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ABSTRACT
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In this thesis several aspects of space-time processing and equalization for wire-

less communications are treated. We discuss several di�erent methods of improv-

ing estimates of space-time channels, such as temporal parametrization, spatial

parametrization, reduced rank channel estimation, bootstrap channel estimation,

and joint estimation of an FIR channel and an AR noise model. In wireless commu-

nication the signal is often subject to intersymbol interference as well as interfer-

ence from other users. We here discuss space-time decision feedback equalizers and

space-time maximum likelihood sequence estimators, which can alleviate the impact

of these factors. In case the wireless channel does not experience a large amount

of coupled delay and angle spread, su�cient performance may be obtained by an

equalizer with a less complex structure. We therefore discuss various reduced com-

plexity equalizers and symbol sequence estimators. We also discuss re-estimating

the channel and/or re-tuning the equalizer with a bootstrap method using esti-

mated symbols. With this method we can improve the performance of the channel

estimation, the equalization, and the interferer suppression. This method can also

be used to suppress asynchronous interferers. When equalizers and symbol detec-

tion algorithms are designed based on estimated channels we need to consider how

errors in the estimated channels, or errors due to time variations, a�ect the perfor-

mance of the equalizer or symbol detector. We show that equalizers tuned based on

ordinary least squares estimated channels exhibit a degree of self-robusti�cation,

which automatically compensates for potential errors in the channel estimates.
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pression, robustness.
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Chapter 1

Space-Time Processing in

Wireless Communication

1.1 Introduction

With multiple antennas, received and transmitted signals can be separated

not only with temporal processing but also with spatial processing. We call

the combination of spatial and temporal processing space-time processing.

Space-time processing is a tool for improving the overall economy and ef-

�ciency of a digital cellular radio system by exploiting the use of multiple

antennas. Most current cellular radio modems do not, however, e�ciently

exploit the spatial dimension o�ered by multiple antennas. As outlined in

this chapter, the spatial domain can be used to reduce co-channel interfer-

ence, increase diversity gain, improve array gain, and reduce intersymbol

interference 1. These improvements can have signi�cant impact on the over-

all performance of a wireless network. The aim of this thesis is to develop,

explore and investigate signal processing algorithms that combine spatial

and temporal processing, to attain results which cannot be obtained by

either spatial or temporal processing individually.

1Diversity gain is the gain obtained by using multiple signals, or components of a

signal, that fade independently. Array gain can be de�ned as the gain in signal to noise

ratio that can be achieved with spatial beamforming. Intersymbol interference is the

interference caused by delayed versions of the desired signal.

1



2 Chapter 1. Space-Time Processing in Wireless Communication

Space-time processing in a receiver improves the signal to interference ra-

tio through co-channel interference cancellation, mitigates fading through

improved receive diversity, o�ers higher signal to noise ratio through ar-

ray gain and reduces intersymbol interference through spatial equalization.

Likewise, space-time processing in the transmitter reduces co-channel in-

terference generation, improves transmit diversity and in some cases also

minimizes intersymbol interference generation.

In this thesis we will consider space-time processing algorithms for channel

estimation, equalization and interferer suppression. The use of multiple an-

tennas in a receiver has many advantages but it also has some disadvantages.

From a signal processing point of view, the use of multiple antennas has two

main disadvantages:

� Increased computational complexity.

� Increased di�culty to accurately tune the receiver algorithms based

on short sequences of training data.

We will in this thesis discuss methods that can contribute to alleviate these

problems. As an application we are mainly concerned with wireless TDMA

communication systems although many of the ideas and algorithms can

transfer to other types of systems and channels.

The algorithms, problems and solutions studied in the present thesis are

summarized and introduced in the introductions of each of the chapters

below.

In Chapter 2 we study algorithms for estimation of space-time channels. We

explore the use of a priori information and known structure of the space-time

channel, in order to improve estimates of the channel and of the spectrum

of the noise plus interference. We also discuss joint estimation of an FIR

channel and autoregressive (AR) noise model. Finally we also discuss re-

estimating the channel iteratively utilizing detected symbols as an arti�cially

created training sequence.

In Chapter 3 we present and derive di�erent optimal space-time decision

feedback equalizers and discuss some tuning options for the same equalizers.



1.2. Outline of Space-Time Processing Schemes 3

In Chapter 4 we treat the space-time maximum likelihood sequence estima-

tor. Several approaches to space-time maximum likelihood sequence esti-

mation, which are basically equivalent, as presented. There exists two main

approaches, the log-likelihood approach and the matched �lter approach.

We show how one approach can be derived from the other. We also discuss

tuning options for the maximum likelihood sequence estimator.

In Chapter 5 we present and discuss di�erent ways of performing reduced

complexity space-time equalization. The main idea is that we can often,

to some extent, decouple the spatial and the temporal processing. We gen-

eralize this concept into reduced rank equalization where we show how the

the space-time structure of the channel can be exploited in order to design

equalizers with a simpli�ed space-time structure.

In Chapter 6 we present a method of improving on the equalization and the

interferer suppression by re-tuning the equalizer iteratively, using detected

symbols. We call this bootstrap equalization. Bootstrapping can signi�-

cantly improve the suppression of co-channel interferers. We also present

a method that improves on the suppression of co-channel interferers that

appear outside the training sequence, by utilizing information from adjacent

frames. This method is also combined with bootstrap equalization and the

two methods are found to complement each other.

In Chapter 7 we present a method for designing equalizers that are robust

to errors in the channel estimates and/or time variations in the channel. We

show that an equalizer can be made robust with respect to decision errors,

resulting in shorter error bursts, and that it can be made robust against some

time variations in the channel. Finally we show that an indirectly tuned

space-time decision feedback equalizer, utilizing a sample matrix estimate of

the spatial spectrum of the noise plus interference, is automatically spatially

robusti�ed against channel estimation errors caused by strong co-channel

interferers.

1.2 Outline of Space-Time Processing Schemes

To place the work of the thesis in a wider context, this introductory chap-

ter will outline and classify how space-time processing enters in and a�ect

Wu J Fresnel
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di�erent aspects of a wireless communication system. One classi�cation can

be based on the system architecture, and covers di�erent design choices for

the physical layer of the wireless network (Section 1.3). Another classi�ca-

tion can be based on algorithms and refers to choices of signal processing

algorithms and optimization criteria (Section 1.4). Underlying and a�ecting

both these classi�cations are the characteristics of the propagation channel

that include angle, delay and Doppler spreads (Section 1.5). See Figure 1.1.

Architecture Channel Algorithms

ST Processing

Figure 1.1: Space-time processing classi�cations according to architecture

and algorithms, both a�ected by the channel properties.

1.3 Architecture Based Classi�cation

An architecture oriented classi�cation can be based on di�erent choices of

the physical layer design of the wireless system that is directly a�ected by

space-time processing. We can perform architectural classi�cation along the

three directions shown in Figure 1.2. First, in the Link Structure we can

make choices about where and how space-time processing is to be applied to

the network elements. Next, in Channel Reuse we make choices for reusing

the frequency spectrum. Finally, Multiple Access is an important aspect of

the physical layer that a�ects space-time processing.

1.3.1 Link Structure

The link structure refers to all aspects of space-time processing related to the

radio links between the base station and the subscriber. The link structure,

in turn, can be classi�ed based on the number of antennas at the base and

the subscriber unit, and on the use of space-time processing at the receiver

and at the transmitter. We discuss these issues below.
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Link Structure Multiple Access
     Scheme

Architecture

Channel Reuse

Figure 1.2: Architecture classi�cation.

Space-Time Processing at the Base Station and the Subscriber

unit

Space-time processing using multiple antennas can be applied at the base

station, the subscriber unit or at both locations. The di�erences in propaga-

tion environment, physical limitations and cost constraints result in di�erent

choices of type and number of antennas at the base and the subscriber unit.

Base stations can employ multiple antenna elements more easily because

the size and cost constraints are less restrictive. The use of multiple an-

tennas is an important source of diversity when the correlation between the

antenna elements is not too high. At the subscriber unit, the presence of

local scatterers provides adequate decorrelation with a spacing of 0.3 to 0.5

wavelengths between the antennas. At the base stations, were scatterers

normally are more distant, a spacing of 5 to 10 wavelengths may be needed

to obtain similar decorrelation [51]. For these reasons, the number of an-

tennas, element design, spacing and topology have di�erent drivers at the

base and the subscriber unit. Space-time processing at the base station is

the primary focus today although space-time processing at the subscriber

unit is becoming more feasible. One example of the latter is the use of dual

antennas in the handset in the North American PACS standard and in the

Japanese standard PDC.

Wu J Fresnel
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Receive and Transmit Space-Time Processing

Space-time processing can be used either in receive alone, in transmit alone

or on both links. The factors that in
uence these choices are discussed here.

The key di�erence between the two links is the di�culty in determining the

transmit channel needed for transmit space-time processing.

Space-time processing performance in receive and transmit can be very dif-

ferent due to the di�erences in the knowledge of the associated channels.

In receive, the channel can be estimated (by non-blind or blind methods)

since the signal has traveled through the channel before being observed at

the receiver. Also, the interference is present at the receiver input and can

therefore be characterized and canceled, see Chapter 2. On the other hand,

in transmit, the channel is encountered after the signal leaves the antenna

array. The use of space-time processing in transmit therefore requires prior

knowledge of the channel. Moreover, interference reduction in transmit re-

quires knowledge of the channels to the co-channel subscribers. Again, these

are di�cult to estimate. Both these factors makes transmit space-time pro-

cessing challenging. See [28].

Figure 1.3 shows di�erent link structures obtained when varying the number

of antennas used in receive and in transmit. These options can be associated

with the downlink (base to subscriber) or the uplink (subscriber to base).

Depending on the number of antennas, we can classify the channel as Single

Input (SI) or Multiple Input (MI) for transmit and Single Output (SO)

or Multiple Output (MO) for receive. In the following chapters of this

thesis we shall focus on algorithms for the SIMO channel case, that is, a

single transmit antenna and multiple receive antennas, see Figure 1.3. Some

aspects of the methods discussed may however be applicable to other types

of channels.

1.3.2 Channel Reuse

Channel Reuse Between Cells

The wireless channel can be shared among users in di�erent ways. The dif-

ferent schemes for sharing of the channel are called multiple access schemes.

Wu J Fresnel
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RxSISO

MISO

SIMO

MIMO

Tx

Tx

Rx

Figure 1.3: Link structures obtained for di�erent numbers of antennas at

the transmitter (Tx) and the receiver (Rx).

We can either assign each user a speci�c frequence band. This method is

called frequence division multiple access (FDMA). Another alternative is to

divide the channel into time slots and assign one time slot to each user. This

method is called time division multiple access (TDMA). A third method is

to separate the users by the use of codes. Each user then modulates his

message with a speci�c code. The codes are deigned to be approximately

orthogonal such that the users can be separated. This method is called code

division multiple access (CDMA). Many practical systems are a combination

of two, or even all three, of these methods.

Current TDMA systems employ channel reuse between cells. We expect to

see only one desired signal at the base station or the subscriber unit, and

interfering co-channel signals from other cells.

TDMA systems typically have a reuse factor2, K, ranging from three to

twelve. Smaller reuse factors o�er higher spectral e�ciency. The lower limit

of the reuse factor depends on the tolerance to co-channel interference. Fur-

thermore, one can use sectorization wherein a cell is divided into a number

of equal sectors and the frequencies within the cell are divided among the

sectors. The sectors in a cluster then all use di�erent frequencies. Sector-

ization further reduces the e�ect of co-channel interference. It is typical to

describe a cellular layout as K/L where K refer to the number of cells per

2The reuse factor is the number of cells in a cluster, where the channel allocation is

repeated for each cluster of cells. Cells within a cluster do not use the same frequency.

The reuse factor therefore determines how close a co-channel cell can be located.
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cluster and L refer to the number of sectors per cluster.

CDMA systems generally have a reuse factor of one, i.e. the whole spectrum

is reused in every cell. The cells can also here be divided into sectors where

each sector in general will reuse the whole spectrum.

The wireless link from a subscriber to a base station is called the uplink, while

the wireless link from a base station to a subscriber is called the downlink.

Space-time processing can be used in both the uplink and the downlink to

reduce co-channel interference. This can allow a decreased reuse factor in

TDMA. In the uplink, the base station can use space-time processing to

suppress strong co-channel interferers. In the downlink, the base station

can have directive transmission to minimize interference to other co-channel

users. Space-time processing can also be employed at the subscriber unit to

reduce co-channel interference on both links.

Channel Reuse Within Cells

Considering TDMA, it may be possible to use space-time processing to sup-

port two or more links on the same channel within a cell. We can approach

channel reuse from two view-points, reuse at the base station and reuse at

the subscriber unit, see Figure 1.4. These are discussed below.

Channel Reuse

Subscriber

Base

Single Subscriber

Multiple Subscribers

Single Base

Multiple Base

Figure 1.4: Channel reuse classi�cation.
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Base Centered: Single vs Multi Subscriber Operation

The case when only one subscriber per channel is supported within a cell

is here referred to as the Single Subscriber case (SS). On the other hand,

as mentioned above, it is possible to support reuse within a cell wherein we

support multiple subscribers within the same cell (or sector) on the same

channel. We call this the Multiple Subscriber case (MS). When supporting

multiple subscribers per cell and channel in TDMA systems the signals typ-

ically have to be separated using space-time processing. This can either be

performed with single user detector algorithms as the equalizers and sym-

bol sequence estimators described in this thesis or it can be performed with

multi-user detectors, see for example [127][25][107] and [105].

CDMA systems support multiple subscribers on the same frequency channel.

The subscribers use di�erent spreading codes and can therefore be separated

with time processing alone. However, space-time processing can improve the

performance.

The uplink and downlink in a communication system can have di�erent

channel reuse factors. We can, for instance, support aggressive reuse in

the uplink, since receive space-time processing is easier to implement, and

use less aggressive reuse in the downlink where channel estimation problems

may limit co-channel interference cancellation. In order to balance the total

number of subscribers in both links, asymmetric bandwidth assignment on

the two links is then required.

Subscriber Centered: Single Base Source vs Multiple Base Source

Subscriber units normally receive the downlink signals from one base sta-

tion. However, for subscriber units with multiple antennas it is possible to

receive multiple co-channel signals, carrying di�erent information signals,

from di�erent antennas at the same base station. Typically a high data

rate signal would be split into multiple signals with lower data rates which

are transmitted simultaneously from di�erent antennas on the same chan-

nel. Space-time processing can be used to separate the co-channel signals

and then combine these after demodulation resulting in higher spectral ef-

�ciency. The subscriber unit can do the same thing if it is equipped with

multiple antennas, possibly using polarization diversity. Assuming the sig-

nals are received by the multiple antennas at the base station, they can then
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be separated using space-time processing. See e.g. [78, 131, 31, 27].

1.3.3 Multiple Access

The choice of multiple access (MA), i.e. how the available spectrum is

shared among users, plays a major role in the design of space-time processing

methods due to its e�ect on the characteristics of the co-channel interference.

In TDMA, since the signal is not spread, one or two strong sources of co-

channel interference may be present in the reuse between cell con�gura-

tion [34]. Space-time processing can be used to suppress these few, but

strong, interferers. This can be performed in many di�erent ways and sev-

eral such methods will be discussed in the following chapters of this thesis.

In CDMA, all users share the same channel and are separated by di�erent

spreading codes, allowing time domain processing to reduce co-channel in-

terference. Therefore, in CDMA, the space-time processing has to deal with

a large number of weak interferers. This di�erence a�ects the strategies for

co-channel interference suppression.

We can combine link, channel reuse and multiple access approaches to yield

a variety of di�erent architectures that employ space-time processing. Ex-

ample con�gurations where multiple antennas are used at the base station

together with reuse within cells in a TDMA system are shown in Figure 1.5.

1.4 Algorithm Based Classi�cation

Algorithms for space-time processing can be divided into those used for

channel estimation and those used for receive and transmit processing, see

Figure 1.6. We will discuss algorithms in these groups separately below.

The receive algorithms for TDMA and CDMA are treated separately. We

will discuss algorithms for channel estimation and for TDMA reception in

more detail since these are main applications of this thesis.
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Figure 1.5: Example TDMA con�gurations with either a single subscriber

(SS) or multiple subscribers (MS) transmitting with a single (SI) or multiple

antennas (MI) and receiving with a single antenna (SO) or multiple antennas

(MO).

1.4.1 Channel Estimation Algorithms

Receive Channel Estimation

In receive channel estimation algorithms we can use non-blind or blind meth-

ods. In blind methods, no training signals are available and the underlying

structure of the channel and/or the signal modulation format can be used

to estimate the channel. Blind methods for channel estimation have been an

active area of research. See [81] for a review of these methods. In non-blind

methods, training signals are transmitted along with the information signal

so as to enable channel estimation by the receiver. In this thesis we will

concentrate on non-blind methods using a short training sequence of known

symbols, as in a TDMA system3.

3Blind methods have the disadvantage that they typically require long data sequences

and have di�culties in adapting to rapidly time-varying channels. Furthermore, training

sequences exists in present and future proposed wireless TDMA and CDMA standards.

They occupy at the most about 15 percent of the symbols. Therefore there is at the most

a gain of 15 percent to be achieved by using blind methods.



12 Chapter 1. Space-Time Processing in Wireless Communication

Algorithms

Channel estimation

Receive algorithms

Transmit algorithms

Figure 1.6: Algorithm classi�cation.

In a TDMA system there is typically a short training sequence available

that can be used for channel estimation. Most wireless radio channels can

be well modeled with a discrete time FIR �lter. The most straightforward

way of channel estimation is to estimate the taps in the FIR �lter with a

least squares method. The spectrum of the noise and interference can then,

for example, be estimated as sample matrix estimate for di�erent time lags.

We can, however, identify at least �ve di�erent in which these estimates of

the channel and noise properties can be improved:

1. Structural constraints and a priori information can be utilized

to reduce the number of parameters that need to be estimated.

2. The data can be pre-�ltered or projected onto a subspace to

improve the signal to noise ratio.

3. The number of training data can be increased by utilizing de-

tected symbols during time intervals where the symbol sequence

is initially unknown.

4. Simpli�ed parametric models can be estimated for the the noise

and interference.

5. Joint estimation of the channel and a spatio-temporal noise model.

Di�erent methods that utilize these ways to improve the estimates are pre-

sented in Chapter 2.
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In Section 2.3, the known temporal �ltering in the transmitter and the

receiver is utilized to reduce the number of parameters that need to be

identi�ed. This can improve the estimate of the channel, especially if the

training sequence is short and the pulse shaping performed in the transmitter

(and the receiver) has a long time span. This is, for example, the case in

the North American standard IS-136.

In Section 2.5, the channel is modeled with signal paths which are parametrized

with their directions of arrival and and respective gains. These parameters

are then identi�ed and used to form an improved channel estimate. Here it

is noted that the channel estimate can indeed be improved. However, the

bit-error-rate (BER) of the equalizer is not improved to the same degree.

This has to do with the fact that not all aspects of a channel estimate are

be important, see the discussion at the end of this sub-section.

In Section 2.6, the spatial properties of the channel are exploited in a non-

parametric fashion. The received signal or an initial estimate of the channel

is here projected onto the signal subspace of the received signal. In this way

the impact of noise on the channel estimate is reduced. When the received

signal is projected onto the signal subspace the dimension of the problem

is reduced, which results in lower computational complexity and improved

estimates of the spectrum for the noise plus interference.

In Section 2.7, the number of training symbols is arti�cially increased by

utilizing decided data to re-estimate the channel and the noise plus interferer

spectrum after an initial equalization. The increase in the amount of training

data improves the estimates of both the channel and the spectrum of the

noise plus interference. This improves the equalization and the suppression

of co-channel interferers.

In Section 2.8 we discuss estimating the spatio-temporal spectrum using

the residuals from the channel estimation. We there note, that it may be

di�cult to form an accurate estimate of the spatio-temporal spectrum of

the noise plus interference, when we have many antennas and only a short

training sequence. By restricting us to model only the spatial spectrum of

the interference, it is however often possible to get a useful estimate. The

use of only the spatial spectrum of the noise plus interference in a space-

time equalizer will however result in an algorithm that only performs spatial

interferer suppression.
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In Section 2.9, we discuss joint estimation of FIR channel and a spatio-

temporal AR model for the noise plus interference. From the discussion

in Section 2.9.2, we can understand why an AR model, even a low order

AR model, for the noise plus interference can be useful in the design of

an equalizer or maximum likelihood sequence estimator. The important

observation to make is that the the AR noise model denominator does not

have to model the noise particularly well, it only has to be able to suppress

the noise plus interference as a part of a noise whitening �lter. Such a

method was proposed in [7] where it was used in conjunction with a space-

time MLSE.

An observation with regard to channel estimation is that not all aspects

of a channel estimate are important for equalization. For example, the

estimate of the channel in a spatial dimension that is occupied by a strong

co-channel interferer may be of little importance. The reason for this is

that the dimensions of signal space occupied by the interferer may anyway

be canceled out by the equalizer. In that case, the quality of the channel

estimate in this dimension is of little importance. This e�ect can for example

be seen in the simulations of Chapter 2 in Sections 2.5 and 2.6. It is discussed

further in Section 7.4 of Chapter 7.

Transmit Channel Estimation

In estimation of the transmit channel, the two main methods are the use of

reciprocity and feedback. In the reciprocity method, we use that fact that

the transmit and receive channels at the same frequency and at the same

time are identical according to the principle of reciprocity [123]. Since the

receive channel can be estimated as described earlier, the transmit channel

can therefore sometimes be approximated using this principle.

In frequency division duplexed (FDD) systems, the transmit and receive

frequencies are separated by perhaps 4 to 5% of the carrier frequency. The

channels are then no longer reciprocal, however, if the angular spread of

the signal is small, then the spatial signature of the channel will still be

approximately reciprocal [84]. If the transmit channel cannot be viewed as

reciprocal we may attempt to parametrize the taps in the FIR channel in

terms of signal paths with directions of arrival and gains. This estimate of

the receive channel can then be converted to an estimate of the transmit
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channel. A method that can be used to achieve such channel estimates is

discussed in Section 2.5 of Chapter 2.5. In practice this may be di�cult

utilize though. One problem is that we need accurately calibrated antenna

arrays.

In time division duplexed (TDD) systems, receive and transmit are separated

in time but not in frequence. In principle we can then rely on the reciprocity

and use the estimates of the receive channel as estimates of the transmit

channel. Note however that for time-varying channels the reciprocity will

only be valid if the duplexing time is much shorter than the coherence time.

The accuracy of the transmit channel estimation thus depends upon the

duplexing technique and the channel characteristics.

Another approach for transmit channel estimation uses feedback. The signal

received at the receiver is fed back to the transmitter, allowing the transmit-

ter to estimate the channel, see for example [29]. Alternatively, parameters

of the transmit channel identi�ed at the receiver can be fed back to the trans-

mitter. Once again, the performance of the feedback techniques depends on

the channel characteristics and the nature of the feedback algorithm. Trans-

mit space-time channel estimation o�ers special challenges and remains an

active area of research. See [81] for more details.

1.4.2 TDMA Receive Algorithms

In TDMA, the main tasks to be performed by a space-time receiver are

diversity reception, intersymbol interference equalization, and co-channel

interference suppression. We can classify TDMA algorithms into space-time

processing that is decoupled or joint in the spatial and temporal domains.

Figure 1.7 illustrates this.

Single User Decoupled Space-Time Approach

In space-time processing, we can decouple the space and time processing.

This will lead to a spatial beamformer front end followed by a temporal

processor (equalizer). The pure spatial processor can be used to reduce

co-channel interference while maximizing spatial diversity. The output of
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Figure 1.7: TDMA receiver algorithm classi�cation for single-user and mul-

tiple user space-time processing.

the spatial processor is fed to a temporal processor for intersymbol interfer-

ence reduction and recovery of temporal diversity. The spatial processor can

range from a fully adaptive beamformer to a simpler switched beam system.

The main options for the temporal processor are a linear equalizer (LE), a

decision feedback equalizer (DFE), or a maximum likelihood sequence esti-

mator (MLSE). These receivers, and their MISO space-time generalizations

are introduced in Chapters 3 and 4. A class of robust temporal equalizers,

which include linear equalizers and decision feedback equalizers as special

cases, will furthermore be derived and discussed in Section 7.1 of Chapter 7.

The spatial beamformer and the temporal equalizer can either be tuned

separately, the beamformer �rst and then the equalizer, or they can be tuned

jointly. In Chapter 5, examples of both these approaches are investigated.

In Section 5.2 the problem of tuning a spatial beamformer independently

from a subsequent temporal equalizer is discussed. Since the proper training

sequence for the tuning of the spatial beamformer is typically not known,

a method of introducing some degrees of freedom in the reference signal is

introduced. It is shown that this can improve the performance when there is

an uncertainty in the synchronization of the system. However, this method

of beamforming will likely improve the performance in other more general

situations as well. It will likely be useful in scenarios involving intersymbol
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interference due to delay spread in the propagation channel.

In Section 5.3 the problem of jointly tuning a beamformer and a following

temporal equalizer is addressed. By performing a singular value decompo-

sition of a noise whitened channel, beamformers and temporal equalizers

can be jointly tuned. The method is applied both to decision feedback

equalizers and maximum likelihood sequence estimators. This method can

also be applied to the case when the noise plus interference is modeled by

a space-time AR model. In this case the \beamformer" actually becomes

a space-time MISO �lter which performs spatio-temporal whitening of the

noise plus interference.

Single User Joint Space-Time Approach

In the presence of coupled angle and delay spreads for the desired signal,

i.e. when the spatial and the temporal spreading cannot be decoupled, a

joint space-time processing approach has performance advantages. Joint

space-time processing is also superior, as compared to decoupled space-time

methods, when dealing with delay spread in the co-channel interference.

A number of receiver structures have been proposed, broadly divided into

space-time linear equalizers, space-time decision feedback equalizers, and

space-time maximum likelihood sequence estimators. Several such algo-

rithms are discussed in the following chapters of this thesis.

A problem encountered when tuning the space-time equalizers using a short

training sequence is that if we have many antenna elements, then it may be

di�cult to fully utilize the spatio-temporal spectrum of the noise plus inter-

ference. The tuning of the equalizers can then easily become ill-conditioned

or singular. One solution to this problem is to concentrate on estimat-

ing and utilizing the spatial spectrum of the noise plus interference. This

will result in an equalizer that only suppresses interference in the spatial

domain. When using many antenna elements this may however be good

enough. Another solution can be to estimate a low order AR model for the

spatio-temporal spectrum of the noise plus interference. This is advanta-

geous for two reasons. First, an AR model for the noise plus interference is

more easily estimated than an moving average (MA) model (which in e�ect

is what is done when estimating the spectrum with sample matrix estimates

of di�erent lags) and second, the low order AR model shows up as a low
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order FIR �lter factor in the �lters of the optimal equalizers. When the

channel is modeled by an FIR �lter, and the noise plus interference is mod-

eled by an AR model, then the MMSE optimal DFE will have a structure

with only FIR �lters. This is a good feature since when the �lters of the

equalizer contains IIR �lters we have to worry the location of their poles4.

See also [81, 130, 8, 61, 59, 121, 71].

For purely temporal processing with a single antenna receiver the decision

feedback equalizer will typically be considerably better than the linear equal-

izer and the MLSE will typically be better then the decision feedback equal-

izer. When employing space-time processing and using a relatively large

number of receive antennas the di�erence in performance between the three

equalizers will however be less pronounced [18]. The reason for this is that

by adding the spatial dimension the channel can more easily be inverted

by the linear equalizer. The feedback �lter of the space-time DFE and the

and the sequence estimation of the MLSE will then not add as much to the

performance as in the single antenna, purely temporal, case.

Multi-User Detection

With multiple antennas, joint multi-user detection in TDMA becomes more

robust than with one antenna 5. The spatial dimension helps to separate

multi-user signals. The two main choices are a multi-user decision feedback

equalizer [23, 25, 107, 110, 108, 106] or a multi-user maximum likelihood

sequence estimator, see e.g. [134]. The multi-user decision feedback equalizer

has a computational advantage over the MLSE since its complexity grows

linearly with the number of users, whereas it increases exponentially in the

number of users for the MLSE. An important problem to solve in multi-

user detection is the estimation of the channels to the users. If the signals

are correlated then there can be an advantage of estimating the channels

jointly. However, in this case the number of channel coe�cients can easily

become too many to handle with a short training sequence. In Section 2.4

4For example, a feedback �lter of a decision feedback equalizer with poles close to the

stability boundary can cause long error propagation events.
5If there is multipath propagation in the channel resulting in a delay spread of at least

of the order of one symbol interval, then it is, although di�cult, possible to do some

multi-user detection with only one antenna. If the signalling is binary we can also utilize

the fact that we can create two di�erent signals from one antenna by treating the real and

the imaginary part separately, see Section 1.5.4
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of Chapter 2 temporal parametrization, utilizing the knowledge of the pulse

shaping in the transmitter (and possibly also in the receiver), is used to

reduce the number of parameters to be estimated. It is shown that this can

be valuable in joint multi-user channel estimation.

1.4.3 CDMA Receive Algorithms

We here restrict the discussion to DS-CDMA. In DS-CDMA the main tasks

of the receiver are MA interference suppression and detection. A tree dia-

gram of algorithm choices is shown in Figure 1.8.

CDMA

SU approach

ST-RAKEBeamformer

Correlator

ST-MMSE

MU approach

ST-MLSE ST-Linear

ST-Decorr

Figure 1.8: CDMA receiver algorithms, for single-user and joint multi-user

space-time processing.

There are two main classes of detection schemes for CDMA: the single-user

detection approach and the multi-user detection approach. In the single-

user approach, only one users signal at a time is recognized and the other

signals are treated as noise. In the multi-user detection approach, all users

are detected jointly.

Single-user Detection

The space-time processing can here be decoupled into a spatial beamformer

followed by a simple decorrelating detector using the spreading code. This is

the space-time counterpart of the simple decorrelating receiver. It exploits
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a single received path (�nger) and is useful in environments with no delay

spread caused by multipath propagation. See for example [102].

If several paths (�ngers) are present, the �ltering can be done done jointly

in time and space. The natural generalization of the RAKE-detector would

be the Space-Time RAKE (ST-RAKE) receiver which is a combination of

one beamformer per path followed by a RAKE combiner. This algorithm

can also be viewed as a matched �lter in both the spatial and the temporal

domain. See for example [73].

Multi-user Detection

Although one can conceive spatially and temporally decoupled multi-user

detection schemes, we will here only consider joint space-time multi-user

MLSE detectors and linear detectors. The space-time multi-user MLSE

generalizes from the time-only multi-user MLSE. See [118] and [70]. The

MLSE will be optimal if the channels for all users are known. However, as

in TDMA, it is computationally complex.

The linear detectors are much less computationally complex. Examples of

linear detectors are the space-time decorrelating detector (ST-Decorr) and

the space-time MMSE detector (ST-MMSE), see [70] and [72].

1.4.4 Transmit Algorithms

Space-time transmit algorithms use a variety of techniques to maximize

diversity, minimize generated co-channel interference and also in some sit-

uations pre-equalize the channel for intersymbol interference [81][28]. In

general, since intersymbol interference equalization can be implemented at

the receiver, transmit space-time processing focuses on diversity gain maxi-

mization and co-channel interference reduction. In cases when the transmit

channels for the signal and co-channel users are known, the transmit algo-

rithms can implement optimum space-time weighting to maximize diversity

gain while minimizing generated co-channel interference. Here, again, both

decoupled and joint space-time approaches can be considered, with the lat-

ter o�ering improved performance. In a more likely scenario, the channels of
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co-channel users are unknown and the signal channel is known only approx-

imately. Transmit algorithms may then use simple beamforming with the

beam steered towards the dominant mobiles direction with low side lobes

to reduce co-channel interference generation. In the extreme case when no

channel knowledge is available, the transmit algorithms reduces to pure di-

versity maximization schemes. These schemes convert the space diversity

of the transmit antennas into other forms of diversity that can be exploited

by the receiver. Some examples include phase rolling, delay diversity and

space-time coding [114, 113, 112].

1.5 In
uence of the Channel on Space-Time Pro-

cessing

Space-time processing algorithms are profoundly in
uenced by the channel

characteristics6. A description of the e�ects of the channel characteristics

and the corresponding mitigation techniques are given in Figure 5.6.

- 

- Reduces reciprocity in TDD
- Time varying channel

- Time selective fading

- ISI
- Reduces reciprocity in time

- Frequency selective fading

Space selective fading

    channel

Mitigation

- Reduces reciprocity in
space channel

- Channel tracking
- Reduce TDD turn around

- Time diversity
time

- Equalization/RAKE

-  Frequency diversity
- Angle selectivity

- Space diversity
- Reduce frequency spread in

FDD

Angle Spread

Effect

Doppler Spread

Delay Spread

Figure 1.9: Channel characteristics in
uencing space-time processing.

6In space-time processing, the channel is broadly de�ned to include also the interference

channels.
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1.5.1 Doppler Spread

Doppler spread, induced by the motion of subscribers or scatterers, has

a strong in
uence on space-time processing algorithms in di�erent dimen-

sions. The Doppler spread is large in macro-cells which serve high mobility

subscribers. Also it increases with higher operating frequencies. Doppler

spread is also present in low mobility (microcell) or �xed wireless networks

due to mobility of scatterers (e.g. tra�c). A discussion of Doppler and delay

spreads of mobile radio channels can be found in [51].

In a TDMA system, if the time period of a frame is small compared to the

coherence time of the channel (as in GSM), the channel will be reasonably

constant during the frame, and we do not need to track the channel during

the frame. On the other hand if the frame duration is comparable to, or

longer, than the coherence time of the channel (as in IS-136), the channel

changes signi�cantly and we need to track the channel during the frame.

Although the channel typically does not vary very much during a frame in

GSM it can vary a non-negligible amount if the speed is very high, say on

a high speed train, and the carrier frequence is high, say 1800 MHz. In this

case some improvements can be achieved by designing an equalizer which

will be robust against the anticipated time variations during the frame. How

to design such equalizers is discussed in Section 7.3 of Chapter 7.

Fading can sometimes be combatted in the time domain by interleaving and

coding. This is however only e�ective if the coherence time is shorter than

the interleaver depth. For slowly time varying channels, other forms of di-

versity may be necessary to ensure acceptable link quality, e.g. frequency

hopping. Also, as mentioned in Section 1.4.1, in time division duplex sys-

tems, the reciprocity of the channel is valid only if the channel coherence

time is much larger than the duplexing time.

1.5.2 Delay Spread

Delay spread arises from multipath propagation and can be large in macro-

cell systems with antennas located above the roof tops. It is most pro-

nounced in hilly terrain areas and least pronounced in 
at rural terrain

installations. Microcells using antennas mounted below the roof tops, tend
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to have small delay spreads.

Delay spread a�ects space-time processing algorithms in several ways. In

TDMA systems, if the symbol period is much shorter than the delay spread

of the channel, we can avoid equalizers (as in PACS and PHP). In contrast,

in GSM, the delay spread can be much larger than the symbol period, man-

dating the use of equalizers. In general, combined space and time processing

is more e�ective for delay spread mitigation than time processing alone.

Likewise, in CDMA, if the delay spread is larger than the chip period, we

have inter-chip interference which, however, is usually less insidious than

the intersymbol interference in TDMA. Typically, the diversity in paths is

exploited by a RAKE receiver.

Delay spread in the channel will increase the number of uncorrelated signals

impinging on an antenna array. If there is no delay spread in the channel,

then the number of uncorrelated signals will be equal to the number of users,

desired and undesired, transmitting to the antenna array. Note however

the transmitted signals are assumed to be temporally white. Thus, if the

channels from the di�erent users to the antenna array has a delay spread,

then the number of uncorrelated signals will be increased. Roughly we can

say that each delay spread of a symbol interval adds one uncorrelated signal

per user.

1.5.3 Angle Spread

Angle spread arises from multipath arrivals from di�erent directions. It

is largest at the subscriber unit, where local scatterers may result in 360

degrees angle spread. At the base station, the angle spread is large in mi-

crocells with below roof top antennas. Base stations in macro-cells witness

less angle spread, it is the lowest in rural regions and becomes signi�cant in

urban and hilly regions.

Angle spread in
uences a number of space-time processing issues. First,

high angle spread increases spatial diversity which should be exploited by

space-time processing. Next, the reciprocity of the spatial signature of the

channel is reduced if the angle spread is large [84]. The angle spread also

reduces the e�ectiveness of methods parametrizing the signal in directions
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of arrival since these will be less distinct.

The angle spread and the delay spread will a�ect the spatio-temporal struc-

ture of the channel. The spatio-temporal structure of the channel can be

either coupled or can decouple. If we only have angular spread and no delay

spread in the propagation channel then the overall channel will have a de-

coupled spatio-temporal structure. The channel can then be described by a

temporal �lter, representing the temporal pulse shaping in the transmitter

and the receiver followed by a purely spatial SIMO �lter representing the

spatial spreading of the propagation channel. The spatio-temporal structure

of the channel a�ects the structure and complexity of appropriate space-time

equalizer. This is discussed more in detail in Section 5.3 of Chapter 5.

1.5.4 Di�erent Realizations of a Multi-Channel Receiver

A multi-channel receiver can be realized by using multiple antenna elements

that are spatially separated. There is however many other ways of realizing

a multi-channel receiver.

Polarization diversity is an obvious way to realize multiple channels. Al-

though the two polarizations of the signal may be collected from the same

spatial location, they typically have encountered independently fading chan-

nels. In most of the methods we use here we can simply view the signals as

coming from two independent antenna elements.

Fractionally spaced sampling can be of interest if the symbol sampling fre-

quence is lower than twice the maximum frequence content of the signal.

Fractionally spaced sampling can be handled as a multi-channel receive prob-

lem. The multiple samples during a symbol interval can be treated as if they

were coming from di�erent sensors. The channels will be correlated, but not

identical and can thus aid the equalization or the symbol detection. This

can be viewed as an analogy to the multiple antenna receiver and many

of the techniques applied to spatio-temporal processing can be utilized in

together with fractionally spaced sampling.

Partitioning into real and imaginary part: When the modulation format only

utilizes one of the dimensions in the complex plane, for example if we have

binary phase shift keying modulation, then the real and the imaginary part
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of the signal can be treated as two di�erent signals. Since the transmitted

signal is real (or imaginary) the real and imaginary part of the received signal

will e�ectively be a two-dimensional signal (one real and one imaginary

component). Each antenna element thus provides two signals. In Rayleigh

fading environments, the real and imaginary parts of the received signal will

fade independently.In the simulations presented in this thesis we have in

general not exploited these two dimensions of the signal when dealing with

modulation formats that only occupy one dimension in the complex plane

(the GMSK modulation used in GSM e�ectively being one such modulation

format). It is however easy to incorporate this - simply replace the complex

signals with twice as many real-valued signals. For example, an eight sensor

receiver can then be realized with only four physical antennas. An example

where we have performed separate real and imaginary processing can be

found in Section 3.4.

Multiple spatially separated antenna elements can be arranged in di�erent

ways. We can identify two main con�gurations. Either the antennas can be

closely spaced, say equally spaced, �=2 apart, in a linear or circular array.

This con�guration allows us to identify directions of arrival for the incoming

signals and we can transmit in well de�ned directions. However, if the

signal environment does not contain scatterers located close to the receiving

antenna, it may be the case that the received signals at all antenna elements

fade simultaneously. The close spacing of the antenna elements will then not

be optimal from a diversity point of view. Instead the antenna elements can

be placed far apart such that they experience independently fading channels.

This ensures that we obtain maximum diversity gain. It will, however, then

be very di�cult or impossible to identify from which directions the signals

are arriving. It will likewise be very di�cult or impossible to transmit in any

well de�ned direction. From a reception point of view this con�guration is

most bene�cial, unless we want to exploit the path structure of the received

signal.

1.6 Some Notes on Special Notation

In this thesis we primarily assume time-invariant channels, unless explicitly

stated otherwise. Furthermore, the transmitted symbol sequence, d(t), is in

general assumed to be temporally white. The discrete time index is denoted
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with t.

We will use the delay operator, q�1, and the advance operator, q, de�ned

by

q�1x(t) = x(t� 1) qx(t) = x(t+ 1): (1.1)

An FIR �lter can thus be expressed with a polynomial a(q�1) with complex

valued coe�cients, as

y(t) = a(q�1)x(t) = (a0 + a1q
�1 + : : :+ anaq

�na)x(t)

= a0x(t) + a1x(t� 1) + : : :+ anax(t� na): (1.2)

The above �lter contains only powers of q�1 and is thus causal. In some

cases a �lter will have terms involving both powers of q as well as powers of

q�1. Such a �lter will be referred to as double-sided or non-causal. If the

�lter contains powers of q only, it will be referred to as anti-causal.

Multiple input - single output (MISO) and single input - multiple output

(SIMO) �lters can be represented with polynomial row and column vectors,

respectively, which are denoted by boldface lowercase letters. MIMO �lters

can be represented by polynomial matrices, denoted by uppercase boldface

letters.

A polynomial matrix A(q�1) is said to be stably invertible if det
�
A(z�1)

�
has all its poles strictly inside the unit circle. Then the transfer function

A
�1(q�1) will be stable.

A polynomial matrix A(q�1) is causally invertible if its leading matrix co-

e�cient, A0, is non-singular. Then the transfer function, A(q�1), will be

causal.

The complex conjugate transpose of a �lter (SISO,MISO,SIMO or MIMO)

A(q�1) = A0 +A1q
�1 + : : :+Anaq

�na (1.3)

is de�ned as

(A(q�1))H
4

= A
H(q) = A

H

0 +AH

1 q + : : :+AH

naq
na: (1.4)

This is also generalized to non-causal polynomial matrices.
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The notation Rnn(k) stands for the lagged covariance

Rnn(k) = E[n(t)nH(t� k)] (1.5)

and the notation Rnn normally means

Rnn = Rnn(0) = E[n(t)nH(t)]: (1.6)

Given an Hermitian and positive semi-de�nite matrix, R, we de�ne the

square root, R1=2, as the positive semi-de�nite matrix such that

R = R
1=2(R1=2)H : (1.7)

For simplicity we de�ne the notation

R
H=2 4

= (R1=2)H (1.8)

such that we can write

R = R
1=2
R

H=2 (1.9)

We will often discuss relative errors with respect to matrices and vectors.

As a measure of the relative error in the approximation bA of the matrix A

we will typically use

Relative error in bA 4

=
k bA�A k2
k A k2

(1.10)

where the notation k � k2 represents the Frobenius norm, i.e. the square

root of the sum of the square of the components.
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Chapter 2

Channel Estimation

2.1 Introduction

We will here consider the estimation of wireless communication channels

from the transmitted symbols to received sampled signals. These channels

include the modulation process, the propagation channel as well as trans-

mitter and receiver �lters. We also discuss the modeling of the noise and

interference that a�ect the received signal.

A general baseband model of a wireless communication channel is depicted

in Figure 2.1. The symbols, d(t), representing source and channel coded

information (in discrete time), are �rst modulated onto a signal (pulse shap-

ing) and are then transmitted over the propagation channel to the receiver.

�

��

- Modulation

(pulse shaping)
- - - HH -

?
d(t)

Propagation

channel

Receiver

�lters
y(t)+

n(tc)

T

Figure 2.1: Model of a scalar wireless communication channel.

29
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Additive thermal noise and interference is represented by the term n(tc)
1,

where tc denotes continuous time. The received combination of desired sig-

nal and noise plus interference is �ltered in the receiver prior to sampling.

This will in general cause the noise component in the sampled signal to be

temporally colored.

The propagation channel includes multipath propagation which causes spa-

tial and temporal spreading of the signal, i.e. the signal arrives from di�er-

ent directions and with di�erent time delays. If the source, the receiver or

the environment is moving or changing then the channel will also be time-

varying. We will here however mostly be considering time-invariant channel

models. This can be justi�ed when considering a TDMA scheme if the frame

lengths are short.

The baseband channel consisting of the modulation, a time-invariant prop-

agation channel and the receiver �lters, can typically be modeled by a time-

invariant discrete-time FIR �lter as

y(t) = b(q�1)d(t) + n(t) (2.1)

where t is an integer representing the discrete time, y(t) is the sampled re-

ceived signal, b(q�1) = b0+b1q
�1+: : :+bnbq

�nb is the FIR �lter representing

the channel for the desired signal, d(t) is the transmitted discrete symbol se-

quence and n(t) is the noise plus interference at the sampling instants. The

received signal y(t) is typically a complex valued signal with an in-phase

(real) and a quadrature (imaginary) component. Likewise the coe�cients

in the FIR �lter, b(q�1), are typically complex valued. Depending on what

type of modulation is used, the transmitted symbols, d(t), will either be real

or complex valued.

In order to model the communication channel with an FIR �lter as in (2.1)

we need to be able to describe the modulation process with a linear FIR

model. The modulation applied in the GSM standard is an example of a

modulation that is non-linear. However, as demonstrated in Appendix 2.A.1,

it can be approximated with a linear model after some processing.

If we have multiple antennas at the receiver we can collect the received

signals in a column vector, y(t) = [y1(t) y2(t) : : : yM (t)]T , where M is the

1The thermal noise is added in several stages of the receiver but we have here chosen

to represent all noise e�ects by a term added prior to any �ltering in the receiver.
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number of antennas. The received signal can now be modeled as

y(t) = b(q�1)d(t) + n(t) (2.2)

where b(q�1) is a polynomial column vector containing the polynomial chan-

nels bi(q
�1), of degree nb, to the individual antennas

b(q�1) = [b1(q
�1) b2(q

�1) : : : bM (q�1)]T : (2.3)

The noise plus interference to the di�erent antennas, ni(t), is represented

by the vector n(t)

n(t) = [n1(t) n2(t) : : : nM (t)]T : (2.4)

The noise plus interference will in some of the considered cases be modeled

as as a sum of interfering co-channel users plus thermal noise. For the case

with multiple antennas this can be expressed as

n(t) =

KX
k=1

bk(q
�1)dk(t) + v(t) (2.5)

where K is the number of interfering co-channel users, bk(q
�1) represent

their respective vector FIR channels, dk(t) are the corresponding symbol

sequences and v(t) is the thermal noise.

Estimation of the wireless channel is of interest for many reasons. A main

reason is that knowledge of the channel can be a step in the design and tuning

of the detectors. The detector can for example be an equalizer or a maximum

likelihood sequence estimator. Another reason for estimating the uplink

channel from the mobile to the base-station is that this estimate can be used

for estimating the downlink channel to optimize downlink transmission.

If the frequencies for the uplink and the downlink transmissions are the

same, as in a time division duplexing system, then the downlink channel is

basically the same as the uplink channel. If the frequencies in the up- and

downlink are di�erent, as in a frequency division duplexing system, it may

be necessary to parametrize the channel estimate in terms of directions of

arrival and their associated path gains. An example of such an approach is

presented in Section 2.5.

When using multiple receive antennas, the quality of the channel estimates

will be especially important. With many antenna elements the potential
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improvements in the BER of a model based equalizer by using better channel

estimates is larger than when only one antenna is used. The reason for this is

that with multiple antennas it is possible to form very deep nulls suppressing

interferers as well as high gains amplifying the desired signal. However, in

order to achieve the maximum improvement, the coe�cients of the space-

time equalizer have to be accurately tuned.

The most straightforward approach for estimating a wireless channel, as the

one in (2.1), is to directly estimate the coe�cients of the FIR model of the

channel. The coe�cients of this FIR �lter can be estimated using a least

squares approach as shown in Section 2.2.

The residuals from this channel estimation can be used to estimate the

space-time covariance matrix for the noise plus interference, n(t), in (2.2)

by forming sample-matrix estimates of the covariance for di�erent time lags,

as described in Section 2.8.

Since channel models in general, and spatio-temporal noise models in par-

ticular, will have low accuracy when their parameters are estimated using

few data, ways to improve upon the basic least squares estimate of the FIR

parameters will be explored in this chapter. The estimates of the channel

and noise properties can be improved in at least �ve di�erent ways:

1. Structural constraints and a priori information can be utilized

to reduce the number of parameters that need to be estimated.

2. The data can be pre-�ltered or projected onto a subspace to

improve the signal to noise ratio.

3. The number of training data can be increased by utilizing de-

tected symbols during time intervals where the symbol sequence

is initially unknown.

4. Simpli�ed parametric models can be estimated for the the noise

and interference.

5. Joint estimation of the channel and a spatio-temporal noise model.

We will in this chapter utilize all �ve principles, alone or in combination.

The following main methods will be explored and suggested.
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Utilizing known factors in the channel impulse response: When

we model the total channel from the transmitted symbols to the received

samples as an FIR channel, we have not used of the fact that the pulse shap-

ing performed in the modulation is known. The only part of the channel

we really need to estimate is the propagation channel and the part of the

transmitter and receiver �lters that are unknown. Such an approach has

been presented in [75] and for the special case of a GSM channel in [89]. We

will in Sections 2.3 and 2.4 consider an approach that is slightly di�erent.

In its simplest form, it concatenates an unknown discrete time FIR �lter

modeling the propagation channel with a known discrete time FIR �lter

modeling the pulse shaping in the modulation and known parts of the re-

ceiver �lter. However, discrete-time FIR models of the pulse shaping, etc.,

cannot be determined completely from their known continuous-time shapes.

Instead, the total channel can be approximated as a sum of several unknown

discrete-time FIR �lters representing the propagation channel, each multi-

plied by known FIR �lters. The known FIR �lters are sampled versions

of the pulse shaping function, sampled with di�erent speci�c sampling o�-

sets. By increasing the number of branches, the model can be arbitrarily

re�ned. Fractionally spaced sampling can also be introduced. We now only

need to estimate the coe�cients of the unknown FIR �lter representing the

propagation channel.

In Section 2.4 the method of utilizing pulse shaping information presented

in Section 2.3 is generalized and applied to multi-user channel estimation.

When we want to estimate channels to multiple user jointly it is of great im-

portance to keep the number of parameters small. The temporal parametriza-

tion helps in doing this and we can see in the simulations that it pays o�.

By utilizing the pulse shaping information we can estimate the channels to

more users jointly.

Parametrizing the spatial structure of the channel: If the signals

arrive to an antenna array from a few directions only, then we may model the

channel in terms of a few signal paths parametrized in angles of arrival and

gains. Such an approach using a method called CDEML [15] is investigated

in Section 2.5. In the scenario studied in Section 2.5.3 we can see that the

performance measured in terms of equalizer BER is improved. The largest

improvement is however achieved when the correct number of signal paths

is assumed. This is of course a potential weakness with the method.
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In Section 2.6, a di�erent use of the spatial channel structure is presented.

This is a non-parametric method, based on the fact that a model of a typ-

ical space-time channel will not utilize all its available degrees of freedom.

The channel, as well as the desired signal, lies in a subspace de�ned by the

dominant eigenvectors of the spatial signal covariance matrix. By projecting

either the taps of the channel [74] or the received signal samples onto this

subspace, the performance of the channel estimation and the subsequent

equalization can be improved. Projecting the received signal onto this sub-

space turns out to be particularly e�ective. By only retaining the signi�cant

components in the subspace, a reduction of the dimension of the problem is

furthermore achieved. This results in a better estimated spectrum for the

noise plus interference as well as in reduced complexity for all subsequent

processing.

It should be noted that a projection of the taps of the channel estimate or

of the received signal samples onto the signal subspace will not suppress

co-channel interferers, since the interference will be contained in the signal

space. The attained improvements are partly due to a removal of noise

components, and thus constitutes a form of noise-reducing pre-processing.

The performance improvement is also due to the reduced dimension, which

will facilitate the estimation of the covariance matrix for the noise plus

interference.

Utilizing decided data in the channel and noise estimation: Most

of the channel estimation schemes in this chapter are based on short se-

quences of training data. After an initial equalization and estimation of the

transmitted data symbols in a TDMA frame, the channel can however be

re-estimated utilizing all, or a part of, the symbols in the frame. Unless

there are too many errors in the initial estimates of the data symbols, this

new channel estimate will be improved. The procedure can be repeated

by, re-estimating the symbols and re-estimating the channel. In Section 2.7

this method, here called bootstrapping, is presented. Channel estimation via

bootstrapping is a good way to handle co-channel interferers. The arti�cially

created long training sequence reduces the channel estimation errors intro-

duced by the strong co-channel interferers. The estimate of the noise plus

interference covariance matrix is also improved, which is important when

suppressing co-channel interferers.
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Estimation of the spatial covariance structure only: In many cases,

it may not be feasible to utilize the full space-time spectra, or the covariance

matrices involving many time lags, since their estimates will have poor accu-

racy when based on few data. One solution to this problem is to only utilize

the spatial spectrum of the noise plus interference, i.e. the noise covariance

matrix for lag zero. This will result in space-time equalizers that suppress

the noise plus interference spatially, see Chapters 3 and 4.

Estimation of a space-time AR model for the noise plus interfer-

ence: A good way of catching some of the spatio-temporal features the

noise and interference spectrum is to model it as a space-time AR process

and estimate this noise model jointly with the channel for the desired sig-

nal. These estimates can then be used in a space-time equalizer in order to

realize space-time supression of the interferers. This was proposed in [7] in

conjunction to an MLSE. This method can be very useful when the number

of strong interfering signals are more than can be handeled with spatial-only

interference suppression. From the discussion in Section 2.9.2, we can un-

derstand why an AR model, even a low order AR model, for the noise plus

interference can be useful in an equalizer or maximum likelihood sequence

estimator. The important observation to make is that the the AR noise

model denominator does not have to model the noise particularly well, it

only has to be able to suppress the noise plus interference as a part of a

noise whitening �lter. Furthermore, the AR-model for the noise plus inter-

ference is easy to utilize in the design of either a space-time DFE as described

in Section 3.2.2 of Chapter 3 or with a space-time MLSE as described in

Chapter 4. An example AR modeling of the noise plus interference combined

with a space-time DFE can be seen in one of the simulations in Section 3.4.

With a large number of antennas antennas or a high order of the AR noise

model, the number of parameters can however become large compared to

the number of available equations. This can make them potentially di�cult

to estimate accurately, especially if the SNR is not high enough. It should

also be noted that this method may be combined with the Bootstrap chan-

nel estimation in Section 2.7. The extra arti�cial training symbols achieved

with the Bootstrap method can potentially help the estimation AR models

when using a large number of antennas.
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2.2 Directly Parametrized FIR Channel Estima-

tion

If we assume that a known sequence of training symbols, fd(t)gN
t=1, is avail-

able, then a straightforward way to estimate the channel between the trans-

mitted symbols and the received samples at one antenna is to model it as

a scalar FIR channel as in (2.1) and estimate the coe�cients with a least

squares method. The received signal, y(t), is thus modeled as

y(t) = b(q�1)d(t) + n(t) (2.6)

where y(t) is the received signal, d(t) is the transmitted symbols, n(t) is

additive thermal noise and interference and

b(q�1) = b0 + b1q
�1 + : : :+ bnbq

�nb (2.7)

is a FIR �lter model of the total scalar channel.

Alternatively, in vector notation we can write

y(t) = bd(t) + n(t) (2.8)

where d(t) is a column vector containing delayed transmitted symbols

d(t) = [d(t) d(t� 1) : : : d(t� nb)]T (2.9)

and b is a row vector containing the FIR �lter taps

b = [b0 b1 : : : bnb]: (2.10)

The error between the true received signal and the model of the received

signal, measuring over the training sequence data fd(t); y(t)g, t=1,2,...,N)

is given by

J =

NX
t=nb+1

jy(t)� bd(t)j2: (2.11)

The parameter row vector, b, that minimizes this norm is given by the

standard least squares solution [87]

b̂LS = R̂
H

dyR̂
�1

dd
(2.12)
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where

R̂dy =
1

N � nb

NX
t=nb+1

d(t)yH(t) (2.13)

and

R̂dd =
1

N � nb

NX
t=nb+1

d(t)dH(t): (2.14)

If we have multiple antennas at the receiver we can collect the received

signals in a column vector, y(t) = [y1(t) y2(t) : : : yM(t)]T , where M is the

number of antennas. The received signal can now, as in (2.2), be modeled

as

y(t) = b(q�1)d(t) + n(t) (2.15)

where b(q�1) is a polynomial column vector containing the polynomial chan-

nels bi(q
�1), of degree nb, to the individual antennas

b(q�1) = [b1(q
�1) b2(q

�1) : : : bM (q�1)]T : (2.16)

The noise plus interference to the di�erent antennas, ni(t), is represented

by the vector n(t)

n(t) = [n1(t) n2(t) : : : nM (t)]T : (2.17)

Switching from polynomial notation to matrices and vectors the received

signal channel can alternatively be modeled as

y(t) = Bd(t) +n(t) (2.18)

where B is the M � (nb+ 1) channel matrix

B =
�
b
T

1 b
T

2 : : : b
T

M

�T
(2.19)

with the coe�cients of the polynomials bi(q
�1) in the vectors

bi = [bi0 bi1 : : : binb] (2.20)

and d(t) is the vector with delayed symbols in (2.9).
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Each row, bi, in the channel matrix thus contains the channel coe�cients for

the channel to a speci�c antenna element. The FIR least squares estimate

for each row in (2.19) is given by (2.12). By combining these estimates we

can se that the FIR least square estimate of the channel matrix B can be

written as

B̂LS = R̂
H

dy
R̂
�1

dd
(2.21)

where

R̂dy =
1

N � nb

NX
t=nb+1

d(t)yH(t) (2.22)

and where R̂dd is given by (2.14).

2.3 Temporal Parametrization

By modeling the total channel between the transmitted symbols and the

received samples as a directly parametrized FIR channel one does not utilize

the fact that this channel includes the known e�ects of pulse shaping due

to modulation at the transmitter and �ltering in the receiver. By utilizing

this knowledge, the channel estimate can be improved since the number of

parameters to be estimated is reduced.

A commonly used channel estimation method for GSM channels that utilizes

pulse shaping information can be found in [89]. Here the received training

part of the signal is correlated with the modulated training sequence. The

training sequence is constructed so that the correlation approximately will

give the unknown part of the channel, i.e. excluding the pulse shaping.

In [75] a method for channel estimation is presented that discretizes the

convolution between the continuous-time pulse shaping function and the

\unknown" continuous-time channel impulse response. This results in a

parametrization of the total channel in terms of parameters for the unknown

part of the channel. This parametrization is then used in order to estimate

the total channel.

The channel estimation method presented here also derives a parametriza-

tion of the total channel in terms of parameters for the unknown part of
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the channel. The approach to the modeling is however di�erent from that

in [75]. The method considered here is based on an approximation which

uses a set of pulse shaping functions sampled at di�erent time instants. This

can approximately be viewed as an interpolation2 between sampled versions

of the pulse shaping function with di�erent o�sets in the sampling instants,

similar to the method used in [56] to introduce some degrees of freedom in

the reference signal for a sample matrix inversion beamforming algorithm.

The method in [75] is formulated as a method for multiple antennas. A

closer study however reveals that the channel estimation to the di�erent

antennas decouples and it is thus a purely temporal method. The method

considered here is only presented as a purely temporal method. In the

simulation example presented in Section 2.3.3, multiple antennas are used,

but the channel estimation is applied to each of the antennas independently.

Since the method presented here and the method in [75] are based on similar

principles it is believed that they are equivalent in their performance. The

method presented here can however adds useful insight into the modeling of

the channel.

Other approaches where pulse shaping information is used for channel esti-

mation can also be found, for example, in [43], [49] and [50]. A blind method

using pulse shaping information is presented in [20].

2.3.1 Channel Modeling

In continuous-time, a linear communication channel with linear modula-

tion can be modeled by a linear pulse shaping �lter, p(tc), concatenated

with a linear �lter, h(tc), representing the propagation channel. In the

pulse shaping �lter we can include all known linear �ltering which is per-

formed both at the receiver and at the transmitter. Any unknown �ltering

in the transmitter and the receiver can be included in the model of the

unknown propagation channel. This continuous-time model is depicted in

2Since the approximation can be scaled in absolute magnitude, and more than two

sampled pulse shaping functions can be involved, it will however not be interpolation in

the true sense but rather a linear combination of the sampled pulse shaping functions.

The word \interpolation" will however be used here in this wider sense. This modeling is

illustrated below for two di�erent pulse shaping functions used in GSM [24] and IS-136.
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n- - -
? HH-

n(tc)

d(t) y(t)+

Pulse shaping Propagation channel

T
p(tc) h(tc)

Figure 2.2: Continuous-time channel model where p(tc) represents all known

pulse shaping and �ltering at the transmitter and the receiver.

- - -n?b(q�1) y(t)+d(t)

n(t)

Figure 2.3: Discrete-time FIR channel model describing the symbol-spaced

received signal y(t).

Figure 2.2. The resulting discrete-time channel can be modeled with an

FIR �lter, b(q�1) = b0 + b1q
�1 + : : : + bnbq

�nb, as in Figure 2.3. By using

a known training sequence the taps in b(q�1) can be estimated with a least

squares method. However, by estimating b(q�1) directly we do not utilize

the a priori knowledge of the pulse shaping �lter p(tc).

A �rst step towards incorporating the a priori knowledge of the pulse shaping

�lter into the discrete-time channel model is to sample the impulse response,

p(tc), T-spaced (symbol spaced) and form an FIR �lter p(q�1) from these

samples. The discrete-time model then becomes p(q�1) followed by a T-

spaced discretization, h(q�1), of the propagation channel h(tc). This model

is depicted in Figure 2.4.

The channel estimation is now restricted to estimating the coe�cients of the

- - -
?n -x(t)

d(t) p(q�1) y(t)+h(q�1)

n(t)

Figure 2.4: Discrete-time channel model with a pulse shaping �lter.

.
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FIR �lter h(q�1), using the \modulated" signal x(t) as the input signal. A

potential problem with this method is that the model may be too coarse.

When designing p(q�1) we have to choose where to sample the pulse shaping

function p(t). For a pulse resulting from the modulation of a single symbol

passing through the system and being sampled at these instants, this will

be a perfect model. Such a pulse will be represented by a single tap in the

channel h(q�1).

However, for a pulse passing through the channel and being sampled at time

instants in between the chosen sampling points of p(t), the model will not

be perfect. The approximation of such a sampled pulse will essentially be a

combination of two shifted versions of the sampled pulse shaping function,

p(q�1). Apart from a possible scaling factor this can be viewed as an inter-

polation between the two shifted pulse shaping �lters. This will result in a

representation with essentially two adjacent taps in the channel h(q�1).

If improved accuracy is desired in the model, more than one sampled ver-

sion of the pulse shaping function p(t) (similarly to [56]) can be used as in

Figure 2.5. The modeling of the channel is here divided into two branches

with two di�erent sampled versions of the pulse shaping �lter, p0:0(q
�1) and

p0:5(q
�1), with their sampling instants o�set by half a symbol interval. The

subscript refers to the o�set of the �lters center tap from the center or peak

of the pulse shaping function p(t). See the examples depicted in Figures 2.9

and 2.10, respectively.

Each discrete-time pulse shaping �lter is followed by a discrete-time chan-

nel �lter, h1(q
�1) and h2(q

�1) respectively. Each pulse passing through the

system will now be represented as a single tap in h1(q
�1) or h2(q

�1) or a com-

bination of two or more adjacent taps. Again this can be viewed as an inter-

polation among adjacent (possibly more than one) sampled and shifted pulse

shaping functions. Note that the interpolation is now performed among T/2-

spaced sampled and shifted pulse shaping functions p0:0(q
�1) and p0:5(q

�1).

This interpolation is thus improved compared to the T-spaced interpolation

in Figure 2.4. If an even �ner approximation is desired, a larger number of

pulse shaping �lters, with less spacing between the sampling instants, can

be used.

Fractionally spaced sampling, with an oversampling factor of 2, can be rep-

resented in the continuous-time model by introducing a positive time shift

of -T/2 before an extra sampler, as showed in Figure 2.6. By using more
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x1(t)

Figure 2.5: An improved discrete-time channel model utilizing multiple pulse

shaping �lters.
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n(tc)

d(t) +p(tc) h(tc) y(t)

y(t+ T
2
)

T

T

Figure 2.6: Continuous-time channel model with fractionally spaced sam-

pling, where the block �T

2
represents a positive time shift of half a symbol.

such branches �ner fractionally spaced sampling can be introduced in the

model.

The discrete-time model obtained by introducing fractionally spaced sam-

pling in the scheme of Figure 2.5 is displayed in Figure 2.7. The sampled

pulse shaping functions p�0:5(q
�1) and p0:0(q

�1) for the \T/2-branch" will

have their sampling instants o�set by -T/2 from p0:0(q
�1) and p0:5 in the \T-

branch". It is important to note though that the same channel �lters h1(q
�1)

and h2(q
�1) can be used in the two branches. The reason for this is that

what is a good interpolation in both the \T-branch" between p0:0(q
�1) and

p0:5(q
�1) will also be a good interpolation between p�0:5(q

�1) and p0:0(q
�1)

in the \T/2-branch". An important consequence of this is that the num-

ber of parameters to be estimated in the fractionally spaced channel model

does not increase while the number of equations does due to the extra data

points. The estimates of the channel �lters h1(q
�1) and h2(q

�1) can thus

be improved with fractionally spaced sampling.

An alternative way of presenting the model in Figure 2.7 is to exchange



2.3. Temporal Parametrization 43

d(t) n n

n n

-

-

-

-

-

-

-

-

-

y(t+ T
2
)-

-

-

?

?

A
AAU

�
���

A
AAU

�
���

p0:0(q
�1)

p0:5(q
�1)

p�0:5(q
�1)

p0:0(q
�1)

x11(t)

x21(t)

x12(t)

x22(t)

+ +

+ +

h2(q
�1)

h1(q
�1)

h2(q
�1)

h1(q
�1) n(t)

n(t+ T

2
)

y(t)

Figure 2.7: Discrete-time channel model with fractionally spaced sampling

and multiple pulse shaping �lters per sampling branch.

places between the pulse shaping and channel �lters as seen in Figure 2.8.

In this description it is clear that the same channel �lters can be used in

the \T-branch" and the \T/2-branch". One can also interpret the taps in

the channel �lters, h1(q
�1) and h2(q

�1), as every second tap (even and odd

respectively) in a T/2-spaced channel model.

2.3.2 Channel Estimation

For clarity of the presentation the equations below are presented for the

case with T/2-spaced fractional sampling and two pulse shaping �lters per

branch as in Figure 2.7. The equations can however easily be extended to

any amount of oversampling and any number of pulse shaping �lters per

branch.

Let us arrange the fractional samples of the received signal in a row vector

y(t) = [y(t) y(t+
T

2
)]: (2.23)
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Figure 2.8: Re-ordered structural channel model with fractionally spaced

sampling.

This signal vector can now be expressed as

y(t) = b(q�1)d(t) + n(t) = h(q�1)P (q�1)d(t) + n(t) (2.24)

where b(q�1) is a polynomial row vector containing the channel polynomials

corresponding to the fractionally spaced samples. Furthermore, the pulse

shaping matrix, P (q�1), is given by

P (q�1) =

�
p0:0(q

�1) p�0:5(q
�1)

p0:5(q
�1) p0:0(q

�1)

�
(2.25)

and the channel vector h(q�1) is given by

h(q�1) = [h1(q
�1) h2(q

�1)]: (2.26)

The vector n(t) = [n(t) n(t+T
2
)] represents the fractionally spaced sampled

additive noise.

By using the \modulated" signal, cf Figure 2.7

X(t) = P (q�1)d(t) (2.27)
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the received signal can now be written as

y(t) = h(q�1)X(t) + n(t): (2.28)

We see that we have a multiple-input multiple-output identi�cation problem

for estimating the channel h(q�1). This can, as shown below, be solved as

a least squares problem.

In order to form a system of equations we vectorize equation (2.28) giving

y(t) = hX (t) + n(t) (2.29)

where

h = [h10 h11 : : : h1nh h20 h21 : : : h2nh] (2.30)

and

X (t) =

�
�x11(t) �x12(t)

�x21(t) �x22(t)

�
(2.31)

with

�xij(t) = [xij(t) xij(t� 1) : : : xij(t� nh)]T : (2.32)

The unknown channel parameter vector h can now be estimated with the

least squares method as

ĥ = R̂yX R̂
�1

XX (2.33)

where

R̂yX =
1

tmax � tmin + 1

t=tmaxX
t=tmin

y(t)XH(t) (2.34)

and

R̂XX =
1

tmax � tmin + 1

t=tmaxX
t=tmin

X (t)XH(t): (2.35)

An estimate of the total channel b(q�1) is then obtained as

b̂(q�1) = ĥ(q�1)P (q�1): (2.36)
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The time instants tmin and tmax represent the minimum and maximum time

samples of the used training data. Due to the pulse shaping, the taps at the

beginning and the end of the channel b(q�1) will be small. Extending the

training sequence with a couple of zero elements will improve the channel

estimate if the SNR is low since more equations are then being used. At

high SNR it could however worsen the channel estimate since an incorrect

assumption is made when extending the training sequence with zeros. In

the simulations presented below, the training sequence was extended with

two zero elements on either side.

In order to simplify the presentation, it has here been assumed that all prop-

agation channel polynomials hi(q
�1) have the same number of coe�cients.

This is however not necessary. For example, if the time delays in the propa-

gation channels only span one symbol interval, [0,T], then the q�1 term, h21,

in h2(q
�1) is not necessary since it extends the possible time delays to the

interval [T,1.5T]. Only the zero order coe�cient, h20, is required and con-

sequently coe�cients associated with larger delays should not be included

in the polynomial h2(q
�1). The parameter vector h and the regressor X (t)

should be reduced accordingly. The removal of super
uous parameters will

lead to a better estimation of the remaining parameters since unnecessary

degrees of freedom have been removed.

By changing the number of pulse shaping �lters per branch and their spacing

and removing unnecessary coe�cients in the channel �lters hi(q
�1), an ar-

bitrary re�ned model, spanning an arbitrary delay spread, can be obtained.

2.3.3 Example

To illustrate the use of pulse shaping information in channel estimation we

have here applied it to two di�erent pulse shapes: a derotated linearization

of the GMSK modulation with BT=0.3 as in GSM, see Appendix 2.A.1, and

a raised cosine pulse with a roll-o� factor of 0.35 as in the North American

standard IS-136. In both cases binary signaling is assumed. For the GSM

signal, a receiver �lter modeled as a fourth order Butterworth �lter with a

bandwidth of 90 kHz, has also been included.

A channel with independently Rayleigh fading taps, of the same average

power, with the delays 0, 0.25, 0.5, 0.75 and 1.0 symbol periods has been
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used as a test channel. The channels were constant during each frame but

independently fading between frames. The receiver had two antenna ele-

ments.

Five di�erent channel estimation algorithms were used. Three utilizing the

pulse shaping information and two using a directly parametrized FIR chan-

nel model. The three algorithms utilizing the pulse shaping information

used T-,T/2- and T/3-spaced interpolation respectively, spanning delays in

the interval [0,T]. The two FIR channel models used 6 and 4 taps with a

delay of 1 and 2 taps respectively. The FIR channel taps were estimated

with a standard least squares method. All methods used the same num-

ber of training data for the channel estimation in the GSM and the IS-136

examples respectively. For the GSM pulse 26 symbols and for the IS-136

pulse, 14 symbols were used in the training sequence3. The equalization was

performed with an MLSE operating on a channel truncated to a pure delay

of one tap followed by 5 taps. This truncation did not a�ect the result-

ing BER signi�cantly except possibly for high SNR. The MLSE used was a

multi-channel MLSE assuming white Gaussian noise, see for example [59].

In Figures 2.9 and 2.10, the taps of the selected pulse shaping polynomials

can be seen for the linearized GSM pulse and IS-136 pulse respectively. For

the GSM pulse, the fourth order lowpass Butterworth receiver �lter with

bandwidth 90 KHz has been included in the pulse shaping function. The

dotted line represents T-spaced interpolation between time shifted versions

of p0:0(q
�1) and p�0:5(q

�1) in the \T-branch" and \T/2-branch" respec-

tively. We can see that due to the smoother GSM pulse, the T-spaced

interpolation in Figure 2.9 will be much better for this pulse as compared

to the IS-136 pulse in Figure 2.10.

In Figures 2.11 and 2.12, the relative channel estimation errors4 for the T,

T/2 and T/3 spaced interpolation can be seen for the GSM and the IS-136

pulses respectively. Note that the channel error is relatively small for the

GSM pulse with T-spaced interpolation. This agrees with the dotted inter-

polation lines drawn in Figure 2.9. The major part of the improvement in

the modeling comes when going from T-spaced interpolation to T/2-spaced

interpolation. The improvement between T/2-spaced and T/3-spaced inter-

3This corresponds to the number of training symbols in the respective systems.
4The relative channel errors are de�ned as the Frobenious norm of the error in the

channel matrix divided by the Frobenious norm of the true channel matrix.
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Figure 2.9: Real part of a derotated linearized GSM pulse (including the

receiver �lter causing the asymmetry), p(t), and real parts of the taps of

the derotated pulse shaping �lters, p0:0(q
�1) (o) and p0:5(q

�1) (�) for the
\T-branch" and p�0:5(q

�1) (o) and p0:0(q
�1) (x) for the \T/2-branch". The

imaginary parts are approximately zero.
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Figure 2.10: IS-136 pulse, p(t), and the taps of the pulse shaping �lters,

p0:0(q
�1) (o) and p0:5(q

�1) (�) for the \T-branch" and p�0:5(q
�1) (o) and

p0:0(q
�1) (x) for the \T/2-branch".
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Figure 2.11: Relative approximation error for a single GSM pulse with a

delay between 0 and T. T-spaced modeling (solid), T/2-spaced modeling

(dashed) and T/3-spaced modeling (dash-dotted).
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Figure 2.12: Relative approximation error for a single IS-136 pulse with a

delay between 0 and T. T-spaced modeling (solid), T/2-spaced modeling

(dashed) and T/3-spaced modeling (dash-dotted).

polation is smaller, at least measured in absolute terms. We can conclude

that the T-spaced interpolation seems su�cient in GSM and that the T/2-

spaced interpolation should su�ce for both pulses except when very accurate

modeling is required.

An example of how the interpolation is performed can be seen in Figure 2.13

for the IS-136 pulse, without noise. We can see how the coe�cients vary as

a single pulse with delay varying from 0 to T is being modeled. Although

mainly two taps at a time model the pulse, a third tap in the T/2- and

T/3-spaced interpolation has a non-negligible amplitude. The sum of the

taps is also di�erent from one. Thus, as mentioned earlier, the method is not

a true interpolation between pulse shaping �lters but rather an optimized

linear combination of shifted pulse shaping �lters.

In Figures 2.14 and 2.15 the resulting BER of the MLSE and the relative

channel errors can be seen for the GSM and IS-136 pulse respectively. In

both cases, utilization of the pulse shaping function provides better perfor-

mance. For the GSM pulse using 26 training symbols, the improvement is

however not so large. This can possibly be explained by the longer train-

ing sequence. Utilizing the pulse shaping function reduces the number of

complex parameters to estimate to 2, 3 and 4 for T-, T/2- and T/3-spaced
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Figure 2.13: Coe�cients in the parameter vector h for T, T/2 and T/3

spaced interpolation as the delay of a single pulse varies from 0 to T. Where

applicable: coe�cient number one (solid), coe�cient number two (dashed),

coe�cient number three (dash-dotted) and coe�cient number four (dotted).
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Figure 2.14: BER and relative channel error for the GSM pulse and the

chosen test channel. FIR channel estimation with 6 (upper solid) and 4

taps (lower solid), T-spaced interpolation (dashed), T/2-spaced interpola-

tion (dash-dotted) and T/3-spaced interpolation (dotted).
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Figure 2.15: BER and relative channel error for the IS-136 pulse and the

chosen test channel. FIR channel estimation with 6 (upper solid) and 4

taps (lower solid), T-spaced interpolation (dashed), T/2-spaced interpola-

tion (dash-dotted) and T/3-spaced interpolation (dotted).
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interpolation as compared to 12 and 8 complex coe�cients for the FIR chan-

nel estimation (T=2 fractionally spaced). This reduction of the number of

parameters will have the largest impact on the accuracy when using shorter

training sequences, as for example in the IS-136 case with only 14 training

symbols.

Even though the BER is insigni�cantly improved in the GSM case, there

is a non-negligible improvement in the channel estimation error, especially

for low SNR. Depending on how sensitive the used equalizer is to channel

estimation errors, this may pay o� also for the GSM case. For example,

an equalizer using many antennas is often more dependent on good channel

estimates than an equalizer using only a few antenna elements.

For the GSM case, the T-spaced interpolation appears to be reasonably

good. Only at the higher SNR is the T/2-spaced interpolation better. The

T/3-spaced interpolation is a worse choice, at least for low SNR. This is

most likely because the identi�cation becomes ill-conditioned as adjacent

pulse shaping �lters become more correlated.

A di�erent way of performing channel estimation using information about

the pulse shaping function using correlation between the received signal

and the modulated transmitted training sequence can be found in [89]. No

comparison has however been done with that method.

For the IS-136 pulse, the T-spaced interpolation is too coarse. The true

channel can thus not be accurately modeled. This is particularly appar-

ent at high SNR. The T/2-spaced interpolation has the best performance.

Again the T/3-spaced interpolation has a worse performance than the T/2-

spaced interpolation, suggesting that the model then is ill-conditioned. The

improvements in both channel estimation error and detector BER is higher

for this case. This is most likely due to the shorter training sequence.

2.3.4 Summary

We can conclude that by utilizing the pulse shaping information we can

model the channel well with a reduced number of parameters and, not un-

expectedly, the channel estimate improves compared to estimating the taps

of the FIR channel model directly.
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For the simulations with the GSM pulse, T-spaced interpolation appears to

su�ce when the performance is measured in BER. The T/2-spaced interpo-

lation has better channel estimates though which could possibly be of value

in a di�erent scenario.

For the example simulations with the IS-136 pulse, the T-spaced interpola-

tion is insu�cient. The T/2-spaced interpolation performed notably better

in both BER and relative channel error.

For both pulse shapes the performance decreased when using the T/3-spaced

interpolation. This is suspected to be due to the identi�cation becoming ill-

conditioned as the correlation between the pulse shaping �lters increase.

2.4 Temporal Parametrization of Multi-User

Channels

A wireless communication system were capacity is an issue is often inter-

ference limited, i.e. the signal quality is limited because of co-channel in-

terference rather than noise. If the channels to the interfering signals can

be estimated jointly with the desired signal, the channel estimates of the

desired signal as well as of the interferers can be improved. This can be

utilized in the equalization of the signal.

Since in joint multi-user channel estimation, the number of parameters to

be estimated grows linearly with the number of users while the number of

equations remains constant, it is important to use as few parameters as

possible per user. The number of equations is limited since the length of the

training sequence is limited.

One way to economize on the number of parameters to estimate, is to uti-

lize knowledge of the pulse shaping in the transmitter and the receiver as

described in Section 2.3. Since this method economizes on the number of pa-

rameters to be estimated for each user, it will improve the channel estimates

in line with the Parsimony principle. In some cases it will also make other-

wise impossible joint multi-user channel estimation possible. We illustrate

this by studying a multi-user channel estimation example.
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2.4.1 Channel Estimation

The temporal parametrization in Section 2.3.2 can be generalized to multiple

users. A model for two users with one antenna element, using fractionally

spaced sampling (two samples per symbol) is depicted in Figure 2.16. The

model of the sampled output from one antenna can be expressed in equations

as

y(t) = h(q�1)X (t) + n(t) (2.37)

where n(t) = [n(t) n(t + T

2
)] is a vector containing the noise samples and

the unknown propagation channels for the users, h(q�1), is given by

h(q�1) = [h1(q
�1) h2(q

�1)] (2.38)

where

hi(q
�1) =

�
hi1(q

�1) hi2(q
�1)
�

(2.39)

and

X(t) =

2664
x111(t) x112(t)

x121(t) x122(t)

x211(t) x212(t)

x221(t) x222(t)

3775 =

�
P (q�1)d1(t)

P (q�1)d2(t)

�
: (2.40)

The pulse shaping matrix is the same as for the single user case, i.e.

P (q�1) =

�
p0:0(q

�1) p�0:5(q
�1)

p0:5(q
�1) p0:0(q

�1)

�
: (2.41)

Compared with the model in (2.23) { (2.28), we now, with two users, have

twice as many parameters to estimate but the same number of equations

(sampled outputs).

In order to form a system of equations we vectorize equation (2.37) and

obtain

y(t) = hX (t) (2.42)

where

h = [h1 h2] (2.43)



2.4. Temporal Parametrization of Multi-User Channels 57

n n

n n

- -
?

- -

- -

- -

- -

@
@

B
B
B
B
B
BBN

�
��

�
�
�
�
�
���

- -
?

- -

- -

- -

- -

@
@R

B
B
B
B
B
BBN

�
��

�
�
�
�
�
���

+ +

n(t+ T

2
)

y(t+ T
2
)

p0:0(q
�1)

x122(t)
h12(q

�1)

p�0:5(q
�1)

x112(t)
h11(q

�1)

p0:0(q
�1)

x222(t)
h22(q

�1)

p�0:5(q
�1)

x212(t)
p21(q

�1)

+ +

n(t)

y(t)

p0:5(q
�1)

x121(t)
h12(q

�1)

x111(t)
h11(q

�1)

p0:5(q
�1)

x221(t)
h22(q

�1)

p0:0(q
�1)

x211(t)
h21(q

�1)

d1(t)

d2(t)

d1(t)

d2(t)

p0:0(q
�1)

Figure 2.16: Example multi-user channel model for two users sending the

messages d1(t) and d2(t) respectively to one antenna element, where the

received signal is sampled twice per symbol time.
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with

hi = [hi1 hi2] (2.44)

hij = [hij0 hij1 : : : hijnh] (2.45)

and

X (t) =

2664
�x111(t) �x112(t)

�x121(t) �x122(t)

�x211(t) �x212(t)

�x221(t) �x222(t)

3775 (2.46)

where

�xijk(t) = [xijk(t) xijk(t� 1) : : : xijk(t� nh)]T : (2.47)

The unknown channel h can now be estimated with the least squares method

as

ĥ = R̂yX R̂
�1
XX

(2.48)

where

R̂yX =
1

tmax � tmin + 1

t=tmaxX
t=tmin

y(t)XH(t) (2.49)

and

R̂XX =
1

tmax � tmin + 1

t=tmaxX
t=tmin

X (t)XH(t) (2.50)

The total channel bi(q
�1) to each of the two users can then be estimated

with

b̂i(q
�1) = ĥi(q

�1)P (q�1): (2.51)

The time instants tmin and tmax represents the minimum and maximum

time samples of the training data used. In multi-antenna systems, a channel

estimate (2.51) can be computed separately for each antenna output. Similar

considerations as in Section 2.3.2 apply, such as the choice of the coarseness

of the modeling.
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Figure 2.17: Relative channel error and the BER for one user for the multi-

user channel estimation example. Single user LS estimation (solid *), Joint

muli-user LS (dashed x), Joint multi-user estimation utilizing pulse shaping

information (dash-dotted o).

2.4.2 Examples

Since it would be advantageous to use multiple antennas for multi-user de-

tection, we here use a receiver with 4 antennas. The number of users is

ranging from one to 4. Each mobile had a channel with equal average power

Rayleigh fading taps at delays 0.00, 0.33, 0.67 and 1.00 symbol intervals.

The taps for each mobile and antenna element were independently fading.

The channels were constant during each frame but independently fading be-

tween frames. A raised cosine pulse with roll-o� 0.35 was used for the pulse

shaping. Other parameters were: 18 training symbols, fractionally spaced

sampling (two samples per symbol), T/2-spaced modeling. The SNR was

3dB and all mobiles had equal average relative strength.

After the channels from the mobiles to all antennas had been estimated, a

single user multi-channel MLSE with spatial interference cancellation, see

Chapter 4, was applied to the received signal, to detect one user. In Fig-

ure 2.17 the relative channel estimation errors and the BER for the detected

user can be seen for di�erent number of mobiles present.

First we note that the joint LS channel estimation performs better than the
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single user LS channel estimation for the cases with two and three users.

The reason for this is likely the improved modeling that is accomplished

by modeling all users instead of treating some of them as noise. For four

or more users the joint LS method is however worse. Then the parameters

in the joint model are simply too many. For the number of users studied

here, the method utilizing the pulse shaping information performs better

than both the single and joint LS channel estimation. This is because this

method has fewer parameters to estimate per user. For the joint multi-

user channel estimation, this becomes especially important as the number

of users increases.

With pulse shaping included, the channel spans about 4-6 symbol intervals

depending on where we choose to truncate. In the LS methods we chose to

use 4 taps and in the pulse shaping method we used 2 taps in each branch

of H(q�1). The joint LS method will thus have 8 parameters per user to

estimate with 36 equations (2 � 4 and 2 � 18 because of the fractionally

spaced sampling). The pulse shaping method will have 4 parameters (2 per

branch) per user to estimate with 36 equations. As the number of users

increases this di�erence becomes more important. We can understand this

by considering a limiting case when the number of users is so large that the

joint LS method has more parameters than equations while this is not the

case for the pulse shaping method. In this case the joint LS method will

not work, while the pulse shaping method will. This is why we see that the

joint LS method degrades in performance faster than the method utilizing

the pulse shaping when the number of users increases, cf Figure 2.17.

2.4.3 Summary

When estimating the channels to multiple users jointly with a short training

sequence it is important to reduce the number of parameters per user. This

is because the number of parameters increases linearly with the number

of users while the number of equations, determined by the length of the

e�ective length of the training sequence5, remains constant.

5With the e�ective length of the training sequence we mean the number of training

relations that can be formed with the method we are using. This number is usually smaller

than the length of the training sequence since we cannot fully exploit the training symbols

in the beginning and in the end of the training sequence.
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We have demonstrated one way of doing this by means of a method which

utilize the pulse shaping information in the transmitter and in the receiver

in order to economize on the number of parameters to be estimated. In the

multi-user channel estimation example shown we can see that the method

improves the channel estimate considerably, especially as the number of

users increases.

For the pulse shaping method it is also interesting to note that when per-

forming fractionally spaced sampling the number of channel parameters to

estimate does not increase. The number of equations do however, and this

improves the channel estimates as long as the fractionally spaced noise sam-

ples are not too much correlated.

From the model errors, in Section 2.3 one can see that T/2-spaced modeling

su�ces for the GSM and IS-136 pulses studied. For the GSM pulse it seems

to su�ce with T-spaced modeling (or some spacing between T and T/2, e.g.

2T/3 for example).

It is possible to reduce the number of parameters to be estimated even

further. The number of taps that are non-zero in a channel will vary with

time. In order to accommodate paths with long delay times one will have

to use a channel with many taps if a �xed set of taps is being used.

Instead of using a long channel with many taps, one can try to determine

which speci�c taps should be non-zero at the time of the channel estimation.

Since the majority of the channels will only contain a few non-zero taps,

this will typically reduce the number of taps considerably. Again this will

be valuable for multi-user channel estimation.

2.5 Spatial Parametrization

When using an antenna array it may be possible to utilize the spatial struc-

ture of the channel to obtain a model with fewer parameters. For example if

the signal arrives from distinct directions this can be utilized in the channel

estimation.

Here estimation of the channels to an antenna array using a parametrization
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in directions of arrival and gains of signal paths is investigated. This chan-

nel estimate is compared to the temporal only least squares FIR channel

estimation.

When we estimate the FIR channel coe�cients to each of the antenna ele-

ments independently using, for example, the least squares method in (2.21),

we do not utilized the spatial structure of the incoming signal. If the signal

arrives from a small number of directions, we may obtain improved chan-

nel estimates if we parametrize the joint channel to all antenna elements in

terms of directions of arrival (DOA's) and path gains. This can be realized

by using the CDEML algorithm (Coherent DEcoupled Maximum Likelihood

Estimation) [15]. A version of the CDEML algorithm is brie
y presented and

discussed below. The algorithm is also tested on a scenario with multipath

propagation and intersymbol interference and compared with the traditional

least squares channel FIR channel estimation. The performance of the al-

gorithm is also measured in terms of the bit error rate (BER) of a DFE,

designed from the estimated channels.

2.5.1 Least Squares Channel Estimation

The estimation of the channel by identifying the parameters of a vector

FIR model, as described in Section 2.2, is a purely temporal method. The

estimate of the channel matrix B in (2.21)

B̂LS = R̂
H

dy
R̂
�1

dd
(2.52)

is just a compact notation for the separate temporal only FIR least squares

channel estimates to the individual antennas.

This channel estimate, as mentioned above, makes no assumption about

the number of incoming signal paths. This makes it robust with respect to

such assumptions, but if the number of incoming signals per symbol delay is

small relative to the number of antennas, an improvement may be possible.

A method utilizing this fact is presented next.
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2.5.2 Coherent Decoupled Maximum Likelihood Channel

Estimation

The method described below is a version of the CDEML algorithm presented

in [15]. Let the overall channel model be represented by the vector FIR

model in (2.18)

y(t) = Bd(t) +n(t) (2.53)

where d(t) = [d(t) d(t � 1) : : : d(t � nb)]T and B is the channel matrix

(2.19) (2.20) of sizeM � (nb+ 1). The signal d(t) is the transmitted discrete

symbol sequence. The noise plus interference, n(t), is here assumed to be

circularly symmetric6, zero-mean and Gaussian with second order moments

given by

E[n(t)nH(s)] = Q�t;s E[n(t)nT (s)] = 0: (2.54)

Consider the DOA's for the incoming signals7

� = [�01 : : : �0;k1 : : : �nb;1 : : : �nb;knb ]
T (2.55)

and the corresponding gains


 = [
01 : : : 
0;k1 : : : 
nb;1 : : : 
nb;knb ]
T : (2.56)

The indices in the expressions above for � and 
 denote tap number (delay)

and path number within each tap, in that order. Each tap is assumed to be

a�ected by kc signal paths arriving from signi�cantly di�erent directions �c1
to �ckc. The matrix B can now be parametrized in terms of these DOA's

and gains

B(�;
) = A(�)�(
) (2.57)

where

A(�) = [a(�01) : : : a(�0;k1) : : : a(�nb;1) : : : a(�nb;knb)] (2.58)

6A complex random variable is said to be circularly symmetric if its probability density

function is circularly symmetric around its zero mean. This will be the case if its real and

imaginary parts are uncorrelated, equally scaled and have zero mean.
7The �rst number in the subscript of the DOA �ij refers to the tap number and the

second number refers to the number of the DOA within the tap.
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and

�(
) =

266666666666666666664


01 0 � � � 0
...

...
. . .


0k1

0 
11
...

...


1k2
...

. . . 0


nb1
...

0 
nbknb

377777777777777777775

: (2.59)

The vectors, a(�ij)), in (2.58) constitute the array response vectors for a

signals arriving from the angles �ij.

The parameter vectors � and 
, as seen above, are partitioned according to

which delay in B they correspond to:


 = [
T0 

T

1 : : : 
Tnb] where 
c = [
c1 : : : 
ckc]
T (2.60)

� = [�T0 �
T

1 : : : �Tnb], where �c = [�c1 : : : �ckc]
T : (2.61)

It can be shown (see [15]) that a large sample maximum likelihood estimate

of � and 
 can be obtained by minimizing

F (�;
) = tr[Rdd(B(�;
)� B̂LS)
H
Q̂
�1
(B(�;
)� B̂LS)] (2.62)

where

Rdd = lim
N!1

1

N � nb

NX
t=nb+1

d(t)dH(t): (2.63)

Above, B̂LS is the least squares channel matrix estimate (2.52) and

Q̂ =
1

N � nb

NX
t=nb+1

(y(t)� B̂LSd(t))(y(t)� B̂LSd(t))
H (2.64)
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is an estimate of the noise plus interference covariance matrix.

In digital communications the symbol sequence d(t) is assumed to be white.

The covariance matrix, Rdd, will then be diagonal. In this case, the maxi-

mum likelihood estimates of the angles, �, and the gains, 
, can be found by

considering the following minimization for each column, b̂c, in B̂ separately:

f�̂c; 
̂cg = arg min
�c;
c

[A(�c)
c � b̂c]HQ̂
�1
[A(�c)
c � b̂c] (2.65)

where b̂c is the relevant column in B̂ which corresponds to a vector tap in

the FIR channel b(q�1).

The fact that the minimization can be decoupled greatly reduces the com-

putational complexity. From (2.65) we can see that we are looking for �c's

and 
c's that minimize the weighted squared norm of the di�erence between

the least squares estimated column b̂c of B̂LS and the parametrized estimate

A(�c)
c.

Returning to (2.62), we see that when Rdd is diagonal, the overall criterion

we want to minimize, is simply the weighted squared Frobenius norm of the

di�erence between the parametrized channel matrix, B(�;
) and the least

squares estimated channel matrix B̂LS , i.e. k B(�;
)� B̂LS k2Q�1 .

For a given set of angles �̂c, the minimizing gain 
̂c in (2.65) is given by the

weighted least squares solution


̂c(�̂c) = fAH(�̂c)Q̂
�1
A(�̂c)g�1AH(�̂c)Q̂

�1
b̂c: (2.66)

By substituting (2.66) into (2.65) we obtain an expression for the estimated

directions of arrival [15]

�̂c = argmin
�c

fb̂Hc [Q̂
�1 � Q̂�1

A(�c)�

(AH(�c)Q̂
�1
A(�c))

�1
A

H(�c)Q̂
�1
]b̂cg: (2.67)

In order to assure convergence to the global minimum, a good initial value

is required for �c. In [15], it is proposed to initialize �c with the kc lowest
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local minima of the function

f(�) = b̂
H

c

"
Q̂
�1 � Q̂

�1
a(�)aH(�)Q̂

�1

aH(�)Q̂
�1
a(�)

#
b̂c: (2.68)

This is exactly the cost function to be minimized if there was only one

signal arriving per symbol delay. As the �rst term is independent of �, we

can instead look for local maximas to the function

f0;c(�) =
a
H(�)Q̂

�1
b̂cb̂

H

c Q̂
�1
a(�)

aH(�)Q̂
�1
a(�)

: (2.69)

In the simulations performed in this study, this initialization procedure has

been found to have some problems. It could, for example, have di�culties in

estimating DOA's of signals that were close to a strong co-channel interferer.

The presence of a strong co-channel interferer in the noise plus interference

covariance matrix, Q, can cause a dip in the function f0;c(�).

In an attempt to alleviate this problem, Q�1 can be removed from f0;c(�).

The result is a simple \beamformer" DOA estimator. The initial values of

the components of �c can thus be chosen as the local maximas of the function

f1;c(�) =
a
H(�)b̂cb̂

H

c a(�)

aH(�)a(�)
: (2.70)

However, both of these methods have been found to have considerable dif-

�culties in estimating initial values for the DOA's when coherent sources

are present. The peaks for the two functions in (2.69) and (2.70) can then

have peaks in directions not corresponding to a DOA. This is because side

lobes of the \beamformers" involved may pick up the signals and combine

them constructively depending on the particular relative phases of the sig-

nals involved. These combined signals can have a stronger amplitude then

the signals caught by the main lobes of the \beamformers". A DOA will

then be indicated at the wrong direction. A solution to this problem is to

constrain the antenna array to a uniform linear array. In this case the non-

linear minimization of (2.67) can be replaced with a polynomial root-�nding

technique similar to the one proposed in [94] and [95].

Once the directions of arrival in �c have been estimated the gains in 
c can

be computed using (2.66). The estimated �̂ and 
̂ are used to form the
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improved parametrized channel matrix estimate

B̂CDEML = A(�̂)�(
̂): (2.71)

2.5.3 Simulation Study

A simulation study has been conducted to evaluate the performance of the

algorithm in a scenario with multipath propagation and intersymbol inter-

ference.

Scenarios

The algorithms were tested using a circular array, see Figure 2.18. The

desired signal arrives from the directions 0, 60, -120 and 120 degrees respec-

tively. The respective temporal channels are 1 + 0:5q�1, 0:5q�1 + 0:8q�2,

0:5q�2 + 0:2q�3 and 0:2q�3 + 0:3q�4. Two-tap channels are chosen in or-

der to simulate imperfect sampling timing or partial response modulation.

When co-channel interferers are included they impinge on the antenna array

through single tap channels from the directions 90, -60 and -90 degrees, with

a total average SIR of 0 dB. The SNR was varied from -3 dB to 6 dB. The

scenario is illustrated in Figure 2.19. The number of training symbols used

here were 26.

An FIR channel model with 5 taps was used for the channel matrix. Based

on this model, a DFE with a feedforward �lter of length 4, feedback �lters of

length 3 and a smoothing lag, `, of 3 was designed and used for estimation

of the transmitted symbols.

Initial Values for the DOA's

Both the initialization suggested in [15] and the modi�ed initialization sug-

gested in (2.70) have problems with achieving good initial values for the

DOA's. In Figure 2.20, examples of the two functions can be seen. By com-

paring the plots for the functions f0;c(�) given by (2.69) and f1;c(�) given

by (2.70), one can see the result of including Q�1 in f0;c(�). It can be seen
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Figure 2.18: Antenna array con�guration.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

SIR=1 SIR=0 dB

Figure 2.19: Signal con�guration. The solid lines represent the incoming

directions of the desired signal and the dashed lines represent co-channel

interferers. The left �gure depicts the case without co-channel interferers

and the right �gure depicts the case with co-channel interferers.
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that f0;c(�) has dips or reduced amplitude at or close to the locations of the

co-channel interferers.

Both initializations �nd the DOA for the signal with delay zero.

In the case with a delay of one symbol interval neither of the initialization

algorithms provided a good initial estimate of the DOA's.

For the cases with delays of two and three symbol intervals, the function f0
has the peak corresponding to the signal arriving from -120 degrees reduced

as a result of the presence of the co-channel interferer at the same angle.

Note that the co-channel interferer previously at -90 degrees has been moved

to -60 degrees in order to illustrate the masking e�ect. As a result the

algorithm using f0 misses this DOA.

When the signal strength becomes low, as for the delay of four symbol

intervals, the peaks corresponding to the true DOA's becomes less distinct

and they are therefore more di�cult to detect. Both of the algorithms su�er

from this e�ect.

In conclusion it can be said that neither of the functions are ideal for �nding

initial values for the DOA's. In the experiments performed in conjunction

with this study, the DOA estimator which uses the initialization f1;c(�)

de�ned in (2.70), have been slightly better for estimating the DOA's. This

estimator has therefore been used in the simulations of this study.

If a uniform linear array is used, the kc-dimensional search in (2.67) can

be reduced to a polynomial root-�nding operation by using a technique

similar to that developed in [94] and [95]. Considering the problems of

�nding good initial values for the DOA's it may be a good idea to restrict

the array geometry to the ULA case, and use the root-�nding approach. It

should be noted, however, that it is not always practical to restrict the array

design to the ULA case. One such case of practical interest is when the two

polarizations of the signal is measured at each element location.
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Figure 2.20: Functions, f0;c(�) in (2.69) and f1;c(�) (2.70) used for �nding

initial values for the DOA's. The functions are plotted for the delays of

0,2 and 3 symbol intervals in the channel for the ULA case. The minimas

chosen as initial values are marked with dotted vertical lines. The true

DOA's are marked with crosses. The directions of the co-channel interferers

are marked with lines of circles. SIR=0dB and SNR=3dB. Note that the

co-channel interferer at -45 degrees has been moved to -60 degrees in order

to illustrate the masking e�ect as discussed in the text.
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Performance in Terms of Channel Estimation and DFE Bit Error

Rate.

The CDEML algorithm was evaluated assuming a di�erent number of DOA's,

initializing them either with the true DOA's, or estimating initial DOA's us-

ing the expression in (2.70). For the simulation case using \true" DOA's

as initial values, if the number of DOA's assumed where greater than the

actual number of DOA's, then the extra DOA's were randomized.

The total mean square error in the estimated channel for di�erent signal-to-

noise ratios is illustrated in Figures 2.21 and 2.22. As can be seen, the best

performance is achieved by using the CDEML algorithm with the correct

number of DOA's, and the true DOA's as initial values. It can also be seen

that both overestimating the number of signal paths and using estimated

DOA's as initial values, deteriorates the performance of the algorithm. In

the scenarios studied, however, all the CDEML versions had better or equal

performance, than the direct least squares estimation without any DOA

parametrization.

It should be kept in mind though, that the scenario investigated is very well

suited for a DOA parametrized channel estimation method such as CDEML.

This is because many antenna elements are used, and only a few signal paths

per delay impinge on the antenna array. The number of degrees of freedom

is thus considerably reduced by parametrizing the channel in DOA's, rather

than using the full channel matrix representation.

The estimated channel, and the residuals, were used in the tuning of a DFE

with only spatial interference suppression as described in Section 3.3.3. The

improved channel estimates result in improved bit error rates as seen in the

lower diagrams of Figures 2.21 and 2.22. In these �gures, the BER for a

DFE where the channel taps are tuned with a direct method, as described

in Section 3.3.1 using 1000 training symbols, is also presented. Note also

the improvement of the channel estimates for the case with a SIR of 0 dB.

It appears that, at least in this simulation, the CDEML algorithm handles

the presence of co-channel interferers better than the least squares method.

The improvement of the channel estimate is however not re
ected to the

same degree in the BER. This suggests that the CDEML algorithm im-

proves the channel estimate in dimensions that are not so important for the

equalization.
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Figure 2.21: Total mean square error in the channel matrix, B err, and BER

for the equalizer without co-channel interferers. Least squares method (solid

line), CDEML with true number of DOA's and true DOA's as initial values

(dashed), CDEML with one extra DOA per delay and true DOA's as initial

values (dash-dotted), CDEML with true number of DOA's and estimated

DOA's as initial values (+), CDEML with one extra DOA per delay and

estimated DOA's as initial values (x), CDEML with four DOA's for each

delay and estimated DOA's as initial values (o). BER of the equalizer tuned

with a direct method using a very long training sequence (dotted).
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Figure 2.22: Total mean square error in the channel matrix, B err, and BER

for the equalizer when SIR=0. Least squares method (solid line), CDEML

with true number of DOA's and true DOA's as initial values (dashed),

CDEML with one extra DOA per delay and true DOA's as initial values

(dash-dotted), CDEML with true number of DOA's and estimated DOA's

as initial values (+), CDEML with one extra DOA per delay and estimated

DOA's as initial values (x), CDEML with four DOA's for each delay and

estimated DOA's as initial values (o). BER of the equalizer tuned with a

direct method using a very long training sequence (dotted).
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2.5.4 Conclusions

It has been shown that when using an antenna array it is possible to improve

the channel estimation by parametrizing the channel into directions of arrival

of the signal paths, and their gains. The CDEML algorithm performs this

in a computationally e�cient way since the problem is decoupled into one

minimization problem per tap in the channel. In the simulations performed

in this study, it was also found that the CDEML algorithm handles the

presence of co-channel interferers better than the least squares algorithm.

As seen from the simulations, some improvements can be achieved with

the CDEML algorithm by using the correct or almost correct number of

paths per delay. When the assumed number of paths is larger then the

true number the performance gain is however reduced. It would therefore

be of importance to use algorithms that can estimate the number of DOA's

present. It has also been shown that it is of importance to have good initial

estimates of the DOA's.

Unfortunately, neither the method suggested in [15] nor the simpli�ed ver-

sion presented in (2.70), does a good job in forming initial estimates of the

DOA's. Unless better algorithms are used for �nding initial estimates of

the DOA's, the best strategy is probably to constrain the array geometry

to a uniform linear array, and replace the nonlinear minimization with a

polynomial root-�nding technique similar to the one proposed in [94] and

[95].

Although the CDEML algorithm had better performance than the algorithm

based on the directly parametrized least squares FIR channel estimation, it

should be noted that there is a non-negligible increase in the complexity

and the CDEML algorithm will be less robust against mismodeling of the

scenario.

Although there are improvements in the quality of the channel estimates,

this improvement is not signi�cantly re
ected in the BER of the equalizer.

This suggests that the CDEML algorithm improves the channel estimates

in dimensions that are not so important for the equalization.

This method can be generalized to be used with other initial channel esti-

mates than the least squares estimate of the coe�cients in the FIR channel
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model. In [101] the method has been generalized to be used in combination

with the temporal parametrization of Section 2.3. Is is important to note

that the �eld of estimating directions of arrival is very big and many other

methods exists for doing this. An overview of the �eld can be found in [46].

2.6 Reduced Rank Channel Estimation

Instead of attempting to utilize the spatial structure of a wireless space-

time channel by parametrizing it in terms of directions of arrival and gains

of signal paths as in Section 2.5 we will here take a directly parametrized

approach. This will result in a much simpler method which also shows better

performance improvements.

To describe the space-time channel from a transmitter to a multi-antenna

receiver, several parameters are required. However, in many cases the tem-

poral channels to di�erent antenna elements will be correlated. One such

case when this occurs is when a partial response signal is sent through a

channel with very little delay spread. Since all intersymbol interference is

caused by the modulation, the time dispersion experienced at the di�erent

antenna elements will be highly correlated. When this situation occurs, a

reduced rank representation of the channel may be used.

The reduced rank property of a channel can be exploited in the channel

estimation. One way is to estimate the space-time channel with a maximum

likelihood method under the constraint that the resulting channel should be

low rank [96]. Another method is to exploit the fact that the vector taps

of the channel will lie in the subspace spanned by the signal eigenvectors

to the spatial data covariance matrix [74]. We will call this subspace the

spatial signal subspace or just the signal subspace. The channel estimate is

here �rst formed as a straightforward least squares channel estimate. The

vector taps in this channel estimate are then projected onto the spatial signal

subspace. If co-channel interferers are present, the spatial signal subspace

will be spanned by all signal components, desired as well as undesired.

We here propose a third method where the received signal samples are pro-

jected directly onto the spatial signal subspace de�ned above. As well as

removing components in the noise subspace, this has the advantage that the
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dimension of the received signal vector is reduced. This turns out to give

better performance as well as lower complexity, compared to the other two

methods.

2.6.1 Channel Model

Using vector notation in analogy with (2.18), which modeled a single user,

we can model the received desired signal from user i as

si(t) = Bidi(t) (2.72)

where Bi is the M � nbi channel matrix for user i and di contains delayed

versions of the symbols transmitted by user i

di(t) = [di(t) di(t� 1) : : : di(t� nbi)]
T : (2.73)

Including co-channel interferers in the channel model, the vector signal y(t)

measured at the antenna can thus be described as

y(t) = s0(t) +

NcoX
k=1

sk(t) + n(t) = s(t) + n(t) (2.74)

= B0d0(t) +

NcoX
k=1

Bkdk(t) + n(t) : (2.75)

We are interested in the signal from user 0, whereas the signals from users

1 to Nco constitute co-channel interference. Furthermore, the term n(t)

constitutes noise, which here is assumed to be spatially and temporally

white.

In general, the channel matrix for user i, Bi, has rank max(M;nbi + 1).

However, in some cases the channel matrices loose rank. When a channel

is represented by a rank N < max(M;nbi + 1) channel matrix, we call it a

reduced or low rank channel. We will now outline in what scenarios such

channels may occur.

Consider a multipath propagation model with K \paths" for one of the
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channel matrices Bj in (2.75), here simply called B

B =

KX
k=1

a(�k)p
T (�k): (2.76)

Here a(�k) is the array response for the desired signal traveling along path k

and arriving from direction �k. The column vector p(�k) contains a sampled

version of the transmitter pulse shaping function p(t) with the sampling

o�set determined by the relative path delay �k

p(�k)
4

=
�
p(�k) p(�k � T ) : : : p(�k � nb0T )

�T
: (2.77)

If there is no delay spread in the channel, i.e. all �k = �; 8k, then all p(�k)

will be equal, say p(�k) = p0; 8k, and the channel matrix can be written as

B =

 
KX
k=1

a(�k)

!
p
T

0 = ap
T

0 (2.78)

where the column vector a is given by

a =

KX
k=1

a(�k): (2.79)

The channel matrix thus has rank one. If there is some delay spread but it

is small, so that

p(�k) � p0; 8k

then the channel matrix will have a rank which is approximately one. To

obtain a channel matrix with an approximate rank larger than one we thus

need a \signi�cant" delay spread.

Let us now assume that the paths can be grouped such that the paths

within each group have similar propagation delays. Furthermore, assume

that the spatial signatures for the paths in di�erent groups are di�erent.

The approximate rank of the channel model would then be determined by

the number of such groups with signi�cant energy. If the number of such

groups is small, then the channel matrix can be approximated by a low rank

matrix.

In the following two sections we present and compare three methods for

exploiting, the low rank property of the channel matrices in the channel

estimation.
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2.6.2 Maximum-Likelihood Reduced-Rank Channel

Estimation

Assume that the channel matrix B can be decomposed as

B = AP (2.80)

where A is an M � r matrix and P is an r � (nb+ 1) matrix. The channel

matrix then has a maximum rank of r.

If the noise vector n(t) is temporally white and Gaussian distributed, then

the maximum likelihood rank r estimate of B can be found by generalizing

the result in [96] to complex-valued signals and models, as

B̂ML = R̂ydR̂
�1=2

dd ŜŜ
H

R̂
�1=2

dd (2.81)

where

R̂yd =
1

tmax � tmin + 1

tmaxX
t=tmin

y(t)dH(t) (2.82)

R̂dd =
1

tmax � tmin + 1

tmaxX
t=tmin

d(t)dH(t) (2.83)

and tmin and tmax are the indices of the �rst and last sample utilized. Fur-

thermore, the matrix Ŝ is de�ned as

Ŝ
4

=
�
v̂1 : : : v̂r

�
(2.84)

where v̂1; : : : ; v̂r are the r dominant eigenvectors of the matrix

V̂ = R̂
�1=2

dd
R̂

H

yd
R̂
�1

yy
R̂ydR̂

�1=2

dd
(2.85)

where R̂yd and R̂dd are given above and

R̂yy =
1

tmax � tmin + 1

tmaxX
t=tmin

y(t)yH(t): (2.86)

This estimate will have a rank no larger than r. An advantage with this

estimation algorithm is that it does not require the noise to be spatially

white since no assumption about the color of the noise is made. Strong

spatial color of the noise term induced by strong co-channel interferers can

thus be handled. The temporal noise color is however not accounted for

since the noise is assumed to be temporally white.
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2.6.3 Signal Subspace Projection

The maximum likelihood reduced rank channel estimation makes no as-

sumption about the spatial color of the noise n(t) and thus does not use

this information in the channel estimation. If the noise n(t) is spatially

white it may however be possible to utilize this fact to improve the perfor-

mance.

We will now use (2.74) to divide the received signal into a signal part and a

noise part. Since the signals di(t) are assumed to be uncorrelated with the

noise n(t), we can decompose the covariance matrix of the received signal

as

E[y(t)yH(t)] = Ryy = Rss +Rnn (2.87)

where

Rss = E
�
s(t)sH(t)

�
Rnn = E

�
n(t)nH(t)

�
: (2.88)

We now make the critical assumption that the noise vector n(t) consists

only of white noise with variance �2n:

Rnn = �2nI:

TheM -dimensional space containing the received signal vectors can now be

divided into two subspaces: the signal subspace and the noise subspace. The

signal subspace is the subspace spanned by the eigenvectors of the signal

covariance matrix Rss

Signal subspace = span(vs1; : : : ;v
s

r) (2.89)

where vs1; : : : ;v
s
r are the r dominant eigenvectors of the signal covariance

matrix. The noise subspace is the orthogonal complement of the signal

subspace

Noise subspace = Signal subspace?: (2.90)

We note that an eigenvector vi of the signal covariance matrix Rss with

eigenvalue �s
i
is also an eigenvector to the received signal covariance matrix

Ryy but with eigenvalue �s
i
+ �2n since

Ryyv
s

i =
�
Rss + �2nI

�
v
s

i = �siv
s

i + �2nv
s

i = (�si + �2n)v
s

i : (2.91)
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Furthermore, since the vectors in the noise subspace are orthogonal to the

vectors in the signal subspace, they are orthogonal to all columns in the

signal covariance matrix. Every vector in the noise subspace is then an

eigenvector to Ryy with eigenvalue equal to �2n, since for any vector vn in

the noise subspace

Ryyv
n = (Rss + �2nI)v

n = �2nv
n: (2.92)

The noise subspace will thus be spanned by the eigenvectors of Ryy with

eigenvalues equal to �2n and the signal subspace will be spanned by the

eigenvectors of Ryy with eigenvalues strictly greater than �2n. A base of

vectors spanning the signal subspace can thus be constructed by selecting

the eigenvectors of Ryy with eigenvalues above the noise level �2n.

Using (2.74) and (2.75), the signal part of the spatial covariance matrix can

now be expressed as

Rss = B0B
H

0 +

NcoX
i=1

BiB
H

i : (2.93)

given that all users transmit uncorrelated signal sequences.

When any of the channel matrices has full rank, or when many co-channel

interferers are present, the rank of Rss will be full. However, when the

channel of the desired user has low rank, and when only a few dominant

co-channel interferers with low rank channels are present, Rss may loose

rank.

Channel Signal-Subspace Projection

As noted in [74], the standard least squares channel estimate B̂LS (2.21)

can be improved by exploiting that all columns of the true channel matrix

B lie in the signal subspace (2.89). To utilize this property, we will project

the least squares estimate B̂LS onto an estimate of the signal subspace:

V̂ s

4

=
�
v̂
s

1 : : : v̂
s

r

�
; (2.94)
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where v̂si ; i = 1; : : : ; r are the r largest eigenvectors to the sample covariance

matrix

R̂yy

4

=
1

tmax � tmin + 1

tmaxX
t=tmin

y(t)yH(t): (2.95)

Note that a known training sequence of transmitted symbols is not needed to

estimate Ryy. The estimate of the signal subspace can thus (in a TDMA

system) be estimated based on the whole frame of received samples.

The resulting estimate of the channel will then be given by

B̂ss = V̂ sV̂
H

s B̂LS : (2.96)

This projection will remove components outside the (estimated) signal sub-

space. If the signal subspace is reasonably well estimated this will improve

the channel estimate as some noise-induced estimation errors will be re-

moved. This method, which was suggested in [74], will here be called channel

signal-subspace projection.

It may be di�cult to determine where the noise level is, i.e. to choose at

which eigenvalue level to consider an eigenvector to be a signal eigenvector

or a noise eigenvector. In practice one will have to adopt a suitable criterion

for determining this level.

It should be pointed out that we are not restricted to using a directly

parametrized FIR channel estimate as the initial channel estimate. We can

in fact choose from many di�erent channel estimation methods. The fact

that the columns of the channel vector lies in the spatial signal subspace is

an inherent property of the channel model (2.75) and not of the estimation

method.

Data Signal-Subspace Projection

We can also project the received signal onto the estimated signal sub-

space (2.94) before any other processing is performed. We thus form the

new data vectors of dimension (rj1)

yss(t) = V̂
H

s y(t) (2.97)
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and estimate the channel and noise plus interference covariance matrix of

this new data set. The channel estimate will be exactly the same as for

the channel signal subspace projection method (after re-transformation to

the full space) but the quality of the estimate of the noise-plus-interference

spatial covariance matrix is improved.

Another very important feature of this method is that since the dimension

of the projected signal vector, yss(t) (rj1), is lower than the dimension of

the original signal vector y(t) (M j1), all processing including the equalizer
tuning and execution is reduced in complexity.

A requirement for both of these methods is of course that the number of

antennas, M , is strictly greater than the rank, r, of the channel. The larger

the di�erence between the number of antennas and the rank of the channel,

the better. A larger di�erence means a larger noise subspace. More compo-

nents of the estimated channel or the received signal created by noise only

are then removed by the projection.

It may not be necessary to re-estimate the signal subspace for each time

instant the channel is estimated. If we have a fading multipath channel

where the gains of the paths vary rapidly while the directions of arrival of

the paths vary slowly. Then, as pointed out in [30], the subspace to which

the channel belongs, and thus the signal, will only vary slowly. By estimating

this subspace we can potentially reuse it when estimating new channels, for

instance in following frames in a TDMA system.

A disadvantage with these methods compared to the maximum likelihood

reduced rank channel estimation of Section 2.6.2 is that signal subspace

projection cannot remove estimation errors due to the co-channel interfer-

ence. Without using the training sequence we cannot distinguish between

the desired signal and the co-channel interferers. The signal subspace will be

spanned by the combined set of eigenvectors from the desired signal spatial

covariance matrix and the co-channel interferer spatial covariance matrices.

However it is not always important to remove the errors in the channel esti-

mate caused by the co-channel interferers. In fact these errors are sometimes

automatically compensated for by the equalizer as is discussed in Chapter 7.
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2.6.4 Estimation of the Spatial Noise-plus-Interference Co-

variance Matrix

Another important quantity of the channel for space-time equalization is the

spatial noise plus interferer covariance matrix,

Rnn = E[(

KX
i=1

Bidi(t) + n(t))(

KX
i=1

Bidi(t) + n(t))
H ]; (2.98)

where the expectation is taken with respect to di(t) and n(t). In all the three

methods described above, this matrix is estimated from the residuals of the

channel estimation. An improved channel estimate will thus indirectly also

result in an improved noise plus interference covariance matrix estimate.

Note however, that for the here proposed data signal-subspace projection

method, the dimension of the covariance matrix is r, whereas it for the

other two methods has dimension M .

2.6.5 Simulations

For the simulations we used a circular array with radius 1.25 � and ten

antenna elements. We simulated a scenario where the desired signal arrives

along two paths at angles 0 and 45 degrees. The channels (i.e. pulse shaping)

in the two paths were 0:44 + q�1 + 0:44q�2 and 0:44q�1 + q�2 + 0:44q�3

respectively. Two di�erent co-channel interferers impinged on the array

from directions -45 and 90 degrees, each having the temporal channel 0:44+

q�1 + 0:44q�2. Spatially and temporally white noise was added giving a

signal to noise ratio of 3dB. The transmitted signal was BPSK modulated.

A multi-channel MLSE, see Chapter 4, was used for the equalization.

We applied the three methods discussed in Sections 2.6.2 and 2.6.3 this to

this scenario. For the maximum likelihood reduced rank estimation, a rank

two channel was estimated, whereas for the two projection algorithms, the

respective quantities were projected onto a rank four estimate of the signal

subspace 8.

8We only used the data received during the training sequence to estimate the signal

subspace to obtain a fair comparison with the maximum likelihood reduced rank channel

estimation method.
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Figure 2.23: Relative channel error, relative error in the spatial covariance

matrix for the noise plus interference and BER as a function of SIR with

a SNR of 3dB using the FIR least squares (solid), maximum likelihood

reduced rank method (dashed), channel signal subspace projection method

(dash-dotted) and data signal subspace projection method (dotted). Only

the relative covariance matrix error and the BER is shown for the data signal

subspace projection method. The relative channel error for this method is

the same as for the channel signal subspace projection method.
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In Figure 2.23 the relative channel estimation error and relative covariance

matrix errors as well as the resulting BER for the equalizer can be seen. Note

that the maximum likelihood reduced rank estimation method (MLRR) has

the smallest relative channel error. However, the BER of the detector based

on the model estimated with MLRR is not the lowest. On the other hand,

both the channel signal subspace projection method (CSSP) and the data

signal subspace projection method (DSSP) have signi�cant improvements in

terms of equalizer BER even though their relative channel estimation errors

are larger than for the MLRR method. Note that the DSSP method has the

best noise plus interferer spatial covariance matrix estimate and the best

BER performance.

2.6.6 Summary

We have here considered di�erent methods of exploiting the reduced rank

property of a space-time channel in wireless communications. Three meth-

ods have been studied, a maximum likelihood reduced rank channel estima-

tion method which �nds the channel of a given rank in a maximum likelihood

sense [96], and two signal subspace projection methods which projects either

the channel estimate [74] or, as for the here proposed method, the received

signal samples onto an estimate of the spatial signal subspace.

Even though the model estimated using the maximum likelihood reduced

rank method provides the best accuracy, a detector based on this model does

not achieve the lowest BER. The BER from detectors based on the signal

subspace projection methods are lower, despite the fact that the accuracy

of the estimated channel models is worse. Apparently, the signal subspace

projection methods �nd channel estimates that are better suited for the

purpose of space-time equalization.

The here proposed method of projecting the received signal samples di-

rectly on the signal subspace gives the best equalizer performance. This

improvement is contributed to a better estimated spatial noise plus interfer-

ence covariance matrix. Since this method also has lower complexity than

the channel signal subspace projection method, it is clearly preferable.
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2.7 Bootstrap Channel Estimation

Consider a TDMA system with the data transmitted in frames containing a

short training sequence. When performing space-time equalization we bene-

�t from good estimates of the channel to the desired user and good estimate

of the spatial spectrum of the interferers. With a short training sequence

it may be di�cult to achieve good estimates. However, as will be seen in

Figure 3.8, the performance of an equalizer can sometimes be considerably

improved by using a longer training sequence. For the indirectly tuned DFE

this is due to improved channel and interferer spectrum estimates. It is how-

ever generally not desirable to increase the length of the training sequence

since this will reduce the e�ciency of the information transmission. Also,

new equalizers and multi-antenna receivers may be desirable in present stan-

dards, where the length of training sequence cannot be altered. The channel

estimates and thus the equalizer performance can however be improved by

using a bootstrap approach.

The bootstrap approach can brie
y be explained as follows:

First an initial estimate of the channel and the interferer spectrum is formed

using the training data. Using this channel information an equalizer is com-

puted. This equalizer is then used to obtain estimates of all symbols in

the frame. Using all the so obtained symbol estimates, a new (hopefully

improved) channel estimate is computed. Based on this channel estimate

a new equalizer is computed which in turn can be used to form yet new

symbol estimates. This procedure can now be repeated as many times as

desired.

The bootstrap channel estimating procedure creates an arti�cial long train-

ing sequence. This sequence will, of course, have errors in it which will

degrade the performance of the channel estimates. However, if the number

of erroneous symbols are not too many the improvement of the longer train-

ing sequence will hopefully outweigh the degradation caused by the incorrect

arti�cial training symbols.

Bootstrap channel estimation will of course require the channel to be ap-

proximately stationary in order to make use of the longer arti�cial training

sequence.
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We here presents simulations illustrating the bootstrap principle. We here

use a receiver with 8 antennas. We here used a receiver with 8 antennas.

The antennas were considered to be spaced far enough apart such that the

channels could be considered uncorrelated. The channel to each antenna

consisted of 5 fading taps of equal average power with time delays 0, 0.25,

0.5, 0.75 and 1.00 symbol intervals, respectively. The total channel was

created by applying GMSK modulation with a BT product of 0.3, as used

in the GSM standard, to each of the taps. A co-channel interferer with

the same channel characteristics as the desired signal was added along with

Gaussian noise.

The channel was estimated without bootstrapping using 26 training symbols

and with bootstrapping with one, two and 5 iterations. The number of extra

symbols used in the bootstrapping was 122, giving a total of 148 symbols in

the re-estimation of the channel in the bootstrap algorithm. A genie aided

version of the channel estimation was also performed. Here it was assumed

that all 148 symbols where known and used in the channel estimation.

The relative errors in the estimation of the channel and the noise plus in-

terferer covariance estimates were computed using the Frobenius norm, i.e.

Relative channel error =
k B̂ �B k2
k B k2

(2.99)

and

Relative covariance error =
k R̂nn �Rnn k2

k Rnn k2
(2.100)

where B̂ and B are the estimated and true channel matrices and R̂nn and

Rnn are the estimated and true spatial noise plus interference co-variance

matrices, respectively. The notation k � k2 represents the Frobenius norm.

In Figures 2.24 and 2.25 we can see how the relative errors of the channel

estimate and the estimated covariance matrix of the noise plus interference

is reduced by the bootstrapping. In this simulation it is apparent that the

major part of the improvement is achieved after the �rst re-estimation and

re-tuning of the equalizer using the initially estimated symbols.

These improvements in estimation of the channel improves the BER of the

equalizer, as can be seen in Figure 2.26. In this simulation the bootstrapped
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Figure 2.24: Relative channel estimation error as a function of SNR.

SIR=0dB. No bootstrapping (solid), bootstrapping with one iteration

(dashed), two iterations (dash-dotted), 5 iterations (dotted) and genie aided

(*) (using 148 correct symbols).
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Figure 2.25: Relative error in the spatial covariance matrix as a function of

SNR. SIR=0dB. No bootstrapping (solid), bootstrapping with one iteration

(dashed), two iterations (dash-dotted), 5 iterations (dotted) and genie aided

(*) (using 148 correct symbols).
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Figure 2.26: BER as a function of SNR. SIR=0dB. No bootstrapping (solid),

bootstrapping with one iteration (dashed), two iterations (dash-dotted), 5

iterations (dotted) and genie aided (*) (using 148 correct symbols).

equalizer achieves almost the same performance as the genie-aided equalizer

trained using all 148 symbols. This will however not always be the case.

We have noted that if the initial equalization results in a too high BER (say

larger than about 10-20 percent), then bootstrapping may not be able to

improve the performance of the equalizer.

2.8 Estimation of Noise plus Interference MA

Spectrum

When tuning an equalizer indirectly we need an estimate of the spectrum

of the noise plus interference. Let us consider the model of the noise plus

interference term, n(t), in (2.5)

n(t) =

KX
k=1

bk(q
�1)dk(t) + v(t): (2.101)
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If we assume that the thermal noise component, v(t), is temporally white

then we can model the noise and interference with an MA process as

n(t) =M(q�1)v0(t) (2.102)

where M(q�1) is an M �M polynomial matrix of order nm

M (q�1) =

264 m11(q
�1) : : : m1M (q�1)

...
. . .

...

mM1(q
�1) : : : mMM (q�1)

375 (2.103)

with

mij(q
�1) = mij;0 +mij;1q

�1 + : : :+mij;nmq
�nm (2.104)

and v0(t) is the temporally and spatially white innovations vector for the

noise process, i.e.

E[v0(t1)v
0H(t2)] = �t1t2I : (2.105)

The spectrum for the interference plus noise term, n(t), can now be ex-

pressed as

Rnn(z; z
�1)) =M(z�1)MH(z): (2.106)

This spectrum is a complex conjugate symmetric double sided polynomial
in z and z�1, i.e.

Rnn(z; z
�1)) = RH

nn
(nm)znm + : : :+Rnn(0) + : : :+Rnn(nm)z�nm (2.107)

where Rnn(k) is the autocovariance for the noise plus interferer spectrum

with lag k

Rnn(k) = E[n(t)nH(t� k)]: (2.108)

Using the residuals from the estimation of the channel for the desired signal

n̂(t) = y(t)� b̂(q�1)d(t) (2.109)

we can form sample matrix estimates of the autocovariance for the noise

plus interference for di�erent lags as

R̂nn(k) =
1

tmax � tmin + 1

tmaxX
t=tmin

n̂(t)n̂H(t� k) (2.110)
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where the summation borders tmax and tmin are determined by how many

residuals can be formed from the training data.

A problem with estimating the spectrum of the noise plus interference spec-

trum is that usually only a short training sequence is available and thus

the number of residuals is small. If the receiver has many antenna elements

or many diversity branches of other sorts, then the number of coe�cients

in the spatio-temporal spectrum of the noise plus interference may become

prohibitingly high. In this case we can choose to only estimate and use the

spatial spectrum of the noise plus interference, i.e. we can estimate Rnn(0)

as

R̂nn(0) =
1

tmax � tmin + 1

tmaxX
t=tmin

n̂(t)n̂H(t): (2.111)

When using many antenna elements, the tuning of an equalizer using only

the spatial spectrum of the noise plus interference is often more well behaved

than what is obtained by using also the temporal spectrum of the interfer-

ence. The price we pay for this restriction is that our resulting equalizer will

only suppress the interference spatially.

With a su�ciently long training sequence it is, of course, possible to take

some aspects of the temporal spectrum of the interference into consideration.

We can, for example, choose to model the spectrum with only a few non-zero

time lags of the autocovariance for the noise plus interference. When we do

this it is important that the equalizer has a proper structure for space-time

suppression of interference, see Section 3.2.3 in Chapter 3 and see Chapter 4.

2.9 Joint FIR Channel and AR Noise Model

Estimation

2.9.1 Joint FIR Channel and AR Noise Model Estimation

As mentioned in Section 2.8, estimating the spatial spectrum using the sam-

ple matrix estimates as in (3.90), will often prove di�cult unless the training

sequence is long. Instead of modeling the noise plus interference with an MA
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model as described in Section 2.8 we can choose to model the noise plus inter-

ference with an AR model [7]. The model for the received vector of signals,

y(t), then becomes

y(t) = b(q�1)d(t) +N�1(q�1)M 0v(t) (2.112)

where, as in (2.15), b(q�1) is a polynomial column vector containing the

polynomial channels bi(q
�1), of degree nb, to the individual antennas:

b(q�1) = [b1(q
�1) b2(q

�1) : : : bM (q�1)]T : (2.113)

The matrix M0 is a non-singular constant M �M matrix

M0 =

264 m11 : : : m1M

...
. . .

...

mM1 : : : mMM

375 (2.114)

and N (q�1) is a stably invertible 9 M �M polynomial matrix

N (q�1) =

264 n11(q
�1) : : : n1M (q�1)
...

. . .
...

nM1(q
�1) : : : nMM (q�1)

375 (2.115)

with the components

nij(q
�1) = nij;0 + nij;1q

�1 + : : :+ nij;nnq
�nn: (2.116)

We assume that its leading matrix coe�cient of N (q�1) is equal to the

identity matrix, i.e. N0 = I .

The M � 1 vector v(t) is a temporally and spatially white innovations se-

quence with covariance matrix equal to unity, i.e.

E[v(t1)v
H(t2)] = �t1t2I : (2.117)

Multiplying both sides of (2.112) from the left with N (q�1) gives

N (q�1)y(t) =N(q�1)b(q�1)d(t) +M0v(t): (2.118)

9The determinant of N(q�1) has all zeros strictly inside the unit circle.
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Let us now introduce the polynomial vector

bN (q�1) =N (q�1)b(q�1) (2.119)

and the polynomial matrix

N
1(q�1) =N 1 + : : :+Nnnq

�(nn�1): (2.120)

We can now rewrite (2.118) as

y(t) = bN (q�1)d(t)�N 1(q�1)y(t� 1) +M0v(t): (2.121)

Equation (2.121) can be handled as an ordinary regression problem where

d(t) and y(t� 1), and their lagged values, are the regression variables. Note

that the error term,M0v(t), is temporally white and uncorrelated with the

regression variables. A standard least squares method can now be applied

to compute estimates, N̂
1
(q�1) and b̂N (q�1), N 1(q�1) and bN (q�1), re-

spectively [87]. The equations for this least squares estimation is outlined

in Appendix 2.B. The estimate of the noise model denominator, N(q�1),

can now be formed as

N̂ (q�1) = I + q�1N̂
1
(q�1) (2.122)

The constant matrixM0 can be estimated as the square root of the sample

matrix estimate R̂r̂r̂ formed as

R̂r̂r̂ =
1

tmax � tmin + 1

tmaxX
t=tmin

r̂(t)r̂H(t) (2.123)

where r̂(t) are the residuals

r̂(t) = N̂ (q�1)y(t)� b̂N (q�1)d(t): (2.124)

The estimate of the matrix M0 can thus be expressed as

M̂0 = R̂
1=2

r̂r̂
: (2.125)

Note however, that often we don't need to actually compute this estimate as

we often will be using the productM0M
H
0 which can be estimated directly

with R̂r̂r̂.
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A necessary condition to be able to compute the estimates of N 1(q�1) and

bN (q�1) is that the number of parameters to estimate is less than the number

of equations, i.e. we must require

M2nn+M(nb+ nn+ 1) < MNeff (2.126)

where Neff is the e�ective length of the training sequence, i.e. the number of

training relations we can form by taking the temporal length of the channels

into consideration.

However, to obtain a reasonable estimate of the matrix M 0, or the matrix

M0M
H

0 , we need some extra equations. Since we typically will need M 0

or M0M
H
0 to be invertible, it will be required to have full rank. If we only

have the minimum number of equations required to be able to compute the

estimates of N1(q�1) and bN (q�1) as stated in (2.126), then the residuals,

r̂(t), will be identical to zero. For each training symbol added (adding M

equations) over the minimum required, we add one degree of freedom in the

residuals. Each degree of freedom in the residuals add one to the rank of

the matrix R̂r̂r̂. WithM extra training symbols, the estimate of the matrix

M0M
H

0 , i.e. R̂r̂r̂, will in general be full rank. As a result the estimates

of M0M
H

0 and M 0 will be invertible. We can thus say that we need the

e�ective length of the training sequence to be at leastMnn+nb+nn+1+M .

With Neff = Ntseq � nb � nn we require that the length of the training

sequence ful�ll

Ntseq �M(nn+ 1) + 2 � (nb+ nn) + 1: (2.127)

2.9.2 Motivation for Joint FIR Channel and ARNoise Model

Estimation

One may argue that the use of an AR model for the noise plus interference

is not appropriate, as the true model for the noise plus interference more re-

sembles either an MA or possibly an ARMA model. A high order AR model

may be able to model an MA noise plus interferer spectrum appropriately

but not a low order AR model. However, we will here show that a low order

AR model, in fact, can be appropriate when used in an equalizer or symbol

detection algorithm.

When we perform joint estimation of an FIR channel and an AR noise

model, we can from (2.118) see that we are adjusting N (q�1) and bN (q�1)
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to minimize the variance in the signal,

r(t) =M0v(t) =N(q�1)y(t)�N (q�1)b(q�1)d(t); (2.128)

under the constraint that the leading coe�cient of N (q�1) is equal to the

identity matrix.

Let us now assume that our received signal, y(t), is described by the general

FIR channel model,

y(t) = b(q�1)d(t) + n(t); (2.129)

where the noise plus interference term, n(t), is not well modeled by an AR

process, as assumed in (2.112). We can for example assume that the noise

is well modeled by an moving average process.

Using (2.129) in (2.128) gives,

r(t) =N (q�1)
�
y(t)� b(q�1)d(t)

�
=N(q�1)n(t): (2.130)

We can thus see that we, in e�ect, are adjusting N (q�1) to minimize the

variance in the signal r(t) = N (q�1)n(t), under the constraint that the

leading coe�cient of N(q�1) is equal to the identity matrix.

A closer examination of the space-time equalizers and space-time maximum

likelihood sequence estimators, that will be presented in Chapters 3 and 4,

show that they all contain a noise whitening �lter as a �rst processing step.

Ideally the noise whitening �lter should whiten the noise. However, if the

noise whitening �lter cannot whiten the noise, it should at least be designed

to suppress the noise as much as possible. With the AR model of the noise

plus interference in (2.112), the noise whitening �lter becomes,

M
�1
0 N (q�1): (2.131)

Thus, apart from the constant matrix factor, M�1
0 , the polynomial MIMO

�lter, N (q�1), is the noise whitening �lter10.

From (2.130), we see that N (q�1) really is adjusted to suppress the noise

as much as possible. The resulting estimate, N̂ (q�1), will thus likely serve

well as a front end processing in a space-time DFE or a space-time MLSE.

10Without the factor, M�1
0 , the �lter N(q�1) will perform space-time noise whitening

up to a remaining spatial color, which is handled byM�1
0
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An important observation to make, is that the resulting polynomial �lter,

N̂ (q�1), does not have to model the noise well, it only has to suppress it.

Suppressing the noise is easier than modeling it, and therefore a low order

AR model for the noise, although crude, can be useful.

2.9.3 Reduced Complexity AR Noise Modeling

If we are using a large number of antennas the number of parameters may

be large compared to the number of available training symbols. To alleviate

this problem we may consider reducing the number of parameters in the

model. This can be done in many di�erent ways. The obvious solution is,

of course, to decrease the model order of the AR �lter. If we reduce it to

zero we get a pure spatial model of the noise with no temporal color. We

can however consider some other options.

One option is to restrict the denominator polynomial matrix N (q�1) in the

model (2.112) to be diagonal, i.e. let

N (q�1) =ND(q
�1) =

264 n1(q
�1) 0

. . .

0 nM (q�1)

375 (2.132)

with the diagonal elements

ni(q
�1) = 1 + ni1q

�1 + : : : + ninnq
�nn: (2.133)

The noise plus interference term at each antenna element then has its own

autoregressive �lter ni(q
�1). This noise model will, of course, not be as gen-

eral as when we allowN(q�1) to be a full matrix, but it will be able to catch

some of the spatio-temporal properties of the noise plus interferer spectrum.

The number of unknowns is here considerably reduced as ND(q
�1) only has

Mnn number of unknowns as compared to M2nn for the full polynomial

matrix N(q�1). The minimum e�ective length of the training sequence is

thus here given by nn+ nb+ nn+ 1 +M .

The next step in reducing the number of parameters in the model (2.112)

while keeping some of the temporal modeling is to require all diagonal ele-
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ments of ND(q
�1) to be equal, i.e. we require

N(q�1) =

264 n(q�1) 0
. . .

0 n(q�1)

375 (2.134)

where n(q�1) is the common denominator polynomial for all antenna ele-

ments

n(q�1) = 1 + n1q
�1 + : : :+ nnnq

�nn: (2.135)

The estimation of this model is however more complicated as it will in-

volve constrained optimization, constraining the denominators for the noise

models at the di�erent antenna elements to be equal. In this model of the

noise the spatial color and the temporal color decouple completely, i.e. we

have the same spatial color for each time tap in the model and we have the

same temporal color for each antenna element. An equalizer designed us-

ing this type of noise model would perform decoupled spatial and temporal

suppression of the noise plus interference.
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2.A Appendix

2.A.1 Linearization of the Modulation in GSM

The propagation in the wireless channel is typically well modeled by an FIR

�lter. However, all modulation schemes are not linear. In order to model

the whole communication channel with an FIR �lter as in (2.1) we need to

describe the modulation process with a linear FIR model. The modulation

applied in the GSM standard is an example of a modulation that is non-

linear. However, as we will see here, it can be approximated with a linear

model after some processing.

2.A.2 Modulation in GSM

The modulation used in the GSM system is Gaussian minimum shift keying

(GMSK) with a bandwidth-time product (BT product) of 0.3 [24]. The

modulated baseband signal can in continuous time, tc, be expressed as as

s(tc) = exp(i�h
X
n

a(n)�(tc � nT )) (2.136)

with

a(n) = d(n)d(n� 1) (2.137)

where d(�) = �1 are the transmitted binary symbols and h = 1=2 is the

modulation index used. The function �(tc) is de�ned as

�(tc)
4

=

Z
tc

�1

g(�)d� (2.138)

where

g(�) = f(�) ?
1

T
rect(�=T ) (2.139)

with

rect(x) = 1 for jxj < 1=2 and zero otherwise (2.140)
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and

f(t) =
1p
2��T

exp(�tc2=(2�2T 2)) (2.141)

where

� =

p
ln(2)

2�BT
(2.142)

where BT = 0:3 is the bandwidth time product.

2.A.3 Linearization without Receiver Filter

As shown in [12], using the techniques in [48], a signal modulated as in the

GSM standard, shown in (2.136), using BT = 0:3 can be well approximated

by a linear �ltering operation through a pulse-shaping �lter p(�):

s(tc) � ŝ(tc) =
X
n

ind(n)p(tc � nT ) (2.143)

where

p(tc) = �L�1
l=0 sin(

�

2
 (tc + lT )) (2.144)

and

 (tc) =

�
�st(tc) t � LT

1� �st(tc � LT ) t > LT
: (2.145)

The function �st(tc) is the phase shift function �(tc) in (2.138) shifted and

truncated such that it is zero for tc < 0 and constant for tc > LT .

By multiplying the received signal with i�tc=T we can form the rotated re-

ceived signal

sr(tc) = i�tc=T s(tc): (2.146)

The rotated received signal, sr(tc), can be approximated as

sr(tc) � ŝr(tc) =
X
n

d(n)i�(tc�nT )=T p(tc � nT ): (2.147)
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The GMSK modulated signal can thus be approximated as pulse amplitude

modulation with the pulse

pr(tc) = i�tc=T p(tc): (2.148)

Using this approximation one should be able to achieve a good description of

the channel between the transmitted symbols d(t) and the received rotated

signal, sr(tc), as seen in Figure 2.27, with an FIR �lter.

In a sampled system we can thus express the sampled modulated signal as

sr(t) = pr(q
�1)d(t) (2.149)

where

pr(q
�1) = pr(0) + pr(T )q

�1 + pr(2T )q
�2 + : : :+ pr(LT )q

�L: (2.150)

In order to simplify the notation we will however at this point drop the r

subscripts and just write

s(t) = p(q�1)d(t) (2.151)

and simply assume that the rotation has been performed on s(t) and the

coe�cients of p(q�1). The coe�cients of p(q�1) = p0 + p1q
�1 + : : :+ pLq

�L

will thus be

pi = pr(iT ) , i = 0; 1; : : : ; L: (2.152)

In Table 2.1, FIR �lters approximating the channel p(q�1) have been tab-

ulated for di�erent o�sets in the sampling instant. These channels have

been computed by creating a signal modulated as in the GSM standard

(with BT=0.3) and �tting �lters11 to the channels between the transmitted

binary signal and the rotated received signal.

2.A.4 Linearization with a Receiver Filter

With a receiver �lter, the channel between the transmitted symbols and the

received samples will have a somewhat longer impulse response. To show

11The FIR �lters are computed by estimating the channel with a least squares algorithm

using many data points.
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d(t) - d(t)d(t� 1)
GMSK

modulation
BT = 0:3

Delay
toff T

i�t=T sr(t)- - -HH -

Figure 2.27: Model of the channel between the transmitted symbols and the

rotated received GMSK modulated samples.

ptoff (q
�1) coe�cients

toff p0 p1 p2
-0.5 0.046 1.59 0.716 0.00 0.716 -1.57

-0.4 0.056 1.65 0.786 0.00 0.626 -1.58

-0.3 0.096 1.55 0.846 0.00 0.526 -1.57

-0.2 0.136 1.64 0.886 0.00 0.436 -1.59

-0.1 0.196 1.53 0.926 0.00 0.346 -1.55

-0.0 0.266 1.60 0.936 0.00 0.266 -1.60

0.1 0.346 1.60 0.906 0.00 0.196 -1.63

0.2 0.436 1.57 0.896 0.00 0.136 -1.59

0.3 0.526 1.57 0.836 0.00 0.096 -1.59

0.4 0.626 1.55 0.786 0.00 0.056 -1.44

0.5 0.716 1.57 0.716 0.00 0.046 -1.55

Table 2.1: Discrete-time channel approximation of sampled GSM modula-

tion. The sampling o�set relative to the center of the symbol, toff , is in

units of a symbol interval. The channels are p(q�1) = p0 + p1q
�1 + p2q

�2,

(q�1d(t) = d(t � 1)). The phase of the channel taps has been rotated such

that the middle tap has zero phase.
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d(t) d(t)d(t � 1)
GMSK

modulation
BT = 0:3

AALP
Delay
toff T

i�t=T sr(t)- - - - -HH -

Figure 2.28: Model of the channel between the transmitted symbols and the

received samples.

ptoff (q
�1) coe�cients

toff [T ] p0 p1 p2 p3 p4
�0.5 0.016 �1.97 0.156 +1.53 0.816 �0.01 0.84 6 �1.57 0.076 �3.05

�0.4 0.016 �2.24 0.206 +1.53 0.876 �0.01 0.77 6 �1.57 0.026 �2.88

�0.3 0.016 �2.62 0.256 +1.54 0.926 �0.01 0.69 6 �1.57 0.026 �0.26

�0.2 0.016 �2.92 0.316 +1.54 0.966 +0.00 0.61 6 �1.57 0.056 �0.08

�0.1 0.026 �3.08 0.376 +1.55 0.996 +0.00 0.52 6 �1.56 0.086 �0.05

0.0 0.036 +3.12 0.446 +1.55 1.006 +0.00 0.44 6 �1.56 0.106 �0.03

0.1 0.046 +3.09 0.526 +1.55 1.006 +0.00 0.35 6 �1.56 0.116 �0.01

0.2 0.066 +3.09 0.596 +1.56 0.986 +0.00 0.28 6 �1.55 0.116 +0.00

0.3 0.086 +3.09 0.676 +1.56 0.956 +0.00 0.20 6 �1.54 0.116 +0.01

0.4 0.116 +3.09 0.746 +1.56 0.906 +0.01 0.13 6 �1.53 0.106 +0.03

0.5 0.156 +3.10 0.816 +1.56 0.846 +0.01 0.07 6 �1.50 0.096 +0.04

Table 2.2: Discrete-time channels approximating the channel between the

transmitted symbols and the received samples portrayed in Figure 2.28.

The sampling o�set relative to the center of the symbol, toff , is in units of a

symbol interval. The channels are ptoff (q
�1) = p0+p1q

�1+p2q
�2+p3q

�3+

p4q
�4, (q�1d(t) = d(t� 1)).

this e�ect a fourth order Butterworth lowpass �lter with a bandwidth of 90

kHz has here been used to model a receiver �lter. The symbol rate used

was 270833 kbit/s (T = 3:69�s) as in GSM. An illustration of the channel

between the transmitted symbols d(t) and the received rotated samples can

be seen in Figure 2.28.

In Table 2.2 the resulting approximating channels are displayed. We can

observe that the e�ective impulse response length has become slightly in-

creased.
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2.B Least Squares for FIR Channel and AR Noise

Estimation

We here outline the equations for the least squares method applied to

(2.121).

The coe�cients of the estimate,

N̂(q�1) = I + N̂ 1q
�1 + : : : N̂nnq

�nn (2.153)

and the estimate

b̂N (q�1) = b̂N ;0 + : : : b̂N ;nb+nnq
�nb�nn (2.154)

can be computed as h
N̂

1
B̂N

i
= R̂yxR̂

�1

xx (2.155)

where

R̂yx =
1

Ntseq � nb� nn

NtseqX
t=nb+nn++1

y(t)x(t)H (2.156)

R̂xx =
1

Ntseq � nb� nn

NtseqX
t=nb+nn+1

x(t)xH(t) (2.157)

with

x(t) =
�
�yT (t� 1) : : : �yT (t� nn) d

T (t)
�T

(2.158)

d(t) =
�
d(t) : : : d(t� nb� nn)

�T
(2.159)

The coe�cients in N̂(q�1), except for the unit leading coe�cient, should be

extracted from N̂
1
according to

N̂
1
=
�
N̂ 1 : : : N̂nn

�
(2.160)

and the coe�cients in b̂N (q�1) should be extracted from B̂N according to

B̂N =
�
b̂N ;0 : : : b̂N ;nn

�
(2.161)



104 Chapter 2. Channel Estimation



Chapter 3

Space-Time Decision

Feedback Equalization

3.1 Introduction

In a wireless communication channel there can often be a considerable delay

spread. This delay can be larger than the symbol time. In this case the sig-

naling over the channel experiences intersymbol interference. The received

signal samples, y(t), can then often be modeled as in (2.1) with an FIR

channel model

y(t) = b(q�1)d(t) + n(t)

= (b0 + b1q
�1 + : : :+ bnbq

�nb)d(t) + n(t)

= b0d(t) + b1d(t� 1) + : : :+ bnbd(t� nb) + n(t) (3.1)

where d(t) are the transmitted symbols, n(t) is a term representing the noise

plus interference and fbig are the coe�cients of the FIR channel model

- -S(q�1)-
d̂(t� `)

y(t) ~d(t� `)

Figure 3.1: Linear time-only equalizer.
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��
��

- -

6

-

�

- S(q�1)

q�1

Q(q�1)

d̂(t� `)
~d(t� `)

P+

�
y1(t)

Figure 3.2: Time-only decision feedback equalizer.

b(q�1).

In order to detect the transmitted signal, we need to combat the intersymbol

interference resulting from the delay spread, and the noise plus interference

in the term n(t). There are three major choices of detectors that can be

employed to solve this problem: the linear equalizer, the decision feedback

equalizer and the maximum likelihood sequence estimator. Of course, there

exists other possible detectors as well, but the three mentioned above are

the most \popular" ones. We will therefore focus our attention on these

algorithms.

First we consider the linear equalizer, as depicted in Figure 3.1 which forms

an estimate of the transmitted symbol by linear �ltering of the received

signal

d̂(t� `) = S(q�1)y(t) (3.2)

where S(q�1) is a general stable and causal linear �lter. The �nal estimate

of the symbol is achieved by feeding d̂(t � `) through a decision device

and forming a discrete estimate of the transmitted discrete symbol. The

parameter ` is the smoothing lag of the equalizer. A larger smoothing lag

improves the performance of the equalizer, at least up to some point.

The linear temporal equalizer has a considerable drawback. In essence it

attempts to invert the channel to equalize the channel and detect the trans-

mitted symbols. This can be di�cult if the channel is non-minimum phase

as the equalizer �lter then would need poles outside the unit circle and thus

would become unstable. At the same time the equalizer should avoid to am-

plify received noise. Increasing the smoothing lag will help the equalization

but some channels will still be di�cult to equalize.
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Instead of using a linear equalizer we can use a decision feedback equalizer

(DFE). In a decision feedback equalizer we add a linear �lter, Q(q�1), which
is processing previously decided symbols from the output of the equalizer as

depicted in Figure 3.2. The feedforward �lter S(q�1) will then be aided by

the feedback �lter Q(q�1) such that the feedforward �lter no longer needs

to invert the channel. As long as the majority of the symbols are correctly

decided this will facilitate the channel equalization and the symbol detection.

The performance of the temporal decision feedback equalizer will often be

considerably better than the temporal linear equalizer.

The third type of algorithm we consider is a maximum likelihood sequence

estimator (MLSE) [26, 116]. A maximum likelihood sequence estimator

processes the received data and searches for the most likely symbol sequence

to have been transmitted. The maximum likelihood sequence estimator has

an advantage over the linear equalizer and the decision feedback equalizer in

that it detects symbol sequences rather than individual symbols as for the

linear and the decision feedback equalizer. If the channel is perfectly known

and the noise is white and Gaussian then the maximum likelihood sequence

estimator �nds the optimal estimate of the transmitted symbol sequence.

The maximum likelihood sequence estimator generalized to a space-time

MLSE will be discussed in Chapter 4.

The equalizers described above only operates on a single input signal and

therefore only performs temporal processing. However, if we have multiple

received signals from multiple antennas we can perform space-time process-

ing. The multiple signals do not necessarily need to come from spatially

separated antennas. They can be from some other sources of diversity, for

example, from antennas with di�erent polarization. All this processing can

be treated in the frame-work of space-time processing. We can, of course,

generalize all of the above equalizers to work with multiple input signals.

An interesting fact to note is that when we generalize these equalizers to

work with multiple input signals, their di�erence in performance tends to

be reduced. The reason for this is that the linear equalizer, the decision

feedback equalizer as well as the maximum likelihood sequence estimator,

all has a linear �lter up front operating on the received signal. Basically

what happens is that the linear �lter can more easily invert the channel or

produce the desired signal when we are performing space-time processing

compared to when we are performing temporal processing only. As a result

the performance of the di�erent equalizers will be more comparable.
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��
��

- -

6

-

�

-

-
S(q�1)

q�1

Q(q�1)

d̂(t� `)
~d(t� `)

P+

�yM(t)

y1(t) ���

Figure 3.3: General space-time DFE with linear �lters. The feedforward

�lter is here a linear MISO �lter, represented with the rational MISO trans-

fer function operator S(q�1). Likewise the scalar linear feedback �lter is

represented with a rational SISO transfer function operator Q(q�1).

In this chapter we will consider the space-time decision feedback equalizer.

The linear equalizer can be considered a special case of the decision feedback

equalizer, i.e. without the feedback �lter. A general space-time DFE with

linear �lters can be seen in Figure 3.3. The M input signals from, say, M

antenna elements1, are �ltered in the feedforward �lter S(q�1). Previously

decided symbols are �ltered in the feedback �lter Q(q�1) and its output is

subtracted from that of the feedforward �lter. The resulting signal is fed to

a decision device to form an estimate, d̂(t � `) of the transmitted discrete

symbol d(t� `), where ` represents the smoothing lag of the equalizer. The
transmitted symbol sequence is assumed to be temporally white. Since the

space-time DFE utilizes signals from M antenna elements, we can perform

space-time �ltering in the feedforward �lter. As compared to the scalar case,

this supplies the space-time DFE with extra signal dimensions that can be

used for signal enhancement and interference suppression.

This chapter considers optimal tuning solutions for space-time DFE's for dif-

ferent channels and constraints. First in Section 3.2.1, the general MMSE

optimal space-time DFE with linear �lters for an ARMA channel with

ARMA noise is presented. This estimator, derived assuming correct past

decisions, is a generalization of the scalar MMSE optimal DFE presented

in [90]. If we restrict the channel model to have diagonal denominator poly-

nomial matrices, then it is also a special case to the multi-user MIMO-DFE

presented in [106]. In general, the space-time DFE has a space-time feedfor-

ward IIR �lter and a scalar IIR feedback �lter. The rational �lters, present

in the optimal design, can sometimes cause complications. The IIR �lters

1The M signals can also arise from using other types of diversity branches.
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optimized assuming previous correct decisions may have poles close to the

stability limit. If this is the case for the feedback �lter, then an erroneous

decision can cause a long error burst. This e�ect can be seen in Section 7.2

of Chapter 7 where robustness against decision errors are studied.

Most wireless communication channels can be well modeled by FIR �lters.

This is therefore an important special case to consider. Furthermore, if we

restrict the interference and noise model to being an AR-model, then the

resulting DFE with optimal structure will contain only FIR �lters. From

the discussion in Section 2.9.2, we can understand why an AR model, even

a low order AR model, for the noise plus interference can be useful when

used in a decision feedback equalizer. The important observation to make is

that the the AR noise model denominator does not have to model the noise

particularly well, it only has to be able to suppress the noise plus interference

as a part of a noise whitening �lter. The use of an AR model for the noise

plus interference was proposed in [7] in conjunction to a maximum likelihood

sequence estimator. It can however also be used together with a decision

feedback equalizer. An advantage of using an AR noise model together

with a decision feedback equalizer is that the increase in complexity for the

execution of the DFE with the AR noise model is linear in the order of

the AR noise model used, while the increase in execution complexity for the

MLSE is exponential in the order of the AR noise model. For this reason it is

more feasible with higher order AR noise models together with the DFE than

together with an MLSE. The MMSE optimal space-time DFE for an FIR

channel with AR-noise is treated separately, and presented in Section 3.2.2.

An example AR modeling of the noise plus interference combined with a

space-time decision feedback equalizer can be seen in one of the simulations

in Section 3.4.

Yet another alternative is to restrict the space-time DFE to have FIR �lters

of speci�ed orders in the feedforward and the feedback �lters and optimize

the coe�cient values, given the structure. The MMSE optimal space-time

DFE with FIR �lters of a given order is therefore presented in Section 3.2.3.

The method can use the general space-time spectrum of the noise plus in-

terference.

Although, the space-time DFE's introduced above are optimal under the

given conditions, they are somewhat unpractical, since their tuning requires

the solution of a large system of linear equations.
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The MMF-DFE presented in Section 3.2.4 has the space-time processing con-

centrated to a multi-dimensional matched �lter followed by a scalar temporal

DFE [83]. The MMF-DFE is a generalization to colored noise of the results

presented in [8][9]. If we restrict us to consider only the spatial covariance

of the noise plus interference or an AR model of the noise plus interfer-

ence, then the multi-dimensional �lter is very easy to compute, and so is

the scalar DFE. In the simulations of Section 3.4 the MMF-DFE achieves

about the same performance as the other DFE's above. The di�erence in

complexity is especially large when the number of antennas is large, making

the MMF-DFE preferable over the others for this case. A drawback with

the MMF-DFE is however that it will introduce a larger decision delay. This

will be of signi�cant importance only when time-varying channels need to

be tracked.

In Section 3.3 di�erent tuning options for the above mentioned DFE's are

presented. It is noted that when using many antenna elements it may be

di�cult to make use of the full spatio-temporal spectrum of the noise plus

interference, due to the di�culty of accurately estimating it. As mentioned

in Section 2.3, one solution to this problem is to utilize only the spatial

spectrum of the noise plus interference. Interference suppression is then

performed in the spatial domain only [61]. This is useful when we have

a large number of antenna elements. It should however be noted that the

number of antennas can be large in more than one way. First, it can be large

in the sense that the number of parameters to be tuned in the equalizers

becomes large compared to the length of the training sequence. Second,

it can be large compared to the number of uncorrelated interfering signals

present, making spatial suppression of the interferers e�ective. In the sim-

ulations performed here in Section3.4, the number of antennas was large in

both these senses. The conclusions therefore really has to be restricted to

the speci�c case studied.

Another solution to the problem of handling the spatio-temporal color of

the noise plus interference can be, as mentioned above, to estimate a spatio-

temporal AR model for the noise plus interference. This is described in

Section 2.9.



3.2. Optimal Space-Time Decision Feedback Equalizers 111

3.2 Optimal Space-Time Decision Feedback Equal-

izers

3.2.1 Optimal Space-Time DFE for ARMA Channels with

ARMA Noise

A general linear time-invariant space-time channel can be described by an

ARMA model for both the desired signal and the noise plus interference.

We will here discuss the MMSE optimal space-time DFE for such a channel.

This is a generalization of the MMSE optimal DFE for the scalar case [90].

If we restrict the channel model to have diagonal denominators, then it is

also a special case to the multi-user MIMO-DFE presented in [106].

Let the received signal vector y(t), of dimensions M � 1, be modeled as

y(t) = A
�1(q�1)b(q�1)d(t) +N�1(q�1)M(q�1)v(t): (3.3)

Here A(q�1) and N (q�1) are assumed to be stably and causally invertible

M �M polynomial matrices of orders na and nn respectively. The matrix

M(q�1) is assumed to be a stably and causally invertibleM�M polynomial

matrix of order nm and b(q�1) is an M � 1 polynomial column vector of

order nb. The M � 1 vector v(t) is an innovations sequence for the model

of the noise plus interference term, N�1(q�1)M(q�1)v(t).

The sequence of transmitted symbols fd(t)g are assumed to be temporally

white with zero mean. Furthermore, we assume the transmitted symbols to

be scaled to have unit variance, i.e.

E[d(t)dH (t)] = 1: (3.4)

The polynomial matrices A(q�1), N (q�1) andM(q�1) are thus assumed to

be of the forms

A(q�1) =

264 a11(q
�1) : : : a1M (q�1)
...

. . .
...

aM1(q
�1) : : : aMM (q�1)

375 (3.5)
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N (q�1) =

264 n11(q
�1) : : : n1M (q�1)
...

. . .
...

nM1(q
�1) : : : nMM (q�1)

375 (3.6)

and

M (q�1) =

264 m11(q
�1) : : : m1M (q�1)

...
. . .

...

mM1(q
�1) : : : mMM (q�1)

375 (3.7)

with the respective elements

aij(q
�1) = aij;0 + aij;1q

�1 + : : :+ aij;naq
�na ; (3.8)

nij(q
�1) = nij;0 + nij;1q

�1 + : : : + nij;nnq
�nn (3.9)

and

mij(q
�1) = mij;0 +mij;1q

�1 + : : :+mij;nnq
�nm: (3.10)

The requirement that the matrices A(q�1), N (q�1) andM(q�1) are stably

invertible is equivalent to require that their determinants have zeros strictly

inside the unit circle, while causality is guaranteed if the leading the leading

matrix coe�cient of the matrix polynomials A(q�1) and N (q�1) are non-

singular. For simplicity we will assume that the leading coe�cient matrices

of A(q�1) and N(q�1) are equal to the unit matrix.

The channel for the desired signal is a polynomial column vector

b(q�1) =

264 b1(q
�1)
...

bM (q�1)

375 (3.11)

with

bi(q
�1) = bi;0 + bi;1q

�1 + : : : + bi;nbq
�nb: (3.12)

We have here assumed that all elements of the polynomial matrices and

vectors have the same degree. Di�erent degrees can however be obtained by

setting trailing polynomial coe�cients to zero.
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The M � 1 vector v(t) is a temporally and spatially white innovations se-

quence with the covariance matrix equal to unity, i.e.

E[v(t1)v
H(t2)] = �t1t2I: (3.13)

The estimated symbol prior to the decision device in the DFE can be ex-

pressed as

d̂(t� `) = S(q�1)y(t)�Q(q�1) ~d(t� `� 1) (3.14)

where S(q�1) and Q(q�1) are stable and causal rational �lters of dimensions
1 �M and 1 � 1 respectively, see Figure 3.3. The parameter `, known as

the decision delay, or the smoothing lag, is chosen by the user. The signal
~d(t� `� 1) denotes previously decided symbols. The estimate d̂(t� `) is fed
into the decision device to produce a hard estimate ~d(t�`) of the transmitted
discrete symbol d(t�`). To maintain a linear �ltering problem we adopt the

commonly used assumption that all previous decisions fed into the feedback

�lter are correct.

In Appendix 3.A.1, the derivation of the resulting MMSE optimal DFE is

carried out in detail. We will here summarize the result. Assuming A(q�1)

and M(q�1) to be stably and causally invertible, the rational feedforward

�lters which minimizes the criterion

J = E
h
jd(t� `)� d̂(t� `)j2

i
(3.15)

is given by

S(q�1) = s0(q
�1)M�1(q�1)N (q�1) (3.16)

while the corresponding optimal rational feedback �lter is given by

Q(q�1) = Q(q�1)

a(q�1)m(q�1)
(3.17)

with

a(q�1) = det
�
A(q�1)

�
(3.18)

m(q�1) = det
�
M(q�1)

�
: (3.19)
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The degree of the polynomial s0(q
�1) is equal to the smoothing lag, ` and

the degree of the polynomialQ(q�1) is equal to max[nb+nn+(M�1)(nm+

na);M(nm+ na)]� 1.

The coe�cients of s0(q
�1) can be computed by solving the system of equa-

tions 2
666666664

�uH0 0 p
H
0 0

...
. . .

...
. . .

�uH` � � � �uH0 p
H
` � � � p

H
0

�H0 � � � �H` c0 � � � c`
. . .

...
. . .

...

0 �H0 0 c0

3
777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

0
...

p
H
0

0
...

0

3
777777775

(3.20)

where

H(q�1) = H0 +H1q
�1 + : : :+Hnhq

�nh

4

= a(q�1)adj
�
N (q�1)

�
M(q�1) (3.21)

u(q�1) = adj
�
M (q�1)

�
N (q�1)adj

�
A(q�1)

�
b(q�1) (3.22)

p(q�1)
4

= a(q�1)m(q�1) (3.23)

and

c(q�1) = c0 + c1q
�1 + : : :+ cncq

�nc = n(q�1)adj
�
A(q�1)

�
b(q�1): (3.24)

Here Hi = 0 if i > nh, ci = 0 if i > nc, ui = 0 if i > nu and pi = 0 if

i > np.

The coe�cients of the scalar feedback �lter polynomial, Q(q�1) of order
np = max[nb+ nn+ (M � 1)(nm+ na);M(nm+ na)], can be computed as

2
64

Q
H
0

...

Q
H
nq

3
75 =

2
64

�uH`+1 � � � �uH1 p
H
`+1 � � � p

H
1

...
...

...
...

�uH`+1+nq � � � �uH1+nq p
H
`+1+nq � � � p

H
1+nq

3
75

2
66666666664

sH0;0
...

sH0;`
l1`
...

l11

l10 � 1

3
77777777775
:

(3.25)

Again ui = 0 if i > nu and pi = 0 if i > np.
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3.2.2 Optimal Space-Time DFE for FIR Channels with AR

Noise

The space-time DFE in Section 3.2.1 is often unnecessarily complex. A

typical wireless communication channel can be modeled by an FIR channel.

This is therefore an important special case to consider. It is also practical

to have decision feedback equalizers with FIR �lters in the feedforward and

the feedback �lters, rather than IIR-�lters as is the case for the space-time

for DFE for ARMA channels with ARMA noise2. We will here show that if

we have a space-time FIR-model for the channel of the desired signal and a

space-time AR-model for the noise and interference, then the MMSE-optimal

DFE will have only FIR-�lters in the feedforward and feedback �lters. The

�lters can also be computed in a simple manner.

If the noise consists mainly of co-channel interferers, then an AR model will

typically not be physically motivated. A sum of interferers each propagat-

ing through an FIR channel would be better described by a moving average

(MA) model. From the discussion in Section 2.9.2, we can however under-

stand why an AR model, even a low order AR model, for the noise plus

interference can be useful when used in a decision feedback equalizer. The

important observation to make is that the the AR noise model denominator

does not have to model the noise particularly well, it only has to be able to

suppress the noise as a part of a noise whitening �lter. The use of an AR

model for the noise was proposed in [7] in conjunction with a space-time

MLSE. When we use an AR model for the noise in an MLSE, the memory

length of the Viterbi algorithm used will be increased. This increases the

complexity of Viterbi algorithm by a factor Knn, where K is the number

of symbols in the alphabet and nn is the order of the AR model for the

noise plus interference. Thus the complexity for the MLSE using an AR

noise model increases exponentially with the order of the AR noise model.

When an AR model for the noise plus interference is used together with a

space-time decision feedback equalizer, on the other hand, the increase in

complexity is only linear in the order of the AR noise model. As a result we

can allow AR noise models of a higher order for the space-time DFE.

2A reason for this is that if we have an IIR �lter as feedback �lter, then an erroneous

symbol decision can cause a long error burst if the �lter has poles close to the unit circle.

If we use FIR �lters only, then the number of symbols an erroneous decision directly can

a�ect will be limited by the length of the FIR feedback �lter.
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The M � 1 received signal vector y(t) is here modeled as

y(t) = b(q�1)d(t) +N�1(q�1)M0v(t)

= b0d(t) + � � � + bnbd(t� nb) +N�1(q�1)M 0v(t) (3.26)

where the M � 1 polynomial column vector b(q�1) is the channel for the

desired signal

b(q�1) =

264 b1(q
�1)
...

bM (q�1)

375 (3.27)

with

bi(q
�1) = bi;0 + bi;1q

�1 + : : : + bi;nbq
�nb: (3.28)

The noise model numerator, M0, is an M �M constant matrix

M0 =

264 m11 : : : m1M

...
. . .

...

mM1 : : : mMM

375 (3.29)

which is assumed to be nonsingular. For the noise model denominator,

N (q�1), the transmitted symbols, d(t), and the noise sequence, v(t), we

adopt the same assumptions as in Section 3.2.1.

Given the channel model (3.26), with M0 invertible, and assuming correct

past decisions, ~d(t� `� 1), to be fed into the feedback �lter, then as shown

in detail in Appendix 3.A.2, the MMSE optimal DFE with linear �lters is

given by

d̂(t� `) = s(q�1)y(t)�Q(q�1) ~d(t� `� 1) (3.30)

where the feedforward FIR �lter, s(q�1), is given by the row vector

s(q�1) = s0(q
�1)M�1

0 N (q�1): (3.31)

See Figure 3.4.

The coe�cients of the polynomial vector s0(q
�1) of degree ` can be com-

puted by solving the system of equations

(B0B0
H
+ I)sH0 =

264 b
0

`

...

b
0

0

375 (3.32)
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Figure 3.4: The structure of the space-time DFE for an FIR channel with

AR noise. The feedforward �lter, s(q�1), is a MISO FIR �lter of order `+nn

and the feedback �lter, Q(q�1), is a scalar FIR �lter of order nb+ nn� 1,

where ` is the smoothing lag of the equalizer, nn is the order of the space-

time AR noise model and nb is the order of the space-time FIR channel for

the desired signal.

where

B
0 =

264 b
0

0 � � � b
0

`

. . .
...

0 b
0

0

375 (3.33)

s0 =
�
s0;0 : : : s0;`

�
(3.34)

where b0i are the vector taps of the noise whitened channel

b
0(q�1) = b

0

0 + b
0

1q
�1 + : : : + b0

nb0
q�nb

0

=M
�1
0 N (q�1)b(q�1) (3.35)

with b
0

i = 0 if i > nb0 = nb + nn, and s0;k are the vector taps in the

polynomial

s0(q
�1) = s0;0 + s0;1q

�1 + : : :+ s0;`q
�`: (3.36)

The matrix (B0B0
H
+ I) will be nonsingular since I obviously is a full rank

matrix and B0B0
H
is a positive semi-de�nite matrix, making (B0B0

H
+ I) a

full rank (and thus invertible) matrix.

The coe�cients of the feedback polynomial,Q(q�1) of order nq = nb+nn�1,
can be computed as264 QH

0
...

QH
nq

375 =

264 b
0H

`+1 � � � b
0H

1
...

...

b
0H

`+nb+nn � � � b
0H

nb+nn

375
264 s

H
0;0
...

s
H

0;`

375 (3.37)
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where b0i = 0 if i > nb0 = nb+ nn.

We thus see that with the channel model of (3.26) with an FIR model for the

channel of the desired user and an AR model for the noise plus interference,

the optimal space-time DFE takes on a particular simple form with FIR

�lters in the feedforward and feedback �lters.

We have here assumed that the denominator in the AR model for the noise

plus interference is a full matrix, with the zeros of its determinant inside

the unit circle. We can however, of course, restrict the denominator to be a

diagonal matrix. This can be advantageous since, as discussed in Section 2.9,

a diagonal AR noise model can be easier to estimate. The space-time DFE

using a diagonal denominator in the AR-model will be able to perform some

coupled space-time suppression of interference, but it will not be able to

suppress interferers in the space-time domain as general as the space-time

DFE using a full denominator matrix.

If we further restrict all elements of the diagonal denominator matrix to

be equal, then the spatio-temporal model of the noise spectrum decouples

into a separate spatial model,M0, and a common temporal model, n(q�1),

being the common denominator polynomial in the AR model. The resulting

DFE can then only do decoupled space-time suppression of interferers.

3.2.3 Optimal Fixed Order Space-Time FIR-DFE for a FIR

Channel with Colored Noise

Let us here consider the case of FIR channels with spatially and temporally

colored noise plus interference. This will be the typical scenario when we

have co-channel interferers experiencing intersymbol interference impinging

on the antenna array. As we saw in Section 3.2.1, a DFE using FIR-�lters

is in general not optimal. There are however some advantages with the use

of FIR-�lters in the DFE. IIR-�lters can have poles very close to the unit

circle, resulting in very long impulse responses in the �lters. This can for

example result in long error propagation events caused by a long impulse

response from an incorrect decision fed back through an IIR feedback �lter.

We will therefore here constrain the DFE to contain only FIR �lters with

speci�c degrees and tune the coe�cient to minimize the MMSE prior to the

decision device.
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We here model the M � 1 received signal vector y(t) using polynomial no-

tation as

y(t) = b(q�1)d(t) + n(t)

= (b0 + b1q
�1 + : : :+ bnbq

�nb)d(t) + n(t) (3.38)

where the spatially and temporally colored vector of noise plus interference

samples n(t) has the matrix-valued covariance function

Rnn(k)
4

= E[n(t)nH(t� k)]: (3.39)

Note that the noise plus interference term n(t) is assumed to be uncorrelated

to the transmitted symbols d(t). Further the transmitted symbols, d(t), are

as usual assumed white with unit variance.
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Figure 3.5: The structure of a space-time DFE with �xed order FIR �lters.

The orders of the MISO FIR feedforward �lter, s(q�1), and the scalar FIR

feedback �lter, Q(q�1), can in principle be chosen arbitrarily.

The space-time DFE with �xed order FIR �lters in the feedforward and

feedback �lters is depicted in Figure 3.5. The estimated symbol prior to the

decision device can thus be written as

d̂(t� `) = s(q�1)y(t)�Q(q�1) ~d(t� `� 1): (3.40)

This estimate is then used as input to the decision device to produce a hard

estimate ~d(t� `) of the transmitted discrete symbol d(t� `).

We now have to choose the smoothing lag and the orders of the feedforward

and the feedback �lter. With perfect channel knowledge a larger smoothing

lag generally results in better performance. However, as a rule of thumb it is

adequate to select the smoothing lag such that most of the received energy
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originating from a transmitted symbol has passed through the feedforward

�lter of the DFE before a decision is made.

As a guidance for the orders of the feedforward and the feedback �lters we

can study the orders of the FIR DFE in Section 3.2.2 operating on a FIR

channel with AR noise. The �lters in this DFE have the orders

deg s(q�1) = `+ nn (3.41)

deg Q(q�1) = nb+ nn� 1 (3.42)

where nn is the order of the AR model for the noise. Here we do not assume

that a parametric AR model for the noise plus interference is available, but

we can use the order nn as a tuning knob. We will therefore assume that

we select a number nn � 0 and use the orders from equations (3.41) and

(3.42). With this choice of �lter orders we will automatically get ` � ns,

which according to the structure of the optimal DFE is a sound constraint.

It is possible to have a smoothing lag, ` that is larger than the order of the

feedforward �lter. The structures of the optimal DFE however suggests that

this is not meaningful. We will therefore assume that ` � ns.

As usual we assume that all previous decisions a�ecting the current symbol

estimate are correct, i.e. ~d(t� `� k) = d(t� `� k), for k = 1; : : : ; nq + 1.

We now want to adjust the equalizer coe�cients to minimize the MSE cri-

terion

J = E[jd(t � `)� d̂(t� `)j2]: (3.43)

The coe�cients that minimizes the criterion (3.43) can be computed by

means of the Wiener-Hopf equations [35]. De�ne the parameter vector

�
4

=
�
s Q

�
(3.44)

where

s =
�
s0 s1 : : : sns

�
(3.45)

and

Q =
�
Q0 Q2 : : : Qnq

�
(3.46)
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with si being the row vector coe�cient of order i to the feedforward �lter

s(q�1) = s0 + s1q
�1 + : : : + snsq

�ns and Qi being the coe�cients of the

feedback �lter.

Furthermore, de�ne a regression vector

'(t)
4

=

�
�y(t)

�dQ(t)

�
(3.47)

where

�y
4

=

26664
y(t)

y(t� 1)
...

y(t� ns)

37775 dQ(t)
4

=

2664
d(t� `� 1)

d(t� `� 2)

: : :

d(t� `� nq � 1)

3775 : (3.48)

The �ltering of the DFE in (3.40) can now, in vector form, be expressed as

d̂(t� `) = �'(t): (3.49)

The parameter vector that minimizes (3.43) is now given by the solution to

the Wiener-Hopf equations

R''�
H = R'd`

(3.50)

where

R''

4

= E['(t)'H(t)] R'd`

4

= E['(t)dH(t� `)]: (3.51)

The covariance matrices R'' and R'd`
can be expressed in the coe�cients

of the channel b(q�1) and the autocovariance function for the noise plus

interference, Rnn(k), see Appendix 3.A.3.

Consider now forming estimates R̂'' and R̂'d`
of the matrices R'' and

R'd`
in (3.50). We can form such estimates either directly from the avail-

able training data, as will be described in Section 3.3.1, or we can form

estimates by using an estimate of the channel, b̂(q�1), and estimates of the

spatio-temporal covariances, R̂nn(k), for the noise plus interference in the

equations in Appendix 3.A.3.
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Assuming R̂'' is nonsingular, we can then compute an estimate of � as

�̂
H

= R̂
�1

''
R̂'d`

: (3.52)

From �̂ we can then extract the coe�cients of the feedforward and the

feedback �lter according to (3.44).

The solution to (3.50) can however be expressed in a slightly more compact

form as shown in [110]. We will here show this in a new and simple way.

Let us return to the expression in (3.40) for the signal, d̂(t� `), prior to the
decision device

d̂(t� `) = s(q�1)y(t)�Q(q�1) ~d(t� `� 1): (3.53)

In matrix notation we can write d̂(t� `) as

d̂(t� `) = s�y(t)�QdQ(t) (3.54)

where s is de�ned in (3.45), Q is de�ned in (3.46) and �y(t) and dQ(t) is

de�ned in (3.48). The feedback �lter is assumed to �lter correct symbols

delayed by `+ 1 time samples. The feedback �lter will then, provided it is

long enough, cancel all e�ects of symbols d(t) with a delay larger than `.

This is the role of the feedback �lter. As a result, as also noted in [54] for

the scalar case, we can replace the problem of tuning the feedforward and

feedback �lters coe�cients in (3.54) with the problem of tuning only the

feedforward �lter coe�cients in

d̂(t� `) = s�y`(t) (3.55)

where the signal vector �y`(t) is the same signal as �y(t), except that we have

removed all dependencies on symbols d(t) delayed more than ` samples. The

signal vector �y`(t) can thus be expressed as

�y`(t) = Bd`(t) + n(t) (3.56)

where

B =

2666666664

b0 : : : b`

...
. . .

...

0 : : : b0

0 : : : 0
...

...

0 : : : 0

3777777775
(3.57)
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with bk being the taps in the FIR �lter channel (3.38) and

d`(t) =

264 d(t)
...

d(t� `)

375 : (3.58)

Note that �y`(t) does not depend on symbols d(�) for � < t� `.

The coe�cient vector for the MMSE optimal feedforward �lter, s, can thus

be found as the solution to the Wiener-Hopf equations

R�y`�y`
s
H = R�y`d`

(3.59)

where

R�y
`
�y
`
= E[�y(t)�yH(t)] (3.60)

and

R�y
`
d`
= E[�y(t)dH(t� `)]: (3.61)

Using (3.56) and the assumption that d(t) is white and uncorrelated with

n(t), we can rewrite the system of equations (3.59) for the feedforward �lter

coe�cients, s de�ned in (3.45), as

(BBH +R�n�n)s
H = B` (3.62)

where B is de�ned in (3.57) and

R�n�n =

264 Rnn(0) : : : Rnn(ns)
...

. . .
...

Rnn(�ns) : : : Rnn(0)

375 B` =

266666666664

b`

b`�1

...

b0

0
...

0

377777777775
: (3.63)

The M �M matrices Rnn(k) inR�n�n are evaluations of the autocovariance

function of the noise plus interference de�ned in (2.108).
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Given the coe�cients of feedforward �lter s =
�
s0 : : : sns

�
, the coe�-

cients of feedback �lter, can using (3.37) with nn = 0, be computed as264 QH
0
...

QH
nq

375 =

264 b
H

`+1 � � � b
H

1
...

...

b
H

`+nb � � � b
H

nb

375
264 s

H
1
...

s
H

`

375 (3.64)

where bi = 0 if i > nb.

3.2.4 Multidimensional Matched Filter DFE

Another option for implementation of a DFE is the multidimensionalmatched

�lter DFE (MMF-DFE). Here we utilize the fact that if we could allow an

in�nite smoothing lag, then the optimal DFE would consist of a multidimen-

sional matched �lter followed by a scalar DFE with an in�nite smoothing

lag [83]. The multidimensional matched �lter can take spatially and tempo-

rally colored noise into consideration. In reality we cannot accept an in�nite

smoothing lag in the scalar DFE. With a �nite smoothing lag the MMF-

DFE is theoretically suboptimal. However, as we will see in the simulations

in Section 3.4, in practice it may work just as well as the space-time DFE's

in Sections 3.2.1 { 3.2.3.

Consider the received signal (2.2) at the antenna array

y(t) = b(q�1)d(t) + n(t): (3.65)

We assume that the noise plus interference term, n(t), can be spatially and

temporally colored and we de�ne a double-sided transfer operator matrix,

Rnn(q; q
�1), from its spatio-temporal covariance matrix function, Rnn(k),

as3

Rnn(q; q
�1) =

1X
k=�1

Rnn(k)q
�k =

1X
k=�1

E[n(t)nH(t� k)]q�k: (3.66)

For simplicity we will sometimes refer to the matrix Rnn(q; q
�1) as the

\spatio-temporal covariance matrix".

3A more traditional notation would be to replace q with the variable z. Rnn(z; z
�1)

would then represent the spatio-temporal spectrum for n(t). Using the q operator however

simpli�es the presentation.
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Figure 3.6: MMF-DFE
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Figure 3.7: MMF-DFE with the MMF decomposed into a whitening �lter

and a matched �lter.

Given this channel, and allowing an in�nite smoothing lag, one can show

that the MSE optimal DFE consists of a multidimensional matched �lter

w(q; q�1) = b
H(q)R�1(q; q�1): (3.67)

followed by a scalar DFE with a possibly in�nite smoothing lag. In [83]

this result is shown in continuous time. The structure of the MMF-DFE

is depicted in Figure 3.6. It should be noted that if the smoothing lag is

�nite, then the MMSE optimal DFE cannot in general be decoupled into a

matched �lter followed by a DFE [90, 106].

Let us perform a spectral factorization on Rnn(q; q
�1), i.e. let

Rnn(q; q
�1) = R

1=2
nn(q

�1)R
H=2
nn (q) (3.68)

where R
1=2
nn(q

�1) is stable and causal [47, 40, 36]. We can now decompose

the multidimensional matched �lter into a noise whitening �lter followed by

a �lter matched to the channel including the noise whitening �lter, as shown

in Figure 3.7.

Note that if the noise process, n(t), is modeled by an AR-process

n(t) =N
�1(q�1)M0v(t) (3.69)
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where N�1(q�1) is anM �M polynomial matrix,M 0 is a constant matrix,

and v(t) is a m � 1 white innovation process, then the multi-dimensional

matched �lter takes on the simple form of a row vector of non-causal FIR-

�lters

w(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N(q�1): (3.70)

Note that the MMF-�lter have an impulse response with �nite extent, both

forward and backward in time. An AR model for the noise is thus useful

model since it translates into an FIR multi-dimensional matched �lter (when

the channel for the desired signal is an FIR channel).

A potential disadvantage with this approach is that the multidimensional

matched �lter increases the length of the intersymbol interference before

the scalar DFE is applied. This can make a channel that is di�cult to

equalize even more demanding. Also, as mentioned in the beginning of

this subsection, in theory it requires an in�nite smoothing lag. This is of

course not desirable and in practice we have to design the scalar DFE with

a �nite smoothing lag. Furthermore we need to truncate the MMF-�lter if

the noise-whitened channel has an impulse response with in�nite duration.

However, as mentioned in the beginning, we will see in the simulations of

Sections 3.2.1 { 3.2.3, that an MMF combined with a properly tuned scalar

DFE may in practice perform just as well as the other space-time DFE's

studied. To answer this question in more depth it is however necessary to

perform more extensive studies covering a wider range of possible channels

and scenarios.

3.3 Some Tuning Options

To implement the optimal �xed order FIR-DFE as described in Section 3.2.3

we need channel and noise plus interference covariance estimates of high

quality. Since these estimates are not normally available a priori, several

di�erent tuning options can be considered. We will here discuss some of

these options.
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3.3.1 Directly Tuned Decision Feedback Equalizer (D-DFE)

As we saw in Section 3.2.2, when the channel for the desired signal is an

FIR-channel and the noise plus interference is temporally white (or can

be modeled by an autoregressive noise model), the MMSE optimum struc-

ture for the DFE has FIR �lters in both the feedforward and the feedback

branches. Even if this is not the case we can restrict the DFE to contain

only FIR �lters of predetermined orders, cf Section 3.2.3.

We will here restrict the DFE to a FIR �lter structure, but instead of using

an indirect approach for the tuning as in Section 3.2.3, we will consider

tuning of the FIR �lter coe�cients of the DFE directly from data.

The estimate of the symbol prior to the decision device is given by

d̂(t� `) = s(q�1)y(t)�Q(q�1) ~d(t� `� 1) (3.71)

where s(q�1) is a M � 1 polynomial row vector of order ns and Q(q�1) is a

polynomial of order nq, as in Figure 3.5.

As in Section 3.2.3, we want to minimize the MSE criterion

J = E[jd(t� `)� d̂(t� `)j2] : (3.72)

with respect to the coe�cients of s(q�1) and Q(q�1). The DFE parameters,

�, de�ned in (3.44) that minimizes J are, as in (3.50), given by the solution

to the system of equations

R''�
H = R'd`

(3.73)

We can now replace R'' and R'd`
with the sample matrix estimates

R̂'' =
1

(tmax � tmin + 1)
(

tmaxX
t=tmin

'(t)'H(t)) + �2aI�y�y (3.74)

and

R̂'d`
=

1

(tmin � tmax + 1)

tmaxX
t=tmin

'(t)dH(t� `) (3.75)
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where ' is the regression vector de�ned in (3.47). The matrix I�y�y has an

M(ns + 1) �M(ns + 1) identity matrix in its upper left corner and zeros

elsewhere. The term �2aI�y�y is added to regularize the matrix R̂'' in case

it is singular or ill-conditioned. Asymptotically, with an in�nite number of

data (and some noise), �2a should be set to zero. However, with a �nite

amount of data and/or a limited computational accuracy, the solution can

be improved by a good choice of �2a. The matrix R̂'' can, of course, not

be inverted without this regularization if the number of training relations,

tmax � tmin + 1, are fewer than the number of parameters.

The equalizer coe�cients in � can now be estimated as

�̂
H

= R̂
�1

''
R̂'d`

: (3.76)

In the estimates of R'' and R'd`
in (3.74) and (3.75), the summation

indices tmin and tmax are chosen such that the training data is optimally

utilized. It can sometimes be advantageous to add zeros at the beginning

and at the end of the training sequence to increase the number of possible

terms in the sample matrix estimates.

The directly tuned DFE has the advantage that it will always attempt to

achieve the best equalization performance possible given the speci�ed struc-

ture and the available number of parameters. The direct tuning of the DFE

also minimizes a more relevant criterion than the indirectly tuned DFE

does [11]. The directly tuned space-time DFE, however, has the disadvan-

tage that it can have a large number of parameters to tune on a small

number of training symbols when many receiver antennas are used. Since

all parameters are tuned jointly, the system of equations can easily become

under-determined. In this case we need to regularize it to obtain a mean-

ingful solution. This will be apparent in the simulations below.

3.3.2 Indirectly Tuned DFE (I-DFE)

As in the previous section we will here assume that we are constraining the

DFE to have only FIR �lters in the feedforward and feedback �lters. The

structure is thus the same as in the previous section and as in Figure 3.5.

However, instead of tuning the coe�cients using the data directly we will
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here tune the equalizer coe�cients via estimates of the channel and the

covariance of the noise plus interference.

Consider the equation for the coe�cients of the feedforward �lter in (3.62)

(BBH +R�n�n)s
H = B`: (3.77)

The matrices B and B` in (3.57) and (3.63) can be formed from the channel

estimates b̂(q�1) as

B̂ =

2666666664

b̂0 : : : b̂`

...
. . .

...

0 : : : b̂0

0 : : : 0
...

...

0 : : : 0

3777777775
B̂` =

266666666664

b̂`

b̂`�1

...

b̂0

0
...

0

377777777775
(3.78)

where the channel estimate, b̂(q�1), can, for example, be obtained with any

of the methods presented in Chapter 2.

As an estimate of the spatio-temporal covariance matrix,

R�n�n =

264 Rnn(0) : : : Rnn(ns)
...

. . .
...

Rnn(�ns) : : : Rnn(0)

375 (3.79)

we here propose the use of a regularized sample matrix estimate

R̂�n�n =
1

tmax � tmin + 1

tmaxX
t=tmin

�̂n(t) �̂n
H
(t) + �2aI (3.80)

where

�̂n =
h
n̂
T (t) n̂T (t� 1) : : : n̂T (t� ns)

iT
(3.81)

and where n̂(t� k) are lagged residuals from the FIR channel estimation

n̂(t) = y(t)� b̂(q�1)d(t): (3.82)
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The term �2aI is the regularization term adding �2a to the diagonal elements

of the spatio-temporal noise plus interference covariance matrix.

If the number of parameters in the feedforward �lter of the spatio-temporal

DFE is large compared to the number of training symbols available, then

the matrix

(B̂B̂
H

+ R̂�n�n) (3.83)

can be ill-conditioned or singular. The rank of the term B̂B̂
H

can never be

larger than ` + 1 since this is the number of columns in B̂. With a large

number of antennas it is likely that ` is much smaller than the number of

parameters in the feedforward �lter,M(ns+1), and thus in this case the term

B̂B̂
H

only contributes marginally to the rank of the matrix B̂B̂
H

+ R̂�n�n.

Without the diagonal term, �2aI, the rank of R̂�n�n will be limited by, i.e.

less than, the number of terms in the sum in (3.80). The number of terms is

here typically determined by the e�ective length of the training sequence4

Thus, if the number of parameters in s(q�1), i.e. Mns, is comparable to, or

larger than, the e�ective length of the training sequence, and we don't add

the term �2aI , then the matrix (B̂B̂
H

+R̂�n�n) can, or will, be ill-conditioned

and even singular. By adding the diagonal term, �2aI, we can improve the

condition number for the matrix and compute a meaningful solution. This

solution will, similar to the D-DFE in Section 3.3.1, su�er from having a

large number of coe�cients to tune. However, it performs better than the

D-DFE in the simulations below. The reason for this is probably that the

\signal part", the B̂B̂
H

part of the matrix (B̂B̂
H

+R̂�n�n), is given by a model

that is de�ned by a relatively low number of FIR channel parameters.

3.3.3 Indirectly Tuned DFE with Spatial-Only Interference

Cancellation (IS-DFE)

The problem with the ill-conditioned estimate of the spatio-temporal noise

plus interference covariance matrix, R̂�n�n, can be avoided by replacing it

4With the e�ective length of the training sequence we refer to the number of training

relations that can be formed with the method we are using; here tmax � tmin.



3.3. Some Tuning Options 131

with a spatial-only noise plus interference covariance matrix

R̂nn =

264R̂nn 0
. . .

0 R̂nn

375 (3.84)

where R̂nn is an estimate of the spatial interference plus noise covariance

matrix, i.e. the covariance matrix function for lag zero

R̂nn =
1

tmax � tmin + 1

tmaxX
t=tmin

n̂(t)n̂H(t) (3.85)

where n̂(t) is computed as in (3.82).

The spatial only covariance matrix estimate R̂nn will be much better condi-

tioned. As long as the e�ective length of the training sequence5 symbols used

is large compared to the number of antennas, regularization will typically

not be required. This estimate will, of course, not contain any information

about the temporal correlations of the noise plus interferers. However, if

the desired signal and the interferers can be separated spatially, then this

approach may provide adequate performance.

3.3.4 Indirectly Tuned DFE with an AR Noise Model

(AR-DFE)

For the AR-DFE we will estimate an FIR channel with an AR model for the

noise plus interference, as described in Section 2.9, and design an MMSE

optimal equalizer using this model as described in Section 3.2.2.

Let us �rst, using the method described in Section 2.9, jointly compute

an estimate, b̂N (q�1), of the channel, bN (q�1) = N (q�1)b(q�1), and an

estimate, N̂ (q�1) of the noise whitening �lter N(q�1) in (2.118). Using the

residuals, r(t), from this estimation we can form an estimate of the matrix

M0 in (2.118) as

M̂0 =

 
1

tmax � tmin + 1

tmaxX
t=tmin

r(t)rH(t)

!
�1=2

: (3.86)

5The number of training relations that can be formed with the method we are using;

here tmax � tmin.
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We can now form an estimate of the noise whitened channel

b
0(q�1) =M

�1
0 N (q�1)b(q�1) (3.87)

as

b̂
0

(q�1) = M̂
�1

0 b̂N (q�1): (3.88)

Given this estimate we can compute an estimate ŝ0(q
�1) of the polynomial

s0(q
�1) by solving (3.32), using the the coe�cients of b̂

0

(q�1) in place of the

coe�cients of b(q�1). The estimated feedforward �lter can then be formed

as

ŝ(q�1) = ŝ0(q
�1)M̂

�1

0 N̂(q�1) (3.89)

Finally the coe�cients of the estimated feedback �lter, Q̂(q�1), can be com-

puted by using the estimates of the polynomial s0(q
�1) and the estimate of

the noise whitened channel b0(q�1) in (3.37).

This DFE will perform some spatio-temporal interference suppression. De-

pending on the order of the AR noise model it will perform di�erent amounts

of temporal �ltering. The DFE can, without a signi�cant increase in com-

plexity, handle an AR noise model of relatively high degree. However,

depending on the number of antennas and the amount of training data

available, the order of the AR noise model may be limited by the channel

estimation procedure.

3.3.5 Indirectly Tuned MMF-DFE with Spatial-Only Inter-

ference Cancellation (IS-MMF-DFE)

The IS-MMF-DFE6 is an indirectly tuned MMF-DFE utilizing only the

spatial spectrum of the noise plus interference. An estimate, b̂(q�1), of

the channel for the desired signal can be computed with, for example, one

of the methods described in Chapter 2. The spatial noise plus interference

spectrum is estimated as a sample matrix estimate, as in Section 2.8, formed

from the residuals, n̂(t) = y(t)� b̂(q�1)d(t) from the channel estimation

R̂nn = R̂nn(0) =
1

tmax � tmin + 1

tmaxX
t=tmin

n̂(t)n̂H(t): (3.90)

6The \IS" stands for Indirect tuning with Spatial-only interference cancellation.
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Using these estimates, an estimated multidimensional matched �lter can be

formed as

ŵ(q; q�1) = b̂
H

(q)R̂
�1

nn
(3.91)

The output from this MMF-�lter will then be processed by a scalar DFE.

This scalar DFE can, for example, be tuned either with a direct method

using the output from the MMF during the training sequence or indirectly

via estimates of the total channel, from the transmitted symbols to the signal

after the MMF. This new channel can be obtained either by re-estimating

the channels after the MMF or by simply computing the new channel from

the initial channel and covariance estimates and the computed MMF.

When tuning the scalar DFE after the MMF, it is a good idea to utilize

the temporal spectrum of the noise after the MMF. With direct tuning the

noise spectrum is automatically taken into account. When using the indi-

rect methods, the noise spectrum can be re-estimated, as a sample matrix

estimate of the temporal noise covariance matrix involving the relative time

lags, formed from the channel estimation residuals. It can also be formed by

combining the already estimated spatial noise plus interference covariance

matrix, prior to the MMF, with the coloring of the MMF �lter itself.

The processing in the IS-MMF-DFE can be summarized as:

1. Estimate the channels. Denote the vector of channel estimates

b̂(q�1).

2. Estimate the spatial noise plus interference covariance matrix,

for example as a sample matrix estimate formed from the resid-

uals n̂(t), de�ned by (3.82), as

R̂nn =
1

tmax � tmin + 1

tmaxX
t=tmin

n̂(t)n̂H(t): (3.92)

3. Form the MMF �lter as ŵ(q; q�1) = b̂
H

(q)R̂
�1

nn
.

4. Compute a scalar indirect FIR-DFE, with a suitable smooth-

ing lag, as in Section 3.2.3 (equations (3.62) and (3.64)) using

the channel from the transmitted symbols to the MMF output,
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b̂
H

(q)R̂
�1

nn
b̂(q�1), and the noise spectrum,

w(q; q�1)R̂nnw
H(q; q�1). The channel and noise spectrum will,

of course, have to be corrected with the appropriate delays so

that the channel is causal. The smoothing lag should preferably

be chosen large enough to cover this delay, plus the major part

of the energy caused by a symbol transmitted over the channel.

Alternatively the temporal spectrum of the noise plus interfer-

ence can be re-estimated by forming a sample matrix estimate

of the temporal covariance matrix from the residuals, as brie
y

described above.

An advantage with the IS-MMF-DFE approach over the IS-DFE approach

of Section 3.3.3 is that it is less computationally intensive to tune. In the

IS-DFE we have to invert the fairly large M(ns + 1) �M(ns + 1) matrix,

(BBH + Rn̂n̂), whereas for the IS-MMF-DFE only the smaller M � M

matrix R̂nn has to be inverted.

3.3.6 Indirectly Tuned MMF-DFE with an AR Noise Model

(AR-MMF-DFE)

As for the AR-DFE in Section 3.3.4 we will here estimate an FIR channel

with an AR model for the noise plus interference, as described in Section 2.9.

We can thus, using the method described in Section 2.9, jointly compute an

estimate, b̂N (q�1), of the channel, bN = N(q�1)b(q�1), and an estimate,

N̂ (q�1) of the noise whitening �lter N (q�1) in (2.118). Using the residuals,

r(t), from this estimation we can form an estimate of the matrix M0 in

(2.118) as

M̂0 =

 
1

tmax � tmin + 1

tmaxX
t=tmin

r(t)rH(t)

!
�1=2

: (3.93)

Using these estimates we form an estimate of the noise whitened channel as

b̂
0

(q�1) = M̂
�1

0 b̂N (q�1): (3.94)

An estimate of the multidimensional matched �lter can now be formed as

ŵ(q; q�1) = b̂
0
H

(q)M̂
�1

0 N̂ (q�1): (3.95)
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The output from this MMF-�lter will then be processed by a scalar DFE.

This scalar DFE can be tuned more or less exactly as the scalar DFE used

in the IS-MMF-DFE of Section 3.3.5.

The processing in the AR-MMF-DFE can be summarized as:

1. Form the estimates b̂N (q�1) and N̂ (q�1) of the corresponding

entities in (2.118) using the method of Section 2.9.

2. Form the estimate M̂0 using (3.93).

3. Form an estimate of the noise whitened channel as b̂
0

(q�1) =

M̂
�1

0 b̂N (q�1).

4. Form the MMF �lter as ŵ(q; q�1) = b̂
0
H

(q)M̂
�1

0 N̂ (q�1)

5. Compute a scalar indirect FIR-DFE, with a suitable smooth-

ing lag, as in Section 3.2.3 (equations (3.62) and (3.64)) using

the channel from the transmitted symbols to the MMF output,

b̂
0
H

(q)b̂0(q�1), and the noise spectrum, b̂0
H

(q)b̂0(q�1). As for the

IS-MMF-DFE, the channel and noise spectrum will, of course,

have to be corrected with the appropriate delays so that the

channel is causal. The smoothing lag should preferably be cho-

sen large enough to cover this delay, plus the major part of the

energy caused by a symbol transmitted over the channel. Alter-

natively the temporal spectrum of the noise plus interference can

be re-estimated by forming a sample matrix estimate of the tem-

poral covarance matrix from the residuals, as brie
y described

above.

Again, an advantage with the AR-MMF-DFE approach over the AR-DFE

approach of Section 3.3.4 is that it is less computationally intensive to tune.

The reason for this is that when tuning the AR-DFE we have to invert the

fairly large M(ns+ 1)�M(ns+ 1) matrix, (B0B0
H
+ I), in (3.34).
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3.4 Simulations

An Eight Element Antenna Array

The performance of the D-, I-, IS-DFE and the MMF-DFE will here be

illustrated by some simulations.

A circular array consisting of eight antennas was used. The desired signal is

impinging on the array from the directions � = 0, 30 -60 and 180 degrees,

through the channels B(q�1) = 1+0:5q�1, 0:5q�1+0:8q�2, 0:5q�2+0:2q�3

and 0:2q�3+0:3q�4 respectively. Three co-channel interferers are impinging

on the array from the directions �co = 135, -30 and 235 degrees respectively

with the channels 
(0:5 � 0:5q�1), 
(0:7q�1 � 0:4q�2) and 
(�0:5q�2 +
0:5q�3). The constant 
 was varied to achieve di�erent signal to interference

ratios. Independent white noise was also added to the simulated received

signal to vary the signal to noise ratio. Furthermore, the length of the

training sequence was varied to study how it a�ected the performance of

the equalizers. The transmitted symbols, d(t) had the values d(t) = �1.

For the indirect algorithms, utilizing a channel estimate, the channel was

estimated with a simple least squares method as described in Section 2.2.

When required the space-time or space-only spectrum of the noise plus inter-

ference was estimated as a sample matrix estimate formed from the residuals

of the channel estimation.

The smoothing lag and the order of the feedforward �lter for the D-, I- and

IS-DFE's were chosen to ` = ns = 3 and the order of the feedback �lter was

chosen to nq = 3.

The MMF-DFE was tuned as suggested for the IS-MMF-DFE in Section 3.3.5.

The MMF-�lter had 5 taps and used a spatial-only estimate of the noise

plus interference spectrum. The scalar DFE following the MMF-�lter had 9

taps in the feedforward �lter (with a smoothing lag of 8) and 6 taps in the

feedback �lter. The scalar DFE was tuned utilizing the transformed chan-

nel after the MMF-�lter and the estimated temporal noise plus interference

spectrum, all as described in Section 3.3.5.

The regularizing constant �2a for the D- and I-DFE was set equal to the
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variance of the noise. This value was found to work well in these examples.

Note, however, that for training sequences that are long compared to the

number of jointly tuned parameters, this value should most likely be de-

creased. In a real system we would of course have to use an estimate of the

noise variance since the true noise variance would not be known.

In Figure 3.8 we can see the resulting BER for the di�erent equalizers as a

function of the length of the training sequence. The equalizers attempting

to utilize the full required space-time spectrum of the noise plus interference,

the D- and the I-DFE, perform poorly for short training sequences. The IS-

DFE and the IS-MMF-DFE here have almost equal performance and they

are superior to the D- and I-DFE's , except for very long training sequences.

The reason for this di�erence in performance is here that the equations for

computing the parameters of the IS-DFE and the IS-MMF-DFE are much

more well conditioned and reliable as a result of not attempting to utilize

the full estimated space-time spectrum of the noise plus interference.

In Figure 3.9 we can see the resulting BER for the di�erent equalizers as a

function of the signal to interference ratio. The training sequence was here

26 symbols long and the signal to noise ratio was 7 dB. Again we see that

the IS-MMF-DFE and the IS-DFE have an almost equal performance. We

can note here that both the IS-DFE and the IS-MMF-DFE is successful in

suppressing the strong interference. The D- and I-DFE's are less successful

as the power of the interference increases. However, note that at high SIR

the D- and I-DFE algorithms are gaining on the IS-DFE and the IS-MMF-

DFE. When the strength of the interferer is reduced the regularization in

the D- and I-DFE's is becoming more adequate.

A \One Element" Antenna Array

We here illustrate the performance of di�erent versions of the AR-DFE of

Section 3.3.4 with a simulation example. Apart from using di�erent orders

of the AR noise model we also show the e�ect of processing the real and

imaginary parts of the signal separately. Finally we apply bootstrapping, as

explained in Section 2.7.

We use a scenario with only two received signals. These two signals can for

example be two polarizations of the same signal. In this case we would have
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Figure 3.8: BER as a function of the training sequence length. SNR: 7dB,

SIR=-18dB. IS-DFE (solid), IS-MMF-DFE (dashed), I-DFE (dash-dotted)

and D-DFE (dotted).
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Figure 3.9: BER as a function of SIR. SNR: 7dB. Number of training sym-

bols: 26. IS-DFE (solid), IS-MMF-DFE (dashed), I-DFE (dash-dotted) and

D-DFE (dotted).
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Figure 3.10: BER as a function of SIR for di�erent versions of the AR-

DFE. SNR: 20dB. Number of training symbols: 26. AR-DFE with nn = 0

(solid-o), nn = 1 (dashed-o), nn = 2 (dash-dotted-o),nn = 3 (dotted-o),

AR-DFE processing the real and imaginary part of the signals separately

with nn = 0 (solid-x), nn = 1 (dashed-x), and nn = 1 with bootstrapping

(dash-dotted-x).

only one physical antenna but with two polarizations. We assume that these

two signals fade independently.

We have one user and one co-channel interferer. Both the desired signal and

the co-channel interferer has a channel with 5 independently Rayleigh fading

taps with the average relative powers -3dB, 0dB, -2dB, -6dB and -8dB and

the time delays 0, 0.2, 0.5, 1.6 and 2.3 symbol intervals respectively. The

average signal to noise ratio is 20 dB. The transmitted binary symbols are

modulated with GMSK modulation with a bandwidth-time product of 0.3

(as in GSM).

All algorithms used a channel model with 5 taps and a smoothing lag of 4

symbol intervals. We compared the following algorithms: AR-DFE with the

order of the AR noise model nn = 0, nn = 1 nn = 2 and nn = 3, AR-DFE

processing the real and imaginary parts of the signal separately with nn = 0,

nn = 1 and the latter AR-DFE with two stages of bootstrapping.

In Figure 3.10 we can see the resulting BER for the di�erent equalizers as

a function of the signal to interference ratio. None of the algorithms, not
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processing the real and imaginary parts of the signal separately, has a good

performance for this scenario. The AR-DFE with nn = 1 processing the

real and imaginary parts separately however has a very good performance

and bootstrapping of the same algorithm improves on the performance some-

what. The AR-DFE processing the real and imaginary signals independently

has an advantage since it in e�ect has twice as many signals. This is why

it can cancel the co-channel interference and achieve a good BER. It should

however be noted that the signal to interference ratio in this scenario is high,

20dB, but it illustrates the principle.

3.5 Discussion

In the simulations presented in Section 3.4 we saw that the IS-MMF-DFE

and the IS-DFE achieved very similar performance. However, when using

many antenna elements, the IS-MMF-DFE will require much less computa-

tions to tune. The main reason for this is that when computing the IS-DFE,

as in Section 3.2.3, we need to solve the system of equations (3.62). The

dimension of this system of equations is given by the number of antennas

times the smoothing lag plus one, i.e. M(ns+1). When tuning the IS-MMF-

DFE, however, we only need to invert the spatial covariance matrix for the

noise plus interference, of dimension M . A drawback with the MMF-DFE

is that the time delay of this equalizer typically will be larger than the time

delay of the IS-DFE. The reason for this is that the MMF-DFE introduces

extra intersymbol interference via the MMF-�lter which then has to be re-

moved by a scalar DFE using long �lters. If the channel is time-invariant

within a data frame and no continuous adaptation of the equalizer has to be

performed, this is of minor importance. As long as the performance for the

MMF-DFE is comparable to a DFE optimized for a �nite smoothing lag,

the MMF-DFE will thus be preferred when the number of antennas is large.

Neither the IS-DFE nor the IS-MMF-DFE utilizes the temporal spectrum

of the noise and interference. In a scenario as the one studied, with a

relatively large number of antennas, attempting to make full use of the

temporal spectrum of the noise plus interference in the speci�c way realized

by the D- and I-DFE's does appear not to be meaningful. It should however

be noted that the number of antennas can be \large" in more than one

way. First, it can be large in the sense that the number of parameters to be
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tuned in the equalizers becomes large compared to the length of the training

sequence. Second, it can be large compared to the number of uncorrelated

interferers present, making spatial suppression of the interferers e�ective.

In the simulations performed in this section, the number of antennas was

large in both these senses. The situation can, for example, be di�erent if

we have a very large number of uncorrelated interfering signals such that

spatial interference suppression is not possible, even though we have many

antennas.

We can however consider other ways to make use of the temporal dimension

of the noise plus interferer spectrum. The AR-DFE of Section 3.3.4 utilizes a

space-time AR model of interference plus noise. This DFE will therefore be

able to do spatio-temporal interference suppression. Compared to using an

AR noise model together with maximum likelihood sequence estimator [7],

the decision feedback equalizer has the advantage that the complexity only

increases linearly with the order of the AR-�lter while the complexity in-

creases exponentially for the maximum likelihood sequence estimator. It is

therefore more feasible to use higher order AR models together with a deci-

sion feedback equalizer than with a maximum likelihood sequence estimator.

With a large number of antennas, the number of parameters in the model

can however become large compared to the number of available equations.

This can make them potentially di�cult to estimate accurately, especially

if the signal to noise ratio is not high enough.

In the simulation example with two received signals, see Figure 3.10, we can

see an example of the use of an AR model for the noise plus interference,

resulting in space-time suppression of the interferers. We also demonstrate

that when we have a binary modulated signal, we can potentially improve

the performance by processing the real and imaginary parts of the signal

separately.

We can see in Figure 3.9 the BER for the IS-DFE and the MMF-DFE are

fairly insensitive to the strength of the co-channel interferers. The reason

for this is that spatial subspace occupied by the interference is disjoint from

the spatial subspace occupied by the desired signal. The spatial interference

suppression can thus completely cancel out the interference without impair-

ing the desired signal signi�cantly. This will be discussed in more detail in

Section 7.4 of Chapter 7.
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3.A Appendix

3.A.1 Derivation of the Optimal Space-Time DFE.

To simplify the derivation of optimal equalizer coe�cients we shall adopt

the usual assumption that all previous decisions a�ecting the current symbol

estimate are correct, i.e. we let ~d(t� `� 1) = d(t� `� 1).

We now minimize the criterion

J = E
h
jd(t� `)� d̂(t� `)j2

i
4

= E
�
jz(t)j2

�
(3.96)

where

z(t) = d(t� `)� d̂(t� `)

=
�
q�` � S(q�1)A�1(q�1)b(q�1) + q�`�1Q(q�1)

�
d(t)

�S(q�1)N�1(q�1)M(q�1)v(t) (3.97)

and where the expectation E[�] is taken with respect to the realization of

the noise, v(t), and the symbol sequence, d(t). The derivation that follows

utilizes the techniques for MSE minimization using polynomial equations

introduced in [3].

In order to minimize the criterion (3.96), z(t) has to be orthogonal to any

stably and causally �ltered version of the input signals y(t) and d(t� `�1).

The signal z(t) thus has to be orthogonal to

e1(t) = g1(q
�1)y(t) (3.98)

and to

e2(t) = g2(q
�1)d(t� `� 1) (3.99)

where g1(q
�1), of dimension 1 �M , and g2(q

�1) are arbitrary stable and

causal �lters.
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Orthogonality with respect to e1(t) gives
7

E[z(t)eH1 (t)] =

E
���

q�` � SA�1
b+ q�`�1Q

�
d(t)� SN�1

Mv(t)
	

�
�
g1(A

�1
bd(t) +N�1

Mv(t))
	H�

= 0: (3.100)

Evaluating the expectation with respect to the signals d(t) and v(t), using

Parsevals formula [87], we can rewrite (3.100) as

E[z(t)eH1 (t)] =

=
1

2�i

I
jzj=1

��
z�` � SA�1

b+ z�`�1Q
�
b
H
A
�H �

SN
�1
MM

H
N

�H

�
g
H

1

dz

z
= 0: (3.101)

We will now write the inverses A�H and N�H as

A
�H = a�H eAH

(3.102)

N
�H = n�HfNH

(3.103)

where a = det(A), n = det(N ), eA = adj(A) and fN = adj(N ), respectively.

Inserting (3.102) and (3.103) into (3.101) gives

E[z(t)eH1 (t)] =

=
1

2�i

I
jzj=1

��
z�` � SA�1

b+ z�`�1Q
�
b
H eAH

nH �

SN
�1
MM

HfNH

aH
�
a�Hn�HgH1

dz

z
= 0: (3.104)

In order for (3.104) to be zero for all admissible g1, we must require that

the integrand is analytic inside the unit circle, i.e. it should have no poles

inside the unit circle. The factor a�H(z)n�H(z)gH1 (z) has no poles inside

the unit circle since a�1(z�1), n�1(z�1) and g1(z
�1) are all stable.

7In the derivation below we will, to simplify, sometimes omit the argument q�1 or q in

the rational functions and the polynomials.
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Therefore we require that a stable rational column vector l2 = l2(z
�1) exists

such that all poles of lH2 (z) are outside jzj = 1 and

�
z
�` � SA�1b+ z

�`�1Q
�
bH eAH

n
H � SN�1MMHfNH

a
H = zlH2 : (3.105)

Similarly, orthogonality with respect to e2(t) = g2(q
�1)d(t� `� 1) gives

E[z(t)eH2 (t)] =

= E
��
(q�` � SA�1

b+ q�`�1Q)d(t)� SN�1
Mv(t)

	
�
�
g2q

�`�1d(t)
	H�

= 0: (3.106)

Evaluating the expectation with respect to the signals d(t) and v(t), using

Parsevals formula, we obtain

E[z(t)eH2 (t)] =
1

2�i

I
jzj=1

(z � z`+1SA�1
b+Q)gH2

dz

z
= 0: (3.107)

In order for (3.107) to be zero for all admissible g2 = g2(z
�1), we must

require

z � z`+1SA�1
b+Q = zlH1 (3.108)

where lH1 = lH1 (z) is a rational function, with all poles outside jzj = 1, to be

determined. We observe that lH1 (z) will be a polynomial since the left-hand

side of (3.108) has no poles outside the unit circle, because A(q�1) is stable

and S(q�1) is required to be stable.

Multiplying (3.108) with z�`�1bH eAH

nH from the right and subtracting it

from equation (3.105) gives

z�`lH1 b
H eAH

nH � SN�1
MM

HfNH

aH = zlH2 : (3.109)

Multiplying (3.109) with z` gives

lH1 b
H eAH

nH � z`SN�1
MM

HfNH

aH = z`+1lH2 : (3.110)

Now, since S and N�1, are stable rational matrices in z�1, they will have

poles inside the unit circle. Furthermore, since M , is a polynomial matrix

in z�1 it will contribute poles at the origin. Since the right hand side is
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required to have no poles inside the unit circle, the factor N�1
M must

therefore be canceled by S. Thus, S must have the structure

S = s0M
�1
N : (3.111)

We will below show that s0 must be a polynomial row vector.

By inserting (3.111) into (3.110) we obtain

lH1 b
H eAH

nH � z`s0M
HfNH

aH = z`+1lH2 : (3.112)

Since s0 is the only factor that can have poles inside the unit circle it must

in fact have no poles, other than in the origin, since these could not be

matched by any other factor in (3.112), i.e. it must be a polynomial in z�1.

Furthermore, since lH2 is the only remaining potentially rational factor in

(3.112), it too must be a polynomial matrix.

Similar to (3.102) and (3.103) we can write the inverse M�1 as

M
�1 = m�1fM (3.113)

where m = det(M) and fM = adj(M ).

Using S = s0M
�1
N in (3.108) and inserting (3.102) and (3.113) gives

z � z`+1m�1a�1s0fMN eAb+Q = zlH1 : (3.114)

By de�ning

p = p(z�1)
4

= a(z�1)m(z�1) = det
�
A(z�1)

�
det
�
M(z�1)

�
(3.115)

we can write (3.114) as

zp� z`+1s0fMN eAb+Qp = zlH1 p: (3.116)

The right hand side of (3.116) is required to have no poles inside 0 < jzj < 1.

Since Qp is the only term in (3.116) that could have poles in this region, it

must in fact have no poles there, and must thus be a polynomial in z�1. We

thus require that

Q = p�1Q (3.117)
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where Q is a polynomial in z�1 yet to be determined.

By inserting (3.117) into (3.116) we obtain

zp� z`+1s0fMN eAb+Q = zlH1 p: (3.118)

To summarize, we thus have to solve the two coupled Diophantine equations

(3.112) and (3.116)

lH1 b
H eAH

nH � z`s0M
HfNH

aH = z`+1lH2 (3.119)

zp� z`+1s0fMN eAb+Q = zlH1 p (3.120)

with respect to the polynomials and the polynomial vectors l1, s0, l2 and

Q.

Since the maximal positive power of z on the left hand side of (3.120) should

match the power on the right hand side, we can conclude that

deg l1(z
�1) = `:

Likewise, by inspecting the negative powers of z in (3.119) we can note that

we must have

deg s0(z
�1) = `:

Furthermore, using that deg s0(z
�1) = ` in (3.120) and investigating the

negative powers of z gives

deg Q(z�1) = max[nb+ nn+ (M � 1)(nm+ na);M(nm+ na)]� 1:

Finally, using that deg lH1 (z) = ` in (3.119) and considering the positive

powers of z gives

deg l2(z
�1) = max[nb+ (M � 1)na+Mnn; nm+ (M � 1)nn+Mna]� 1:

To summarize, and exchanging z for q, we have the following orders of the

polynomials

deg s0(q
�1) = `

deg l1(q
�1) = `

deg Q(q�1) = max[nb+ nn+ (M � 1)(nm+ na);M(nm+ na)]� 1

deg l2(q
�1) = max[nb+ (M � 1)na+Mnn; nm+ (M � 1)nn+Mna]� 1:
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We will now show that the coe�cients to the polynomials s0(q
�1), l1(q

�1),

Q(q�1) and l2(q
�1) can be found by solving a linear system of equations.

Let us �rst take the complex conjugate transpose of equations (3.119) and

(3.120) and rearrange them to obtain

z�`afNMs
H

0 � n eAbl1 = �z�`�1l2 (3.121)

z�`bH eAH

N
H fMH

s
H

0 + pH l1 = zQH + pH : (3.122)

Each power of z or z�1 in (3.121) gives an equation in the coe�cients of sH0
and l1. By combining these equations into a system of equations we obtain2
666666664

Hnl2+1 � � � Hnl2+1+` �cnl2+1 � � � �cnl2+1+`
...

...
...

...

H1 � � � H`+1 �c1 � � � �c`+1
H0 � � � H` �c0 � � � �c`

. . .
...

. . .
...

0 H0 0 �c0

3
777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

�l2nl2
...

�l20
0
...

0

3
777777775

(3.123)

where

H(z�1) =H0 +H1z
�1 + : : :+Hnhz

�nh 4

= afNM (3.124)

c(z�1) = c0 + c1z
�1 + : : :+ cncz

�nc 4

= n eAb (3.125)

and H i = 0 if i > nh = Mna + (M � 1)nn + nm and ci = 0 if i > nc =

Mnn+ (M � 1)na+ nb. The unknown parameters in the equation are s0;k,

the vector taps in the polynomial

s0(q
�1) = s0;0 + s0;1q

�1 + : : : + s0;`q
�` (3.126)

and l1k, the scalar coe�cients of the polynomial

l1(q
�1) = l10 + l01q

�1 + : : :+ l0`q
�`: (3.127)

Similarly, equation (3.122) gives the system of equations2
666666664

uH0 0 p
H
0 0

...
. . .

...
. . .

uH` � � � uH0 p
H
` � � � p

H
0

uH`+1 � � � uH1 p
H
`+1 � � � p

H
1

...
...

...
...

uH`+nf � � � uHnf p
H
`+nf � � � p

H
nf

3
777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

0
...

p
H
0

f
H
1

...

f
H
nf

3
777777775

(3.128)
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where

f(z�1)
4

= 1 + f1z
�1 + : : : + fnfz

�nf = p(z�1) + z�1Q(z�1) (3.129)

and

u(z�1) = u0 + u1q
�1 + : : :+ unuq

�nu = fMN eAb: (3.130)

Again ui = 0 if i > nu = (M � 1)(nm + na) + nn + nb and pi = 0 if

i > np =M2nanm.

Equations (3.123) and (3.128) are coupled and cannot be solved separately.
However, by combining the top `+ 1 equations from (3.128) with the lower
half of the equations from (3.123) we obtain the system of (M + 1)(` + 1)
equations in the M(` + 1) coe�cients of s0(z

�1) and the ` + 1 coe�cients
of l1(z

�1)

2
666666664

uH0 0 p
H
0 0

... � � �
...

. . .

uH` � � � uH0 p
H
` � � � p

H
0

H0 � � � H` �c0 � � � �c`
. . .

...
. . .

...

0 H0 0 �c0

3
777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

0
...

p
H
0

0
...

0

3
777777775
: (3.131)

As long as the left hand side matrix is invertible, we can obtain a unique

solution for the coe�cients of the polynomial vector s0(z
�1) and for the

coe�cients of the polynomial l1(z
�1). We can note that the polynomial

Q(z�1) = z(f(z�1)� p(z�1)) (3.132)

will be causal since f(z�1) is monic and p(z�1) is monic by assumption

as det
�
A(z�1)

�
and det

�
M(z�1)

�
both are monic polynomials. As the

coe�cients of f(z�1) can be computed using the lower set of equations
in (3.128), we see that we can compute the coe�cients of the polynomial
Q(z�1) = Q0 +Q1z

�1 + : : : +Qnqz
�nq of order nq = max[nb+ nn+ (M �
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1)(nm+ na);M(nm+ na)]� 1 as

2
64

Q
H
0

...

Q
H
nq

3
75 =

2
64

uH`+1 � � � uH1 p
H
`+1 � � � p

H
1

...
...

...
...

uH`+1+nq � � � uH1+nq p
H
`+1+nq � � � p

H
1+nq

3
75

2
66666666664

sH0;0
...

sH0;`
l1`
...

l11

l10 � 1

3
77777777775

(3.133)

where ui = 0 if i > nu and pi = 0 if i > np.

The rational feedforward �lter is now, using (3.111), given by

S(q�1) = s0(q
�1)M�1(q�1)N (q�1) (3.134)

and the rational feedback �lter is, using (3.117), given by

Q(q�1) = Q(q�1)

a(q�1)m(q�1)
: (3.135)
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3.A.2 Derivation of the Optimal Space-Time DFE for AR

Noise.

If we assume, as shown in Figure 3.4, that the MMSE-optimal DFE has

FIR �lters in the feedforward and the feedback branches, then the estimated

symbol prior to the decision device can be written as

d̂(t� `) = s(q�1)y(t)�Q(q�1) ~d(t� `� 1): (3.136)

Although this assumption is true, we can for the time being consider the

feedforward �lter s(q�1) and the feedback �lter Q(q�1) to be potentially

rational �lters.

To make the derivation of optimal equalizer coe�cients feasible we shall as

usual adopt the assumption that all previous decisions a�ecting the current

symbol estimate are correct.

As in Appendix 3.A.1 we want to minimize the criterion

J = E
h
jd(t� `)� d̂(t� `jt)j2

i
= E

�
jz(t)j2

�
(3.137)

where

z(t) = d(t� `)� d̂(t� `jt)
=

�
q�` � sb+ q�`�1Q

�
d(t)� sN�1

M0v(t): (3.138)

The expectation E[�] is with respect to realizations of the noise, n(t), and

the symbol sequence, d(t). The parameter ` is as before the smoothing lag.

In order to minimize the criterion (3.137), z(t) has to be orthogonal to any

�ltered version of the input signals y(t) and d(t � ` � 1). The signal z(t)

thus has to be orthogonal to

e1(t) = g1y(t) (3.139)

and to

e2(t) = g2d(t� `� 1) (3.140)

where g1 = g1(q
�1) and g2 = g2(q

�1) are arbitrary stable and causal IIR

�lters. Note that g1 is a row vector IIR �lter.
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Orthogonality with respect to e1(t) gives

E[z(t)eH1 (t)] =

E
�
f(q�` � sb+ q�`�1Q)d(t)� sN�1

M0v(t)g
�fg1(bd(t) +N�1

M 0v(t))gH
�
= 0: (3.141)

Evaluating the expectation with respect to the signals d(t) and v(t) gives

E[z(t)eH1 (t)] =

=
1

2�i

I
jzj=1

�
(z�` � sb+ z�`�1Q)bH �

sN
�1
M 0M

H

0 N
�H

�
g
H

1

dz

z
= 0: (3.142)

Separating out MH

0 N
�H from the parenthesis gives

E[z(t)e1(t)] =

=
1

2�i

I
jzj=1

�
(z�` � sb+ z�`�1Q)bHNH

M
�H �

sN
�1
M0

�
M

H

0 N
�H
g
H

1

dz

z
= 0: (3.143)

For this equation to be zero for all admissible g1, we must require that the

integrand is analytic inside the unit circle, i.e. it should have no poles inside

the unit circle. The factor MH

0 N
�H
g
H
1 has no poles inside the unit circle

since N�1 and g1 are stable. Therefore we require that a stable rational

column vector l2 = l2(z
�1) exists such that all poles of lH2 (z) are located

outside the unit circle and�
z�` � sb+ z�`�1Q

�
b
H
N

H
M

�H

0 � sN�1
M0 = zlH2 : (3.144)

Similarly, orthogonality with respect to e2(t) = g2(q
�1)d(t� `� 1) gives

E[z(t)eH2 (t)] =

= E
��
(q�` � sb+ q�`�1Q)d(t)� sN�1

M0v(t)
	

�
�
g2q

�`�1d(t)
	H�

= 0: (3.145)

Evaluating the expectation with respect to the signals d(t) and v(t), using

Parsevals formula, we obtain

1

2�i

I
jzj=1

(z � z`+1sb+Q)gH2
dz

z
= 0: (3.146)
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In order for this equation to be zero for all admissible g2 = g2(z
�1), we must

require

z � z`+1sb+Q = zlH1 (3.147)

where lH1 = lH1 (z) is a rational function, with all poles outside the unit circle,

to be determined. We can however conclude that l1 must be a polynomial

since the left-hand side has no poles outside the unit circle.

Multiplying (3.147) with z�`�1bHNH
M

�H

0 from the right and subtracting

it from equation (3.144) gives

z�`lH1 b
H
N

H
M

�H

0 � sN�1
M 0 = zlH2 : (3.148)

Multiplying (3.148) with z` gives

lH1 b
H
N

H
M

�H

0 � z`sN�1
M 0 = z`+1lH2 : (3.149)

Now, s and N�1 (being polynomial or stable rational matrices in z�1) are

the only factors in the left hand side that may have poles inside the unit

circle. Since the right hand side is required to have no poles inside the unit

circle, the factor N�1 must be canceled by s. We select to also include

the constant matrix factor M�1
0 in s. The row vector s will thus have the

structure

s = s0M
�1
0 N : (3.150)

We will below show that s0 is a polynomial row vector.

By inserting (3.150) into (3.149) we obtain

lH1 b
H
N

H
M

�H

0 � z`s0 = z`+1lH2 : (3.151)

Since s0 is the only factor that can have poles inside the unit circle it must in

fact have no poles at all, except at the origin, since they cannot be matched

by some other factor in (3.151). With s0 being a polynomial matrix in

z�1, we can from (3.150) see that the potentially rational feedforward �lter

s(q�1) is indeed a polynomial, as predicted. Furthermore, since lH2 is the only

remaining potentially rational factor in (3.151), it must also be a polynomial

matrix.

Using s = s0M0N in (3.147), we obtain

z � z`+1s0M
�1
0 Nb+Q = zlH1 : (3.152)
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Since, Q(q�1), our potentially rational feedback �lter, is the only factor

that can contain poles in 0 < jzj < 1 and cannot have poles in outside the

unit circle, it too must indeed be a polynomial, as predicted at the outset.

Furthermore, since lH1 is the only factor that can have poles outside the unit

circle, and nowhere else, it must be a polynomial.

To summarize, we have to solve the two coupled Diophantine equations

(3.151) and (3.152)

lH1 b
H
N

H
M

�H

0 � z`s0 = z`+1lH2 (3.153)

z � z`+1s0M
�1
0 Nb+Q = zlH1 (3.154)

with respect to the polynomials and polynomial vectors l1, s0, l2 and Q,

respectively.

From the maximal positive power of z in (3.154) it can be concluded that

deg l1(z
�1) = `: (3.155)

Likewise, by noting that there will exist no negative powers of z in (3.153)

when ` � 0, it can be concluded that

deg s0(z
�1) = `: (3.156)

Furthermore, using deg s0(z
�1) = ` in (3.154) and investigating the negative

powers of z gives

deg Q(z�1) = nb+ nn� 1: (3.157)

Finally, using that deg lH1 (z) = ` in (3.153) and considering the positive

powers of z gives

deg l2(z
�1) = nb+ nn� 1: (3.158)

We will now show that the coe�cients to the polynomials s0(q
�1), l1(q

�1),

Q(q�1) and l2(q
�1) can be found by solving a system of equations. Let

us �rst take the complex conjugate of equations (3.153) and (3.154) and

rearrange them to obtain

z�`sH0 �M�1
0 Nbl1 = �z�`�1l2 (3.159)
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z�`bHNH
M

�H

0 s
H

0 + l1 = zQH + 1: (3.160)

Each power of z or z�1 in (3.159) gives an equation in the coe�cients. By
combining these equations into a system of equations we obtain

2
666666664

0 � � � 0 �b0nl2+1 � � � �b0nl2+1+`
...

...
...

...

0 � � � 0 �b01 � � � �b0`+1
I 0 �b00 � � � �b0`

. . .
. . .

...

0 I 0 �b00

3
777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

�l2nl2
...

�l20
0
...

0

3
777777775

(3.161)

where b0i are the vector taps of the noise whitened channel

b
0(z�1) = b

0

0 + b
0

1z
�1 + : : :+ b0

nb0
z�nb

0

=M
�1
0 Nb (3.162)

with b0i = 0 if i > nb0 = nb + nn. Furthermore s0;k are the vector taps in

the polynomial

s0(q
�1) = s0;0 + s0;1q

�1 + : : :+ s0;`q
�` (3.163)

and l1k are the scalar coe�cients of the polynomial

l1(q
�1) = l10 + l01q

�1 + : : :+ l0`q
�`: (3.164)

Similarly, equation (3.160) gives the system of equations

2
66666666664

b0
H

0 0 1 0
...

. . .
. . .

b0
H

` � � � b0
H

0 0 1

b
0
H

`+1 � � � b
0
H

1 0 � � � 0
...

...
...

...

b0
H

nf � � � b0
H

nf�` 0 � � � 0

3
77777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

0
...

1

f
H
1

...

f
H
nf

3
777777775

(3.165)

where the monic polynomial f(z�1) of degree nf = nb+ nn is given by

f(z�1) = 1 + f1z
�1 + : : :+ fnfz

�nf = 1 + z�1Q(z�1): (3.166)

Again b0i = 0 if i > nb0.
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Equations (3.161) and (3.165) cannot be solved separately. However, by
combining the top ` + 1 equations from (3.165) with the lower half of the
equations from (3.161) we obtain the system of equations2

6666666664

b
0
H

0 0 1 0
... � � �

. . .

b0
H

` � � � b0
H

0 0 1

I 0 �b00 � � � �b0`
. . .

...
. . .

...

0 I 0 �b00

3
7777777775

2
666666664

sH0;0
...

sH0;`
l1`
...

l10

3
777777775
=

2
666666664

0
...

1

0
...

0

3
777777775
: (3.167)

By introducing the notation

B
0 =

264 b
0

0 � � � b
0

`

. . .
...

0 b
0

0

375 (3.168)

s0 =
�
s0;0 : : : s0;`

�
(3.169)

and

l1 =

264 l1`
...

l10

375 (3.170)

we can write (3.167) as

�
B
0H

I(`+1)�(`+1)

IM(`+1)�M(`+1) �B0
� �

s
H
0

l1

�
=

2666666664

0
...

1

0
...

0

3777777775
: (3.171)

We can now separate (3.167) into a system of two matrix equations as

B
0H
s
H

0 + l1 =

264 0
...

1

375 (3.172)
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s
H

0 �B0l1 =

264 0
...

0

375 : (3.173)

Equation (3.173) now gives

B
0
l1 = s

H

0 : (3.174)

Let us now multiply (3.172) with B0 from the left to obtain

B
0
B
0H
s
H

0 +B0l1 = B
0

264 0
...

1

375 =

264 b
0

`

...

b
0

0

375 : (3.175)

Inserting (3.174) into (3.175) gives

(B0B0
H
+ I)sH0 =

264 b
0

`

...

b
0

0

375 : (3.176)

As long as (B0B0
H
+ I) is invertible we can compute

s
H

0 = (B0B0
H
+ I)�1

264 b
0

`

...

b
0

0

375 (3.177)

and extract the coe�cients for the feedforward �lter from s
H according to

(3.169). Noting that

Q(z�1) = z(f(z�1)� 1) (3.178)

and that the coe�cients of the polynomial f(z�1) can be computed using the

lower set of equations in (3.165), we see that we can compute the coe�cients

of the feedback polynomial Q(z�1) = Q0 +Q1z
�1 + : : : +Qnqz

�nq of order

nq = nb+ nn� 1 as264 QH
0
...

Qnq

375 =

264 b
0H

`+1 � � � b
0H

1
...

...

b
0H

`+nb+nn � � � b
0H

nb+nn

375
264 s

H
0;0
...

s
H

0;`

375 (3.179)
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where b0i = 0 if i > nb0 = nb+ nn.

Our polynomial feedforward �lter is now, using (3.150), given by

s(q�1) = s0(q
�1)M�1

0 N (q�1): (3.180)
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3.A.3 Fixed Order FIR-DFE Wiener Equations in Channel

Parameters

The covariance matrices R'' and R'd`
in (3.51) can be decomposed as

R'' =

�
R�y�y �R�ydQ

�RdQ�y I

�
(3.181)

where

R�y�y
4

= E[�y�yH ] R�ydQ

4

= E[�ydHQ ] RdQ�y
4

= E[dQ�y
H ] = R

H

�ydQ

(3.182)

and

R'd`
=

�
R�yd`

�RdQd`

�
(3.183)

where

R�yd`

4

= E[�ydH(t� `)] RdQd`

4

= E[dQd
(t� `)] = 0: (3.184)

By using (3.38), and the assumption that d(t) and n(t) are uncorrelated, we

can note that

R�y�y = R�ys�ys +R�n�n (3.185)

where R�ys�ys
is the covariance of the desired signal part of �y(t) in (3.48)

R�ys�ys =

264
P

nb

k=0 bkb
H

k
� � �

P
nb

k=ns bkb
H

k�ns

...
. . .

...P
nb�ns

k=0 bkb
H

k+ns � � �
P

nb

k=0 bkb
H

k

375 (3.186)

where a sum is zero if the starting index is greater than the end index in

the sum. The vectors bk are the vector taps in the channel b(q�1) in (3.38).

The matrixR�n�n is the covariance of the noise plus interference part of �n(t)

in (3.48)

R�n�n =

264 Rnn(0) : : : Rnn(ns)
...

. . .
...

Rnn(�ns) : : : Rnn(0)

375 : (3.187)
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The M �M matrices Rnn(k) here are evaluations of the autocovariance

function of the noise plus interference de�ned in (2.108). Furthermore,R�ydQ

and R�yd` in (3.184) can be expressed as

R�ydQ =

264 b`+1 � � � b`+1+nq

...
. . .

...

b`+1�ns � � � b`+1+nq�ns

375 (3.188)

R�yd` =

266666666664

b`

b`�1

...

b0

0
...

0

377777777775
: (3.189)
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Chapter 4

Space-Time ML Sequence

Estimation

4.1 Introduction

The use of maximum likelihood sequence estimation (MLSE) [26, 116] will in

general provide higher performance than decision feedback equalization. If

the true channels are known the MLSE �nds the transmitted sequence that

maximizes the probability of the actual received signal. This can be com-

pared with the DFE that after a linear �ltering makes decisions on a symbol

by symbol basis. When we perform space-time �ltering this advantage of the

MLSE over the DFE is however not always as large as in the exclusively

temporal case. The reason for this is that both the MLSE and the DFE

contains linear �lters as front-ends. The linear �ltering can more easily re-

trieve the desired signal when performing space-time processing as opposed

to when performing scalar temporal processing. The potential for additional

improvement due to the subsequent processing is therefore reduced. Some-

times the DFE can even have better performance than the MLSE. It can

happen when the information about the channel is incomplete.

We will here consider the generalization of the scalar MLSE to the space-

time MLSE. The scalar maximum likelihood sequence estimation [26, 116]

can be generalized to work with an array of antennas. We call such an MLSE

161
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a multi-channel MLSE.

Several di�erent, but basically equivalent, realizations of the multi-channel

MLSE can be found in the literature [71, 121, 41, 45, 13, 6, 100]. Three ap-

proaches will be presented here, the log-likelihood [13, 41, 45], the noise

whitening approach [6] and the multi-dimensional matched �ltering ap-

proach [71, 121, 100], are presented here. Although these approaches are

equivalent in terms of their performance, one of them, the multi-dimensional

matched �lter approach, is superior with respect to complexity when using

more than one antenna.

Handling of spatially colored noise and interference is readily performed with

the multi-channel MLSE. The temporal color of the noise and interference

can also be included in the formalism, at the price of an increased memory

length in the Viterbi algorithm. This will however increase the complexity of

the processing. By using the temporal spectrum of the noise and interference

the space-time MLSE can however perform spatio-temporal cancellation of

interferers.

In Section 4.4, di�erent tuning options for the �lters in the MMF-MLSE

is discussed. Several options can be conceived for the tuning. We will,

however, only compare two options: Direct tuning of the �lters and indirect

tuning utilizing an estimate of the channel and an estimate of the spatial

spectrum of the noise plus interference covariance matrix. The direct tuning

of the �lters of the MMF-DFE is not well conditioned when using many

antenna elements due to the large number of coe�cients in the �lters, It thus

requires a regularization. In the simulations conducted, the performance of

the regularized directly tuned MMF-MLSE is however still worse then the

indirectly tuned MMF-DFE. The indirect tuning is here much more well

conditioned, which results in a better performance.

The indirectly tuned MMF-MLSE used in the simulations only utilizes the

spatial spectrum of the interference. As a result it will only suppress co-

channel interferers spatially. When using a relatively large number of anten-

nas, in comparison to the length of the training sequence, it can be di�cult

to achieve good estimates of the spatio-temporal spectrum of the noise plus

interference. We can however consider performing joint FIR channel and

AR noise model estimation as described in Section 2.9 of Chapter 2. Such a

model for the noise and interference will allow for spatio-temporal suppres-

sion of co-channel interferers [7]. Another alterna-



4.2. Di�erent Implementations of the Multi-Channel MLSE 163

tive is to use a hybrid MLSE as in [53], or almost equivalent, a reduced rank

tuned MLSE as described in Section 5.4 of Chapter 5. In Section 5.4, we

show that these two methods are almost equivalent and therefore the hybrid

MLSE of [53] can be viewed as a rank one MLSE, see Chapter 5. It appears,

however, that the methods in [7] and [53], as well as the reduced rank tuned

MLSE in Section 2.9, all require relatively large signal to noise ratios.

4.2 Di�erent Implementations of the Multi-Channel

MLSE

4.2.1 Channel Description

As in (2.15) we will model the received signals at the M antenna elements,

y(t) = [y1(t) y2(t) : : : yM (t)]T (4.1)

as

y(t) = b(q�1)d(t) + n(t) (4.2)

where b(q�1) = [b1(q
�1) b2(q

�1) : : : bM (q�1)]T represents the causal

FIR channels to the antenna elements for the transmitted scalar symbol

sequence d(t) and the vector n(t) represents the noise plus interference. For

simplicity we will assume all M channel polynomials bi(q
�1) to have the

order nb.

4.2.2 Log-Likelihood Metric and Noise Whitening Approach

Consider the spectrum of the noise plus interference n(t), where we have

replaced z with q

Rnn(q; q
�1) =

1X
m=�1

E[n(t)nH(t�m)]q�m (4.3)

We will call this the noise plus interference spectrum operator. We can

factor this spectrum operator as

Rnn(q; q
�1) = R

1=2
nn(q

�1)R
H=2
nn (q) (4.4)
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where R
1=2
nn(q

�1) is the causal part of the spectral factorization of the noise

plus interferer spectrum operator [47, 3, 40, 36] and where R
H=2
nn (q) is the

complex conjugate transpose of R
1=2
nn(q

�1).

We can now form the whitened noise plus interference

n
0(t) = R

�1=2
nn (q�1)n(t): (4.5)

A straightforward method of deriving the MLSE is to select the sequence

fd(t)gN
t=1 that maximizes the probability of the received sequence

1, fy(t)gN
t=1.

If the noise and interference is, for simplicity, assumed Gaussian, then this

probability can be expressed as:

P
�
fy(t)gNt=1jfd(t)gNt=1

�
/

exp(�n0(t)Hn0(t)) =

exp

�
�

NX
t=1

h
[R

�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	iH
�
h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	i�
: (4.6)

Maximizing the probability in (4.6), is equivalent to minimizing the log-

likelihood metric2

�LL(N) =

NX
t=1

h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	iH
�
h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	i
: (4.7)

By forming the �ltered signal,

y
0(t) = R

�
1
2

nn(q
�1)y(t) (4.8)

and the potentially rational noise whitened channel

b
0(q�1) = R

�
1
2

nn(q
�1)b(q�1) (4.9)

1In this discussion we are neglecting the e�ects near the beginning and the end of the

data records.
2Since e�x is monotonically decreasing.
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the log-likelihood metric (4.7) can be expressed as

�LL(N) =

NX
t=1

�
y
0(t)� b0(q�1)d(t)

�H �
y
0(t)� b0(q�1)d(t)

�
: (4.10)

The metric (4.10) can be computed recursively, for t = 1; : : : ; N , as

�LL(t) = �LL(t� 1) +
�
y0(t)� b0(q�1)d(t)

�H �
y0(t)� b0(q�1)d(t)

�
(4.11)

The sequence of transmitted symbols fd(t)g that minimizes this metric for a
given sequence of received signals fy(t)g and channel model b0(q�1) can be

determined by using the Viterbi algorithm [122]. In the Viterbi algorithm

we simply replace the standard scalar metric computation with the above

vector formulation. Approaches similar to this can, for example, be found

in [41], [13] and [45]. Since the Viterbi algorithm here works with a vector

input, y(t), we call it a vector Viterbi. The block diagram for an MLSE

implemented using this log-likelihood approach is depicted in Figure 4.1a.

If desired, we can move the whitening �lter outside the vector Viterbi algo-

rithm as shown in Figure 4.1b. We call this the noise whitening approach.

Note that if the noise process, n(t), is modeled by an AR-process

n(t) =N
�1(q�1)M0v(t) (4.12)

where N�1(q�1) is an M �M polynomial matrix,M0 is a constant matrix,

and v(t) is an M � 1 white innovation process, then the noise whitening

�lter R
�1=2
nn (q�1) is simply given by

R
�1=2
nn (q�1) =M

�1
0 N (q�1): (4.13)

4.2.3 Multi-Dimensional Matched Filter Approach

Another formulation of the multi-channel MLSE is to formulate it in terms

of a multi-dimensional matched �lter as in [71], [121] and [97]. Here the

vector Viterbi is replaced by a multi-dimensional matched �lter followed by

a scalar Viterbi. An advantage with this approach is that the computational

complexity is reduced when many channels (antennas) are used. These



166 Chapter 4. Space-Time ML Sequence Estimation

Vector Viterbi approach:

�

��
�

��

- �

��
n(t)

.....................
.....................

.....................

+b(q�1)
d(t) Vector

Viterbi
-
d̂(t)

(a)

Noise whitening approach:

�

��
�

��

- �

��
n(t)

.....................
.....................

.....................

.....................

+b(q�1)

Whitening

R�1=2
nn

(q�1)
d(t) Vector

Viterbi
-
d̂(t)

(b)

Multi-dimensional matched �lter approach:

�

��
�

��

- �

��
n(t)

.....................
.....................

.....................

+b(q�1)

MMF

w(q; q�1)
d(t) Scalar

Viterbi
-
d̂(t)

(c)

The MMF broken up into whitening and matched �ltering:

�

��
�

��

- �

��
n(t)

.....................
.....................

.....................

.....................

+b(q�1)

Whitening

R�1=2
nn

(q�1)
d(t)

Matched �lter

bH(q)R�H=2
nn

(q)
Scalar
Viterbi

-
d̂(t)

(d)

Figure 4.1: Di�erent implementations of the multi-channel MLSE.
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formulations can be seen as generalizations of the treatment by Ungerboeck

in [116] to the case with multiple channels.

Using y0(t) and b0(q�1) (with coe�cients b0
k
) from equations (4.8) and (4.9),

the matched �lter version can be derived from the log-likelihood metric

in (4.7). In Appendix 4.A.1 it is shown that

�LL(N) =

NX
t=1

h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	iH
�
h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	i
= �2Re

(
NX
n=1

zH(n)d(n)

)
+

NX
n=1

NX
m=1

dH(n)
n�md(m)

+f(y(�)) + eborder

where the term eborder is a correction term that only depends on the values

of y(t) and d(t) for t close to 1 or N . The scalar signal z(t) is de�ned by

z(t)
4

= b
0H(q)y0(t) = b

H(q)R
�H=2
nn (q)R

�1=2
nn (q�1)y(t)

= b
H(q)R�1

nn
(q; q�1)y(t)

where we have used (4.4) in the last equality.

By introducing the multi-dimensional matched �lter

w(q; q�1) = b
H(q)R�1

nn
(q; q�1) (4.14)

we can write z(t) as

z(t) = w(q; q�1)y(t): (4.15)

The coe�cients 
k are the coe�cients of the double sided metric polynomial


(q; q�1) =

1X
p=�1

b
0

p�n

H
b
0

p�mq
n�m = b

H(q)R�1
nn(q; q

�1)b(q�1) (4.16)

with the coe�cients numbered as


(q; q�1) = 
�n
q
n
 + : : : + 
0 + : : :+ 
n
q

�n
 : (4.17)
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The term f(y(�)) does not depend on the candidate symbols, d(�), and can

therefore be neglected in the maximization of �LL. Furthermore, we will

neglect the border correction term eborder since it will only have e�ect on

the estimated symbols close to the borders. Thus, neglecting the \border

e�ects" and changing the sign such that the matched �lter metric is to be

maximized gives

�MF (N) = 2Re

(
NX
n=1

zH(n)d(n)

)
�

NX
n=1

NX
m=1

dH(n)
n�md(m): (4.18)

Since 
(q; q�1) is complex conjugate symmetric, this metric can be recur-

sively computed as

�MF (t) = �MF (t� 1) + Re

�
dH(t)(2z(t) � 
0d(t)� 2

n
X
m=1


md(t�m))

�
:

(4.19)

Note also that the memory length in the Viterbi algorithm using the matched

�lter metric in (4.18), is the same as for the Viterbi algorithm using the log-

likelihood metric in (4.10).

If we have an AR model for the noise n(t), as in (4.12), then the multi-

dimensional matched �lter takes on the simple form of a row vector of non-

causal FIR-�lters

w(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N (q�1) (4.20)

and, similarly, the metric polynomial has the simple form


(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N(q�1)b(q�1): (4.21)

Note that both the MMF-�lter and the metric polynomials have impulse

responses with �nite extent, both forward and backward in time.

Note that when we take the temporal color of the noise plus interference

into consideration, then the length of the metric polynomial 
(q; q�1) is

increased. Speci�cally when we have an AR model of order nn for the noise

plus interference, then the order n
 for the double-sided metric polynomial is

increased by nn. From (4.19) we can see that this will increase the memory

length of the Viterbi algorithm. This will in turn increase the execution
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complexity of the Viterbi algorithm by a factor Lnn where L is the number

of symbols in the alphabet [82]. We can thus see that the complexity of the

Viterbi algorithm increases exponentially with the order of the AR noise

model. If the order nn is not too large, the increase in complexity may be

acceptable.

Due to the matched �ltering, only a scalar Viterbi algorithm is required.

This is the case since the Viterbi algorithm operates on the scalar signal

z(t). As a result the complexity of the metric computation in the Viterbi

algorithm is reduced.

A block diagram of the MLSE using the multi-dimensional matched �lter

approach can be seen in Figure 4.1c. Note also that the multi-dimensional

matched �lter can be broken up into a noise whitening part, R
�1=2
nn (q�1),

and a �lter matched to the overall resulting SIMO channel, bH(q)R
�H=2
nn (q).

This is illustrated in Figure 4.1d.

When we have a noise that is temporally colored by anything but an AR

process, a problem arises. The �lter R�1
nn

(q; q�1) will then have a double

sided in�nite impulse response. This results in an in�nite memory length in

the Viterbi algorithm. In such situations, either the metric only or both the

metric and the MMF has to be truncated. The same problem will arise in

the log-likelihood and noise whitening implementations.

In the derivation of the matched-�lter metric we neglected the e�ect of sym-

bols and signals close to the beginning and the end of the symbol sequence.

In e�ect this was also done when deriving the log-likelihood metric. To get

proper estimates of the symbols close to the edges of the sequence, we have

to initialize the �lters properly.

4.3 Computational Complexity

We here consider the number of operations required when using the log-

likelihood and the matched �lter metrics, respectively.

Let us assume that the channel b0(q) is approximated by an FIR �lter with

nb+nr+1 taps. This would be the case if we used 2nr+1 taps in the noise
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plus interference spectrum operator inverse, R�1
nn

(q; q�1) and nb + 1 taps

in the channels. If L is the number of symbols in the alphabet, a Viterbi

algorithm then requires, Lnb+nr+1 metric updates for each detected symbol.

If the channel is assumed stationary, then the computational complexity of

the log-likelihood metric and the whitening �lter approach (Section 4.2.2),

measured by the number of complex multiplications and additions per sym-

bol detected, will be

CLL �M2(nr + 1) +M(nb+ 2)L(nb+nr+1) (4.22)

where M is the number of channels.

Because the matched-�lter metric operates a scalar Viterbi-algorithm, the

complexity for this approach, outlined in Section 4.2.3, will be

CMF �M(2nr + nb+ 1) + (nb+ 2)L(nb+nr+1) (4.23)

where the �rst term refers to the complexity in executing the multi-dimensional

matched �lter and the second term represents the complexity in computing

the metric. It can be seen from these expressions, that if the number of an-

tennas is more than one, then the matched-�lter metric has a considerable

advantage over the log-likelihood metric.

4.4 Tuning the Multi-Dimensional Matched Filter

The multi-dimensional matched �lter, w(q; q�1), and the metric polynomial,


(q; q�1), can be tuned in a few di�erent ways.

4.4.1 Direct MMSE Tuning

We assume here that a short training sequence of the transmitted signal

d(t) is known and we want to tune the multi-dimensional matched �lter,

w(q; q�1), and the metric polynomial 
(q; q�1) using this training sequence

and the corresponding received signal samples y(t).

In [71] and [121], generalizations of the direct tuning approach developed

in [116] are presented. The coe�cients of a feedforward �lter, w(q; q�1),
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�
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Figure 4.2: MMF �lter tuning.

and the coe�cients of a non-causal feedback �lter, 
(q; q�1), are tuned to

minimize the mean square error (MSE) of the error signal,

e(t) = w(q; q�1)y(t)� 
(q; q�1)d(t): (4.24)

See Figure 4.2. The polynomial row vector

w(q; q�1) = [w1(q; q
�1) : : : wM (q; q�1)] (4.25)

is a MISO FIR �lter and 
(q; q�1) is a double sided, complex conjugate sym-

metric3, non-causal FIR-�lter with the middle coe�cient, 
0, constrained to

be equal to one. That is,


(q; q�1) = 
�n
q
+n
 + : : : + 1 + : : : + 
n
q

�n
 (4.26)

with 
�k = 
H
k
. By this minimization, noise whitening and matched �lter-

ing will be performed by w(q; q�1), while 
(q; q�1) will contain the overall

impulse response [121].

We can from this see that the multidimensionalmatched �lter, as all matched

�lters, maximizes the peak-to-noise ration (PNR), i.e. it maximizes the peak

in the impulse response of channel for the desired signal over the noise vari-

ance. In other words, it maximizes


0

E[e(t)eH (t)]
: (4.27)

3If one so desires one can relax the requirement that the metric polynomial should be

complex conjugate symmetric.
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This is equivalent to minimizing the variance in the error signal e(t)

E[e(t)eH (t)] (4.28)

while constraining 
0 to one (or any other value > 0).

It is natural to choose the structure of the feedforward �lter, w(q; q�1),

consistent with an ideal MMF with a truncated noise plus interference spec-

trum operator, bH(q) ~R
�1

nn(q; q
�1). The spectrum operator, ~R

�1

nn(q; q
�1),

here represents a truncated version of R�1
nn(q; q

�1). The �lter w(q; q�1) will

thus be non-causal or anti-causal, since bH(q) is anti-causal and ~R
�1

nn
(q; q�1)

is either a matrix constant or a double-sided polynomial matrix. It is also

natural to choose the number of coe�cients in 
(q; q�1) consistent with the

structure chosen for w(q; q�1).

The estimates ŵ(q; q�1) and 
̂(q; q�1) can be found either adaptively or

by solving a system of equations formed directly from the training data.

Convergence to the ideal solution will result in an error signal which is

white, with minimal variance.

When the true �lter orders are used and the training sequence is long enough,

the MMF will be given by the estimate ŵ(q; q�1), up to a multiplicative

constant, and the corresponding metric to be used in the Viterbi algorithm

will be given by the 
̂(q; q�1), also up to a multiplicative constant [121].

A problem arises if the available training sequence is short. If for instance the

number of training symbols is smaller than the number of coe�cients in the

�lters, then the coe�cients cannot be determined uniquely. A regularization

of the equations can then be introduced. By adding arti�cial noise into the

system of equations, a solution can be computed, but it will in general be

inferior to the true matched �lter. However, if the number of antennas is

small, say M = 2, then a short training sequence can su�ce to properly

tune the MLSE with a direct method.

By adjusting the number of coe�cients inw(q; q�1) and 
(q; q�1), the ability

to combat a temporally colored interference can be obtained. Adding more

coe�cients increases the temporal noise whitening ability as well as the

matched �ltering capability of the �lter at the price of more degrees of

freedom and a longer memory in the metric.
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4.4.2 Indirect MMF Tuning

In the indirect approach the channel, b(q�1), is �rst estimated. This can be

done with one of the methods described in Chapter 2. An advantage with

this method, compared to the direct method, is that we can take advantage

of a priori knowledge when estimating the channel.

The noise plus interference spectrum operator, Rnn(q; q
�1), can, for exam-

ple, be estimated using the residuals from the identi�cation procedure. If we

have a relatively large number of antennas and the amount of training data

is small, we may choose to only estimate the spatial spectrum of the noise

plus interference, i.e. the coe�cient matrix for lag zero in Rnn(q; q
�1). A

good option is to model the noise plus interference as an AR process and

use this in the spectrum estimation [7]. Modeling the noise plus interference

spectrum as an AR process helps to catch some useful temporal aspects of

the noise plus spectrum and it �ts well into the MLSE algorithm. The re-

sulting MMF �lter and the metric will then be FIR �lters with �nite lengths

as in (4.20) and in (4.21). As the number of antennas or the order of the

AR noise model is increased, the number of parameters in the model can

however become large compared to the number of available equations. This

can make them potentially di�cult to estimate accurately, especially if the

SNR is not high enough.

If the spectrum operator is invertible, estimates of the MMF, w(q; q�1), and

of the metric polynomial, 
(q; q�1), can then be formed as

ŵ(q; q�1) = b̂
H

(q)R̂
�1

nn(q; q
�1) (4.29)


̂(q; q�1) = b̂
H

(q)R̂
�1

nn
(q; q�1)b̂(q�1) (4.30)

where the \hat" marks quantities derived from the estimated channel, b̂(q�1),

or the estimated noise spectrum operator, R̂nn(q; q
�1). When using an AR

model for the noise the MMF-�lter and the metric polynomial take on the

simple forms in (4.20) and in (4.21). If the �lter R̂
�1

nn
(q; q�1) is a double

sided IIR �lter, it will have to be truncated. Otherwise the metric in the

Viterbi would have in�nite memory.

If we use joint FIR channel and AR noise model estimation as described in

Section 2.9, we can from the least squares estimates, N̂ (q�1) and b̂N (q�1),

of N (q�1) and bN (q�1) in (2.121) and the estimate R̂r̂r̂ from (2.123), form

the multidimensional matched �lter ŵ(q; q�1) and the metric polynomial
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̂(q; q�1) as

ŵ(q; q�1) = b̂
H

N (q)R̂
�1

r̂r̂ N̂ (q�1) (4.31)

and the metric polynomial


̂(q; q�1) = b̂
H

N
(q)R̂

�1

r̂r̂
b̂N (q�1) (4.32)

An interesting question to study, is if the indirect methods can handle a

case with very low signal-to-interference ratio (SIR). It could be suggested,

that very poor SIR would make estimation of the channels to the individual

antenna elements non-feasible. Although the quality of the estimated chan-

nels may be compromised, the simulations for the scenario presented here

do not show that the indirect methods su�er much from this. This issue will

be discussed further in Chapter 7.

4.4.3 Indirect MMSE Tuning

An alternative indirect way of tuning the multi-dimensional matched �lter

is to perform the minimization of the MSE of the error signal e(t) in (4.24),

but instead of forming the systems of equations directly from data, we form

them from the estimated channel, b̂(q�1), and the estimated noise spectrum

operator, R̂nn(q; q
�1). The number of matrix coe�cients of R̂nn(q; q

�1)

used, and the structure and length of the �lters w(q; q�1) and 
(q; q�1),

a�ect the temporal noise whitening and matched �ltering capabilities. By

constraining the �lter structures, the memory length in the Viterbi algorithm

can be controlled. This will a�ect the complexity of the Viterbi algorithm.

This indirect version of the MMSE tuning will have an advantage over the

direct version. If we cannot obtain a good estimate of the space-time covari-

ance matrix of the noise plus interference, we may here restrict the algorithm

to use only the estimate of the spatial covariance of the noise plus interfer-

ence or for example an estimated AR spectrum. This can result in better

performance.

If the same structure is used and the same estimate of the channels and

the noise plus interference spectrum is used, then this indirect method and

the ordinary indirect MMF tuning discussed in Section 4.4.2 are equivalent.
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The methods di�er only in the way they handle temporally colored noise

plus interference. The indirect MMSE tuning of the MMF has a potential

advantage, over the ordinary indirect MMF tuning, in that it for a given

�lter structure, and a given noise plus interference spectrum used, �nds the

�lter coe�cients that perform a compromise between noise whitening and

matched �ltering. The performance of this scheme has however not been

investigated here.

4.5 Simulations

The purpose of the simulations presented here is to study how the indirect

methods can handle poor signal to interference ratios and to demonstrate

that the direct method has problems with short training sequences.

The algorithms compared are the indirect method (either one), when using

only the spatial color of the noise plus interference, and two versions of

the direct method. One without regularization and one with arti�cial noise

with a variance equal to the real noise variance, added to the diagonal of the

system of equations. In all cases 5 taps in w(q; q�1) and 9 taps in 
(q; q�1),

were used. The channels for the indirect method were estimated with the

standard least squares method with 5 taps.

The algorithms were tested using a circular array with eight antennas equally

spaced along a circle with a radius of 0.5 wave lengths. The desired sig-

nals arrives from the directions 0,30,-60 and 180 degrees, respectively. The

respective channels are 1 + 0:5q�1, 0:5q�1 + 0:8q�2, 0:5q�2 + 0:2q�3 and

0:2q�3 + 0:3q�4. Two-tap channels are chosen to simulate imperfect sam-

pling timing or partial response modulation. Binary symbols, d(t) = �1,
are used. Co-channel interferers impinge on the antenna array, also through

two tap channels, from the directions -30, 135 and -135 degrees respectively.

White Gaussian noise is added.

In Figure 4.3, the BER for the di�erent algorithms can be seen as a function

of the SIR. From Figure 4.3, we can note that the indirect method does not

su�er signi�cantly in this scenario from the poor SIR. The direct methods, of

course, perform poorly here since the training sequence was only 26 symbols

long, leaving it with more parameters to tune than number of equations.
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In Figure 4.4, the BER is presented as a function of the length of the training

sequence used. When the training sequence length increases the performance

of the direct methods approaches that of the indirect method. The indirect

method performs better for the short training sequencers since it here focuses

on only the spatial color of the noise plus interference.

It should be noted that when performing direct tuning, the number of equa-

tions is equal to the e�ective length of the training sequence, while when

performing indirect tuning we haveMNeff , equations, whereM is the num-

ber of antennas and Neff is the e�ective length of the training sequence.

The number of parameters to tune when performing direct tuning is

M(nw + 1) + 2n
, where nw is the order of the multidimensional matched

�lter and n
 is the order of the double sided metric polynomial. When

performing indirect tuning, we have M(nb+nn+1) parameters to estimate

if we perform joint FIR channel and AR noise model estimation, plus we need

some extra equations in order to estimate the spatial color of the residuals.

The number of parameters for the direct method and the number parameters

for the indirect method is often comparable, but the number of equations is

not. The indirect method has many more equations when we have multiple

antennas.

To make things worse for the direct method, we can note that the e�ective

length of the training sequence for the direct method is Ntseq � 2 � n
 while

it is Ntseq � nb for the direct method. Since n
 is of the order of nb, the

e�ective length of the training sequence for the direct method is typically

shorter than for the indirect method.

4.6 Summary

The log-likelihood metric, the noise whitening and the matched �lter ap-

proach, are all equivalent in terms of performance, at least if we neglect

possible di�erences at the edges of the symbol sequences. The matched �l-

ter approach is however superior in terms of computational complexity when

more than one antenna is used. The metric computation in the Viterbi part

of the algorithm is reduced by a factor equal to the number of antennas,

when compared to the log-likelihood metric approach.
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Figure 4.3: BER as a function of the SIR. SNR=2dB. Training sequence

length=26. Indirect tuning using only spatial noise color (solid). Direct

tuning with regularization (dashed) and without (dash-dotted).
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Figure 4.4: BER as a function of the training sequence length. SIR and

SNR is 0 dB. Indirect tuning using only spatial noise color (solid). Direct

tuning with regularization (dashed) and without (dash-dotted).
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When using many antennas and when, as for most TDMA systems, only

a short training sequence is available for the tuning, the multi-dimensional

matched �lter (MMF) can be tuned with an indirect scheme. This can then

improve the performance over the direct tuning presented here. A reason

for this is that in the indirect method we can choose to use only the spatial

spectrum of the noise plus interference. This makes the tuning more well

conditioned.

However, if we are using only a small number of antenna elements, say

M = 2, then the direct method performing spatio-temporal interference

suppression can have an advantage over indirect tuning utilizing only the

spatial spectrum of the interference.

A way to achieving spatio-temporal interference suppression for an indi-

rectly tuned MLSE is to estimate a low order AR model for the noise plus

interference [7]. Although the AR model is somewhat inappropriate, since

the true model for the noise plus interference resembles a moving average

process, the AR model has advantages. From the discussion in Section 2.9.2,

we can understand why an AR model, even a low order AR model, for the

noise plus interference can be useful when used in a maximum likelihood

sequence estimator. The important observation to make is that the the AR

noise model denominator does not have to model the noise particularly well,

it only has to be able to suppress the noise plus interference as a part of a

noise whitening �lter. Also, with an AR model for noise plus interference

and an FIR model for the channel of the desired signal, the MMF is a re-

alizable FIR �lter. When we use an AR model for the noise, the memory

length of the Viterbi algorithm is however increased. The execution com-

plexity of the Viterbi algorithm therefore increases exponentially with the

AR noise model order. If we keep the AR model order small the increase in

complexity may however be acceptable. With a large number of antennas or

a high order of the AR noise model, the number of parameters in the model

can however become large compared to the number of available equations.

This can make them potentially di�cult to estimate accurately, especially

if the SNR is not high enough.

In the simulations shown here, the indirect method is not especially sensitive

to poor signal to interference ratios, contrary to what could have been ex-

pected. The reason for this is that the indirectly tune MSLE, as well as the

indirectly tuned DFE, is self-robustifying to some extent. This phenomenon

will be discussed further in Section 7.
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The indirect MMSE tuning outlined in Section 4.4.3, has an interesting vari-

ability in its structure that allows tradeo�s between complexity and perfor-

mance. The MMF's ability to temporally whiten the noise and perform

matched �ltering of the signal can be varied, and the memory length of the

subsequent Viterbi-algorithm can be controlled. The utility of this feature

in, for example a TDMA system with a short training sequence, remains to

be assessed.
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4.A Appendix

4.A.1 Deriving the MF Metric from the LL Metric

Using y0(t) and b0(q�1) (with coe�cients b0
k
) from equations (4.8) and (4.9),

the matched �lter version can be derived from the log-likelihood metric

in (4.7). We have

�LL(N) =

NX
t=1

h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	iH
�
h
R
�1=2
nn (q�1)

�
y(t)� b(q�1)d(t)

	i
=

NX
t=1

h
R
�1=2
nn (q�1)y(t)

iH h
R
�1=2
nn (q�1)y(t)

i
�2Re

(
NX
t=1

h
R
�1=2
nn (q�1)y(t)

iH
R
�1=2
nn (q�1)b(q�1)d(t)

)

+

NX
t=1

h
R
�1=2
nn (q�1)b(q�1)d(t)

iH h
R
�1=2
nn (q�1)b(q�1)d(t)

i
= f(y(�))� 2Re

(
NX
t=1

nbX
k=0

y
0H(t)b0kd(t� k)

)

+

NX
t=1

X
k

X
l

[b0kd(t� k)]H [b0ld(t� l)]

where

f(y(�)) 4

=

NX
t=1

y
0H(t)y0(t): (4.33)

By replacing t with the new summation variable n = t� k we obtain

�LL(N) = f(y(�))� 2Re

(
nbX
k=0

N�kX
n=1�k

[b0k
H
y
0(k + n)]Hd(n)

)

+

nbX
k=0

nbX
l=0

N�kX
n=1�k

[b0kd(n)]
H [b0ld(k + n� l)]:
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By replacing summation over l in the last term with summation over the

new index m = k + n� l we can write

�LL(N) = f(y(�)) � 2Re

(
nbX
k=0

N�kX
n=1�k

[b0k
H
y
0(k + n)]Hd(n)

)

+

nbX
k=0

N�kX
n=1�k

k+n�nbX
m=k+n

[b0
k
d(n)]H [b0

k+n�md(m)]:

We can now assume that d(t) = 0 for t =2 [1; N ]. This is not necessary but

it will simplify the derivation and later we will everything happening close

to the borders of the interval. This assumption combined with the fact that

bi = 0 for i =2 [0; nb] gives

�LL(N) = f(y(�))� 2Re

(
nbX
k=0

N�kX
n=1

[b0k
H
y
0(k + n)]Hd(n)

)

+

1X
k=�1

N�kX
n=�1

k+n�nbX
m=k+n

[b0kd(n)]
H [b0k+n�md(m)]:

By representing terms with index n close to N collectively with the term

eborder, a term we later will neglect, we obtain

�LL(N) = f(y(�))� 2Re

(
nbX
k=0

NX
n=1

[b0k
H
y
0(k + n)]Hd(n)

)

+

1X
k=�1

NX
n=�1

k+n�nbX
m=k+n

[b0kd(n)]
H [b0k+n�md(m)] + eborder:

Finally replacing the summation over k in the last term with a summation

over p = k + n gives

�LL(N) = f(y(�)) � 2Re

(
nbX
k=0

NX
n=1

[b0k
H
y
0(k + n)]Hd(n)

)

+

1X
p=�1

NX
n=�1

p�nbX
m=p

[b0p�nd(n)]
H [b0p�md(m)] + eborder

= f(y(�))� 2Re

(
nbX
k=0

NX
n=1

[b0
k

H
y
0(k + n)]Hd(n)

)

+

1X
p=�1

NX
n=�1

1X
m=�1

[b0p�nd(n)]
H [b0p�md(m)] + eborder:
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In the last equality we have used the fact that bi = 0 when i < 0p and

i > nb. By again exploiting the assumption that d(t) = 0 for t =2 [1; N ] we

can change the summation limits in the second term

�LL(N) = f(y(�))� 2Re

(
NX
n=1

nbX
k=0

[b0k
H
y
0(n+ k)]Hd(n)

)

+

NX
n=1

NX
m=1

dH(n)

"
1X

p=�1

b
0

p�n

H
b
0

p�m

#
d(m) + eborder

= �2Re
(

NX
n=1

zH(n)d(n)

)
+

NX
n=1

NX
m=1

dH(n)
n�md(m)

+f(y(�)) + eborder (4.34)

where the scalar signal z(t) is de�ned by

z(t)
4

= b
0H(q)y0(t) = b

H(q)R
�H=2
nn (q)R

�1=2
nn (q�1)y(t)

= b
H(q)R�1

nn
(q; q�1)y(t)

where we have used (4.4) in the last equality.

By introducing the multi-dimensional matched �lter

w(q; q�1) = b
H(q)R�1

nn
(q; q�1) (4.35)

we can write z(t) as

z(t) = w(q; q�1)y(t): (4.36)

The coe�cients 
k (k = n�m) in (4.34) are the coe�cients of the double

sided metric polynomial


(q; q�1) =

1X
n�m=�1

1X
p=�1

b
0

p�n

H
b
0

p�mq
n�m = b

H(q)R�1
nn(q; q

�1)b(q�1)

(4.37)

with the coe�cients numbered as


(q; q�1) = 
�n
q
n
 + : : :+ 
0 + : : :+ 
n
q

�n
 : (4.38)

The term f(y(�)) does not depend on the candidate symbols, d(�), and can

therefore be neglected in the maximization of �LL. The term eborder is a
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correction term that only depends on the values of y(t) and d(t) for t close

to 1 or N . We will neglect possible border e�ect since they will only a�ect

the estimated symbols close to the borders. Thus, neglecting the \border

e�ects" and changing the sign such that the matched �lter metric is to be

maximized gives

�MF (N) = 2Re

(
NX
n=1

zH(n)d(n)

)
�

NX
n=1

NX
m=1

dH(n)
n�md(m): (4.39)
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Chapter 5

Reduced Complexity

Space-Time Equalization

5.1 Introduction

The channel a wireless radio signal passes through can often be described

by an FIR model as in (2.15)

s(t) = b(q�1)d(t) (5.1)

where d(t) are the transmitted discrete symbols, b(q�1) is the FIR channel

and s(t) is the received desired signal (noise free). When using M receive

antennas, this signal can be described by an M � 1 column vector s(t)

modeled by a vector FIR channel, similar to (2.18)

s(t) = b(q�1)d(t) (5.2)

or in matrix form

s(t) = Bd(t) (5.3)

where B an M � (nb + 1) channel matrix, nb + 1 being the length of the

channel, and d(t) = [d(t) d(t � 1) : : : d(t � nb)]T is a column vector with

delayed transmitted symbols. The vector s(t) is an M � 1 column vector

containing the desired signal.

185
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The channel matrix, B, has M � (nb + 1) coe�cients. These coe�cients

represent M � (nb+1) degrees of freedom. In realistic channel matrices for

wireless channels it is however likely that all these degrees of freedom will not

be exploited. The spatial and temporal spreading may have a structure such

that there are correlations between the coe�cients in the channel matrix.

This structure can be exploited when estimating channels, for example as

in Section 2.6 in Chapter 2. This structure however also a�ect the structure

of the equalizers. It may not always be necessary to use full 
edged spatio-

temporal equalizers capable of exploiting all available space-time degrees of

freedom as in Chapters 3 and 4. In this chapter we will therefore discuss

some equalizers with reduced complexity that do not exploit all available

degrees of freedom.

An example of a channel with a simple space-time structure is when the

transmitter sends a partial response signal through a propagation chan-

nel with negligible delay spread, but with arbitrary angular spread. Even

though the propagation channel has no delay spread, the received signal will

su�er from intersymbol interference due to the partial response modulation.

The temporal impulse response to each antenna will then be the same except

for scalings by complex constants. The spatial and temporal spreading of

the total channel can thus be decoupled.

The simplest way of performing space-time processing is of course to separate

the spatial and the temporal processing. We can have a spatial beamformer

followed by a temporal equalizer and tune them independently. One problem

to be solved is then how to tune the spatial beamformer in a good way. One

may tune the beamformer with the sample matrix inversion method where

the beamformer is tuned to minimize the MSE with respect to a reference

signal. The selection of a good reference signal is however not trivial since

the �nal performance we are interested in is the BER of the whole equalizer.

Even if there is only a direct wave impinging on the receiver antenna, the

proper reference signal to use would depend on the time of travel for the

signal from the transmitter to the receiver. Obviously we would have to

synchronize properly on a symbol level. However, the timing also needs

to be adjusted to a fraction of a symbol if we are to be able to select the

appropriate reference signal to use. This is since the sampled version of the

transmitted continuous waveform will di�er depending on when in time the

sampling is performed.



5.1. Introduction 187

In Section 5.2.2 a method using a \variable" reference signal is presented.

Here the reference signal is not �xed but is also tuned along with the beam-

former. This is here performed by adding variable components to the refer-

ence signal. As we will see in the simulations in Section 5.2.2, this results

in a method that is insensitive to synchronization errors within a symbol

interval.

Although the performance of this error is evaluated in terms of its sensitivity

to a synchronization error in a scenario with a single direct wave impinging

on the antenna array, it will also be able to adjust to some intersymbol

interference. This can be a valuable feature of the proposed algorithm,

especially if the algorithm is extended such that it can handle larger delay

spreads.

In Section 5.3 a more general approach to reduced complexity space-time

equalization is presented. Here we note the fact that modeling of many

space-time channels do not really require all available degrees of freedom

in (5.3). Assume for example that we have a channel consisting of some

temporal pulse shaping in the transmitter combined with a propagation

channel without any signi�cant delay spread. The channel matrix B in

(5.3), describing the channel will then only be rank one. The rank of the

channel matrix will in fact be approximately equal to the number of groups

of signals, with signi�cant di�erent time delays, arriving. Of course only

groups of signals with signi�cant energy content are counted. For many

channels, it is possible that the rank of the channel matrix therefore will be

approximately one or maybe two.

If the channel matrix has reduced rank, then this can be exploited in the

design of the equalizers. In Section 5.3 the low rank property of a chan-

nel matrix is exploited in order to �nd simpler space-time structures of a

space-time maximum likelihood sequence estimator and a space-time de-

cision feedback equalizer. This results in a maximum likelihood sequence

estimator and a decision feedback equalizer which have simpler space-time

structures and are less complex. It is also possible to utilize the reduced

rank space-time structure of the channel and/or the equalizer in order to

facilitate the tuning of the equalizer. This is described in Section 5.4. A so-

lution very similar to the one we arrive to in Section 5.4 was however earlier

proposed in [53].
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Figure 5.1: Con�guration for the Sample Matrix Inversion Method with

�xed reference signal �lter.

5.2 Spatial Beamforming

The simplest form of space-time processing for equalization is to use a single

spatial beamformer followed by a scalar temporal equalizer. The tempo-

ral equalizer can be tuned as a scalar version of the equalizers presented in

Chapters 3 and 4. We will here consider the tuning of the spatial beam-

former. In particular we will present and discuss some aspects of tuning

based on the sample matrix inversion method using a training sequence.

5.2.1 SMI Beamforming

If a reference signal describing the desired output from the adaptive antenna

is available, then the weights for the adaptive antenna can be tuned with the

sample matrix inversion method (SMI). See for example [19]. The reference

signal can, for example, be a known part of the transmitted signal.

If we consider a signal with a modulation as in the GSM system, the reference

signal can, for example, be generated by �ltering the training sequence of

the burst through the �lter described by the modulation impulse response

for no timing o�set, tabulated as toff = 0:0, B0:0(q
�1), in Table 2.2. The



5.2. Spatial Beamforming 189

weights in the beamformer are then adjusted to make the received signal as

close as possible to the reference signal, in an MSE sense, as in the standard

SMI-method. See [19] and Figure 5.1. Generation of a reference signal with

a �xed �lter is for instance used in [76].

We will here apply the sample matrix inversion method to a scenario where

the transmitted signal is assumed to be modulated with GMSK modulation

with a bandwidth-time product of 0.3, as in GSM. We will approximate this

modulation with the linear �lters presented in Appendix 2.A.1.

De�ne the vector w, consisting of the M beamformer weights

w
4

= [w1w2 :::wM ] (5.4)

and the vector, y(t), consisting of the received signals from the antenna

elements, after sampling,

y(t) = [y1(t)y2(t) ::: yM (t)]T : (5.5)

The beamformer weights, w, are adjusted to minimize1 the criterion

J =

NX
t=5

je(t)j2 =
NX
t=5

jz(t)� r0(t)j2 (5.6)

where N is the number of symbols in the training sequence, z(t) is the

beamformer output expressed as

z(t) = wx(t) (5.7)

and r0(t) is the reference signal computed as the known training symbols of

d(t) �ltered through the pulse shaping �lter p0:0(q
�1)

r0(t) = p0:0(q
�1)d(t) = p0d(t) + p1d(t� 1) +

p2d(t� 2) + p3d(t� 3) + p4d(t� 4): (5.8)

The �lter coe�cients pi, i=0,1,..,4, in the generation of the reference signal

correspond to the coe�cients for toff = 0:0 in Table 2.1 .

1We sum from t = 5 to t = N since r0(t), the output of the �ve tap modulation �lter

(5.8), is not well de�ned for other values of t.
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The minimum of (5.6) is attained by the parameter vector

ŵ
H = R̂

�1

yyR̂yr (5.9)

where the matrices, R̂xx and R̂yr, constitute sample covariance matrices

computed from the training sequence data as

R̂yy =
1

N � 4

NX
t=5

y(t)yH(t) (5.10)

R̂yr =
1

N � 4

NX
t=5

y(t)rH(t): (5.11)

A drawback with this approach is that we have assumed perfect knowledge

of the \time-of-arrival" of the desired signal and a good knowledge of the

proper training sequence to use. This may not always be the case due

to synchronization problems or multipath propagation causing some delay

spread. In the following section we therefore present a method which reduces

the need for an accurate knowledge of the appropriate training sequence.

5.2.2 SMI Beamforming with Variable Reference Signal

Let us assume that the sampling instant is not synchronized within the

symbol interval, implying that the location of the sampling instant within

the symbol interval is unknown. In this case the modulation and sampling

can be approximated by a set of discrete time channels, parametrized by the

location of the sampling instant within the symbol interval.

If one of these channels is selected in order to create the reference signal and

the true channel is a di�erent one, then there will be a discrepancy between

the reference signal selected for the antenna array to receive optimally, and

the actual samples received. When working with short training sequences,

this can cause a degradation in the signal to interference and noise ratio

(SINR) after the beamformer. In order to avoid such degradation a modi�ed

weight adaptation scheme is proposed here. The general idea is to introduce

some degrees of freedom in the reference signal.
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Although we don't investigate it here, this will also allow for some delay

spread in the propagation channel. When delay spread is introduced the re-

ceived signal waveform will almost always di�er from the transmitted wave-

form as it is made up by a sum of versions of the transmitted waveform with

di�erent time delays. In this case we obviously see the need for a variable

reference signal allowing for the variability in the received waveform.

Introducing a Variable Reference Signal

In this proposed algorithm, the �xed part of the reference signal �lter is the

same as for the SMI algorithm in the previous section. Two basis functions

with adjustable gains are however added to the reference signal. The aim is

to improve the ability to lock on to a received signal sampled at a relative

sampling o�set di�erent from zero, for instance at toff = �0:5. The variable
components added, r1(t) and r2(t), have here been selected as the training

sequence �ltered through the di�erence between the channels at toff = 0:0

and toff = �0:5, i.e.

r1(t) = (p�0:5(q
�1)� p0:0(q

�1))d(t) (5.12)

r2(t) = (p0:5(q
�1)� p0:0(q

�1))d(t): (5.13)

For the GSM case, the pulse shaping polynomials p0:0(q
�1), p0:5(q

�1) and

p�0:5(q
�1) can be found in Table 2.1. Other alternatives can also be consid-

ered. The general idea is to introduce additional degrees of freedom in the

reference signal to attain better modeling of the partly unknown reference

signal. See Figure 5.2.

In addition to the weights in the adaptive beamformer, the two coe�cients,

c1 and c2, for the variable components, r1(t) and r2(t), in the reference signal

are also adjusted, in order to minimize the error between the beamformer

output and the reference signal.

The modi�cation of the SMI-algorithm is now straightforward. Introduce

the modi�ed parameter and regressor vectors, � and '(t)

� = [w1w2 :::wM c1 c2] (5.14)

'(t) = [y1(t)y2(t) ::: yM (t)r1(t)r2(t)]
T : (5.15)
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Figure 5.2: Con�guration for the Sample Matrix Inversion Method with

variable reference signal �lter.

The objective is now to adjust the modi�ed parameter vector, �, to minimize

the criterion

V (�) =

NX
t=5

je(t)j2 =
NX
t=5

j�'(t)� r0(t)j2 (5.16)

where r0(t) is the reference signal computed as

r0(t) = p0:0(q
�1)d(t) (5.17)

with p0:0(q
�1) being the pulse shaping �lter for zero sampling o�set. The

minimum of (5.16) is attained by the parameter vector

�̂
H

= R̂
�1

''R̂'r (5.18)

where the matrices R̂'' and R̂'r are computed as

R̂'' =
1

N � 4

NX
t=5

'(t)'H(t) (5.19)

R̂'r =
1

N � 4

NX
t=5

'(t)rH0 (t): (5.20)
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Performance Evaluation

In order to compare the SMI algorithm with a �xed reference signal and

the SMI algorithm with a variable reference signal, the resulting SINR in

the signals after the beamformers was computed. The algorithms were also

evaluated by applying a maximum likelihood sequence estimator2 (MLSE)

after the beamformer, and computing the resulting bit error rate (BER).

Simulation Settings

A circular antenna array consisting of eight antenna elements (M = 8), as

shown in Figure 5.3, was used in the simulations.

The desired signal is impinging on the array from the direction � = 0 degrees,

see Figure 5.4. Co-channel interferers are impinging on the array from the

directions �co = 135, -30 and -125 degrees, all having a constant channel

bco(q
�1) = bco. The constant bco was selected such that the SIR, averaged

over all the antenna elements, became 0 dB. Independent white Gaussian

noise giving a SNR of 3 dB, averaged over the antenna elements, was also

added.

The relative sampling o�set, toff , was varied, resulting in di�erent chan-

nels for the desired signal as described in Table 2.1. The beamformers were

tuned based on data from a training sequence consisting of 26 binary sym-

bols, as in a GSM system. The channel used in the MLSE was estimated as

a three tap FIR-channel, using the same training data. The SINR and the

BER was evaluated over 500 and 5000 symbols respectively. This experi-

ment was repeated 100 times for di�erent realizations of both the noise and

interference.

2The MLSE used a least squares estimate of the channel that was formed by estimating

the channel between the transmitted symbols and the received samples, after the beam-

former. Instead of estimating the channel after the beamformer one can choose to use the

channel estimate b̂(q�1) = p0:0(q
�1)+c1(p�0:5(q

�1)+p0:0(q
�1))+c2(p0:5(q

�1)�p0:0(q
�1))

in the MLSE. This could save some complexity in the algorithm.
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Results

The SINR after the beamformers (cf Figures 5.1 and 5.2) and the BER for

the MLSE, are depicted in Figure 5.5 as a function of the relative sampling

o�set toff . From the two diagrams it can be seen that the performance

of the SMI beamformer with �xed reference signal �lter degrades consider-

ably when the relative sampling o�set di�ers from toff = 0:0, which it was

designed for. The SMI beamformer with variable reference signal �lter is

however almost insensitive to the sampling instant within the symbol in-

terval. The performance has also been averaged uniformly over one symbol

interval. The resulting mean SINR and BER is better for the SMI method

with the variable reference signal �lter, see the dotted lines in in Figure 5.5.

However, if the deviation from toff = 0:0 is small, then the SMI method

with �xed reference signal �lter performs better.

The reason why the beamformer with the �xed reference signal �lter has a

performance degradation when toff di�ers from zero, is that the incorrectly

modeled channel causes the algorithm to treat part of the desired signal as a

disturbance. The algorithm thus decreases the gain slightly in the direction

of the desired signal, resulting in a lower SINR.

It should be noted that for longer training sequences the di�erence between

the algorithms is not that pronounced. The di�erences are ampli�ed by the

use of a single short training sequence.

The results presented above also depends the signal to noise ratio. Adding

more noise will make the di�erence between the algorithms smaller. The

mismodeling of the reference signal will then be masked by the e�ects of the

noise.

Multipath propagation has not been included in this study. In the presence

of multipath propagation, the received signal will di�er even more from

any reference signal generated from a �xed �lter. Introducing a variable

reference signal should therefore also be bene�cial also in this case. If we

want to accommodate a delay spread that is larger that the one symbol

interval covered here we will have to add more components to the reference

signal. The exact construction of the added basis functions could however

be di�erent from the construction presented here.
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5.3 Reduced Rank Equalization

We will here study how the structure of the channel for the desired signal

a�ects the structure of the equalizer and how the structure of the channel

can be utilized in the design of the equalizer.

As discussed in the beginning of this chapter it is likely that many space-

time channels will not be occupying all degrees of freedom in the channel

matrix B in (5.3). The channel matrix, B, will in such cases not have full

rank. Subsequently we call such channels reduced rank channels.

The motivating simple example presented in the Section 5.1, with a trans-

mitter sending a partial response signal through a propagation channel with

negligible delay spread, but with arbitrary angular spread, is an example

of a reduced rank channel. Even though the propagation channel has no

delay spread, the received signal will su�er from intersymbol interference

due to the partial response modulation. It is easy to see that in this case

the channel matrix will have rank one since there is no coupled angular and

delay spread. All taps will have the same spatial signature.

An equalizer designed from a channel with reduced rank will also have re-

duced rank in the sense that it will not exploit all spatio-temporal dimensions

in the space-time �ltering. The reduced rank equalizers have the full rank

space-time �ltering replaced by a set of beamformers followed by temporal

�lters. The rank one equalizer will thus have a single beamformer followed

by temporal �ltering.

An equalizer for a reduced rank channel will have a simpler structure than

a general space-time equalizer. The execution of a reduced rank equalizer

will be less complex than the full rank counterpart and it will in general be

less complex to tune. The most reduction in complexity of the structure,

execution and tuning will, of course, be achieved with a rank one equalizer.



198 Chapter 5. Reduced Complexity Space-Time Equalization

��
��

-
M�1

0 N(q�1) - y
0(t)

........................b(q�1) -........................

?
........................

-........................
y(t)

d(t)

n(t)

P

Figure 5.6: Channel with spatially colored noise and noise whitening �lter.

5.3.1 Reduced Rank Channel Approximation

Channel Model

We will in this section use a channel model as in (2.112) with an FIR model

for the channel of the desired signal and an AR model for the noise plus

interference. The received vector of signal samples is thus modeled as

y(t) = b(q�1)d(t) + n(t) (5.21)

where y(t) is the received sequence of vector signal samples, d(t) is the

sequence of transmitted symbols and b(q�1) is the vector FIR channel for

the desired signal de�ned in (2.113). The noise plus interference n(t) is

modeled with an AR model as

n(t) =N
�1(q�1)M 0v(t) (5.22)

where N (q�1) is a full stably invertible 3 polynomial matrix as in (2.115),

M0 a non-singular constant numerator matrix as in (2.114) and v(t) is the

spatially and temporarily white innovations sequence. The reason for using

this model is, as we have seen in Chapters 3 and 4, that the equalizers

designed using this channel model will only contain FIR �lters. This will be

useful for the complexity reductions treated in this section.

By \noise whitening" the output of the channel y(t) with the noise whitening

�lter,M�1
0 N (q�1), as in Figure 5.6, we obtain the \noise whitened" channel

3The determinant ofN(q�1) has all zeros strictly inside the unit circle, and the leading

coe�cient is non-singular.
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model

y
0(t) = M

�1
0 N (q�1)

�
b(q�1)d(t) +n(t)

�
= b

0(q�1)d(t) + v(t)

=
�
b
0

0 + : : : + b0nb0q
�nb0

�
d(t) + �(t) (5.23)

(5.24)

where

y
0(t) =M

�1
0 N (q�1)y(t) (5.25)

and where the noise whitened channel polynomial

b
0(q�1) =M

�1
0 N (q�1)b(q�1) (5.26)

has the new order nb0 = nb + nn where nn is the order of the denomi-

nator polynomial matrix N (q�1) of the noise model. Also note that the

innovations sequence �(t) is temporally and spatially white.

The noise whitened channel, b0(q�1), will better than b(q�1) describe the

properties of the channel of importance for the equalization as it has taken

the spectrum of the noise plus interference into consideration. We will there-

fore work with this channel later in this section.

Reduced Rank Model

Let us �rst express the channel b(q�1) in (5.21) with a channel matrix

B =
�
b0 b1 : : : bnb

�
(5.27)

of dimensions M � (nb + 1). By using a singular value decomposition, we

can decompose the channel matrix as

B = UV
H (5.28)

where the columns of U are the left singular vectors uk ofB and the columns

of V are the right singular vectors vk of B with singular values included,

i.e.

U =
�
u1 u2 : : : uKb

�
(5.29)
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V =
�
v1 v2 : : : vKb

�
(5.30)

where Kb = min(M;nb+ 1).

Equivalently, in polynomial notation, the channel can be expressed as the

sum of Kb components, each representing a rank one channel:

b(q�1) =

KbX
k=1

ukvk(q
�1): (5.31)

The orthogonal spatial signatures are generated by the vectors uk and the

temporal structure of the components of the channel is produced by the

polynomials

vk(q
�1) = v�k0 + v�k1q

�1 + : : :+ v�knbq
�nb (5.32)

where the polynomial coe�cients, vki, are the components of the right sin-

gular vectors

vk =
�
vk0 vk1 : : : vknb

�T
: (5.33)

This decomposition is depicted in Figure 5.7. The branches are ordered in

descending order with respect to the power of the branches.

Note that since U contains left singular vectors,

U
H
U = I (5.34)

i.e. the Kb beamspreaders are orthonormal.

Depending on the singular values, we may be able to approximate the model

in (5.31) well with a sum with fewer terms, keeping only the terms with

signi�cant singular values. Let us assume that the channel b(q�1) can be

approximated with the sum

b(q�1) �
KbrX
k=1

ukvk(q
�1) (5.35)

where Kbr is a relatively small number.

In matrix form we can then approximate the channel matrix B as

B � U rV
H

r (5.36)
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where

U r =
�
u1 u2 : : : uKbr

�
(5.37)

V r =
�
v1 v2 : : : vKbr

�
(5.38)

where Kbr is the rank of the channel. The rank of a wireless channel is de-

termined by the propagation environment. If, for example, the delay spread

in the channel is a negligible, then the channel can be well described by

one component (Kbr = 1) irrespective of the angular spread in the chan-

nel. Likewise, if the angular spread is small, then the channel will be well

described by a rank one model. As the propagation environment becomes

more complicated with coupled delay and angular spread more principal

components are required and the rank of the channel will increase. It is

however not unlikely that many practical communication channels can be

well approximated with a low rank model. Maybe many channel can be

approximated with only a rank one or a rank two model.

The simplest channel model would be the rank one model

b1(q
�1) � u1v1(q

�1) (5.39)
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Figure 5.8: Rank one approximation of channel.

as depicted in Figure 5.8.

Let us now instead express the noise whitened channel b0(q�1) in (5.24) with

a noise whitened channel matrix

B
0 =
�
b
0

0 b
0

1 : : : b
0

nb0

�
(5.40)

of dimensionsM � (nb+nn+1). As for the channel matrix B in (5.27), we

can by using a singular value decomposition, decompose the noise whitened

channel matrix as

B
0 = U

0
V
0H (5.41)

where the columns of U 0 are the left singular vectors u0
k
of B0 and the

columns of V 0 are the right singular vectors v0
k
of B0 with singular values

included, i.e.

U
0 =
h
u
0

1 u
0

2 : : : u
0

K
b0

i
(5.42)

V
0 =

h
v
0

1 v
0

2 : : : v
0

K
b0

i
(5.43)

where Kb0 = min(M;nb+ nn+ 1).

Equivalently, in polynomial notation, the noise whitened channel can be

expressed as

b
0(q�1) =

K
b0X

k=1

u
0

kv
0

k(q
�1) (5.44)
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where the orthogonal spatial signatures are generated by the vectors u0
k
and

the temporal structure of the components in the channel is produced by the

polynomials

v0k(q
�1) = v0

�

k0 + v0
�

k1q
�1 + : : : + v0

�

knb0q
�nb

0

(5.45)

where the polynomial coe�cients, v0
ki
, are the components of the right sin-

gular vectors

v
0

k =
�
v0
k0 v0

k1 : : : v0
knb0

�T
: (5.46)

This decomposition is depicted in Figure 5.9. The branches are ordered in

descending order with respect to the power of the branches.

Note again that since U 0 contains left singular vectors,

U
0H
U
0 = I (5.47)

i.e. the noise whitened beamspreaders are orthonormal.

Let us now consider the noise whitened channel in (5.44). We may wonder

if the noise whitened channel can be modeled by a sum like (5.44) but with
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fewer terms. Let us assume that the channel b(q�1) can be approximated

with a low rank model as in (5.35). The noise whitened channel can then

be approximated as

b
0(q�1) =M

�1
0 N (q�1)b(q�1) �M

�1
0 N (q�1)

KbrX
k=1

ukvk(q
�1): (5.48)

By writing the denominator matrix N (q�1) as

N (q�1) =N 0 + : : :+Nnnq
�nn (5.49)

we can express b0(q�1) in (5.48) as

b
0(q�1) �

KbrX
k=1

M
�1
0 (N 0 + : : :+Nnnq

�nn)ukvk(q
�1)

=

KbrX
k=1

(M�1
0 N0uk + : : : +M�1

0 Nnnukq
�nn)vk(q

�1):

This new channel contains Kbr(1 +nn) potential spatial signatures, namely

M
�1
0 N0uk to M�1

0 Nnnuk for k = 1; : : : ;Kbr. Therefore the rank of this

channel cannot be higher than Kbr(1+nn). We thus see that if the channel

b(q�1) can be reasonably well approximated with a rank Kbr model, then

the noise whitened channel b0(q�1) can be reasonably well approximated

with a model with rank Kb0r � Kbr(1 + nn)

b
0(q�1) =

K
b0rX

k=1

u
0

k
v0
k
(q�1): (5.50)

Note that if the noise whitening �lter is purely spatial, i.e. N (q�1) = I ,

then noise whitened channel b(q�1) has the same rank as the original channel

b(q�1). Note also that even though we may need Kbr or Kb0r terms in the

models in (5.35) and (5.50) we can still make model with fewer terms. These

model will be less accurate but will be simpler. What model we use will

depend on what is more important, accuracy or simplicity.

The noise whitened channel matrix can thus here be approximated with

B
0 � U

0

rV
0H

r (5.51)
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Figure 5.10: Rank one approximation of noise whitened channel.

where

U
0

r =
h
u
0

1 u
0

2 : : : u
0

K
b0r

i
(5.52)

V
0

r =
h
v
0

1 v
0

2 : : : v
0

K
b0r

i
(5.53)

and where Kb0r is the rank of the noise whitened channel model.

As for the original channel, the simplest model for the nose whitened channel

would be the rank one model

b
0

1(q
�1) � u

0

1v
0

1(q
�1) (5.54)

as depicted in Figure 5.10.

Remark: Instead of using a singular value decomposition, the rank reduced

model can be computed with the power method4 [14]. We show here the

method preferred for the case when the number of antennas, M , is larger

than the number of taps in the noise whitened channel, nb+nn+1 (or nb+1

if applied to the original channel). First form the matrix

A = B
0H
B
0: (5.55)

Then �nd the eigenvector corresponding to the largest eigenvalue of this

matrix using the power method. In our simulations we found that only a

few iterations were required. If the resulting eigenvector is normalized to

have its norm equal to the square root of the eigenvalue we will obtain the

4The power method is an iterative method for �nding the dominating eigenvalue and

eigenvector of a matrix.
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Figure 5.11: Spatio-temporal MLSE with whitening �lter and spatio-

temporal matched �lter.

vector v01, i.e. the right singular vector of B0 corresponding to the largest

singular value, with the singular value included. The corresponding left

singular vector can be computed as

u
0

1 = B
0
v
0

1: (5.56)

To obtain additional left and right singular vectors the process can, if nec-

essary, be repeated after the component u01v
0H

1 has been subtracted from

B
0H
B
0.

5.3.2 Reduced Rank MLSE

Spatio-Temporal MLSE

As shown in Figure 5.11, the multi-channel MLSE can be separated into a

noise whitening �lter and a matched �lter, the latter matched to the noise

whitened channel, followed by a scalar Viterbi. For details see Chapter 4.

The matched �lter, operating on the noise whitened signal, can then as in

(4.14) be expressed as

z(t) = b
H(q)NH(q)M�H

0 y
0(t) (5.57)

where

b
H(q)NH(q)M�H

0 (5.58)

is the spatio-temporal matched �lter.

The signal, z(t), is then processed in a scalar Viterbi algorithm in order to

�nd the symbol sequence that maximizes the in (4.19) recursively de�ned
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matched �lter metric

�MF (t) = �MF (t� 1) + Re

�
dH(t)(2z(t) � 
0d(t)

�2
n
X
m=1


md(t�m))

�
(5.59)

where coe�cients 
k are the coe�cients of the double sided metric polyno-

mial 
(q; q�1) de�ned in (4.16) and (4.17)


(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N (q�1)b(q�1): (5.60)

Rank Reduction

By using the noise whitened channel, orthogonally decomposed into its prin-

cipal components we also obtain an orthogonal decomposition of the spatio-

temporal matched �lter bH(q)NH(q)M�H

0 in (5.58). The decomposition of

the noise whitened channel and the corresponding spatio-temporal matched

�lter can be seen in Figure 5.12.

The full rank spatio-temporal matched �lter bH(q)NH(q)M�H

0 will here

generate a signal, z(t), with maximal peak to noise ratio (PNR) de�ned as

PNR
4

= 
20=�
2 (5.61)



208 Chapter 5. Reduced Complexity Space-Time Equalization

where 
0 is the real middle coe�cient in the overall channel, 
(q; q
�1), after

the noise whitening �lter the matched �lter, and �2 is the noise variance

after the same �lters.

This is the optimal �lter for the multi-channel MLSE for the considered

channel. If we want to design a spatio-temporal matched �lter of a pre-

speci�ed reduced rank, Kr < Kb0 , we can choose it to, given the rank con-

straint, maximize the PNR prior to the Viterbi algorithm. Since the noise

before the �lter is white due to the whitening �lter, the �lter of rank Kr

that gives the maximal peak to noise ratio is simply the �lter consisting of

the �rst Kr branches in the decomposition of the spatio-temporal matched

�lter. This �lter will then only process the Kr components of the received

signal y(t) which contribute the largest signal power. Other components will

be �ltered out since their channel beamspreading �lters, fu0
i

HgK
Kr+1

, are or-

thogonal to the receiver beamformers used, fu0
i

HgKr

1 , due to the orthogonal

decomposition.

We also have to include the noise whitening �lter in the reduced rank mul-

tidimensional matched �lter. The PNR optimal rank Kr MLSE will here

thus consist of the multidimensional matched �ltering

z(t) =

KrX
k=1

v0
H

k (q)u
0H

k M
�1
0 N (q�1)y(t): (5.62)

followed by a Viterbi algorithm using the metric de�ned by (5.59) and the

metric polynomial


Kr
(q; q�1)

4

=

KrX
k=1

v0
H

k (q)v
0

k(q
�1): (5.63)

The metric polynomial, 
(q; q�1)Kr
, represents the channel from the trans-

mitted symbols to the received signal samples. Only the Kr components

used in (5.63) will enter into 
(q; q�1)Kr
. The other components are can-

celed by the beamformers. We call the resulting MLSE, depicted in Fig-

ure 5.13, a reduced rank MLSE. Note that if the noise whitening �lter is

purely spatial, i.e. N (q�1) = I , then the spatial noise whitening,M�1
0 can

be incorporated in the spatial beamformers, i.e. we obtain the new noise

whitening beamformers ~u0
H

k = u
0H

k M
�1
0 .

The simplest reduced rank MLSE will be the rank one MLSE consisting of

a noise whitening �lter and beamformer followed by a scalar MLSE as in
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Figure 5.14: Rank one MLSE.

shown in Figure 5.14. Note again that if the noise whitening �lter is purely

spatial, i.e. N (q�1) = I, then the reduced rank MLSE of rank one consists

simply of a noise whitening beamformer, ~u01 = u
0H

1 M
�1
0 , followed by the

temporal �lter v0
H

1 (q).

If the noise whitened channel has the same rank as the reduced rank MLSE

we want to design, the reduced rank MLSE will of course be optimal since

the exact matched �lter then is realized.

It is important to note that the reduced rank MLSEs computed by (5.62)

and (5.63) will in general not be optimal in a BER sense. One can construct

examples showing this. Since the reduced rank MLSE's maximizes the same

PNR criterion as for the full rank MLSE, they may however be a good

candidates. It is a more di�cult problem to �nd the truly optimal reduced

rank MLSE.
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It is also important to keep in mind that a requirement for the analysis here

is that the true channel really can be modeled with the channel model in

(5.21), and the noise model in (5.22). When this is not the case, the analysis

here will only hold approximatively.

Remark 1: It may seem strange that the reduced rank MLSE is not optimal

even though it optimizes the same PNR criterion as the full rank MLSE.

However, one has to keep in mind that the �lter for the reduced rank MLSE

optimizes the PNR criterion under a constraint, namely the constraint of

reduced rank. It is therefore not necessary that this �lter should also provide

optimal BER when used in a Viterbi algorithm.

Remark 2: When we reduce the rank of the channel and use the reduced

rank channel to design the MLSE we may wonder if we need to treat the

unmodeled signal as noise and rewhiten with the new noise spectrum. How-

ever, this is not necessary since those components of the channel will be

spatially orthogonal to the channel components used and will therefore not

pass through any of the beamformers in the reduced rank MLSE.

5.3.3 Reduced Rank DFE

Spatio-Temporal DFE

Reduced rank equalization can also be applied in a DFE. Either one can ap-

ply the rank reduction to an MMF-DFE or one can apply the rank reduction

to a DFE for a FIR channel with AR noise as in Section 3.2.2 as well as to the

MMF-DFE in Section 3.2.4. Rank reduction applied to the MMF-DFE will

be the direct counterpart to rank reduction applied to the spatio-temporal

MLSE described above. The only di�erence is that the scalar Viterbi is

replaced by a scalar DFE. The MMF-DFE has an advantage over the DFE

in Section 3.2.2 when the number of antennas or input signals are large.

However, in the case of a reduced rank DFE, the number of input signals to

the DFE, i.e. the reduced number of beamformers, will typically be small.

In this case it is probably preferable to not use the MMF-DFE. The advan-

tage in the tuning complexity will be small, if any, and it will have a higher

execution complexity and a larger processing delay.
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Figure 5.15: Structure of the general MISO FIR decision feedback equalizer,

with M antenna elements.

The application of the reduced rank concept to the DFE of Section 3.2.2

requires some further explanation. Consider the representation of a space-

time DFE as presented in Figure 5.15. The received signal samples y(t) are

�ltered through the feedforward �lter, s(q�1) = s0+ s1+ : : :+ snsq
�ns and

previously decided symbols are �ltered through the feedback �lter Q(q�1) =

Q0+Q1q
�1+: : :+Qnqq

�nq to form an estimate d̂(t�`) of the symbol d(t�`).

When tuning the equalizer we assume that all previously decided symbols

fed into the feedback �lter are correct. Thus we seek the equalizer which

minimizes the criterion

J = E[jd̂(t� `)� d(t� `)j2]: (5.64)

We further assume that the noise has been whitened by the noise whitening

�lter M�1
0 N(q�1). The optimal feedforward �lter coe�cients can then, as

in Section 3.2.2, be computed as

s(q�1) = s0(q
�1)M�1

0 N (q�1): (5.65)

The coe�cients of the polynomial row vector s0(q
�1) of degree ` can be

computed by solving the system of equations

(B0B0
H
+ I)sH0 =

264 b
0

`

...

b
0

0

375 (5.66)
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where

B
0 =

264 b
0

0 � � � b
0

`

. . .
...

0 b
0

0

375 (5.67)

s0 =
�
s0;0 : : : s0;`

�
(5.68)

and where b0i are the vector taps of the noise whitened channel

b
0(z�1) = b

0

0 + b
0

1z
�1 + : : :+ b0

nb0
z�nb

0

=M
�1
0 N (q�1)b(q�1) (5.69)

with b0i = 0 if i > nb0 = nb+nn. The vectors s0;k are the vector taps in the

polynomial

s0(q
�1) = s0;0 + s0;1q

�1 + : : :+ s0;`q
�`: (5.70)

It is of course required that (B0B0
H
+ I) is invertible.

The coe�cients of the feedback polynomial,Q(q�1) of order nq = nb+nn�1,
can as in (3.37) be computed as264 QH

0
...

QH
nq

375 =

264 b
0H

`+1 � � � b
0H

1
...

...

b
0H

`+nb+nn � � � b
0H

nb+nn

375
264 s

H
0;0
...

s
H

0;`

375 (5.71)

where b0i = 0 if i > nb0 = nb+ nn.

Rank Reduction

Using the reduced rank decomposition of the noise whitened channel matrix

in (5.51), a reduced rank DFE can be computed. We de�ne the matrices

U
0

r

4

=

264 U
0

r 0
. . .

0 U
0

r

375
V
0

r

4

=

264 v
0

row 1 0
...

. . .

v
0

row m � � � v
0

row 1

375
V
0

r;`

4

=
h
v
0

row `
� � � v

0

row 1

i
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where

v
0

row k
4

=

(
row k in V 0

r if k � nb+ 1

0 if k > nb+ 1
:

The matrices U 0

r and V
0

r are the left and right singular vectors of the reduced

rank channel model in (5.51). We can now write

B = U 0rV
0

r

H
(5.73)

and 264 b
0

`

...

b
0

0

375 = U 0rV
0

r;`

H
(5.74)

Inserting (5.73) and (5.74) into (5.66) gives us

(U 0rV
0H

r V
0

rU
0H

r + I)sH0 = U 0rV
0H

r;`: (5.75)

We now change to the basis consisting of the columns of [U 0r U
0

r;?], where

U
0

r;? is a matrix whose columns span the orthogonal complement to the

span of U 0r. Noting that U
0H

r U
0

r = I and U 0
H

r;?U
0

r = 0, equation (5.75) can

be reduced to the two equations

(V 0
H

r V
0

r + I)U
0H

r s
H

0 = V 0
H

r;` (5.76a)

U
0H

r;?s
H

0 = 0 : (5.76b)

To solve (5.76a) we can introduce the product

g
H =

�
g0 : : : g`

�H
= U 0

H

r s
H

0

where gi are 1�Kr column vectors, is an unknown vector to be estimated

and rewrite equation (5.76a) as

(V 0
H

r V
0

r + I)g
H = V 0

H

r;`:

After having solved for g in this equation we can note that, since U 0
H

r U
0

r = I

and U 0
H

r;?U
0

r = 0, the parameter vector

s0 = gU
0H

r (5.77)
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Figure 5.16: Orthogonal decomposition of whitened channel and the feed-

forward �lter in the DFE.

solves both (5.76a) and (5.76b).

We can now reformulate (5.77) to obtain an an alternative expression for

s0(q
�1). Due to the special structure of U 0r, we obtain

s0(q
�1) =

KrX
k=1

gk(q
�1)u0

H

k

where we have de�ned

gk(q
�1)

4

= g0k + g1kq
�1 + � � �+ g`kq

�`

with gkj being element j in gk.

We have thus computed the feedforward �lter, of course here excluding

the noise whitening �lter M�1
0 N (q�1), which is assumed to proceed the

equalizer. The noise whitened channel and the DFE can now be orthogonally

decomposed as shown in Figure 5.16.

Let us now consider the construction of a \near optimal" DFE with a lower

rank than the rank of the noise whitened channel. This is not a trivial

task but we can motivate an ad hoc solution. If we want to construct a

DFE of rank Kr < Kb0 we can keep the Kr �rst branches of the DFE. The

beamformers in these branches will collect the signals from the Kr strongest

principal components of the channel b0(q�1). Since the innovations noise,

�(t), is white we will in this way have collected the largest amount of signal

energy compared to the collected amount of noise energy.
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Given the assumed channel, it is likely to believe that the reduced rank

DFE constructed in this way is a reasonable reduced rank choice. One can

however easily �nd examples showing that it is not optimal (in an MMSE

sense prior to the decision device), for a given reduced rank.

It is important to note that, unlike in the corresponding case for the MLSE,

the temporal �lters here have to be retuned, working with the corresponding

reduced rank channel. In the MLSE case we could simply remove branches

from the full rank solution. As for the multi-dimensional matched �lter

in (5.62), the noise whitening �lter has to be included in the �nal feedfor-

ward �lter of the DFE. The feedforward �lter with the noise whitening �lter

included will be given by

s(q�1) =

KrX
k=1

gk(q
�1)u0

H

k M
�1
0 N(q�1) (5.78)

where

gk(q
�1) = g0k + g1kq

�1 + : : :+ g`kq
�`: (5.79)

Given the coe�cients of the feedforward �lter, the coe�cients of the feedback

polynomial, Q(q�1) of order nq = nb+ nn� 1, can be computed as264 QH
0
...

QH
nq

375 =

264 b
H

`+1 � � � b
H

`+1�ns
...

...

b
H

`+nb+nn � � � b
0H

`+nb+nn�ns

375
264 s

H
0
...

s
H
ns

375 (5.80)

where bi = 0 if i > nb or if i < 0.

The resulting reduced rank DFE is depicted in Figure 5.17. As for the

reduced rank MLSE, we can note that if the noise whitening �lter is purely

spatial, i.e. N (q�1) = I , then the spatial noise whitening, M�1
0 can be

incorporated in the spatial beamformers, i.e. we get the new noise whitening

beamformers ~u0
H

k = u
0H

k M
�1
0 .

Also as for the MLSE, the simplest reduced rank DFE will be the rank one

DFE consisting of a noise whitening �lter and beamformer followed by a

scalar DFE as is shown in Figure 5.18. Note again that if the noise whitening

�lter is purely spatial, i.e. N (q�1) = I then the reduced rank DFE of

rank one consists simply of a noise whitening beamformer, ~u01 = u
0H

1 M
�1
0 ,

followed by a scalar DFE.
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Again, it is important to keep in mind that a requirement for the analysis

here is that the true channel really can be modeled with the channel model

in (5.21), and the noise model in (5.22). When this is not the case, the

analysis here will only hold approximatively.

Remark: As for the MLSE, it is not necessary to rewhiten the channel by

treating the unused components of the received signal as noise since these

components are orthogonal to the used beamformers and thus will not a�ect

the equalization.

5.3.4 Complexity

The execution of the reduced rank �lters will typically require less com-

putations than the execution of the corresponding full rank �lters. The

complexity of the execution of the full rank (FR) and the reduced rank

(RR) multidimensional matched �lter (MMF) for the space-time MLSE and

the MMF-DFE is approximately

CFR, MMF exe � NdM(nb+ 2nn+ 1) cu (5.81)

CRR, MMF exe � NdKr(M + nb+ nn+ 1) +NdMnn cu: (5.82)

Here Nd is the number of symbols equalized, M is the number of antenna

elements and nb+1 is the channel length and nn is the order of the AR model

for the noise plus interference. The complexity unit, cu, is the complexity of

one complex multiplication and one complex addition.

The corresponding complexities for the execution of the feedforward �lter

in the FIR-DFE is

CFR, S exe � NdM(`+ nn+ 1) cu (5.83)

CRR, S exe � NdKr(M + `+ 1) +NdMnn cu: (5.84)

where ` is the decision delay in the feedforward �lter in the FIR-DFE.

The largest savings in complexity is achieved when the noise model is purely

spatial and we use a rank one equalizer instead of the full rank equalizer.

When going from the full rank equalizer to the rank one equalizer, the prod-

uct between the number of antennas and the channel length or feedforward

�lter length is replaced with their sum. The saving will thus be the largest
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when the number of antennas, M , and the length of the feedforward �lter,

here `+ 1, both are large.

5.3.5 Experiments on Measured Data

To investigate the performance of reduced rank equalization, we applied full

and reduced rank versions of the MLSE and the DFE to a set of uplink

measurements.

The Measurements

The measurements were performed on an antenna array testbed constructed

by Ericsson Radio Systems AB and Ericsson Microwave Systems AB [5]. The

testbed implemented the air interface of a DCS-1800 base station. The array

had eight antenna outputs. The measurements were performed in downtown

D�usseldorf, Germany.

In the measurements one mobile and one interferer were used. Each of them

were mounted in a car, which was driving at approximately 30 km/h. The

transmit powers of the mobile and the interferer were adjusted so that the

scenario would be interference limited, i.e. the performance of the algorithms

would be limited by the interference and not by noise.

Algorithms

We used only the spatial spectrum of the noise plus interference in this ex-

periment. Both the spatio-temporal MLSE and the spatio-temporal DFE

require the estimation of the multipath channel and the spatial covariance

matrix of the noise. We estimated the channel using the o�-line least squares

method. The spatial noise covariance matrix was computed from the resid-

uals of the channel identi�cation. The estimated channel had �ve taps. The

equalizers utilized the signals from the eight antennas present in the testbed

and the DFE had a decision delay of four symbols intervals.
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Results

We applied rank 1 and rank 2 versions of the MLSE and the DFE to the

experimental data from the array antenna, and compared their performances

to those of their full rank (rank 5) counterparts. The results are shown in

Figure 5.19.
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Figure 5.19: Performance of the full and the reduced rank equalizers.

For the MLSE we see that the rank one version performs almost as well as

the full rank MLSE. The rank two version has a BER very close to the full

rank MLSE.

For the DFE the rank one version has some loss in performance. The rank

two version conforms better with the performance of the full rank DFE,

showing only a small loss in performance.

By applying the rank reduction, we conclude that the complexity of the

structure and the complexity in the execution of spatio-temporal equalizers

can be reduced. The experimental study presented here demonstrates that

for practical wireless communication channels, reduced rank equalizers may

provide adequate performance.
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5.3.6 Conclusions

By utilizing the spatio-temporal structure of a channel, rank reduced models

of the channel can be constructed. By using such rank reduced models, the

complexity of the structure and the complexity of the execution of spatio-

temporal equalizers can be reduced. The experimental study presented here

demonstrates that for practical wireless communication channels, reduced

rank equalizers may provide adequate performance.

5.4 Reduced Rank Tuning

In Section 5.3 we derived a reduced rank MLSE from a reduced rank model

of the channel. We can however utilize the concept of reduced rank mod-

eling in a di�erent way. We will here utilize a rank one model of a noise

whitened channel and derive an alternate way of tuning a rank one MLSE.

The solution will turn out to be very similar to the hybrid MLSE proposed

earlier in [53]. However, with the formalism developed here, we believe that

the resulting method can be more easily related to other space-time MLSE

solutions.

Let us return the the joint estimation of an FIR channel and an AR noise

model in Section 2.9.

To start with we consider the channel model in (2.112)

y(t) = b(q�1)d(t) +N�1(q�1)M 0�(t) (5.85)

where the entities are de�ned as in Section 2.9 except that we have replaced

�(t) with �(t) to denote the innovations sequence in the noise model term.

Multiplying both sides by N (q�1) gives as in (2.118)

N (q�1)y(t) =N (q�1)b(q�1)d(t) +M0�(t): (5.86)

Let us now assume that we want to design an MLSE with an MMF �lter

w(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N (q�1) (5.87)
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and a metric polynomial


(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N (q�1)b(q�1) (5.88)

as in (4.20) and (4.21).

We can now note that as an alternative to estimating N (q�1), bN (q�1) =

b(q�1)N (q�1) andM 0, as in Section 2.9 of Chapter 2, we can instead choose

to estimate the only the products of N (q�1) and M�1
0 with b(q�1) in the

MMF, w(q; q�1), in (5.87) and the noise whitened channel

b
0(q�1) =N (q�1)M�1

0 b(q�1) (5.89)

from which the metric polynomial, 
(q; q�1), can be formed as


(q; q�1) = b
0H(q)b0(q�1): (5.90)

Let us �rst multiply (5.86) with M�1
0 from the left giving

M
�1
0 N (q�1)y(t) =M

�1
0 N (q�1)b(q�1)d(t) + �(t): (5.91)

Using (5.89), we can rewrite this equation as

M
�1
0 N (q�1)y(t) = b

0(q�1)d(t) + �(t): (5.92)

We will now model the noise whitened channel, b0(q�1), with a rank one

channel model as in (5.54), i.e. we assume that

b
0(q�1) = u

0v0(q�1): (5.93)

where we have dropped the subscript \1" on the vector u0 and the polynomial

v0(q�1). Substituting this into (5.92) gives

M
�1
0 N(q�1)y(t) = u

0v0(q�1)d(t) + �(t): (5.94)

Let us now multiply both sides of (5.94) with the vector u0H giving

c(q�1)y(t) = v0(q�1)d(t) + �u(t) (5.95)

where we have de�ned

c(q�1) = u
0H
M

�1
0 N (q�1) (5.96)
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and

�u(t) = u
0H
�(t): (5.97)

We can now, using (5.93) and (5.96) in (5.87), note that the multidimen-

sional matched �lter for the channel in question can be formed as

w(q; q�1) = b
H(q)NH(q)M�H

0 M
�1
0 N (q�1)

= b
0H(q)M�1

0 N (q�1)

= v0
H
(q)u0

H
M

�1
0 N 0(q

�1)

= v0
H
(q)c(q�1): (5.98)

Similarly we can note that we can form the metric polynomial 
(q; q�1) in

(5.90) as


(q; q�1) = b
0H(q)b0(q�1)

= v0
H
u
0H
u
0v0(q�1)

= v0
H
v0(q�1) (5.99)

where we in the last equality have utilized the fact that the norm of the

vector u0 is equal to one. We can thus see that we can choose to estimate

the scalar polynomial v0(q�1) of order nb0 = nb+nn in (5.93) and the 1�M
polynomial row vector c(q�1) of order nn in (5.96).

Remark: The number of coe�cients to be estimated with is thus nb +

nn + 1 +M(nn + 1). With the e�ective training sequence length, Neff =

Ntseq � nb� nn, we can require that

Ntseq �M(nn+ 1) + 2 � (nb+ nn) + 1: (5.100)

which is exactly the same requirement as in (2.127) for the minimum training

sequence length for the joint FIR channel and AR noise model estimation

in Section 2.9 of Chapter 2.

There are di�erent ways that we can estimate the polynomials c(q�1) and

v0(q�1). To investigate how we can attack this problem we can consider how

the multidimensional matched �lter and the corresponding metric polyno-

mial are tuned in Section 4.4.1 of Chapter 4. See for example Figure 4.2. It

is stated there that we should minimize the variance

Je = E[e(t)eH (t)] (5.101)
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of the error signal

e(t) = w(q; q�1)y(t)� 
(q; q�1)d(t) (5.102)

under the constraint that 
0 = 1. If we consider (5.99) we can note that

would mean that the norm5, k v0(q�1) k= 
0, of the polynomial, v0(q�1),

would have to be equal to one. This does of course not agree with our

reduced rank model (5.93) where only u0 is of unit norm. However, the

magnitude of the polynomial v0(q�1) is not of importance since it can al-

ways be compensated for with a multiplicative constant in c(q�1). We can

therefore with out loss of generality use the constraint

k v0(q�1) k= 1: (5.103)

If we substitute (5.98) and (5.99) into (5.102) we get

e(t) = v0
H
(q)c(q�1)y(t)� v0

H
(q)v0(q�1)d(t)

= v0
H
(q)
�
c(q�1)y(t)� v0(q�1)d(t)

�
= v0

H
(q)�u(t): (5.104)

Substituting (5.104) into (5.101) gives us

Je = E[e(t)eH (t)] = E[v0(q�1)�u(t)(v
0(q�1)�u(t))

H ]: (5.105)

However, since �(t) is temporally white, and the norm of v0(q�1) is con-

strained to 1, we have

Je = E[�u(t)�
H

u
(t)]: (5.106)

We can now rewrite (5.95) in matrix notation as

c�y(t) = v
0
d(t) + �u(t) (5.107)

where

c =
�
c0 : : : cnn

�
(5.108)

5Here the norm k v0(q�1) k is the square root of the sum of the squared magnitudes of

the coe�cients of the polynomial v0(q�1).
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�y(t) =

264 y(t)
...

y(t� nn)

375 (5.109)

v
0 =

�
v00 : : : v0

nb0

�
(5.110)

d(t) =

264 d(t)
...

d(t� nb� nn)

375 (5.111)

where ci, i = 0; : : : ; nn, are the row vector coe�cients of the row vector

polynomial c(q�1) of order nn and v0
i
, i = 0; : : : ; nb0, are the scalar coe�-

cients of the polynomial v0(q�1) of order nb0 = nb+ nn.

The measure Je in (5.106) can thus be expressed as

Je = E[�u(t)�
H

u (t)]

= E[(c�y(t)� v0d(t))(c�y(t)� v0d(t))H ]
= cR�y�yc

H � cR�ydv
0H � v0Rd�yc

H + v0Rddv
0H (5.112)

where

R�y�y = E[�y(t)�yH(t)] (5.113)

R�yd = R
H

d�y = E[�y(t)dH(t)] (5.114)

and

Rdd = E[d(t)dH(t)]: (5.115)

We now want to minimize (5.112) with respect to c(q�1) and v0(q�1), under

the constraint

v
0
v
0H = 1: (5.116)

To do this we �rst minimize (5.112), assuming v0 to be �xed. Di�erentiating

Je in (5.112) with respect to c and requiring the derivatives to be zero gives,

as shown in Appendix 5.A.1, the solution for c

c = v
0
Rd�yR

�1
�y�y: (5.117)
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Substituting (5.117) into (5.112) now gives

J� = v
0(Rdd �Rd�yR

�1
�y�yR�yd)v

0H (5.118)

which should be minimized under the constraint v0v0
H
= 1. The solution to

this is simply given by the eigenvector of the matrix

� = Rdd �Rd�yR
�1
�y�yR�yd (5.119)

with minimum eigenvalue, and norm equal to one.

By replacing the covariance matrices in (5.117) and (5.119) with the corre-

sponding sample matrix estimates

R̂�y�y
4

=
1

tmax � tmin + 1

tmaxX
tmin

�y(t)�yH(t) (5.120)

R̂d�y = R̂
H

�yd

4

=
1

tmax � tmin + 1

tmaxX
tmin

d(t)�yH(t) (5.121)

R̂dd

4

=
1

tmax � tmin + 1

tmaxX
tmin

d(t)dH(t) (5.122)

we get the estimates v̂0 as the eigenvector to the matrix

�̂ = R̂dd � R̂d�yR̂
�1

�y�yR̂�yd (5.123)

with norm one, and we get the estimate ĉ as

ĉ = v̂0R̂�dyR̂
�1

�y�y : (5.124)

The polynomials c(q�1) and v0(q�1) and the multidimensional matched �l-

ter, w(q; q�1) as well as the metric polynomial 
(q; q�1) can now be com-

puted via (5.108), (5.110), (5.98) and (5.99).

Although not completely identical, a closer study shows this space-time

MLSE to be very similar to the space-time MLSE proposed earlier in [53].

There, a two-stage hybrid space-time MLSE is proposed, consisting of a

space-time linear MISO �lter followed by a scalar MLSE. The space-time
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MISO �lter is tuned to maximize the SINR at its output. This is solved as an

optimization problem where the MISO �lter coe�cients, corresponding to

c(q�1), and the resulting channel from the transmitted symbol sequence to

the output of the MISO �lter, corresponding to v(q�1), is optimized jointly

to maximize the SINR in the signal. It is argued that it is favorable to

separate the suppression of co-channel interferers and the handling of the

intersymbol interference into two separate parts, a space-time MISO �lter

and a scalar MLSE. In light of the derivation shown here, this can however

be viewed in a di�erent perspective. We can here see that the linear MISO

�lter, c(q�1), can be viewed as an integral part of a rank one space-time

MLSE, as described here.

Too see that the two methods are almost equivalent we can translate the

tuning proposed in [53] into the notation used here, giving the v̂ as the

eigenvector with maximum eigenvalue of the matrix

�̂2 = (R̂dd � R̂d�yR̂
�1

�y�yR̂�yd)
�1
R̂dd (5.125)

and the vector ĉ, as for the method derived here, given by (5.124). The

matrix, R̂dd, to the right in (5.125) will however, for a training sequence

that is chosen to be approximately white, be close to the identity matrix.

We can thus with good approximation drop this matrix multiplication from

�̂2 resulting in the new matrix

�̂02 = (R̂dd � R̂d�yR̂
�1

�y�yR̂�yd)
�1: (5.126)

We can now see that

� = (�̂02)
�1: (5.127)

Finding the eigenvector with minimum eigenvalue to the matrix �̂ is there-

fore the same as looking for the eigenvector with the maximum eigenvalue

to the matrix �̂02. Thus, apart from the multiplication with R̂dd in (5.125),

the two methods are identical. However, as mentioned above, if the train-

ing sequence is approximately white, this matrix will be close to the unit

matrix and it turns out we can leave it out without any signi�cant loss in

performance.

We can also consider the criteria that the reduced rank tuning and the

hybrid MLSE attempts to optimize. The reduced rank tuning strives to

maximize the peak to noise ratio in the matched �ltered signal z(t) =
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w(q; q�1)y(t). This is achieved by minimizing the variance in the signal

e(t) = w(q; q�1)y(t) � 
(q; q�1)d(t), under the constraint that the middle

coe�cient in 
(q; q�1), 
0, should be equal to one [121]. The hybrid MLSE

on the other hand strives to maximize the signal to interference and noise

ratio at the output of the MISO �lter. Maximizing the signal to interference

and noise ratio after the MISO �lter, c(q�1), is however equivalent to mini-

mizing the variance of the signal �u(t) = c(q�1)y(t) � v(q�1)d(t) in (5.97),

under the constraint that the norm k v(q�1) k should be equal to one. This

is exactly the criteria we arrive to for the reduced rank tuning, see (5.106),

and therefore the two methods optimize the same criteria. The di�erence in

the methods comes from di�erent realizations of the optimization.

When the parameter nn is zero, then rank one space-time MLSE's discussed

here performs only spatial suppression of the interference. When we have

nn > 1, the rank one MLSE's performs spatio-temporal suppression of the

interference which can be advantageous if we have many strong uncorrelated

interfering signals and a relatively small number of antennas. In this case

the spatio-temporal interference suppression can be powerful, allowing very

low signal to interference ratios.

If we have too many antennas and use nn > 0 we may, however, have trouble

with the tuning of the increasing number of parameters. As the number of

parameter increases it also seems that these methods require a relatively

high SNR.

5.4.1 Simulations

We will here present a simulation example to study the performance of the

reduced rank tuning and the hybrid MLSE. We also compare their perfor-

mance to a full rank MLSE and a two reduced rank MLSE's computed as

in Section 5.3.

We will here view the antenna elements as if they were spaced far enough

apart in a Rayleigh fading environment, such that the channels at the in-

dividual antenna elements fade independently6. The antenna array had six

6This is a worst case scenario for reduced rank methods. If the signals arrive from

more distinct directions the channel is more likely to be well modeled by a reduced rank

model.
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antenna elements. The signal-to-noise ratio was 5 dB.

We have one desired user and one co-channel interferer. The channel for the

desired user as well as the channel for the co-channel interferer have two in-

dependently Rayleigh fading taps, spaced a symbol interval apart, with equal

mean power. As modulation we use the pulse shaping of GMSK modulation

with a bandwidth-time product of 0.3 as described in Appendix 2.A.1 of

Chapter 2. The channel for the desired signal will here in general be a rank

two channel, due two the two taps in the channel, with in general di�erent

spatial signatures.

We compare compare four di�erent algorithms, a full rank MLSE designed

from least squares estimates of the FIR channel and utilizing only the spatial

spectrum of the noise plus interference, a rank one and a rank two version of

the same equalizer, as described in Section 5.3.2, both using only the spatial

spectrum of the noise plus interference, the reduced rank tuning described

in this section with nn = 0 and a hybrid MLSE [53] with a 1-tap MISO

�lter. All MLSE's used the same model order of the channel, nb = 4, for

the desired signal.

In Figure 5.20 the BER for the di�erent algorithms is plotted as a function

of the signal to interference ratio. We can make the following observations

for this simulation. The reduced rank tuned MLSE and the hybrid MLSE

have as expected a very similar performance. However, the rank one MLSE

tuned which is tuned using a rank one model of the channel has a slightly

better performance than both these algorithms. The full rank MLSE has

a better performance than the rank one MLSE. This is not so surprising

since the channel is a rank two channel. The rank two MLSE has the best

performance. This may seem surprising, however, it only shows that the

rank two MLSE bene�ts from the fact that the channel truly is a rank two

channel.
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Figure 5.20: 6 antennas and SNR=5 dB. BER as a function of SINR. All al-

gorithms do only spatial interference suppression. Full rank solution (solid),

Rank one solution (dashed), Rank two solution (dash-dotted), Reduced rank

tuning with nn = 0 (x) and the hybrid MLSE with a 1-tap MISO �lter (o).

5.A Appendix

5.A.1 Solving for c given v

Let us consider v to be constant and solve for the vector c that minimizes

Je

Je = Je(c) = cR�y�yc
H � cR�ydv

0H � v0Rd�yc
H

v + v0Rddv
0H : (5.128)

We are thus looking for a vector c0 such that

Je(c0 + �c)� Je(c0) (5.129)

is equal to zero for all \in�nitely small" vectors �c. Neglecting terms that

are quadratic in �c gives us

Je(c0 + �c)� Je(c0) = �c(R�y�yc
H

v �R�ydv
0H) + (cR�y�y � v0Rd�y)�c

H

v :

Requiring this expression to be zero for all vector �c gives us the solution

for c0 as

c0 = v
0
Rd�yR

�1
�y�y (5.130)

assuming R�1
�y�y to be invertible.
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Chapter 6

Bootstrap Equalization and

Interferer Suppression

When we consider co-channel interferer suppression in a TDMA framework

we should consider how the interference can be suppressed over the entire

frame. For example, it may be the case that an interferer is not present

during the training sequence of a frame but appears at some other place in

the frame. An equalizer or adaptive antenna tuned using only the training

sequence data will then potentially have a seriously degraded performance

when subject to this interference. We would therefore like to broaden our

view and look at the data outside the training sequence and also the data

in adjacent frames, to obtain a more complete picture of the interference

environment.

In the sections below we present two di�erent methods of exploiting the data

outside the training sequence. First, in Section 6.1, we consider bootstrap

equalization, where we utilize the data in the frame outside the training se-

quence by re-tuning our equalizer using previously estimated symbols [109].

Then, in Section 6.2.1, we utilize the noise plus interference spectrum of ad-

jacent frames in order to suppress co-channel interferers appearing outside

the training sequence of the frame currently being processed [56]. Finally,

in Section 6.2.2, the two methods are combined and seen to complement

each other. First the initial symbols are estimated utilizing the noise plus

interferer spectrum of the adjacent frames. Then bootstrapping is applied

231
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by re-tuning the equalzier using the initially estimated symbols. With an

improved initial symbol estimate, by utilizing noise plus interference spec-

trum estimates from the adjacent frames, the risk that the initial BER will

be too high for the bootstrap equalization algorithm to handle is reduced.

Other presentations discussing the problem of suppressing co-channel inter-

ferers outside the training sequence can for example be found in [44] and

in [42].

6.1 Bootstrap Co-Channel Interference Cancella-

tion

As seen in Section 2.7 bootstrapping, i.e. re-estimating the channel using

estimated symbols, can greatly improve the quality of the channel estimates,

including the estimate of the noise plus interference spectrum. This will, of

course, also improve the detection of the symbols in an equalizer using the

channel and noise plus interference spectrum estimates. If we are primarily

interested in the equalization it may not be necessary to estimate the chan-

nel. An alternative is to use a direct approach when tuning the equalizer.

Re-tuning of such an equalizer utilizing detected symbols will also improve

the performance.

A general formulation for bootstrap equalization of a TDMA frame is:

1: Tune the equalizer, direct or indirectly, using the initial training

data sequence.

2: Equalize and estimate the data symbols of the frame.

3: Retune the equalizer, direct or indirectly, using all data including

the estimated data symbols from step 2.

4: Repeat steps 2 and 3 if desired to improve the performance.

Step 1 and 3 in this algorithm may or may not include estimation of the

channel depending on if we are using an indirect or a direct method to tune

the equalizer.
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As an example we will here consider tuning of the space-time equalizer via

an indirect scheme. We then require good estimates of the channel for the

desired signal and the spectrum of the noise plus interference. Based on a

short training sequence, the quality of the estimates may give far from op-

timal performance of the equalizer. By increasing the length of the training

sequence, a higher accuracy of the channel and noise plus interference spec-

trum estimates will be obtained, which in turn can lead to a considerable

improvement of the space-time equalizer. See for example [61].

The reason why the performance of space-time equalizers improve greatly

with the length of the training sequence is that the extra training symbols

allow for better positioning of deep nulls in the directions of the interfer-

ence. However, the length of training sequences cannot be modi�ed in ex-

isting standards. Their lengths will also be limited in future systems since

training/pilot symbols should only consume a minor part of the available

bandwidth. Bootstrap equalization can, by using estimated symbols, attain

a performance improvement similar what would be obtained by adding extra

training data.

Equalizers which use only a few antennas (say one or two) are less powerful

in suppressing co-channel interferers and do not bene�t in the same way

from improvements in the estimates of the channel and the noise plus inter-

ferer spectrum as equalizers with more antennas do. As we will see in an

example in Section 6.1.1, bootstrap equalization will not produce the same

improvement for such a case.

6.1.1 Experiments on Measured Data

To investigate the interferer suppression capability of the bootstrap algo-

rithm, the method was applied to a set of real world uplink measurements.

As equalizers we used a space-time MLSE and a space-time DFE, both with

spatial-only co-channel interference suppression.
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The Measurements

The measurements were collected from an antenna array testbed constructed

by Ericsson Radio Systems AB and Ericsson Microwave Systems AB [5]. The

testbed used the air interface of a DCS-1800 base station.

The array had eight antenna elements. A conventional single sector antenna

with two polarization diversity branches was also included in the measure-

ment setup.

In the measurements one mobile and one interferer were used. Each of them

was mounted on a car, which was driving at approximately 30 km/h. The

transmit powers of the mobile and the interferer were adjusted so that the

scenario would be interference limited, i.e. the performance of the algorithms

would be limited by the interference and not by the noise.

A space-time MLSE and a space-time DFE, both indirectly tuned and utiliz-

ing the spatial spectrum of the interference were applied to the data recorded

at the array antenna and at the single sector antenna.

Channel Estimation and Equalizer Parameters

Both the spatio-temporal MLSE and the spatio-temporal DFE require the

estimation of the multipath channel and the spatial covariance of the noise.

We estimated the channel using an FIR model with �ve taps and the least

squares method described in Section 2.2. The spatial noise covariance matrix

was computed from the residuals of the channel identi�cation as described

in Section 2.8.

The MLSE, as well as the DFE, were both based on the 5-tap channel

estimate. For the DFE we chose a smoothing lag of 4 and a feedback �lter

with 4 taps. The DFE was of the type described in Section 3.3.3 using only

the spatial spectrum of the noise plus interference. Similarly the MLSE only

utilized the spatial spectrum of the noise plus interference. It was tuned as

described in Section 4.4.2.
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Results

The array antenna: We applied the proposed bootstrap versions of the

MLSE and the DFE to the experimental data from the array antenna. From

Figure 6.1, we see that it is indeed worthwhile to use the detected symbols

to improve the estimates of the channel and the noise spectrum, especially

for high C/I: At 5 dB C/I, the second pass is 14 dB better than the �rst

pass for the MLSE and 17 dB for the DFE.
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Figure 6.1: Results from the array antenna. Stage 1 refers to the equalizer

designed using the training sequence only, whereas stage 2 refers to the

equalizer designed using the training sequence and all the detected symbols

from stage 1.

The sector antenna: We also applied bootstrapped versions of the MLSE

and the DFE to the experimental data from the sector antenna with the two

polarization diversity branches. These results are depicted in Figure 6.2.
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Figure 6.2: Results from the sector antenna. Stage 1 refers to the equalizers

designed using the training sequence, whereas stage 2 refers to the equalizers

designed using all detected symbols from stage 1 as well as the training

sequence.
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If we compare Figure 6.2 with Figure 6.1, we see that the gain obtained by

using the detected symbols of pass 1 for the sector antenna is only marginal.

The reason for this is that the antenna array introduces extra degrees of

freedom, which enables powerful space-time processing. However, to make

use of these extra degrees of freedom, accurate estimation of the channel

and the noise spectrum is essential. For the two-branch diversity antenna,

the performance of the space-time processing is not limited by the accuracy

of the channel and the noise spectrum estimates, and bootstrapping does

not reduce the BER signi�cantly.

Additional stages: Figures 6.1 and 6.2 the results of a single stage of

bootstrapping is presented. By iterating the algorithm it is possible to im-

prove the performance even further. Figure 6.3 illustrates how the perfor-

mance can be improved by using several stages in the antenna array case. In

this example it however appears that the major part of the improvement is

achieved in stage 2, i.e. after the �rst retuning stage. Additional stages do,

however, give some further improvement. The curves marked with \1" are

lower ideal boundaries for the bootstrapping algorithms. These curves show

the performance when the equalizers where tuned with a full frame of cor-

rect symbols. We can call it the genie-aided performance. Even if we iterate

the algorithm through many stages, we will likely not get the performance

of the "1"-curve. For example, some channels will likely have so bad initial

equalization results that their BER never will converge, thus the average

BER will never reach all the way down to the genie-aided performance.

6.1.2 Discussion

The bootstrap algorithm can typically be applied in conjunction with any

type of equalizer and any type of tuning. When using bootstrapping, we can

therefore make use of the equalizer and tuning scheme that is most suitable

to our speci�c application. Bootstrapping is particularly useful when the

training sequence is too short too obtain a good tuning of the equalizer.

In the example showed in this section, we have seen that when applied to

an equalizer utilizing an antenna array, bootstrapping can produce signi�-

cant improvements in the suppression of the interferers. The retuning here

improves the estimate of the channel for the desired signal and, maybe even
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Figure 6.3: Results from the array antenna. DFE (solid) and MLSE

(dashed). The numbers by the curves represent the number of iterations

performed. The curves marked with \1" are the result when tuning the

equalizers using a full frame of correct symbols.
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more importantly, the spectrum of the noise and interference. This allows

the equalizer to more e�ciently cancel the interference.

6.2 Suppression of Asynchronous Interferers

In a cellular TDMA system it may be the case that co-channel interferers

that are not present during the training sequence appear during the data

sequence. An equalizer tuned using the training data may then have very

poor suppression of such an asynchronous interferer. In fact, the interferers

may even be ampli�ed.

We will here present two schemes for suppression of asynchronous interferers

in a TDMA scheme.

6.2.1 Conservative Initial Detection

If a co-channel interferer is present in a TDMA system during the data

sequence but not during the training sequence of a frame, then it will be

present during the training sequence of an adjacent frame. Information

about the interferer plus noise spectrum of adjacent frames can then be

utilized in order to suppress such co-channel interferers. The e�ect on the

performance of such a scheme is here illustrated with an example GSM

scenario.

In the GSM system data is transmitted in frames, with the training se-

quence in the middle. In an asynchronous system, co-channel interferers

from surrounding cells may thus appear in time as shown in Figure 6.4. For

example, co-channel interferer 2 is here present during the data sequence

of the \current" frame but not during the training sequence of the cur-

rent frame. A space-time equalizer tuned to suppress only the co-channel

interferers present during the training sequence may thus have a severely

degraded performance for the data part of the \current" frame.

The idea is to use spatial spectral information from the adjacent time frame

to suppress such interferers. Below we will apply this approach to a simple

space-time equalizer consisting of an indirectly tuned beamformer, followed
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Data T Data Data T Data

Adjacent frame Current frame

Co-channel interferer 1

Co-channel interferer 2

Co-channel interferer 3

Co-channel interferer 4

Figure 6.4: Adjacent time frames and example of locations of co-channel

interferers in GSM. The training sequence is denoted by \T" and the data

sequences are denoted by \Data". Note that every co-channel interferer has

to be present during at least one training sequence.

by a scalar MLSE.

Algorithm Outline

We here propose an indirect method for the tuning of the weights in the

antenna array. First the FIR channels, bi(q
�1), i=1,2,...,M , from the trans-

mitted sequence to each of the antenna elements, see Figure 6.5, are esti-

mated. This estimation is performed based on the data received during the

training sequence.

The estimated channels can be used for estimating the spatial spectrum of

the desired signal while the residuals from the identi�cation procedure can

be used to estimate the spatial spectrum of the interference plus noise.

If a co-channel interferer is not present during the current training sequence

it will be present during an adjacent training sequence, see Figure 6.4. When

tuning the beamformer we can then do two di�erent computations, one for

the part of the data before the training sequence and one for the part of
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Figure 6.5: Discrete-time baseband channels, bi(q
�1), from transmitted sym-

bols, d(t), to received signals yi(t).

the data after the training sequence. For each tuning, we can use both the

spatial spectrum of the interference computed during the current training

sequence and the spatial spectrum of the interference computed during the

adjacent training sequence. In this way, all co-channel interferers present

during each data sequence part, will be accounted for.

Antenna arrays are for practical reasons mainly of interest at the base sta-

tions. This scheme is therefore mainly considered for the base station re-

ceiver. In this case, the spatial spectrum of the interference plus noise during

the adjacent training sequence will either be known from a previous chan-

nel estimation procedure (receiving from a di�erent mobile however) or will

anyway have to be computed for the subsequent training sequence.

If the scheme is applied at the mobile, then the mobile will have to listen

in on the adjacent time frames and estimate their channels and noise plus

interference spectrum.

Algorithm Details

The algorithm utilized is similar to the standard sample matrix inversion

method presented in Section 5.2.1. However, instead of estimating the co-

variance matrix of the received signal by means of the sample covariance
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matrix, we will estimate it based on estimated channels and the sample co-

variance matrices of the residuals for the current and the adjacent training

sequences.

First, the channels

bi(q
�1) = bi;0 + bi;1q

�1 + : : :+ bi;nb + q�nb , i = 1; 2; :::;M (6.1)

to each of the antenna elements, are estimated with the standard least

squares method:

b̂i = (�H�)�1�H
D , i = 1; 2; ::;M (6.2)

where

b̂i =

26664
b̂i;0
b̂i;1
...

b̂i;nb

37775 (6.3)
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and

� =

26664
yi(nb) yi(nb� 1) : : : yi(0)

yi(nb+ 1) yi(nb) : : : yi(1)
...

...
...

...

y(N � 1) yi(N � 2) : : : yi(N � nb)

37775

D =

26664
d0
d1
...

d(N � 1)

37775 : (6.4)

The parameter N is the number of symbols in the training sequence. Here

N = 26 is used.

The antenna array with the beamformer coe�cients are depicted in Fig-

ure 6.6. In a second step, the beamformer weights, wi, i=1,2,...,M, are

tuned to optimally receive the reference signal

r(t) = p(q�1)d(t) (6.5)

which is an estimate of the transmitted signal. The �lter p(q�1) models

the GMSK modulation used in GSM, see Section 2.A.1. Here, p(q�1) =

0:44i + 1:00q�1 � 0:44iq�2 was used. This �lter is a simple model of the

channel between transmitted symbols and received samples. The model

includes the GMSK modulation and a model of a receiver �lter consisting

of a 4th order Butterworth lowpass baseband �lter as in Section 2.A.41.

The beamformer weights are now selected as an approximation of the Wiener

solution

w = (R̂
�1

yy
R̂yr)

� (6.6)

1The correct model of the received samples after the GMSK modulation will vary de-

pending on the chosen sampling instant. The chosen model represents only one particular

sampling instant. Multipath propagation is not included in the model represented by

p(q�1), i.e. the propagation channel is modeled as a perfect channel with unit impulse

response.
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where (�)� denotes elementwise complex conjugation, and

w =

264 w1

...

wM

375 : (6.7)

The matrices R̂yy and R̂yr are estimates of the covariance matrices

Ryy = E[y(t)yH(t)] (6.8)

Ryr = E[y(t)rH(t)] (6.9)

where

y(t) =

264 y1(t)
...

yM (t)

375 (6.10)

is the input to the array and r(t) is the reference signal.

The covariance matrix estimate R̂yr is formed, based on the estimated chan-

nels, as

R̂yr = B̂p
H (6.11)

where

B̂ =

26664
b̂1;0 b̂1;1 : : : b̂1;nb
b̂2;0 b̂2;1 : : : b̂2;nb
...

...
...

...

b̂M;0 b̂M;1 : : : b̂M;nb

37775 (6.12)

and

p = [0:44i 1:00 � 0:44i 0 : : : 0]: (6.13)

An estimate of the covariance matrix estimate R̂yy is obtained as a sum of

the desired signal part, R̂ss, and an interference plus noise part, R̂nn,

R̂yy = R̂ss + R̂nn: (6.14)
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The part R̂ss is formed from the estimated channels as

R̂ss = B̂B̂
H

(6.15)

while R̂nn is formed from the residuals as

R̂nn =
3

4N

NX
tc=1

n̂c(tc)n̂
H

c (tc) +

1

4N

NX
ta=1

n̂a(ta)n̂
H

a (ta): (6.16)

Above, n̂c(t) represents the residuals for the current training sequence whereas

n̂a(t) constitutes the residuals for the adjacent training sequence. The time

indices tc and ta belong to the current and the adjacent training sequences

respectively, while the parameter N is the number of symbols of the training

sequence.

Note that only one of the sums in equation (6.16) has to be computed for

each new training sequence. If an interferer is present during the current

training sequence, it is more likely to be present during the current data

sequence part in question, than if it was present during the adjacent train-

ing sequence. The contributions from the di�erent training sequences are

therefore weighted di�erently. Other weighting factors than the factors 3/4

and 1/4 suggested above can certainly be considered.

For comparison, we use a version of the algorithm that does not take the

interference plus noise spectrum of the adjacent time frame into account.

Here, R̂nn is simply formed as

R̂nn =
1

N

NX
tc=1

n̂c(tc)n̂
H

c (tc): (6.17)

Simulations

An example scenario is chosen to illustrate the behavior of the algorithms.

The desired signal and co-channel interferers present during the training

sequence is shown in Figure 6.8. The received desired signal and co-channel
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Figure 6.8: Desired signal (solid) and co-channel interferers present during

the training sequence (dashed). The angle of incident of the adjacent frame

interferer (dotted) is varied between -180 and 180 degrees.
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interferers are modeled by �ltering binary symbols, �1, through the three

tap FIR �lterM(q�1) = 0:44i+1:00q�1�044iq�2. This �lter is, as described
in the previous section, a model of the channel between the transmitted

symbols and the received samples. The propagation channel is assumed to

be equal to unity. In reality, the true channel would vary depending on

the sampling instant and possible intersymbol interference due to multipath

propagation. This problem can, for example, be handled with the method

described in [56].

The desired signal impinges onto the antenna from 0 degrees and two equal

strength co-channel interferers impinge from -30 and -60 degrees respectively.

A third co-channel interferer is used in the simulations. This co-channel

interferer is thought of as not being present during the training sequence of

the desired signal in question. It will either be present or not be present

during the desired signals data sequence. It is however always present during

the training sequence of the adjacent frame. This co-channel interferer will

be referred to as the adjacent frame interferer.

In the simulations, the SNR was 3 dB whereas the SIR was 0 dB, not

counting the adjacent frame interferer. This co-channel interferer had a

power twice of that of the individual interferers that were present during the

current training sequence. All simulations were conducted without fading.

Two performance measures were evaluated for the algorithms. One was the

BER for an MLSE after the beamformer, working with a three tap FIR

channel. Another performance measure was the signal to interference and

noise ratio (SINR) after the beamformer.

The algorithms were tested for two di�erent cases:

� In the �rst case, the adjacent frame interferer was present during the

whole current half of the data sequence part, thus causing interference.

� In the second case, the adjacent frame interferer was not present during

the current data sequence part.

This second case has to be considered since it is undesired that the perfor-

mance of the algorithm using the adjacent interferer plus noise spectrum

should degraded too much in this case.
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Figure 6.9: Adjacent frame interferer present during the data sequence.

BER for the MLSE and SINR after the beamformer. The algorithm using

adjacent frame interference plus noise (solid) and the algorithm not using

adjacent frame interference plus noise (dashed).
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Figure 6.10: Adjacent frame interferer not present during the data sequence.

BER after the MLSE and SINR after the beamformer for the algorithm using

adjacent frame interference plus noise (solid), and the algorithm not using

the adjacent frame interference plus noise (dashed)
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Figure 6.11: Antenna gain when the adjacent interferer is not accounted for.

Solid line - Desired signal, Dashed lines - Co-channel interferers and Dotted

line - Adjacent frame interferer.

In Figures 6.9 and 6.10 and we can see the resulting BER and SINR per-

formance as a function of the angle of incidence for the adjacent frame

interferer. In Figure 6.9 we can see that the SINR as well as the BER is

considerably improved as a result of utilizing the adjacent frame interferer

plus noise spectrum when the adjacent frame interferer is present during the

current data sequence being equalized. On the other hand, when the adja-

cent frame interferer is not present during the data sequence being equalized,

we can in Figure 6.10 se that the method utilizing the adjacent frame noise

plus interferer spectrum has a performance degradation when the adjacent

frame interferer impinges from almost the same direction (0 degrees) as the

desired signal. This is because this algorithm unnecessarily decreases the

gain in the 0 degree direction.

Examples of the antenna gain patterns for the two algorithms can be seen

in Figures 6.11 and 6.12, respectively. Figure 6.11 shows a bad case for the

algorithm that does not take the adjacent interferer into account. The adja-

cent frame interferer is ampli�ed by the antenna array, causing a low SINR.

In Figure 6.12 the e�ect of taking the adjacent noise plus interferer spectrum

into account is clearly demonstrated. The adjacent frame interferer (dotted

line) is now nulled out, resulting in a much better SINR.
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Figure 6.12: Antenna gain when the adjacent interferer is accounted for.

Solid line - Desired signal, Dashed lines - Co-channel interferers and Dotted

line - Adjacent frame interferer.

Results and Conclusion

As can be seen in Figure 6.9, for the scenario considered, using the interfer-

ence plus noise spectrum from the adjacent time frame is advantageous if

the interferer actually is present during the data sequence part of interest.

If, however, the interferer is not present during the data sequence part of

interest, as in Figure 6.10, then the proposed algorithm su�ers from a per-

formance degradation when the accounted for, but not present, interferer

and the desired signal arrives from almost the same angle. The reason for

this is that the gain in the direction of the desired signal will then be some-

what reduced. However, if the angle between the impinging directions of

the interferer and the desired signal is large, then we see from Figure 6.10

that one does not loose any performance by taking the absent interferer into

consideration. We thus have to ask the question if the potential gains are

larger than the potential losses. This is not a trivial question to answer as it

depends on many factors. However, when using an antenna array with many

antenna elements the sector where there is a potential loss will become more

narrow since the angular resolution of the array increases. The regions of

potential gain, on the other hand, will not necessarily decrease in the same

way. It therefore seems likely that, as long as we have enough antennas,

the potential gains will outweigh the potential losses. We will return to this

question in the next section.

The general idea presented here can be applied to other beamforming schemes
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as long as they separate between signal and interference plus noise spectra.

For instance, one can use beamforming with the maximum SNR method.

See for example [10].

The method of using adjacent frames has been outlined in a simple form,

which constitutes a starting point for improvements and generalizations.

For example, when working on the �rst half of the data in the frame, the

adjacent noise spectrum could be formed using the whole last part of the

data sequence of the adjacent frame, not only the training sequence. The

previously estimated data symbols would then be used instead of the training

sequence. A further generalization in this direction is to combine the method

with bootstrap equalization. This is discussed in the following section.

6.2.2 Bootstrap Equalization Utilizing Adjacent Frames

Bootstrapping can to some extent handle the problem of compensating for

an interferer that is present during the data part of the frame but not present

during the training sequence. As long as the resulting BER from the initial

equalization is not too high, bootstrapping can save the situation. However,

if the initial BER is too high, then the estimated symbols will contain too

many errors. The bootstrapping algorithm will then not be able to improve

the BER.

The method of utilizing the noise plus interferer spectrum from the adja-

cent frames can however be utilized as a conservative initial estimate of the

symbols. (It is conservative as it may be too cautious since it compensates

for interferers in two frames.) Bootstrapping can now be applied using this

initial estimate. Since the initial estimate to some extent compensates for

all possible asynchronous interferers, the initial BER will hopefully not be

too large for the bootstrap equalization.

Also, by using bootstrapping, some of the drawbacks of utilizing the noise

plus interferer spectrum from adjacent frames as exempli�ed in the previous

section can be reduced.
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Simulation Scenario

The simulation scenario is the same here as in Section 6.2, apart from a

few alterations. Instead of using a beamformer followed by a scalar MLSE,

we here use an IS-DFE as presented in Section 3.3.3. The channel was

estimated by identifying the coe�cients of an FIR model with a least squares

method as described in Section 2.2. Three taps was used in the FIR channel

model. For the DFE, four taps were used in the feedforward �lter and

two taps were used in the feedback �lter. The signal strengths for the

particular simulations presented here was SNR=6 dB and SIR=-6 dB. The

asynchronous co-channel interferer had the same strength as one of the two

equal strength synchronous interferers. The asynchronous interferer is not

included in the signal to interference ratio of -6 dB. No fading was considered.

Otherwise the scenario was the same as in the simulation of Section 6.2.

Results and Conclusions

First, consider the case where the interferer that is present during the train-

ing sequence of the adjacent frame, is also present during the data sequence

of the current frame that is to be equalized. In Figure 6.13 we can see

that both the method of utilizing the adjacent frame noise and interferer

spectrum and the method of combining it with bootstrapping give good

performance. The use of using the noise and interferer spectrum estimated

from the training sequence of the current frame, does not give good perfor-

mance. Bootstrapping alone does not help in this case either since the BER

from the initial equalization is too high.

Now consider the case where the interferer that is present during the training

sequence of the adjacent frame is not present during the data sequence of

the current frame that is to be equalized. In this case we can expect that the

methods utilizing the noise plus interferer spectrum of the adjacent frame

will have some degradation in the performance. In Figure 6.14 we can see

that this indeed is the case. As in Section 6.2.1, this degradation mainly

occurs when the direction of the desired signal and the direction of the

interferer in the training sequence of the adjacent frame are close. When

bootstrapping is added, this degradation is reduced. Of course, the method

which does not utilize the noise plus interferer spectrum of the adjacent
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Figure 6.13: BER when the interferer of the adjacent training sequence is

also present during the current frame data sequence. Tuning using the train-

ing sequence (solid), using training sequence and bootstrapping (dashed),

using adjacent frame interference estimate (dash-dotted) and using adjacent

frame interference estimate and bootstrapping (dotted).

frames has the best performance. The reason why bootstrapping cannot

completely remove the drawback of utilizing the adjacent frame noise plus

interference spectrum is that for some realizations, the initial BER will be

too high for the bootstrapping algorithm to handle. However, all in all, in

this scenario it appears to be a good idea to use the combination of the

adjacent frame noise plus interferer spectrum and bootstrapping.

To summarize, in general, the use of the noise plus interference spectrum

of adjacent frames will be a tradeo� between suppression of asynchronous

interferers and possibly reduced performance due to the use of an erroneous

noise plus interference spectrum. By combining the method with bootstrap

equalization the negative e�ect of using a somewhat erroneous noise plus

interferer spectrum for the initial equalizer can be reduced. In general the

negative e�ects will not be completely removed. However, the simulations

performed in this study suggest that the bene�ts outweigh the drawbacks.
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Figure 6.14: BER when the interferer of in the adjacent training sequence is

not present during the current frame data sequence. Tuning using the train-

ing sequence (solid), using training sequence and bootstrapping (dashed),

using adjacent frame interference estimate (dash-dotted) and using adjacent

frame interference estimate and bootstrapping (dotted).
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Chapter 7

Robust Equalization

When perfect estimates of the channel and the noise spectrum are available,

we can compute the optimal decision feedback equalizer as in Chapter 3. In

reality, however, this is a very unlikely situation and the channel and the

noise spectrum will di�er from their estimates and they may also vary with

time. An equalizer designed based on an estimated channel and noise spec-

trum may then perform acceptable in some cases but may be inadequate in

others. As we will show here, it is possible to use information about the un-

certainty and/or the variability of the estimates of the channel and the noise

plus interferer spectrum to design an equalizer that is robust against such

uncertainty and/or variability. Such an equalizer will be able to accommo-

date the anticipated channel and noise spectrum estimation errors or time

variations, at the expense of some performance degradation in the nominal

case. This is attained by minimizing an MSE criterion that is averaged with

respect to the uncertainties in the channel and noise models [91, 37, 38].

In Section 7.1 we discuss this averaged design of a scalar decision feedback

equalizer that is robust with respect to uncertainties in the channel, in the

noise spectrum and also in the quality of decided symbols entering the feed-

back �lter. The robust DFE presented here is general in the sense that it

can handle all linear channels and linear noise models [92]. We obtain design

equations for a large class of SISO IIR equalizers. DFE's based on nominal

models, linear equalizers based on nominal models and robusti�ed DFE's

and linear equalizers are special cases within this class.

257
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One of the features of the DFE in Section 7.1 is the possibility to improve

the robustness with respect to decision errors. One of the drawbacks with

a decision feedback equalizer is that it can su�er from error propagation.

An incorrectly estimated symbol that is fed back through the feedback �l-

ter can in turn cause the next symbol to be incorrectly estimated, and so

on. The DFE can therefore potentially su�er from long error propagation

events. Long error propagation events may not be desirable since they may

make decoding more di�cult and may cause, for instance, a channel tracking

algorithm to loose track. In Section 7.2 we investigate the use of robustness

against decision errors by studying an example. In this example we can see

that by designing the DFE to be robust against decision errors, the lengths

of error propagation events can be made much shorter. This is however

achieved at the expense of having more numerous error propagation events.

It seems that while this method can reduce the average and maximum du-

ration of the error propagation events, it cannot in general substantially

reduce the overall BER.

In wireless communication, the channel is often subject to fading, i.e. time

variations in the channel. Let us assume a TDMA system transmitting

information in frames. If the channel changes signi�cantly over the duration

of a TDMA frame, then we are required to track the channel variations and

frequently re-design the equalizer, or adapt the equalizer coe�cients directly.

If, however, the channel variations are smaller but still signi�cant, then it

may be possible to design an equalizer that will work well for the range

of channels dynamics that may occur during the remaining TDMA frame.

In Section 7.3 we use the formalism introduced in Section 7.1 to design an

equalizer that is robust with respect to fading in the wireless channel. We

investigate the performance of such an equalizer by applying it to a GSM-like

TDMA frame at 1800 Mhz. We tune the robust DFE based on an estimate

of the channel formed from the training data in the middle of the TDMA

frame, and an estimate of the expected channel variations during the frame.

For comparison we use a nominal equalizer tuned using only the channel

estimate. The robust DFE provides the largest average performance gain

over the nominal DFE when the channel variations are large and the noise

level is low. In these cases the nominal DFE will be very sensitive and have

a degradation in the performance which will make the robust DFE more

attractive [62].

In Chapters 3 and 4 we saw that it can be possible to tune space time

equalizers indirectly using channel estimates, even though there are strong
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co-channel interferers present. In the presence of strong co-channel interfer-

ers the error in the channel estimate can be very large. However, when these

channel estimates are used to design an equalizer, they will often still pro-

duce a useful design. In Section 7.4 we investigate why this can be the case.

We show that an indirectly tuned space-time DFE, utilizing the estimated

spatial spectrum of the noise plus interference is automatically somewhat

robusti�ed against co-channel interferers. This is at least true if the number

of uncorrelated interfering signals are few enough, such that it is possible to

cancel them with spatial-only interferer suppression.

The mechanism for this is that the interferers will cause large spatial model

errors in the channel estimates in the directions of the interferers. However,

the e�ect of these interferers on the estimated noise covariance matrix will

automatically reduce the spatial gain of the DFE forward �lter in precisely

these directions. The multi-dimensional �lter in a space-time MLSE has

many similarities to the feedforward �lter of the space-time DFE and is

robusti�ed in a similar way. This surprising and advantageous e�ect of

using estimated noise covariance matrices in indirectly designed DFE's and

MLSE's will be denoted self-robusti�cation.

7.1 Robust Scalar Decision Feedback Equalization

Here design equations are presented for robust and realizable single-input

single-output decision feedback equalizers, for IIR channels with colored

noise. The design equations are derived based on a probabilistic measure of

the model uncertainty: The MMSE, averaged over a whole class of possible

true systems, is minimized. A second type of robusti�cation, which a�ects

and reduces the error propagation due to the feedback, is also introduced.

The resulting design equations de�ne a large class of equalizers, with DFE's

and linear equalizers based on nominal models being special cases.

Design equations which take these two problems into account are presented

in Section 7.1.2 below.
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7.1.1 Model and Filter Structure

The robusti�cation is based on a stochastic representation of the mismod-

eling and of decision errors. This seems natural, since estimation of model

errors caused by Gaussian noise during the estimation process are of a prob-

abilistic nature.

Let the received, discrete{time, complex baseband signal y(t) be described

by a set of models

y(t) =

�
b0(q

�1)

a0(q�1)
+
�b(q�1)

a1(q�1)

�
d(t� k) + n(t): (7.1)

The transmitted symbols fd(t)g are assumed to be zero mean and white,

with variance Ejd(t)j2 = �2
d
.

Similarly, the noise n(t) is described by a set of possible noise models

n(t) =

�
m0(q

�1)

n0(q�1)
+
�m(q�1)

n1(q�1)

�
v(t): (7.2)

where v(t) is zero mean and white, with (uncertain) standard deviation �v.

In (7.1) and (7.2)

b0(q
�1)=a0(q

�1) m0(q
�1)=n0(q

�1) (7.3)

represent time{invariant stable and known nominal models, while

�b(q�1)=a1(q
�1) �m(q�1)=n1(q

�1) (7.4)

are members of a model error class where the coe�cients of the numerator

polynomials, e.g.

�b(q�1) = �b0 +�b1q
�1 + : : :+�b�bq

��b (7.5)

are regarded as (time-independent) stochastic variables, with zero means and

known covariance matrices. The stable denominators a1(q
�1) and n1(q

�1)

are assumed to be �xed. Introduce �E(�) as an average over the coe�cients

of the stochastic polynomial coe�cients. We assume that the coe�cients of

�b(q�1) and �m(q�1) have mean value zero, i.e.

�E[�b(q�1)] = 0 �E[�m(q�1] = 0: (7.6)
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In [91, 38, 37], these representations are shown to be suitable for describing

a wide range of model errors. They are related to the stochastic embedding

approach introduced in [33, 32].

Consider as an example, an uncertain FIR channel with white noise. It can

be expressed as

y(t) =
�
b0(q

�1) + �b(q�1)
�
d(t� k) + n(t):

If ŷ(t) = b0(q
�1)d(t � k) has been estimated by the least squares method

and the order of b0(q
�1) is adequate, then the LS covariance matrix can

serve directly as an estimate of the covariances1 �E(�bi�b
H
j
). We have here

introduced a set of possible true channels represented by stochastic variables.

The actual (single) time channel will be located at an unknown position. The

variance E[�bi�bj ] can be seen as a rough estimate of the time-dependant

distance between the nominal estimated model b0 and this unknown true

system.

Let us introduce a scalar IIR decision feedback equalizer

d̂(t� `jt) = s(q�1)

r(q�1)
y(t)� Q(q�1)

p(q�1)
~d(t� `� 1) (7.7)

where ` is the smoothing lag (decision delay) and ~d(t) is decided data. The

denominator polynomials r(q�1) and p(q�1) are required to be monic (lead-

ing unit coe�cient) and stable.

In addition to robustifying the design with respect to model uncertainty,

we will here also introduce a technique that, to some extent, can alleviate

the problem of error propagation in the DFE feedback loop. Errors in the

decided data ~d(t) will be treated as uncertainty, and represented by an

additive white noise �(t), which is assumed to be uncorrelated2 with both

d(t� j) and v(t� j) for all j. The decided data can thus be expressed as

~d(t) = d(t) + �(t) (7.8)

1If the estimates are biased due to an incorrect error model structure, or if the channel

di�ers from that obtained based on the training sequence due to time variations, then

the covariance �E(�bi�bHj ) has to be adjusted so that these phenomena are taken into

consideration.
2This is, of course, a simpli�cation. In reality, the error �(t) is non{stationary since

decision errors tend to occur in bursts. There may also exist correlations to past noise

samples, in particular to those that caused the error. These nonlinear and time{varying

e�ects are neglected here, to obtain a tuning parameter which is simple to use.
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where �(t) has zero mean and variance

Ej�(t)j2 = ��2d: (7.9)

The problem of optimizing (7.7) can then be treated with tools for linear

quadratic design, since the nonlinear decision element is removed from the

signal path to the error d� d̂, see Figure 7.1.

The scale factor � � 0 in (7.9) can be used to trade o� error propagation

against theoretical performance, with � = 0 representing a belief in error{

free decided data whereas a non-zero � represents a situation with decision

errors, the larger � the more decision errors are anticipated. The use of a

small positive value of � can give a lower bit error rate in cases with severe

error propagation compared to a design using � = 03.

7.1.2 Filter Design Equations

The performance of an equalizer of the form (7.7) is now to be optimized

with respect to the whole model error class. We thus tune the equalizer to

minimize the averaged MSE criterion

J = �EEjd(t � `)� d̂(t� `jt)j2 (7.10)

with respect to the parameters of (7.7) under the constraint that the �lters

in (7.7) are causal and stable. Here E represents expectation over d; n and

� while �E is the previously introduced expectation over the model error

distribution in (7.1) and (7.2). This type of criterion has been used in

connection to other �ltering problems, e.g. by Chung and B�elanger [16].

Note that not only the range of uncertainties, but also their likelihood is

taken into account by (7.10); common model deviations will have a greater

impact on an estimator design than do very rare \worst cases". Compared

to the use of a minimax design, the conservativeness is thus reduced [37,

93]. In communication problems the average performance is in general more

important than the performance for the worst case. Due to the presence

of coding and interleaving, rare bad situations can be handled, but a high

average uncoded bit error rate will degrade the total system performance.

3For a related suggestion, using a linear combination of a zero forcing linear equalizer

and a zero forcing DFE, see [39].
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Figure 7.1: A general robust decision feedback equalizer. The feedforward

and the feedback �lters are optimized by minimizing the power of the error

e(t) averaged over the class of possible channels and possible noise distur-

bance models. Erroneous decisions are modeled by adding a �ctitious white

noise to previous decided symbols in the design.
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In Appendix 7.A.1, design equations are derived for minimizing the criterion

(7.10) with respect to the �lter coe�cients of the DFE (7.7), for an ensemble

of systems (7.1), (7.2), assuming previous decisions to be described by (7.8).

As in previous chapters, for polynomials

p(q�1) = p0 + p1q
�1 + : : :+ pnpq

�np (7.11)

we use the convention that

pH(q)
�
= pH0 + pH1 q + : : :+ pHnpq

np: (7.12)

Introduce polynomials h(q�1), a(q�1) and n(q�1) as

b(q�1)
�
= b0(q

�1)a1(q
�1) + �b(q�1)a0(q

�1) (7.13)

h(q�1)
�
= b0(q

�1)a1(q
�1)n0(q

�1)n1(q
�1) (7.14)

a(q�1)
�
= a0(q

�1)a1(q
�1) (7.15)

n(q�1)
�
= n0(q

�1)n1(q
�1) (7.16)

m(q�1)
�
= m0(q

�1)n1(q
�1) + �m(q�1)n0(q

�1) (7.17)

and de�ne the double{sided polynomials ~b~bH(q; q�1) and ~m ~mH(q; q�1) by

~b~bH(q; q�1)
�
= �E[b(q�1)bH(q)] = b0(q

�1)bH0 (q)a1(q
�1)aH1 (q)

+ �E[�b(q�1)�b(q)H ]a0(q
�1)aH0 (q) (7.18)

~m ~mH(q; q�1)
�
= �E[m(q�1)mH(q)] = m0(q

�1)mH

0 (q)n1(q
�1)nH1 (q)

+ �E[�m(q�1)�mH(q)]n0(q
�1)nH0 (q): (7.19)

Finally, de�ne the variance ratio

�
4

= �E(�2v)=�
2
d:

Now, let the scalar 
 and the stable and monic polynomial �(q�1) be the

solution to the averaged spectral factorization


�(q�1)�H(q) = n(q�1)nH(q)a0(q
�1)aH0 (q)

�E[�b(q�1)�bH(q)]

+�n(q�1)nH(q)~b~bH(q; q�1)

+(1 + �)�a(q�1)aH(q) ~m ~mH(q; q�1): (7.20)
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Let Q(q�1); s1(q
�1); lH1 (q) and l

H
2 (q) be the (unique) solution to the coupled

polynomial equations

�(q�1) + q�1(1 + �)Q(q�1) = q`�kh(q�1)s1(q
�1)

+�(q�1)lH1 (q) (7.21)

�q�`+k�hH(q) + q(1 + �)l2(q) = �
�H(q)s1(q�1) +
q�`+khH(q)lH1 (q): (7.22)

The optimal �lters in the equalizer (7.7), which minimize (7.10), are then

given by Q(q�1) from (7.21) and by

s(q�1) = s1(q
�1)n(q�1)a(q�1)

r(q�1) = �(q�1)

p(q�1) = �(q�1): (7.23)

This result can be derived by adding a variation �(t) = �1(q
�1)y(t) +

�2(q
�1) ~d(t � `� 1), with �1(q

�1) and �2(q
�1) being arbitrary, but rational,

causal and stable transfer function, to the estimate d̂(t�`jt). Optimality cor-
responds to orthogonality of the mean estimation error with respect to this

variation. The equations (7.21) and (7.22) arise from requiring orthogonal-

ity with respect to the two terms �1(q
�1)y(t) and �2(q

�1) ~d(t), separately. A

detailed derivation can be found in Appendix 7.A.1, where a generalization

to correlated symbol sequences d(t) is also discussed.

The coupled equations (7.21) and (7.22) can be solved in precisely the same

way as the corresponding equations in Appendix 3.A.1: Convert them to

systems of linear equations in the coe�cients. Then, a new system of lin-

ear equations is created by combining all equations with known left-hand

sides. This system is solved with respect to the coe�cients of s1(q
�1) and

lH1 (q). Subsequently, Q(q�1) is obtained from (7.21). The polynomial de-

grees, which are obtained by requiring the powers of q and q�1 to be matched

on both sides of (7.21) and (7.22), are given by

deg s1(q
�1) = deg l1(q

�1) = `� k (7.24)

degQ(q�1) = deg l2(q
�1) = maxfdeg h(q�1);deg �(q�1)g � 1: (7.25)
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Solving the spectral factorization (7.20) is straightforward. With a given

right{hand side, it is just an ordinary polynomial (FIR) spectral factoriza-

tion, for which there exist e�cient iterative algorithms [47, 40, 36]. One

alternative is to factor the right-hand side and form the polynomial �(q�1)

from all factors with zeros inside jzj < 1.

The averaged factors in (7.20) can be evaluated as follows. For a stochastic

polynomial

�p(q�1) (7.26)

of degree �p with zero mean, let the Hermitian parameter covariance matrix

be de�ned as

P�P =

264
�Ej�p0j2 : : : �E(�p0�p

H

�p
)

...
. . .

...
�E(�p�p�p

H
0 ) : : : �Ej�p�pj2

375 : (7.27)

Denote the sum of the diagonal elements g0, the sum of the elements in

the i'th super{diagonal gi, the sum of elements in the i'th subdiagonal g�i.

Note that g�i = gH
i
. Then it becomes evident, by direct multiplication of

�p(q�1)�pH(q), and taking expectations, that

�E[�p(q�1)�pH(q)] = gHdpq
�dp + : : :+ gH1 q

�1 + g0 + g1q + : : :+ gdpq
dp:

(7.28)

Above, dp � �p, with dp = 0 for uncorrelated coe�cients.

Note that, apart from the nominal model and the variance ratios � and

�, only second order moments of the model error distributions need to be

known. If this information is not available, then a1(q
�1), n1(q

�1), �, �

and the covariance matrices of �b(q�1) and �m(q�1) can still be used as

\robustness tuning knobs". In the case of no model uncertainty, we then

set �b(q�1) = �m(q�1) = 0 and a1(q
�1) = n1(q

�1) = 1 in (7.18){(7.23).

An increase of the covariance matrix elements of �b(q�1) or �m(q�1) will

result in a more cautious feedback and feedforward �lters, with lower gains

and lower and broader spectral peaks.
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7.1.3 The Class of Equalizers

The equations (7.7){(7.23) de�ne a class of robust equalizers, with nominally

designed linear equalizers and DFE's as special cases:

� If � = 0 (perfect previous decisions assumed), and with no model

uncertainty, then the IIR DFE discussed in [90] is obtained4. In this

case only, a solution of the spectral factorization (7.20) is not required.

We directly obtain �(q�1) = a0(q
�1)m0(q

�1).

� If � ! 1 (decided data are very unreliable), k Q(q�1) k! 0. Then,

(7.20) and (7.22) reduce to the design equations for a robust linear

equalizer s(q�1)=r(q�1), derived in [91]. (Divide (7.20){(7.22) by �

and set r
�
= 
=�, which is �nite.)

� When � ! 1 and no model uncertainty is assumed, we obtain the

ordinary linear recursive equalizer, discussed in e.g. [2],[90].

The special case of the design equations for a robust DFE assuming perfect

decisions (� = 0), applies to an uncertain and slowly time-varying scalar FIR

channel will be discussed in more detail in Section 7.3. The generalization

to a MISO DFE design for (time-invariant) uncertain FIR vector channels

is derived and discussed in Section 7.4.

The properties of a large number of linear equalizers (� ! 1), based on

randomly selected 5{tap FIR channel models, are summarized in Section

4.5 of [91]. In about 1=5 of those cases, the nominal channels had pro-

nounced nulls. Equalizers designed without taking any model uncertainty

into account then had pronounced spectral peaks. Their performance was

very sensitive to model errors. Robust design eliminated the sensitivity, at

the price of only a slight increase of the MSE obtained when the model is

correct.

4With �b(q�1) = �m(q�1) = 0; a1(q
�1) = n1(q

�1) = 1, we get ~b~bH(q; q�1) =

b0(q
�1)bH0 (q), ~m ~mH(q; q�1) = m0(q

�1)mH

0 (q), 
 = �, �(q�1) = a0(q
�1)m0(q

�1) and

h(q�1) = b0(q
�1)n0(q

�1). This case corresponds to the solution in Section 3.2.1 with only

one sensor (M = 1).
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7.2 Robustness Against Decision Errors

The utility of the parameter � is here investigated in an example. We in-

vestigate if a proper use of this parameter may reduce the e�ects of error

propagation.

Based on the model, without uncertainty,

y(t) =
b0(q

�1)

a0(q�1)
d(t) + n(t) =

(1 + 0:95q�1)

(1� 0:70q�1)3
d(t) + n(t)

we designed DFE's for a SNR of 28dB which corresponds to � = 0:553. The

smoothing lag was ` = 5 and the data sequence was binary PAM (d(t) = �1).
DFE's were designed for di�erent values of the parameter �. Here we have

h(q�1) = b0(q
�1), ~b~bH(q; q�1) = b0(q

�1)bH0 (q), ~m ~mH(q; q�1) = 1, and thus

(7.20) reduces to


�(q�1)�H(q) = �b0(q
�1)bH0 (q) + (1 + �)�a0(q

�1)aH0 (q):

The bit error rate (BER) was estimated from simulations using 500000 sym-

bols for each design. The diagram below shows the BER as a function of �.

Also shown is the BER without error propagation, i.e. the result we would

obtain if correct past decisions could be substituted for ~d(t� `� 1) in (7.7).

In this di�cult problem, a pure DFE has severe problems with error bursts,

while a linear equalizer (LE) gives a large BER. However, the BER can be

reduced by a factor of 3.5 by using � = 0:001 instead of � = 0 (pure DFE).

An error propagation event is in this example de�ned as the length of se-

quences of ~d(t) which contain < 7 consecutive correct decisions. It is evident

from the table below, that the use of a small � � 0 reduces the length of

error propagation events substantially. If a coding scheme is used which is

sensitive to long consecutive sequences of errors, this property is valuable in

itself.

It should be noted, however, that although the number of long error prop-

agation events is reduced, the number of short error propagation events is

increased. Therefore it is not possible to say if there for arbitrary selected

channels in general exists an � 6= 0 which gives a lower BER than what is

obtained by using � = 0.
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Figure 7.2: BER as function of assumed relative power � of the decision error

noise. BER with error propagation (solid) and without error propagation

(dashed).

Number of error propagation events

Length: 1-2 3-20 21-50 51-100 >100

� = 0: 328 197 75 66 133

� = 10�3: 323 232 77 24 {

� = 0:1: 6100 4469 171 { {

Table 7.1: Number of error propagation events of di�erent lengths for dif-

ferent values of the relative power � of the noise assumed in the feedback

loop.
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7.3 Robustness Against Fading

One of the causes of uncertainty in a channel are time-variations that we

are not able to track, or choose not to track. We can however design an

equalizer which optimizes the performance based on statistical assumptions

on the anticipated time variations in the channel.

We will here discuss the design of such a robust equalizer. As an example,

we will consider a GSM-type case. In GSM, the channel varies slowly over

the duration of a frame. It is therefore feasible to use a �xed equalizer, tuned

to the training data, for the equalization of the whole frame. However, when

the mobile travels at high speeds, the channel variations can have a non-

negligible impact on the performance of the equalizer. In these cases it can

be advantageous to take the time variations into consideration when tuning

the equalizer.

We will here utilize the design equations for a robust decision feedback equal-

izer, derived in the previous section, for this purpose. It will be demonstrated

how the statistical Rayleigh fading model can be used to adjust models of the

channel uncertainty due to a moving transmitter or receiver. An additional

contribution to the model uncertainty is caused by the channel estimation

error due to noise and interference. We will here restrict the presentation

to the special case of FIR channels with uncertain channel coe�cients and

white noise.

7.3.1 Model and Filter Structure

We will consider the following received, discrete-time, complex baseband

signal

y(t) =
�
b0(q

�1) + �b(q�1)
�
d(t) + n(t) (7.29)

where the transmitted symbols fd(t)g are assumed to be zero mean and

white, with Ejd(t)j2 = �2
d
. The noise n(t) is assumed to be zero mean, with

variance Ejn(t)j2 = �2n.

The nominal model of the transmission channel is described by an FIR �lter
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Figure 7.3: Channel with error model and IIR decision feedback equalizer.

The coe�cients of the polynomial �b(q�1) are stochastic variables.

with complex coe�cients:

b0(q
�1) = b0 + b1q

�1 + :::+ bnbq
�nb: (7.30)

The set of possible model errors is represented by the \error model"

�b(q�1) = �b0 +�b1q
�1 + :::+�bnbq

�nb (7.31)

As before, the coe�cients �bi are stochastic variables with zero mean and

known correlations �E[�bi�b
H

j
]. This channel model is a special case of

the more general uncertain channel models in Section 7.1, using k = 0 and

a(q�1) = 1.

7.3.2 Filter Design Equations

The robust DFE here is a special case of the general robust DFE presented

in Section 7.1. Thus, we assume the general IIR structure

d̂(t� `jt) = s(q�1)

r(q�1)
y(t)� Q(q�1)

p(q�1)
~d(t� `� 1) (7.32)

of the DFE.

The robust DFE that minimizes the averaged MSE criterion

J = �EEjd(t� `)� d̂(t� `jt)j2 (7.33)
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can be computed as follows.

Let us here de�ne

�
4

= �2n=�
2
d:

Let the scalar 
 and the stable and monic polynomial �(q�1) be the solution

to the averaged spectral factorization


�(q�1)�H(q) = �E[�b(q�1)�bH(q)] + � (7.34)

which is a special case of (7.20) for a(q�1) = n(q�1) = 1, ~m ~mH(q; q�1) = 1

and � = 0.

Let fQ(q�1); s(q�1); lH1 (q); lH2 (q)g be the (unique) solution to the corre-

sponding special cases of (7.21) and (7.21) which constitute the coupled

polynomial equations

�(q�1) + q�1Q(q�1) = q`b0(q
�1)s(q�1) + �(q�1)lH1 (q) (7.35)

qlH2 (q) = �
�H(q)s(q�1) + q�`bH0 (q)l
H

1 (q)

(7.36)

with polynomial degrees

deg s = deg l1(q
�1) = `

degQ(q�1) = deg l2(q
�1) = maxfdeg b0(q�1);deg �(q�1)g � 1:

The equalizer (7.32), which minimizes (7.33), is now given by Q(q�1) and

s(q�1) from (7.35) and (7.36) and by using the averaged spectral factors as

denominator polynomials

r(q�1) = p(q�1) = �(q�1) (7.37)

Along the lines presented for the DFE's in Appendix 3.A.1 and 3.A.2, the

coupled equations (7.35) and (7.36) can be solved by converting them to a

system of linear equations in the coe�cients of s and l1, respectively.
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Let us de�ne

B
�
=

0BB@
b0 0 ::: 0

b1 b0 ::: 0

::: ::: ::: :::

b` b`�1 ::: b0

1CCA (7.38)

�
�
=

0BB@
1 0 ::: 0

�1 1 ::: 0

::: ::: ::: :::

�` �`�1 ::: 1

1CCA (7.39)

S
T �
=
�
s0 s1 ::: s` lH1;` lH1;`�1 ::: lH1;0

�
(7.40)

C
T �
=
�
0 0 ::: 1 0 0 ::: 0

�
(7.41)

where the \1" in C appears in element nr ` + 1. The channel coe�cients

in the matrix B are here the coe�cients of the \nominal" channel model

b0(q
�1) which here will be the same as the estimated channel. The coef-

�cients in the matrix � are the coe�cients in the averaged spectral factor

�(q�1) from equation (7.34) with the right hand side evaluated as indicated

by (7.27) and (7.28). It can then be shown from (7.35) and (7.36), along the

same lines as in Appendix 3.A.1 and 3.A.2, that

S =

�
B �


 � �H �BH

��1
C: (7.42)

From S we extract s(q�1) (and l1(q
�1)) and from equation (7.35) Q(q�1)

can be computed as

Q(q�1) = q`+1b0(q
�1)s(q�1) + q�(q�1)(lH1 (q)� 1): (7.43)

As in Section 7.1.2, the averaged term, �E[�b(q�1)�bH(q)], in (7.34) can be

evaluated as follows. For a stochastic polynomial �b(q�1), of degree nb, let

the Hermitian parameter covariance matrix be

P�b =

264 �Ej�b0j2 : : : �E(�b0�b
H

nb
)

...
. . .

...
�E(�bnb�b

H
0 ) : : : �Ej�bnbj2

375 : (7.44)
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Denote the sum of the diagonal elements g0, the sum of the elements in

the i'th super{diagonal gi, the sum of elements in the i'th subdiagonal g�i.

Note that g�i = gH
i
. Then it becomes evident, by direct multiplication of

�b(q�1)�bH(q), and taking expectations, that

�E[�b(q�1)�bH(q)] = gHdbq
�db + : : :+ gH1 q

�1 + g0 + g1q + : : : + gdbq
db:

(7.45)

Above, db � nb, with db = 0 for uncorrelated coe�cients.

If the coe�cients in �b(q�1) are uncorrelated, then �E[�b(q�1)�bH(q)] is a

constant (not a polynomial) and from equation (7.34) we see that the robust

equalizer is achieved by adding the sum of the variances of the coe�cients

of �b(q�1) to the variance ratio �. Only in this case will the MMSE-optimal

DFE for an FIR channel have FIR feedforward and feedback �lters, since

(7.34) reduces to �(q�1) = 1 while 
 =
P

�Ej�bij + �. Thus, if the un-

certainties of the channel coe�cients are uncorrelated, the robust equalizer

is obtained just by increasing the noise power for which the equalizer is

designed. If the uncertainties or model errors in di�erent coe�cients are

correlated, then the e�ect of the uncertainty on an MSE-optimal DFE de-

sign is equivalent to the e�ect of a speci�c colored interference, n(t) = �(q�1)

with E[je(t)j2] = 
. A more general discussion of this interpretation of the

e�ect of model errors on averaged MSE �lter designs as equivalent noise can

be found in Section 4.8 of [37].

7.3.3 Example

Consider a GSM-channel with three independently Rayleigh fading received

signal paths having average relative powers 0 dB, -1.8 dB and -4.8 dB re-

spectively. The three rays are assumed to arrive so that they are separated

by one symbol interval. The carrier frequency used is 1800 MHz. The

GSM-system uses a partial response modulation stretching over 3-4 symbol

intervals, cf Appendix 2.A.1. This results in an overall channel with a total

of 5-6 taps.

Fading due to movement of the mobile causes the channel to be slightly time

varying over the duration of a burst. An example of such a slow variation

is depicted in Figure 7.4.
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Figure 7.4: Example of the variation of a channel tap at carrier frequency

1800 MHz and a mobile speed of 200 km/h (for example a high-speed train).

The time span is 58 symbols of with a symbol period of 3.7�s. Solid line:

real part, dashed line: imaginary part.
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This time variation can be taken into account when designing a robust DFE.

The channel estimated during the training sequence is used as the nominal

model b0(q
�1). The time variation is viewed as one part of the stochastic

uncertainty �b(q�1). Another part of the �b(q�1) is the uncertainty due to

noise in the estimate of the channel, based on the training sequence.

In order to design the equalizer, an estimate of the correlation matrix P�b is

required. As indicated above, P�b is here assumed to consists of two parts

P�b = PTime variation + PEstimation uncertainty: (7.46)

The covariance matrix for the uncertainties due to the time variation can be

estimated in the following way. We can for a given realization of the time

varying channel, de�ne a matrix, PRealization, which quanti�es the variability

of the channel taps relative to their values at the center of a given time frame

at time Tf=2, where Tf is the total length of the frame that is to be equalized.

This matrix can be expressed as

PRealization =
1

Tf

Z
Tf

t=0

�
b(t)� b(Tf

2
)

��
b(t)� b(Tf

2
)

�H

dt (7.47)

where b(t) is the vector representation of the coe�cients in the polynomial

b(q�1) at time t,

b(t) =

26664
b0(t)

b1(t)
...

bnb(t)

37775 : (7.48)

We have here, as in GSM, assumed that the training sequence is in the middle

of the frame. The expression (7.47) would be the natural choice of covariance

of the uncertainties �b(q�1) if we would design an equalizer to have a robust

performance over this speci�c realization of the time varying channel. We

are, however, not interested in robustness over a single realization of the

time variation but rather over a collection of time varying channels in a

Rayleigh fading scenario. We thus take the expectation of PRealization with

respect to the di�erent Rayleigh fading realizations with Rayleigh fading

statistics [126], giving

PTime variation = E[PRealization]

= E

"
1

Tf

Z
Tf

t=0

�
b(t)� b(Tf

2
)

��
b(t)� b(Tf

2
)

�H
#
: (7.49)
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To demonstrate the principle for estimating (7.49) on line in a simple case,

let us now assume that the fading of the di�erent taps are uncorrelated5.

The autocorrelation function for a single Rayleigh fading tap is given by

E[bi(t)b
�

i (t� �)] = E[bi(t)b
�

i (t)]J0(2�fc
v

c0
�) (7.50)

where fc is the carrier frequency, c0 is the speed of light and v is the speed

of the mobile, which can be estimated [54]. Using (7.50) in (7.49) we can

then derive an expression for the correlation matrix;

PTime variation =

= E

�
1

Tf

Z
Tf

0

�
b(t)bH(t) + b(

Tf

2
)bH(

Tf

2
)� b(t)bH(

Tf

2
)� b(

Tf

2
)bH(t)

��
dt

=
1

Tf

Z
Tf

0

�
E[b(t)bH(t)] +E[b(

Tf

2
)bH(

Tf

2
)]

�
dt

� 1

Tf

Z
Tf

0

�
E[b(t)bH(

Tf

2
)] +E[b(

Tf

2
)bH(t)]

�
dt

= 2P b

 
1� 2

Tf

Z
Tf=2

0

J0(2�fc
v

c0
�)d�

!
(7.51)

where P b = E[b(t)bH(t)] = E[b(
Tf

2
)bH(

Tf

2
)].

The correlation matrix for the channel coe�cients of the channel P b can be

estimated on-line by averaging over a number of bursts, and the speed of

the mobile, v, can be estimated separately. We thus have a way to estimate

PTime variation. When accounting for the correlation of the taps due to the

pulse shaping in the modulation, we have to include this dependency into

the above equation.

In this example the channel was determined by estimating the coe�cients

in an FIR model with a least squares algorithm as in Section 2.2. The

noise is assumed to be uncorrelated with the training data, and the train-

ing sequence consists of 26 training symbols. The second part of (7.46),

5This will in general not be entirely true since the taps are correlated due to the pulse

shaping in the modulation. This assumption will however simplify our exposition since

only the autocorrelation function for a single Rayleigh fading tap then has to be considered

in the design.
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PEstimation uncertainty, can then be computed directly and exactly as in [87]

Section 4.2, i.e.

P Estimation uncertainty = �2n(D
H
D)�1 (7.52)

where �2n is the noise variance andD is a matrix formed from the regressors,

i.e. the training symbols

D =

26664
d
T (tmin)

d
T (tmin + 1)

...

d
T (tmax)

37775 (7.53)

with

d
T (t) =

�
d(t) d(t� 1) : : : d(t� nb)

�
: (7.54)

In this example, a six tap FIR model was used (i.e. nb = 5). The time

indices tmin and tmax are as usual chosen such that all used channel out-

puts, b(q�1)d(t), are well de�ned. The noise variance, �2n can be estimated

separately from the residuals. P�b can now be computed by using (7.51)

and (7.52) in (7.46). With the resulting P�b, the robust equalizer can be

readily designed.

With a white noise-like training sequence, PEstimation uncertainty will be ap-

proximately diagonal. Furthermore, in this example, it turns out, that the

taps in the channel are only weakly correlated due to the pulse shaping. Our

assumption, when deriving (7.51), that the coe�cients in the FIR model

were completely uncorrelated is thus approximately valid. With this as-

sumption the correlation matrix for the uncertainties due to the fading,

PTime variation, is approximately diagonal. The total correlation matrix for

the uncertainties, P�b, is thus approximately diagonal. Using this in (7.44)

and (7.45), we see that the term �E[�b(q�1)�bH(q)] in (7.34) just becomes

a constant (not a polynomial) which is added to the normalized noise vari-

ance �. Thus, in this example, an approximatively optimal robust equalizer

is achieved just by increasing the noise variance in the design. The noise

variance is in fact increased by an amount equal to the energy of the uncer-

tainties in the channel.

The BER for the nominal and the robust DFE is presented in Figure 7.5

for a collection of scenarios with di�erent SNR and mobile speeds. The
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performance gained with the robust DFE as compared to the nominal DFE

can be seen in Figure 7.6. The performance gain increases with increasing

speed of the mobile, and is largest at large SNR. This is natural. In these

cases the channel varies signi�cantly, while the noise level is small so the the

nominal DFE will have relatively high gain in its feedforward �lter. This

combined with an incorrect channel causes the higher BER for the nominal

DFE, which is based on the assumption of a perfect channel estimate.

We can thus conclude that the robust DFE can be used to reduce the e�ects

of moderate fading over a frame. This can then be an alternative to tracking

of the channel and adapting the equalizer to the channel variations over the

frame.

7.4 Robustness of Space-Time Equalizers

When we studied the space-time DFE and the space-time MLSE in Chap-

ters 3 and 4 we could note that, contrary to what one might expect, the

indirectly tuned equalizers performed reasonably well even when the signal

to interference ratio was very low. One would think that the channel esti-

mates would be so poor at low signal to interference ratios such that the

indirectly tuned equalizers would have a very poor performance. This is

however not always the case. In this section we explain why. We will show

that the indirectly tuned equalizers have a certain degree of built-in self-

robusti�cation. First, we design equalizers that are robust to the expected

error in the channel estimate by using the averaged MSE criterion intro-

duced in Section 7.1. Second, we note that the nominal space-time DFE or

MLSE, designed based on estimated spatial covariance matrices, is in some

cases automatically robusti�ed, in a way which is similar to a robust design

which explicitly takes model errors into account. The explanation for this

phenomenon is that when an estimated spatial covariance matrix is utilized

in the nominal design, the structure and magnitude of this matrix will a�ect

the design in ways similar to a robust design. The gains in directions where

the model uncertainty is large will be reduced.
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Figure 7.5: BER for the nominal and the robust DFE's.
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for the robust equalizer obtained by the averaged design, as compared to
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7.4.1 Channel Model

To simplify the presentation we will assume that the co-channel interferers

are temporally white and thus have only a single tap in their channels. The

received signals collected from the M antenna elements,

y(t) = [y1(t) y2(t) : : : yM(t)]T , can then, similar to (2.75), be modeled as

y(t) = B0d0(t) +

KX
i=1

bidi(t) + v(t) (7.55)

where di(t), i = 1; : : : ;K are the symbols transmitted by the K co-channel

interferers and bi are the single vector taps of the co-channel interferers, of

dimensions M � 1. The vector d0(t) = [d0(t) d0(t � 1) : : : d0(t � nb0)]
T

consists of lagged values of the symbol sequence for the desired signal with

B0 being the corresponding channel matrix of size M � (nb0 + 1). The

vector v(t) represents spatially and temporally white thermal noise. We

will assume that the transmitted symbols are temporally white with zero

mean and unit variance, i.e.

E[d(t)d�(t)] = 1: (7.56)

The unit variance can always be arranged by a scaling. The symbol se-

quences for the interferers are assumed to be uncorrelated with the symbol

sequence of the desired signal.

7.4.2 Channel Estimation Errors

The channel matrix for the desired signal, B0, is here assumed to be es-

timated by estimating the coe�cients of the FIR channel model with the

least squares method, as in Section 2.2.

As in (2.21), the complete, least squares estimated, channel matrix can thus

be expressed as

B̂0 = R̂
H

d0y
R̂
�1

d0d0
= R̂yd0

R̂
�1

d0d0
(7.57)

where

R̂yd0
=

1

Neff

tmaxX
t=tmin

y(t)dH0 (t) (7.58)
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and

R̂d0d0
=

1

Neff

tmaxX
t=tmin

d0(t)d
H

0 (t) (7.59)

where tmin and tmax are chosen such that all involved entities are well de�ned

and Neff = tmax � tmin + 1 is the e�ective length of the training sequence.

By separating out the error terms induced by the co-channel interferers and

the noise, using (7.55), the channel estimate can be written as

B̂0 = B0 +

KX
i=1

biR̂did0
R̂
�1

d0d0
+ R̂vd0

R̂
�1

d0d0
(7.60)

where

R̂did0
=

1

Neff

tmaxX
t=tmin

di(t)d0
H(t) (7.61)

and

R̂vd0
=

1

Neff

tmaxX
t=tmin

v(t)dH0 (t): (7.62)

The error in the channel matrix estimate is thus given by

KX
i=1

biR̂did0
R̂
�1

d0d0
+ R̂vd0

R̂
�1

d0d0
: (7.63)

We will denote the negative of this term with �B0, i.e.

�B0 = �
KX
i=1

biR̂did0
R̂
�1

d0d0
+ R̂vd0

R̂
�1

d0d0
(7.64)

such that we can write a probabilistic model of the channel as

B0 = B̂0 +�B0 (7.65)

or equivalently

b0(q
�1) = b̂0(q

�1) + �b0(q
�1) (7.66)
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where the taps of �b0(q
�1) are the columns in �B0. In other words, we

regard the nominal (unknown) true channel as a member of a set, a stochas-

tic variable, with average value B̂0. The nominal channel model is thus our

present estimate of the channel, B̂0 or b̂0(q
�1), and the uncertainty in the

channel is given by the error term �B0 or �b(q
�1).

We will use (7.65), or (7.66), as an uncertain channel model when designing

a robust equalizer in the following section. We assume that we do not know

the symbols transmitted by the interferers and thus cannot identify their

channels. Consequently, the error term �B0 or �b0(q
�1) is unknown.

7.4.3 Spatial Robustness of the Space-Time FIR-DFE

In Appendix 7.A.3 we show that the covariance of the channel estimation

errors, E[�b0(q
�1)�bH0 (q)], can be approximated with a constant matrix as

E[�b0(q
�1)�bH0 (q)] �

1

nb+ 1
�B0B

H

0 (7.67)

In Appendix 7.A.2 we show that if the approximation (7.67) holds, then

the robust DFE, for the scenario studied here, can be realized with FIR

feedforward and feedback �lters. Furthermore this robust DFE is equal to

a nominal DFE design based on the channel estimate b̂0(q
�1), if we in the

design equations replace the spatial covariance matrix for the noise plus

interference, Rnn, with a constant matrix P 0 given by

P 0 = Rnn +
1

nb+ 1
�B0�B

H

0 : (7.68)

The spatial color of the noise plus interference should thus be replaced by

the sum of the spatial color of the noise and interference and the spatial

color of the uncertainties in the channel estimate.

Consider now the estimate of the spatial color of the residuals

R̂rr =
1

Neff

tmaxX
t=tmin

r(t)rH(t) (7.69)

where r(t) are the residuals from the estimation with the least squares

method

r(t) = y(t)� B̂0d0(t): (7.70)
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Using (7.55) and (7.65) the residual r(t) can be expressed as

r(t) = �B0d0(t) + n(t) (7.71)

where n(t) represent noise plus interference. The sample matrix estimate in

(7.69) can thus be expressed as

R̂rr =
1

Neff

tmaxX
t=tmin

r(t)rH(t)

=
1

Neff

tmaxX
t=tmin

[�B0d0(t) + n(t)][�B0d0(t) + n(t)]
H : (7.72)

Since d0(t) and n(t) are assumed to be uncorrelated we can do the following

approximation, given that N is not too small

R̂rr � 1

Neff

tmaxX
t=tmin

�B0d0(t)d
H

0 (t)�B
H

0

+
1

Neff

tmaxX
t=tmin

n(t)nH(t): (7.73)

Furthermore, since d0(t) is assumed to be approximately white with unit

variance

R̂rr � 1

nb+ 1
�B0�B

H

0 +Rnn (7.74)

where �B0 is given by (7.64) and Rnn is the spatial noise plus interference

covariance de�ned in (7.116). This is of course a crude approximation if

the training sequence is short. Asymptotically, with increasing length of the

training sequence, it will however hold exactly.

Comparing (7.74) with (7.68) we thus conclude that

R̂rr � P 0: (7.75)

Thus, assume we have an FIR channel with temporally white interferers.

A nominal space-time DFE with FIR �lters in the feedforward and the

feedback links, is designed to minimize the MSE over the training sequence.

The LS-estimated channels (7.57) and the estimated spatial color (7.69) of
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the residuals are used in the tuning, as for the IS-DFE in Section 3.3.3. This

equalizer is then automatically robusti�ed against the channel estimation

errors caused by strong co-channel interferers. If the co-channel interferers

are temporally colored, it is likely that the IS-DFE is still spatially self-

robustifying. However, a temporal color on the interference can potentially

be utilized to improve the performance further. It is important to note,

that if the number of uncorrelated strong interferers is too large compared

to the number of antennas, then spatial-only interference suppression of the

interference will not su�ce.

If we study the estimated channels to the individual antennas in the pres-

ence of strong co-channel interferers, we can be led to believe that they are

completely useless as they can be strongly distorted. Yet they turn out to

be adequate for the IS-DFE in Chapter 3. The above analysis explains why

this is the case. The individual channels may be distorted, but if we view the

channels as a group, we will �nd that the channels are distorted in the spatial

subspace spanned by the co-channel interferers channel taps. If the number

of antennas is large enough, there will be a remaining spatial subspace where

the channels will be distorted by the thermal noise only. The DFE-�ltering

can be performed using signals from this subspace, while suppressing signals

from the subspace corrupted by the co-channel interferers.

7.4.4 Spatial Robustness of the MMF-MLSE andMMF-DFE

As for the IS-DFE, one can also wonder if short training sequences are ad-

equate for obtaining a reasonable performance with the indirectly tuned

MLSE in Section 4.4.2 and the indirectly tuned MMF-DFE in Section 3.3.5.

The channels to the individual antennas will also here be severely distorted

if strong co-channels interferers are present. The tuning of the MMF �l-

ters will however have many similarities with the tuning of the �lters in the

MISO-DFE discussed in the previous section. This can be understood if one

considers the fact that the MMF �lters in the MMF-DFE and the multi-

channel MLSE can, as the �lters in the DFE, be tuned with an MMSE

criterion as is discussed in Sections 3.3.5 and 4.4.3. Basically the only di�er-

ence is then that when tuning an MMF-�lter, we use a \decision feedback"

�lter that is double sided (and complex conjugated symmetric).

From this it is easy to realize that the a spatially robust MLSE/MMF-DFE
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can be constructed approximately by tuning the MMF and \feedback" �lters

using the least squares estimated channel coe�cients and the spatial color

of the residuals. This is why the performance of the indirectly tuned multi-

channel MLSE using the spatial covariance of the residuals in the example

in Section 4.5 in Chapter 4 does not degrade so seriously when the strength

of the co-channel interferers increases, even though the relative errors in the

channel estimates do. The same applies to the simulations with the MMF-

DFE presented in Section 3.4 in Chapter 3. Again, of course, if we have too

many uncorrelated strong interferers compared to the number of antennas,

spatial-only suppression of the interferers will not su�ce.
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7.A Appendix

7.A.1 Robust MMSE Filtering

In this appendix, to simplify the notation, polynomials are represented with

capital non-boldface letters leaving out the explicit dependence of q�1 or

z�1, i.e. for example

b(q�1) is exchanged for B: (7.76)

We can model a general communication channel as

y(t) = G(q�1)d(t) +H(q�1)v(t) (7.77)

where y(t) is the received signal, G(q�1) and H(q�1) are general IIR �lters,

d(t) are the transmitted symbols and v(t) represents the innovations for the

noise.

Let us parametrize the communication channel as

G = q�k(G0 +�G) = q�k
�
B0

A0

+
�B

A1

�
= q�k

(B0A1 +A0�B)

A0A1

�
= q�k

B

A
(7.78)

H = H0 +�H =
M0

N0
+
�M

N1
=
M0N1 +N0�M

N0N1

�
=

M

N
(7.79)

where the polynomials A(q�1) and N(q�1) are assumed to be stable and

where �B and �M are polynomials with random variables as coe�cients.

The problem formulation of Section 7.1 is here generalized, by allowing the

transmitted sequence d(t) to be colored. It is modeled by

d(t) =
C

D
e(t) (7.80)

where D is stable and C has zeros in jzj � 1. The signal e(t) is white, with

zero mean and E[e(t)]2 = �e. The aim is to obtain an estimator

d̂(t� `jt) = S

R
y(t)� Q

P
~d(t� `� 1) (7.81)
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with R(q�1) and P (q�1) stable, such that the average mean square error

J = �EEjd(t� `)� ~d(t� `jt)j2 = �EEjz(t � `)j2 (7.82)

is minimized. Above, ` denotes the smoothing lag and

y(t) = q�k
B

A

C

D
e(t) +

M

N
v(t) (7.83)

is the measurement signal while ~d(t � ` � 1) represent previous decision,

obtained at time t� `� 1 by feeding d̂(t� `� 1) through a decision device.

If all previous decisions are correct, we can proceed along the lines of [90].

However, if an incorrect decision is made, an error burst might occur. De-

cision errors will be modeled by a �ctitious zero mean white noise, �(t),

added to the correct sequence d(t). By means of �(t) we can thus write the

decisions, ~d(t), as

~d(t) = d(t) + �(t): (7.84)

For further use, assume that e(t), v(t) and �(t) are all mutually uncorrelated

and introduce the noise variance ratios

�
�
=

Ejv(t)j2
Eje(t)j2 ; �

�
=

Ej�(t)j2
Eje(t)j2 :

The estimation error, to be optimized, can be written as

z(t� `) = d(t� `)� d̂(t� `jt)

= q�`
C

D
e(t)� q�k

S

R

B

A

C

D
e(t) � S

R

M

N
v(t)

+q�`�1
Q

P

C

D
e(t) + q�`�1

Q

P
�(t)

=
(q�`RAP � q�kPSB + q�`�1QRA)

RAPD
Ce(t)� S

R

M

N
v(t)

+q�`�1
Q

P
�(t): (7.85)
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In order to minimize the averaged estimation error �EE(z(t�`))2 with respect
to S, R, Q and P de�ne the following polynomials:

H
�
= �E(B)NC

4

= B0A1N0N1C (7.86)

~B ~BH �
= �E(BBH)

4

= B0B
H

0 A1A
H

1 +A0A
H

0
�E(�B�BH) (7.87)

~M ~MH �
= �E(MMH)

4

= M0M
H

0 N1N
H

1 +N0N
H

0
�E(�M�MH) (7.88)

~
~
H
�
= �E(AAHDDHMMH)

4

= AAHDDH �E(MMH) (7.89)

~� ~�H
�
= �E(NNHCCHBBH)

4

= NNHCCH �E(BBH): (7.90)

In order to derive the design equations for the optimal equalizer, a variational

approach, presented in [3] for nominal design, and [91] for robust design, will

be used. Thus, the estimation error (7.85) should, on average over the model

class, be orthogonal to any linear variation of the estimate d̂(t� `jt) which
can be obtained from the signals available at time t. We denote such a

variation by

n(t) = G1y(t)| {z }+G2 ~d(t� `� 1)| {z }
n1(t) n2(t)

where G1 and G2 are arbitrary but stable and causal transfer functions.

The �rst linear equation

Orthogonality of z(t � `) will now be assured with respect to n1(t) and

n2(t) separately. Thus, for n1(t) we obtain, by using (7.83), (7.85) and the
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assumption that � is uncorrelated to other signals,

�EE(z(t � `)nH1 (t)) =

= �EE

�
(q�`RAP � q�kPSB + q�`�1QAR)C

RAPD
e(t)� S

R

M

N
v(t)

�
�

�
G1
�
q�k

B

A

C

D
e(t) +

M

N
v(t)

��H

=
Eje(t)j2
2�i

�E

I
jzj=1

�
(z�`RAPN � z�kPSBN + z�`�1QARN)

RAPDN

� zk
CCHBHNH

DHAHNH
� �

APD

APD

SM

RN

MHAHDH

NHAHDH

�
GH1

dz

z

=
�e

2�i

I �
zk�`RAPNCCH �E(BH)NH � PSCCHNNH �E(BBH)

RAPDNDHAHNH

�
GH1

dz

z

+
�e

2�i

I �
zk�`�1QRANCCH �E(BH)NH � �PSAAHDDH �E(MMH)

RAPDNDHAHNH

�
GH1

dz

z

=
�e

2�i

I �
(zk�`PRANCHH + zk�`�1QRANCHH)

RAPDNDHAHNH

�
GH1

dz

z

� �e

2�i

I �
PS(~� ~�H + �~
~
H)

RAPDNDHAHNH

�
GH1

dz

z

where (7.86), (7.89) and (7.90) were used in the last equality.

Orthogonality of the error z(t�`) with respect to n1(t) is ful�lled if all poles
inside the unit circle of the integrand are canceled by zeros. Since A, N and

D are assumed stable, while P and R in the equalizer must be stable, there

must therefore exist a polynomial LH2 (z), such that

zk�`PRANCHH + zk�`�1QRANCHH � PS(~� ~�H + �~
~
)

= zLH2 RAPDN (7.91)
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or equivalently

RAN(zk�`PCHH + zk�`�1QCHH � zPDLH2 )

= PS(~� ~� + �~
~
): (7.92)

The second linear equation and the spectral factorization

For the variational term n2(t), we obtain, by using (7.80), (7.84), (7.85) and

the assumption that the noise v(t) is uncorrelated with e(t) and �(t),

�EE(z(t� `)nH2 (t)) =

= �EE

�
(q�`RAP � q�kPSB + q�`�1QAR)C

RAPD
e(t) + q�`�1

Q

P
�(t)

�

�
�
GH2
�
q�`�1

C

D
e(t) + q�`�1�(t)

��H

=
Eje(t)j2
2�i

�E

I
jzj=1

�
(zRAP � z�k+`+1PSB +QAR)CCH

RAPDDH

+�
Q

P

RAD

RAD

DH

DH

�
GH2

dz

z

=
�e

2�i

I
(zRAP � z�k+`+1PS �E(B) +QAR)CCH

RAPDDH
GH2

dz

z

+
�e

2�i

I
�QRADDH

RAPDDH
GH2

dz

z
: (7.93)

Orthogonality of the error z(t � `) with respect to n2(t) is here ful�lled if

all poles of the integrand inside the unit circle are canceled by zeros. There

must therefore exist a polynomial LH1 (z), such that

zRAPCCH � z`�k+1PS �E(B)CCH +QARCCH + �QARDDH

= zLH1 ARPD (7.94)
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or equivalently

P (zRACCH � z`�k+1S �E(B)CCH � zLH1 RAD) =

� (CCH + �DDH)QAR: (7.95)

It is evident from (7.95) that AR must be a factor of P , and from (7.92)

that RAN must be a factor of PS. Let us therefore choose

P = AR (7.96)

S = S0N (7.97)

where the polynomial S0 is as yet undetermined. The use of (7.96) and (7.97)

in (7.92) and (7.95) then gives

z�`+kARCHH + zk�`�1QCHH � zARDLH2

= S0(~� ~�
H + �~
~
H) (7.98)

zARCCH � z`�k+1S0N �E(B)CCH � zLH1 RAD

= �Q(CCH + �DDH): (7.99)

De�ne

CCH + �DDH �
= V V H : (7.100)

By multiplying (7.98) by V V H , multiplying (7.99) by z�1�`+kCHH , and

using (7.86), we obtain

z�`+kARCHHV V H + zk�`�1QCHHV V H � zARDLH2 V V
H

= S0V V
H(~� ~�H + �~
~
H) (7.101)

and

z�`+kARCCHCHH + zk�`�1QCHHV V H � z�`+kLH1 RADCH
H

= S0HC
HCHH : (7.102)
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Subtracting equation (7.102) from (7.101) yields

z�`+kARCHH�DDH � zARDLH2 V V
H + z�`+kLH1 RADCH

H

= S0(V V
H ~� ~�H + �V V H~
~
H � CCHHHH): (7.103)

De�ne the polynomial spectral factorization


��H
4

= V V H ~� ~�H + �V V H~
~
H � CCHHHH (7.104)

where � is stable and monic, while 
 is a scalar. The �lter denominator R

is a factor of the left-hand side of (7.103). Since R must be stable, equation

(7.103) indicates that we should choose

R = �: (7.105)

Since also A is a factor of the left-hand side of (7.103), we must require it

to be a factor of S0 on the right-hand side. Thus,

S0 = S1A (7.106)

for some S1. Substituting S1A for S0 in (7.98) reveals that A must be a

factor of Q. Thus, for some Q1,

Q = Q1A: (7.107)

Summary of the design equations

Equations (7.99) and (7.103) constitute our coupled polynomial equations.

Multiply (7.99) by z�1 and change sign of (7.103). By also substituting q for

z, and by using (7.86), (7.100), (7.104), (7.105), (7.106) and (7.107), these

equations can be written as

A�CCH � q`�kS1AHC
H � LH1 �AD = �q�1Q1AV V

H (7.108)

� q�`+k�CHHDDH + qLH2 DV V
H � q�`+kLH1 DCH

H

= �S1
�H : (7.109)
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Note that V V H = CCH + �DDH . Using (7.87)-(7.90), the spectral factor-

ization de�ned by (7.104) can be expressed as


��H = (CCH + �DDH)NNHCCH(B0B
H

0 A1A
H

1 +A0A
H

0
�E(�B�BH))

+ �(CCH + �DDH)AAHDDH(M0M
H

0 N1N
H

1

+N0N
H

0
�E(�M�M))� CCHCCHNNHB0A1B

H

0 A
H

1 (7.110)

or


��H = CCHCCHNNHA0A
H

0
�E(�B�BH) + �DDHNNHCCH ~B ~BH

+ �CCHDDHAAH ~M ~MH + ��DDHDDHAAH ~M ~MH : (7.111)

This expression reduces to (7.20) for white symbol sequences (C = D = 1).

By using the de�nition (7.100) and canceling the common factor A in (7.108),

the linear equations (7.108), (7.109) can be expressed as

�CCH + q�1(CCH + �DDH)Q1

= q`�kHCHS1 + �DLH1 (7.112)

�q�`+k�CHHDDH + qD(CCH + �DDH)LH2

= �
�HS1 + q�`+kDCHHLH1 : (7.113)

Summarizing (7.96), (7.97), (7.105), (7.106) and (7.107), it becomes evident

that the �lters of the optimal decision feedback equalizer (7.81) have the

following structure

S

R
=
N0N1A0A1S1

�
;

Q

P
=
Q1A

AR
=
Q1

�
(7.114)

where S1, L
H
1 , Q1 and LH2 are obtained as the unique solution to (7.112),

(7.113). In the same way as for the nominal solution, discussed in [90],

these two equations can be reformulated as a linear system of equations in

S1 and L
H
1 . Once S1 and L

H
1 are obtained, Q1 can be calculated. See also

Appendix 3.A.1 of Chapter 3.
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7.A.2 Derivation of a Spatially Robust DFE

As usual, we will adopt the assumption that the DFE feeds back only correct

decisions. The averaged MSE-optimal DFE can then be designed as a linear

�lter. Since only the second order properties of the processed signals will

a�ect the DFE design, we can replace the sum of all interferers and the noise

in (7.55) with a, for our purpose, equivalent interference term, n(t),

n(t) =

KX
i=1

bidi(t) + v(t) (7.115)

with the spatial covariance matrix

Rnn = E

24 KX
i=1

bidi(t) + v(t)

! 
KX
i=1

bidi(t) + v(t)

!H
35 : (7.116)

We will now attempt to construct a DFE, with FIR structures of the feed-

forward and feedback links, that is robust to the channel estimation errors

expressed in (7.63). It is not given that the MSE-optimal DFE can be real-

ized with FIR-�lters but we will here show that for our case, with temporally

white interferers, it is approximately true.

Let us express the DFE as:

d̂0(t� `jt) = s(q�1)y(t)�Q(q�1)d0(t� `� 1): (7.117)

where s(q�1) is a 1�M vector FIR �lter and Q(q�1) is a polynomial. Note

that we use d0(t� `� 1) in the feedback �lter since we assume correct past

decisions.

To obtain a robust DFE we minimize the criterion

J = �EEjd0(t� `)� d̂0(t� `jt)j2 = �EEjz(t)j2 (7.118)

where

z(t) = d0(t� `)� d̂0(t� `jt) =
(q�` � s(q�1)(b0(q�1) + �b0(q

�1))

+q�`�1Q(q�1))d0(t)� s(q�1)n(t): (7.119)
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The expectation E is with respect to the noise and symbol realizations, n(t)

and d(t), while the expectation �E is with respect to the channel uncertainty

�b0(q
�1), which is assumed to be zero mean, and have a known covariance

matrix �E[�b0(q
�1)�bH0 (q)].

If we assume that the training sequence for the desired signal is approxi-

mately white and that the noise level is small compared to the interference

level then it can be shown, as in Appendix 7.A.3, that the expectation
�E[�b0(q

�1)�bH0 (q)] is approximately a constant matrix and can be esti-

mated as

�E[�b0(q
�1)�bH0 (q)] �

1

nb+ 1
�B0�B

H

0 : (7.120)

We will here make the assumtion that indeed

�E[�b0(q
�1)�bH0 (q)] =

1

nb+ 1
�B0�B

H

0 : (7.121)

We will below show that with this assumption, the robust DFE, for the

scenario studied here, can be realized with FIR feedforward and feedback

�lters.

In order to minimize the criterion in (7.118), z(t) has to be orthogonal to

any �ltered version of the input signals y(t) and to d0(t� `� 1). The signal

z(t) thus has to be orthogonal to

e1(t)
4

= g1(q
�1)y(t) (7.122)

and to

e2(t)
4

= g2(q
�1)d0(t� `� 1) (7.123)

where g1(q
�1), of dimension 1 �M , and g2(q

�1) are arbitrary stable and

causal IIR �lters.

Orthogonality with respect to e1(t) = g1(q
�1)y(t) gives:

�EE[z(t)eH1 (t)] =

�EE[(q�` � s(q�1)(b0(q�1) + �b0(q
�1))

+q�`�1Q(q�1))d0(t)� s(q�1)n(t)]
[g1(q

�1)((b0(q
�1) + �b0(q

�1))d0(t) +n(t))]
H

= 0: (7.124)
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Evaluating the expectation with respect to the signals d0(t) and n(t) gives

1

2�i
�E

I
jzj=1

[(z�` � s(z�1)(b0(z�1) + �b0(z
�1))

+z�`�1Q(z�1))(bH0 (z) + �bH0 (z)) �

s(z�1)Rnn]g
H

1 (z)
dz

z
= 0: (7.125)

Moving the expectation, �E, inside the integration and observing that �E�b(q�1) =

b0 gives

1

2�i

I
jzj=1

[(z�`bH0 (z) + z�`�1Q(z�1)bH0 (z)

�s(z�1)(b0(z�1)bH0 (z) + �E[�b0(z)�b
H

0 (z
�1)]

+Rnn)]g
H

1 (z)
dz

z
= 0: (7.126)

In order for this expression to be zero for all admissible g1(z
�1), we need to

require that the integrand has no poles inside the unit circle. Since the factor

g
H
1 (z) has no poles inside the unit circle we are left with the requirement

z�`bH0 (z) + z�`�1Q(z�1)bH0 (z)

�s(z�1)(b0(z�1)bH0 (z) + �E(�b0(z
�1)�bH0 (z)) +Rnn)

= zlH2 (z) (7.127)

where l2(z
�1) is a causal and stable column vector polynomial to be deter-

mined.

Orthogonality with respect to e2(t) = g2(q
�1)d0(t� `� 1) gives:

�EE[z(t)eH2 (t)] =

= �EE[(q�` � s(q�1)(b0(q�1) + �b0(q
�1))

+q�`�1Q(q�1))d0(t)� s(q�1)n(t)]
[g2(q

�1)q�`�1d0(t)]
H = 0: (7.128)

Evaluating the expectation with respect to the signals d(t) and n(t) gives:

1

2�i
�E

I
jzj=1

(z � z`+1s(z�1)(b0(z
�1) + �b0(z

�1))

+Q(z�1))gH2 (z)
dz

z
= 0: (7.129)
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Similar to equation (7.125), in order for this equation to be zero for all

admissible g2(z
�1), we must have

z � z`+1s(z�1)b0(z
�1) +Q(z�1) = zlH1 (z) (7.130)

where l1(z
�1) is a causal and stable polynomial in z�1 to be determined.

Multiplying (7.130) with z�1 and rearranging gives

1 + z�1Q(z�1) = z`s(z�1)b0(z
�1) + lH1 (z): (7.131)

Subtracting equation (7.131) multiplied with z�`bH0 (z) from the right, from

equation (7.127) gives

zlH2 (z) = �s(z�1)
�
�E
�
�b0(z

�1)�bH0 (z)
�
+Rnn

�
+z�`lH1 (z)b

H

0 (z): (7.132)

Let us now assume that the double sided polynomial �E
�
�b0(z

�1)�b0(z)
�

has the double sided order �nb0, i.e. it contains powers of z from ��nb0 to
�nb0. Looking at the negative powers of z in (7.132) we can see that

deg s(z�1) = `� �nb0: (7.133)

However, the optimal equalizer must have deg s(z�1) � `, otherwise the

estimate d̂(t� `) does not make use of all samples of y(t) that are a�ected

by d(t� `), namely y(t� `+ nb0), y(t� `+ nb0 � 1),..., y(t� `).

We can thus conclude that in order for the coupled polynomial FIR-DFE

design equations (7.131) and (7.132) to have a solution, we must have �nb0 =

0 and the double sided matrix polynomial, �E
�
�b0(z

�1)�b0(z)
�
, has to be

a constant matrix. This means that the uncertainties in the vector channel

taps need to be uncorrelated.

However, with the assumption in (7.121) we have

�E[�b(z�1)�bH(z)] +Rnn =
1

nb+ 1
�B0�B

H

0 +Rnn (7.134)

and we can thus replace �E[�b(z�1)�bH(z)]+Rnn with the constant matrix

P 0 =
1

nb+ 1
�B0�B

H

0 +Rnn: (7.135)
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Looking at the positive powers of z in (7.130) we can deduce that

deg l1(z
�1) = `: (7.136)

Furthermore, since we have concluded that �nb0 = 0 and thus deg s(z�1) =

`, we can conclude from (7.130), by looking at the negative powers of z, that

deg Q(z�1) = nb0 � 1: (7.137)

Finally, using deg l1(z
�1) = ` in (7.132) gives

deg l2(z
�1) = nb0 � 1: (7.138)

We thus have the following orders of the polynomials

deg s(z�1) = deg l1(z
�1) = ` (7.139)

deg Q(z�1) = deg l2(z
�1) = nb0 � 1: (7.140)

Again, similar to the treatment of the DFE's in Appendix 3.A.1 and 3.A.2,

the coupled polynomial equations (7.131) and (7.132) can be solved by con-

verting them to a system of linear equations in the coe�cients.

De�ne

B
�
=

0BB@
b
T

0 0 ::: 0

b
T

1 b
T

0 ::: 0

::: ::: ::: :::

b
T

`
b
T

`�1 ::: b
T

0

1CCA (7.141)

P0
�
=

0BBB@
P 0 0 � � � � � � 0

0 P 0 0 � � � 0
...

...
...

...
...

0 � � � � � � 0 P 0

1CCCA (7.142)

S
T �
=
�
s0 s1 ::: s` l�1;` l�1;`�1 ::: l�1;0

�
(7.143)

C
T �
=
�
0 0 ::: 1 0 0 ::: 0

�
(7.144)
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where the \1" in C appears in element nr `+1. It can now be be shown from

(7.131) and (7.132), along the same lines as in Appendix 3.A.1 and 3.A.2,

that

S =

�
B I

P0 �BH

��1
C (7.145)

where I is an identity matrix. Let us at this point exchange the complex

variable z for the shift operator q in the notation. Whenever the matrix

in (7.145) is invertible, we can extract s(q�1) from S (and l1(q
�1)) and

subsequently Q(q�1) can be obtained from equation (7.130) as

Q(q�1) = q`+1s(q�1)b0(q
�1) + q(lH1 (q)� 1): (7.146)

The robust DFE for the channel (7.55) with FIR channels for the desired

signal and co-channel interferers without temporal color can thus, under the

assumption (7.121), be realized with FIR �lters in the feedforward and the

feedback links. Furthermore, compared to the nominal design, the spatial

covariance matrix for the noise plus interference, Rnn, should be replaced

with a constant matrix P 0 given by

P 0 = Rnn +
1

nb+ 1
�B0�B

H

0 : (7.147)

The estimate of the spatial color of the noise should thus be replaced by the

sum of the spatial color of the noise and interference and the spatial color

of the uncertainties in the estimated channel.
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7.A.3 Expectation of Channel Error Spectrum

If the taps in �b0(q
�1) are uncorrelated, then �E[�b0(q

�1)�bH0 (q)] will in-

deed be a constant matrix. Thus consider the contribution, �Bi, from

interferer i to the matrix representation (7.63) of the channel estimation

error, �B0:

�Bi

4

= biR̂did0
R̂
�1

d0d0
(7.148)

where bi is the single vector tap of the channel for interferer i, with R̂did0

and R̂d0d0
de�ned in (7.61) and (7.59), respectively.

We thus have to consider how the columns, �bik, in

�Bi = [�bi0 : : : �bi;nbk ] (7.149)

in (7.148), corresponding to di�erent time lags, are correlated. This corre-

lation is given by

�E[�bik�b
H

il ] =

= �E[biR̂did0
(R̂

�1

d0d0
)k(biR̂did0

(R̂
�1

d0d0
)l)

H ]

= �E[biR̂did0
(R̂

�1

d0d0
)k(R̂

�1

d0d0
)Hl R̂

H

did0
b
H

i ] (7.150)

where (R̂
�1

d0d0
)k and (R̂

�1

d0d0
)l are the k:th and the l:th columns, respectively,

of the matrix R̂
�1

d0d0
. We can simplify this equation if we assume that the

training sequence for the desired signal is chosen such that it is approxi-

mately white. There are good reasons for such a choice. It will for example

make the channel estimation more well conditioned and it will also facilitate

the synchronization of the system. For example, the training sequences in

GSM are chosen such that they are approximately uncorrelated over the

number of lags necessary to make R̂d0d0
close to an identity matrix [89].

Thus, assuming that R̂d0d0
� I we obtain

�E[�bik�b
H

il ] �

� 1

(N � nb0)2
�E[bi

NX
t1;t2=nb0+1

di(t1)d
H

0 (t1 � k)d0(t2 � l)dHi (t2)b
H

i ]: (7.151)

With the training sequence being approximately white, the terms in the sum

in (7.151) will only contribute signi�cantly if t1 � k = t2 � l. We can thus
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replace t2 with t2 = t1 � k + l, giving

�E[�bik�b
H

il ] �

� 1

(N � nb0)2
�E[bi

NX
t1=nb0+1

di(t1)d
H

0 (t1 � k)d0(t1 � k)dHi (t1 � k + l)bHi ]:

(7.152)

We will also assume that the symbol sequence of the interferers are white

and thus only terms with k = l will contribute signi�cantly. Therefore we

approximately have

�E[�bik�b
H

il ] � 0 when k 6= l (7.153)

and thus the errors in the di�erent channel taps of the channel estimate,

originating from a speci�c interferer, are approximately uncorrelated. Con-

sequently the errors in the di�erent channel taps of the channel estimate

from the combined e�ect of all interferers (and the temporally white ther-

mal noise) are approximately uncorrelated.

The cross-terms between di�erent taps in the expectation �E[�b0(q
�1)�bH0 (q)]

will thus approximately cancel and we obtain the approximation

E[�b0(q
�1)�bH0 (q)] �

1

nb+ 1
�B0B

H

0 (7.154)
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