing integration by parts and applying the boundary conditions
(12.39), yields

fl

z(t] = (u + h) / b(y}dy
Jo

with J0 b(y}dy ^ 0, which proves that systems (12.8), and (12.28) are of
the relative degree r = 1. Finally, representing the solution

o o

of the Neumann boundary-value problems (12.26), and (12.39), via the
Green function

G(y, C, t) = £°10 exp{-fc(7rj)2£} cos njy co

one can show the exponential stability of the zero dynamics

of (12.26), (12.39), and (12.40), written under appropriate initial condi-
tions such that J0 Q(y,Q)dy = 0, and the suitable control signal w(Q,t) =
—h(Q,t}, producing the system output identically zero.

Thus, Theorem 136 is applicable to systems (12.26), (12.39), and (12.40).
According to the theorem, the output controller

u(Q) = - signz(t) (12.41)
Jo b(y)dy

imposes a sliding mode along the manifold z = 0 so that the closed-loop
system is exponentially stable and robust with respect to the matched dis-
turbances.

It is plausible that the output feedback

z(t)
ri , , , ,

Jo b(y}dy
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with a sufficiently large constant M > 0 still drives the system to the dis-
continuity manifold z = 0 and, consequently, imposes the desired dynamic
property as well as robustness with respect to the matched disturbances on
the closed-loop system. Generally, in order to construct the output con-
troller in the case of the higher relative degree, the asymptotical observer of
the time output derivatives, proposed in [19], could be utilized.

Example 138 Let a distributed parameter system be governed by the hy-
perbolic partial differential equation

d2Q/dt2 = 02Q/dy2} - 1dQ/dt +

+b(y)[u(Q,t) + h(Q,t)],Q< y < l,t > 0

Q(y,o) = Q0(y), dQ(y,o)/dt = g^y), o < y < i (12.42)

subject to the Neumann boundary conditions (12.39). The boundary-value
problem (12.39), and (12.42) describe the oscillations of a homogeneous
string, insulated at both ends, where the state vector consists of the deflec-
tion Q(y,t) of the string and its velocity Q(y,t) at time moment t > 0 and
location y along the string. The initial distributions Qo(y), Qi(y] are twice
continuously differentiate functions which satisfy the boundary conditions
(12.39); 6, and u, and h as well as the operator A and the output z, utilized
below, are the same as in Example 129.

If we introduce the operator

A -2

then the boundary-value problems (12.39), and (12.42) can be represented
as the differential Equation (12.8) in the Hilbert space 1/2(0, 1) © £2(0, 1).
Due to [5], the operator A generates a strongly continuous semigroup, how-
ever, the spectrum cr(A) = {— (^j)2}^=Q of A contains zero eigenvalue and,
therefore, the unforced systems (12.39), and (12.42) under u = h = 0 are
not asymptotically stable.

Verification of the assumptions of Theorem 136 are similar to that of
Example 129, except that the input-output system (12.39), (12.40), and
(12.42) are of the relative degree r = 2, since z(t) = J0 Q(y,t)dy,

z(t) = (u + h) ! b(y)dy
Jo

where /J b(y)dy ^ 0. Thus, by applying Theorem 136 to (12.39), (12.40),
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and (12.42), the control law

-
Jo o(y)dy

\z(-}\ (12.43)

which imposes a sliding mode along the manifold 2 + 2 = 0 (thereby yield-
ing z(t) —> 0 as t —> oo), makes the closed-loop system (12.40), (12.39),
(12.42), and (12.43) exponentially stable and robust to the matched distur-
bances.

12.5 Conclusions

Mathematical tools for discontinuous infinite-dimensional systems were de-
veloped. Sliding modes, appearing in the discontinuity manifold, were
shown to be governed by the equation derivable by means of the equiv-
alent control method. Based on the sliding mode equation the procedure
of synthesis of both a manifold in the state space, such that if confined to
this manifold the system has desired properties, and a discontinuous unit
control law, which makes this manifold an area of attraction for the closed-
loop system, was proposed. The controller, generated by the procedure,
ensures the strong robustness properties against the matched disturbances.
As an illustration of the capabilities of the proposed procedure, a scalar unit
controller of an uncertain exponentially minimum phase dynamic system
was constructed and applied to heat processes and distributed oscillators.
Recent applications of the theory to adaptive control and identification of
time-delay and distributed parameter systems may be found in [2, 22].

References

[1] B.A. Bamieh, "The structure of optimal controllers of spatially-
invariant distributed parameter systems," Proc. 36th IEEE Conf. on
Decision and Control, 1997, pp. 1056-1061.

[2] L. Belkoura, M. Dambrine, Y. Orlov, J.P. Richard, "Sliding mode con-
trol of system with delayed state and control," Proc. 5th Int. Workshop
on Variable Structure Systems, Longboat Key, Florida, USA, 1998, pp.
230-232.

[3] M. Bohm, M.A. Demetriou, S. Reich, and I.G. Rosen, "Model reference
adaptive control of distributed parameter systems," SIAM Journal on
Control and Optimization, vol. 35, 1997, pp.678-713.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[4] C.I. Byrnes and A. Isidori, "Asymptotic stabilization of minimum
phase nonlinear systems," IEEE Trans. Automat. Contr., vol.10, 1991,
pp. 1122-1137.

[5] R.F. Curtain and A.J. Pritchard, Infinite-Dimensional Linear Systems
theory. Lecture notes in control and information sciences, Springer-
Verlag: Berlin, 1978.

[6] J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Fransis, "State-
space solutions to standard H2 and HOC control problems," IEEE
Trans. Automat. Contr. vol. 34, 1989, pp. 831-847.

[7] N. Dunford, and J.T. Schwartz, Linear Operators. Interscience: New
York, 1958.

[8] C. Foias, H. Ozbay, and A. Tannenbaum, Robust Control of Infinite
Dimensional Systems: Frequency Domain Methods. Springer-Verlag:
London, 1996.

[9] A. Friedman, Partial Differential Equations. Holt, Reinhart, and Win-
ston: New York, 1969.

[10] Gutman, S., "Uncertain dynamic systems - a Lyapunov min-max ap-
proach," IEEE Trans. Autom. Contr., vol. AC-24, 197, pp. 437-4499.

[11] D. Henry, Geometric Theory of Semilinear Parabolic Equations Lec-
ture notes in math., Springer-Verlag: Berlin, 1981.

[12] K.S. Hong and J. Bentsman, "Direct adaptive control of parabolic
systems: algorithm synthesis and convergence and stability analysis,"
IEEE Trans. Autom. Contr., vol. AC-39, 1994, pp. 2018-2033.

[13] B. van Keulen, H^-Control for Distributed Parameter Systems: A
State-Space Approach. Boston: Birkhauser, 1993.

[14] A.A. Kirillov and A.D. Gvishiani, Theorems and Problems in Func-
tional Analysis. Springer-Verlag: New York, 1982.

[15] M.A. Krasnoselskii et al., Integral Operators in Spaces of Summable
Functions. Noordhoff: Leyden, 1976.

[16] C. Kravaris and J.H. Seinfeld, "Identification of parameters in dis-
tributed parameter systems by regularization," SI AM Journal on Con-
trol and Optimization, vol. 23, 1985, pp.217-241.

[17] S.G. Krein, Linear Differential Equations in Banach Space. American
mathematical society: Providence, 1971.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[18] Y.V. Orlov, "Application of Lyapunov method in distributed systems,"
Automation and Remote Control, vol.44, 1983, pp.426-430.

[19] Y.V. Orlov, "Sliding mode - model reference adaptive control of dis-
tributed parameter systems," Proc. 32nd IEEE Conf. on Decision and
Control, 1993.

[20] Y.V. Orlov, "Model reference adaptive control of distributed parame-
ter systems," Proc. 36th IEEE Conf. on Decision and Control, 1997,
pp.263-268.

[21] Y.V. Orlov, "Discontinuous unit feedback control of infinite-
dimensional systems," IEEE Trans. Automat. Contr., vol.45, 2000,
pp. 834-843.

[22] Y.V. Orlov, "Sliding mode observer-based synthesis of state derivative-
free model reference adaptive control of distributed parameter sys-
tems," ASME Journal of Dynamic Systems, Measurement, and Con-
trol, vol.122, 2000, pp.725-731.

[23] Y.V. Orlov and J. Bentsman, "Model reference adaptive control
(MRAC) of heat processes with simultaneous plant identification,"
Proc. 34th IEEE Conference on Decision and Control, vol. 2, 1995,
pp.1165-1170.

[24] Y.V. Orlov and J. Bentsman, "Adaptive identification of distributed
parameter systems," Proc. 5th IEEE Mediterranean Conference on
Control and Systems, 1997.

[25] Y.V. Orlov and V.I. Utkin, "Use of sliding modes in distributed system
control problems," Automation and Remote Control, vol. 43, 1982, pp.
1127-1135.

[26] Y.V. Orlov and V.I. Utkin, "Sliding mode control in infinite-
dimensional systems," Automatica, vol.23, 1987, pp. 753-757.

[27] Y.V. Orlov and V.I. Utkin, "Unit sliding mode control in infinite-
dimensional systems,"Applied Mathematics and Computer Science,
vol.8, 1998, pp.7-20.

[28] A.N. Tichonov, "Regularization of ill-posed problems," Dokl. Akad.
Nauk, USSR, vol.153, 1963, pp. 49-52.

[29] V.I. Utkin, Sliding Modes in Control Optimization. Springer-Verlag:
Berlin, 1992.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



[30] V.I. Utkin, and Y.V. Orlov, Theory of Sliding Mode Control in Infinite-
Dimensional systems. Nauka: Moscow, 1990 (in Russian).

[31] A.S.I. Zinober, ed., Deterministic Control of Uncertain Systems. Peter
Peregrinus Press: London, 1990.

[32] T. Zolezzi, "Variable structure control of semilinear evolution equa-
tions," Partial differential equations and the calculus of variations,
Essays in honor of Ennio De Giorgi, vol.2, pp.997-1018. Birkhauser:
Boston, 1989.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Chapter 13

Application of Sliding
Mode Control to Robotic
Systems

N. M'SIRDI and N. NADJAR-GAUTHIER
University of Versailles Saint-Quentin en Yvelines, Velizy, France

13.1 Introduction
Most research and applications in robot control deal with electrically actu-
ated robots (this is generally due to ease of their use and low cost) but use
of pneumatic and hydraulic systems is increasing. The latter are used in
robotic systems when large forces and direct drive possibilities with high
capabilities are required. This justifies their extensive use in industrial
applications. This chapter deals with the application of sliding mode con-
trol and passive feedback systems for mechanical systems encountered in
robotics involving pneumatic and hydraulic actuators. We show that slid-
ing mode control is a viable approach for such systems. Simple examples
are studied first in order to introduce a methodology for this kind of control
techniques.

The mathematical model of a hydraulically or pneumatically actuated
system is highly nonlinear and time-varying. Several energy conversions are
present (electro-mechanical to hydraulic or pneumatic pressure and then to
mechanical motion). Generally the control of such systems has been first
based on classical or PID feedback approaches [1, 2]. Next the intent was
to enhance the control by use of state space design and adaptive control
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[3, 4, 5, 6]. Standard or linearization-based control design methods have
some drawbacks for pneumatic and hydraulic systems; this is due to the
lack of knowledge of the model and parameters. The approximation by
locally linear models is not applicable [7, 8]. Consequently the well known
control methods like the computed torque or classic controllers are not
directly applicable.

Recent applications in robotics involve complex systems with regard
to nonlinearities, time variations, and performance requirements [9, 10].
Linearization-based methods or computed torque have been suggested in
robotics as an effective way of using the nonlinear model of the system in
the control law [11]. However, the dynamic parameters used in the control
law must match the real ones [12]. In practical cases, neglected dynamics
remain after modeling (nonlinear frictions, thermodynamic or hydraulic ef-
fects and parameter variations). The inability to consider the total dynamic
model is "penalizing" for decoupling and compensation. These problems
are caused by the fact that thermodynamics parameters depend on initial
conditions, on temperature, pressure, added to offsets and cable effects.
Anyway, this kind of control is rather sophisticated and remains complex
to be implemented in real time (for fast motion) [13]. Robotic applications
revealed the need for further investigation in order to enhance control ro-
bustness and reduce the implementation complexity [14]. In those cases we
found that it was more efficient to use passivity-based controllers and slid-
ing mode approach which enhanced the robustness of control by exploiting
the system's robotic properties [15, 16]. They provided good performances
whatever the robot configuration and desired speed.

For such system the control structure requires robustness of the feedback
controller to parameter changes and disturbances. These performances can
be obtained by sliding mode control [17]. Many applications of variable
structure control in robotics have been reported [18, 19, 20]. Exact mod-
eling is not necessary, since the control is based only on knowledge of un-
certainties or variation bounds of the system model[9].

The main objective of this chapter is the design of a robust control law
by use of a sliding mode approach. The considered problem for sliding mode
control design can be stated as follows: given a desired sliding manifold
function of the system's states (s(x) = 0), which can be nonlinear or time
varying, determine a control (or input u) such that sliding mode occurs
on this sliding surface. Then the desired performance can be achieved
by an involved reduced-order dynamics in the sliding regime. We show
that it gives a viable alternative for high performance tasks in industrial
applications. The control stability can be studied by use of Lyapunov
theory and the method can be shown to obey passivity property.

The organization of this chapter is as follows. First we present some ba-
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sic features on modeling of mechanical systems and the involved properties
of frictions and inertia effects and actuator limits. Then we recall some
key points on passive systems and hyperstability theory, in order to make
comprehensive the approach of sliding mode control design based on system
hyperstability. The passivity property is illustrated for different mechanical
systems. Then the sliding mode control design by this approach is applied
for some chosen examples and stability analysis is presented to emphasize
the robustness and control parameters effects.

13.2 Modeling and properties of robotic sys-
tems

13.2.1 Dynamics of mechanical systems

Euler-Lagrange systems

For mechanical systems, the dynamic equations or the model can be formu-
lated by means of energy quantities [21]. The model of a rigid mechanical
system, with n degrees of freedom (n DOF), can be obtained by use of the
Lagrange method [22, 23]:

_ _
dt(dg) <9<f ( J )

where L = Ec — Ep is the Lagrangian function, Ec = ^qTM(q)q is the
kinetic energy, and Ep potential energy and T are the applied external
forces / torques.

Recall that q, q, q, T denote respectively the (n x 1) vectors of joint
positions, speeds, accelerations, and torques. M(q) is the (nxn) generalized
inertia matrix, G(q) is the (n x 1) vector of gravitational forces. The matrix
C(q,q) (Centripetal and Coriolis effects) is commonly obtained by use of
Christoffel symbols and the matrix \M(q] — C(q, q) is skew symmetric [24].
This leads to the general equation form

M(q)q + C(q, q)q + G(q) + Fv(q) = r (13.2)

where the term Fv(q) has as components FVi(qi) the friction and distur-
bance torques (all the friction effects, angular, linear and nonlinear terms
and disturbances) for each joint.
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Physical properties

The following physical properties of the rigid robots (with revolute joints)
can be used for control [25, 26].

l)3ao,o:i G Rsuch that ao/n < M(q) < ai/n, Vg
2)3a2 € K such that \\C(q, z)\\ < a2 \\z\\, Vq , \/z
3)3a3 6 R such that ||G(g)|| < c*3 , Vg
4) Frictions and load disturbance torques are bounded by [27]: 3oi4, 0:5, 0:5 G

E such that \\Fv(q)\\ < a4 + a5 \\q\\, Mq.
5) Real systems have limited velocities and accelerations, then we have

\\q\\ < <?max and \\q\\ < <?max.
This limitation is introduced to take into account real physical limits of

actuators and of power systems and perturbations.
The model equation (13.2) can be written in state space form with

state components: xi = <?, x2 = q (x = (x^x^) ) and measurable output

X\ — X-2

x2 = -M'l(xi] [C(xl,x2)x2 + G(xi) - r] (13.3)

13.2.2 Control design approach
Variable structure control systems design can be realized in several ways.
For our point of view, passivity-based design or the hyperstabilty approach
is the most straightforward and practical method. It allows us to exploit
the physical properties of the system for the control design. Then the
obtained control law is more suited to the system and easier to tune. In
what follows, we recall some features of passive systems theory.

Passive systems and hyperstability

It is not our objective, in this section, to give a detailed presentation of
passivity, but only to introduce the needed notions for control design (see
details in [28, 29, 21, 30, 31, 32, 33]).

Proposition 139 A passive system verifies the following property [34]:

E(t,) - E(Q) + E,(Q,ti) -

where E(ti) and E(Q] represent, respectively, the system energy at time
t\ and its initial value att = 0; £^s(0, t\) is the supplied energy during [0, ti],
and Ex(0, ti) represents the lost energy dissipated in frictions during [0,ti].

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



For passive systems (with input u and output y), the following property
is always verified (the Popov inequality) [34]:

ft

, /
JtQ

oo yTudt > -
tQ

(13.4)

For system (13.2) we can write the expression of time derivative of its
kinetic energy:

\d_ (

we obtain by integration [q0 = q(0)]:

ft -T /

(13.5)

Jo
) - § (qT

0M(q0}q0)

If we consider as the robot input u = [r — G(q}} and as output y = q
then the system transfer u — r — G(q) —> y = q is passive.

Figure 13.1: Linear system with nonlinear feedback

In order to introduce the control approach let us consider the dynamic
system of Figure (13.1), where the transfer function of the linear system
(block SL) is H(p] and we assume that (A, B) is completely controllable
and (A, C] is completely observable for a minimal realization (A, B, C, D).
The input u is assumed equal to zero.

(13.7)

x = Ax + Bu\ = Ax — B(y-2 — u]

y\ = Cx + Du\ = Cx — D(y2 — u}

(13.8)

(13.9)

The feedback block (SNL), may be generally a nonlinear time variant
subsystem: 7/2 = f(v<2,t,T) with T < t. It is assumed to verify the sector
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condition (see Figure 13.2)

</>(0) = 0 and k\u\ < < Vw € (13.10)

Figure 13.2: Conicity property for a nonlinear block <

Definition 140 The nonlinear block (SNL) is passive if it verifies the
Popov inequality (for all t\ > Oj.

rti
I V2(r)T'.u2(r}dr > -7*, with 7^ < oo Vt > 0 (13.11)

" ^o

Definition 141 A transfer function H(p] with p complex p = a + ju) is
strictly positive real (SPR) if:

1) The poles of H(p] are in the half plane Re(p] < 0,
2) H(ju} + HT(—JOJ) is positive definite Hermitian for all real u.

The linear system (block SL), can be characterized also by use of its
minimal state space representation (^4,£?, C, D), by means of the following
lemma (positive real lemma).

Lemma 142 positive real lemma: Let H(p) be an (mxm) matrix of
real rational function of the complex variable p, with H(oo] < oo, and
(A,B,C, D) the minimal state space realization of H(p] (assumed control-
lable and observable). Then H(p] is positive real if and only if there exist
real matrices P, L, and W with P symmetric positive definite such that:

(13.12)

(13.13)

ATP + PA = -LLT , PB = CT - LW,

and WTW = D + DT

For the stability analysis of the class of nonlinear systems that can be
represented in the form of Figure (13.1), the following theorems are very
useful.
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Theorem 143 Hyperstability: The system of Figure (13.1) is hyper-
stable if and only if the transfer function of the linear block H(p) is positive
real (PR) and the nonlinear time-varying feedback block is passive; Every
solution x(x(Q),t) of the system satisfies the following property:

\\x(t)\\ < 6 (\\x(Q)\\ + 7o), S > 0, 70 > 0, \/t> 0 (13.14)

Theorem 144 Asymptotic hyper stability: The system of Figure (13.1)
is asymptotically hyperstable if and only if the transfer function of the linear
block H(p) is strictly positive real (SPR) and the nonlinear time-varying
feedback block is passive. Every solution x(x(Q),t] of the system satisfies
the property (13.14) with lim x(t) = 0, for any bounded input ui(t).

t —> oo

System decomposition and design objective

For control design, the problem is to find an equivalent feedback system
which obviates passive parts of the system dynamics and allows us to find
linear and nonlinear control terms in order to ensure asymptotic hypersta-
bility [35]. In what follows we emphasize some interesting properties for
connections of passive systems. We can note explicitly that by connecting
hyperstable systems in parallel or in feedback, as shown by Figure (13.3),
we obtain a hyper-stable system, i.e. hyperstability is preserved by con-
nections in feedback or in parallel. This property is not valid for serial or
cascade connections.

a)Paralel c) Equivalent System

b)Feedback

Figure 13.3: Passive systems associations

Connecting the passive blocks S\ and £2 in parallel as in Figure (13.3a),
leads to: u = u\ = u? and y = y\ + y-2 and then we have: fQ* yTudt =
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The same considerations can be made for the feedback connection of
two passive blocks Si and 82, as in Figure (13.3b). We have u = u\ +
y-2 and u2 — yi = y, and then J^1 yTudt = f * 1 yT(ui+y2}dt = J^1 yfuidt

/Q1 y^uzdt. We can then state the following lemma.

Lemma 145 Combination of two passive blocks in parallel gives a passive
system.

Lemma 146 Feedback connection of two passive blocks in parallel gives a
passive system.

Then for complex passive systems, often by choosing a new system state
vector, we can find a passive equivalent feedback system as a combination of
parallel and feedback connections of n passive subsystems. These properties
are very important for stability analysis and control design of complex
systems (Figure 13. 3c).

For mechanical system as robot manipulators or legged robots, knowl-
edge of physical properties allows us to point out passive subsystems in
the system modeling. These passive blocks can be used to find an equiv-
alent system and then complete this scheme by appropriate control terms
in order to ensure asymptotic hyperstability.

13.2.3 Examples

Mass and spring systems

A second-order example Let us consider as an example a mass m
attached to the ground through a spring with stiffness k (Figure 13.4).

<=== Mass at 0

Stiffness k
Friction f

Contact Po in t Ground

Figure 13.4: Mass and spring system

The damping coefficient (friction) is denoted /. The system equation
can be written mx + f ( x ) + k(x) = u (the input is either the gravity
force u = —mg or zero if we assume its compensation by a spring initial
compression) for a linear case we have f ( x ) = f.x and k(x) = k.x.
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This system, in free motion, starting from an initial position with some
initial velocity has a behavior like the trajectory represented in the phase
space and versus time by figure (13.5). This behavior is function of the
system parameters.

150

100

5°

phase plane trajectory

-50

-100

-150-4000-3000-2000-1000 0 1000 2000 3000

mass velocity
0 50 100 150 200 250 300 350 400 450

Time in Seconds

Figure 13.5: Trajectories in the phase plane and versus time

Let us now assume that as input u, we can modify the spring length or
position of its attachment to the mass (or simply the spring force by an
additional term u): x + ^f-x + ̂ k.x = ^u. Note that for this system, if
we consider as input u and as output the position x (H(p) = m a \ + fc),
the system is not passive because it has a relative degree greater than unity.

Remark 147 We can consider as output y a function of the velocity x and
the position x, such as the transfer from u to y TO be SPR. For example,
we can take y = x + Ax, so we have as transfer function H(p) = m £*, k

and then this system is SPR if some conditions on the transfer function pa-
rameters are respected (all coefficients positive and A < ^). This key point
shows that use of an auxilliary signal y is important for two main features:
1) its use allows us to involve, for the control performance, the passivity
characteristic of the system (we will see later that the system dynamics ap-
pears as a feedback block in the equivalent feedback system);2) this choice
must respect the dynamic of the system: A < ^ means that the introduced
zero, in order to render the transfer function SPR, must be compatible with
the system damping ratio.

For stabilization (at x = 0), PD control can be applied to this system.
Let us consider the following control law u = —ko(x + \Qx). In closed-loop,
we obtain x + ^(f-x + kox) + ^(k.x + koXox) = 0.

Stability is ensured if (f)i(x)x = (f.x + kox)x > 0 and (p2(x)x = (k.x +
ko\x) > 0 Vx, x € M x R. This can be easily proved by use of the Lyapunov
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method with as Lyapunov candidate function V = |m.x2 + | fg(k-y +
k0\y}dy. We obtain V — -x(f.x + k0x). We can see clearly that V and
— V are positive if and only if stiffness and damping function verify the
positivity property v.<pi(v) > 0.

The behavior of the system in closed-loop remains sensitive to the pa-
rameters of the system and the control (x+ — (f.x + kQx) + — (k.x + ko\x) =
0).

For stabilization by use of sliding mode control, we can also define a
commutation surface by s = x + Ax [see the previous remark for SPR
linear transfer function H(p}} and apply as control law u — —kosign(s) or
u = —kosat(s) (passive element) with the saturation function defined (for
some small constant e) by:

(13.15)

II

in IV

Figure 13.6: Memory less passive element characteristic

The sat function verifies the passivity condition represented by Figure
(13.6). It can be easily verified that this leads us to the scheme of Fig-
ure (13.1), with, as linear SPR transfer block H(p) =
and nonlinear feedback block 7/2 = /(w2>

= ?mp+fp+k
= kosat(s] which is passive.

Time response and phase space trajectories obtained by this control are
represented in Figure (13.7).

Remark 148 Sliding mode control allows high speed responses indepen-
dently from the system damping and parameters. This performance is easy
to obtain with respect of the key points of the previous remark.

If f is too small or negative (unstable system), a preliminary feedback
can be used to reinforce the system dissipation and simplify the choice of
commutation surface s. With PD precompensation we have f = f + ko and
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phase trajectories with SMcontrol
60

20 40

tim e
60 80 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

= n*0 .025 in sec

- 1 0 1 2 3 4

mass position

Figure 13.7: Behavior of the mass with passive SM-control

k' = k + kQ\0 instead of f and k, respectively, and then

The new constraint becomes X < *— = *+ °.

2 , . f c /

Mechanical impedance In robotic applications involving manipulations,
very often contacts between the robot and its environment appear. An ex-
ample is represented by Figure (13.8). It can be modeled by:

MX + Bx + K.x = F (13.16)

where M is the moving mass, B the damping coefficient or friction, and K
the stiffness of contact (robot + environment). The applied forces are noted
F and x is the cartesian position. The mechanical impedance [a transfer
between force and velocity F = Z(x)} is defined, in linear cases (M, B, and
K are three constants), by a symmetric positive definite transfer matrix:

Z(p} =
MP

2 + BP + K
p

, with F(p) = Z(p)x(p) (13.17)

It corresponds to the energy function defined by

W(t) = \{xTMx + xT(i)Kx(t}} (13.18)

Variation of energy is equal to the one supplied by F minus the fric-
tion loss: W(t) = x1MX + xT(t)Kx(t); using equation (13.16) we obtain:
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c M

K

Figure 13.8: Suspension system

W(t) = xT(F-Bx-Kx + Kx} = ±TF- xTBx. Then it can be shown that
the transfer matrix Z(p) is positive real and satisfies the passivity property:

rt ft
\ xTFdr = W(t) - W(0] + \ V(r)dr > -

Jo Jo
and V = xTBx

'o
with

(13.19)

(13.20)

This feature can be exploited for control of the behavior in case of
contact between the system and its environment; this is the case for vehicles
and legged robots [36]. Note that this system has the same properties as
the previous simple example and then the sliding mode control is able to
give the same type of results and the previously pointed out particularities
can be physically interpreted. For example, preliminary PD feedback is not
necessary if the system is damped enough. This is the case of the vehicle
suspensions.

Pneumatic actuated systems

Figure (13.9) represents a pneumatic robot leg with two rigid links and two
rotational joints. This robot leg is an experimental platform at the LRP.
Each joint is actuated by a pneumatic cylinder (double effects linear jacks)
driven by an electro-pneumatic servo-valve. The obtention of the dynamic
actuator's model [1, 2, 4, 8, 11] is based on the study of the flow stage
supplied with fixed pressure Pa and energy conversions. This system has
the following dynamic model (see appendix):

(ml + M(q)}q + C'(q, q)q + G'(q) = r
r = Ji-Br-Eq with r = K(&PP - APn)

(13.21)
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where m is the mass of the cable and of the piston that is negligible
compared with the inertia of the segment, / is the radius of the pulley, and
i is the servo-valve input current.

S ervo v alv

Figure 13.9: Pneumatic robot leg

The output T can be obtained from the measure of the differential pres-
sure applied to the piston. J, B and E are (2 x 2) diagonal matrices
called the thermodynamics parameters depending on the temperature gas
characteristics and initial conditions of pressures and chambers volume.

Note that the first equation of the system (13.21) verifies the Popov
inequality (13.4) and then corresponds to a passive transfer between u =
r — G(q) and q. The second equation also involves an SPR transfer function
(H(p) = gT~)- And then the system can be represented as in Figure
(13.1) by a linear block (H(p) = -g^-, SPR) in feedback connection with a
nonlinear passive block such as: M(q)q + C(q,q)q = r — G(q) and f + Br =
—E(q — ̂ i). Note that parameters J, #, and E are assumed constant for
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this representation.

Figure 13.10: Passive equivalent feedback system of the pneumatic robot

It is then obvious that the sliding mode control will be designed in
order to give a passive equivalent feedback system and impose the desired
dynamics.

Hydraulic robot manipulator

In this section, we show that a hydraulic robot manipulator designed for
underwater applications (Figure 13.11 shows how a joint is actuated), has
several similarities in its features with a pneumatic leg. Thus the same
control approach can be applied in order to obtain good performances and
robustness. From the robot dynamic equations (see for details [5, 6, 37])
and introducing a term Fv comprising all the friction effects (angular, li-
near and nonlinear terms and disturbances), we can obtain the complete
dynamic model of the hydraulic actuated manipulator.

M(q)q + C(q, q)q + G(q) + Fv = r

T + BT + Eq = Jk0i

(13.22)

(13.23)

Note that J, k0, B, and E are (n x n) nonlinear diagonal matrices and
depend on the actuator variables [6]. We note that the model is expressed
in the same form as the pneumatic robot, so the same kind of equivalent
feedback representation can be found.

Let us consider in what follows another way of representation, assuming
that pressure or torque is not available for measurement. For control, we
can consider as state variables the positions, velocities, and accelerations.
Then the robot model can be rewritten in one stage to eliminate torque
from model equations. The torque derivative is obtained analytically by
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Figure 13.11: Scheme of one joint hydraulic actuation

derivation of its expression (arguments are dropped for ease of notation) :

f = Mq + Mq + Cq + Cq + G + Fv (13.24)

We then obtain, for the global system, an equation independent of the
applied torque or differential pressure measurements as follows:

J.k0.i = Mq + (M + C + BM)q + C + Fv

+ (C + BC + E)q + BG + BFV

This equation is rewritten as follows for simplicity:

J.k0.i = Mq + Cq + pq + 79 + 6

(13.25)

(13.26)

with ft = M + BM- 7 = C + E + BC and 6 = G + Fv + BG + BFV. The
latest equation will be used for control design and stability analysis. In
this way, we can remark the presence of the passive transfer u = M'q + Cq
with u = J.k0.i — (0q + yq + 6).

13.3 Sliding mode for robot control
Sliding mode control is one of the most suitable methods to deal with
systems having large uncertainties, nonlinearities, and bounded external
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disturbances. This approach has attracted intense research interest in the
past decade for robot manipulators [38, 39, 19]. The sliding mode control
is designed by means of the passive systems approach [34] . This simplifies
the design and allows us to exploit the physical system properties in a
direct way. For boundedness of the derivative of the inertia matrix and the
Coriolis and centrifugal terms we need the following lemma [40].

Lemma 149 (Bernstein Lemma). If x(i] is a bounded signal (\x(t}\ <
M) and has its frequency spectrum bounded by pulsation ujm, then all its
derivatives are bounded such as ^x(t}\ < (u>m)nM.

13.3.1 Sliding mode control for a pneumatic system
Sliding mode control design

Let us consider the dynamic model equation (13.21) of the robot leg and
rewrite it as follows (arguments are dropped for ease of notation):

H(q, q, q) = + q +

Mq + Cq + H(q, q, q] = Ji

+ E + BC q + G + BG

(13.27)

Usually the components of the matrices^M, C, G, J, B, and E are not
well-known but^only the estimated^ terms M, (7, G, «/, 5,and E and bounds
of the errors M, C, G, J, B, and E can be available: _ _

M = M-M, C = C-C, G = G-G, J = J-J, B = B-B, E = E-E
For ease of presentation we will assume J is well-known. If this is

not the case this approach can be easily extended. Note that, for sliding
mode control, the estimates can be chosen constant (M = MQ = cst,
C = CQ = cst, ...). Robustness toward structure errors is guaranteed by
the sliding mode control [17]. Let us define the tracking error vector as

q-q*
q-qc

q - qc
(13.28)

Let qr be called the reference acceleration and defined as a function of
the desired trajectories qd,qd,qd and errors:

qr = qd - Ai (q - qd) - A2 (q - qd) (13.29)

Then the chosen switching surface s (function of the output trajectory
error) is given by:

s = e + Aie + A2e = q — qr (13.30)
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AI = diag (X\, ........ A^) A2 = diag (Af, ........ A^) are diagonal matrices with
strictly positive components.

We can apply a partial feedback using the estimated nominal model Ji =
Jieq + v, v = Ksat(s) (the sign function can be also used but chattering
may occur due to measurement noise). Choosing Jieq as follows gives us
in closed-loop the passive equivalent system of Figure (13.12).

Jieq = + Cqr + H(q, q, q) - fvs (13.31)

H(q, q, q} = (M + BAf) q + (5 + E + BC) q + (5 + BG)

The closed-loop system can be expressed:

Ms + Cs — -fvs + v - 6

6 —

where fv is a positive diagonal matrix.

i—N-S

(13.32)

(13.33)

©^

Figure 13.12: Equivalent feedback system for the SM-cotrolled robot

The equivalent feedback system is composed of a linear block with gain
fv, a nonlinear feedback block composed by the mechanical dynamic parts
and then, in feedback with this one, a nonlinear block for control commu-
tation. The input 6 represent a perturbation due to the modeling error.
We can see clearly that this perturbation can be tackled (matched uncer-
tainty) by use of the sliding mode control term v = Ksat(s) to enhance the
robustness of the controlled system.

Stability analysis

In order to prove the stability of the system in closed loop and see how
to adjust the control parameters, we can consider as a Lyapunov function
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candidate 1
V ( s , t ] = ^sTMs

Differentiating (13.34) with respect to time yields

V (s, t) = -sTMs + sT[Ji - Mq(
r
3} - Cq - (M + BM}q

£.4

- (C + E + BC)q -(G + BG}}

Owing to the preceding equations, the derivative V (s, t) becomes

V (s, t) = -sTfvs - sTKsat(s) - sT(Mq(^ + Cqr + H}

with

(13.34)

K> + Cqr + H

To ensure V < 0, we choose K = AM
these bounds are

A M > M-M • AC> C-C

+ AC\qr\ + Atf, where

H-H

Using the Bernstein lemma [40], we can prove the boundedness of the
estimation errors appearing above in the Lyapunov function.

Lemma 150 Using the rigid robot properties and Equations (13.27) and
(13.31), it can be proved that

|2 ,H < KQ + K2 ; ans

Mqr + Cqr + H < ||9r||+ai \\q'r =

This, when applied to the Lyapunov derivative, leads to V (s) < —sT(fvs-
Ksat(s)) + r] \\s\\ , with a certain bound 77 positive valued function or con-
stant depending of the maximum velocity, acceleration and desired jerk
trajectory. In order to ensure V(s) < 0, in the presence of model uncer-
tainties, we see from the previous equation that we can choose K > r\0 >
T)(qr, qr, q, <i}, which give us

V(s)<-sTfvs-(K-ri0) \\s\\ < 0 (13.36)

Then we can conclude to the stability of the system: s converges to a
neighborhood of zero. Once the system state trajectory reaches a neighbor-
hood of the switching surface, subsequent motion of the state trajectories
involves the sliding of the trajectories on the surface.
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13.3.2 Sliding mode control of a hydraulic robot
Let us rewrite the dynamic model of the hydraulic underwater manipulator
as follows1:

Jk0i = M'q + Cq + H(q, q, q) (13.37)

H(q,q,q}=Pq + w + 6 (13.38)

The matrices M, C,G, J, B,and E, defined above, are not known but
only estimates can be available for M0, C0, G0, J0, B0,a,nd E0. The esti-
mated terms are chosen constant (M0 = cst,...). We assume that bounds
on the estimation errors are known. The tracking error vector is defined by
Equation (13.28) and qr the acceleration reference is defined in Equation
(13.29) with AJ = diag (\\, A^) diagonal matrices with strictly pos-
itive components. We choose as switching surface s function of the state
error given by

s = q-qr = e + Aie4-A2e (13.39)

Assume k0 to be known, for simplicity, and choose the control i (based on
the nominal model of the robot) as follows [37]:

J0k0i = M0qr + C0qr + H0(q, q, q) - fvs - Ksat(s) (13.40)

where fv is a positive diagonal matrix chosen for transient duration adjust-
ment and H0(q, q, q) = (M0 + B0M0)q + (C0 + E0 + B0C0)q + G0 + Fvo +
B0G0 + B0FV0.

Let us denote the parameter estimation errors (for control) as follows:
M = J.J~1M0 -M,C = J.J~1C0 -C,H = J.J~1H0 - H.

This leads us to the same equivalent feedback scheme as for the pneu-
matic robot leg (see Figure 13.12), which emphasizes how the passive dy-
namics of the robot are involved in the control design. In this way the
control involves a term [v = Ksat(s)} used to tackle uncertainties on the
model and the involved perturbation (which, in this manner, verify the
matching condition).

Stability analysis can also be considered in the same line as for the pneu-
matic case by use of the Lyapunov function candidate: V (s) = ^sTMs.

Differentiating V (s) with respect to time, using the model equations and
the system's passivity property (\M — C is skew symmetric), we obtain

V = -sT(fvs + Ksat(s) - Mqr - Cqr - H] (13.41)

We can also prove here the boundedness of the estimation errors ap-
pearing above in the Lyapunov function.

1This work was done in collaboration with the LIRMM.
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Lemma 151 Using the rigid robot properties and Equations (13.37) and
(13.40), it can be proved that

i l i ' i i i i i * i i 2H 4- «3 ||<?||; and

Mqr + Cq'r + H < KO+KI ||g||+«2 ||g||2+K3 MH+a* ll&ll+ai qr =ii)

This, when applied to the Lyapunov derivative, leads to V (s) < —sTfvs—
sTKsat(s) + 77 \\s\\, with certain bound rj positive valued function or con-
stant depending of the maximum velocity, acceleration, and desired jerk
trajectory. Recall that accelerations and velocities are limited for real sys-
tems (||g|| < qmax and \\q\\ < qmax then ||tf||2 < qmax \\q\\). In order to
ensure V(s) < 0, in the presence of model uncertainties and system limi-
tations, we see from the previous equation and (13.41) that we can choose
K > r]0 > ri(qr, q'r, q, q). It leads us to

V (s) < -sTfvs - (K-Ti0) \\s\\ < 0 (13.42)

Then we can conclude to the stability of the system and s converges to
a neighborhood of zero.

13.3.3 Simulation results
Results for the hydraulic underwater manipulator

Hereafter, we will illustrate the behavior of the proposed control for 2 DOF
of an underwater manipulator (Slingsby TA9)2 with hydraulic actuators
[5, 6, 37]. Sliding mode control has been applied in joint space. The robot
is simulated using Matlab - Simulink software packages. In simulations,
we must take into account the physical positions and pressure limits and
choose appropriate a priori estimates for the control. We take as control
J0k0i = M0qr+C0qr—fvs—Ksign(s) with H0 = 0 and M0, C0 equal to their
median values. Control is implemented in discrete time with Ts — 1ms as
sampling time. The results presented in Figures (13.13) and (13.14), have
been obtained with fv — K = 2500.

With these values the input current remains less than 1 volt, in the
admissible zone, without saturation. The desired positions are 0.15 and 0.2
rad. The components M0qr and C0qr anticipate the main dynamics effects.
The feedback adjusts compensation by use of weights on position, velocity
and acceleration errors. These two components contribute for perturbation

2This work has been done in collaboration with the LIRMM.
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Figure 13.13: Positions in radians, versus time

Figure 13.14: Phase plane for joint 1 (velocity versus position)

damping and rejection. The increase of fv allows us to enhance the time
response and damp the acceleration, velocity, and position errors, during
the transient, depending on weights by means of AI and A2 (recall that
s = e + Aie + A2e). The commutation in control enhances the robustness
versus modeling errors and perturbations like friction variation Fv and
torque disturbance. With K = 0, we can obtain, in the regulation case,
a stable behavior with small oscillations of positions. The chattering may
be eliminated by use of the commutation function (13.15). These features
emphasize the effectiveness of the sliding control scheme for underwater
manipulators.

Simulation results for the pneumatic robot

The following results show the obtained position velocity and acceleration
errors. We can also see that no chattering appears on the control. Simula-
tion results emphasize the robustness of the sliding mode control and the
ease of its adjustment.

The sliding mode control design by use of passivity approach leads to
efficient and robust controllers for pneumatic systems and manipulators
with hydraulic actuators. The control law involves an acceleration reference
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model (Equation 13.29), a passive feedback (fvs in 13.40), and a commuta-
tion term to enhance robustness property. This feedback term accelerates
the transient behavior as can be seen in the expression of the Lyapunov
function derivative (13.42 and 13.36). The obtained robustness comes from
sliding mode control properties and from exploitation of the passivity of the
robot (skew symmetry property and passive equivalent feedback scheme).
This was confirmed by simulation results. For implementation of this con-
trol, positions, velocities, and accelerations were needed; observers based
on sliding mode approach have been developed [41, 42, 43, 44, 45] for pneu-
matic robot leg.

pojsition2 fcrror

time(s) 2

- v eto city 1 - -e rro r

afcc.eJ2_,e.r}rpr

-50
«me(.)2

Figure 13.15: Position, velocity and acceleration errors

13.4 SM observers based control

Several structures are possible [46, 20] for joint observation and control.
We present, briefly, one of them in this section, which is an extension
of the sliding observer described in [39, 49], for the pneumatic robot leg.
We suppose the parameters of the model unknown and design a sliding
mode observer and sliding mode controller, and then prove the closed-loop
stability.
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13.4.1 Observer design
T

Introducing the state vector x = (xf, x%, Xjf) (xi = q,x<i = q,xs = q), the
model (13.27) can be rewritten in the following state-space representation:

X<2 = £3

x3 = /4(
(13.43)

with

+ c-/4(x, i) = -M~I((M + c + BM} X3+(c + BC + E}

This state-space representation is observable if only joint positions are mea-
rrt

sured [47]. In order to estimate the complete state x = (xf , x^, x^) (joint
positions, velocities, and accelerations) used in the control law, a nonlinear
sliding structure for the state observer is considered [46, 47, 48, 19, 20].

(13.45)
Xi = —1 1X1 + X2 — 1

X2 = —F2Xi 4- X3 — 1

x3 = -F3xi +/4(x,i) -

The term v is added in order to guarantee the stability of the ob-
server error dynamics against the parameters uncertainties. Actually, this
term is needed to account for the interaction between controller and ob-
server. Fi,r2,F3 are positive diagonal matrices. FI = diag(711,721),
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x\ — —
x3 -

F2 = 0^0,5(712,722), and Fa = 0^05(713, 723); they are chosen such that
the linear part of the system is asymptotically stable. The matrices AI, A2
are chosen positive diagonal. AI = diag(\u,\2i), A2 — diag(\i2, ̂ 22), and
the nonlinear matrix AS (.) will be defined later.

The dynamics of the observation error x — x — x is then

(13.46)

In order to obtain the system's dynamics behavior inside the attractive
region [49], we proceed step by step. First, we show that x\ — 0 has an
attractive region under some conditions on velocities with the Lyapunov
function V\ = ^x{x\ [39]. It is obvious that V\ < 0 under the conditions

i€{ l ,2} (13.47)

Thus, the domains defined above and the hyperplane x\ — 0 are attractive.
On the intersection of the region (13.47) and x\ — 0, we consider the
obtained reduced dynamics of the observation error. That is, in the mean
average [50], the behavior is described by3

EI = £2 - A.isgn(xi) = 0 (13.48)

x2 = x3 - A2A^1£2 (13.49)

In a second step, to show that x2 tends toward zero (existence of an at-
traction region), let us consider a second Lyapunov function defined by:

Then,

V-2. — x2

T',
V 2 =

_ i

So V-2 < 0 under the conditions [39]

\\X3\\ <\min{^i1} \fa\\ (13.50)

The domains defined above and the hyperplane x2 = 0 are then attractive.
If we consider only one link, the intersection of the regions (13.50), and

the hyperplanes x\ = 0, x2 = 0 is reduced to a segment. On this segment,
3sgn denotes the function equivalent, in the mean, to the sgn effect.
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the reduced dynamics of the observation error can be written as

( ~ , _ ,_ N _
I x2 = x3 - A2sgn(xi) = 0 nq^ -n
\ _ /~ x A - l ~ (,10.01,1
j^ sgn(xi) = A2 x3

That is

x3 — /4(x, i} - /4(x, i) - AsA^xa + v (13.52)

with

c + B + CE x2 + (BG

We can write

j3 = -M-1 (M + C + BM + MASA^ x3 (13.53)
M~lJi -Hi+v

with

x3+( M~1C + M~1BC + M~1E x2

where the notation corresponds to:

' =AB-AB
[ ABC = ABC -ABC

, B, C) are three matrices, members of the set

In this section we have finally obtained the reduced dynamics of the
observation error. Next, the convergence condition on x3 will be studied in
closed-loop, with the equation of tracking error.
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13.4.2 Tracking error equation: observer and control
The control objective is to track the desired position, velocity, and acceler-
ation { a;f,a;2, £3}, time-varying trajectories. The sliding mode controller
as developed previously [48] has the following structure:

i = J l (Mx3 + Cx3 + H - Fvs - ksign (s]

where

e + 62e — (£3 — £3) + 8\e + S2e = x3 — £3

r •• , r . /T- . d\ , r •• , r • ^ -ro\e + o2e = I £3 — £3 1 + o\e. + Q2e = x3 — x3

£3 is the acceleration reference signal and

H = [ M + BM\ o
V /

If we apply this control law to the system, we obtain

s = JM~l [-(F + J~1C)s- Ksgn (s)
r + c + BM'

(13.54)

where F = J~1FV, K — J~1k, Fv and k are positive diagonal matrices,
and

13.4.3 Stability of observer based control
The closed-loop analysis is performed on the basis of the reduced order
manifold dynamics (13.53) and the tracking error dynamics (13.54). Then
we define the augmented state vector z (£) = (ST; x^)T with as equation:

s = JM~l - s- Ksgn (s)

C + BM\ x3

£3 = -M~l M BM + x3

-M~lCx3 + M~lJi -Hl+v
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The following Lyapunov function is used.

V( ~ - l T T~l 1(s,x3)--s s+-

The time derivative of V is given by

V =

= -sTFs - x3Qx3 + ST (/3i - Ksgn (s)) - x£/32 + x£v

where

Q = M~1M + B + C + AaA^1

= I M~1M + M~1BM + C\x3 HI - M~lJi

The stability of the closed-loop system is studied under the physical as-
sumption of bounded system states (||o; (t)\\ < oo , Vt > 0) and the follow-
ing assumptions:

< a(w

,-i

M(Xl)

v-i

| |C(xi,a;2)| |<a2||aJ2| |;

Nil;

< J™; J < J^
\\J~l\\< J"m\ \\B\\ <bm;

These assumptions are compatible with the real system, and come from
mechanical properties of the system and limited bandwidth of the real
signals. The following constants /0, <?o, An> and ,#02 are defined by /o =
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{F}, qo = Xm-m {Q}, and

0<T<t

sup
0<T<t

+ 774

x3
II

775

x-2

= sup 2 T
0<T<t

- SUP
0<T<i

\\i\\ +kf
0 + k( \\x2\\ + k'2 \\x2

k'3

where 77; , 77^, ki k( are positive constants. The signal v can then be defined
as [49]

Ara */ PsII/O
0 if 3 | |=0

Note that on the sliding surface, x$ = x$ — A.2sgn(xi), then v can be
rewritten for implementation v — T 0 ! , K^sgn^i). The time derivative of
V (5,^3) can then be bounded as follows.

V < -fo \\s\\2 - go \\x3\\ + \\s\\ (An -K) + ||x3|| A)2 -

where Q and F are diagonal positive definite matrices, and K and AS are
chosen such as:

-c

K>(301

AS = A2

So, V is strictly negative and thus x% and e tend asymptotically to zero.
The system is thus asymptotically stable.
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13.4.4 Simulation results

In our simulations, we considered the sliding mode control law developed
previously. Errors on the structure of system was taken into account. We
took the matrix C(xi,X2) = 0 and the inertia matrix M(x\) constant
diagonal, and we considered an error of 30% on the remaining parameters
(J,B,£).

The results obtained show that the complete system, controller and ob-

q1 and q1o q2 and q2o

q1p dnd qlpo 2 q2p and q2po 2

0 qlpp find qlppo 2 0
20O 1 1 r 5OO

q2pp dnd q2ppo 2

time(s)
1

time(s)

Figure 13.17: Actual and observed state variables

server, remained stable and showed a good estimation of the velocities
and accelerations. For simulation, the following gains were used: AI =
dza#(40,90), A2 = lOAi.

Note that we have also taken into account the limitations (saturation)
of the servo-valve current of ±20mA For this simulation, we showed the
convergence of the observed state toward the real one [Figure(13.17)j. We
note that the convergence needs less than 0.25s and that the observer error
is about 0.1% to 1% [Figure (13.18)]. The tracking position error is about
1% to 2%, as shown by Figure (13.19).
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Figure 13.19: Tracking error

13.4.5 Conclusion
In this chapter we showed how sliding mode controllers can be designed
using passive systems approach and coupled with a sliding mode observer
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for state estimation. The given sliding mode control design approach was
systematic and physically well-suited with simple controllers. The passiv-
ity property of the nonlinear robot dynamics was involved to simplify the
design and allowed high performance. Its use allowed us to directly choose
a well-suited commutation surface and when this one was reached, in the
sliding regime, the system behaved like a linear-time invariant system (with
a reduced order) and was robust against modeling error, parameters vari-
ation and environment perturbations. Simulation results was presented to
emphasize these features for a pneumatic robot leg and a hydraulic un-
derwater manipulator. An observer can be used to produce estimation of
velocities and accelerations for a pneumatic leg of a robot when there is a
lack of knowledge of the system parameters model and structure and only
angular positions are measured. The stability analysis, convergence, and
simulation results emphasized robustness versus uncertainties on the model
parameters and efficiency of the sliding mode observers and controllers.

13.5 Appendix

13.5.1 Pneumatic actuators model

Each joint is actuated by an electropneumatic servo-valve with double ef-
fects linear jacks. It is made up of a current motor and of two pneumatic
stages. It is composed of a set slide-sleeve and of four variable restric-
tions modulated by the slide position. The variations of the flow rate of
air drives the jacks. Figure 13.20 illustrates the flow stage of a servo-valve.
The determination of the dynamic actuator's model [1]- [11] is based on the
study of the flow stage supplied with fixed pressure Pa. The valve controls
the air flow which is converted in pressure supply for the two chambers
of the cylinder via four restrictions. The application of thermodynamic
relationships has the following assumptions.

Assumptions A: The fluid is an ideal gas. Potential and kinetic energy
within the fluid are neglected. No leakage exists between the two piston
chambers.

Assumption B: The piston's displacement is due to small slide's vari-
ations around its central position. The pneumatic system is symmetric.
The pressure equations can be linearized around the initial position.

The mass flow rate depends on the current z, the jack motion, and the
chamber's pressure. Pneumatic actuator equations are derived from the
thermodynamic study of the system.
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Figure 13.20: Flow stage of a servo-valve

denotes the mass flow rateLet us define the following parameters:
in restriction ij

Pp, Pn: pressures in chambers P and N, respectively
Pa, Pr: supply and output pressures, respectively
Vp, Vn: volumes in chambers P and N, respectively
7 = 1.405: ratio of specific heat
r = 286Jkg~lK~l: ideal gas constant
T : temperature in Kelvin
/ : the radius of the pulley
i: the motor input current
IQ\ initial offset current (servovalve) and (3 = constant > 0
S: denotes the cross-section area of the piston
y: piston's displacement
x the jack displacement

Table 1 — Thermodynamic Equations
Current action on the jack:

Chambers fluid flow:

Actuator fluid flow:

Piston relations: <

Piston dynamic: <

!

dPp

dt
dPn

dt

dVp

dt
V(y,y]

dy
m — =dt

i = f(x) + ic

—^ = fij(x.
7-Pp aVp

Vp dt '
1-PndVn

Vn dt
- Vn = S.y T =

dVni, — by y -dt
= bv(y,y}y + b

-- S(Pp - Pn] ~

} = (3.x + i0.

Pij}
rT~t A .

K -Amn

--LFr

L.q

c(y,y)sign(y)

Fv(y,y] -FT
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The system parameters are:

/2

G(q} =

where m^, /j , Jj are respectively the mass, length, and the segment inertia,
with g the gravitation. A = I\ + /2 + 4m2/i, Ci = cos(^) ,Sj = sin(^),
dj = cos (^ij), Sij = sin (^ij)

13.5.2 Hydraulic manipulator model
The robot considered here is the Slingsby TA9. A detailed description
and modeling of this manipulator can be found in [5]. The robot model
is composed of two stages: a dynamic one for the mechanical part and a
second one which will be called the hydrodynamic stage according to the
hydraulic part.

The pressure, for each robot link, is converted into a force (Fp is the
force applied by the piston and FVi the friction and disturbance torques)
and then into a torque by use of actuator geometric transmission and its
Jacobian Jpi(qi) where qi, angular displacement of the link i.

(13.55)\ /

Lengths la and lb are the geometric characteristics of the attachments
of links and the actuator's cylinder. For each joint we can write, if y is the
piston's displacement and A-2 the cross-section area of the piston,

JMFp = JPi(Qi)A2P = r + m^ + Jpi(qi)FVi (13.56)

Joint torques and their derivatives can be expressed as a function of
force as follows.

r = Jpi(qi)Fp = Jpi(qi)A2P (13.57)

The current action on the position of the valve's jack x is defined by
x = f ( i — i 0 } = Ki.(i—i0) with KI the valve displacement gain and i0 the
initial offset current of the servo-valve. This offset will now be neglected
assuming that it is experimentally compensated (x = Kit).
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Let us define the following parameters:
Ps = 175 x lQ5N.m~~2: supply pressure,
p — S7Gkg.m~3 : oil density coefficient,
0o = 7 x l08N.m~2 : Bulk modulus,
d\: Spool diameter,
k f : leakage coefficient,
Vt : total oil volume in chambers and connection tubes, and
Cd '• constant factor taking into account turbulent flow across the orifice.
Let P denote the differential pressures in the chambers and x the valve

spool displacement. Let us take the flow out of the valve to be positive for
output ports and by use of the square root law for turbulent flow across an
orifice, assuming energy conservation and if heat exchange is neglected, we
can write the following expression where Qs is the bidirectional flow across
orifices,

Qs = Kvx(Ps - sign(x}P}* with Kv = ̂ ^

and Qs = A2y + kfP+^P.

This leads to the differential pressure evolution equation

p . 2 ._r-\ — y— .
vt n vt

The force applied by the hydraulic actuator is a function of the cross-
section area of the piston A<2,(FP = A2P) and obeys the following differen-
tial equation

_ _ _
P ~r Vt - P "" Vt ~~ Vt

The pressure differential equation can be written as

(13.59)

Expressions of the parameters B\ , E\ , J\ and k0 can be obtained
from the two preceding equations. We are rather interested in modeling
and control, by expression of torques. Using relations (13.56) and (13.57),

we can obtain, from the above equation, a differential equation for torque
dynamics

- sign(x}PKii

T + B.r + Eq = J.k0.i (13.60)

with B = B(q) = %£*- - JPMJPM-1 , E =

= Jpi(qi}^/ps-sign(x}P.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Defining Jp(q) = diag(Jpl(qi},.., Jpn(qn}} (positive diagonal matrix) for
gain transfer between force and torque, we can now generalize this equation
for an n link manipulator. Then J, k0, B, and E become (n x n) diagonal
matrices called the actuator's parameters depending on the temperature,
oil characteristics, positions and initial conditions. Note that J and E are
nonlinear and depend on the actuators variables. From the robot dynamic
equations and introducing a term Fv comprising all the friction effects
(angular, linear and nonlinear terms and disturbances), we can obtain the
complete dynamic model of the hydraulic actuated manipulator.

T = M(q)q + C(q, q)q + G(q) + Fv (13.61)

r + B.T + Eq = J.k0.i (13.62)

13.5.3 Proof of lemma
We can prove the boundedness of derivative of the inertia matrix M(q) and
the term C(q,q], Fv(q,q). Recall that from the robot physical properties
we have

\\M(q)\\ < a, , \\C(q,q)\\ < a2 \\q\\ , and \\Fv(q)\\ <a^ + a, \\q\\
and suppose that um is the highest frequency of (g, q) the trajectory

components (positions and velocities), then from M < a.iln it can be

shown that The same conclusion can be obtained for

) < a^m \\q\\, and for frictions p\,(g,g) < a4um +

Proof of lemma 2: Let us start by boundedness of J.J~l and consider
AC 6 R such as J = Jpi(qi)^/Ps — sign(x]P < max(Jpi(<?i))\/P^ = K and
take J0 — K ==> J.J~l < 1. Then we can conclude that M = J.J~1M0 —

M < ajn , and ||c|| = \\J.J~1C0 - C\\ < a2 \\q\\.

Friction disturbances and gravitation effects are bounded:
11^(9,9)11 < "4 + a5 \\q\l and ||C?(9)|| < Q3.
Let us consider bounds for the hydraulic parameters:

ll*o|| = l^f^^l < km and ||£7|| = |̂ | < em,
and for the position dependant parameter, we can write:

\\B\\ = \\B(q)\\ = -~ JpMJ^q

Proof of (i): By considering the expression H (</, q, q) = (M -f BM}q +
(C + E + BC)q + G + FV + BG + BFV and H = J.J~1H0 -Hv?e can write

a2Um \\q\\ +em+ bma2 \\q\\) \\q\\ +

\\q\\ + 6ma3 + bm(a±um + ot5^m \\q\\)
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This leads to \\H

Then we obtain: H

(e

Proof of (ii): By considering the inequalities: M

and the previous result we have: Mqr + Cqr+H

KO l +K2\\q\\

c\-
\Qr\\ + OC2 \\qr
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Chapter 14

Sliding Modes Control of
the Induction Motor: a
Benchmark Experimental
Test

A. GLUMINEAU*, L. C. DE SOUZA MARQUES**1, and R.
BOISLIVEAU*
* IRCCyN, Nantes, France
**DAS, FLORIANOPOLIS, Brazil (On leave from Fac. de Engenharia de
Joinville, UDESC, Brazil)

14.1 Introduction

It is well known that the induction motor has very interesting characteris-
tics because of its squirrel cage rotor and of the absence of a brush-collector
device. These characteristics are highly appreciated in industry for a num-
ber of reasons among which is certainly the traditional robustness of this
electromechanical device. The induction motor is also cheap to buy and
maintain relative to other types of electric motors. However, speed control
(or position) is particularly complex for this type of motor.

For many decades, the Direct Current (D.C.) motor constituted the
principal electromechanical actuator for variable speed applications because
of its simplicity of control. The induction motor has benefited from recent

1 Sponsored by CAPES, Brazil. Work performed while visiting IRCCyN.
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advances in the field of nonlinear control combined with the evolution of
microprocessor technology. Power electronics also makes it possible to im-
plement powerful nonlinear control laws. This allows users to apply new
methods [10, 2], derived from the so-called differential-geometric approach
[6, 2], from passivity-based-controllers [7], or from the differential-algebraic
approach [1]. However, a major difficulty is probably worth some research
effort: the robustness of control law with respect to parametric uncertain-
ties or disturbances. Also, the accurate observation of the rotor variables
that are inaccessible for direct measurement is a difficulty inherent to the
design of induction motor control. It is precisely in this context that the
control technique based on sliding modes finds its best justification since it
is able to cope with model uncertainties.

We think the main contribution of this chapter is to present the sliding
mode control technique for the induction motor and to show its applicabil-
ity to one significant benchmark 2, for both simulation and experimentation
conditions. The general principles of the sliding modes control theory by a
nonlinear approach are briefly developed in the second section of the chap-
ter. The special case of the speed and flux control of the induction motor
is studied in the third section. The "horizontal handling" benchmark of
electric motors as well as the national hardware setup located at IRCCyN
(www.ircyn.ec-nantes.fr/Banc-Essai) are described in the fourth section.
The fifth section describes the experimental results obtained from the plat-
form. Finally some conclusions and research perspectives are developed.

14.2 Sliding modes control

This section briefly presents a control technique using sliding modes. For
more details, see [3, 4, 5, 8, 9, 11] and the previous chapters of this book.

Consider the multivariable nonlinear system described by the equations:

x = f ( x , t) + g(x,t)u ( . }

y = h ( x , t ) U"'iJ

where x € W1 is the state vector of the system, u 6 Mm is the control
vector, and y E Mm is the output vector. One technique of control by
sliding modes can be defined as:

1) finding a sliding surface S(x, t) — 0 € Rm that yields the convergence
of the output y 6 Em for the desired references; and

2) finding a control law in terms of a new input discontinues un(x,t):
2This benchmark was defined by the French national program "Commande de Ma-

chines" of the CNRS and French Minister of Education and Research, MENSR.
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to attract the trajectory of the system towards surface S(x, t} = 0 in a finite
time. The design of un was obtained from a particular Lyapunov function
and will be defined latter. The sliding surfaces are designed to impose a
trajectory tracking of the output y with respect to a reference yref- Thus,
for each component of S(x,t), one may choose:

where TJ is the relative degree of the output yj(t] [6]. The value of TJ
implies the u—dependence of S. The sliding surface (14.3) was designed as
a linear dynamics of tracking error (yref—y), and it is possible to guarantee
by an adequate choice of the coefficients Iji that if the system is constrained
to remain in surface S(x,t] = 0, it slides towards the origin, i.e., the error
(yref ~ y} tends toward zero with trajectory dynamics constrained by the
choice of Iji. S(x,u,t) reads as:

• _ dS _ dS_dx_ dS_
dt dx dt dt

with for j = 1, ...,m

i=o Wef dt

For example,

S(x, M) = ̂  (/(*, *) + 9(z, t)u) + c(t) (14.4)

Then, we can write (14.4) in the following way:

S(x,u,i] = a(x,t) + b(x,t)u (14.5)

The control law for (14.5) is defined as

—a(x,i) + unu =

in order to linearize and to decouple the dynamics of the error of each
output. The result of the application of this control is

S(x,u>t)=un (14.7)
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The design of un(x,t) is based on the concept of stability according to
Lyapunov theory. Choosing as Lyapunov function:

V(x,t) = ̂ STS>0 (14.8)

which is definite positive semi-definite, we compute the time derivative

V(x,u,t) = STun (14.9)

To guarantee the negativity of V(x,u, t) and thus the stability of the
system toward the origin of 5(x, t), it is sufficient that

un = -k sign(5) (14.10)

with k :— [/ci, ...,/em] where the kj are strictly positive. The control by
sliding modes is thus written:

u = _[-aCM)-fcsign(S)] (14.11)

Figure 14.1 represents the dynamics of the system after feedback for
each component of S(x,t).

Figure 14.1: Dynamics of the error (yref ~ y) after feedback

We obtain a dynamic equation of (yref ~ y)i which is autonomous for
unj = 0. The dynamics of the feedback system is such that there is conver-
gence toward surface 5(x, t) = 0 and then sliding mode along this surface.
In the case of uncertainties or disturbances, the control known as equivalent
control ( — a ( x , t ) / b ( x , t ) ) is not able to guarantee S(x,t] = 0 continuously
[i.e., it does not carry out the exact input-output linearization and the
decoupling of the virtual output S ( x , t ) } . The trajectories of the system
leave the surface instead of reamaining (or sliding) on it. It is the role
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of the control un, to force the trajectories of the system to return to the
sliding surface. Because of the presence of the discontinuous term wn, the
control can present a succession of commutations. This is the phenomenon
of chattering, as represented in Figure 14.2.

Figure 14.2: Phenomenon of chattering

This phenomenon sometimes limits the application of the sliding modes
control to physical systems. This problem leads to a high number of os-
cillations of the system trajectory around the sliding surface, and thus the
excessive use of the actuators. To reduce the frequency of the oscillations,
the control is modified so that the response is slower during the sign change
of S(x,t). We applied a continuous and "smooth" law of switching as in
[4, 9]. Other possibilities for the smoothing of the control can be found and
are also presented in the previous chapters of this book. A possible way to
design the switching function is to use one dead zone and two linear zones
to smooth the control. The thickness of the "boundary layer" designed by
£i and £2 is a compromise between the reduction of the phenomenon of
chattering and the precision of the tracking trajectory. Figure 14.3 shows
the areas in the plan of phases, which corresponds to the various types of
action of the control. The variation of £2 has been defined by

£2 =max {£m-m,£(e)} (14.12)

where the function £2 is proportional to the absolute value of the error e.
The idea behind this technique is to impose a variable speed of convergence
for the sliding surface, which is slower when the linear dynamics represented
by (14.3) is away from the origin and increases when it comes closer to the
origin. This way, when the dynamics of the variation is some distance
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away the origin, the control is softer and chattering is reduced. This can
be represented by a cone effect (see Figure 14.3) in the phase map.

Equivalent control
zone

Softned control
zone

Figure 14.3: Softened control by a variable function "Sign" (Iji = 1)

We thus obtain the precision given by the classical Sign function and
the required attenuation of the chattering.

14.3 Application to the induction motor

For an induction motor under the classical assumptions of sinusoidal dis-
tribution of magnetic induction in the air-gap, with no saturation of the
magnetic circuit, the diphasic model a/3 [2] is

x = f(x) (14.13)

where

x = u - (14.14)
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and £ is a disturbance input (load torque) and

(pMsr/JLr

a - (Rr/Lr)

(Msr/aLsL

(MSr/aLsLr)

(Rr/Lr) Msrisa

Msris/3

9 =
_ f 0 0 0 1/crL,

0 0 0 0
0 0 0 0 ] '

Rs and Rr are the resistances of the stator and the rotor. Ls and Lr are
the self-inductances of stator and of rotor, Msr is the mutual inductance
between the stator and rotor windings, J is the inertia of the system (motor
and load), p is the number of pole-pair, fv the coefficient of viscous damping
and TI is the load torque. The parameters a and 7 are defined by:

a:= 1-
M2
•LVJ-

7: =
MlRr

As defined by (14.14), the states of the system are the mechanical speed,
and the two components of the rotor flux and of the stator current. The
inputs are the stator voltages. The load is considered as a nonmeasured
disturbance.

Design of the control by sliding modes
The outputs yi and 7/2 are the speed 17 and the square of the rotor flux
<E>2 = $2

a 4- $2./3. The goal is to force these outputs to track a given
trajectory. According to the technique presented in Section 14.2, the sliding
surfaces selected are

Si = (yiref ~ V\) - k(yiref ~ Vl) = (&ref - fi) - /I(fire/ ~ O) (14.15)

S2 = (y2ref ~ 2/2) - hfaref ~ to) = (&ref ~ &) ~ h(&ref ~ &) (14.16)

These functions can be regarded as virtual outputs. Then the objective
is to force these outputs to zero to obtain a sliding mode. The dynamic
equation of S\(x, t) is

(a, 14, t) = - fi) - k (fin./ - (14.17)
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If we do not take into account the load disturbance, Equation (14.17)
becomes

:= ai(x,t) + bu(x)usa + bi2(x)us/3

The dynamics of the second virtual output S2(x,t) is

S2(x, u, t) = ref - 2($ra/2(^, w) + [f2(x)} + $r/9/3(ar, u) + [f3(x)f}

-l2{*2
re/-*[*rah(x) + *r0Mx)}}

:= a2(x,t) + b-2i(x)usa + b22(x)us/3
(14.19)

Thus the control is written as

„ _ _ _ bu(x) 612(0;) 1 [[ ai(z,t) 1 [ fcisign(Si)
~ *) 622(x) J [I fl2(x,t) J + L A:2sign(52)

(14.20)
where fcj are the gains of the switching control.

To decrease the high frequency oscillations (chattering), the discontinu-
ous control is softened by means of variable Sign function (see Figure 14.3).
The choice of the parameters lj determines the slope of the sliding surface,
i.e., the convergence speed of the error dynamics when the system is in
sliding mode. In the following section, this technique will be validated on
a specific benchmark.

14.4 Benchmark "horizontal handling"
The objective of benchmark "horizontal handling" implemented on the ex-
perimental set-up located at IRCyN (www.ircyn.ec-nantes.fr/Banc_Essai)
is to allow the study of problems arising within the framework of horizontal
handling, mainly:

• conveyer belt with (at nominal speed) abrupt constraints of load; and

• travelling crane with constraints of controlled accelerations and emer-
gency stop.

This benchmark is checked here with speed sensor and without flux sen-
sor. It can be extended to the same applications without flux and velocity
sensors.
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14.4.1 Speed and flux references and load disturbance
The flux reference is a constant value computed from the plate of the man-
ufacturer (value of peak of the rotor flux $r ref = 0,595 Wb).

The speed reference and the load disturbance are in accordance with
the curves shown in Figure 14.4.
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Figure 14.4: (a) Speed reference and (b) load disturbance

Figure 14.4(a) shows that the reference corresponds to a constant ac-
celeration up to the nominal speed. Then, various torques of disturbance
corresponding to loading and unloading a conveyer belt are applied. For a
time longer than 4s, an emergency stop (electric braking) is applied with
a sinusoidal torque corresponding to the swing of the load on a travelling
crane.

14.4.2 Induction motor parameters (squirrel
cage rotor)

Normal rated power: 1,5 kW
Number of pole pairs: p = 2
Nominal speed: 1430 rpm
Nominal voltage: 220V
Nominal intensity: 6,1 A
Stator resistance: R8 = 1,47 Ohm
Rotor resistance: Rr — 0,79 Ohm
Stator self-inductance: Ls = 0,105 H
Rotor self-inductance: Lr — 0,094 H
Mutual inductance: Msr = 0,094 H

(i.e., rr = 0,119s, a = 0,105)
Inertia (motor and load): J = 25,6 x 10~3 Nm/rad/s2
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Viscous damping coefficient: fv = 2,9 x 10~3 Nm/rad/s.
Constant torque friction: Cs — 0,38 Nm

14.4.3 Variations of the parameters for robustness test
In order to keep the robustness property three cases are considered:

1) Increase of resistances (AJ?S = AHr = +50%);

2) Decrease of resistances (A.RS = A#r = —50%); and

3) Increase of inductances (ALS = ALr = AMsr = +20%).

14.5 Simulation and experimentation results

In this section, some experimental results were obtained using the control
laws for speed and flux proposed in Section 14.3. All the experimental tests
were made on the motor set-up of IRCyN, at Nantes, with the use of the
"horizontal handling" benchmark described in Section 14.4. The results
correspond to the three studied cases. The first case was when the control
law was based on the nominal values of the system parameters. A second
case was when the control was based on stator and rotor resistance value
deviations of -50% with respect to the nominal values. In this case, we
tried to evaluate the robustness of the control despite resistance variation
due to the motor's internal temperature variation. A third and last case
was when the stator, rotor, and mutual inductance, values were deviated
by -20% with respect to the nominal values. In this case the goal was to
evaluate the control robustness with respect to the parameter errors due to
the magnetic saturation. It is important to note that no torque observer
was necessary to apply the sliding control.

The rotor flux component necessary for the control, was obtained by
an observer similar to that in [12]. The choice of the surfaces parameters
(14.3) gave the error trajectories when the sliding mode occured. This
choice was made so that it would not saturate the equivalent controls to
allow the application of the discontinuous control un. The tuning of the
coefficients e\ and £2 of the switching function was a compromise between
the precision and the attenuation of chattering as studied in [4, 9].

14.5.1 Results of simulations
In this subsection, we show the results of four different cases of simula-
tion: the simulation of the nominal system and three other simulations
corresponding to the robustness tests described in subsection 14.4.3:
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• Nominal system
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Figure 14.5: (a) Speed motor and reference; (b) flux (square) and reference

Figure 14.5(a) shows the correct response for a speed trajectory tracking
in spite of a very significant load disturbance (nominal load 10 Nm). The
delay in speed that appears, was introduced by a filter on the references of
flux and speed in order to smooth and limit the amplitude of control and
current in transient.
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Figure 14.6: (a) Stator current and (b) voltage

Figure 14.5(b) shows the response of flux (square value : 0,35 Wb2).
We can see in Figure 14.6(a) a peak of stator current that appeared

right at the time of the motor stopped operating (fire/ — 0). If needed,
these overcurrents can be decreased either by adjusting the filters or by
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decreasing the gains of the discontinuous control. Figure 14.6(b) shows
that the stator voltage was not saturated.

• Tests of robustness

First case: &RS = ARr = +50%
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Figure 14.7: (a) Speed motor and reference; (b) flux (square) and reference

Second case: A.RS - ARr = -50%
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Figure 14.8: (a) Speed motor and reference; (b) flux (square) and reference

Third case: ALS = ALr = AMsr = +20%
From Figures 14.7, 14.8, and 14.9, we can deduct that the sliding mode

control of the induction motor is very robust with respect to parametric
uncertainties as well as with the load disturbance without its measurement
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Figure 14.9: (a) Speed motor and reference; (b) flux (square) and reference

or estimation. For all the studied cases, there is no sensible difference on
the speed trajectories. Nevertheless, for the flux control, there are some
differences for the three parameters variation cases. This result is a way to
understand the sensitivity of this kind of control for future developments.

14.5.2 Experimental results
This subsection gives some experimental results obtained with the use of
the benchmark described in Section 14.4.

Figure 14.10 shows the response to the control of the speed and the flux.

4 .5 6time (s)
4 . 5 .
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Figure 14.10: (a) Speed motor and reference; (b) flux (square) and reference

We can see in Figure 14.10(a) that the dynamic behavior for tracking the
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speed reference is good: in nominal speed case, the application of the load
disturbance causes a transient error of 1% in the speed tracking which is
immediately corrected by the control. When the speed reference is zero, we
perceive that the sinusoidal torque of disturbance causes a small angular
oscillation despite the reaction of the motor control. This result can be
improved by a more precise adjustment of the coefficients of surface speed.

From Figure 14.10(b), we can verify that the flow error is about 1.5%
when the motor reaches its nominal speed. For the situation where the
speed reference is zero the flow error is approximately 1.3%.

The Figure 14.11 shows the measurement of the torque applied to the
rotor of the induction motor.

2 3
time (s)

Figure 14.11: Measured torque

The measured torque is the sum of the disturbance torque, and the
inertial and friction rotor forces. This can be particularly observed for the
transient part of the response.

Figure 14.12 shows the measured stator current and the voltage applied
to the motor.

On these experimental measurements, we can verify that there is no sat-
uration in the control (nor peaks in the absorbed current) by the induction
motor that could make impracticable the implementation of sliding mode
control for a industrial converter.

14.6 Conclusion

This chapter investigated the induction motor sliding modes control. Its
main objective was to verify the applicability of this technique to the speed
and flux controls of the induction motor. This was carried out using a
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Figure 14.12: (a) Stator current and (b) voltage

significant benchmark related to the "horizontal handling" problem. The
design of a control for nonlinear control method was used in terms of non
linear decoupling control. The sliding surfaces were chosen so that the dy-
namics of the speed and flux references tracking errors were linear. The
control carried out the decoupling and the accurate linearization of the
nominal system error dynamics. In case the system was badly identified
or disturbed, one term of discontinuous control designed with a particular
Lyapunov function guaranteed the convergence of the system to the slid-
ing surface. The phenomenon of chattering was limited using a particular
smooth function Sign.

Many simulations and experimental results certified the applicability of
the technique in the context of the tasks related to the "horizontal han-
dling" problem. By simulation, several results certified the robustness of
the technique used with relation to the parameters errors of the model.

The results of this work showed the necessity for better experimental
evaluation of the robustness in relation to the parameters errors and the
observation quality. This prospect will be studied more thoroughly and
applied on our experimental set-up.
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